Merge remote-tracking branch 'ovl/misc' into work.misc
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78
79         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81                    ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = to_i915(dev);
87
88         gen9_init_clock_gating(dev);
89
90         /* WaDisableSDEUnitClockGating:bxt */
91         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94         /*
95          * FIXME:
96          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97          */
98         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101         /*
102          * Wa: Backlight PWM may stop in the asserted state, causing backlight
103          * to stay fully on.
104          */
105         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107                            PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = to_i915(dev);
113         u32 tmp;
114
115         tmp = I915_READ(CLKCFG);
116
117         switch (tmp & CLKCFG_FSB_MASK) {
118         case CLKCFG_FSB_533:
119                 dev_priv->fsb_freq = 533; /* 133*4 */
120                 break;
121         case CLKCFG_FSB_800:
122                 dev_priv->fsb_freq = 800; /* 200*4 */
123                 break;
124         case CLKCFG_FSB_667:
125                 dev_priv->fsb_freq =  667; /* 167*4 */
126                 break;
127         case CLKCFG_FSB_400:
128                 dev_priv->fsb_freq = 400; /* 100*4 */
129                 break;
130         }
131
132         switch (tmp & CLKCFG_MEM_MASK) {
133         case CLKCFG_MEM_533:
134                 dev_priv->mem_freq = 533;
135                 break;
136         case CLKCFG_MEM_667:
137                 dev_priv->mem_freq = 667;
138                 break;
139         case CLKCFG_MEM_800:
140                 dev_priv->mem_freq = 800;
141                 break;
142         }
143
144         /* detect pineview DDR3 setting */
145         tmp = I915_READ(CSHRDDR3CTL);
146         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         u16 ddrpll, csipll;
153
154         ddrpll = I915_READ16(DDRMPLL1);
155         csipll = I915_READ16(CSIPLL0);
156
157         switch (ddrpll & 0xff) {
158         case 0xc:
159                 dev_priv->mem_freq = 800;
160                 break;
161         case 0x10:
162                 dev_priv->mem_freq = 1066;
163                 break;
164         case 0x14:
165                 dev_priv->mem_freq = 1333;
166                 break;
167         case 0x18:
168                 dev_priv->mem_freq = 1600;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172                                  ddrpll & 0xff);
173                 dev_priv->mem_freq = 0;
174                 break;
175         }
176
177         dev_priv->ips.r_t = dev_priv->mem_freq;
178
179         switch (csipll & 0x3ff) {
180         case 0x00c:
181                 dev_priv->fsb_freq = 3200;
182                 break;
183         case 0x00e:
184                 dev_priv->fsb_freq = 3733;
185                 break;
186         case 0x010:
187                 dev_priv->fsb_freq = 4266;
188                 break;
189         case 0x012:
190                 dev_priv->fsb_freq = 4800;
191                 break;
192         case 0x014:
193                 dev_priv->fsb_freq = 5333;
194                 break;
195         case 0x016:
196                 dev_priv->fsb_freq = 5866;
197                 break;
198         case 0x018:
199                 dev_priv->fsb_freq = 6400;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203                                  csipll & 0x3ff);
204                 dev_priv->fsb_freq = 0;
205                 break;
206         }
207
208         if (dev_priv->fsb_freq == 3200) {
209                 dev_priv->ips.c_m = 0;
210         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211                 dev_priv->ips.c_m = 1;
212         } else {
213                 dev_priv->ips.c_m = 2;
214         }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223
224         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229
230         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235
236         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241
242         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247
248         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256                                                          int is_ddr3,
257                                                          int fsb,
258                                                          int mem)
259 {
260         const struct cxsr_latency *latency;
261         int i;
262
263         if (fsb == 0 || mem == 0)
264                 return NULL;
265
266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267                 latency = &cxsr_latency_table[i];
268                 if (is_desktop == latency->is_desktop &&
269                     is_ddr3 == latency->is_ddr3 &&
270                     fsb == latency->fsb_freq && mem == latency->mem_freq)
271                         return latency;
272         }
273
274         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276         return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281         u32 val;
282
283         mutex_lock(&dev_priv->rps.hw_lock);
284
285         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286         if (enable)
287                 val &= ~FORCE_DDR_HIGH_FREQ;
288         else
289                 val |= FORCE_DDR_HIGH_FREQ;
290         val &= ~FORCE_DDR_LOW_FREQ;
291         val |= FORCE_DDR_FREQ_REQ_ACK;
292         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298         mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303         u32 val;
304
305         mutex_lock(&dev_priv->rps.hw_lock);
306
307         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308         if (enable)
309                 val |= DSP_MAXFIFO_PM5_ENABLE;
310         else
311                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314         mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322         struct drm_device *dev = &dev_priv->drm;
323         u32 val;
324
325         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327                 POSTING_READ(FW_BLC_SELF_VLV);
328                 dev_priv->wm.vlv.cxsr = enable;
329         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_PINEVIEW(dev)) {
333                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340                 I915_WRITE(FW_BLC_SELF, val);
341                 POSTING_READ(FW_BLC_SELF);
342         } else if (IS_I915GM(dev)) {
343                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
344                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
345                 I915_WRITE(INSTPM, val);
346                 POSTING_READ(INSTPM);
347         } else {
348                 return;
349         }
350
351         DRM_DEBUG_KMS("memory self-refresh is %s\n",
352                       enable ? "enabled" : "disabled");
353 }
354
355
356 /*
357  * Latency for FIFO fetches is dependent on several factors:
358  *   - memory configuration (speed, channels)
359  *   - chipset
360  *   - current MCH state
361  * It can be fairly high in some situations, so here we assume a fairly
362  * pessimal value.  It's a tradeoff between extra memory fetches (if we
363  * set this value too high, the FIFO will fetch frequently to stay full)
364  * and power consumption (set it too low to save power and we might see
365  * FIFO underruns and display "flicker").
366  *
367  * A value of 5us seems to be a good balance; safe for very low end
368  * platforms but not overly aggressive on lower latency configs.
369  */
370 static const int pessimal_latency_ns = 5000;
371
372 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
373         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
374
375 static int vlv_get_fifo_size(struct drm_device *dev,
376                               enum pipe pipe, int plane)
377 {
378         struct drm_i915_private *dev_priv = to_i915(dev);
379         int sprite0_start, sprite1_start, size;
380
381         switch (pipe) {
382                 uint32_t dsparb, dsparb2, dsparb3;
383         case PIPE_A:
384                 dsparb = I915_READ(DSPARB);
385                 dsparb2 = I915_READ(DSPARB2);
386                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388                 break;
389         case PIPE_B:
390                 dsparb = I915_READ(DSPARB);
391                 dsparb2 = I915_READ(DSPARB2);
392                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394                 break;
395         case PIPE_C:
396                 dsparb2 = I915_READ(DSPARB2);
397                 dsparb3 = I915_READ(DSPARB3);
398                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400                 break;
401         default:
402                 return 0;
403         }
404
405         switch (plane) {
406         case 0:
407                 size = sprite0_start;
408                 break;
409         case 1:
410                 size = sprite1_start - sprite0_start;
411                 break;
412         case 2:
413                 size = 512 - 1 - sprite1_start;
414                 break;
415         default:
416                 return 0;
417         }
418
419         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
420                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
421                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
422                       size);
423
424         return size;
425 }
426
427 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 {
429         struct drm_i915_private *dev_priv = to_i915(dev);
430         uint32_t dsparb = I915_READ(DSPARB);
431         int size;
432
433         size = dsparb & 0x7f;
434         if (plane)
435                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
436
437         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438                       plane ? "B" : "A", size);
439
440         return size;
441 }
442
443 static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 {
445         struct drm_i915_private *dev_priv = to_i915(dev);
446         uint32_t dsparb = I915_READ(DSPARB);
447         int size;
448
449         size = dsparb & 0x1ff;
450         if (plane)
451                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
452         size >>= 1; /* Convert to cachelines */
453
454         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455                       plane ? "B" : "A", size);
456
457         return size;
458 }
459
460 static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 {
462         struct drm_i915_private *dev_priv = to_i915(dev);
463         uint32_t dsparb = I915_READ(DSPARB);
464         int size;
465
466         size = dsparb & 0x7f;
467         size >>= 2; /* Convert to cachelines */
468
469         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
470                       plane ? "B" : "A",
471                       size);
472
473         return size;
474 }
475
476 /* Pineview has different values for various configs */
477 static const struct intel_watermark_params pineview_display_wm = {
478         .fifo_size = PINEVIEW_DISPLAY_FIFO,
479         .max_wm = PINEVIEW_MAX_WM,
480         .default_wm = PINEVIEW_DFT_WM,
481         .guard_size = PINEVIEW_GUARD_WM,
482         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_display_hplloff_wm = {
485         .fifo_size = PINEVIEW_DISPLAY_FIFO,
486         .max_wm = PINEVIEW_MAX_WM,
487         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
488         .guard_size = PINEVIEW_GUARD_WM,
489         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params pineview_cursor_wm = {
492         .fifo_size = PINEVIEW_CURSOR_FIFO,
493         .max_wm = PINEVIEW_CURSOR_MAX_WM,
494         .default_wm = PINEVIEW_CURSOR_DFT_WM,
495         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
496         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499         .fifo_size = PINEVIEW_CURSOR_FIFO,
500         .max_wm = PINEVIEW_CURSOR_MAX_WM,
501         .default_wm = PINEVIEW_CURSOR_DFT_WM,
502         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
503         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params g4x_wm_info = {
506         .fifo_size = G4X_FIFO_SIZE,
507         .max_wm = G4X_MAX_WM,
508         .default_wm = G4X_MAX_WM,
509         .guard_size = 2,
510         .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params g4x_cursor_wm_info = {
513         .fifo_size = I965_CURSOR_FIFO,
514         .max_wm = I965_CURSOR_MAX_WM,
515         .default_wm = I965_CURSOR_DFT_WM,
516         .guard_size = 2,
517         .cacheline_size = G4X_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i965_cursor_wm_info = {
520         .fifo_size = I965_CURSOR_FIFO,
521         .max_wm = I965_CURSOR_MAX_WM,
522         .default_wm = I965_CURSOR_DFT_WM,
523         .guard_size = 2,
524         .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i945_wm_info = {
527         .fifo_size = I945_FIFO_SIZE,
528         .max_wm = I915_MAX_WM,
529         .default_wm = 1,
530         .guard_size = 2,
531         .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i915_wm_info = {
534         .fifo_size = I915_FIFO_SIZE,
535         .max_wm = I915_MAX_WM,
536         .default_wm = 1,
537         .guard_size = 2,
538         .cacheline_size = I915_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_a_wm_info = {
541         .fifo_size = I855GM_FIFO_SIZE,
542         .max_wm = I915_MAX_WM,
543         .default_wm = 1,
544         .guard_size = 2,
545         .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i830_bc_wm_info = {
548         .fifo_size = I855GM_FIFO_SIZE,
549         .max_wm = I915_MAX_WM/2,
550         .default_wm = 1,
551         .guard_size = 2,
552         .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params i845_wm_info = {
555         .fifo_size = I830_FIFO_SIZE,
556         .max_wm = I915_MAX_WM,
557         .default_wm = 1,
558         .guard_size = 2,
559         .cacheline_size = I830_FIFO_LINE_SIZE,
560 };
561
562 /**
563  * intel_calculate_wm - calculate watermark level
564  * @clock_in_khz: pixel clock
565  * @wm: chip FIFO params
566  * @cpp: bytes per pixel
567  * @latency_ns: memory latency for the platform
568  *
569  * Calculate the watermark level (the level at which the display plane will
570  * start fetching from memory again).  Each chip has a different display
571  * FIFO size and allocation, so the caller needs to figure that out and pass
572  * in the correct intel_watermark_params structure.
573  *
574  * As the pixel clock runs, the FIFO will be drained at a rate that depends
575  * on the pixel size.  When it reaches the watermark level, it'll start
576  * fetching FIFO line sized based chunks from memory until the FIFO fills
577  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
578  * will occur, and a display engine hang could result.
579  */
580 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
581                                         const struct intel_watermark_params *wm,
582                                         int fifo_size, int cpp,
583                                         unsigned long latency_ns)
584 {
585         long entries_required, wm_size;
586
587         /*
588          * Note: we need to make sure we don't overflow for various clock &
589          * latency values.
590          * clocks go from a few thousand to several hundred thousand.
591          * latency is usually a few thousand
592          */
593         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594                 1000;
595         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
596
597         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
598
599         wm_size = fifo_size - (entries_required + wm->guard_size);
600
601         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
602
603         /* Don't promote wm_size to unsigned... */
604         if (wm_size > (long)wm->max_wm)
605                 wm_size = wm->max_wm;
606         if (wm_size <= 0)
607                 wm_size = wm->default_wm;
608
609         /*
610          * Bspec seems to indicate that the value shouldn't be lower than
611          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
612          * Lets go for 8 which is the burst size since certain platforms
613          * already use a hardcoded 8 (which is what the spec says should be
614          * done).
615          */
616         if (wm_size <= 8)
617                 wm_size = 8;
618
619         return wm_size;
620 }
621
622 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
623 {
624         struct drm_crtc *crtc, *enabled = NULL;
625
626         for_each_crtc(dev, crtc) {
627                 if (intel_crtc_active(crtc)) {
628                         if (enabled)
629                                 return NULL;
630                         enabled = crtc;
631                 }
632         }
633
634         return enabled;
635 }
636
637 static void pineview_update_wm(struct drm_crtc *unused_crtc)
638 {
639         struct drm_device *dev = unused_crtc->dev;
640         struct drm_i915_private *dev_priv = to_i915(dev);
641         struct drm_crtc *crtc;
642         const struct cxsr_latency *latency;
643         u32 reg;
644         unsigned long wm;
645
646         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
647                                          dev_priv->fsb_freq, dev_priv->mem_freq);
648         if (!latency) {
649                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650                 intel_set_memory_cxsr(dev_priv, false);
651                 return;
652         }
653
654         crtc = single_enabled_crtc(dev);
655         if (crtc) {
656                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658                 int clock = adjusted_mode->crtc_clock;
659
660                 /* Display SR */
661                 wm = intel_calculate_wm(clock, &pineview_display_wm,
662                                         pineview_display_wm.fifo_size,
663                                         cpp, latency->display_sr);
664                 reg = I915_READ(DSPFW1);
665                 reg &= ~DSPFW_SR_MASK;
666                 reg |= FW_WM(wm, SR);
667                 I915_WRITE(DSPFW1, reg);
668                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
669
670                 /* cursor SR */
671                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
672                                         pineview_display_wm.fifo_size,
673                                         cpp, latency->cursor_sr);
674                 reg = I915_READ(DSPFW3);
675                 reg &= ~DSPFW_CURSOR_SR_MASK;
676                 reg |= FW_WM(wm, CURSOR_SR);
677                 I915_WRITE(DSPFW3, reg);
678
679                 /* Display HPLL off SR */
680                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
681                                         pineview_display_hplloff_wm.fifo_size,
682                                         cpp, latency->display_hpll_disable);
683                 reg = I915_READ(DSPFW3);
684                 reg &= ~DSPFW_HPLL_SR_MASK;
685                 reg |= FW_WM(wm, HPLL_SR);
686                 I915_WRITE(DSPFW3, reg);
687
688                 /* cursor HPLL off SR */
689                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
690                                         pineview_display_hplloff_wm.fifo_size,
691                                         cpp, latency->cursor_hpll_disable);
692                 reg = I915_READ(DSPFW3);
693                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
694                 reg |= FW_WM(wm, HPLL_CURSOR);
695                 I915_WRITE(DSPFW3, reg);
696                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
697
698                 intel_set_memory_cxsr(dev_priv, true);
699         } else {
700                 intel_set_memory_cxsr(dev_priv, false);
701         }
702 }
703
704 static bool g4x_compute_wm0(struct drm_device *dev,
705                             int plane,
706                             const struct intel_watermark_params *display,
707                             int display_latency_ns,
708                             const struct intel_watermark_params *cursor,
709                             int cursor_latency_ns,
710                             int *plane_wm,
711                             int *cursor_wm)
712 {
713         struct drm_crtc *crtc;
714         const struct drm_display_mode *adjusted_mode;
715         int htotal, hdisplay, clock, cpp;
716         int line_time_us, line_count;
717         int entries, tlb_miss;
718
719         crtc = intel_get_crtc_for_plane(dev, plane);
720         if (!intel_crtc_active(crtc)) {
721                 *cursor_wm = cursor->guard_size;
722                 *plane_wm = display->guard_size;
723                 return false;
724         }
725
726         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727         clock = adjusted_mode->crtc_clock;
728         htotal = adjusted_mode->crtc_htotal;
729         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731
732         /* Use the small buffer method to calculate plane watermark */
733         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735         if (tlb_miss > 0)
736                 entries += tlb_miss;
737         entries = DIV_ROUND_UP(entries, display->cacheline_size);
738         *plane_wm = entries + display->guard_size;
739         if (*plane_wm > (int)display->max_wm)
740                 *plane_wm = display->max_wm;
741
742         /* Use the large buffer method to calculate cursor watermark */
743         line_time_us = max(htotal * 1000 / clock, 1);
744         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745         entries = line_count * crtc->cursor->state->crtc_w * cpp;
746         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747         if (tlb_miss > 0)
748                 entries += tlb_miss;
749         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750         *cursor_wm = entries + cursor->guard_size;
751         if (*cursor_wm > (int)cursor->max_wm)
752                 *cursor_wm = (int)cursor->max_wm;
753
754         return true;
755 }
756
757 /*
758  * Check the wm result.
759  *
760  * If any calculated watermark values is larger than the maximum value that
761  * can be programmed into the associated watermark register, that watermark
762  * must be disabled.
763  */
764 static bool g4x_check_srwm(struct drm_device *dev,
765                            int display_wm, int cursor_wm,
766                            const struct intel_watermark_params *display,
767                            const struct intel_watermark_params *cursor)
768 {
769         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770                       display_wm, cursor_wm);
771
772         if (display_wm > display->max_wm) {
773                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
774                               display_wm, display->max_wm);
775                 return false;
776         }
777
778         if (cursor_wm > cursor->max_wm) {
779                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
780                               cursor_wm, cursor->max_wm);
781                 return false;
782         }
783
784         if (!(display_wm || cursor_wm)) {
785                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786                 return false;
787         }
788
789         return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_device *dev,
793                              int plane,
794                              int latency_ns,
795                              const struct intel_watermark_params *display,
796                              const struct intel_watermark_params *cursor,
797                              int *display_wm, int *cursor_wm)
798 {
799         struct drm_crtc *crtc;
800         const struct drm_display_mode *adjusted_mode;
801         int hdisplay, htotal, cpp, clock;
802         unsigned long line_time_us;
803         int line_count, line_size;
804         int small, large;
805         int entries;
806
807         if (!latency_ns) {
808                 *display_wm = *cursor_wm = 0;
809                 return false;
810         }
811
812         crtc = intel_get_crtc_for_plane(dev, plane);
813         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814         clock = adjusted_mode->crtc_clock;
815         htotal = adjusted_mode->crtc_htotal;
816         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818
819         line_time_us = max(htotal * 1000 / clock, 1);
820         line_count = (latency_ns / line_time_us + 1000) / 1000;
821         line_size = hdisplay * cpp;
822
823         /* Use the minimum of the small and large buffer method for primary */
824         small = ((clock * cpp / 1000) * latency_ns) / 1000;
825         large = line_count * line_size;
826
827         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
828         *display_wm = entries + display->guard_size;
829
830         /* calculate the self-refresh watermark for display cursor */
831         entries = line_count * cpp * crtc->cursor->state->crtc_w;
832         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
833         *cursor_wm = entries + cursor->guard_size;
834
835         return g4x_check_srwm(dev,
836                               *display_wm, *cursor_wm,
837                               display, cursor);
838 }
839
840 #define FW_WM_VLV(value, plane) \
841         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
842
843 static void vlv_write_wm_values(struct intel_crtc *crtc,
844                                 const struct vlv_wm_values *wm)
845 {
846         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
847         enum pipe pipe = crtc->pipe;
848
849         I915_WRITE(VLV_DDL(pipe),
850                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
851                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
852                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
853                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
854
855         I915_WRITE(DSPFW1,
856                    FW_WM(wm->sr.plane, SR) |
857                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
858                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
859                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860         I915_WRITE(DSPFW2,
861                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
862                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
863                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864         I915_WRITE(DSPFW3,
865                    FW_WM(wm->sr.cursor, CURSOR_SR));
866
867         if (IS_CHERRYVIEW(dev_priv)) {
868                 I915_WRITE(DSPFW7_CHV,
869                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
870                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871                 I915_WRITE(DSPFW8_CHV,
872                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
873                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874                 I915_WRITE(DSPFW9_CHV,
875                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
876                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877                 I915_WRITE(DSPHOWM,
878                            FW_WM(wm->sr.plane >> 9, SR_HI) |
879                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
880                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
881                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
882                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
883                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
884                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
885                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
886                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
887                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888         } else {
889                 I915_WRITE(DSPFW7,
890                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
891                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892                 I915_WRITE(DSPHOWM,
893                            FW_WM(wm->sr.plane >> 9, SR_HI) |
894                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
895                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
896                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
897                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
898                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
899                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900         }
901
902         /* zero (unused) WM1 watermarks */
903         I915_WRITE(DSPFW4, 0);
904         I915_WRITE(DSPFW5, 0);
905         I915_WRITE(DSPFW6, 0);
906         I915_WRITE(DSPHOWM1, 0);
907
908         POSTING_READ(DSPFW1);
909 }
910
911 #undef FW_WM_VLV
912
913 enum vlv_wm_level {
914         VLV_WM_LEVEL_PM2,
915         VLV_WM_LEVEL_PM5,
916         VLV_WM_LEVEL_DDR_DVFS,
917 };
918
919 /* latency must be in 0.1us units. */
920 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
921                                    unsigned int pipe_htotal,
922                                    unsigned int horiz_pixels,
923                                    unsigned int cpp,
924                                    unsigned int latency)
925 {
926         unsigned int ret;
927
928         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929         ret = (ret + 1) * horiz_pixels * cpp;
930         ret = DIV_ROUND_UP(ret, 64);
931
932         return ret;
933 }
934
935 static void vlv_setup_wm_latency(struct drm_device *dev)
936 {
937         struct drm_i915_private *dev_priv = to_i915(dev);
938
939         /* all latencies in usec */
940         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944         if (IS_CHERRYVIEW(dev_priv)) {
945                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949         }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953                                      struct intel_crtc *crtc,
954                                      const struct intel_plane_state *state,
955                                      int level)
956 {
957         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958         int clock, htotal, cpp, width, wm;
959
960         if (dev_priv->wm.pri_latency[level] == 0)
961                 return USHRT_MAX;
962
963         if (!state->visible)
964                 return 0;
965
966         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967         clock = crtc->config->base.adjusted_mode.crtc_clock;
968         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969         width = crtc->config->pipe_src_w;
970         if (WARN_ON(htotal == 0))
971                 htotal = 1;
972
973         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974                 /*
975                  * FIXME the formula gives values that are
976                  * too big for the cursor FIFO, and hence we
977                  * would never be able to use cursors. For
978                  * now just hardcode the watermark.
