drm/i915: Reset the breadcrumbs IRQ more carefully
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234                                 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236                                      struct i915_gem_context *ctx,
237                                      struct intel_engine_cs *engine,
238                                      struct intel_ring *ring);
239
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252         /* On platforms with execlist available, vGPU will only
253          * support execlist mode, no ring buffer mode.
254          */
255         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256                 return 1;
257
258         if (INTEL_GEN(dev_priv) >= 9)
259                 return 1;
260
261         if (enable_execlists == 0)
262                 return 0;
263
264         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265             USES_PPGTT(dev_priv) &&
266             i915.use_mmio_flip >= 0)
267                 return 1;
268
269         return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275         struct drm_i915_private *dev_priv = engine->i915;
276
277         engine->disable_lite_restore_wa =
278                 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
279                  IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
280                 (engine->id == VCS || engine->id == VCS2);
281
282         engine->ctx_desc_template = GEN8_CTX_VALID;
283         if (IS_GEN8(dev_priv))
284                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286
287         /* TODO: WaDisableLiteRestore when we start using semaphore
288          * signalling between Command Streamers */
289         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
290
291         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293         if (engine->disable_lite_restore_wa)
294                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 }
296
297 /**
298  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299  *                                        descriptor for a pinned context
300  * @ctx: Context to work on
301  * @engine: Engine the descriptor will be used with
302  *
303  * The context descriptor encodes various attributes of a context,
304  * including its GTT address and some flags. Because it's fairly
305  * expensive to calculate, we'll just do it once and cache the result,
306  * which remains valid until the context is unpinned.
307  *
308  * This is what a descriptor looks like, from LSB to MSB::
309  *
310  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
311  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
312  *      bits 32-52:    ctx ID, a globally unique tag
313  *      bits 53-54:    mbz, reserved for use by hardware
314  *      bits 55-63:    group ID, currently unused and set to 0
315  */
316 static void
317 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
318                                    struct intel_engine_cs *engine)
319 {
320         struct intel_context *ce = &ctx->engine[engine->id];
321         u64 desc;
322
323         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324
325         desc = ctx->desc_template;                              /* bits  3-4  */
326         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
327         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
328                                                                 /* bits 12-31 */
329         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
330
331         ce->lrc_desc = desc;
332 }
333
334 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
335                                      struct intel_engine_cs *engine)
336 {
337         return ctx->engine[engine->id].lrc_desc;
338 }
339
340 static inline void
341 execlists_context_status_change(struct drm_i915_gem_request *rq,
342                                 unsigned long status)
343 {
344         /*
345          * Only used when GVT-g is enabled now. When GVT-g is disabled,
346          * The compiler should eliminate this function as dead-code.
347          */
348         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
349                 return;
350
351         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
352 }
353
354 static void
355 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
356 {
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
358         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
359         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
360         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
361 }
362
363 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
364 {
365         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
366         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
367         u32 *reg_state = ce->lrc_reg_state;
368
369         reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
370
371         /* True 32b PPGTT with dynamic page allocation: update PDP
372          * registers and point the unallocated PDPs to scratch page.
373          * PML4 is allocated during ppgtt init, so this is not needed
374          * in 48-bit mode.
375          */
376         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
377                 execlists_update_context_pdps(ppgtt, reg_state);
378
379         return ce->lrc_desc;
380 }
381
382 static void execlists_submit_ports(struct intel_engine_cs *engine)
383 {
384         struct drm_i915_private *dev_priv = engine->i915;
385         struct execlist_port *port = engine->execlist_port;
386         u32 __iomem *elsp =
387                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
388         u64 desc[2];
389
390         if (!port[0].count)
391                 execlists_context_status_change(port[0].request,
392                                                 INTEL_CONTEXT_SCHEDULE_IN);
393         desc[0] = execlists_update_context(port[0].request);
394         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
395
396         if (port[1].request) {
397                 GEM_BUG_ON(port[1].count);
398                 execlists_context_status_change(port[1].request,
399                                                 INTEL_CONTEXT_SCHEDULE_IN);
400                 desc[1] = execlists_update_context(port[1].request);
401                 port[1].count = 1;
402         } else {
403                 desc[1] = 0;
404         }
405         GEM_BUG_ON(desc[0] == desc[1]);
406
407         /* You must always write both descriptors in the order below. */
408         writel(upper_32_bits(desc[1]), elsp);
409         writel(lower_32_bits(desc[1]), elsp);
410
411         writel(upper_32_bits(desc[0]), elsp);
412         /* The context is automatically loaded after the following */
413         writel(lower_32_bits(desc[0]), elsp);
414 }
415
416 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417 {
418         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419                 ctx->execlists_force_single_submission);
420 }
421
422 static bool can_merge_ctx(const struct i915_gem_context *prev,
423                           const struct i915_gem_context *next)
424 {
425         if (prev != next)
426                 return false;
427
428         if (ctx_single_port_submission(prev))
429                 return false;
430
431         return true;
432 }
433
434 static void execlists_dequeue(struct intel_engine_cs *engine)
435 {
436         struct drm_i915_gem_request *cursor, *last;
437         struct execlist_port *port = engine->execlist_port;
438         bool submit = false;
439
440         last = port->request;
441         if (last)
442                 /* WaIdleLiteRestore:bdw,skl
443                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
444                  * as we resubmit the request. See gen8_emit_request()
445                  * for where we prepare the padding after the end of the
446                  * request.
447                  */
448                 last->tail = last->wa_tail;
449
450         GEM_BUG_ON(port[1].request);
451
452         /* Hardware submission is through 2 ports. Conceptually each port
453          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
454          * static for a context, and unique to each, so we only execute
455          * requests belonging to a single context from each ring. RING_HEAD
456          * is maintained by the CS in the context image, it marks the place
457          * where it got up to last time, and through RING_TAIL we tell the CS
458          * where we want to execute up to this time.
459          *
460          * In this list the requests are in order of execution. Consecutive
461          * requests from the same context are adjacent in the ringbuffer. We
462          * can combine these requests into a single RING_TAIL update:
463          *
464          *              RING_HEAD...req1...req2
465          *                                    ^- RING_TAIL
466          * since to execute req2 the CS must first execute req1.
467          *
468          * Our goal then is to point each port to the end of a consecutive
469          * sequence of requests as being the most optimal (fewest wake ups
470          * and context switches) submission.
471          */
472
473         spin_lock(&engine->execlist_lock);
474         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
475                 /* Can we combine this request with the current port? It has to
476                  * be the same context/ringbuffer and not have any exceptions
477                  * (e.g. GVT saying never to combine contexts).
478                  *
479                  * If we can combine the requests, we can execute both by
480                  * updating the RING_TAIL to point to the end of the second
481                  * request, and so we never need to tell the hardware about
482                  * the first.