979                  */
980                 wm = 63;
981         } else {
982                 wm = vlv_wm_method2(clock, htotal, width, cpp,
983                                     dev_priv->wm.pri_latency[level] * 10);
984         }
985
986         return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991         struct drm_device *dev = crtc->base.dev;
992         struct vlv_wm_state *wm_state = &crtc->wm_state;
993         struct intel_plane *plane;
994         unsigned int total_rate = 0;
995         const int fifo_size = 512 - 1;
996         int fifo_extra, fifo_left = fifo_size;
997
998         for_each_intel_plane_on_crtc(dev, crtc, plane) {
999                 struct intel_plane_state *state =
1000                         to_intel_plane_state(plane->base.state);
1001
1002                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003                         continue;
1004
1005                 if (state->visible) {
1006                         wm_state->num_active_planes++;
1007                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008                 }
1009         }
1010
1011         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012                 struct intel_plane_state *state =
1013                         to_intel_plane_state(plane->base.state);
1014                 unsigned int rate;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017                         plane->wm.fifo_size = 63;
1018                         continue;
1019                 }
1020
1021                 if (!state->visible) {
1022                         plane->wm.fifo_size = 0;
1023                         continue;
1024                 }
1025
1026                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028                 fifo_left -= plane->wm.fifo_size;
1029         }
1030
1031         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033         /* spread the remainder evenly */
1034         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035                 int plane_extra;
1036
1037                 if (fifo_left == 0)
1038                         break;
1039
1040                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041                         continue;
1042
1043                 /* give it all to the first plane if none are active */
1044                 if (plane->wm.fifo_size == 0 &&
1045                     wm_state->num_active_planes)
1046                         continue;
1047
1048                 plane_extra = min(fifo_extra, fifo_left);
1049                 plane->wm.fifo_size += plane_extra;
1050                 fifo_left -= plane_extra;
1051         }
1052
1053         WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058         struct vlv_wm_state *wm_state = &crtc->wm_state;
1059         int level;
1060
1061         for (level = 0; level < wm_state->num_levels; level++) {
1062                 struct drm_device *dev = crtc->base.dev;
1063                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1064                 struct intel_plane *plane;
1065
1066                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1067                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1068
1069                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1070                         switch (plane->base.type) {
1071                                 int sprite;
1072                         case DRM_PLANE_TYPE_CURSOR:
1073                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1074                                         wm_state->wm[level].cursor;
1075                                 break;
1076                         case DRM_PLANE_TYPE_PRIMARY:
1077                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1078                                         wm_state->wm[level].primary;
1079                                 break;
1080                         case DRM_PLANE_TYPE_OVERLAY:
1081                                 sprite = plane->plane;
1082                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1083                                         wm_state->wm[level].sprite[sprite];
1084                                 break;
1085                         }
1086                 }
1087         }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092         struct drm_device *dev = crtc->base.dev;
1093         struct vlv_wm_state *wm_state = &crtc->wm_state;
1094         struct intel_plane *plane;
1095         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1096         int level;
1097
1098         memset(wm_state, 0, sizeof(*wm_state));
1099
1100         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102
1103         wm_state->num_active_planes = 0;
1104
1105         vlv_compute_fifo(crtc);
1106
1107         if (wm_state->num_active_planes != 1)
1108                 wm_state->cxsr = false;
1109
1110         if (wm_state->cxsr) {
1111                 for (level = 0; level < wm_state->num_levels; level++) {
1112                         wm_state->sr[level].plane = sr_fifo_size;
1113                         wm_state->sr[level].cursor = 63;
1114                 }
1115         }
1116
1117         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1118                 struct intel_plane_state *state =
1119                         to_intel_plane_state(plane->base.state);
1120
1121                 if (!state->visible)
1122                         continue;
1123
1124                 /* normal watermarks */
1125                 for (level = 0; level < wm_state->num_levels; level++) {
1126                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1128
1129                         /* hack */
1130                         if (WARN_ON(level == 0 && wm > max_wm))
1131                                 wm = max_wm;
1132
1133                         if (wm > plane->wm.fifo_size)
1134                                 break;
1135
1136                         switch (plane->base.type) {
1137                                 int sprite;
1138                         case DRM_PLANE_TYPE_CURSOR:
1139                                 wm_state->wm[level].cursor = wm;
1140                                 break;
1141                         case DRM_PLANE_TYPE_PRIMARY:
1142                                 wm_state->wm[level].primary = wm;
1143                                 break;
1144                         case DRM_PLANE_TYPE_OVERLAY:
1145                                 sprite = plane->plane;
1146                                 wm_state->wm[level].sprite[sprite] = wm;
1147                                 break;
1148                         }
1149                 }
1150
1151                 wm_state->num_levels = level;
1152
1153                 if (!wm_state->cxsr)
1154                         continue;
1155
1156                 /* maxfifo watermarks */
1157                 switch (plane->base.type) {
1158                         int sprite, level;
1159                 case DRM_PLANE_TYPE_CURSOR:
1160                         for (level = 0; level < wm_state->num_levels; level++)
1161                                 wm_state->sr[level].cursor =
1162                                         wm_state->wm[level].cursor;
1163                         break;
1164                 case DRM_PLANE_TYPE_PRIMARY:
1165                         for (level = 0; level < wm_state->num_levels; level++)
1166                                 wm_state->sr[level].plane =
1167                                         min(wm_state->sr[level].plane,
1168                                             wm_state->wm[level].primary);
1169                         break;
1170                 case DRM_PLANE_TYPE_OVERLAY:
1171                         sprite = plane->plane;
1172                         for (level = 0; level < wm_state->num_levels; level++)
1173                                 wm_state->sr[level].plane =
1174                                         min(wm_state->sr[level].plane,
1175                                             wm_state->wm[level].sprite[sprite]);
1176                         break;
1177                 }
1178         }
1179
1180         /* clear any (partially) filled invalid levels */
1181         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1183                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1184         }
1185
1186         vlv_invert_wms(crtc);
1187 }
1188
1189 #define VLV_FIFO(plane, value) \
1190         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1191
1192 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1193 {
1194         struct drm_device *dev = crtc->base.dev;
1195         struct drm_i915_private *dev_priv = to_i915(dev);
1196         struct intel_plane *plane;
1197         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1198
1199         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1201                         WARN_ON(plane->wm.fifo_size != 63);
1202                         continue;
1203                 }
1204
1205                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1206                         sprite0_start = plane->wm.fifo_size;
1207                 else if (plane->plane == 0)
1208                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1209                 else
1210                         fifo_size = sprite1_start + plane->wm.fifo_size;
1211         }
1212
1213         WARN_ON(fifo_size != 512 - 1);
1214
1215         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1216                       pipe_name(crtc->pipe), sprite0_start,
1217                       sprite1_start, fifo_size);
1218
1219         switch (crtc->pipe) {
1220                 uint32_t dsparb, dsparb2, dsparb3;
1221         case PIPE_A:
1222                 dsparb = I915_READ(DSPARB);
1223                 dsparb2 = I915_READ(DSPARB2);
1224
1225                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1226                             VLV_FIFO(SPRITEB, 0xff));
1227                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1228                            VLV_FIFO(SPRITEB, sprite1_start));
1229
1230                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1231                              VLV_FIFO(SPRITEB_HI, 0x1));
1232                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1233                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1234
1235                 I915_WRITE(DSPARB, dsparb);
1236                 I915_WRITE(DSPARB2, dsparb2);
1237                 break;
1238         case PIPE_B:
1239                 dsparb = I915_READ(DSPARB);
1240                 dsparb2 = I915_READ(DSPARB2);
1241
1242                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1243                             VLV_FIFO(SPRITED, 0xff));
1244                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1245                            VLV_FIFO(SPRITED, sprite1_start));
1246
1247                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1248                              VLV_FIFO(SPRITED_HI, 0xff));
1249                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1250                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1251
1252                 I915_WRITE(DSPARB, dsparb);
1253                 I915_WRITE(DSPARB2, dsparb2);
1254                 break;
1255         case PIPE_C:
1256                 dsparb3 = I915_READ(DSPARB3);
1257                 dsparb2 = I915_READ(DSPARB2);
1258
1259                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1260                              VLV_FIFO(SPRITEF, 0xff));
1261                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1262                             VLV_FIFO(SPRITEF, sprite1_start));
1263
1264                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1265                              VLV_FIFO(SPRITEF_HI, 0xff));
1266                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1267                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1268
1269                 I915_WRITE(DSPARB3, dsparb3);
1270                 I915_WRITE(DSPARB2, dsparb2);
1271                 break;
1272         default:
1273                 break;
1274         }
1275 }
1276
1277 #undef VLV_FIFO
1278
1279 static void vlv_merge_wm(struct drm_device *dev,
1280                          struct vlv_wm_values *wm)
1281 {
1282         struct intel_crtc *crtc;
1283         int num_active_crtcs = 0;
1284
1285         wm->level = to_i915(dev)->wm.max_level;
1286         wm->cxsr = true;
1287
1288         for_each_intel_crtc(dev, crtc) {
1289                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
1291                 if (!crtc->active)
1292                         continue;
1293
1294                 if (!wm_state->cxsr)
1295                         wm->cxsr = false;
1296
1297                 num_active_crtcs++;
1298                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1299         }
1300
1301         if (num_active_crtcs != 1)
1302                 wm->cxsr = false;
1303
1304         if (num_active_crtcs > 1)
1305                 wm->level = VLV_WM_LEVEL_PM2;
1306
1307         for_each_intel_crtc(dev, crtc) {
1308                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1309                 enum pipe pipe = crtc->pipe;
1310
1311                 if (!crtc->active)
1312                         continue;
1313
1314                 wm->pipe[pipe] = wm_state->wm[wm->level];
1315                 if (wm->cxsr)
1316                         wm->sr = wm_state->sr[wm->level];
1317
1318                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1319                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1320                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1321                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1322         }
1323 }
1324
1325 static void vlv_update_wm(struct drm_crtc *crtc)
1326 {
1327         struct drm_device *dev = crtc->dev;
1328         struct drm_i915_private *dev_priv = to_i915(dev);
1329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1330         enum pipe pipe = intel_crtc->pipe;
1331         struct vlv_wm_values wm = {};
1332
1333         vlv_compute_wm(intel_crtc);
1334         vlv_merge_wm(dev, &wm);
1335
1336         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1337                 /* FIXME should be part of crtc atomic commit */
1338                 vlv_pipe_set_fifo_size(intel_crtc);
1339                 return;
1340         }
1341
1342         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1343             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1344                 chv_set_memory_dvfs(dev_priv, false);
1345
1346         if (wm.level < VLV_WM_LEVEL_PM5 &&
1347             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1348                 chv_set_memory_pm5(dev_priv, false);
1349
1350         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351                 intel_set_memory_cxsr(dev_priv, false);
1352
1353         /* FIXME should be part of crtc atomic commit */
1354         vlv_pipe_set_fifo_size(intel_crtc);
1355
1356         vlv_write_wm_values(intel_crtc, &wm);
1357
1358         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1359                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1360                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1361                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1362                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1363
1364         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365                 intel_set_memory_cxsr(dev_priv, true);
1366
1367         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1368             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1369                 chv_set_memory_pm5(dev_priv, true);
1370
1371         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1372             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1373                 chv_set_memory_dvfs(dev_priv, true);
1374
1375         dev_priv->wm.vlv = wm;
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382         struct drm_device *dev = crtc->dev;
1383         static const int sr_latency_ns = 12000;
1384         struct drm_i915_private *dev_priv = to_i915(dev);
1385         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386         int plane_sr, cursor_sr;
1387         unsigned int enabled = 0;
1388         bool cxsr_enabled;
1389
1390         if (g4x_compute_wm0(dev, PIPE_A,
1391                             &g4x_wm_info, pessimal_latency_ns,
1392                             &g4x_cursor_wm_info, pessimal_latency_ns,
1393                             &planea_wm, &cursora_wm))
1394                 enabled |= 1 << PIPE_A;
1395
1396         if (g4x_compute_wm0(dev, PIPE_B,
1397                             &g4x_wm_info, pessimal_latency_ns,
1398                             &g4x_cursor_wm_info, pessimal_latency_ns,
1399                             &planeb_wm, &cursorb_wm))
1400                 enabled |= 1 << PIPE_B;
1401
1402         if (single_plane_enabled(enabled) &&
1403             g4x_compute_srwm(dev, ffs(enabled) - 1,
1404                              sr_latency_ns,
1405                              &g4x_wm_info,
1406                              &g4x_cursor_wm_info,
1407                              &plane_sr, &cursor_sr)) {
1408                 cxsr_enabled = true;
1409         } else {
1410                 cxsr_enabled = false;
1411                 intel_set_memory_cxsr(dev_priv, false);
1412                 plane_sr = cursor_sr = 0;
1413         }
1414
1415         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417                       planea_wm, cursora_wm,
1418                       planeb_wm, cursorb_wm,
1419                       plane_sr, cursor_sr);
1420
1421         I915_WRITE(DSPFW1,
1422                    FW_WM(plane_sr, SR) |
1423                    FW_WM(cursorb_wm, CURSORB) |
1424                    FW_WM(planeb_wm, PLANEB) |
1425                    FW_WM(planea_wm, PLANEA));
1426         I915_WRITE(DSPFW2,
1427                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428                    FW_WM(cursora_wm, CURSORA));
1429         /* HPLL off in SR has some issues on G4x... disable it */
1430         I915_WRITE(DSPFW3,
1431                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432                    FW_WM(cursor_sr, CURSOR_SR));
1433
1434         if (cxsr_enabled)
1435                 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct drm_crtc *unused_crtc)
1439 {
1440         struct drm_device *dev = unused_crtc->dev;
1441         struct drm_i915_private *dev_priv = to_i915(dev);
1442         struct drm_crtc *crtc;
1443         int srwm = 1;
1444         int cursor_sr = 16;
1445         bool cxsr_enabled;
1446
1447         /* Calc sr entries for one plane configs */
1448         crtc = single_enabled_crtc(dev);
1449         if (crtc) {
1450                 /* self-refresh has much higher latency */
1451                 static const int sr_latency_ns = 12000;
1452                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453                 int clock = adjusted_mode->crtc_clock;
1454                 int htotal = adjusted_mode->crtc_htotal;
1455                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457                 unsigned long line_time_us;
1458                 int entries;
1459
1460                 line_time_us = max(htotal * 1000 / clock, 1);
1461
1462                 /* Use ns/us then divide to preserve precision */
1463                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464                         cpp * hdisplay;
1465                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1466                 srwm = I965_FIFO_SIZE - entries;
1467                 if (srwm < 0)
1468                         srwm = 1;
1469                 srwm &= 0x1ff;
1470                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1471                               entries, srwm);
1472
1473                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474                         cpp * crtc->cursor->state->crtc_w;
1475                 entries = DIV_ROUND_UP(entries,
1476                                           i965_cursor_wm_info.cacheline_size);
1477                 cursor_sr = i965_cursor_wm_info.fifo_size -
1478                         (entries + i965_cursor_wm_info.guard_size);
1479
1480                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1481                         cursor_sr = i965_cursor_wm_info.max_wm;
1482
1483                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1484                               "cursor %d\n", srwm, cursor_sr);
1485
1486                 cxsr_enabled = true;
1487         } else {
1488                 cxsr_enabled = false;
1489                 /* Turn off self refresh if both pipes are enabled */
1490                 intel_set_memory_cxsr(dev_priv, false);
1491         }
1492
1493         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494                       srwm);
1495
1496         /* 965 has limitations... */
1497         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1498                    FW_WM(8, CURSORB) |
1499                    FW_WM(8, PLANEB) |
1500                    FW_WM(8, PLANEA));
1501         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1502                    FW_WM(8, PLANEC_OLD));
1503         /* update cursor SR watermark */
1504         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505
1506         if (cxsr_enabled)
1507                 intel_set_memory_cxsr(dev_priv, true);
1508 }
1509
1510 #undef FW_WM
1511
1512 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513 {
1514         struct drm_device *dev = unused_crtc->dev;
1515         struct drm_i915_private *dev_priv = to_i915(dev);
1516         const struct intel_watermark_params *wm_info;
1517         uint32_t fwater_lo;
1518         uint32_t fwater_hi;
1519         int cwm, srwm = 1;
1520         int fifo_size;
1521         int planea_wm, planeb_wm;
1522         struct drm_crtc *crtc, *enabled = NULL;
1523
1524         if (IS_I945GM(dev))
1525                 wm_info = &i945_wm_info;
1526         else if (!IS_GEN2(dev))
1527                 wm_info = &i915_wm_info;
1528         else
1529                 wm_info = &i830_a_wm_info;
1530
1531         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1532         crtc = intel_get_crtc_for_plane(dev, 0);
1533         if (intel_crtc_active(crtc)) {
1534                 const struct drm_display_mode *adjusted_mode;
1535                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536                 if (IS_GEN2(dev))
1537                         cpp = 4;
1538
1539                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541                                                wm_info, fifo_size, cpp,
1542                                                pessimal_latency_ns);
1543                 enabled = crtc;
1544         } else {
1545                 planea_wm = fifo_size - wm_info->guard_size;
1546                 if (planea_wm > (long)wm_info->max_wm)
1547                         planea_wm = wm_info->max_wm;
1548         }
1549
1550         if (IS_GEN2(dev))
1551                 wm_info = &i830_bc_wm_info;
1552
1553         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554         crtc = intel_get_crtc_for_plane(dev, 1);
1555         if (intel_crtc_active(crtc)) {
1556                 const struct drm_display_mode *adjusted_mode;
1557                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558                 if (IS_GEN2(dev))
1559                         cpp = 4;
1560
1561                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563                                                wm_info, fifo_size, cpp,
1564                                                pessimal_latency_ns);
1565                 if (enabled == NULL)
1566                         enabled = crtc;
1567                 else
1568                         enabled = NULL;
1569         } else {
1570                 planeb_wm = fifo_size - wm_info->guard_size;
1571                 if (planeb_wm > (long)wm_info->max_wm)
1572                         planeb_wm = wm_info->max_wm;
1573         }
1574
1575         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1576
1577         if (IS_I915GM(dev) && enabled) {
1578                 struct drm_i915_gem_object *obj;
1579
1580                 obj = intel_fb_obj(enabled->primary->state->fb);
1581
1582                 /* self-refresh seems busted with untiled */
1583                 if (obj->tiling_mode == I915_TILING_NONE)
1584                         enabled = NULL;
1585         }
1586
1587         /*
1588          * Overlay gets an aggressive default since video jitter is bad.
1589          */
1590         cwm = 2;
1591
1592         /* Play safe and disable self-refresh before adjusting watermarks. */
1593         intel_set_memory_cxsr(dev_priv, false);
1594
1595         /* Calc sr entries for one plane configs */
1596         if (HAS_FW_BLC(dev) && enabled) {
1597                 /* self-refresh has much higher latency */
1598                 static const int sr_latency_ns = 6000;
1599                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600                 int clock = adjusted_mode->crtc_clock;
1601                 int htotal = adjusted_mode->crtc_htotal;
1602                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604                 unsigned long line_time_us;
1605                 int entries;
1606
1607                 line_time_us = max(htotal * 1000 / clock, 1);
1608
1609                 /* Use ns/us then divide to preserve precision */
1610                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611                         cpp * hdisplay;
1612                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1613                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1614                 srwm = wm_info->fifo_size - entries;
1615                 if (srwm < 0)
1616                         srwm = 1;
1617
1618                 if (IS_I945G(dev) || IS_I945GM(dev))
1619                         I915_WRITE(FW_BLC_SELF,
1620                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1621                 else if (IS_I915GM(dev))
1622                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1623         }
1624
1625         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1626                       planea_wm, planeb_wm, cwm, srwm);
1627
1628         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1629         fwater_hi = (cwm & 0x1f);
1630
1631         /* Set request length to 8 cachelines per fetch */
1632         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1633         fwater_hi = fwater_hi | (1 << 8);
1634
1635         I915_WRITE(FW_BLC, fwater_lo);
1636         I915_WRITE(FW_BLC2, fwater_hi);
1637
1638         if (enabled)
1639                 intel_set_memory_cxsr(dev_priv, true);
1640 }
1641
1642 static void i845_update_wm(struct drm_crtc *unused_crtc)
1643 {
1644         struct drm_device *dev = unused_crtc->dev;
1645         struct drm_i915_private *dev_priv = to_i915(dev);
1646         struct drm_crtc *crtc;
1647         const struct drm_display_mode *adjusted_mode;
1648         uint32_t fwater_lo;
1649         int planea_wm;
1650
1651         crtc = single_enabled_crtc(dev);
1652         if (crtc == NULL)
1653                 return;
1654
1655         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657                                        &i845_wm_info,
1658                                        dev_priv->display.get_fifo_size(dev, 0),
1659                                        4, pessimal_latency_ns);
1660         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661         fwater_lo |= (3<<8) | planea_wm;
1662
1663         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665         I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669 {
1670         uint32_t pixel_rate;
1671
1672         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673
1674         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1675          * adjust the pixel_rate here. */
1676
1677         if (pipe_config->pch_pfit.enabled) {
1678                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1680
1681                 pipe_w = pipe_config->pipe_src_w;
1682                 pipe_h = pipe_config->pipe_src_h;
1683
1684                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1685                 pfit_h = pfit_size & 0xFFFF;
1686                 if (pipe_w < pfit_w)
1687                         pipe_w = pfit_w;
1688                 if (pipe_h < pfit_h)
1689                         pipe_h = pfit_h;
1690
1691                 if (WARN_ON(!pfit_w || !pfit_h))
1692                         return pixel_rate;
1693
1694                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1695                                      pfit_w * pfit_h);
1696         }
1697
1698         return pixel_rate;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 {
1704         uint64_t ret;
1705
1706         if (WARN(latency == 0, "Latency value missing\n"))
1707                 return UINT_MAX;
1708
1709         ret = (uint64_t) pixel_rate * cpp * latency;
1710         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1711
1712         return ret;
1713 }
1714
1715 /* latency must be in 0.1us units. */
1716 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717                                uint32_t horiz_pixels, uint8_t cpp,
1718                                uint32_t latency)
1719 {
1720         uint32_t ret;
1721
1722         if (WARN(latency == 0, "Latency value missing\n"))
1723                 return UINT_MAX;
1724         if (WARN_ON(!pipe_htotal))
1725                 return UINT_MAX;
1726
1727         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728         ret = (ret + 1) * horiz_pixels * cpp;
1729         ret = DIV_ROUND_UP(ret, 64) + 2;
1730         return ret;
1731 }
1732
1733 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734                            uint8_t cpp)
1735 {
1736         /*
1737          * Neither of these should be possible since this function shouldn't be
1738          * called if the CRTC is off or the plane is invisible.  But let's be
1739          * extra paranoid to avoid a potential divide-by-zero if we screw up
1740          * elsewhere in the driver.
1741          */
1742         if (WARN_ON(!cpp))
1743                 return 0;
1744         if (WARN_ON(!horiz_pixels))
1745                 return 0;
1746
1747         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 }
1749
1750 struct ilk_wm_maximums {
1751         uint16_t pri;
1752         uint16_t spr;
1753         uint16_t cur;
1754         uint16_t fbc;
1755 };
1756
1757 /*
1758  * For both WM_PIPE and WM_LP.
1759  * mem_value must be in 0.1us units.
1760  */
1761 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762                                    const struct intel_plane_state *pstate,
1763                                    uint32_t mem_value,
1764                                    bool is_lp)
1765 {
1766         int cpp = pstate->base.fb ?
1767                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768         uint32_t method1, method2;
1769
1770         if (!cstate->base.active || !pstate->visible)
1771                 return 0;
1772
1773         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774
1775         if (!is_lp)
1776                 return method1;
1777
1778         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779                                  cstate->base.adjusted_mode.crtc_htotal,
1780                                  drm_rect_width(&pstate->dst),
1781                                  cpp, mem_value);
1782
1783         return min(method1, method2);
1784 }
1785
1786 /*
1787  * For both WM_PIPE and WM_LP.
1788  * mem_value must be in 0.1us units.
1789  */
1790 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791                                    const struct intel_plane_state *pstate,
1792                                    uint32_t mem_value)
1793 {
1794         int cpp = pstate->base.fb ?
1795                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796         uint32_t method1, method2;
1797
1798         if (!cstate->base.active || !pstate->visible)
1799                 return 0;
1800
1801         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803                                  cstate->base.adjusted_mode.crtc_htotal,
1804                                  drm_rect_width(&pstate->dst),
1805                                  cpp, mem_value);
1806         return min(method1, method2);
1807 }
1808
1809 /*
1810  * For both WM_PIPE and WM_LP.
1811  * mem_value must be in 0.1us units.
1812  */
1813 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814                                    const struct intel_plane_state *pstate,
1815                                    uint32_t mem_value)
1816 {
1817         /*
1818          * We treat the cursor plane as always-on for the purposes of watermark
1819          * calculation.  Until we have two-stage watermark programming merged,
1820          * this is necessary to avoid flickering.
1821          */
1822         int cpp = 4;
1823         int width = pstate->visible ? pstate->base.crtc_w : 64;
1824
1825         if (!cstate->base.active)
1826                 return 0;
1827
1828         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1829                               cstate->base.adjusted_mode.crtc_htotal,
1830                               width, cpp, mem_value);
1831 }
1832
1833 /* Only for WM_LP. */
1834 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835                                    const struct intel_plane_state *pstate,
1836                                    uint32_t pri_val)
1837 {
1838         int cpp = pstate->base.fb ?
1839                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840
1841         if (!cstate->base.active || !pstate->visible)
1842                 return 0;
1843
1844         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 }
1846
1847 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1848 {
1849         if (INTEL_INFO(dev)->gen >= 8)
1850                 return 3072;
1851         else if (INTEL_INFO(dev)->gen >= 7)
1852                 return 768;
1853         else
1854                 return 512;
1855 }
1856
1857 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1858                                          int level, bool is_sprite)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 /* BDW primary/sprite plane watermarks */
1862                 return level == 0 ? 255 : 2047;
1863         else if (INTEL_INFO(dev)->gen >= 7)
1864                 /* IVB/HSW primary/sprite plane watermarks */
1865                 return level == 0 ? 127 : 1023;
1866         else if (!is_sprite)
1867                 /* ILK/SNB primary plane watermarks */
1868                 return level == 0 ? 127 : 511;
1869         else
1870                 /* ILK/SNB sprite plane watermarks */
1871                 return level == 0 ? 63 : 255;
1872 }
1873
1874 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1875                                           int level)
1876 {
1877         if (INTEL_INFO(dev)->gen >= 7)
1878                 return level == 0 ? 63 : 255;
1879         else
1880                 return level == 0 ? 31 : 63;
1881 }
1882
1883 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1884 {
1885         if (INTEL_INFO(dev)->gen >= 8)
1886                 return 31;
1887         else
1888                 return 15;
1889 }
1890
1891 /* Calculate the maximum primary/sprite plane watermark */
1892 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1893                                      int level,
1894                                      const struct intel_wm_config *config,
1895                                      enum intel_ddb_partitioning ddb_partitioning,
1896                                      bool is_sprite)
1897 {
1898         unsigned int fifo_size = ilk_display_fifo_size(dev);
1899
1900         /* if sprites aren't enabled, sprites get nothing */
1901         if (is_sprite && !config->sprites_enabled)
1902                 return 0;
1903
1904         /* HSW allows LP1+ watermarks even with multiple pipes */
1905         if (level == 0 || config->num_pipes_active > 1) {
1906                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1907
1908                 /*
1909                  * For some reason the non self refresh
1910                  * FIFO size is only half of the self
1911                  * refresh FIFO size on ILK/SNB.
1912                  */
1913                 if (INTEL_INFO(dev)->gen <= 6)
1914                         fifo_size /= 2;
1915         }
1916
1917         if (config->sprites_enabled) {
1918                 /* level 0 is always calculated with 1:1 split */
1919                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1920                         if (is_sprite)
1921                                 fifo_size *= 5;
1922                         fifo_size /= 6;
1923                 } else {
1924                         fifo_size /= 2;
1925                 }
1926         }
1927
1928         /* clamp to max that the registers can hold */
1929         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 }
1931
1932 /* Calculate the maximum cursor plane watermark */
1933 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934                                       int level,
1935                                       const struct intel_wm_config *config)
1936 {
1937         /* HSW LP1+ watermarks w/ multiple pipes */
1938         if (level > 0 && config->num_pipes_active > 1)
1939                 return 64;
1940
1941         /* otherwise just report max that registers can hold */
1942         return ilk_cursor_wm_reg_max(dev, level);
1943 }
1944
1945 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946                                     int level,
1947                                     const struct intel_wm_config *config,
1948                                     enum intel_ddb_partitioning ddb_partitioning,
1949                                     struct ilk_wm_maximums *max)
1950 {
1951         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1952         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1953         max->cur = ilk_cursor_wm_max(dev, level, config);
1954         max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1958                                         int level,
1959                                         struct ilk_wm_maximums *max)
1960 {
1961         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1962         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1963         max->cur = ilk_cursor_wm_reg_max(dev, level);
1964         max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static bool ilk_validate_wm_level(int level,
1968                                   const struct ilk_wm_maximums *max,
1969                                   struct intel_wm_level *result)
1970 {
1971         bool ret;
1972
1973         /* already determined to be invalid? */
1974         if (!result->enable)
1975                 return false;
1976
1977         result->enable = result->pri_val <= max->pri &&
1978                          result->spr_val <= max->spr &&
1979                          result->cur_val <= max->cur;
1980
1981         ret = result->enable;
1982
1983         /*
1984          * HACK until we can pre-compute everything,
1985          * and thus fail gracefully if LP0 watermarks
1986          * are exceeded...
1987          */
1988         if (level == 0 && !result->enable) {
1989                 if (result->pri_val > max->pri)
1990                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1991                                       level, result->pri_val, max->pri);
1992                 if (result->spr_val > max->spr)
1993                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1994                                       level, result->spr_val, max->spr);
1995                 if (result->cur_val > max->cur)
1996                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1997                                       level, result->cur_val, max->cur);
1998
1999                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2000                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2001                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2002                 result->enable = true;
2003         }
2004
2005         return ret;
2006 }
2007
2008 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009                                  const struct intel_crtc *intel_crtc,
2010                                  int level,
2011                                  struct intel_crtc_state *cstate,
2012                                  struct intel_plane_state *pristate,
2013                                  struct intel_plane_state *sprstate,
2014                                  struct intel_plane_state *curstate,
2015                                  struct intel_wm_level *result)
2016 {
2017         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2018         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2019         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2020
2021         /* WM1+ latency values stored in 0.5us units */
2022         if (level > 0) {
2023                 pri_latency *= 5;
2024                 spr_latency *= 5;
2025                 cur_latency *= 5;
2026         }
2027
2028         if (pristate) {
2029                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2030                                                      pri_latency, level);
2031                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2032         }
2033
2034         if (sprstate)
2035                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2036
2037         if (curstate)
2038                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2039
2040         result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045 {
2046         const struct intel_atomic_state *intel_state =
2047                 to_intel_atomic_state(cstate->base.state);
2048         const struct drm_display_mode *adjusted_mode =
2049                 &cstate->base.adjusted_mode;
2050         u32 linetime, ips_linetime;
2051
2052         if (!cstate->base.active)
2053                 return 0;
2054         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2055                 return 0;
2056         if (WARN_ON(intel_state->cdclk == 0))
2057                 return 0;
2058
2059         /* The WM are computed with base on how long it takes to fill a single
2060          * row at the given clock rate, multiplied by 8.
2061          * */
2062         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063                                      adjusted_mode->crtc_clock);
2064         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065                                          intel_state->cdclk);
2066
2067         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2068                PIPE_WM_LINETIME_TIME(linetime);
2069 }
2070
2071 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 {
2073         struct drm_i915_private *dev_priv = to_i915(dev);
2074
2075         if (IS_GEN9(dev)) {
2076                 uint32_t val;
2077                 int ret, i;
2078                 int level, max_level = ilk_wm_max_level(dev);
2079
2080                 /* read the first set of memory latencies[0:3] */
2081                 val = 0; /* data0 to be programmed to 0 for first set */
2082                 mutex_lock(&dev_priv->rps.hw_lock);
2083                 ret = sandybridge_pcode_read(dev_priv,
2084                                              GEN9_PCODE_READ_MEM_LATENCY,
2085                                              &val);
2086                 mutex_unlock(&dev_priv->rps.hw_lock);
2087
2088                 if (ret) {
2089                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2090                         return;
2091                 }
2092
2093                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2099                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2100
2101                 /* read the second set of memory latencies[4:7] */
2102                 val = 1; /* data0 to be programmed to 1 for second set */
2103                 mutex_lock(&dev_priv->rps.hw_lock);
2104                 ret = sandybridge_pcode_read(dev_priv,
2105                                              GEN9_PCODE_READ_MEM_LATENCY,
2106                                              &val);
2107                 mutex_unlock(&dev_priv->rps.hw_lock);
2108                 if (ret) {
2109                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110                         return;
2111                 }
2112
2113                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2118                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121                 /*
2122                  * WaWmMemoryReadLatency:skl
2123                  *
2124                  * punit doesn't take into account the read latency so we need
2125                  * to add 2us to the various latency levels we retrieve from
2126                  * the punit.
2127                  *   - W0 is a bit special in that it's the only level that
2128                  *   can't be disabled if we want to have display working, so
2129                  *   we always add 2us there.
2130                  *   - For levels >=1, punit returns 0us latency when they are
2131                  *   disabled, so we respect that and don't add 2us then
2132                  *
2133                  * Additionally, if a level n (n > 1) has a 0us latency, all
2134                  * levels m (m >= n) need to be disabled. We make sure to
2135                  * sanitize the values out of the punit to satisfy this
2136                  * requirement.
2137                  */
2138                 wm[0] += 2;
2139                 for (level = 1; level <= max_level; level++)
2140                         if (wm[level] != 0)
2141                                 wm[level] += 2;
2142                         else {
2143                                 for (i = level + 1; i <= max_level; i++)
2144                                         wm[i] = 0;
2145
2146                                 break;
2147                         }
2148         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2150
2151                 wm[0] = (sskpd >> 56) & 0xFF;
2152                 if (wm[0] == 0)
2153                         wm[0] = sskpd & 0xF;
2154                 wm[1] = (sskpd >> 4) & 0xFF;
2155                 wm[2] = (sskpd >> 12) & 0xFF;
2156                 wm[3] = (sskpd >> 20) & 0x1FF;
2157                 wm[4] = (sskpd >> 32) & 0x1FF;
2158         } else if (INTEL_INFO(dev)->gen >= 6) {
2159                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2160
2161                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2162                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2163                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2164                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165         } else if (INTEL_INFO(dev)->gen >= 5) {
2166                 uint32_t mltr = I915_READ(MLTR_ILK);
2167
2168                 /* ILK primary LP0 latency is 700 ns */
2169                 wm[0] = 7;
2170                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2171                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172         }
2173 }
2174
2175 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2176 {
2177         /* ILK sprite LP0 latency is 1300 ns */
2178         if (IS_GEN5(dev))
2179                 wm[0] = 13;
2180 }
2181
2182 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2183 {
2184         /* ILK cursor LP0 latency is 1300 ns */
2185         if (IS_GEN5(dev))
2186                 wm[0] = 13;
2187
2188         /* WaDoubleCursorLP3Latency:ivb */
2189         if (IS_IVYBRIDGE(dev))
2190                 wm[3] *= 2;
2191 }
2192
2193 int ilk_wm_max_level(const struct drm_device *dev)
2194 {
2195         /* how many WM levels are we expecting */
2196         if (INTEL_INFO(dev)->gen >= 9)
2197                 return 7;
2198         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199                 return 4;
2200         else if (INTEL_INFO(dev)->gen >= 6)
2201                 return 3;
2202         else
2203                 return 2;
2204 }
2205
2206 static void intel_print_wm_latency(struct drm_device *dev,
2207                                    const char *name,
2208                                    const uint16_t wm[8])
2209 {
2210         int level, max_level = ilk_wm_max_level(dev);
2211
2212         for (level = 0; level <= max_level; level++) {
2213                 unsigned int latency = wm[level];
2214
2215                 if (latency == 0) {
2216                         DRM_ERROR("%s WM%d latency not provided\n",
2217                                   name, level);
2218                         continue;
2219                 }
2220
2221                 /*
2222                  * - latencies are in us on gen9.
2223                  * - before then, WM1+ latency values are in 0.5us units
2224                  */
2225                 if (IS_GEN9(dev))
2226                         latency *= 10;
2227                 else if (level > 0)
2228                         latency *= 5;
2229
2230                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2231                               name, level, wm[level],
2232                               latency / 10, latency % 10);
2233         }
2234 }
2235
2236 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2237                                     uint16_t wm[5], uint16_t min)
2238 {
2239         int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2240
2241         if (wm[0] >= min)
2242                 return false;
2243
2244         wm[0] = max(wm[0], min);
2245         for (level = 1; level <= max_level; level++)
2246                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2247
2248         return true;
2249 }
2250
2251 static void snb_wm_latency_quirk(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = to_i915(dev);
2254         bool changed;
2255
2256         /*
2257          * The BIOS provided WM memory latency values are often
2258          * inadequate for high resolution displays. Adjust them.
2259          */
2260         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2261                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2262                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2263
2264         if (!changed)
2265                 return;
2266
2267         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2268         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2269         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2270         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2271 }
2272
2273 static void ilk_setup_wm_latency(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = to_i915(dev);
2276
2277         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2278
2279         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2280                sizeof(dev_priv->wm.pri_latency));
2281         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2282                sizeof(dev_priv->wm.pri_latency));
2283
2284         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2285         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286
2287         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2288         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2289         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290
2291         if (IS_GEN6(dev))
2292                 snb_wm_latency_quirk(dev);
2293 }
2294
2295 static void skl_setup_wm_latency(struct drm_device *dev)
2296 {
2297         struct drm_i915_private *dev_priv = to_i915(dev);
2298
2299         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2300         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2301 }
2302
2303 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2304                                  struct intel_pipe_wm *pipe_wm)
2305 {
2306         /* LP0 watermark maximums depend on this pipe alone */
2307         const struct intel_wm_config config = {
2308                 .num_pipes_active = 1,
2309                 .sprites_enabled = pipe_wm->sprites_enabled,
2310                 .sprites_scaled = pipe_wm->sprites_scaled,
2311         };
2312         struct ilk_wm_maximums max;
2313
2314         /* LP0 watermarks always use 1/2 DDB partitioning */
2315         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2316
2317         /* At least LP0 must be valid */
2318         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2319                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2320                 return false;
2321         }
2322
2323         return true;
2324 }
2325
2326 /* Compute new watermarks for the pipe */
2327 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328 {
2329         struct drm_atomic_state *state = cstate->base.state;
2330         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331         struct intel_pipe_wm *pipe_wm;
2332         struct drm_device *dev = state->dev;
2333         const struct drm_i915_private *dev_priv = to_i915(dev);
2334         struct intel_plane *intel_plane;
2335         struct intel_plane_state *pristate = NULL;
2336         struct intel_plane_state *sprstate = NULL;
2337         struct intel_plane_state *curstate = NULL;
2338         int level, max_level = ilk_wm_max_level(dev), usable_level;
2339         struct ilk_wm_maximums max;
2340
2341         pipe_wm = &cstate->wm.ilk.optimal;
2342
2343         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344                 struct intel_plane_state *ps;
2345
2346                 ps = intel_atomic_get_existing_plane_state(state,
2347                                                            intel_plane);
2348                 if (!ps)
2349                         continue;
2350
2351                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352                         pristate = ps;
2353                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354                         sprstate = ps;
2355                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356                         curstate = ps;
2357         }
2358
2359         pipe_wm->pipe_enabled = cstate->base.active;
2360         if (sprstate) {
2361                 pipe_wm->sprites_enabled = sprstate->visible;
2362                 pipe_wm->sprites_scaled = sprstate->visible &&
2363                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2364                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2365         }
2366
2367         usable_level = max_level;
2368
2369         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2370         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371                 usable_level = 1;
2372
2373         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374         if (pipe_wm->sprites_scaled)
2375                 usable_level = 0;
2376
2377         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2379
2380         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2381         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382
2383         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385
2386         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387                 return -EINVAL;
2388
2389         ilk_compute_wm_reg_maximums(dev, 1, &max);
2390
2391         for (level = 1; level <= max_level; level++) {
2392                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393
2394                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395                                      pristate, sprstate, curstate, wm);
2396
2397                 /*
2398                  * Disable any watermark level that exceeds the
2399                  * register maximums since such watermarks are
2400                  * always invalid.
2401                  */
2402                 if (level > usable_level)
2403                         continue;
2404
2405                 if (ilk_validate_wm_level(level, &max, wm))
2406                         pipe_wm->wm[level] = *wm;
2407                 else
2408                         usable_level = level;
2409         }
2410
2411         return 0;
2412 }
2413
2414 /*
2415  * Build a set of 'intermediate' watermark values that satisfy both the old
2416  * state and the new state.  These can be programmed to the hardware
2417  * immediately.
2418  */
2419 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2420                                        struct intel_crtc *intel_crtc,
2421                                        struct intel_crtc_state *newstate)
2422 {
2423         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2425         int level, max_level = ilk_wm_max_level(dev);
2426
2427         /*
2428          * Start with the final, target watermarks, then combine with the
2429          * currently active watermarks to get values that are safe both before
2430          * and after the vblank.
2431          */
2432         *a = newstate->wm.ilk.optimal;
2433         a->pipe_enabled |= b->pipe_enabled;
2434         a->sprites_enabled |= b->sprites_enabled;
2435         a->sprites_scaled |= b->sprites_scaled;
2436
2437         for (level = 0; level <= max_level; level++) {
2438                 struct intel_wm_level *a_wm = &a->wm[level];
2439                 const struct intel_wm_level *b_wm = &b->wm[level];
2440
2441                 a_wm->enable &= b_wm->enable;
2442                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2443                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2444                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2445                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2446         }
2447
2448         /*
2449          * We need to make sure that these merged watermark values are
2450          * actually a valid configuration themselves.  If they're not,
2451          * there's no safe way to transition from the old state to
2452          * the new state, so we need to fail the atomic transaction.
2453          */
2454         if (!ilk_validate_pipe_wm(dev, a))
2455                 return -EINVAL;
2456
2457         /*
2458          * If our intermediate WM are identical to the final WM, then we can
2459          * omit the post-vblank programming; only update if it's different.
2460          */
2461         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462                 newstate->wm.need_postvbl_update = false;
2463
2464         return 0;
2465 }
2466
2467 /*
2468  * Merge the watermarks from all active pipes for a specific level.
2469  */
2470 static void ilk_merge_wm_level(struct drm_device *dev,
2471                                int level,
2472                                struct intel_wm_level *ret_wm)
2473 {
2474         const struct intel_crtc *intel_crtc;
2475
2476         ret_wm->enable = true;
2477
2478         for_each_intel_crtc(dev, intel_crtc) {
2479                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480                 const struct intel_wm_level *wm = &active->wm[level];
2481
2482                 if (!active->pipe_enabled)
2483                         continue;
2484
2485                 /*
2486                  * The watermark values may have been used in the past,
2487                  * so we must maintain them in the registers for some
2488                  * time even if the level is now disabled.
2489                  */
2490                 if (!wm->enable)
2491                         ret_wm->enable = false;
2492
2493                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2494                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2495                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2496                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2497         }
2498 }
2499
2500 /*
2501  * Merge all low power watermarks for all active pipes.
2502  */
2503 static void ilk_wm_merge(struct drm_device *dev,
2504                          const struct intel_wm_config *config,
2505                          const struct ilk_wm_maximums *max,
2506                          struct intel_pipe_wm *merged)
2507 {
2508         struct drm_i915_private *dev_priv = to_i915(dev);
2509         int level, max_level = ilk_wm_max_level(dev);
2510         int last_enabled_level = max_level;
2511
2512         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2513         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2514             config->num_pipes_active > 1)
2515                 last_enabled_level = 0;
2516
2517         /* ILK: FBC WM must be disabled always */
2518         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519
2520         /* merge each WM1+ level */
2521         for (level = 1; level <= max_level; level++) {
2522                 struct intel_wm_level *wm = &merged->wm[level];
2523
2524                 ilk_merge_wm_level(dev, level, wm);
2525
2526                 if (level > last_enabled_level)
2527                         wm->enable = false;
2528                 else if (!ilk_validate_wm_level(level, max, wm))
2529                         /* make sure all following levels get disabled */
2530                         last_enabled_level = level - 1;
2531
2532                 /*
2533                  * The spec says it is preferred to disable
2534                  * FBC WMs instead of disabling a WM level.
2535                  */
2536                 if (wm->fbc_val > max->fbc) {
2537                         if (wm->enable)
2538                                 merged->fbc_wm_enabled = false;
2539                         wm->fbc_val = 0;
2540                 }
2541         }
2542
2543         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2544         /*
2545          * FIXME this is racy. FBC might get enabled later.
2546          * What we should check here is whether FBC can be
2547          * enabled sometime later.
2548          */
2549         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550             intel_fbc_is_active(dev_priv)) {
2551                 for (level = 2; level <= max_level; level++) {
2552                         struct intel_wm_level *wm = &merged->wm[level];
2553
2554                         wm->enable = false;
2555                 }
2556         }
2557 }
2558
2559 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2560 {
2561         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2562         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2563 }
2564
2565 /* The value we need to program into the WM_LPx latency field */
2566 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2567 {
2568         struct drm_i915_private *dev_priv = to_i915(dev);
2569
2570         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571                 return 2 * level;
2572         else
2573                 return dev_priv->wm.pri_latency[level];
2574 }
2575
2576 static void ilk_compute_wm_results(struct drm_device *dev,
2577                                    const struct intel_pipe_wm *merged,
2578                                    enum intel_ddb_partitioning partitioning,
2579                                    struct ilk_wm_values *results)
2580 {
2581         struct intel_crtc *intel_crtc;
2582         int level, wm_lp;
2583
2584         results->enable_fbc_wm = merged->fbc_wm_enabled;
2585         results->partitioning = partitioning;
2586
2587         /* LP1+ register values */
2588         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589                 const struct intel_wm_level *r;
2590
2591                 level = ilk_wm_lp_to_level(wm_lp, merged);
2592
2593                 r = &merged->wm[level];
2594
2595                 /*
2596                  * Maintain the watermark values even if the level is
2597                  * disabled. Doing otherwise could cause underruns.
2598                  */
2599                 results->wm_lp[wm_lp - 1] =
2600                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601                         (r->pri_val << WM1_LP_SR_SHIFT) |
2602                         r->cur_val;
2603
2604                 if (r->enable)
2605                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2606
2607                 if (INTEL_INFO(dev)->gen >= 8)
2608                         results->wm_lp[wm_lp - 1] |=
2609                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2610                 else
2611                         results->wm_lp[wm_lp - 1] |=
2612                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2613
2614                 /*
2615                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2616                  * level is disabled. Doing otherwise could cause underruns.
2617                  */
2618                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2619                         WARN_ON(wm_lp != 1);
2620                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2621                 } else
2622                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623         }
2624
2625         /* LP0 register values */
2626         for_each_intel_crtc(dev, intel_crtc) {
2627                 enum pipe pipe = intel_crtc->pipe;
2628                 const struct intel_wm_level *r =
2629                         &intel_crtc->wm.active.ilk.wm[0];
2630
2631                 if (WARN_ON(!r->enable))
2632                         continue;
2633
2634                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635
2636                 results->wm_pipe[pipe] =
2637                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2638                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2639                         r->cur_val;
2640         }
2641 }
2642
2643 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2644  * case both are at the same level. Prefer r1 in case they're the same. */
2645 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646                                                   struct intel_pipe_wm *r1,
2647                                                   struct intel_pipe_wm *r2)
2648 {
2649         int level, max_level = ilk_wm_max_level(dev);
2650         int level1 = 0, level2 = 0;
2651
2652         for (level = 1; level <= max_level; level++) {
2653                 if (r1->wm[level].enable)
2654                         level1 = level;
2655                 if (r2->wm[level].enable)
2656                         level2 = level;
2657         }
2658
2659         if (level1 == level2) {
2660                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661                         return r2;
2662                 else
2663                         return r1;
2664         } else if (level1 > level2) {
2665                 return r1;
2666         } else {
2667                 return r2;
2668         }
2669 }
2670
2671 /* dirty bits used to track which watermarks need changes */
2672 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2673 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2674 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2675 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2676 #define WM_DIRTY_FBC (1 << 24)
2677 #define WM_DIRTY_DDB (1 << 25)
2678
2679 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680                                          const struct ilk_wm_values *old,
2681                                          const struct ilk_wm_values *new)
2682 {
2683         unsigned int dirty = 0;
2684         enum pipe pipe;
2685         int wm_lp;
2686
2687         for_each_pipe(dev_priv, pipe) {
2688                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2689                         dirty |= WM_DIRTY_LINETIME(pipe);
2690                         /* Must disable LP1+ watermarks too */
2691                         dirty |= WM_DIRTY_LP_ALL;
2692                 }
2693
2694                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2695                         dirty |= WM_DIRTY_PIPE(pipe);
2696                         /* Must disable LP1+ watermarks too */
2697                         dirty |= WM_DIRTY_LP_ALL;
2698                 }
2699         }
2700
2701         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2702                 dirty |= WM_DIRTY_FBC;
2703                 /* Must disable LP1+ watermarks too */
2704                 dirty |= WM_DIRTY_LP_ALL;
2705         }
2706
2707         if (old->partitioning != new->partitioning) {
2708                 dirty |= WM_DIRTY_DDB;
2709                 /* Must disable LP1+ watermarks too */
2710                 dirty |= WM_DIRTY_LP_ALL;
2711         }
2712
2713         /* LP1+ watermarks already deemed dirty, no need to continue */
2714         if (dirty & WM_DIRTY_LP_ALL)
2715                 return dirty;
2716
2717         /* Find the lowest numbered LP1+ watermark in need of an update... */
2718         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2719                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2720                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2721                         break;
2722         }
2723
2724         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2725         for (; wm_lp <= 3; wm_lp++)
2726                 dirty |= WM_DIRTY_LP(wm_lp);
2727
2728         return dirty;
2729 }
2730
2731 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2732                                unsigned int dirty)
2733 {
2734         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735         bool changed = false;
2736
2737         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2738                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2739                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740                 changed = true;
2741         }
2742         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2743                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2744                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745                 changed = true;
2746         }
2747         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2748                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2749                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750                 changed = true;
2751         }
2752
2753         /*
2754          * Don't touch WM1S_LP_EN here.
2755          * Doing so could cause underruns.
2756          */
2757
2758         return changed;
2759 }
2760
2761 /*
2762  * The spec says we shouldn't write when we don't need, because every write
2763  * causes WMs to be re-evaluated, expending some power.
2764  */
2765 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2766                                 struct ilk_wm_values *results)
2767 {
2768         struct drm_device *dev = &dev_priv->drm;
2769         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770         unsigned int dirty;
2771         uint32_t val;
2772
2773         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774         if (!dirty)
2775                 return;
2776
2777         _ilk_disable_lp_wm(dev_priv, dirty);
2778
2779         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2785
2786         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2792
2793         if (dirty & WM_DIRTY_DDB) {
2794                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795                         val = I915_READ(WM_MISC);
2796                         if (results->partitioning == INTEL_DDB_PART_1_2)
2797                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2798                         else
2799                                 val |= WM_MISC_DATA_PARTITION_5_6;
2800                         I915_WRITE(WM_MISC, val);
2801                 } else {
2802                         val = I915_READ(DISP_ARB_CTL2);
2803                         if (results->partitioning == INTEL_DDB_PART_1_2)
2804                                 val &= ~DISP_DATA_PARTITION_5_6;
2805                         else
2806                                 val |= DISP_DATA_PARTITION_5_6;
2807                         I915_WRITE(DISP_ARB_CTL2, val);
2808                 }
2809         }
2810
2811         if (dirty & WM_DIRTY_FBC) {
2812                 val = I915_READ(DISP_ARB_CTL);
2813                 if (results->enable_fbc_wm)
2814                         val &= ~DISP_FBC_WM_DIS;
2815                 else
2816                         val |= DISP_FBC_WM_DIS;
2817                 I915_WRITE(DISP_ARB_CTL, val);
2818         }
2819
2820         if (dirty & WM_DIRTY_LP(1) &&
2821             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2822                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2823
2824         if (INTEL_INFO(dev)->gen >= 7) {
2825                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2826                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2827                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2828                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2829         }
2830
2831         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837
2838         dev_priv->wm.hw = *results;
2839 }
2840
2841 bool ilk_disable_lp_wm(struct drm_device *dev)
2842 {
2843         struct drm_i915_private *dev_priv = to_i915(dev);
2844
2845         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2846 }
2847
2848 /*
2849  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2850  * different active planes.
2851  */
2852
2853 #define SKL_DDB_SIZE            896     /* in blocks */
2854 #define BXT_DDB_SIZE            512
2855 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
2856
2857 /*
2858  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2859  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2860  * other universal planes are in indices 1..n.  Note that this may leave unused
2861  * indices between the top "sprite" plane and the cursor.
2862  */
2863 static int
2864 skl_wm_plane_id(const struct intel_plane *plane)
2865 {
2866         switch (plane->base.type) {
2867         case DRM_PLANE_TYPE_PRIMARY:
2868                 return 0;
2869         case DRM_PLANE_TYPE_CURSOR:
2870                 return PLANE_CURSOR;
2871         case DRM_PLANE_TYPE_OVERLAY:
2872                 return plane->plane + 1;
2873         default:
2874                 MISSING_CASE(plane->base.type);
2875                 return plane->plane;
2876         }
2877 }
2878
2879 /*
2880  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2881  * depending on power and performance requirements. The display engine access
2882  * to system memory is blocked during the adjustment time. Because of the
2883  * blocking time, having this enabled can cause full system hangs and/or pipe
2884  * underruns if we don't meet all of the following requirements:
2885  *
2886  *  - <= 1 pipe enabled
2887  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2888  *  - We're not using an interlaced display configuration
2889  */
2890 int
2891 skl_enable_sagv(struct drm_i915_private *dev_priv)
2892 {
2893         int ret;
2894
2895         if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
2896             dev_priv->skl_sagv_status == I915_SKL_SAGV_ENABLED)
2897                 return 0;
2898
2899         DRM_DEBUG_KMS("Enabling the SAGV\n");
2900         mutex_lock(&dev_priv->rps.hw_lock);
2901
2902         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2903                                       GEN9_SAGV_ENABLE);
2904
2905         /* We don't need to wait for the SAGV when enabling */
2906         mutex_unlock(&dev_priv->rps.hw_lock);
2907
2908         /*
2909          * Some skl systems, pre-release machines in particular,
2910          * don't actually have an SAGV.
2911          */
2912         if (ret == -ENXIO) {
2913                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2914                 dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
2915                 return 0;
2916         } else if (ret < 0) {
2917                 DRM_ERROR("Failed to enable the SAGV\n");
2918                 return ret;
2919         }
2920
2921         dev_priv->skl_sagv_status = I915_SKL_SAGV_ENABLED;
2922         return 0;
2923 }
2924
2925 static int
2926 skl_do_sagv_disable(struct drm_i915_private *dev_priv)
2927 {
2928         int ret;
2929         uint32_t temp = GEN9_SAGV_DISABLE;
2930
2931         ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2932                                      &temp);
2933         if (ret)
2934                 return ret;
2935         else
2936                 return temp & GEN9_SAGV_IS_DISABLED;
2937 }
2938
2939 int
2940 skl_disable_sagv(struct drm_i915_private *dev_priv)
2941 {
2942         int ret, result;
2943
2944         if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
2945             dev_priv->skl_sagv_status == I915_SKL_SAGV_DISABLED)
2946                 return 0;
2947
2948         DRM_DEBUG_KMS("Disabling the SAGV\n");
2949         mutex_lock(&dev_priv->rps.hw_lock);
2950
2951         /* bspec says to keep retrying for at least 1 ms */
2952         ret = wait_for(result = skl_do_sagv_disable(dev_priv), 1);
2953         mutex_unlock(&dev_priv->rps.hw_lock);
2954
2955         if (ret == -ETIMEDOUT) {
2956                 DRM_ERROR("Request to disable SAGV timed out\n");
2957                 return -ETIMEDOUT;
2958         }
2959
2960         /*
2961          * Some skl systems, pre-release machines in particular,
2962          * don't actually have an SAGV.
2963          */
2964         if (result == -ENXIO) {
2965                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2966                 dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
2967                 return 0;
2968         } else if (result < 0) {
2969                 DRM_ERROR("Failed to disable the SAGV\n");
2970                 return result;
2971         }
2972
2973         dev_priv->skl_sagv_status = I915_SKL_SAGV_DISABLED;
2974         return 0;
2975 }
2976
2977 bool skl_can_enable_sagv(struct drm_atomic_state *state)
2978 {
2979         struct drm_device *dev = state->dev;
2980         struct drm_i915_private *dev_priv = to_i915(dev);
2981         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2982         struct drm_crtc *crtc;
2983         enum pipe pipe;
2984         int level, plane;
2985
2986         /*
2987          * SKL workaround: bspec recommends we disable the SAGV when we have
2988          * more then one pipe enabled
2989          *
2990          * If there are no active CRTCs, no additional checks need be performed
2991          */
2992         if (hweight32(intel_state->active_crtcs) == 0)
2993                 return true;
2994         else if (hweight32(intel_state->active_crtcs) > 1)
2995                 return false;
2996
2997         /* Since we're now guaranteed to only have one active CRTC... */
2998         pipe = ffs(intel_state->active_crtcs) - 1;
2999         crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3000
3001         if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
3002                 return false;
3003
3004         for_each_plane(dev_priv, pipe, plane) {
3005                 /* Skip this plane if it's not enabled */
3006                 if (intel_state->wm_results.plane[pipe][plane][0] == 0)
3007                         continue;
3008
3009                 /* Find the highest enabled wm level for this plane */
3010                 for (level = ilk_wm_max_level(dev);
3011                      intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
3012                      { }
3013
3014                 /*
3015                  * If any of the planes on this pipe don't enable wm levels
3016                  * that incur memory latencies higher then 30µs we can't enable
3017                  * the SAGV
3018                  */
3019                 if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
3020                         return false;
3021         }
3022
3023         return true;
3024 }
3025
3026 static void
3027 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3028                                    const struct intel_crtc_state *cstate,
3029                                    struct skl_ddb_entry *alloc, /* out */
3030                                    int *num_active /* out */)
3031 {
3032         struct drm_atomic_state *state = cstate->base.state;
3033         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3034         struct drm_i915_private *dev_priv = to_i915(dev);
3035         struct drm_crtc *for_crtc = cstate->base.crtc;
3036         unsigned int pipe_size, ddb_size;
3037         int nth_active_pipe;
3038         int pipe = to_intel_crtc(for_crtc)->pipe;
3039
3040         if (WARN_ON(!state) || !cstate->base.active) {
3041                 alloc->start = 0;
3042                 alloc->end = 0;
3043                 *num_active = hweight32(dev_priv->active_crtcs);
3044                 return;
3045         }
3046
3047         if (intel_state->active_pipe_changes)
3048                 *num_active = hweight32(intel_state->active_crtcs);
3049         else
3050                 *num_active = hweight32(dev_priv->active_crtcs);
3051
3052         if (IS_BROXTON(dev))
3053                 ddb_size = BXT_DDB_SIZE;
3054         else
3055                 ddb_size = SKL_DDB_SIZE;
3056
3057         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3058
3059         /*
3060          * If the state doesn't change the active CRTC's, then there's
3061          * no need to recalculate; the existing pipe allocation limits
3062          * should remain unchanged.  Note that we're safe from racing
3063          * commits since any racing commit that changes the active CRTC
3064          * list would need to grab _all_ crtc locks, including the one
3065          * we currently hold.