483                  */
484                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
485                         /* If we are on the second port and cannot combine
486                          * this request with the last, then we are done.
487                          */
488                         if (port != engine->execlist_port)
489                                 break;
490
491                         /* If GVT overrides us we only ever submit port[0],
492                          * leaving port[1] empty. Note that we also have
493                          * to be careful that we don't queue the same
494                          * context (even though a different request) to
495                          * the second port.
496                          */
497                         if (ctx_single_port_submission(cursor->ctx))
498                                 break;
499
500                         GEM_BUG_ON(last->ctx == cursor->ctx);
501
502                         i915_gem_request_assign(&port->request, last);
503                         port++;
504                 }
505                 last = cursor;
506                 submit = true;
507         }
508         if (submit) {
509                 /* Decouple all the requests submitted from the queue */
510                 engine->execlist_queue.next = &cursor->execlist_link;
511                 cursor->execlist_link.prev = &engine->execlist_queue;
512
513                 i915_gem_request_assign(&port->request, last);
514         }
515         spin_unlock(&engine->execlist_lock);
516
517         if (submit)
518                 execlists_submit_ports(engine);
519 }
520
521 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
522 {
523         return !engine->execlist_port[0].request;
524 }
525
526 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
527 {
528         int port;
529
530         port = 1; /* wait for a free slot */
531         if (engine->disable_lite_restore_wa || engine->preempt_wa)
532                 port = 0; /* wait for GPU to be idle before continuing */
533
534         return !engine->execlist_port[port].request;
535 }
536
537 /*
538  * Check the unread Context Status Buffers and manage the submission of new
539  * contexts to the ELSP accordingly.
540  */
541 static void intel_lrc_irq_handler(unsigned long data)
542 {
543         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
544         struct execlist_port *port = engine->execlist_port;
545         struct drm_i915_private *dev_priv = engine->i915;
546
547         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
548
549         if (!execlists_elsp_idle(engine)) {
550                 u32 __iomem *csb_mmio =
551                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
552                 u32 __iomem *buf =
553                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
554                 unsigned int csb, head, tail;
555
556                 csb = readl(csb_mmio);
557                 head = GEN8_CSB_READ_PTR(csb);
558                 tail = GEN8_CSB_WRITE_PTR(csb);
559                 if (tail < head)
560                         tail += GEN8_CSB_ENTRIES;
561                 while (head < tail) {
562                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
563                         unsigned int status = readl(buf + 2 * idx);
564
565                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
566                                 continue;
567
568                         GEM_BUG_ON(port[0].count == 0);
569                         if (--port[0].count == 0) {
570                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
571                                 execlists_context_status_change(port[0].request,
572                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
573
574                                 i915_gem_request_put(port[0].request);
575                                 port[0] = port[1];
576                                 memset(&port[1], 0, sizeof(port[1]));
577
578                                 engine->preempt_wa = false;
579                         }
580
581                         GEM_BUG_ON(port[0].count == 0 &&
582                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
583                 }
584
585                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
586                                      GEN8_CSB_WRITE_PTR(csb) << 8),
587                        csb_mmio);
588         }
589
590         if (execlists_elsp_ready(engine))
591                 execlists_dequeue(engine);
592
593         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
594 }
595
596 static void execlists_submit_request(struct drm_i915_gem_request *request)
597 {
598         struct intel_engine_cs *engine = request->engine;
599         unsigned long flags;
600
601         spin_lock_irqsave(&engine->execlist_lock, flags);
602
603         list_add_tail(&request->execlist_link, &engine->execlist_queue);
604         if (execlists_elsp_idle(engine))
605                 tasklet_hi_schedule(&engine->irq_tasklet);
606
607         spin_unlock_irqrestore(&engine->execlist_lock, flags);
608 }
609
610 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
611 {
612         struct intel_engine_cs *engine = request->engine;
613         struct intel_context *ce = &request->ctx->engine[engine->id];
614         int ret;
615
616         /* Flush enough space to reduce the likelihood of waiting after
617          * we start building the request - in which case we will just
618          * have to repeat work.
619          */
620         request->reserved_space += EXECLISTS_REQUEST_SIZE;
621
622         if (!ce->state) {
623                 ret = execlists_context_deferred_alloc(request->ctx, engine);
624                 if (ret)
625                         return ret;
626         }
627
628         request->ring = ce->ring;
629
630         if (i915.enable_guc_submission) {
631                 /*
632                  * Check that the GuC has space for the request before
633                  * going any further, as the i915_add_request() call
634                  * later on mustn't fail ...
635                  */
636                 ret = i915_guc_wq_reserve(request);
637                 if (ret)
638                         return ret;
639         }
640
641         ret = intel_lr_context_pin(request->ctx, engine);
642         if (ret)
643                 return ret;
644
645         ret = intel_ring_begin(request, 0);
646         if (ret)
647                 goto err_unpin;
648
649         if (!ce->initialised) {
650                 ret = engine->init_context(request);
651                 if (ret)
652                         goto err_unpin;
653
654                 ce->initialised = true;
655         }
656
657         /* Note that after this point, we have committed to using
658          * this request as it is being used to both track the
659          * state of engine initialisation and liveness of the
660          * golden renderstate above. Think twice before you try
661          * to cancel/unwind this request now.
662          */
663
664         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
665         return 0;
666
667 err_unpin:
668         intel_lr_context_unpin(request->ctx, engine);
669         return ret;
670 }
671
672 /*
673  * intel_logical_ring_advance() - advance the tail and prepare for submission
674  * @request: Request to advance the logical ringbuffer of.
675  *
676  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
677  * really happens during submission is that the context and current tail will be placed
678  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
679  * point, the tail *inside* the context is updated and the ELSP written to.
680  */
681 static int
682 intel_logical_ring_advance(struct drm_i915_gem_request *request)
683 {
684         struct intel_ring *ring = request->ring;
685         struct intel_engine_cs *engine = request->engine;
686
687         intel_ring_advance(ring);
688         request->tail = ring->tail;
689
690         /*
691          * Here we add two extra NOOPs as padding to avoid
692          * lite restore of a context with HEAD==TAIL.
693          *
694          * Caller must reserve WA_TAIL_DWORDS for us!
695          */
696         intel_ring_emit(ring, MI_NOOP);
697         intel_ring_emit(ring, MI_NOOP);
698         intel_ring_advance(ring);
699         request->wa_tail = ring->tail;
700
701         /* We keep the previous context alive until we retire the following
702          * request. This ensures that any the context object is still pinned
703          * for any residual writes the HW makes into it on the context switch
704          * into the next object following the breadcrumb. Otherwise, we may
705          * retire the context too early.