3066          */
3067         if (!intel_state->active_pipe_changes) {
3068                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
3069                 return;
3070         }
3071
3072         nth_active_pipe = hweight32(intel_state->active_crtcs &
3073                                     (drm_crtc_mask(for_crtc) - 1));
3074         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3075         alloc->start = nth_active_pipe * ddb_size / *num_active;
3076         alloc->end = alloc->start + pipe_size;
3077 }
3078
3079 static unsigned int skl_cursor_allocation(int num_active)
3080 {
3081         if (num_active == 1)
3082                 return 32;
3083
3084         return 8;
3085 }
3086
3087 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3088 {
3089         entry->start = reg & 0x3ff;
3090         entry->end = (reg >> 16) & 0x3ff;
3091         if (entry->end)
3092                 entry->end += 1;
3093 }
3094
3095 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3096                           struct skl_ddb_allocation *ddb /* out */)
3097 {
3098         enum pipe pipe;
3099         int plane;
3100         u32 val;
3101
3102         memset(ddb, 0, sizeof(*ddb));
3103
3104         for_each_pipe(dev_priv, pipe) {
3105                 enum intel_display_power_domain power_domain;
3106
3107                 power_domain = POWER_DOMAIN_PIPE(pipe);
3108                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3109                         continue;
3110
3111                 for_each_plane(dev_priv, pipe, plane) {
3112                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3113                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3114                                                    val);
3115                 }
3116
3117                 val = I915_READ(CUR_BUF_CFG(pipe));
3118                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3119                                            val);
3120
3121                 intel_display_power_put(dev_priv, power_domain);
3122         }
3123 }
3124
3125 /*
3126  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3127  * The bspec defines downscale amount as:
3128  *
3129  * """
3130  * Horizontal down scale amount = maximum[1, Horizontal source size /
3131  *                                           Horizontal destination size]
3132  * Vertical down scale amount = maximum[1, Vertical source size /
3133  *                                         Vertical destination size]
3134  * Total down scale amount = Horizontal down scale amount *
3135  *                           Vertical down scale amount
3136  * """
3137  *
3138  * Return value is provided in 16.16 fixed point form to retain fractional part.
3139  * Caller should take care of dividing & rounding off the value.
3140  */
3141 static uint32_t
3142 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3143 {
3144         uint32_t downscale_h, downscale_w;
3145         uint32_t src_w, src_h, dst_w, dst_h;
3146
3147         if (WARN_ON(!pstate->visible))
3148                 return DRM_PLANE_HELPER_NO_SCALING;
3149
3150         /* n.b., src is 16.16 fixed point, dst is whole integer */
3151         src_w = drm_rect_width(&pstate->src);
3152         src_h = drm_rect_height(&pstate->src);
3153         dst_w = drm_rect_width(&pstate->dst);
3154         dst_h = drm_rect_height(&pstate->dst);
3155         if (intel_rotation_90_or_270(pstate->base.rotation))
3156                 swap(dst_w, dst_h);
3157
3158         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3159         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3160
3161         /* Provide result in 16.16 fixed point */
3162         return (uint64_t)downscale_w * downscale_h >> 16;
3163 }
3164
3165 static unsigned int
3166 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3167                              const struct drm_plane_state *pstate,
3168                              int y)
3169 {
3170         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3171         struct drm_framebuffer *fb = pstate->fb;
3172         uint32_t down_scale_amount, data_rate;
3173         uint32_t width = 0, height = 0;
3174         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3175
3176         if (!intel_pstate->visible)
3177                 return 0;
3178         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3179                 return 0;
3180         if (y && format != DRM_FORMAT_NV12)
3181                 return 0;
3182
3183         width = drm_rect_width(&intel_pstate->src) >> 16;
3184         height = drm_rect_height(&intel_pstate->src) >> 16;
3185
3186         if (intel_rotation_90_or_270(pstate->rotation))
3187                 swap(width, height);
3188
3189         /* for planar format */
3190         if (format == DRM_FORMAT_NV12) {
3191                 if (y)  /* y-plane data rate */
3192                         data_rate = width * height *
3193                                 drm_format_plane_cpp(format, 0);
3194                 else    /* uv-plane data rate */
3195                         data_rate = (width / 2) * (height / 2) *
3196                                 drm_format_plane_cpp(format, 1);
3197         } else {
3198                 /* for packed formats */
3199                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3200         }
3201
3202         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3203
3204         return (uint64_t)data_rate * down_scale_amount >> 16;
3205 }
3206
3207 /*
3208  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3209  * a 8192x4096@32bpp framebuffer:
3210  *   3 * 4096 * 8192  * 4 < 2^32
3211  */
3212 static unsigned int
3213 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3214 {
3215         struct drm_crtc_state *cstate = &intel_cstate->base;
3216         struct drm_atomic_state *state = cstate->state;
3217         struct drm_crtc *crtc = cstate->crtc;
3218         struct drm_device *dev = crtc->dev;
3219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220         const struct drm_plane *plane;
3221         const struct intel_plane *intel_plane;
3222         struct drm_plane_state *pstate;
3223         unsigned int rate, total_data_rate = 0;
3224         int id;
3225         int i;
3226
3227         if (WARN_ON(!state))
3228                 return 0;
3229
3230         /* Calculate and cache data rate for each plane */
3231         for_each_plane_in_state(state, plane, pstate, i) {
3232                 id = skl_wm_plane_id(to_intel_plane(plane));
3233                 intel_plane = to_intel_plane(plane);
3234
3235                 if (intel_plane->pipe != intel_crtc->pipe)
3236                         continue;
3237
3238                 /* packed/uv */
3239                 rate = skl_plane_relative_data_rate(intel_cstate,
3240                                                     pstate, 0);
3241                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3242
3243                 /* y-plane */
3244                 rate = skl_plane_relative_data_rate(intel_cstate,
3245                                                     pstate, 1);
3246                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3247         }
3248
3249         /* Calculate CRTC's total data rate from cached values */
3250         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3251                 int id = skl_wm_plane_id(intel_plane);
3252
3253                 /* packed/uv */
3254                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3255                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3256         }
3257
3258         return total_data_rate;
3259 }
3260
3261 static uint16_t
3262 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3263                   const int y)
3264 {
3265         struct drm_framebuffer *fb = pstate->fb;
3266         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3267         uint32_t src_w, src_h;
3268         uint32_t min_scanlines = 8;
3269         uint8_t plane_bpp;
3270
3271         if (WARN_ON(!fb))
3272                 return 0;
3273
3274         /* For packed formats, no y-plane, return 0 */
3275         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3276                 return 0;
3277
3278         /* For Non Y-tile return 8-blocks */
3279         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3280             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3281                 return 8;
3282
3283         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3284         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3285
3286         if (intel_rotation_90_or_270(pstate->rotation))
3287                 swap(src_w, src_h);
3288
3289         /* Halve UV plane width and height for NV12 */
3290         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3291                 src_w /= 2;
3292                 src_h /= 2;
3293         }
3294
3295         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3296                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3297         else
3298                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3299
3300         if (intel_rotation_90_or_270(pstate->rotation)) {
3301                 switch (plane_bpp) {
3302                 case 1:
3303                         min_scanlines = 32;
3304                         break;
3305                 case 2:
3306                         min_scanlines = 16;
3307                         break;
3308                 case 4:
3309                         min_scanlines = 8;
3310                         break;
3311                 case 8:
3312                         min_scanlines = 4;
3313                         break;
3314                 default:
3315                         WARN(1, "Unsupported pixel depth %u for rotation",
3316                              plane_bpp);
3317                         min_scanlines = 32;
3318                 }
3319         }
3320
3321         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3322 }
3323
3324 static int
3325 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3326                       struct skl_ddb_allocation *ddb /* out */)
3327 {
3328         struct drm_atomic_state *state = cstate->base.state;
3329         struct drm_crtc *crtc = cstate->base.crtc;
3330         struct drm_device *dev = crtc->dev;
3331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3332         struct intel_plane *intel_plane;
3333         struct drm_plane *plane;
3334         struct drm_plane_state *pstate;
3335         enum pipe pipe = intel_crtc->pipe;
3336         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3337         uint16_t alloc_size, start, cursor_blocks;
3338         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3339         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3340         unsigned int total_data_rate;
3341         int num_active;
3342         int id, i;
3343
3344         if (WARN_ON(!state))
3345                 return 0;
3346
3347         if (!cstate->base.active) {
3348                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3349                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3350                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3351                 return 0;
3352         }
3353
3354         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3355         alloc_size = skl_ddb_entry_size(alloc);
3356         if (alloc_size == 0) {
3357                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3358                 return 0;
3359         }
3360
3361         cursor_blocks = skl_cursor_allocation(num_active);
3362         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3363         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3364
3365         alloc_size -= cursor_blocks;
3366
3367         /* 1. Allocate the mininum required blocks for each active plane */
3368         for_each_plane_in_state(state, plane, pstate, i) {
3369                 intel_plane = to_intel_plane(plane);
3370                 id = skl_wm_plane_id(intel_plane);
3371
3372                 if (intel_plane->pipe != pipe)
3373                         continue;
3374
3375                 if (!to_intel_plane_state(pstate)->visible) {
3376                         minimum[id] = 0;
3377                         y_minimum[id] = 0;
3378                         continue;
3379                 }
3380                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3381                         minimum[id] = 0;
3382                         y_minimum[id] = 0;
3383                         continue;
3384                 }
3385
3386                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3387                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3388         }
3389
3390         for (i = 0; i < PLANE_CURSOR; i++) {
3391                 alloc_size -= minimum[i];
3392                 alloc_size -= y_minimum[i];
3393         }
3394
3395         /*
3396          * 2. Distribute the remaining space in proportion to the amount of
3397          * data each plane needs to fetch from memory.
3398          *
3399          * FIXME: we may not allocate every single block here.
3400          */
3401         total_data_rate = skl_get_total_relative_data_rate(cstate);
3402         if (total_data_rate == 0)
3403                 return 0;
3404
3405         start = alloc->start;
3406         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3407                 unsigned int data_rate, y_data_rate;
3408                 uint16_t plane_blocks, y_plane_blocks = 0;
3409                 int id = skl_wm_plane_id(intel_plane);
3410
3411                 data_rate = cstate->wm.skl.plane_data_rate[id];
3412
3413                 /*
3414                  * allocation for (packed formats) or (uv-plane part of planar format):
3415                  * promote the expression to 64 bits to avoid overflowing, the
3416                  * result is < available as data_rate / total_data_rate < 1
3417                  */
3418                 plane_blocks = minimum[id];
3419                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3420                                         total_data_rate);
3421
3422                 /* Leave disabled planes at (0,0) */
3423                 if (data_rate) {
3424                         ddb->plane[pipe][id].start = start;
3425                         ddb->plane[pipe][id].end = start + plane_blocks;
3426                 }
3427
3428                 start += plane_blocks;
3429
3430                 /*
3431                  * allocation for y_plane part of planar format:
3432                  */
3433                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3434
3435                 y_plane_blocks = y_minimum[id];
3436                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3437                                         total_data_rate);
3438
3439                 if (y_data_rate) {
3440                         ddb->y_plane[pipe][id].start = start;
3441                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3442                 }
3443
3444                 start += y_plane_blocks;
3445         }
3446
3447         return 0;
3448 }
3449
3450 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3451 {
3452         /* TODO: Take into account the scalers once we support them */
3453         return config->base.adjusted_mode.crtc_clock;
3454 }
3455
3456 /*
3457  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3458  * for the read latency) and cpp should always be <= 8, so that
3459  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3460  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3461 */
3462 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3463 {
3464         uint32_t wm_intermediate_val, ret;
3465
3466         if (latency == 0)
3467                 return UINT_MAX;
3468
3469         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3470         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3471
3472         return ret;
3473 }
3474
3475 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3476                                uint32_t horiz_pixels, uint8_t cpp,
3477                                uint64_t tiling, uint32_t latency)
3478 {
3479         uint32_t ret;
3480         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3481         uint32_t wm_intermediate_val;
3482
3483         if (latency == 0)
3484                 return UINT_MAX;
3485
3486         plane_bytes_per_line = horiz_pixels * cpp;
3487
3488         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3489             tiling == I915_FORMAT_MOD_Yf_TILED) {
3490                 plane_bytes_per_line *= 4;
3491                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3492                 plane_blocks_per_line /= 4;
3493         } else if (tiling == DRM_FORMAT_MOD_NONE) {
3494                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3495         } else {
3496                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3497         }
3498
3499         wm_intermediate_val = latency * pixel_rate;
3500         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3501                                 plane_blocks_per_line;
3502
3503         return ret;
3504 }
3505
3506 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3507                                               struct intel_plane_state *pstate)
3508 {
3509         uint64_t adjusted_pixel_rate;
3510         uint64_t downscale_amount;
3511         uint64_t pixel_rate;
3512
3513         /* Shouldn't reach here on disabled planes... */
3514         if (WARN_ON(!pstate->visible))
3515                 return 0;
3516
3517         /*
3518          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3519          * with additional adjustments for plane-specific scaling.
3520          */
3521         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3522         downscale_amount = skl_plane_downscale_amount(pstate);
3523
3524         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3525         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3526
3527         return pixel_rate;
3528 }
3529
3530 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3531                                 struct intel_crtc_state *cstate,
3532                                 struct intel_plane_state *intel_pstate,
3533                                 uint16_t ddb_allocation,
3534                                 int level,
3535                                 uint16_t *out_blocks, /* out */
3536                                 uint8_t *out_lines, /* out */
3537                                 bool *enabled /* out */)
3538 {
3539         struct drm_plane_state *pstate = &intel_pstate->base;
3540         struct drm_framebuffer *fb = pstate->fb;
3541         uint32_t latency = dev_priv->wm.skl_latency[level];
3542         uint32_t method1, method2;
3543         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3544         uint32_t res_blocks, res_lines;
3545         uint32_t selected_result;
3546         uint8_t cpp;
3547         uint32_t width = 0, height = 0;
3548         uint32_t plane_pixel_rate;
3549
3550         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3551                 *enabled = false;
3552                 return 0;
3553         }
3554
3555         width = drm_rect_width(&intel_pstate->src) >> 16;
3556         height = drm_rect_height(&intel_pstate->src) >> 16;
3557
3558         if (intel_rotation_90_or_270(pstate->rotation))
3559                 swap(width, height);
3560
3561         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3562         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3563
3564         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3565         method2 = skl_wm_method2(plane_pixel_rate,
3566                                  cstate->base.adjusted_mode.crtc_htotal,
3567                                  width,
3568                                  cpp,
3569                                  fb->modifier[0],
3570                                  latency);
3571
3572         plane_bytes_per_line = width * cpp;
3573         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3574
3575         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3576             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3577                 uint32_t min_scanlines = 4;
3578                 uint32_t y_tile_minimum;
3579                 if (intel_rotation_90_or_270(pstate->rotation)) {
3580                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3581                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3582                                 drm_format_plane_cpp(fb->pixel_format, 0);
3583
3584                         switch (cpp) {
3585                         case 1:
3586                                 min_scanlines = 16;
3587                                 break;
3588                         case 2:
3589                                 min_scanlines = 8;
3590                                 break;
3591                         case 8:
3592                                 WARN(1, "Unsupported pixel depth for rotation");
3593                         }
3594                 }
3595                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3596                 selected_result = max(method2, y_tile_minimum);
3597         } else {
3598                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3599                         selected_result = min(method1, method2);
3600                 else
3601                         selected_result = method1;
3602         }
3603
3604         res_blocks = selected_result + 1;
3605         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3606
3607         if (level >= 1 && level <= 7) {
3608                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3609                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3610                         res_lines += 4;
3611                 else
3612                         res_blocks++;
3613         }
3614
3615         if (res_blocks >= ddb_allocation || res_lines > 31) {
3616                 *enabled = false;
3617
3618                 /*
3619                  * If there are no valid level 0 watermarks, then we can't
3620                  * support this display configuration.
3621                  */
3622                 if (level) {
3623                         return 0;
3624                 } else {
3625                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3626                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3627                                       to_intel_crtc(cstate->base.crtc)->pipe,
3628                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3629                                       res_blocks, ddb_allocation, res_lines);
3630
3631                         return -EINVAL;
3632                 }
3633         }
3634
3635         *out_blocks = res_blocks;
3636         *out_lines = res_lines;
3637         *enabled = true;
3638
3639         return 0;
3640 }
3641
3642 static int
3643 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3644                      struct skl_ddb_allocation *ddb,
3645                      struct intel_crtc_state *cstate,
3646                      int level,
3647                      struct skl_wm_level *result)
3648 {
3649         struct drm_atomic_state *state = cstate->base.state;
3650         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3651         struct drm_plane *plane;
3652         struct intel_plane *intel_plane;
3653         struct intel_plane_state *intel_pstate;
3654         uint16_t ddb_blocks;
3655         enum pipe pipe = intel_crtc->pipe;
3656         int ret;
3657
3658         /*
3659          * We'll only calculate watermarks for planes that are actually
3660          * enabled, so make sure all other planes are set as disabled.
3661          */
3662         memset(result, 0, sizeof(*result));
3663
3664         for_each_intel_plane_mask(&dev_priv->drm,
3665                                   intel_plane,
3666                                   cstate->base.plane_mask) {
3667                 int i = skl_wm_plane_id(intel_plane);
3668
3669                 plane = &intel_plane->base;
3670                 intel_pstate = NULL;
3671                 if (state)
3672                         intel_pstate =
3673                                 intel_atomic_get_existing_plane_state(state,
3674                                                                       intel_plane);
3675
3676                 /*
3677                  * Note: If we start supporting multiple pending atomic commits
3678                  * against the same planes/CRTC's in the future, plane->state
3679                  * will no longer be the correct pre-state to use for the
3680                  * calculations here and we'll need to change where we get the
3681                  * 'unchanged' plane data from.
3682                  *
3683                  * For now this is fine because we only allow one queued commit
3684                  * against a CRTC.  Even if the plane isn't modified by this
3685                  * transaction and we don't have a plane lock, we still have
3686                  * the CRTC's lock, so we know that no other transactions are
3687                  * racing with us to update it.
3688                  */
3689                 if (!intel_pstate)
3690                         intel_pstate = to_intel_plane_state(plane->state);
3691
3692                 WARN_ON(!intel_pstate->base.fb);
3693
3694                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3695
3696                 ret = skl_compute_plane_wm(dev_priv,
3697                                            cstate,
3698                                            intel_pstate,
3699                                            ddb_blocks,
3700                                            level,
3701                                            &result->plane_res_b[i],
3702                                            &result->plane_res_l[i],
3703                                            &result->plane_en[i]);
3704                 if (ret)
3705                         return ret;
3706         }
3707
3708         return 0;
3709 }
3710
3711 static uint32_t
3712 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3713 {
3714         if (!cstate->base.active)
3715                 return 0;
3716
3717         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3718                 return 0;
3719
3720         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3721                             skl_pipe_pixel_rate(cstate));
3722 }
3723
3724 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3725                                       struct skl_wm_level *trans_wm /* out */)
3726 {
3727         struct drm_crtc *crtc = cstate->base.crtc;
3728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729         struct intel_plane *intel_plane;
3730
3731         if (!cstate->base.active)
3732                 return;
3733
3734         /* Until we know more, just disable transition WMs */
3735         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3736                 int i = skl_wm_plane_id(intel_plane);
3737
3738                 trans_wm->plane_en[i] = false;
3739         }
3740 }
3741
3742 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3743                              struct skl_ddb_allocation *ddb,
3744                              struct skl_pipe_wm *pipe_wm)
3745 {
3746         struct drm_device *dev = cstate->base.crtc->dev;
3747         const struct drm_i915_private *dev_priv = to_i915(dev);
3748         int level, max_level = ilk_wm_max_level(dev);
3749         int ret;
3750
3751         for (level = 0; level <= max_level; level++) {
3752                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3753                                            level, &pipe_wm->wm[level]);
3754                 if (ret)
3755                         return ret;
3756         }
3757         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3758
3759         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3760
3761         return 0;
3762 }
3763
3764 static void skl_compute_wm_results(struct drm_device *dev,
3765                                    struct skl_pipe_wm *p_wm,
3766                                    struct skl_wm_values *r,
3767                                    struct intel_crtc *intel_crtc)
3768 {
3769         int level, max_level = ilk_wm_max_level(dev);
3770         enum pipe pipe = intel_crtc->pipe;
3771         uint32_t temp;
3772         int i;
3773
3774         for (level = 0; level <= max_level; level++) {
3775                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3776                         temp = 0;
3777
3778                         temp |= p_wm->wm[level].plane_res_l[i] <<
3779                                         PLANE_WM_LINES_SHIFT;
3780                         temp |= p_wm->wm[level].plane_res_b[i];
3781                         if (p_wm->wm[level].plane_en[i])
3782                                 temp |= PLANE_WM_EN;
3783
3784                         r->plane[pipe][i][level] = temp;
3785                 }
3786
3787                 temp = 0;
3788
3789                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3790                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3791
3792                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3793                         temp |= PLANE_WM_EN;
3794
3795                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3796
3797         }
3798
3799         /* transition WMs */
3800         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3801                 temp = 0;
3802                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3803                 temp |= p_wm->trans_wm.plane_res_b[i];
3804                 if (p_wm->trans_wm.plane_en[i])
3805                         temp |= PLANE_WM_EN;
3806
3807                 r->plane_trans[pipe][i] = temp;
3808         }
3809
3810         temp = 0;
3811         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3812         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3813         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3814                 temp |= PLANE_WM_EN;
3815
3816         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3817
3818         r->wm_linetime[pipe] = p_wm->linetime;
3819 }
3820
3821 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3822                                 i915_reg_t reg,
3823                                 const struct skl_ddb_entry *entry)
3824 {
3825         if (entry->end)
3826                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3827         else
3828                 I915_WRITE(reg, 0);
3829 }
3830
3831 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3832                                 const struct skl_wm_values *new)
3833 {
3834         struct drm_device *dev = &dev_priv->drm;
3835         struct intel_crtc *crtc;
3836
3837         for_each_intel_crtc(dev, crtc) {
3838                 int i, level, max_level = ilk_wm_max_level(dev);
3839                 enum pipe pipe = crtc->pipe;
3840
3841                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3842                         continue;
3843                 if (!crtc->active)
3844                         continue;
3845
3846                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3847
3848                 for (level = 0; level <= max_level; level++) {
3849                         for (i = 0; i < intel_num_planes(crtc); i++)
3850                                 I915_WRITE(PLANE_WM(pipe, i, level),
3851                                            new->plane[pipe][i][level]);
3852                         I915_WRITE(CUR_WM(pipe, level),
3853                                    new->plane[pipe][PLANE_CURSOR][level]);
3854                 }
3855                 for (i = 0; i < intel_num_planes(crtc); i++)
3856                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3857                                    new->plane_trans[pipe][i]);
3858                 I915_WRITE(CUR_WM_TRANS(pipe),
3859                            new->plane_trans[pipe][PLANE_CURSOR]);
3860
3861                 for (i = 0; i < intel_num_planes(crtc); i++) {
3862                         skl_ddb_entry_write(dev_priv,
3863                                             PLANE_BUF_CFG(pipe, i),
3864                                             &new->ddb.plane[pipe][i]);
3865                         skl_ddb_entry_write(dev_priv,
3866                                             PLANE_NV12_BUF_CFG(pipe, i),
3867                                             &new->ddb.y_plane[pipe][i]);
3868                 }
3869
3870                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3871                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3872         }
3873 }
3874
3875 /*
3876  * When setting up a new DDB allocation arrangement, we need to correctly
3877  * sequence the times at which the new allocations for the pipes are taken into
3878  * account or we'll have pipes fetching from space previously allocated to
3879  * another pipe.
3880  *
3881  * Roughly the sequence looks like:
3882  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3883  *     overlapping with a previous light-up pipe (another way to put it is:
3884  *     pipes with their new allocation strickly included into their old ones).
3885  *  2. re-allocate the other pipes that get their allocation reduced
3886  *  3. allocate the pipes having their allocation increased
3887  *
3888  * Steps 1. and 2. are here to take care of the following case:
3889  * - Initially DDB looks like this:
3890  *     |   B    |   C    |
3891  * - enable pipe A.
3892  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3893  *   allocation
3894  *     |  A  |  B  |  C  |
3895  *
3896  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3897  */
3898
3899 static void
3900 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3901 {
3902         int plane;
3903
3904         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3905
3906         for_each_plane(dev_priv, pipe, plane) {
3907                 I915_WRITE(PLANE_SURF(pipe, plane),
3908                            I915_READ(PLANE_SURF(pipe, plane)));
3909         }
3910         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3911 }
3912
3913 static bool
3914 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3915                             const struct skl_ddb_allocation *new,
3916                             enum pipe pipe)
3917 {
3918         uint16_t old_size, new_size;
3919
3920         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3921         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3922
3923         return old_size != new_size &&
3924                new->pipe[pipe].start >= old->pipe[pipe].start &&
3925                new->pipe[pipe].end <= old->pipe[pipe].end;
3926 }
3927
3928 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3929                                 struct skl_wm_values *new_values)
3930 {
3931         struct drm_device *dev = &dev_priv->drm;
3932         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3933         bool reallocated[I915_MAX_PIPES] = {};
3934         struct intel_crtc *crtc;
3935         enum pipe pipe;
3936
3937         new_ddb = &new_values->ddb;
3938         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3939
3940         /*
3941          * First pass: flush the pipes with the new allocation contained into
3942          * the old space.
3943          *
3944          * We'll wait for the vblank on those pipes to ensure we can safely
3945          * re-allocate the freed space without this pipe fetching from it.
3946          */
3947         for_each_intel_crtc(dev, crtc) {
3948                 if (!crtc->active)
3949                         continue;
3950
3951                 pipe = crtc->pipe;
3952
3953                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3954                         continue;
3955
3956                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3957                 intel_wait_for_vblank(dev, pipe);
3958
3959                 reallocated[pipe] = true;
3960         }
3961
3962
3963         /*
3964          * Second pass: flush the pipes that are having their allocation
3965          * reduced, but overlapping with a previous allocation.
3966          *
3967          * Here as well we need to wait for the vblank to make sure the freed
3968          * space is not used anymore.
3969          */
3970         for_each_intel_crtc(dev, crtc) {
3971                 if (!crtc->active)
3972                         continue;
3973
3974                 pipe = crtc->pipe;
3975
3976                 if (reallocated[pipe])
3977                         continue;
3978
3979                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3980                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3981                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3982                         intel_wait_for_vblank(dev, pipe);
3983                         reallocated[pipe] = true;
3984                 }
3985         }
3986
3987         /*
3988          * Third pass: flush the pipes that got more space allocated.
3989          *
3990          * We don't need to actively wait for the update here, next vblank
3991          * will just get more DDB space with the correct WM values.
3992          */
3993         for_each_intel_crtc(dev, crtc) {
3994                 if (!crtc->active)
3995                         continue;
3996
3997                 pipe = crtc->pipe;
3998
3999                 /*
4000                  * At this point, only the pipes more space than before are
4001                  * left to re-allocate.
4002                  */
4003                 if (reallocated[pipe])
4004                         continue;
4005
4006                 skl_wm_flush_pipe(dev_priv, pipe, 3);
4007         }
4008 }
4009
4010 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4011                               struct skl_ddb_allocation *ddb, /* out */
4012                               struct skl_pipe_wm *pipe_wm, /* out */
4013                               bool *changed /* out */)
4014 {
4015         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
4016         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4017         int ret;
4018
4019         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4020         if (ret)
4021                 return ret;
4022
4023         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
4024                 *changed = false;
4025         else
4026                 *changed = true;
4027
4028         return 0;
4029 }
4030
4031 static uint32_t
4032 pipes_modified(struct drm_atomic_state *state)
4033 {
4034         struct drm_crtc *crtc;
4035         struct drm_crtc_state *cstate;
4036         uint32_t i, ret = 0;
4037
4038         for_each_crtc_in_state(state, crtc, cstate, i)
4039                 ret |= drm_crtc_mask(crtc);
4040
4041         return ret;
4042 }
4043
4044 static int
4045 skl_compute_ddb(struct drm_atomic_state *state)
4046 {
4047         struct drm_device *dev = state->dev;
4048         struct drm_i915_private *dev_priv = to_i915(dev);
4049         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4050         struct intel_crtc *intel_crtc;
4051         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4052         uint32_t realloc_pipes = pipes_modified(state);
4053         int ret;
4054
4055         /*
4056          * If this is our first atomic update following hardware readout,
4057          * we can't trust the DDB that the BIOS programmed for us.  Let's
4058          * pretend that all pipes switched active status so that we'll
4059          * ensure a full DDB recompute.
4060          */
4061         if (dev_priv->wm.distrust_bios_wm) {
4062                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4063                                        state->acquire_ctx);
4064                 if (ret)
4065                         return ret;
4066
4067                 intel_state->active_pipe_changes = ~0;
4068
4069                 /*
4070                  * We usually only initialize intel_state->active_crtcs if we
4071                  * we're doing a modeset; make sure this field is always
4072                  * initialized during the sanitization process that happens
4073                  * on the first commit too.
4074                  */
4075                 if (!intel_state->modeset)
4076                         intel_state->active_crtcs = dev_priv->active_crtcs;
4077         }
4078
4079         /*
4080          * If the modeset changes which CRTC's are active, we need to
4081          * recompute the DDB allocation for *all* active pipes, even
4082          * those that weren't otherwise being modified in any way by this
4083          * atomic commit.  Due to the shrinking of the per-pipe allocations
4084          * when new active CRTC's are added, it's possible for a pipe that
4085          * we were already using and aren't changing at all here to suddenly
4086          * become invalid if its DDB needs exceeds its new allocation.
4087          *
4088          * Note that if we wind up doing a full DDB recompute, we can't let
4089          * any other display updates race with this transaction, so we need
4090          * to grab the lock on *all* CRTC's.
4091          */
4092         if (intel_state->active_pipe_changes) {
4093                 realloc_pipes = ~0;
4094                 intel_state->wm_results.dirty_pipes = ~0;
4095         }
4096
4097         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4098                 struct intel_crtc_state *cstate;
4099
4100                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4101                 if (IS_ERR(cstate))
4102                         return PTR_ERR(cstate);
4103
4104                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4105                 if (ret)
4106                         return ret;
4107
4108                 ret = drm_atomic_add_affected_planes(state, &intel_crtc->base);
4109                 if (ret)
4110                         return ret;
4111         }
4112
4113         return 0;
4114 }
4115
4116 static void
4117 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4118                      struct skl_wm_values *src,
4119                      enum pipe pipe)
4120 {
4121         dst->wm_linetime[pipe] = src->wm_linetime[pipe];
4122         memcpy(dst->plane[pipe], src->plane[pipe],
4123                sizeof(dst->plane[pipe]));
4124         memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
4125                sizeof(dst->plane_trans[pipe]));
4126
4127         dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
4128         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4129                sizeof(dst->ddb.y_plane[pipe]));
4130         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4131                sizeof(dst->ddb.plane[pipe]));
4132 }
4133
4134 static int
4135 skl_compute_wm(struct drm_atomic_state *state)
4136 {
4137         struct drm_crtc *crtc;
4138         struct drm_crtc_state *cstate;
4139         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4140         struct skl_wm_values *results = &intel_state->wm_results;
4141         struct skl_pipe_wm *pipe_wm;
4142         bool changed = false;
4143         int ret, i;
4144
4145         /*
4146          * If this transaction isn't actually touching any CRTC's, don't
4147          * bother with watermark calculation.  Note that if we pass this
4148          * test, we're guaranteed to hold at least one CRTC state mutex,
4149          * which means we can safely use values like dev_priv->active_crtcs
4150          * since any racing commits that want to update them would need to
4151          * hold _all_ CRTC state mutexes.
4152          */
4153         for_each_crtc_in_state(state, crtc, cstate, i)
4154                 changed = true;
4155         if (!changed)
4156                 return 0;
4157
4158         /* Clear all dirty flags */
4159         results->dirty_pipes = 0;
4160
4161         ret = skl_compute_ddb(state);
4162         if (ret)
4163                 return ret;
4164
4165         /*
4166          * Calculate WM's for all pipes that are part of this transaction.
4167          * Note that the DDB allocation above may have added more CRTC's that
4168          * weren't otherwise being modified (and set bits in dirty_pipes) if
4169          * pipe allocations had to change.
4170          *
4171          * FIXME:  Now that we're doing this in the atomic check phase, we
4172          * should allow skl_update_pipe_wm() to return failure in cases where
4173          * no suitable watermark values can be found.
4174          */
4175         for_each_crtc_in_state(state, crtc, cstate, i) {
4176                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4177                 struct intel_crtc_state *intel_cstate =
4178                         to_intel_crtc_state(cstate);
4179
4180                 pipe_wm = &intel_cstate->wm.skl.optimal;
4181                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4182                                          &changed);
4183                 if (ret)
4184                         return ret;
4185
4186                 if (changed)
4187                         results->dirty_pipes |= drm_crtc_mask(crtc);
4188
4189                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4190                         /* This pipe's WM's did not change */
4191                         continue;
4192
4193                 intel_cstate->update_wm_pre = true;
4194                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4195         }
4196
4197         return 0;
4198 }
4199
4200 static void skl_update_wm(struct drm_crtc *crtc)
4201 {
4202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203         struct drm_device *dev = crtc->dev;
4204         struct drm_i915_private *dev_priv = to_i915(dev);
4205         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4206         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4207         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4208         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4209         int pipe;
4210
4211         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4212                 return;
4213
4214         intel_crtc->wm.active.skl = *pipe_wm;
4215
4216         mutex_lock(&dev_priv->wm.wm_mutex);
4217
4218         skl_write_wm_values(dev_priv, results);
4219         skl_flush_wm_values(dev_priv, results);
4220
4221         /*
4222          * Store the new configuration (but only for the pipes that have
4223          * changed; the other values weren't recomputed).
4224          */
4225         for_each_pipe_masked(dev_priv, pipe, results->dirty_pipes)
4226                 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4227
4228         mutex_unlock(&dev_priv->wm.wm_mutex);
4229 }
4230
4231 static void ilk_compute_wm_config(struct drm_device *dev,
4232                                   struct intel_wm_config *config)
4233 {
4234         struct intel_crtc *crtc;
4235
4236         /* Compute the currently _active_ config */
4237         for_each_intel_crtc(dev, crtc) {
4238                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4239
4240                 if (!wm->pipe_enabled)
4241                         continue;
4242
4243                 config->sprites_enabled |= wm->sprites_enabled;
4244                 config->sprites_scaled |= wm->sprites_scaled;
4245                 config->num_pipes_active++;
4246         }
4247 }
4248
4249 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4250 {
4251         struct drm_device *dev = &dev_priv->drm;
4252         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4253         struct ilk_wm_maximums max;
4254         struct intel_wm_config config = {};
4255         struct ilk_wm_values results = {};
4256         enum intel_ddb_partitioning partitioning;
4257
4258         ilk_compute_wm_config(dev, &config);
4259
4260         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4261         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4262
4263         /* 5/6 split only in single pipe config on IVB+ */
4264         if (INTEL_INFO(dev)->gen >= 7 &&
4265             config.num_pipes_active == 1 && config.sprites_enabled) {
4266                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4267                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4268
4269                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4270         } else {
4271                 best_lp_wm = &lp_wm_1_2;
4272         }
4273
4274         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4275                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4276
4277         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4278
4279         ilk_write_wm_values(dev_priv, &results);
4280 }
4281
4282 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4283 {
4284         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4285         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4286
4287         mutex_lock(&dev_priv->wm.wm_mutex);
4288         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4289         ilk_program_watermarks(dev_priv);
4290         mutex_unlock(&dev_priv->wm.wm_mutex);
4291 }
4292
4293 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4294 {
4295         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4296         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4297
4298         mutex_lock(&dev_priv->wm.wm_mutex);
4299         if (cstate->wm.need_postvbl_update) {
4300                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4301                 ilk_program_watermarks(dev_priv);
4302         }
4303         mutex_unlock(&dev_priv->wm.wm_mutex);
4304 }
4305
4306 static void skl_pipe_wm_active_state(uint32_t val,
4307                                      struct skl_pipe_wm *active,
4308                                      bool is_transwm,
4309                                      bool is_cursor,
4310                                      int i,
4311                                      int level)
4312 {
4313         bool is_enabled = (val & PLANE_WM_EN) != 0;
4314
4315         if (!is_transwm) {
4316                 if (!is_cursor) {
4317                         active->wm[level].plane_en[i] = is_enabled;
4318                         active->wm[level].plane_res_b[i] =
4319                                         val & PLANE_WM_BLOCKS_MASK;
4320                         active->wm[level].plane_res_l[i] =
4321                                         (val >> PLANE_WM_LINES_SHIFT) &
4322                                                 PLANE_WM_LINES_MASK;
4323                 } else {
4324                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4325                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4326                                         val & PLANE_WM_BLOCKS_MASK;
4327                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4328                                         (val >> PLANE_WM_LINES_SHIFT) &
4329                                                 PLANE_WM_LINES_MASK;
4330                 }
4331         } else {
4332                 if (!is_cursor) {
4333                         active->trans_wm.plane_en[i] = is_enabled;
4334                         active->trans_wm.plane_res_b[i] =
4335                                         val & PLANE_WM_BLOCKS_MASK;
4336                         active->trans_wm.plane_res_l[i] =
4337                                         (val >> PLANE_WM_LINES_SHIFT) &
4338                                                 PLANE_WM_LINES_MASK;
4339                 } else {
4340                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4341                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4342                                         val & PLANE_WM_BLOCKS_MASK;
4343                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4344                                         (val >> PLANE_WM_LINES_SHIFT) &
4345                                                 PLANE_WM_LINES_MASK;
4346                 }
4347         }
4348 }
4349
4350 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4351 {
4352         struct drm_device *dev = crtc->dev;
4353         struct drm_i915_private *dev_priv = to_i915(dev);
4354         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4356         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4357         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4358         enum pipe pipe = intel_crtc->pipe;
4359         int level, i, max_level;
4360         uint32_t temp;
4361
4362         max_level = ilk_wm_max_level(dev);
4363
4364         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4365
4366         for (level = 0; level <= max_level; level++) {
4367                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4368                         hw->plane[pipe][i][level] =
4369                                         I915_READ(PLANE_WM(pipe, i, level));
4370                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4371         }
4372
4373         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4374                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4375         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4376
4377         if (!intel_crtc->active)
4378                 return;
4379
4380         hw->dirty_pipes |= drm_crtc_mask(crtc);
4381
4382         active->linetime = hw->wm_linetime[pipe];
4383
4384         for (level = 0; level <= max_level; level++) {
4385                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4386                         temp = hw->plane[pipe][i][level];
4387                         skl_pipe_wm_active_state(temp, active, false,
4388                                                 false, i, level);
4389                 }
4390                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4391                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4392         }
4393
4394         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4395                 temp = hw->plane_trans[pipe][i];
4396                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4397         }
4398
4399         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4400         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4401
4402         intel_crtc->wm.active.skl = *active;
4403 }
4404
4405 void skl_wm_get_hw_state(struct drm_device *dev)
4406 {
4407         struct drm_i915_private *dev_priv = to_i915(dev);
4408         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4409         struct drm_crtc *crtc;
4410
4411         skl_ddb_get_hw_state(dev_priv, ddb);
4412         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4413                 skl_pipe_wm_get_hw_state(crtc);
4414
4415         if (dev_priv->active_crtcs) {
4416                 /* Fully recompute DDB on first atomic commit */
4417                 dev_priv->wm.distrust_bios_wm = true;
4418         } else {
4419                 /* Easy/common case; just sanitize DDB now if everything off */
4420                 memset(ddb, 0, sizeof(*ddb));
4421         }
4422 }
4423
4424 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4425 {
4426         struct drm_device *dev = crtc->dev;
4427         struct drm_i915_private *dev_priv = to_i915(dev);
4428         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4431         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4432         enum pipe pipe = intel_crtc->pipe;
4433         static const i915_reg_t wm0_pipe_reg[] = {
4434                 [PIPE_A] = WM0_PIPEA_ILK,
4435                 [PIPE_B] = WM0_PIPEB_ILK,
4436                 [PIPE_C] = WM0_PIPEC_IVB,
4437         };
4438
4439         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4440         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4441                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4442
4443         memset(active, 0, sizeof(*active));
4444
4445         active->pipe_enabled = intel_crtc->active;
4446
4447         if (active->pipe_enabled) {
4448                 u32 tmp = hw->wm_pipe[pipe];
4449
4450                 /*
4451                  * For active pipes LP0 watermark is marked as
4452                  * enabled, and LP1+ watermaks as disabled since
4453                  * we can't really reverse compute them in case
4454                  * multiple pipes are active.
4455                  */
4456                 active->wm[0].enable = true;
4457                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4458                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4459                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4460                 active->linetime = hw->wm_linetime[pipe];
4461         } else {
4462                 int level, max_level = ilk_wm_max_level(dev);
4463
4464                 /*
4465                  * For inactive pipes, all watermark levels
4466                  * should be marked as enabled but zeroed,
4467                  * which is what we'd compute them to.
4468                  */
4469                 for (level = 0; level <= max_level; level++)
4470                         active->wm[level].enable = true;
4471         }
4472
4473         intel_crtc->wm.active.ilk = *active;
4474 }
4475
4476 #define _FW_WM(value, plane) \
4477         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4478 #define _FW_WM_VLV(value, plane) \
4479         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4480
4481 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4482                                struct vlv_wm_values *wm)
4483 {
4484         enum pipe pipe;
4485         uint32_t tmp;
4486
4487         for_each_pipe(dev_priv, pipe) {
4488                 tmp = I915_READ(VLV_DDL(pipe));
4489
4490                 wm->ddl[pipe].primary =
4491                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4492                 wm->ddl[pipe].cursor =
4493                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4494                 wm->ddl[pipe].sprite[0] =
4495                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4496                 wm->ddl[pipe].sprite[1] =
4497                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4498         }
4499
4500         tmp = I915_READ(DSPFW1);
4501         wm->sr.plane = _FW_WM(tmp, SR);
4502         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4503         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4504         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4505
4506         tmp = I915_READ(DSPFW2);
4507         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4508         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4509         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4510
4511         tmp = I915_READ(DSPFW3);
4512         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4513
4514         if (IS_CHERRYVIEW(dev_priv)) {
4515                 tmp = I915_READ(DSPFW7_CHV);
4516                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4517                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4518
4519                 tmp = I915_READ(DSPFW8_CHV);
4520                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4521                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4522
4523                 tmp = I915_READ(DSPFW9_CHV);
4524                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4525                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4526
4527                 tmp = I915_READ(DSPHOWM);
4528                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4529                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4530                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4531                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4532                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4533                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4534                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4535                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4536                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4537                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4538         } else {
4539                 tmp = I915_READ(DSPFW7);
4540                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4541                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4542
4543                 tmp = I915_READ(DSPHOWM);
4544                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4545                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4546                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4547                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4548                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4549                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4550                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4551         }
4552 }
4553
4554 #undef _FW_WM
4555 #undef _FW_WM_VLV
4556
4557 void vlv_wm_get_hw_state(struct drm_device *dev)
4558 {
4559         struct drm_i915_private *dev_priv = to_i915(dev);
4560         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4561         struct intel_plane *plane;
4562         enum pipe pipe;
4563         u32 val;
4564
4565         vlv_read_wm_values(dev_priv, wm);
4566
4567         for_each_intel_plane(dev, plane) {
4568                 switch (plane->base.type) {
4569                         int sprite;
4570                 case DRM_PLANE_TYPE_CURSOR:
4571                         plane->wm.fifo_size = 63;
4572                         break;
4573                 case DRM_PLANE_TYPE_PRIMARY:
4574                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4575                         break;
4576                 case DRM_PLANE_TYPE_OVERLAY:
4577                         sprite = plane->plane;
4578                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4579                         break;
4580                 }
4581         }
4582
4583         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4584         wm->level = VLV_WM_LEVEL_PM2;
4585
4586         if (IS_CHERRYVIEW(dev_priv)) {
4587                 mutex_lock(&dev_priv->rps.hw_lock);
4588
4589                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4590                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4591                         wm->level = VLV_WM_LEVEL_PM5;
4592
4593                 /*
4594                  * If DDR DVFS is disabled in the BIOS, Punit
4595                  * will never ack the request. So if that happens
4596                  * assume we don't have to enable/disable DDR DVFS
4597                  * dynamically. To test that just set the REQ_ACK
4598                  * bit to poke the Punit, but don't change the
4599                  * HIGH/LOW bits so that we don't actually change
4600                  * the current state.
4601                  */
4602                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4603                 val |= FORCE_DDR_FREQ_REQ_ACK;
4604                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4605
4606                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4607                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4608                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4609                                       "assuming DDR DVFS is disabled\n");
4610                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4611                 } else {
4612                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4613                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4614                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4615                 }
4616
4617                 mutex_unlock(&dev_priv->rps.hw_lock);
4618         }
4619
4620         for_each_pipe(dev_priv, pipe)
4621                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4622                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4623                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4624
4625         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4626                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4627 }
4628
4629 void ilk_wm_get_hw_state(struct drm_device *dev)
4630 {
4631         struct drm_i915_private *dev_priv = to_i915(dev);
4632         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4633         struct drm_crtc *crtc;
4634
4635         for_each_crtc(dev, crtc)
4636                 ilk_pipe_wm_get_hw_state(crtc);
4637
4638         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4639         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4640         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4641
4642         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4643         if (INTEL_INFO(dev)->gen >= 7) {
4644                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4645                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4646         }
4647
4648         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4649                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4650                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4651         else if (IS_IVYBRIDGE(dev))
4652                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4653                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4654
4655         hw->enable_fbc_wm =
4656                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4657 }
4658
4659 /**
4660  * intel_update_watermarks - update FIFO watermark values based on current modes
4661  *
4662  * Calculate watermark values for the various WM regs based on current mode
4663  * and plane configuration.
4664  *
4665  * There are several cases to deal with here:
4666  *   - normal (i.e. non-self-refresh)
4667  *   - self-refresh (SR) mode
4668  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4669  *   - lines are small relative to FIFO size (buffer can hold more than 2
4670  *     lines), so need to account for TLB latency
4671  *
4672  *   The normal calculation is:
4673  *     watermark = dotclock * bytes per pixel * latency
4674  *   where latency is platform & configuration dependent (we assume pessimal
4675  *   values here).
4676  *
4677  *   The SR calculation is:
4678  *     watermark = (trunc(latency/line time)+1) * surface width *
4679  *       bytes per pixel
4680  *   where
4681  *     line time = htotal / dotclock
4682  *     surface width = hdisplay for normal plane and 64 for cursor
4683  *   and latency is assumed to be high, as above.
4684  *
4685  * The final value programmed to the register should always be rounded up,
4686  * and include an extra 2 entries to account for clock crossings.
4687  *
4688  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4689  * to set the non-SR watermarks to 8.
4690  */
4691 void intel_update_watermarks(struct drm_crtc *crtc)
4692 {
4693         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4694
4695         if (dev_priv->display.update_wm)
4696                 dev_priv->display.update_wm(crtc);
4697 }
4698
4699 /*
4700  * Lock protecting IPS related data structures
4701  */
4702 DEFINE_SPINLOCK(mchdev_lock);
4703
4704 /* Global for IPS driver to get at the current i915 device. Protected by
4705  * mchdev_lock. */
4706 static struct drm_i915_private *i915_mch_dev;
4707
4708 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4709 {
4710         u16 rgvswctl;
4711
4712         assert_spin_locked(&mchdev_lock);
4713
4714         rgvswctl = I915_READ16(MEMSWCTL);
4715         if (rgvswctl & MEMCTL_CMD_STS) {
4716                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4717                 return false; /* still busy with another command */
4718         }
4719
4720         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4721                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4722         I915_WRITE16(MEMSWCTL, rgvswctl);
4723         POSTING_READ16(MEMSWCTL);
4724
4725         rgvswctl |= MEMCTL_CMD_STS;
4726         I915_WRITE16(MEMSWCTL, rgvswctl);
4727
4728         return true;
4729 }
4730
4731 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4732 {
4733         u32 rgvmodectl;
4734         u8 fmax, fmin, fstart, vstart;
4735
4736         spin_lock_irq(&mchdev_lock);
4737
4738         rgvmodectl = I915_READ(MEMMODECTL);
4739
4740         /* Enable temp reporting */
4741         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4742         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4743
4744         /* 100ms RC evaluation intervals */
4745         I915_WRITE(RCUPEI, 100000);
4746         I915_WRITE(RCDNEI, 100000);
4747
4748         /* Set max/min thresholds to 90ms and 80ms respectively */
4749         I915_WRITE(RCBMAXAVG, 90000);
4750         I915_WRITE(RCBMINAVG, 80000);
4751
4752         I915_WRITE(MEMIHYST, 1);
4753
4754         /* Set up min, max, and cur for interrupt handling */
4755         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4756         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4757         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4758                 MEMMODE_FSTART_SHIFT;
4759
4760         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4761                 PXVFREQ_PX_SHIFT;
4762
4763         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4764         dev_priv->ips.fstart = fstart;
4765
4766         dev_priv->ips.max_delay = fstart;
4767         dev_priv->ips.min_delay = fmin;
4768         dev_priv->ips.cur_delay = fstart;
4769
4770         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4771                          fmax, fmin, fstart);
4772
4773         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4774
4775         /*
4776          * Interrupts will be enabled in ironlake_irq_postinstall
4777          */
4778
4779         I915_WRITE(VIDSTART, vstart);
4780         POSTING_READ(VIDSTART);
4781
4782         rgvmodectl |= MEMMODE_SWMODE_EN;
4783         I915_WRITE(MEMMODECTL, rgvmodectl);
4784
4785         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4786                 DRM_ERROR("stuck trying to change perf mode\n");
4787         mdelay(1);
4788
4789         ironlake_set_drps(dev_priv, fstart);
4790
4791         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4792                 I915_READ(DDREC) + I915_READ(CSIEC);
4793         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4794         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4795         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4796
4797         spin_unlock_irq(&mchdev_lock);
4798 }
4799
4800 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4801 {
4802         u16 rgvswctl;
4803
4804         spin_lock_irq(&mchdev_lock);
4805
4806         rgvswctl = I915_READ16(MEMSWCTL);
4807
4808         /* Ack interrupts, disable EFC interrupt */
4809         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4810         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4811         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4812         I915_WRITE(DEIIR, DE_PCU_EVENT);
4813         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4814
4815         /* Go back to the starting frequency */
4816         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4817         mdelay(1);
4818         rgvswctl |= MEMCTL_CMD_STS;
4819         I915_WRITE(MEMSWCTL, rgvswctl);
4820         mdelay(1);
4821
4822         spin_unlock_irq(&mchdev_lock);
4823 }
4824
4825 /* There's a funny hw issue where the hw returns all 0 when reading from
4826  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4827  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4828  * all limits and the gpu stuck at whatever frequency it is at atm).
4829  */
4830 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4831 {
4832         u32 limits;
4833
4834         /* Only set the down limit when we've reached the lowest level to avoid
4835          * getting more interrupts, otherwise leave this clear. This prevents a
4836          * race in the hw when coming out of rc6: There's a tiny window where
4837          * the hw runs at the minimal clock before selecting the desired
4838          * frequency, if the down threshold expires in that window we will not
4839          * receive a down interrupt. */
4840         if (IS_GEN9(dev_priv)) {
4841                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4842                 if (val <= dev_priv->rps.min_freq_softlimit)
4843                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4844         } else {
4845                 limits = dev_priv->rps.max_freq_softlimit << 24;
4846                 if (val <= dev_priv->rps.min_freq_softlimit)
4847                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4848         }
4849
4850         return limits;
4851 }
4852
4853 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4854 {
4855         int new_power;
4856         u32 threshold_up = 0, threshold_down = 0; /* in % */
4857         u32 ei_up = 0, ei_down = 0;
4858
4859         new_power = dev_priv->rps.power;
4860         switch (dev_priv->rps.power) {
4861         case LOW_POWER:
4862                 if (val > dev_priv->rps.efficient_freq + 1 &&
4863                     val > dev_priv->rps.cur_freq)
4864                         new_power = BETWEEN;
4865                 break;
4866
4867         case BETWEEN:
4868                 if (val <= dev_priv->rps.efficient_freq &&
4869                     val < dev_priv->rps.cur_freq)
4870                         new_power = LOW_POWER;
4871                 else if (val >= dev_priv->rps.rp0_freq &&
4872                          val > dev_priv->rps.cur_freq)
4873                         new_power = HIGH_POWER;
4874                 break;
4875
4876         case HIGH_POWER:
4877                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4878                     val < dev_priv->rps.cur_freq)
4879                         new_power = BETWEEN;
4880                 break;
4881         }
4882         /* Max/min bins are special */
4883         if (val <= dev_priv->rps.min_freq_softlimit)
4884                 new_power = LOW_POWER;
4885         if (val >= dev_priv->rps.max_freq_softlimit)
4886                 new_power = HIGH_POWER;
4887         if (new_power == dev_priv->rps.power)
4888                 return;
4889
4890         /* Note the units here are not exactly 1us, but 1280ns. */
4891         switch (new_power) {
4892         case LOW_POWER:
4893                 /* Upclock if more than 95% busy over 16ms */
4894                 ei_up = 16000;
4895                 threshold_up = 95;
4896
4897                 /* Downclock if less than 85% busy over 32ms */
4898                 ei_down = 32000;
4899                 threshold_down = 85;
4900                 break;
4901
4902         case BETWEEN:
4903                 /* Upclock if more than 90% busy over 13ms */
4904                 ei_up = 13000;
4905                 threshold_up = 90;
4906
4907                 /* Downclock if less than 75% busy over 32ms */
4908                 ei_down = 32000;
4909                 threshold_down = 75;
4910                 break;
4911
4912         case HIGH_POWER:
4913                 /* Upclock if more than 85% busy over 10ms */
4914                 ei_up = 10000;
4915                 threshold_up = 85;
4916
4917                 /* Downclock if less than 60% busy over 32ms */
4918                 ei_down = 32000;
4919                 threshold_down = 60;
4920                 break;
4921         }
4922
4923         I915_WRITE(GEN6_RP_UP_EI,
4924                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4925         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4926                    GT_INTERVAL_FROM_US(dev_priv,
4927                                        ei_up * threshold_up / 100));
4928
4929         I915_WRITE(GEN6_RP_DOWN_EI,
4930                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4931         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4932                    GT_INTERVAL_FROM_US(dev_priv,
4933                                        ei_down * threshold_down / 100));
4934
4935         I915_WRITE(GEN6_RP_CONTROL,
4936                    GEN6_RP_MEDIA_TURBO |
4937                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4938                    GEN6_RP_MEDIA_IS_GFX |
4939                    GEN6_RP_ENABLE |
4940                    GEN6_RP_UP_BUSY_AVG |
4941                    GEN6_RP_DOWN_IDLE_AVG);
4942
4943         dev_priv->rps.power = new_power;
4944         dev_priv->rps.up_threshold = threshold_up;
4945         dev_priv->rps.down_threshold = threshold_down;
4946         dev_priv->rps.last_adj = 0;
4947 }
4948
4949 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4950 {
4951         u32 mask = 0;
4952
4953         if (val > dev_priv->rps.min_freq_softlimit)
4954                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4955         if (val < dev_priv->rps.max_freq_softlimit)
4956                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4957
4958         mask &= dev_priv->pm_rps_events;
4959
4960         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4961 }
4962
4963 /* gen6_set_rps is called to update the frequency request, but should also be
4964  * called when the range (min_delay and max_delay) is modified so that we can
4965  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4966 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4967 {
4968         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4969         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4970                 return;
4971
4972         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973         WARN_ON(val > dev_priv->rps.max_freq);
4974         WARN_ON(val < dev_priv->rps.min_freq);
4975
4976         /* min/max delay may still have been modified so be sure to
4977          * write the limits value.
4978          */
4979         if (val != dev_priv->rps.cur_freq) {
4980                 gen6_set_rps_thresholds(dev_priv, val);
4981
4982                 if (IS_GEN9(dev_priv))
4983                         I915_WRITE(GEN6_RPNSWREQ,
4984                                    GEN9_FREQUENCY(val));
4985                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4986                         I915_WRITE(GEN6_RPNSWREQ,
4987                                    HSW_FREQUENCY(val));
4988                 else
4989                         I915_WRITE(GEN6_RPNSWREQ,
4990                                    GEN6_FREQUENCY(val) |
4991                                    GEN6_OFFSET(0) |
4992                                    GEN6_AGGRESSIVE_TURBO);
4993         }
4994
4995         /* Make sure we continue to get interrupts
4996          * until we hit the minimum or maximum frequencies.