706          */
707         request->previous_context = engine->last_context;
708         engine->last_context = request->ctx;
709         return 0;
710 }
711
712 static int intel_lr_context_pin(struct i915_gem_context *ctx,
713                                 struct intel_engine_cs *engine)
714 {
715         struct intel_context *ce = &ctx->engine[engine->id];
716         void *vaddr;
717         int ret;
718
719         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
720
721         if (ce->pin_count++)
722                 return 0;
723
724         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
725                            PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
726         if (ret)
727                 goto err;
728
729         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
730         if (IS_ERR(vaddr)) {
731                 ret = PTR_ERR(vaddr);
732                 goto unpin_vma;
733         }
734
735         ret = intel_ring_pin(ce->ring);
736         if (ret)
737                 goto unpin_map;
738
739         intel_lr_context_descriptor_update(ctx, engine);
740
741         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
742         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
743                 i915_ggtt_offset(ce->ring->vma);
744
745         ce->state->obj->dirty = true;
746
747         /* Invalidate GuC TLB. */
748         if (i915.enable_guc_submission) {
749                 struct drm_i915_private *dev_priv = ctx->i915;
750                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
751         }
752
753         i915_gem_context_get(ctx);
754         return 0;
755
756 unpin_map:
757         i915_gem_object_unpin_map(ce->state->obj);
758 unpin_vma:
759         __i915_vma_unpin(ce->state);
760 err:
761         ce->pin_count = 0;
762         return ret;
763 }
764
765 void intel_lr_context_unpin(struct i915_gem_context *ctx,
766                             struct intel_engine_cs *engine)
767 {
768         struct intel_context *ce = &ctx->engine[engine->id];
769
770         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
771         GEM_BUG_ON(ce->pin_count == 0);
772
773         if (--ce->pin_count)
774                 return;
775
776         intel_ring_unpin(ce->ring);
777
778         i915_gem_object_unpin_map(ce->state->obj);
779         i915_vma_unpin(ce->state);
780
781         i915_gem_context_put(ctx);
782 }
783
784 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
785 {
786         int ret, i;
787         struct intel_ring *ring = req->ring;
788         struct i915_workarounds *w = &req->i915->workarounds;
789
790         if (w->count == 0)
791                 return 0;
792
793         ret = req->engine->emit_flush(req, EMIT_BARRIER);
794         if (ret)
795                 return ret;
796
797         ret = intel_ring_begin(req, w->count * 2 + 2);
798         if (ret)
799                 return ret;
800
801         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
802         for (i = 0; i < w->count; i++) {
803                 intel_ring_emit_reg(ring, w->reg[i].addr);
804                 intel_ring_emit(ring, w->reg[i].value);
805         }
806         intel_ring_emit(ring, MI_NOOP);
807
808         intel_ring_advance(ring);
809
810         ret = req->engine->emit_flush(req, EMIT_BARRIER);
811         if (ret)
812                 return ret;
813
814         return 0;
815 }
816
817 #define wa_ctx_emit(batch, index, cmd)                                  \
818         do {                                                            \
819                 int __index = (index)++;                                \
820                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
821                         return -ENOSPC;                                 \
822                 }                                                       \
823                 batch[__index] = (cmd);                                 \
824         } while (0)
825
826 #define wa_ctx_emit_reg(batch, index, reg) \
827         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
828
829 /*
830  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
831  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
832  * but there is a slight complication as this is applied in WA batch where the
833  * values are only initialized once so we cannot take register value at the
834  * beginning and reuse it further; hence we save its value to memory, upload a
835  * constant value with bit21 set and then we restore it back with the saved value.
836  * To simplify the WA, a constant value is formed by using the default value
837  * of this register. This shouldn't be a problem because we are only modifying
838  * it for a short period and this batch in non-premptible. We can ofcourse
839  * use additional instructions that read the actual value of the register
840  * at that time and set our bit of interest but it makes the WA complicated.
841  *
842  * This WA is also required for Gen9 so extracting as a function avoids
843  * code duplication.
844  */
845 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
846                                                 uint32_t *batch,
847                                                 uint32_t index)
848 {
849         struct drm_i915_private *dev_priv = engine->i915;
850         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
851
852         /*
853          * WaDisableLSQCROPERFforOCL:skl,kbl
854          * This WA is implemented in skl_init_clock_gating() but since
855          * this batch updates GEN8_L3SQCREG4 with default value we need to
856          * set this bit here to retain the WA during flush.
857          */
858         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
859             IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
860                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
861
862         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
863                                    MI_SRM_LRM_GLOBAL_GTT));
864         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
865         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
866         wa_ctx_emit(batch, index, 0);
867
868         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
869         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
870         wa_ctx_emit(batch, index, l3sqc4_flush);
871
872         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
873         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
874                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
875         wa_ctx_emit(batch, index, 0);
876         wa_ctx_emit(batch, index, 0);
877         wa_ctx_emit(batch, index, 0);
878         wa_ctx_emit(batch, index, 0);
879
880         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
881                                    MI_SRM_LRM_GLOBAL_GTT));
882         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
883         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
884         wa_ctx_emit(batch, index, 0);
885
886         return index;
887 }
888
889 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
890                                     uint32_t offset,
891                                     uint32_t start_alignment)
892 {
893         return wa_ctx->offset = ALIGN(offset, start_alignment);
894 }
895
896 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
897                              uint32_t offset,
898                              uint32_t size_alignment)
899 {
900         wa_ctx->size = offset - wa_ctx->offset;
901
902         WARN(wa_ctx->size % size_alignment,
903              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
904              wa_ctx->size, size_alignment);
905         return 0;
906 }
907
908 /*
909  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
910  * initialized at the beginning and shared across all contexts but this field
911  * helps us to have multiple batches at different offsets and select them based
912  * on a criteria. At the moment this batch always start at the beginning of the page
913  * and at this point we don't have multiple wa_ctx batch buffers.
914  *
915  * The number of WA applied are not known at the beginning; we use this field
916  * to return the no of DWORDS written.
917  *
918  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
919  * so it adds NOOPs as padding to make it cacheline aligned.
920  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
921  * makes a complete batch buffer.
922  */
923 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
924                                     struct i915_wa_ctx_bb *wa_ctx,
925                                     uint32_t *batch,
926                                     uint32_t *offset)
927 {
928         uint32_t scratch_addr;
929         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
930
931         /* WaDisableCtxRestoreArbitration:bdw,chv */
932         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
933
934         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
935         if (IS_BROADWELL(engine->i915)) {
936                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
937                 if (rc < 0)
938                         return rc;
939                 index = rc;
940         }
941
942         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
943         /* Actual scratch location is at 128 bytes offset */
944         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
945
946         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
947         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
948                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
949                                    PIPE_CONTROL_CS_STALL |
950                                    PIPE_CONTROL_QW_WRITE));
951         wa_ctx_emit(batch, index, scratch_addr);
952         wa_ctx_emit(batch, index, 0);
953         wa_ctx_emit(batch, index, 0);
954         wa_ctx_emit(batch, index, 0);
955
956         /* Pad to end of cacheline */
957         while (index % CACHELINE_DWORDS)
958                 wa_ctx_emit(batch, index, MI_NOOP);
959
960         /*
961          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
962          * execution depends on the length specified in terms of cache lines
963          * in the register CTX_RCS_INDIRECT_CTX
964          */
965
966         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
967 }
968
969 /*
970  *  This batch is started immediately after indirect_ctx batch. Since we ensure
971  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
972  *
973  *  The number of DWORDS written are returned using this field.