4997          */
4998         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4999         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5000
5001         POSTING_READ(GEN6_RPNSWREQ);
5002
5003         dev_priv->rps.cur_freq = val;
5004         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5005 }
5006
5007 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5008 {
5009         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5010         WARN_ON(val > dev_priv->rps.max_freq);
5011         WARN_ON(val < dev_priv->rps.min_freq);
5012
5013         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5014                       "Odd GPU freq value\n"))
5015                 val &= ~1;
5016
5017         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5018
5019         if (val != dev_priv->rps.cur_freq) {
5020                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5021                 if (!IS_CHERRYVIEW(dev_priv))
5022                         gen6_set_rps_thresholds(dev_priv, val);
5023         }
5024
5025         dev_priv->rps.cur_freq = val;
5026         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5027 }
5028
5029 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5030  *
5031  * * If Gfx is Idle, then
5032  * 1. Forcewake Media well.
5033  * 2. Request idle freq.
5034  * 3. Release Forcewake of Media well.
5035 */
5036 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5037 {
5038         u32 val = dev_priv->rps.idle_freq;
5039
5040         if (dev_priv->rps.cur_freq <= val)
5041                 return;
5042
5043         /* Wake up the media well, as that takes a lot less
5044          * power than the Render well. */
5045         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5046         valleyview_set_rps(dev_priv, val);
5047         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5048 }
5049
5050 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5051 {
5052         mutex_lock(&dev_priv->rps.hw_lock);
5053         if (dev_priv->rps.enabled) {
5054                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5055                         gen6_rps_reset_ei(dev_priv);
5056                 I915_WRITE(GEN6_PMINTRMSK,
5057                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5058
5059                 gen6_enable_rps_interrupts(dev_priv);
5060
5061                 /* Ensure we start at the user's desired frequency */
5062                 intel_set_rps(dev_priv,
5063                               clamp(dev_priv->rps.cur_freq,
5064                                     dev_priv->rps.min_freq_softlimit,
5065                                     dev_priv->rps.max_freq_softlimit));
5066         }
5067         mutex_unlock(&dev_priv->rps.hw_lock);
5068 }
5069
5070 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5071 {
5072         /* Flush our bottom-half so that it does not race with us
5073          * setting the idle frequency and so that it is bounded by
5074          * our rpm wakeref. And then disable the interrupts to stop any
5075          * futher RPS reclocking whilst we are asleep.
5076          */
5077         gen6_disable_rps_interrupts(dev_priv);
5078
5079         mutex_lock(&dev_priv->rps.hw_lock);
5080         if (dev_priv->rps.enabled) {
5081                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5082                         vlv_set_rps_idle(dev_priv);
5083                 else
5084                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5085                 dev_priv->rps.last_adj = 0;
5086                 I915_WRITE(GEN6_PMINTRMSK,
5087                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5088         }
5089         mutex_unlock(&dev_priv->rps.hw_lock);
5090
5091         spin_lock(&dev_priv->rps.client_lock);
5092         while (!list_empty(&dev_priv->rps.clients))
5093                 list_del_init(dev_priv->rps.clients.next);
5094         spin_unlock(&dev_priv->rps.client_lock);
5095 }
5096
5097 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5098                     struct intel_rps_client *rps,
5099                     unsigned long submitted)
5100 {
5101         /* This is intentionally racy! We peek at the state here, then
5102          * validate inside the RPS worker.
5103          */
5104         if (!(dev_priv->gt.awake &&
5105               dev_priv->rps.enabled &&
5106               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
5107                 return;
5108
5109         /* Force a RPS boost (and don't count it against the client) if
5110          * the GPU is severely congested.
5111          */
5112         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5113                 rps = NULL;
5114
5115         spin_lock(&dev_priv->rps.client_lock);
5116         if (rps == NULL || list_empty(&rps->link)) {
5117                 spin_lock_irq(&dev_priv->irq_lock);
5118                 if (dev_priv->rps.interrupts_enabled) {
5119                         dev_priv->rps.client_boost = true;
5120                         schedule_work(&dev_priv->rps.work);
5121                 }
5122                 spin_unlock_irq(&dev_priv->irq_lock);
5123
5124                 if (rps != NULL) {
5125                         list_add(&rps->link, &dev_priv->rps.clients);
5126                         rps->boosts++;
5127                 } else
5128                         dev_priv->rps.boosts++;
5129         }
5130         spin_unlock(&dev_priv->rps.client_lock);
5131 }
5132
5133 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5134 {
5135         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5136                 valleyview_set_rps(dev_priv, val);
5137         else
5138                 gen6_set_rps(dev_priv, val);
5139 }
5140
5141 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5142 {
5143         I915_WRITE(GEN6_RC_CONTROL, 0);
5144         I915_WRITE(GEN9_PG_ENABLE, 0);
5145 }
5146
5147 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5148 {
5149         I915_WRITE(GEN6_RP_CONTROL, 0);
5150 }
5151
5152 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5153 {
5154         I915_WRITE(GEN6_RC_CONTROL, 0);
5155         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5156         I915_WRITE(GEN6_RP_CONTROL, 0);
5157 }
5158
5159 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5160 {
5161         I915_WRITE(GEN6_RC_CONTROL, 0);
5162 }
5163
5164 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5165 {
5166         /* we're doing forcewake before Disabling RC6,
5167          * This what the BIOS expects when going into suspend */
5168         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5169
5170         I915_WRITE(GEN6_RC_CONTROL, 0);
5171
5172         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 }
5174
5175 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5176 {
5177         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5178                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5179                         mode = GEN6_RC_CTL_RC6_ENABLE;
5180                 else
5181                         mode = 0;
5182         }
5183         if (HAS_RC6p(dev_priv))
5184                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5185                                  "RC6 %s RC6p %s RC6pp %s\n",
5186                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5187                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5188                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5189
5190         else
5191                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5192                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5193 }
5194
5195 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5196 {
5197         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5198         bool enable_rc6 = true;
5199         unsigned long rc6_ctx_base;
5200         u32 rc_ctl;
5201         int rc_sw_target;
5202
5203         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5204         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5205                        RC_SW_TARGET_STATE_SHIFT;
5206         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5207                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5208                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5209                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5210                          rc_sw_target);
5211
5212         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5213                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5214                 enable_rc6 = false;
5215         }
5216
5217         /*
5218          * The exact context size is not known for BXT, so assume a page size
5219          * for this check.
5220          */
5221         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5222         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5223               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5224                                         ggtt->stolen_reserved_size))) {
5225                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5226                 enable_rc6 = false;
5227         }
5228
5229         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5230               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5231               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5232               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5233                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5234                 enable_rc6 = false;
5235         }
5236
5237         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5238             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5239             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5240                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5241                 enable_rc6 = false;
5242         }
5243
5244         if (!I915_READ(GEN6_GFXPAUSE)) {
5245                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5246                 enable_rc6 = false;
5247         }
5248
5249         if (!I915_READ(GEN8_MISC_CTRL0)) {
5250                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5251                 enable_rc6 = false;
5252         }
5253
5254         return enable_rc6;
5255 }
5256
5257 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5258 {
5259         /* No RC6 before Ironlake and code is gone for ilk. */
5260         if (INTEL_INFO(dev_priv)->gen < 6)
5261                 return 0;
5262
5263         if (!enable_rc6)
5264                 return 0;
5265
5266         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5267                 DRM_INFO("RC6 disabled by BIOS\n");
5268                 return 0;
5269         }
5270
5271         /* Respect the kernel parameter if it is set */
5272         if (enable_rc6 >= 0) {
5273                 int mask;
5274
5275                 if (HAS_RC6p(dev_priv))
5276                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5277                                INTEL_RC6pp_ENABLE;
5278                 else
5279                         mask = INTEL_RC6_ENABLE;
5280
5281                 if ((enable_rc6 & mask) != enable_rc6)
5282                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5283                                          "(requested %d, valid %d)\n",
5284                                          enable_rc6 & mask, enable_rc6, mask);
5285
5286                 return enable_rc6 & mask;
5287         }
5288
5289         if (IS_IVYBRIDGE(dev_priv))
5290                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5291
5292         return INTEL_RC6_ENABLE;
5293 }
5294
5295 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5296 {
5297         uint32_t rp_state_cap;
5298         u32 ddcc_status = 0;
5299         int ret;
5300
5301         /* All of these values are in units of 50MHz */
5302         dev_priv->rps.cur_freq          = 0;
5303         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5304         if (IS_BROXTON(dev_priv)) {
5305                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5306                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5307                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5308                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5309         } else {
5310                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5311                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5312                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5313                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5314         }
5315
5316         /* hw_max = RP0 until we check for overclocking */
5317         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5318
5319         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5320         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5321             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5322                 ret = sandybridge_pcode_read(dev_priv,
5323                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5324                                         &ddcc_status);
5325                 if (0 == ret)
5326                         dev_priv->rps.efficient_freq =
5327                                 clamp_t(u8,
5328                                         ((ddcc_status >> 8) & 0xff),
5329                                         dev_priv->rps.min_freq,
5330                                         dev_priv->rps.max_freq);
5331         }
5332
5333         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5334                 /* Store the frequency values in 16.66 MHZ units, which is
5335                    the natural hardware unit for SKL */
5336                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5337                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5338                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5339                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5340                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5341         }
5342
5343         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5344
5345         /* Preserve min/max settings in case of re-init */
5346         if (dev_priv->rps.max_freq_softlimit == 0)
5347                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5348
5349         if (dev_priv->rps.min_freq_softlimit == 0) {
5350                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5351                         dev_priv->rps.min_freq_softlimit =
5352                                 max_t(int, dev_priv->rps.efficient_freq,
5353                                       intel_freq_opcode(dev_priv, 450));
5354                 else
5355                         dev_priv->rps.min_freq_softlimit =
5356                                 dev_priv->rps.min_freq;
5357         }
5358 }
5359
5360 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5361 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5362 {
5363         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5364
5365         gen6_init_rps_frequencies(dev_priv);
5366
5367         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5368         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5369                 /*
5370                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5371                  * clear out the Control register just to avoid inconsitency
5372                  * with debugfs interface, which will show  Turbo as enabled
5373                  * only and that is not expected by the User after adding the
5374                  * WaGsvDisableTurbo. Apart from this there is no problem even
5375                  * if the Turbo is left enabled in the Control register, as the
5376                  * Up/Down interrupts would remain masked.
5377                  */
5378                 gen9_disable_rps(dev_priv);
5379                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5380                 return;
5381         }
5382
5383         /* Program defaults and thresholds for RPS*/
5384         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5385                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5386
5387         /* 1 second timeout*/
5388         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5389                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5390
5391         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5392
5393         /* Leaning on the below call to gen6_set_rps to program/setup the
5394          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5395          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5396         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5397         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5398
5399         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5400 }
5401
5402 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5403 {
5404         struct intel_engine_cs *engine;
5405         uint32_t rc6_mask = 0;
5406
5407         /* 1a: Software RC state - RC0 */
5408         I915_WRITE(GEN6_RC_STATE, 0);
5409
5410         /* 1b: Get forcewake during program sequence. Although the driver
5411          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5412         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5413
5414         /* 2a: Disable RC states. */
5415         I915_WRITE(GEN6_RC_CONTROL, 0);
5416
5417         /* 2b: Program RC6 thresholds.*/
5418
5419         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5420         if (IS_SKYLAKE(dev_priv))
5421                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5422         else
5423                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5424         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5425         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5426         for_each_engine(engine, dev_priv)
5427                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5428
5429         if (HAS_GUC(dev_priv))
5430                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5431
5432         I915_WRITE(GEN6_RC_SLEEP, 0);
5433
5434         /* 2c: Program Coarse Power Gating Policies. */
5435         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5436         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5437
5438         /* 3a: Enable RC6 */
5439         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5440                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5441         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5442         /* WaRsUseTimeoutMode */
5443         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5444             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5445                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5446                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5447                            GEN7_RC_CTL_TO_MODE |
5448                            rc6_mask);
5449         } else {
5450                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5451                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5452                            GEN6_RC_CTL_EI_MODE(1) |
5453                            rc6_mask);
5454         }
5455
5456         /*
5457          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5458          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5459          */
5460         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5461                 I915_WRITE(GEN9_PG_ENABLE, 0);
5462         else
5463                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5464                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5465
5466         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5467 }
5468
5469 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5470 {
5471         struct intel_engine_cs *engine;
5472         uint32_t rc6_mask = 0;
5473
5474         /* 1a: Software RC state - RC0 */
5475         I915_WRITE(GEN6_RC_STATE, 0);
5476
5477         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5478          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5479         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5480
5481         /* 2a: Disable RC states. */
5482         I915_WRITE(GEN6_RC_CONTROL, 0);
5483
5484         /* Initialize rps frequencies */
5485         gen6_init_rps_frequencies(dev_priv);
5486
5487         /* 2b: Program RC6 thresholds.*/
5488         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5489         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5490         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5491         for_each_engine(engine, dev_priv)
5492                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5493         I915_WRITE(GEN6_RC_SLEEP, 0);
5494         if (IS_BROADWELL(dev_priv))
5495                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5496         else
5497                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5498
5499         /* 3: Enable RC6 */
5500         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5501                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5502         intel_print_rc6_info(dev_priv, rc6_mask);
5503         if (IS_BROADWELL(dev_priv))
5504                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5505                                 GEN7_RC_CTL_TO_MODE |
5506                                 rc6_mask);
5507         else
5508                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5509                                 GEN6_RC_CTL_EI_MODE(1) |
5510                                 rc6_mask);
5511
5512         /* 4 Program defaults and thresholds for RPS*/
5513         I915_WRITE(GEN6_RPNSWREQ,
5514                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5515         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5516                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5517         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5518         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5519
5520         /* Docs recommend 900MHz, and 300 MHz respectively */
5521         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5522                    dev_priv->rps.max_freq_softlimit << 24 |
5523                    dev_priv->rps.min_freq_softlimit << 16);
5524
5525         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5526         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5527         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5528         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5529
5530         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5531
5532         /* 5: Enable RPS */
5533         I915_WRITE(GEN6_RP_CONTROL,
5534                    GEN6_RP_MEDIA_TURBO |
5535                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5536                    GEN6_RP_MEDIA_IS_GFX |
5537                    GEN6_RP_ENABLE |
5538                    GEN6_RP_UP_BUSY_AVG |
5539                    GEN6_RP_DOWN_IDLE_AVG);
5540
5541         /* 6: Ring frequency + overclocking (our driver does this later */
5542
5543         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5544         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5545
5546         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5547 }
5548
5549 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5550 {
5551         struct intel_engine_cs *engine;
5552         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5553         u32 gtfifodbg;
5554         int rc6_mode;
5555         int ret;
5556
5557         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5558
5559         /* Here begins a magic sequence of register writes to enable
5560          * auto-downclocking.
5561          *
5562          * Perhaps there might be some value in exposing these to
5563          * userspace...
5564          */
5565         I915_WRITE(GEN6_RC_STATE, 0);
5566
5567         /* Clear the DBG now so we don't confuse earlier errors */
5568         gtfifodbg = I915_READ(GTFIFODBG);
5569         if (gtfifodbg) {
5570                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5571                 I915_WRITE(GTFIFODBG, gtfifodbg);
5572         }
5573
5574         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5575
5576         /* Initialize rps frequencies */
5577         gen6_init_rps_frequencies(dev_priv);
5578
5579         /* disable the counters and set deterministic thresholds */
5580         I915_WRITE(GEN6_RC_CONTROL, 0);
5581
5582         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5583         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5584         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5585         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5586         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5587
5588         for_each_engine(engine, dev_priv)
5589                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5590
5591         I915_WRITE(GEN6_RC_SLEEP, 0);
5592         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5593         if (IS_IVYBRIDGE(dev_priv))
5594                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5595         else
5596                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5597         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5598         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5599
5600         /* Check if we are enabling RC6 */
5601         rc6_mode = intel_enable_rc6();
5602         if (rc6_mode & INTEL_RC6_ENABLE)
5603                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5604
5605         /* We don't use those on Haswell */
5606         if (!IS_HASWELL(dev_priv)) {
5607                 if (rc6_mode & INTEL_RC6p_ENABLE)
5608                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5609
5610                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5611                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5612         }
5613
5614         intel_print_rc6_info(dev_priv, rc6_mask);
5615
5616         I915_WRITE(GEN6_RC_CONTROL,
5617                    rc6_mask |
5618                    GEN6_RC_CTL_EI_MODE(1) |
5619                    GEN6_RC_CTL_HW_ENABLE);
5620
5621         /* Power down if completely idle for over 50ms */
5622         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5623         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5624
5625         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5626         if (ret)
5627                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5628
5629         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5630         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5631                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5632                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5633                                  (pcu_mbox & 0xff) * 50);
5634                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5635         }
5636
5637         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5638         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5639
5640         rc6vids = 0;
5641         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5642         if (IS_GEN6(dev_priv) && ret) {
5643                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5644         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5645                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5646                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5647                 rc6vids &= 0xffff00;
5648                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5649                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5650                 if (ret)
5651                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5652         }
5653
5654         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5655 }
5656
5657 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5658 {
5659         int min_freq = 15;
5660         unsigned int gpu_freq;
5661         unsigned int max_ia_freq, min_ring_freq;
5662         unsigned int max_gpu_freq, min_gpu_freq;
5663         int scaling_factor = 180;
5664         struct cpufreq_policy *policy;
5665
5666         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5667
5668         policy = cpufreq_cpu_get(0);
5669         if (policy) {
5670                 max_ia_freq = policy->cpuinfo.max_freq;
5671                 cpufreq_cpu_put(policy);
5672         } else {
5673                 /*
5674                  * Default to measured freq if none found, PCU will ensure we
5675                  * don't go over
5676                  */
5677                 max_ia_freq = tsc_khz;
5678         }
5679
5680         /* Convert from kHz to MHz */
5681         max_ia_freq /= 1000;
5682
5683         min_ring_freq = I915_READ(DCLK) & 0xf;
5684         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5685         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5686
5687         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5688                 /* Convert GT frequency to 50 HZ units */
5689                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5690                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5691         } else {
5692                 min_gpu_freq = dev_priv->rps.min_freq;
5693                 max_gpu_freq = dev_priv->rps.max_freq;
5694         }
5695
5696         /*
5697          * For each potential GPU frequency, load a ring frequency we'd like
5698          * to use for memory access.  We do this by specifying the IA frequency
5699          * the PCU should use as a reference to determine the ring frequency.
5700          */
5701         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5702                 int diff = max_gpu_freq - gpu_freq;
5703                 unsigned int ia_freq = 0, ring_freq = 0;
5704
5705                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5706                         /*
5707                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5708                          * No floor required for ring frequency on SKL.
5709                          */
5710                         ring_freq = gpu_freq;
5711                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5712                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5713                         ring_freq = max(min_ring_freq, gpu_freq);
5714                 } else if (IS_HASWELL(dev_priv)) {
5715                         ring_freq = mult_frac(gpu_freq, 5, 4);
5716                         ring_freq = max(min_ring_freq, ring_freq);
5717                         /* leave ia_freq as the default, chosen by cpufreq */
5718                 } else {
5719                         /* On older processors, there is no separate ring
5720                          * clock domain, so in order to boost the bandwidth
5721                          * of the ring, we need to upclock the CPU (ia_freq).
5722                          *
5723                          * For GPU frequencies less than 750MHz,
5724                          * just use the lowest ring freq.
5725                          */
5726                         if (gpu_freq < min_freq)
5727                                 ia_freq = 800;
5728                         else
5729                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5730                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5731                 }
5732
5733                 sandybridge_pcode_write(dev_priv,
5734                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5735                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5736                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5737                                         gpu_freq);
5738         }
5739 }
5740
5741 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5742 {
5743         if (!HAS_CORE_RING_FREQ(dev_priv))
5744                 return;
5745
5746         mutex_lock(&dev_priv->rps.hw_lock);
5747         __gen6_update_ring_freq(dev_priv);
5748         mutex_unlock(&dev_priv->rps.hw_lock);
5749 }
5750
5751 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5752 {
5753         u32 val, rp0;
5754
5755         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5756
5757         switch (INTEL_INFO(dev_priv)->eu_total) {
5758         case 8:
5759                 /* (2 * 4) config */
5760                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5761                 break;
5762         case 12:
5763                 /* (2 * 6) config */
5764                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5765                 break;
5766         case 16:
5767                 /* (2 * 8) config */
5768         default:
5769                 /* Setting (2 * 8) Min RP0 for any other combination */
5770                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5771                 break;
5772         }
5773
5774         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5775
5776         return rp0;
5777 }
5778
5779 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5780 {
5781         u32 val, rpe;
5782
5783         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5784         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5785
5786         return rpe;
5787 }
5788
5789 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5790 {
5791         u32 val, rp1;
5792
5793         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5794         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5795
5796         return rp1;
5797 }
5798
5799 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5800 {
5801         u32 val, rp1;
5802
5803         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5804
5805         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5806
5807         return rp1;
5808 }
5809
5810 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5811 {
5812         u32 val, rp0;
5813
5814         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5815
5816         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5817         /* Clamp to max */
5818         rp0 = min_t(u32, rp0, 0xea);
5819
5820         return rp0;
5821 }
5822
5823 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5824 {
5825         u32 val, rpe;
5826
5827         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5828         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5829         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5830         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5831
5832         return rpe;
5833 }
5834
5835 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5836 {
5837         u32 val;
5838
5839         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5840         /*
5841          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5842          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5843          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5844          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5845          * to make sure it matches what Punit accepts.
5846          */
5847         return max_t(u32, val, 0xc0);
5848 }
5849
5850 /* Check that the pctx buffer wasn't move under us. */
5851 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5852 {
5853         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5854
5855         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5856                              dev_priv->vlv_pctx->stolen->start);
5857 }
5858
5859
5860 /* Check that the pcbr address is not empty. */
5861 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5862 {
5863         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5864
5865         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5866 }
5867
5868 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5869 {
5870         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5871         unsigned long pctx_paddr, paddr;
5872         u32 pcbr;
5873         int pctx_size = 32*1024;
5874
5875         pcbr = I915_READ(VLV_PCBR);
5876         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5877                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5878                 paddr = (dev_priv->mm.stolen_base +
5879                          (ggtt->stolen_size - pctx_size));
5880
5881                 pctx_paddr = (paddr & (~4095));
5882                 I915_WRITE(VLV_PCBR, pctx_paddr);
5883         }
5884
5885         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5886 }
5887
5888 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5889 {
5890         struct drm_i915_gem_object *pctx;
5891         unsigned long pctx_paddr;
5892         u32 pcbr;
5893         int pctx_size = 24*1024;
5894
5895         mutex_lock(&dev_priv->drm.struct_mutex);
5896
5897         pcbr = I915_READ(VLV_PCBR);
5898         if (pcbr) {
5899                 /* BIOS set it up already, grab the pre-alloc'd space */
5900                 int pcbr_offset;
5901
5902                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5903                 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5904                                                                       pcbr_offset,
5905                                                                       I915_GTT_OFFSET_NONE,
5906                                                                       pctx_size);
5907                 goto out;
5908         }
5909
5910         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5911
5912         /*
5913          * From the Gunit register HAS:
5914          * The Gfx driver is expected to program this register and ensure
5915          * proper allocation within Gfx stolen memory.  For example, this
5916          * register should be programmed such than the PCBR range does not
5917          * overlap with other ranges, such as the frame buffer, protected
5918          * memory, or any other relevant ranges.