974  *
975  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
976  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
977  */
978 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
979                                struct i915_wa_ctx_bb *wa_ctx,
980                                uint32_t *batch,
981                                uint32_t *offset)
982 {
983         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
984
985         /* WaDisableCtxRestoreArbitration:bdw,chv */
986         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
987
988         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
989
990         return wa_ctx_end(wa_ctx, *offset = index, 1);
991 }
992
993 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
994                                     struct i915_wa_ctx_bb *wa_ctx,
995                                     uint32_t *batch,
996                                     uint32_t *offset)
997 {
998         int ret;
999         struct drm_i915_private *dev_priv = engine->i915;
1000         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1001
1002         /* WaDisableCtxRestoreArbitration:skl,bxt */
1003         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1004             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1005                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1006
1007         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1008         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1009         if (ret < 0)
1010                 return ret;
1011         index = ret;
1012
1013         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1014         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1015         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1016         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1017                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1018         wa_ctx_emit(batch, index, MI_NOOP);
1019
1020         /* WaClearSlmSpaceAtContextSwitch:kbl */
1021         /* Actual scratch location is at 128 bytes offset */
1022         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1023                 u32 scratch_addr =
1024                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1025
1026                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1027                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1028                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1029                                            PIPE_CONTROL_CS_STALL |
1030                                            PIPE_CONTROL_QW_WRITE));
1031                 wa_ctx_emit(batch, index, scratch_addr);
1032                 wa_ctx_emit(batch, index, 0);
1033                 wa_ctx_emit(batch, index, 0);
1034                 wa_ctx_emit(batch, index, 0);
1035         }
1036
1037         /* WaMediaPoolStateCmdInWABB:bxt */
1038         if (HAS_POOLED_EU(engine->i915)) {
1039                 /*
1040                  * EU pool configuration is setup along with golden context
1041                  * during context initialization. This value depends on
1042                  * device type (2x6 or 3x6) and needs to be updated based
1043                  * on which subslice is disabled especially for 2x6
1044                  * devices, however it is safe to load default
1045                  * configuration of 3x6 device instead of masking off
1046                  * corresponding bits because HW ignores bits of a disabled
1047                  * subslice and drops down to appropriate config. Please
1048                  * see render_state_setup() in i915_gem_render_state.c for
1049                  * possible configurations, to avoid duplication they are
1050                  * not shown here again.
1051                  */
1052                 u32 eu_pool_config = 0x00777000;
1053                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1054                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1055                 wa_ctx_emit(batch, index, eu_pool_config);
1056                 wa_ctx_emit(batch, index, 0);
1057                 wa_ctx_emit(batch, index, 0);
1058                 wa_ctx_emit(batch, index, 0);
1059         }
1060
1061         /* Pad to end of cacheline */
1062         while (index % CACHELINE_DWORDS)
1063                 wa_ctx_emit(batch, index, MI_NOOP);
1064
1065         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1066 }
1067
1068 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1069                                struct i915_wa_ctx_bb *wa_ctx,
1070                                uint32_t *batch,
1071                                uint32_t *offset)
1072 {
1073         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1074
1075         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1076         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1077             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1078                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1079                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1080                 wa_ctx_emit(batch, index,
1081                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1082                 wa_ctx_emit(batch, index, MI_NOOP);
1083         }
1084
1085         /* WaClearTdlStateAckDirtyBits:bxt */
1086         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1087                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1088
1089                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1090                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1091
1092                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1093                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1094
1095                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1096                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1097
1098                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1099                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1100                 wa_ctx_emit(batch, index, 0x0);
1101                 wa_ctx_emit(batch, index, MI_NOOP);
1102         }
1103
1104         /* WaDisableCtxRestoreArbitration:skl,bxt */
1105         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1106             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1107                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1108
1109         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1110
1111         return wa_ctx_end(wa_ctx, *offset = index, 1);
1112 }
1113
1114 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1115 {
1116         struct drm_i915_gem_object *obj;
1117         struct i915_vma *vma;
1118         int err;
1119
1120         obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1121         if (IS_ERR(obj))
1122                 return PTR_ERR(obj);
1123
1124         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1125         if (IS_ERR(vma)) {
1126                 err = PTR_ERR(vma);
1127                 goto err;
1128         }
1129
1130         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1131         if (err)
1132                 goto err;
1133
1134         engine->wa_ctx.vma = vma;
1135         return 0;
1136
1137 err:
1138         i915_gem_object_put(obj);
1139         return err;
1140 }
1141
1142 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1143 {
1144         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1145 }
1146
1147 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1148 {
1149         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1150         uint32_t *batch;
1151         uint32_t offset;
1152         struct page *page;
1153         int ret;
1154
1155         WARN_ON(engine->id != RCS);
1156
1157         /* update this when WA for higher Gen are added */
1158         if (INTEL_GEN(engine->i915) > 9) {
1159                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1160                           INTEL_GEN(engine->i915));
1161                 return 0;
1162         }
1163
1164         /* some WA perform writes to scratch page, ensure it is valid */
1165         if (!engine->scratch) {
1166                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1167                 return -EINVAL;
1168         }
1169
1170         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1171         if (ret) {
1172                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1173                 return ret;
1174         }
1175
1176         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1177         batch = kmap_atomic(page);
1178         offset = 0;
1179
1180         if (IS_GEN8(engine->i915)) {
1181                 ret = gen8_init_indirectctx_bb(engine,
1182                                                &wa_ctx->indirect_ctx,
1183                                                batch,
1184                                                &offset);
1185                 if (ret)
1186                         goto out;
1187
1188                 ret = gen8_init_perctx_bb(engine,
1189                                           &wa_ctx->per_ctx,
1190                                           batch,
1191                                           &offset);
1192                 if (ret)
1193                         goto out;
1194         } else if (IS_GEN9(engine->i915)) {
1195                 ret = gen9_init_indirectctx_bb(engine,
1196                                                &wa_ctx->indirect_ctx,
1197                                                batch,
1198                                                &offset);
1199                 if (ret)
1200                         goto out;
1201
1202                 ret = gen9_init_perctx_bb(engine,
1203                                           &wa_ctx->per_ctx,
1204                                           batch,
1205                                           &offset);
1206                 if (ret)
1207                         goto out;
1208         }
1209
1210 out:
1211         kunmap_atomic(batch);
1212         if (ret)
1213                 lrc_destroy_wa_ctx_obj(engine);
1214
1215         return ret;
1216 }
1217
1218 static void lrc_init_hws(struct intel_engine_cs *engine)
1219 {
1220         struct drm_i915_private *dev_priv = engine->i915;
1221
1222         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1223                    engine->status_page.ggtt_offset);
1224         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1225 }
1226
1227 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1228 {
1229         struct drm_i915_private *dev_priv = engine->i915;
1230         int ret;
1231
1232         ret = intel_mocs_init_engine(engine);
1233         if (ret)
1234                 return ret;
1235
1236         lrc_init_hws(engine);
1237
1238         intel_engine_reset_breadcrumbs(engine);
1239
1240         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1241
1242         I915_WRITE(RING_MODE_GEN7(engine),
1243                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1244                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1245
1246         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1247
1248         intel_engine_init_hangcheck(engine);
1249
1250         if (!execlists_elsp_idle(engine))
1251                 execlists_submit_ports(engine);
1252
1253         return 0;
1254 }
1255
1256 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1257 {
1258         struct drm_i915_private *dev_priv = engine->i915;
1259         int ret;
1260
1261         ret = gen8_init_common_ring(engine);
1262         if (ret)
1263                 return ret;
1264
1265         /* We need to disable the AsyncFlip performance optimisations in order
1266          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1267          * programmed to '1' on all products.
1268          *
1269          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1270          */
1271         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1272
1273         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1274
1275         return init_workarounds_ring(engine);
1276 }
1277
1278 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1279 {
1280         int ret;
1281
1282         ret = gen8_init_common_ring(engine);
1283         if (ret)
1284                 return ret;
1285
1286         return init_workarounds_ring(engine);
1287 }
1288
1289 static void reset_common_ring(struct intel_engine_cs *engine,
1290                               struct drm_i915_gem_request *request)
1291 {
1292         struct drm_i915_private *dev_priv = engine->i915;
1293         struct execlist_port *port = engine->execlist_port;
1294         struct intel_context *ce = &request->ctx->engine[engine->id];
1295
1296         /* We want a simple context + ring to execute the breadcrumb update.
1297          * We cannot rely on the context being intact across the GPU hang,
1298          * so clear it and rebuild just what we need for the breadcrumb.
1299          * All pending requests for this context will be zapped, and any
1300          * future request will be after userspace has had the opportunity
1301          * to recreate its own state.
1302          */
1303         execlists_init_reg_state(ce->lrc_reg_state,
1304                                  request->ctx, engine, ce->ring);
1305
1306         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1307         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1308                 i915_ggtt_offset(ce->ring->vma);
1309         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1310
1311         request->ring->head = request->postfix;
1312         request->ring->last_retired_head = -1;
1313         intel_ring_update_space(request->ring);
1314
1315         if (i915.enable_guc_submission)
1316                 return;
1317
1318         /* Catch up with any missed context-switch interrupts */
1319         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1320         if (request->ctx != port[0].request->ctx) {
1321                 i915_gem_request_put(port[0].request);
1322                 port[0] = port[1];
1323                 memset(&port[1], 0, sizeof(port[1]));
1324         }
1325
1326         /* CS is stopped, and we will resubmit both ports on resume */
1327         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1328         port[0].count = 0;
1329         port[1].count = 0;
1330
1331         /* Reset WaIdleLiteRestore:bdw,skl as well */
1332         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1333 }
1334
1335 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1336 {
1337         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1338         struct intel_ring *ring = req->ring;
1339         struct intel_engine_cs *engine = req->engine;
1340         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1341         int i, ret;
1342
1343         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1344         if (ret)
1345                 return ret;
1346
1347         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1348         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1349                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1350
1351                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1352                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1353                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1354                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1355         }
1356
1357         intel_ring_emit(ring, MI_NOOP);
1358         intel_ring_advance(ring);
1359
1360         return 0;
1361 }
1362
1363 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1364                               u64 offset, u32 len,
1365                               unsigned int dispatch_flags)
1366 {
1367         struct intel_ring *ring = req->ring;
1368         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1369         int ret;
1370
1371         /* Don't rely in hw updating PDPs, specially in lite-restore.
1372          * Ideally, we should set Force PD Restore in ctx descriptor,
1373          * but we can't. Force Restore would be a second option, but
1374          * it is unsafe in case of lite-restore (because the ctx is
1375          * not idle). PML4 is allocated during ppgtt init so this is
1376          * not needed in 48-bit.*/
1377         if (req->ctx->ppgtt &&
1378             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1379                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1380                     !intel_vgpu_active(req->i915)) {
1381                         ret = intel_logical_ring_emit_pdps(req);
1382                         if (ret)
1383                                 return ret;
1384                 }
1385
1386                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1387         }
1388
1389         ret = intel_ring_begin(req, 4);
1390         if (ret)
1391                 return ret;
1392
1393         /* FIXME(BDW): Address space and security selectors. */
1394         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1395                         (ppgtt<<8) |
1396                         (dispatch_flags & I915_DISPATCH_RS ?
1397                          MI_BATCH_RESOURCE_STREAMER : 0));
1398         intel_ring_emit(ring, lower_32_bits(offset));
1399         intel_ring_emit(ring, upper_32_bits(offset));
1400         intel_ring_emit(ring, MI_NOOP);
1401         intel_ring_advance(ring);
1402
1403         return 0;
1404 }
1405
1406 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1407 {
1408         struct drm_i915_private *dev_priv = engine->i915;
1409         I915_WRITE_IMR(engine,
1410                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1411         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1412 }
1413
1414 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1415 {
1416         struct drm_i915_private *dev_priv = engine->i915;
1417         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1418 }
1419
1420 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1421 {
1422         struct intel_ring *ring = request->ring;
1423         u32 cmd;
1424         int ret;
1425
1426         ret = intel_ring_begin(request, 4);
1427         if (ret)
1428                 return ret;
1429
1430         cmd = MI_FLUSH_DW + 1;
1431
1432         /* We always require a command barrier so that subsequent
1433          * commands, such as breadcrumb interrupts, are strictly ordered
1434          * wrt the contents of the write cache being flushed to memory
1435          * (and thus being coherent from the CPU).