5919          */
5920         pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5921         if (!pctx) {
5922                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5923                 goto out;
5924         }
5925
5926         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5927         I915_WRITE(VLV_PCBR, pctx_paddr);
5928
5929 out:
5930         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5931         dev_priv->vlv_pctx = pctx;
5932         mutex_unlock(&dev_priv->drm.struct_mutex);
5933 }
5934
5935 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5936 {
5937         if (WARN_ON(!dev_priv->vlv_pctx))
5938                 return;
5939
5940         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5941         dev_priv->vlv_pctx = NULL;
5942 }
5943
5944 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5945 {
5946         dev_priv->rps.gpll_ref_freq =
5947                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5948                                   CCK_GPLL_CLOCK_CONTROL,
5949                                   dev_priv->czclk_freq);
5950
5951         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5952                          dev_priv->rps.gpll_ref_freq);
5953 }
5954
5955 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5956 {
5957         u32 val;
5958
5959         valleyview_setup_pctx(dev_priv);
5960
5961         vlv_init_gpll_ref_freq(dev_priv);
5962
5963         mutex_lock(&dev_priv->rps.hw_lock);
5964
5965         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5966         switch ((val >> 6) & 3) {
5967         case 0:
5968         case 1:
5969                 dev_priv->mem_freq = 800;
5970                 break;
5971         case 2:
5972                 dev_priv->mem_freq = 1066;
5973                 break;
5974         case 3:
5975                 dev_priv->mem_freq = 1333;
5976                 break;
5977         }
5978         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5979
5980         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5981         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5982         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5983                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5984                          dev_priv->rps.max_freq);
5985
5986         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5987         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5988                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5989                          dev_priv->rps.efficient_freq);
5990
5991         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5992         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5993                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5994                          dev_priv->rps.rp1_freq);
5995
5996         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5997         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5998                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5999                          dev_priv->rps.min_freq);
6000
6001         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6002
6003         /* Preserve min/max settings in case of re-init */
6004         if (dev_priv->rps.max_freq_softlimit == 0)
6005                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6006
6007         if (dev_priv->rps.min_freq_softlimit == 0)
6008                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6009
6010         mutex_unlock(&dev_priv->rps.hw_lock);
6011 }
6012
6013 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6014 {
6015         u32 val;
6016
6017         cherryview_setup_pctx(dev_priv);
6018
6019         vlv_init_gpll_ref_freq(dev_priv);
6020
6021         mutex_lock(&dev_priv->rps.hw_lock);
6022
6023         mutex_lock(&dev_priv->sb_lock);
6024         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6025         mutex_unlock(&dev_priv->sb_lock);
6026
6027         switch ((val >> 2) & 0x7) {
6028         case 3:
6029                 dev_priv->mem_freq = 2000;
6030                 break;
6031         default:
6032                 dev_priv->mem_freq = 1600;
6033                 break;
6034         }
6035         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6036
6037         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
6038         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6039         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6040                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6041                          dev_priv->rps.max_freq);
6042
6043         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
6044         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6045                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6046                          dev_priv->rps.efficient_freq);
6047
6048         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
6049         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6050                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6051                          dev_priv->rps.rp1_freq);
6052
6053         /* PUnit validated range is only [RPe, RP0] */
6054         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
6055         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6056                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6057                          dev_priv->rps.min_freq);
6058
6059         WARN_ONCE((dev_priv->rps.max_freq |
6060                    dev_priv->rps.efficient_freq |
6061                    dev_priv->rps.rp1_freq |
6062                    dev_priv->rps.min_freq) & 1,
6063                   "Odd GPU freq values\n");
6064
6065         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6066
6067         /* Preserve min/max settings in case of re-init */
6068         if (dev_priv->rps.max_freq_softlimit == 0)
6069                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6070
6071         if (dev_priv->rps.min_freq_softlimit == 0)
6072                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6073
6074         mutex_unlock(&dev_priv->rps.hw_lock);
6075 }
6076
6077 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6078 {
6079         valleyview_cleanup_pctx(dev_priv);
6080 }
6081
6082 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6083 {
6084         struct intel_engine_cs *engine;
6085         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6086
6087         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6088
6089         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6090                                              GT_FIFO_FREE_ENTRIES_CHV);
6091         if (gtfifodbg) {
6092                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6093                                  gtfifodbg);
6094                 I915_WRITE(GTFIFODBG, gtfifodbg);
6095         }
6096
6097         cherryview_check_pctx(dev_priv);
6098
6099         /* 1a & 1b: Get forcewake during program sequence. Although the driver
6100          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6101         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6102
6103         /*  Disable RC states. */
6104         I915_WRITE(GEN6_RC_CONTROL, 0);
6105
6106         /* 2a: Program RC6 thresholds.*/
6107         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6108         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6109         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6110
6111         for_each_engine(engine, dev_priv)
6112                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6113         I915_WRITE(GEN6_RC_SLEEP, 0);
6114
6115         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6116         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6117
6118         /* allows RC6 residency counter to work */
6119         I915_WRITE(VLV_COUNTER_CONTROL,
6120                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6121                                       VLV_MEDIA_RC6_COUNT_EN |
6122                                       VLV_RENDER_RC6_COUNT_EN));
6123
6124         /* For now we assume BIOS is allocating and populating the PCBR  */
6125         pcbr = I915_READ(VLV_PCBR);
6126
6127         /* 3: Enable RC6 */
6128         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6129             (pcbr >> VLV_PCBR_ADDR_SHIFT))
6130                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6131
6132         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6133
6134         /* 4 Program defaults and thresholds for RPS*/
6135         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6136         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6137         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6138         I915_WRITE(GEN6_RP_UP_EI, 66000);
6139         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6140
6141         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6142
6143         /* 5: Enable RPS */
6144         I915_WRITE(GEN6_RP_CONTROL,
6145                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6146                    GEN6_RP_MEDIA_IS_GFX |
6147                    GEN6_RP_ENABLE |
6148                    GEN6_RP_UP_BUSY_AVG |
6149                    GEN6_RP_DOWN_IDLE_AVG);
6150
6151         /* Setting Fixed Bias */
6152         val = VLV_OVERRIDE_EN |
6153                   VLV_SOC_TDP_EN |
6154                   CHV_BIAS_CPU_50_SOC_50;
6155         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6156
6157         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6158
6159         /* RPS code assumes GPLL is used */
6160         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6161
6162         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6163         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6164
6165         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6166         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6167                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6168                          dev_priv->rps.cur_freq);
6169
6170         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6171                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6172                          dev_priv->rps.idle_freq);
6173
6174         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6175
6176         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6177 }
6178
6179 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6180 {
6181         struct intel_engine_cs *engine;
6182         u32 gtfifodbg, val, rc6_mode = 0;
6183
6184         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6185
6186         valleyview_check_pctx(dev_priv);
6187
6188         gtfifodbg = I915_READ(GTFIFODBG);
6189         if (gtfifodbg) {
6190                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6191                                  gtfifodbg);
6192                 I915_WRITE(GTFIFODBG, gtfifodbg);
6193         }
6194
6195         /* If VLV, Forcewake all wells, else re-direct to regular path */
6196         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6197
6198         /*  Disable RC states. */
6199         I915_WRITE(GEN6_RC_CONTROL, 0);
6200
6201         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6202         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6203         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6204         I915_WRITE(GEN6_RP_UP_EI, 66000);
6205         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6206
6207         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6208
6209         I915_WRITE(GEN6_RP_CONTROL,
6210                    GEN6_RP_MEDIA_TURBO |
6211                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6212                    GEN6_RP_MEDIA_IS_GFX |
6213                    GEN6_RP_ENABLE |
6214                    GEN6_RP_UP_BUSY_AVG |
6215                    GEN6_RP_DOWN_IDLE_CONT);
6216
6217         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6218         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6219         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6220
6221         for_each_engine(engine, dev_priv)
6222                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6223
6224         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6225
6226         /* allows RC6 residency counter to work */
6227         I915_WRITE(VLV_COUNTER_CONTROL,
6228                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6229                                       VLV_RENDER_RC0_COUNT_EN |
6230                                       VLV_MEDIA_RC6_COUNT_EN |
6231                                       VLV_RENDER_RC6_COUNT_EN));
6232
6233         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6234                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6235
6236         intel_print_rc6_info(dev_priv, rc6_mode);
6237
6238         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6239
6240         /* Setting Fixed Bias */
6241         val = VLV_OVERRIDE_EN |
6242                   VLV_SOC_TDP_EN |
6243                   VLV_BIAS_CPU_125_SOC_875;
6244         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6245
6246         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6247
6248         /* RPS code assumes GPLL is used */
6249         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6250
6251         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6252         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6253
6254         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6255         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6256                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6257                          dev_priv->rps.cur_freq);
6258
6259         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6260                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6261                          dev_priv->rps.idle_freq);
6262
6263         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6264
6265         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6266 }
6267
6268 static unsigned long intel_pxfreq(u32 vidfreq)
6269 {
6270         unsigned long freq;
6271         int div = (vidfreq & 0x3f0000) >> 16;
6272         int post = (vidfreq & 0x3000) >> 12;
6273         int pre = (vidfreq & 0x7);
6274
6275         if (!pre)
6276                 return 0;
6277
6278         freq = ((div * 133333) / ((1<<post) * pre));
6279
6280         return freq;
6281 }
6282
6283 static const struct cparams {
6284         u16 i;
6285         u16 t;
6286         u16 m;
6287         u16 c;
6288 } cparams[] = {
6289         { 1, 1333, 301, 28664 },
6290         { 1, 1066, 294, 24460 },
6291         { 1, 800, 294, 25192 },
6292         { 0, 1333, 276, 27605 },
6293         { 0, 1066, 276, 27605 },
6294         { 0, 800, 231, 23784 },
6295 };
6296
6297 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6298 {
6299         u64 total_count, diff, ret;
6300         u32 count1, count2, count3, m = 0, c = 0;
6301         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6302         int i;
6303
6304         assert_spin_locked(&mchdev_lock);
6305
6306         diff1 = now - dev_priv->ips.last_time1;
6307
6308         /* Prevent division-by-zero if we are asking too fast.
6309          * Also, we don't get interesting results if we are polling
6310          * faster than once in 10ms, so just return the saved value
6311          * in such cases.
6312          */
6313         if (diff1 <= 10)
6314                 return dev_priv->ips.chipset_power;
6315
6316         count1 = I915_READ(DMIEC);
6317         count2 = I915_READ(DDREC);
6318         count3 = I915_READ(CSIEC);
6319
6320         total_count = count1 + count2 + count3;
6321
6322         /* FIXME: handle per-counter overflow */
6323         if (total_count < dev_priv->ips.last_count1) {
6324                 diff = ~0UL - dev_priv->ips.last_count1;
6325                 diff += total_count;
6326         } else {
6327                 diff = total_count - dev_priv->ips.last_count1;
6328         }
6329
6330         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6331                 if (cparams[i].i == dev_priv->ips.c_m &&
6332                     cparams[i].t == dev_priv->ips.r_t) {
6333                         m = cparams[i].m;
6334                         c = cparams[i].c;
6335                         break;
6336                 }
6337         }
6338
6339         diff = div_u64(diff, diff1);
6340         ret = ((m * diff) + c);
6341         ret = div_u64(ret, 10);
6342
6343         dev_priv->ips.last_count1 = total_count;
6344         dev_priv->ips.last_time1 = now;
6345
6346         dev_priv->ips.chipset_power = ret;
6347
6348         return ret;
6349 }
6350
6351 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6352 {
6353         unsigned long val;
6354
6355         if (INTEL_INFO(dev_priv)->gen != 5)
6356                 return 0;
6357
6358         spin_lock_irq(&mchdev_lock);
6359
6360         val = __i915_chipset_val(dev_priv);
6361
6362         spin_unlock_irq(&mchdev_lock);
6363
6364         return val;
6365 }
6366
6367 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6368 {
6369         unsigned long m, x, b;
6370         u32 tsfs;
6371
6372         tsfs = I915_READ(TSFS);
6373
6374         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6375         x = I915_READ8(TR1);
6376
6377         b = tsfs & TSFS_INTR_MASK;
6378
6379         return ((m * x) / 127) - b;
6380 }
6381
6382 static int _pxvid_to_vd(u8 pxvid)
6383 {
6384         if (pxvid == 0)
6385                 return 0;
6386
6387         if (pxvid >= 8 && pxvid < 31)
6388                 pxvid = 31;
6389
6390         return (pxvid + 2) * 125;
6391 }
6392
6393 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6394 {
6395         const int vd = _pxvid_to_vd(pxvid);
6396         const int vm = vd - 1125;
6397
6398         if (INTEL_INFO(dev_priv)->is_mobile)
6399                 return vm > 0 ? vm : 0;
6400
6401         return vd;
6402 }
6403
6404 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6405 {
6406         u64 now, diff, diffms;
6407         u32 count;
6408
6409         assert_spin_locked(&mchdev_lock);
6410
6411         now = ktime_get_raw_ns();
6412         diffms = now - dev_priv->ips.last_time2;
6413         do_div(diffms, NSEC_PER_MSEC);
6414
6415         /* Don't divide by 0 */
6416         if (!diffms)
6417                 return;
6418
6419         count = I915_READ(GFXEC);
6420
6421         if (count < dev_priv->ips.last_count2) {
6422                 diff = ~0UL - dev_priv->ips.last_count2;
6423                 diff += count;
6424         } else {
6425                 diff = count - dev_priv->ips.last_count2;
6426         }
6427
6428         dev_priv->ips.last_count2 = count;
6429         dev_priv->ips.last_time2 = now;
6430
6431         /* More magic constants... */
6432         diff = diff * 1181;
6433         diff = div_u64(diff, diffms * 10);
6434         dev_priv->ips.gfx_power = diff;
6435 }
6436
6437 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6438 {
6439         if (INTEL_INFO(dev_priv)->gen != 5)
6440                 return;
6441
6442         spin_lock_irq(&mchdev_lock);
6443
6444         __i915_update_gfx_val(dev_priv);
6445
6446         spin_unlock_irq(&mchdev_lock);
6447 }
6448
6449 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6450 {
6451         unsigned long t, corr, state1, corr2, state2;
6452         u32 pxvid, ext_v;
6453
6454         assert_spin_locked(&mchdev_lock);
6455
6456         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6457         pxvid = (pxvid >> 24) & 0x7f;
6458         ext_v = pvid_to_extvid(dev_priv, pxvid);
6459
6460         state1 = ext_v;
6461
6462         t = i915_mch_val(dev_priv);
6463
6464         /* Revel in the empirically derived constants */
6465
6466         /* Correction factor in 1/100000 units */
6467         if (t > 80)
6468                 corr = ((t * 2349) + 135940);
6469         else if (t >= 50)
6470                 corr = ((t * 964) + 29317);
6471         else /* < 50 */
6472                 corr = ((t * 301) + 1004);
6473
6474         corr = corr * ((150142 * state1) / 10000 - 78642);
6475         corr /= 100000;
6476         corr2 = (corr * dev_priv->ips.corr);
6477
6478         state2 = (corr2 * state1) / 10000;
6479         state2 /= 100; /* convert to mW */
6480
6481         __i915_update_gfx_val(dev_priv);
6482
6483         return dev_priv->ips.gfx_power + state2;
6484 }
6485
6486 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6487 {
6488         unsigned long val;
6489
6490         if (INTEL_INFO(dev_priv)->gen != 5)
6491                 return 0;
6492
6493         spin_lock_irq(&mchdev_lock);
6494
6495         val = __i915_gfx_val(dev_priv);
6496
6497         spin_unlock_irq(&mchdev_lock);
6498
6499         return val;
6500 }
6501
6502 /**
6503  * i915_read_mch_val - return value for IPS use
6504  *
6505  * Calculate and return a value for the IPS driver to use when deciding whether
6506  * we have thermal and power headroom to increase CPU or GPU power budget.
6507  */
6508 unsigned long i915_read_mch_val(void)
6509 {
6510         struct drm_i915_private *dev_priv;
6511         unsigned long chipset_val, graphics_val, ret = 0;
6512
6513         spin_lock_irq(&mchdev_lock);
6514         if (!i915_mch_dev)
6515                 goto out_unlock;
6516         dev_priv = i915_mch_dev;
6517
6518         chipset_val = __i915_chipset_val(dev_priv);
6519         graphics_val = __i915_gfx_val(dev_priv);
6520
6521         ret = chipset_val + graphics_val;
6522
6523 out_unlock:
6524         spin_unlock_irq(&mchdev_lock);
6525
6526         return ret;
6527 }
6528 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6529
6530 /**
6531  * i915_gpu_raise - raise GPU frequency limit
6532  *
6533  * Raise the limit; IPS indicates we have thermal headroom.
6534  */
6535 bool i915_gpu_raise(void)
6536 {
6537         struct drm_i915_private *dev_priv;
6538         bool ret = true;
6539
6540         spin_lock_irq(&mchdev_lock);
6541         if (!i915_mch_dev) {
6542                 ret = false;
6543                 goto out_unlock;
6544         }
6545         dev_priv = i915_mch_dev;
6546
6547         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6548                 dev_priv->ips.max_delay--;
6549
6550 out_unlock:
6551         spin_unlock_irq(&mchdev_lock);
6552
6553         return ret;
6554 }
6555 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6556
6557 /**
6558  * i915_gpu_lower - lower GPU frequency limit
6559  *
6560  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6561  * frequency maximum.
6562  */
6563 bool i915_gpu_lower(void)
6564 {
6565         struct drm_i915_private *dev_priv;
6566         bool ret = true;
6567
6568         spin_lock_irq(&mchdev_lock);
6569         if (!i915_mch_dev) {
6570                 ret = false;
6571                 goto out_unlock;
6572         }
6573         dev_priv = i915_mch_dev;
6574
6575         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6576                 dev_priv->ips.max_delay++;
6577
6578 out_unlock:
6579         spin_unlock_irq(&mchdev_lock);
6580
6581         return ret;
6582 }
6583 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6584
6585 /**
6586  * i915_gpu_busy - indicate GPU business to IPS
6587  *
6588  * Tell the IPS driver whether or not the GPU is busy.
6589  */
6590 bool i915_gpu_busy(void)
6591 {
6592         struct drm_i915_private *dev_priv;
6593         struct intel_engine_cs *engine;
6594         bool ret = false;
6595
6596         spin_lock_irq(&mchdev_lock);
6597         if (!i915_mch_dev)
6598                 goto out_unlock;
6599         dev_priv = i915_mch_dev;
6600
6601         for_each_engine(engine, dev_priv)
6602                 ret |= !list_empty(&engine->request_list);
6603
6604 out_unlock:
6605         spin_unlock_irq(&mchdev_lock);
6606
6607         return ret;
6608 }
6609 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6610
6611 /**
6612  * i915_gpu_turbo_disable - disable graphics turbo
6613  *
6614  * Disable graphics turbo by resetting the max frequency and setting the
6615  * current frequency to the default.
6616  */
6617 bool i915_gpu_turbo_disable(void)
6618 {
6619         struct drm_i915_private *dev_priv;
6620         bool ret = true;
6621
6622         spin_lock_irq(&mchdev_lock);
6623         if (!i915_mch_dev) {
6624                 ret = false;
6625                 goto out_unlock;
6626         }
6627         dev_priv = i915_mch_dev;
6628
6629         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6630
6631         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6632                 ret = false;
6633
6634 out_unlock:
6635         spin_unlock_irq(&mchdev_lock);
6636
6637         return ret;
6638 }
6639 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6640
6641 /**
6642  * Tells the intel_ips driver that the i915 driver is now loaded, if
6643  * IPS got loaded first.
6644  *
6645  * This awkward dance is so that neither module has to depend on the
6646  * other in order for IPS to do the appropriate communication of
6647  * GPU turbo limits to i915.
6648  */
6649 static void
6650 ips_ping_for_i915_load(void)
6651 {
6652         void (*link)(void);
6653
6654         link = symbol_get(ips_link_to_i915_driver);
6655         if (link) {
6656                 link();
6657                 symbol_put(ips_link_to_i915_driver);
6658         }
6659 }
6660
6661 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6662 {
6663         /* We only register the i915 ips part with intel-ips once everything is
6664          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6665         spin_lock_irq(&mchdev_lock);
6666         i915_mch_dev = dev_priv;
6667         spin_unlock_irq(&mchdev_lock);
6668
6669         ips_ping_for_i915_load();
6670 }
6671
6672 void intel_gpu_ips_teardown(void)
6673 {
6674         spin_lock_irq(&mchdev_lock);
6675         i915_mch_dev = NULL;
6676         spin_unlock_irq(&mchdev_lock);
6677 }
6678
6679 static void intel_init_emon(struct drm_i915_private *dev_priv)
6680 {
6681         u32 lcfuse;
6682         u8 pxw[16];
6683         int i;
6684
6685         /* Disable to program */
6686         I915_WRITE(ECR, 0);
6687         POSTING_READ(ECR);
6688
6689         /* Program energy weights for various events */
6690         I915_WRITE(SDEW, 0x15040d00);
6691         I915_WRITE(CSIEW0, 0x007f0000);
6692         I915_WRITE(CSIEW1, 0x1e220004);
6693         I915_WRITE(CSIEW2, 0x04000004);
6694
6695         for (i = 0; i < 5; i++)
6696                 I915_WRITE(PEW(i), 0);
6697         for (i = 0; i < 3; i++)
6698                 I915_WRITE(DEW(i), 0);
6699
6700         /* Program P-state weights to account for frequency power adjustment */
6701         for (i = 0; i < 16; i++) {
6702                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6703                 unsigned long freq = intel_pxfreq(pxvidfreq);
6704                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6705                         PXVFREQ_PX_SHIFT;
6706                 unsigned long val;
6707
6708                 val = vid * vid;
6709                 val *= (freq / 1000);
6710                 val *= 255;
6711                 val /= (127*127*900);
6712                 if (val > 0xff)
6713                         DRM_ERROR("bad pxval: %ld\n", val);
6714                 pxw[i] = val;
6715         }
6716         /* Render standby states get 0 weight */
6717         pxw[14] = 0;
6718         pxw[15] = 0;
6719
6720         for (i = 0; i < 4; i++) {
6721                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6722                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6723                 I915_WRITE(PXW(i), val);
6724         }
6725
6726         /* Adjust magic regs to magic values (more experimental results) */
6727         I915_WRITE(OGW0, 0);
6728         I915_WRITE(OGW1, 0);
6729         I915_WRITE(EG0, 0x00007f00);
6730         I915_WRITE(EG1, 0x0000000e);
6731         I915_WRITE(EG2, 0x000e0000);
6732         I915_WRITE(EG3, 0x68000300);
6733         I915_WRITE(EG4, 0x42000000);
6734         I915_WRITE(EG5, 0x00140031);
6735         I915_WRITE(EG6, 0);
6736         I915_WRITE(EG7, 0);
6737
6738         for (i = 0; i < 8; i++)
6739                 I915_WRITE(PXWL(i), 0);
6740
6741         /* Enable PMON + select events */
6742         I915_WRITE(ECR, 0x80000019);
6743
6744         lcfuse = I915_READ(LCFUSE02);
6745
6746         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6747 }
6748
6749 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6750 {
6751         /*
6752          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6753          * requirement.
6754          */
6755         if (!i915.enable_rc6) {
6756                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6757                 intel_runtime_pm_get(dev_priv);
6758         }
6759
6760         if (IS_CHERRYVIEW(dev_priv))
6761                 cherryview_init_gt_powersave(dev_priv);
6762         else if (IS_VALLEYVIEW(dev_priv))
6763                 valleyview_init_gt_powersave(dev_priv);
6764 }
6765
6766 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6767 {
6768         if (IS_VALLEYVIEW(dev_priv))
6769                 valleyview_cleanup_gt_powersave(dev_priv);
6770
6771         if (!i915.enable_rc6)
6772                 intel_runtime_pm_put(dev_priv);
6773 }
6774
6775 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6776 {
6777         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6778
6779         gen6_disable_rps_interrupts(dev_priv);
6780 }
6781
6782 /**
6783  * intel_suspend_gt_powersave - suspend PM work and helper threads
6784  * @dev_priv: i915 device
6785  *
6786  * We don't want to disable RC6 or other features here, we just want
6787  * to make sure any work we've queued has finished and won't bother
6788  * us while we're suspended.
6789  */
6790 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6791 {
6792         if (INTEL_GEN(dev_priv) < 6)
6793                 return;
6794
6795         gen6_suspend_rps(dev_priv);
6796
6797         /* Force GPU to min freq during suspend */
6798         gen6_rps_idle(dev_priv);
6799 }
6800
6801 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6802 {
6803         if (IS_IRONLAKE_M(dev_priv)) {
6804                 ironlake_disable_drps(dev_priv);
6805         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6806                 intel_suspend_gt_powersave(dev_priv);
6807
6808                 mutex_lock(&dev_priv->rps.hw_lock);
6809                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6810                         gen9_disable_rc6(dev_priv);
6811                         gen9_disable_rps(dev_priv);
6812                 } else if (IS_CHERRYVIEW(dev_priv))
6813                         cherryview_disable_rps(dev_priv);
6814                 else if (IS_VALLEYVIEW(dev_priv))
6815                         valleyview_disable_rps(dev_priv);
6816                 else
6817                         gen6_disable_rps(dev_priv);
6818
6819                 dev_priv->rps.enabled = false;
6820                 mutex_unlock(&dev_priv->rps.hw_lock);
6821         }
6822 }
6823
6824 static void intel_gen6_powersave_work(struct work_struct *work)
6825 {
6826         struct drm_i915_private *dev_priv =
6827                 container_of(work, struct drm_i915_private,
6828                              rps.delayed_resume_work.work);
6829
6830         mutex_lock(&dev_priv->rps.hw_lock);
6831
6832         gen6_reset_rps_interrupts(dev_priv);
6833
6834         if (IS_CHERRYVIEW(dev_priv)) {
6835                 cherryview_enable_rps(dev_priv);
6836         } else if (IS_VALLEYVIEW(dev_priv)) {
6837                 valleyview_enable_rps(dev_priv);
6838         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6839                 gen9_enable_rc6(dev_priv);
6840                 gen9_enable_rps(dev_priv);
6841                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6842                         __gen6_update_ring_freq(dev_priv);
6843         } else if (IS_BROADWELL(dev_priv)) {
6844                 gen8_enable_rps(dev_priv);
6845                 __gen6_update_ring_freq(dev_priv);
6846         } else {
6847                 gen6_enable_rps(dev_priv);
6848                 __gen6_update_ring_freq(dev_priv);
6849         }
6850
6851         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6852         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6853
6854         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6855         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6856
6857         dev_priv->rps.enabled = true;
6858
6859         gen6_enable_rps_interrupts(dev_priv);
6860
6861         mutex_unlock(&dev_priv->rps.hw_lock);
6862
6863         intel_runtime_pm_put(dev_priv);
6864 }
6865
6866 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6867 {
6868         /* Powersaving is controlled by the host when inside a VM */
6869         if (intel_vgpu_active(dev_priv))
6870                 return;
6871
6872         if (IS_IRONLAKE_M(dev_priv)) {
6873                 ironlake_enable_drps(dev_priv);
6874                 mutex_lock(&dev_priv->drm.struct_mutex);
6875                 intel_init_emon(dev_priv);
6876                 mutex_unlock(&dev_priv->drm.struct_mutex);
6877         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6878                 /*
6879                  * PCU communication is slow and this doesn't need to be
6880                  * done at any specific time, so do this out of our fast path
6881                  * to make resume and init faster.
6882                  *
6883                  * We depend on the HW RC6 power context save/restore
6884                  * mechanism when entering D3 through runtime PM suspend. So
6885                  * disable RPM until RPS/RC6 is properly setup. We can only
6886                  * get here via the driver load/system resume/runtime resume
6887                  * paths, so the _noresume version is enough (and in case of
6888                  * runtime resume it's necessary).
6889                  */
6890                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6891                                            round_jiffies_up_relative(HZ)))
6892                         intel_runtime_pm_get_noresume(dev_priv);
6893         }
6894 }
6895
6896 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6897 {
6898         if (INTEL_INFO(dev_priv)->gen < 6)
6899                 return;
6900
6901         gen6_suspend_rps(dev_priv);
6902         dev_priv->rps.enabled = false;
6903 }
6904
6905 static void ibx_init_clock_gating(struct drm_device *dev)
6906 {
6907         struct drm_i915_private *dev_priv = to_i915(dev);
6908
6909         /*
6910          * On Ibex Peak and Cougar Point, we need to disable clock
6911          * gating for the panel power sequencer or it will fail to
6912          * start up when no ports are active.
6913          */
6914         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6915 }
6916
6917 static void g4x_disable_trickle_feed(struct drm_device *dev)
6918 {
6919         struct drm_i915_private *dev_priv = to_i915(dev);
6920         enum pipe pipe;
6921
6922         for_each_pipe(dev_priv, pipe) {
6923                 I915_WRITE(DSPCNTR(pipe),
6924                            I915_READ(DSPCNTR(pipe)) |
6925                            DISPPLANE_TRICKLE_FEED_DISABLE);
6926
6927                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6928                 POSTING_READ(DSPSURF(pipe));
6929         }
6930 }
6931
6932 static void ilk_init_lp_watermarks(struct drm_device *dev)
6933 {
6934         struct drm_i915_private *dev_priv = to_i915(dev);
6935
6936         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6937         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6938         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6939
6940         /*
6941          * Don't touch WM1S_LP_EN here.
6942          * Doing so could cause underruns.
6943          */
6944 }
6945
6946 static void ironlake_init_clock_gating(struct drm_device *dev)
6947 {
6948         struct drm_i915_private *dev_priv = to_i915(dev);
6949         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6950
6951         /*
6952          * Required for FBC
6953          * WaFbcDisableDpfcClockGating:ilk
6954          */
6955         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6956                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6957                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6958
6959         I915_WRITE(PCH_3DCGDIS0,
6960                    MARIUNIT_CLOCK_GATE_DISABLE |
6961                    SVSMUNIT_CLOCK_GATE_DISABLE);
6962         I915_WRITE(PCH_3DCGDIS1,
6963                    VFMUNIT_CLOCK_GATE_DISABLE);
6964
6965         /*
6966          * According to the spec the following bits should be set in
6967          * order to enable memory self-refresh
6968          * The bit 22/21 of 0x42004
6969          * The bit 5 of 0x42020
6970          * The bit 15 of 0x45000
6971          */
6972         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6973                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6974                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6975         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6976         I915_WRITE(DISP_ARB_CTL,
6977                    (I915_READ(DISP_ARB_CTL) |
6978                     DISP_FBC_WM_DIS));
6979
6980         ilk_init_lp_watermarks(dev);
6981
6982         /*
6983          * Based on the document from hardware guys the following bits
6984          * should be set unconditionally in order to enable FBC.
6985          * The bit 22 of 0x42000
6986          * The bit 22 of 0x42004
6987          * The bit 7,8,9 of 0x42020.
6988          */
6989         if (IS_IRONLAKE_M(dev)) {
6990                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6991                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6992                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6993                            ILK_FBCQ_DIS);
6994                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6995                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6996                            ILK_DPARB_GATE);
6997         }
6998
6999         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7000
7001         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7002                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7003                    ILK_ELPIN_409_SELECT);
7004         I915_WRITE(_3D_CHICKEN2,
7005                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7006                    _3D_CHICKEN2_WM_READ_PIPELINED);
7007
7008         /* WaDisableRenderCachePipelinedFlush:ilk */
7009         I915_WRITE(CACHE_MODE_0,
7010                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7011
7012         /* WaDisable_RenderCache_OperationalFlush:ilk */
7013         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7014
7015         g4x_disable_trickle_feed(dev);
7016
7017         ibx_init_clock_gating(dev);
7018 }
7019
7020 static void cpt_init_clock_gating(struct drm_device *dev)
7021 {
7022         struct drm_i915_private *dev_priv = to_i915(dev);
7023         int pipe;
7024         uint32_t val;
7025
7026         /*
7027          * On Ibex Peak and Cougar Point, we need to disable clock
7028          * gating for the panel power sequencer or it will fail to
7029          * start up when no ports are active.
7030          */
7031         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7032                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7033                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
7034         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7035                    DPLS_EDP_PPS_FIX_DIS);
7036         /* The below fixes the weird display corruption, a few pixels shifted
7037          * downward, on (only) LVDS of some HP laptops with IVY.