1436          */
1437         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1438
1439         if (mode & EMIT_INVALIDATE) {
1440                 cmd |= MI_INVALIDATE_TLB;
1441                 if (request->engine->id == VCS)
1442                         cmd |= MI_INVALIDATE_BSD;
1443         }
1444
1445         intel_ring_emit(ring, cmd);
1446         intel_ring_emit(ring,
1447                         I915_GEM_HWS_SCRATCH_ADDR |
1448                         MI_FLUSH_DW_USE_GTT);
1449         intel_ring_emit(ring, 0); /* upper addr */
1450         intel_ring_emit(ring, 0); /* value */
1451         intel_ring_advance(ring);
1452
1453         return 0;
1454 }
1455
1456 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1457                                   u32 mode)
1458 {
1459         struct intel_ring *ring = request->ring;
1460         struct intel_engine_cs *engine = request->engine;
1461         u32 scratch_addr =
1462                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1463         bool vf_flush_wa = false, dc_flush_wa = false;
1464         u32 flags = 0;
1465         int ret;
1466         int len;
1467
1468         flags |= PIPE_CONTROL_CS_STALL;
1469
1470         if (mode & EMIT_FLUSH) {
1471                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1472                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1473                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1474                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1475         }
1476
1477         if (mode & EMIT_INVALIDATE) {
1478                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1479                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1480                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1481                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1482                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1483                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1484                 flags |= PIPE_CONTROL_QW_WRITE;
1485                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1486
1487                 /*
1488                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1489                  * pipe control.
1490                  */
1491                 if (IS_GEN9(request->i915))
1492                         vf_flush_wa = true;
1493
1494                 /* WaForGAMHang:kbl */
1495                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1496                         dc_flush_wa = true;
1497         }
1498
1499         len = 6;
1500
1501         if (vf_flush_wa)
1502                 len += 6;
1503
1504         if (dc_flush_wa)
1505                 len += 12;
1506
1507         ret = intel_ring_begin(request, len);
1508         if (ret)
1509                 return ret;
1510
1511         if (vf_flush_wa) {
1512                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1513                 intel_ring_emit(ring, 0);
1514                 intel_ring_emit(ring, 0);
1515                 intel_ring_emit(ring, 0);
1516                 intel_ring_emit(ring, 0);
1517                 intel_ring_emit(ring, 0);
1518         }
1519
1520         if (dc_flush_wa) {
1521                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1522                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1523                 intel_ring_emit(ring, 0);
1524                 intel_ring_emit(ring, 0);
1525                 intel_ring_emit(ring, 0);
1526                 intel_ring_emit(ring, 0);
1527         }
1528
1529         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1530         intel_ring_emit(ring, flags);
1531         intel_ring_emit(ring, scratch_addr);
1532         intel_ring_emit(ring, 0);
1533         intel_ring_emit(ring, 0);
1534         intel_ring_emit(ring, 0);
1535
1536         if (dc_flush_wa) {
1537                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1538                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1539                 intel_ring_emit(ring, 0);
1540                 intel_ring_emit(ring, 0);
1541                 intel_ring_emit(ring, 0);
1542                 intel_ring_emit(ring, 0);
1543         }
1544
1545         intel_ring_advance(ring);
1546
1547         return 0;
1548 }
1549
1550 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1551 {
1552         /*
1553          * On BXT A steppings there is a HW coherency issue whereby the
1554          * MI_STORE_DATA_IMM storing the completed request's seqno
1555          * occasionally doesn't invalidate the CPU cache. Work around this by
1556          * clflushing the corresponding cacheline whenever the caller wants
1557          * the coherency to be guaranteed. Note that this cacheline is known
1558          * to be clean at this point, since we only write it in
1559          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1560          * this clflush in practice becomes an invalidate operation.
1561          */
1562         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1563 }
1564
1565 /*
1566  * Reserve space for 2 NOOPs at the end of each request to be
1567  * used as a workaround for not being allowed to do lite
1568  * restore with HEAD==TAIL (WaIdleLiteRestore).
1569  */
1570
1571 static int gen8_emit_request(struct drm_i915_gem_request *request)
1572 {
1573         struct intel_ring *ring = request->ring;
1574         int ret;
1575
1576         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1577         if (ret)
1578                 return ret;
1579
1580         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1581         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1582
1583         intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1584         intel_ring_emit(ring,
1585                         intel_hws_seqno_address(request->engine) |
1586                         MI_FLUSH_DW_USE_GTT);
1587         intel_ring_emit(ring, 0);
1588         intel_ring_emit(ring, request->fence.seqno);
1589         intel_ring_emit(ring, MI_USER_INTERRUPT);
1590         intel_ring_emit(ring, MI_NOOP);
1591         return intel_logical_ring_advance(request);
1592 }
1593
1594 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1595 {
1596         struct intel_ring *ring = request->ring;
1597         int ret;
1598
1599         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1600         if (ret)
1601                 return ret;
1602
1603         /* We're using qword write, seqno should be aligned to 8 bytes. */
1604         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1605
1606         /* w/a for post sync ops following a GPGPU operation we
1607          * need a prior CS_STALL, which is emitted by the flush
1608          * following the batch.
1609          */
1610         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1611         intel_ring_emit(ring,
1612                         (PIPE_CONTROL_GLOBAL_GTT_IVB |
1613                          PIPE_CONTROL_CS_STALL |
1614                          PIPE_CONTROL_QW_WRITE));
1615         intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1616         intel_ring_emit(ring, 0);
1617         intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1618         /* We're thrashing one dword of HWS. */
1619         intel_ring_emit(ring, 0);
1620         intel_ring_emit(ring, MI_USER_INTERRUPT);
1621         intel_ring_emit(ring, MI_NOOP);
1622         return intel_logical_ring_advance(request);
1623 }
1624
1625 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1626 {
1627         int ret;
1628
1629         ret = intel_logical_ring_workarounds_emit(req);
1630         if (ret)
1631                 return ret;
1632
1633         ret = intel_rcs_context_init_mocs(req);
1634         /*
1635          * Failing to program the MOCS is non-fatal.The system will not
1636          * run at peak performance. So generate an error and carry on.
1637          */
1638         if (ret)
1639                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1640
1641         return i915_gem_render_state_init(req);
1642 }
1643
1644 /**
1645  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1646  * @engine: Engine Command Streamer.
1647  */
1648 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1649 {
1650         struct drm_i915_private *dev_priv;
1651
1652         if (!intel_engine_initialized(engine))
1653                 return;
1654
1655         /*
1656          * Tasklet cannot be active at this point due intel_mark_active/idle
1657          * so this is just for documentation.
1658          */
1659         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1660                 tasklet_kill(&engine->irq_tasklet);
1661
1662         dev_priv = engine->i915;
1663
1664         if (engine->buffer) {
1665                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1666         }
1667
1668         if (engine->cleanup)
1669                 engine->cleanup(engine);
1670
1671         intel_engine_cleanup_common(engine);
1672
1673         if (engine->status_page.vma) {
1674                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1675                 engine->status_page.vma = NULL;
1676         }
1677         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1678
1679         lrc_destroy_wa_ctx_obj(engine);
1680         engine->i915 = NULL;
1681 }
1682
1683 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1684 {
1685         struct intel_engine_cs *engine;
1686
1687         for_each_engine(engine, dev_priv)
1688                 engine->submit_request = execlists_submit_request;
1689 }
1690
1691 static void
1692 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1693 {
1694         /* Default vfuncs which can be overriden by each engine. */
1695         engine->init_hw = gen8_init_common_ring;
1696         engine->reset_hw = reset_common_ring;
1697         engine->emit_flush = gen8_emit_flush;
1698         engine->emit_request = gen8_emit_request;
1699         engine->submit_request = execlists_submit_request;
1700
1701         engine->irq_enable = gen8_logical_ring_enable_irq;
1702         engine->irq_disable = gen8_logical_ring_disable_irq;
1703         engine->emit_bb_start = gen8_emit_bb_start;
1704         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1705                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1706 }
1707
1708 static inline void
1709 logical_ring_default_irqs(struct intel_engine_cs *engine)
1710 {
1711         unsigned shift = engine->irq_shift;
1712         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1713         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1714 }
1715
1716 static int
1717 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1718 {
1719         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1720         void *hws;
1721
1722         /* The HWSP is part of the default context object in LRC mode. */
1723         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1724         if (IS_ERR(hws))
1725                 return PTR_ERR(hws);
1726
1727         engine->status_page.page_addr = hws + hws_offset;
1728         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1729         engine->status_page.vma = vma;
1730
1731         return 0;
1732 }
1733
1734 static void
1735 logical_ring_setup(struct intel_engine_cs *engine)
1736 {
1737         struct drm_i915_private *dev_priv = engine->i915;
1738         enum forcewake_domains fw_domains;
1739
1740         intel_engine_setup_common(engine);
1741
1742         /* Intentionally left blank. */
1743         engine->buffer = NULL;
1744
1745         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1746                                                     RING_ELSP(engine),
1747                                                     FW_REG_WRITE);
1748
1749         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1750                                                      RING_CONTEXT_STATUS_PTR(engine),
1751                                                      FW_REG_READ | FW_REG_WRITE);
1752
1753         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1754                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1755                                                      FW_REG_READ);
1756
1757         engine->fw_domains = fw_domains;
1758
1759         tasklet_init(&engine->irq_tasklet,
1760                      intel_lrc_irq_handler, (unsigned long)engine);
1761
1762         logical_ring_init_platform_invariants(engine);
1763         logical_ring_default_vfuncs(engine);
1764         logical_ring_default_irqs(engine);
1765 }
1766
1767 static int
1768 logical_ring_init(struct intel_engine_cs *engine)
1769 {
1770         struct i915_gem_context *dctx = engine->i915->kernel_context;
1771         int ret;
1772
1773         ret = intel_engine_init_common(engine);
1774         if (ret)
1775                 goto error;
1776
1777         ret = execlists_context_deferred_alloc(dctx, engine);
1778         if (ret)
1779                 goto error;
1780
1781         /* As this is the default context, always pin it */
1782         ret = intel_lr_context_pin(dctx, engine);
1783         if (ret) {
1784                 DRM_ERROR("Failed to pin context for %s: %d\n",
1785                           engine->name, ret);
1786                 goto error;
1787         }
1788
1789         /* And setup the hardware status page. */
1790         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1791         if (ret) {
1792                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1793                 goto error;
1794         }
1795
1796         return 0;
1797
1798 error:
1799         intel_logical_ring_cleanup(engine);
1800         return ret;
1801 }
1802
1803 int logical_render_ring_init(struct intel_engine_cs *engine)
1804 {
1805         struct drm_i915_private *dev_priv = engine->i915;
1806         int ret;
1807
1808         logical_ring_setup(engine);
1809
1810         if (HAS_L3_DPF(dev_priv))
1811                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1812
1813         /* Override some for render ring. */
1814         if (INTEL_GEN(dev_priv) >= 9)
1815                 engine->init_hw = gen9_init_render_ring;
1816         else
1817                 engine->init_hw = gen8_init_render_ring;
1818         engine->init_context = gen8_init_rcs_context;
1819         engine->emit_flush = gen8_emit_flush_render;
1820         engine->emit_request = gen8_emit_request_render;
1821
1822         ret = intel_engine_create_scratch(engine, 4096);
1823         if (ret)
1824                 return ret;
1825
1826         ret = intel_init_workaround_bb(engine);
1827         if (ret) {
1828                 /*
1829                  * We continue even if we fail to initialize WA batch
1830                  * because we only expect rare glitches but nothing
1831                  * critical to prevent us from using GPU
1832                  */
1833                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1834                           ret);
1835         }
1836
1837         ret = logical_ring_init(engine);
1838         if (ret) {
1839                 lrc_destroy_wa_ctx_obj(engine);
1840         }
1841
1842         return ret;
1843 }
1844
1845 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1846 {
1847         logical_ring_setup(engine);
1848
1849         return logical_ring_init(engine);
1850 }
1851
1852 static u32
1853 make_rpcs(struct drm_i915_private *dev_priv)
1854 {
1855         u32 rpcs = 0;
1856
1857         /*
1858          * No explicit RPCS request is needed to ensure full
1859          * slice/subslice/EU enablement prior to Gen9.
1860         */
1861         if (INTEL_GEN(dev_priv) < 9)
1862                 return 0;
1863
1864         /*
1865          * Starting in Gen9, render power gating can leave
1866          * slice/subslice/EU in a partially enabled state. We
1867          * must make an explicit request through RPCS for full
1868          * enablement.
1869         */
1870         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1871                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1872                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1873                         GEN8_RPCS_S_CNT_SHIFT;
1874                 rpcs |= GEN8_RPCS_ENABLE;
1875         }
1876
1877         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1878                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1879                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1880                         GEN8_RPCS_SS_CNT_SHIFT;
1881                 rpcs |= GEN8_RPCS_ENABLE;
1882         }
1883
1884         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1885                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1886                         GEN8_RPCS_EU_MIN_SHIFT;
1887                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1888                         GEN8_RPCS_EU_MAX_SHIFT;
1889                 rpcs |= GEN8_RPCS_ENABLE;
1890         }
1891
1892         return rpcs;
1893 }
1894
1895 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1896 {
1897         u32 indirect_ctx_offset;
1898
1899         switch (INTEL_GEN(engine->i915)) {
1900         default:
1901                 MISSING_CASE(INTEL_GEN(engine->i915));
1902                 /* fall through */
1903         case 9:
1904                 indirect_ctx_offset =
1905                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1906                 break;
1907         case 8:
1908                 indirect_ctx_offset =
1909                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1910                 break;
1911         }
1912
1913         return indirect_ctx_offset;
1914 }
1915
1916 static void execlists_init_reg_state(u32 *reg_state,
1917                                      struct i915_gem_context *ctx,
1918                                      struct intel_engine_cs *engine,
1919                                      struct intel_ring *ring)
1920 {
1921         struct drm_i915_private *dev_priv = engine->i915;
1922         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1923
1924         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1925          * commands followed by (reg, value) pairs. The values we are setting here are
1926          * only for the first context restore: on a subsequent save, the GPU will
1927          * recreate this batchbuffer with new values (including all the missing
1928          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1929         reg_state[CTX_LRI_HEADER_0] =
1930                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1931         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1932                        RING_CONTEXT_CONTROL(engine),
1933                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1934                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1935                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
1936                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
1937         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1938                        0);
1939         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1940                        0);
1941         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1942                        RING_START(engine->mmio_base), 0);
1943         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1944                        RING_CTL(engine->mmio_base),
1945                        ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1946         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1947                        RING_BBADDR_UDW(engine->mmio_base), 0);
1948         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1949                        RING_BBADDR(engine->mmio_base), 0);
1950         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1951                        RING_BBSTATE(engine->mmio_base),
1952                        RING_BB_PPGTT);
1953         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1954                        RING_SBBADDR_UDW(engine->mmio_base), 0);
1955         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1956                        RING_SBBADDR(engine->mmio_base), 0);
1957         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1958                        RING_SBBSTATE(engine->mmio_base), 0);
1959         if (engine->id == RCS) {
1960                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1961                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1962                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1963                                RING_INDIRECT_CTX(engine->mmio_base), 0);
1964                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1965                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1966                 if (engine->wa_ctx.vma) {
1967                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1968                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1969
1970                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
1971                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1972                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1973
1974                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1975                                 intel_lr_indirect_ctx_offset(engine) << 6;
1976
1977                         reg_state[CTX_BB_PER_CTX_PTR+1] =
1978                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1979                                 0x01;
1980                 }
1981         }
1982         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1983         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1984                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1985         /* PDP values well be assigned later if needed */
1986         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1987                        0);
1988         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1989                        0);
1990         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1991                        0);
1992         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1993                        0);
1994         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1995                        0);
1996         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1997                        0);
1998         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1999                        0);
2000         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2001                        0);
2002
2003         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2004                 /* 64b PPGTT (48bit canonical)
2005                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2006                  * other PDP Descriptors are ignored.
2007                  */
2008                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2009         } else {
2010                 /* 32b PPGTT
2011                  * PDP*_DESCRIPTOR contains the base address of space supported.
2012                  * With dynamic page allocation, PDPs may not be allocated at
2013                  * this point. Point the unallocated PDPs to the scratch page
2014                  */
2015                 execlists_update_context_pdps(ppgtt, reg_state);
2016         }
2017
2018         if (engine->id == RCS) {
2019                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2020                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2021                                make_rpcs(dev_priv));
2022         }
2023 }
2024
2025 static int
2026 populate_lr_context(struct i915_gem_context *ctx,
2027                     struct drm_i915_gem_object *ctx_obj,
2028                     struct intel_engine_cs *engine,
2029                     struct intel_ring *ring)
2030 {
2031         void *vaddr;
2032         int ret;
2033
2034         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2035         if (ret) {
2036                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2037                 return ret;
2038         }
2039
2040         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2041         if (IS_ERR(vaddr)) {
2042                 ret = PTR_ERR(vaddr);
2043                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2044                 return ret;
2045         }
2046         ctx_obj->dirty = true;
2047
2048         /* The second page of the context object contains some fields which must
2049          * be set up prior to the first execution. */
2050
2051         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2052                                  ctx, engine, ring);
2053
2054         i915_gem_object_unpin_map(ctx_obj);
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * intel_lr_context_size() - return the size of the context for an engine
2061  * @engine: which engine to find the context size for
2062  *
2063  * Each engine may require a different amount of space for a context image,
2064  * so when allocating (or copying) an image, this function can be used to
2065  * find the right size for the specific engine.
2066  *
2067  * Return: size (in bytes) of an engine-specific context image
2068  *
2069  * Note: this size includes the HWSP, which is part of the context image
2070  * in LRC mode, but does not include the "shared data page" used with
2071  * GuC submission. The caller should account for this if using the GuC.
2072  */
2073 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2074 {
2075         int ret = 0;
2076
2077         WARN_ON(INTEL_GEN(engine->i915) < 8);
2078
2079         switch (engine->id) {
2080         case RCS:
2081                 if (INTEL_GEN(engine->i915) >= 9)
2082                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2083                 else
2084                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2085                 break;
2086         case VCS:
2087         case BCS:
2088         case VECS:
2089         case VCS2:
2090                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2091                 break;
2092         }
2093
2094         return ret;
2095 }
2096
2097 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2098                                             struct intel_engine_cs *engine)
2099 {
2100         struct drm_i915_gem_object *ctx_obj;
2101         struct intel_context *ce = &ctx->engine[engine->id];
2102         struct i915_vma *vma;
2103         uint32_t context_size;
2104         struct intel_ring *ring;
2105         int ret;
2106
2107         WARN_ON(ce->state);
2108
2109         context_size = round_up(intel_lr_context_size(engine), 4096);
2110
2111         /* One extra page as the sharing data between driver and GuC */
2112         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2113
2114         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2115         if (IS_ERR(ctx_obj)) {
2116                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2117                 return PTR_ERR(ctx_obj);
2118         }
2119
2120         vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2121         if (IS_ERR(vma)) {
2122                 ret = PTR_ERR(vma);
2123                 goto error_deref_obj;
2124         }
2125
2126         ring = intel_engine_create_ring(engine, ctx->ring_size);
2127         if (IS_ERR(ring)) {
2128                 ret = PTR_ERR(ring);
2129                 goto error_deref_obj;
2130         }
2131
2132         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2133         if (ret) {
2134                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2135                 goto error_ring_free;
2136         }
2137
2138         ce->ring = ring;
2139         ce->state = vma;
2140         ce->initialised = engine->init_context == NULL;
2141
2142         return 0;
2143
2144 error_ring_free:
2145         intel_ring_free(ring);
2146 error_deref_obj:
2147         i915_gem_object_put(ctx_obj);
2148         return ret;
2149 }
2150
2151 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2152 {
2153         struct i915_gem_context *ctx = dev_priv->kernel_context;
2154         struct intel_engine_cs *engine;
2155
2156         for_each_engine(engine, dev_priv) {
2157                 struct intel_context *ce = &ctx->engine[engine->id];
2158                 void *vaddr;
2159                 uint32_t *reg_state;
2160
2161                 if (!ce->state)
2162                         continue;
2163
2164                 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2165                 if (WARN_ON(IS_ERR(vaddr)))
2166                         continue;
2167
2168                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2169
2170                 reg_state[CTX_RING_HEAD+1] = 0;
2171                 reg_state[CTX_RING_TAIL+1] = 0;
2172
2173                 ce->state->obj->dirty = true;
2174                 i915_gem_object_unpin_map(ce->state->obj);
2175
2176                 ce->ring->head = 0;
2177                 ce->ring->tail = 0;
2178         }
2179 }