7038          */
7039         for_each_pipe(dev_priv, pipe) {
7040                 val = I915_READ(TRANS_CHICKEN2(pipe));
7041                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7042                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7043                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7044                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7045                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7046                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7047                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7048                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7049         }
7050         /* WADP0ClockGatingDisable */
7051         for_each_pipe(dev_priv, pipe) {
7052                 I915_WRITE(TRANS_CHICKEN1(pipe),
7053                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7054         }
7055 }
7056
7057 static void gen6_check_mch_setup(struct drm_device *dev)
7058 {
7059         struct drm_i915_private *dev_priv = to_i915(dev);
7060         uint32_t tmp;
7061
7062         tmp = I915_READ(MCH_SSKPD);
7063         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7064                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7065                               tmp);
7066 }
7067
7068 static void gen6_init_clock_gating(struct drm_device *dev)
7069 {
7070         struct drm_i915_private *dev_priv = to_i915(dev);
7071         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7072
7073         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7074
7075         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7076                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7077                    ILK_ELPIN_409_SELECT);
7078
7079         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7080         I915_WRITE(_3D_CHICKEN,
7081                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7082
7083         /* WaDisable_RenderCache_OperationalFlush:snb */
7084         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7085
7086         /*
7087          * BSpec recoomends 8x4 when MSAA is used,
7088          * however in practice 16x4 seems fastest.
7089          *
7090          * Note that PS/WM thread counts depend on the WIZ hashing
7091          * disable bit, which we don't touch here, but it's good
7092          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7093          */
7094         I915_WRITE(GEN6_GT_MODE,
7095                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7096
7097         ilk_init_lp_watermarks(dev);
7098
7099         I915_WRITE(CACHE_MODE_0,
7100                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7101
7102         I915_WRITE(GEN6_UCGCTL1,
7103                    I915_READ(GEN6_UCGCTL1) |
7104                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7105                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7106
7107         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7108          * gating disable must be set.  Failure to set it results in
7109          * flickering pixels due to Z write ordering failures after
7110          * some amount of runtime in the Mesa "fire" demo, and Unigine
7111          * Sanctuary and Tropics, and apparently anything else with
7112          * alpha test or pixel discard.
7113          *
7114          * According to the spec, bit 11 (RCCUNIT) must also be set,
7115          * but we didn't debug actual testcases to find it out.
7116          *
7117          * WaDisableRCCUnitClockGating:snb
7118          * WaDisableRCPBUnitClockGating:snb
7119          */
7120         I915_WRITE(GEN6_UCGCTL2,
7121                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7122                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7123
7124         /* WaStripsFansDisableFastClipPerformanceFix:snb */
7125         I915_WRITE(_3D_CHICKEN3,
7126                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7127
7128         /*
7129          * Bspec says:
7130          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7131          * 3DSTATE_SF number of SF output attributes is more than 16."
7132          */
7133         I915_WRITE(_3D_CHICKEN3,
7134                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7135
7136         /*
7137          * According to the spec the following bits should be
7138          * set in order to enable memory self-refresh and fbc:
7139          * The bit21 and bit22 of 0x42000
7140          * The bit21 and bit22 of 0x42004
7141          * The bit5 and bit7 of 0x42020
7142          * The bit14 of 0x70180
7143          * The bit14 of 0x71180
7144          *
7145          * WaFbcAsynchFlipDisableFbcQueue:snb
7146          */
7147         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7148                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7149                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7150         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7151                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7152                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7153         I915_WRITE(ILK_DSPCLK_GATE_D,
7154                    I915_READ(ILK_DSPCLK_GATE_D) |
7155                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7156                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7157
7158         g4x_disable_trickle_feed(dev);
7159
7160         cpt_init_clock_gating(dev);
7161
7162         gen6_check_mch_setup(dev);
7163 }
7164
7165 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7166 {
7167         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7168
7169         /*
7170          * WaVSThreadDispatchOverride:ivb,vlv
7171          *
7172          * This actually overrides the dispatch
7173          * mode for all thread types.
7174          */
7175         reg &= ~GEN7_FF_SCHED_MASK;
7176         reg |= GEN7_FF_TS_SCHED_HW;
7177         reg |= GEN7_FF_VS_SCHED_HW;
7178         reg |= GEN7_FF_DS_SCHED_HW;
7179
7180         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7181 }
7182
7183 static void lpt_init_clock_gating(struct drm_device *dev)
7184 {
7185         struct drm_i915_private *dev_priv = to_i915(dev);
7186
7187         /*
7188          * TODO: this bit should only be enabled when really needed, then
7189          * disabled when not needed anymore in order to save power.
7190          */
7191         if (HAS_PCH_LPT_LP(dev))
7192                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7193                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7194                            PCH_LP_PARTITION_LEVEL_DISABLE);
7195
7196         /* WADPOClockGatingDisable:hsw */
7197         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7198                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7199                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7200 }
7201
7202 static void lpt_suspend_hw(struct drm_device *dev)
7203 {
7204         struct drm_i915_private *dev_priv = to_i915(dev);
7205
7206         if (HAS_PCH_LPT_LP(dev)) {
7207                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7208
7209                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7210                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7211         }
7212 }
7213
7214 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7215                                    int general_prio_credits,
7216                                    int high_prio_credits)
7217 {
7218         u32 misccpctl;
7219
7220         /* WaTempDisableDOPClkGating:bdw */
7221         misccpctl = I915_READ(GEN7_MISCCPCTL);
7222         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7223
7224         I915_WRITE(GEN8_L3SQCREG1,
7225                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7226                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7227
7228         /*
7229          * Wait at least 100 clocks before re-enabling clock gating.
7230          * See the definition of L3SQCREG1 in BSpec.
7231          */
7232         POSTING_READ(GEN8_L3SQCREG1);
7233         udelay(1);
7234         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7235 }
7236
7237 static void kabylake_init_clock_gating(struct drm_device *dev)
7238 {
7239         struct drm_i915_private *dev_priv = dev->dev_private;
7240
7241         gen9_init_clock_gating(dev);
7242
7243         /* WaDisableSDEUnitClockGating:kbl */
7244         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7245                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7246                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7247
7248         /* WaDisableGamClockGating:kbl */
7249         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7250                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7251                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7252
7253         /* WaFbcNukeOnHostModify:kbl */
7254         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7255                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7256 }
7257
7258 static void skylake_init_clock_gating(struct drm_device *dev)
7259 {
7260         struct drm_i915_private *dev_priv = dev->dev_private;
7261
7262         gen9_init_clock_gating(dev);
7263
7264         /* WAC6entrylatency:skl */
7265         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7266                    FBC_LLC_FULLY_OPEN);
7267
7268         /* WaFbcNukeOnHostModify:skl */
7269         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7270                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7271 }
7272
7273 static void broadwell_init_clock_gating(struct drm_device *dev)
7274 {
7275         struct drm_i915_private *dev_priv = to_i915(dev);
7276         enum pipe pipe;
7277
7278         ilk_init_lp_watermarks(dev);
7279
7280         /* WaSwitchSolVfFArbitrationPriority:bdw */
7281         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7282
7283         /* WaPsrDPAMaskVBlankInSRD:bdw */
7284         I915_WRITE(CHICKEN_PAR1_1,
7285                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7286
7287         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7288         for_each_pipe(dev_priv, pipe) {
7289                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7290                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7291                            BDW_DPRS_MASK_VBLANK_SRD);
7292         }
7293
7294         /* WaVSRefCountFullforceMissDisable:bdw */
7295         /* WaDSRefCountFullforceMissDisable:bdw */
7296         I915_WRITE(GEN7_FF_THREAD_MODE,
7297                    I915_READ(GEN7_FF_THREAD_MODE) &
7298                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7299
7300         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7301                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7302
7303         /* WaDisableSDEUnitClockGating:bdw */
7304         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7305                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7306
7307         /* WaProgramL3SqcReg1Default:bdw */
7308         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7309
7310         /*
7311          * WaGttCachingOffByDefault:bdw
7312          * GTT cache may not work with big pages, so if those
7313          * are ever enabled GTT cache may need to be disabled.
7314          */
7315         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7316
7317         /* WaKVMNotificationOnConfigChange:bdw */
7318         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7319                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7320
7321         lpt_init_clock_gating(dev);
7322 }
7323
7324 static void haswell_init_clock_gating(struct drm_device *dev)
7325 {
7326         struct drm_i915_private *dev_priv = to_i915(dev);
7327
7328         ilk_init_lp_watermarks(dev);
7329
7330         /* L3 caching of data atomics doesn't work -- disable it. */
7331         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7332         I915_WRITE(HSW_ROW_CHICKEN3,
7333                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7334
7335         /* This is required by WaCatErrorRejectionIssue:hsw */
7336         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7337                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7338                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7339
7340         /* WaVSRefCountFullforceMissDisable:hsw */
7341         I915_WRITE(GEN7_FF_THREAD_MODE,
7342                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7343
7344         /* WaDisable_RenderCache_OperationalFlush:hsw */
7345         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7346
7347         /* enable HiZ Raw Stall Optimization */
7348         I915_WRITE(CACHE_MODE_0_GEN7,
7349                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7350
7351         /* WaDisable4x2SubspanOptimization:hsw */
7352         I915_WRITE(CACHE_MODE_1,
7353                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7354
7355         /*
7356          * BSpec recommends 8x4 when MSAA is used,
7357          * however in practice 16x4 seems fastest.
7358          *
7359          * Note that PS/WM thread counts depend on the WIZ hashing
7360          * disable bit, which we don't touch here, but it's good
7361          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7362          */
7363         I915_WRITE(GEN7_GT_MODE,
7364                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7365
7366         /* WaSampleCChickenBitEnable:hsw */
7367         I915_WRITE(HALF_SLICE_CHICKEN3,
7368                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7369
7370         /* WaSwitchSolVfFArbitrationPriority:hsw */
7371         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7372
7373         /* WaRsPkgCStateDisplayPMReq:hsw */
7374         I915_WRITE(CHICKEN_PAR1_1,
7375                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7376
7377         lpt_init_clock_gating(dev);
7378 }
7379
7380 static void ivybridge_init_clock_gating(struct drm_device *dev)
7381 {
7382         struct drm_i915_private *dev_priv = to_i915(dev);
7383         uint32_t snpcr;
7384
7385         ilk_init_lp_watermarks(dev);
7386
7387         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7388
7389         /* WaDisableEarlyCull:ivb */
7390         I915_WRITE(_3D_CHICKEN3,
7391                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7392
7393         /* WaDisableBackToBackFlipFix:ivb */
7394         I915_WRITE(IVB_CHICKEN3,
7395                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7396                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7397
7398         /* WaDisablePSDDualDispatchEnable:ivb */
7399         if (IS_IVB_GT1(dev))
7400                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7401                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7402
7403         /* WaDisable_RenderCache_OperationalFlush:ivb */
7404         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7405
7406         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7407         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7408                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7409
7410         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7411         I915_WRITE(GEN7_L3CNTLREG1,
7412                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7413         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7414                    GEN7_WA_L3_CHICKEN_MODE);
7415         if (IS_IVB_GT1(dev))
7416                 I915_WRITE(GEN7_ROW_CHICKEN2,
7417                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7418         else {
7419                 /* must write both registers */
7420                 I915_WRITE(GEN7_ROW_CHICKEN2,
7421                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7422                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7423                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7424         }
7425
7426         /* WaForceL3Serialization:ivb */
7427         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7428                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7429
7430         /*
7431          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7432          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7433          */
7434         I915_WRITE(GEN6_UCGCTL2,
7435                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7436
7437         /* This is required by WaCatErrorRejectionIssue:ivb */
7438         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7439                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7440                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7441
7442         g4x_disable_trickle_feed(dev);
7443
7444         gen7_setup_fixed_func_scheduler(dev_priv);
7445
7446         if (0) { /* causes HiZ corruption on ivb:gt1 */
7447                 /* enable HiZ Raw Stall Optimization */
7448                 I915_WRITE(CACHE_MODE_0_GEN7,
7449                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7450         }
7451
7452         /* WaDisable4x2SubspanOptimization:ivb */
7453         I915_WRITE(CACHE_MODE_1,
7454                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7455
7456         /*
7457          * BSpec recommends 8x4 when MSAA is used,
7458          * however in practice 16x4 seems fastest.
7459          *
7460          * Note that PS/WM thread counts depend on the WIZ hashing
7461          * disable bit, which we don't touch here, but it's good
7462          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7463          */
7464         I915_WRITE(GEN7_GT_MODE,
7465                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7466
7467         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7468         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7469         snpcr |= GEN6_MBC_SNPCR_MED;
7470         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7471
7472         if (!HAS_PCH_NOP(dev))
7473                 cpt_init_clock_gating(dev);
7474
7475         gen6_check_mch_setup(dev);
7476 }
7477
7478 static void valleyview_init_clock_gating(struct drm_device *dev)
7479 {
7480         struct drm_i915_private *dev_priv = to_i915(dev);
7481
7482         /* WaDisableEarlyCull:vlv */
7483         I915_WRITE(_3D_CHICKEN3,
7484                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7485
7486         /* WaDisableBackToBackFlipFix:vlv */
7487         I915_WRITE(IVB_CHICKEN3,
7488                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7489                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7490
7491         /* WaPsdDispatchEnable:vlv */
7492         /* WaDisablePSDDualDispatchEnable:vlv */
7493         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7494                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7495                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7496
7497         /* WaDisable_RenderCache_OperationalFlush:vlv */
7498         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7499
7500         /* WaForceL3Serialization:vlv */
7501         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7502                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7503
7504         /* WaDisableDopClockGating:vlv */
7505         I915_WRITE(GEN7_ROW_CHICKEN2,
7506                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7507
7508         /* This is required by WaCatErrorRejectionIssue:vlv */
7509         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7510                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7511                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7512
7513         gen7_setup_fixed_func_scheduler(dev_priv);
7514
7515         /*
7516          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7517          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7518          */
7519         I915_WRITE(GEN6_UCGCTL2,
7520                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7521
7522         /* WaDisableL3Bank2xClockGate:vlv
7523          * Disabling L3 clock gating- MMIO 940c[25] = 1
7524          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7525         I915_WRITE(GEN7_UCGCTL4,
7526                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7527
7528         /*
7529          * BSpec says this must be set, even though
7530          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7531          */
7532         I915_WRITE(CACHE_MODE_1,
7533                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7534
7535         /*
7536          * BSpec recommends 8x4 when MSAA is used,
7537          * however in practice 16x4 seems fastest.
7538          *
7539          * Note that PS/WM thread counts depend on the WIZ hashing
7540          * disable bit, which we don't touch here, but it's good
7541          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7542          */
7543         I915_WRITE(GEN7_GT_MODE,
7544                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7545
7546         /*
7547          * WaIncreaseL3CreditsForVLVB0:vlv
7548          * This is the hardware default actually.
7549          */
7550         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7551
7552         /*
7553          * WaDisableVLVClockGating_VBIIssue:vlv
7554          * Disable clock gating on th GCFG unit to prevent a delay
7555          * in the reporting of vblank events.
7556          */
7557         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7558 }
7559
7560 static void cherryview_init_clock_gating(struct drm_device *dev)
7561 {
7562         struct drm_i915_private *dev_priv = to_i915(dev);
7563
7564         /* WaVSRefCountFullforceMissDisable:chv */
7565         /* WaDSRefCountFullforceMissDisable:chv */
7566         I915_WRITE(GEN7_FF_THREAD_MODE,
7567                    I915_READ(GEN7_FF_THREAD_MODE) &
7568                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7569
7570         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7571         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7572                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7573
7574         /* WaDisableCSUnitClockGating:chv */
7575         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7576                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7577
7578         /* WaDisableSDEUnitClockGating:chv */
7579         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7580                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7581
7582         /*
7583          * WaProgramL3SqcReg1Default:chv
7584          * See gfxspecs/Related Documents/Performance Guide/
7585          * LSQC Setting Recommendations.
7586          */
7587         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7588
7589         /*
7590          * GTT cache may not work with big pages, so if those
7591          * are ever enabled GTT cache may need to be disabled.
7592          */
7593         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7594 }
7595
7596 static void g4x_init_clock_gating(struct drm_device *dev)
7597 {
7598         struct drm_i915_private *dev_priv = to_i915(dev);
7599         uint32_t dspclk_gate;
7600
7601         I915_WRITE(RENCLK_GATE_D1, 0);
7602         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7603                    GS_UNIT_CLOCK_GATE_DISABLE |
7604                    CL_UNIT_CLOCK_GATE_DISABLE);
7605         I915_WRITE(RAMCLK_GATE_D, 0);
7606         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7607                 OVRUNIT_CLOCK_GATE_DISABLE |
7608                 OVCUNIT_CLOCK_GATE_DISABLE;
7609         if (IS_GM45(dev))
7610                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7611         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7612
7613         /* WaDisableRenderCachePipelinedFlush */
7614         I915_WRITE(CACHE_MODE_0,
7615                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7616
7617         /* WaDisable_RenderCache_OperationalFlush:g4x */
7618         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7619
7620         g4x_disable_trickle_feed(dev);
7621 }
7622
7623 static void crestline_init_clock_gating(struct drm_device *dev)
7624 {
7625         struct drm_i915_private *dev_priv = to_i915(dev);
7626
7627         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7628         I915_WRITE(RENCLK_GATE_D2, 0);
7629         I915_WRITE(DSPCLK_GATE_D, 0);
7630         I915_WRITE(RAMCLK_GATE_D, 0);
7631         I915_WRITE16(DEUC, 0);
7632         I915_WRITE(MI_ARB_STATE,
7633                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7634
7635         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7636         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7637 }
7638
7639 static void broadwater_init_clock_gating(struct drm_device *dev)
7640 {
7641         struct drm_i915_private *dev_priv = to_i915(dev);
7642
7643         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7644                    I965_RCC_CLOCK_GATE_DISABLE |
7645                    I965_RCPB_CLOCK_GATE_DISABLE |
7646                    I965_ISC_CLOCK_GATE_DISABLE |
7647                    I965_FBC_CLOCK_GATE_DISABLE);
7648         I915_WRITE(RENCLK_GATE_D2, 0);
7649         I915_WRITE(MI_ARB_STATE,
7650                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7651
7652         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7653         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7654 }
7655
7656 static void gen3_init_clock_gating(struct drm_device *dev)
7657 {
7658         struct drm_i915_private *dev_priv = to_i915(dev);
7659         u32 dstate = I915_READ(D_STATE);
7660
7661         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7662                 DSTATE_DOT_CLOCK_GATING;
7663         I915_WRITE(D_STATE, dstate);
7664
7665         if (IS_PINEVIEW(dev))
7666                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7667
7668         /* IIR "flip pending" means done if this bit is set */
7669         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7670
7671         /* interrupts should cause a wake up from C3 */
7672         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7673
7674         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7675         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7676
7677         I915_WRITE(MI_ARB_STATE,
7678                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7679 }
7680
7681 static void i85x_init_clock_gating(struct drm_device *dev)
7682 {
7683         struct drm_i915_private *dev_priv = to_i915(dev);
7684
7685         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7686
7687         /* interrupts should cause a wake up from C3 */
7688         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7689                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7690
7691         I915_WRITE(MEM_MODE,
7692                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7693 }
7694
7695 static void i830_init_clock_gating(struct drm_device *dev)
7696 {
7697         struct drm_i915_private *dev_priv = to_i915(dev);
7698
7699         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7700
7701         I915_WRITE(MEM_MODE,
7702                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7703                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7704 }
7705
7706 void intel_init_clock_gating(struct drm_device *dev)
7707 {
7708         struct drm_i915_private *dev_priv = to_i915(dev);
7709
7710         dev_priv->display.init_clock_gating(dev);
7711 }
7712
7713 void intel_suspend_hw(struct drm_device *dev)
7714 {
7715         if (HAS_PCH_LPT(dev))
7716                 lpt_suspend_hw(dev);
7717 }
7718
7719 static void nop_init_clock_gating(struct drm_device *dev)
7720 {
7721         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7722 }
7723
7724 /**
7725  * intel_init_clock_gating_hooks - setup the clock gating hooks
7726  * @dev_priv: device private
7727  *
7728  * Setup the hooks that configure which clocks of a given platform can be
7729  * gated and also apply various GT and display specific workarounds for these
7730  * platforms. Note that some GT specific workarounds are applied separately
7731  * when GPU contexts or batchbuffers start their execution.
7732  */
7733 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7734 {
7735         if (IS_SKYLAKE(dev_priv))
7736                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7737         else if (IS_KABYLAKE(dev_priv))
7738                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7739         else if (IS_BROXTON(dev_priv))
7740                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7741         else if (IS_BROADWELL(dev_priv))
7742                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7743         else if (IS_CHERRYVIEW(dev_priv))
7744                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7745         else if (IS_HASWELL(dev_priv))
7746                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7747         else if (IS_IVYBRIDGE(dev_priv))
7748                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7749         else if (IS_VALLEYVIEW(dev_priv))
7750                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7751         else if (IS_GEN6(dev_priv))
7752                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7753         else if (IS_GEN5(dev_priv))
7754                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7755         else if (IS_G4X(dev_priv))
7756                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7757         else if (IS_CRESTLINE(dev_priv))
7758                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7759         else if (IS_BROADWATER(dev_priv))
7760                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7761         else if (IS_GEN3(dev_priv))
7762                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7763         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7764                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7765         else if (IS_GEN2(dev_priv))
7766                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7767         else {
7768                 MISSING_CASE(INTEL_DEVID(dev_priv));
7769                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7770         }
7771 }
7772
7773 /* Set up chip specific power management-related functions */
7774 void intel_init_pm(struct drm_device *dev)
7775 {
7776         struct drm_i915_private *dev_priv = to_i915(dev);
7777
7778         intel_fbc_init(dev_priv);
7779
7780         /* For cxsr */
7781         if (IS_PINEVIEW(dev))
7782                 i915_pineview_get_mem_freq(dev);
7783         else if (IS_GEN5(dev))
7784                 i915_ironlake_get_mem_freq(dev);
7785
7786         /* For FIFO watermark updates */
7787         if (INTEL_INFO(dev)->gen >= 9) {
7788                 skl_setup_wm_latency(dev);
7789                 dev_priv->display.update_wm = skl_update_wm;
7790                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7791         } else if (HAS_PCH_SPLIT(dev)) {
7792                 ilk_setup_wm_latency(dev);
7793
7794                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7795                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7796                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7797                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7798                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7799                         dev_priv->display.compute_intermediate_wm =
7800                                 ilk_compute_intermediate_wm;
7801                         dev_priv->display.initial_watermarks =
7802                                 ilk_initial_watermarks;
7803                         dev_priv->display.optimize_watermarks =
7804                                 ilk_optimize_watermarks;
7805                 } else {
7806                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7807                                       "Disable CxSR\n");
7808                 }
7809         } else if (IS_CHERRYVIEW(dev)) {
7810                 vlv_setup_wm_latency(dev);
7811                 dev_priv->display.update_wm = vlv_update_wm;
7812         } else if (IS_VALLEYVIEW(dev)) {
7813                 vlv_setup_wm_latency(dev);
7814                 dev_priv->display.update_wm = vlv_update_wm;
7815         } else if (IS_PINEVIEW(dev)) {
7816                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7817                                             dev_priv->is_ddr3,
7818                                             dev_priv->fsb_freq,
7819                                             dev_priv->mem_freq)) {
7820                         DRM_INFO("failed to find known CxSR latency "
7821                                  "(found ddr%s fsb freq %d, mem freq %d), "
7822                                  "disabling CxSR\n",
7823                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7824                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7825                         /* Disable CxSR and never update its watermark again */
7826                         intel_set_memory_cxsr(dev_priv, false);
7827                         dev_priv->display.update_wm = NULL;
7828                 } else
7829                         dev_priv->display.update_wm = pineview_update_wm;
7830         } else if (IS_G4X(dev)) {
7831                 dev_priv->display.update_wm = g4x_update_wm;
7832         } else if (IS_GEN4(dev)) {
7833                 dev_priv->display.update_wm = i965_update_wm;
7834         } else if (IS_GEN3(dev)) {
7835                 dev_priv->display.update_wm = i9xx_update_wm;
7836                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7837         } else if (IS_GEN2(dev)) {
7838                 if (INTEL_INFO(dev)->num_pipes == 1) {
7839                         dev_priv->display.update_wm = i845_update_wm;
7840                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7841                 } else {
7842                         dev_priv->display.update_wm = i9xx_update_wm;
7843                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7844                 }
7845         } else {
7846                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7847         }
7848 }
7849
7850 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7851 {
7852         uint32_t flags =
7853                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7854
7855         switch (flags) {
7856         case GEN6_PCODE_SUCCESS:
7857                 return 0;
7858         case GEN6_PCODE_UNIMPLEMENTED_CMD:
7859         case GEN6_PCODE_ILLEGAL_CMD:
7860                 return -ENXIO;
7861         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7862         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7863                 return -EOVERFLOW;
7864         case GEN6_PCODE_TIMEOUT:
7865                 return -ETIMEDOUT;
7866         default:
7867                 MISSING_CASE(flags)
7868                 return 0;
7869         }
7870 }
7871
7872 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7873 {
7874         uint32_t flags =
7875                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7876
7877         switch (flags) {
7878         case GEN6_PCODE_SUCCESS:
7879                 return 0;
7880         case GEN6_PCODE_ILLEGAL_CMD:
7881                 return -ENXIO;
7882         case GEN7_PCODE_TIMEOUT:
7883                 return -ETIMEDOUT;
7884         case GEN7_PCODE_ILLEGAL_DATA:
7885                 return -EINVAL;
7886         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7887                 return -EOVERFLOW;
7888         default:
7889                 MISSING_CASE(flags);
7890                 return 0;
7891         }
7892 }
7893
7894 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7895 {
7896         int status;
7897
7898         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7899
7900         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7901          * use te fw I915_READ variants to reduce the amount of work
7902          * required when reading/writing.
7903          */
7904
7905         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7906                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7907                 return -EAGAIN;
7908         }
7909
7910         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7911         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7912         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7913
7914         if (intel_wait_for_register_fw(dev_priv,
7915                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7916                                        500)) {
7917                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7918                 return -ETIMEDOUT;
7919         }
7920
7921         *val = I915_READ_FW(GEN6_PCODE_DATA);
7922         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7923
7924         if (INTEL_GEN(dev_priv) > 6)
7925                 status = gen7_check_mailbox_status(dev_priv);
7926         else
7927                 status = gen6_check_mailbox_status(dev_priv);
7928
7929         if (status) {
7930                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7931                                  status);
7932                 return status;
7933         }
7934
7935         return 0;
7936 }
7937
7938 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7939                             u32 mbox, u32 val)
7940 {
7941         int status;
7942
7943         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7944
7945         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7946          * use te fw I915_READ variants to reduce the amount of work
7947          * required when reading/writing.
7948          */
7949
7950         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7951                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7952                 return -EAGAIN;
7953         }
7954
7955         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7956         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7957
7958         if (intel_wait_for_register_fw(dev_priv,
7959                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7960                                        500)) {
7961                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7962                 return -ETIMEDOUT;
7963         }
7964
7965         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7966
7967         if (INTEL_GEN(dev_priv) > 6)
7968                 status = gen7_check_mailbox_status(dev_priv);
7969         else
7970                 status = gen6_check_mailbox_status(dev_priv);
7971
7972         if (status) {
7973                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7974                                  status);
7975                 return status;
7976         }
7977
7978         return 0;
7979 }
7980
7981 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7982 {
7983         /*
7984          * N = val - 0xb7
7985          * Slow = Fast = GPLL ref * N
7986          */
7987         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7988 }
7989
7990 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7991 {
7992         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7993 }
7994
7995 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7996 {
7997         /*
7998          * N = val / 2
7999          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8000          */
8001         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8002 }
8003
8004 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8005 {
8006         /* CHV needs even values */
8007         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8008 }
8009
8010 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8011 {
8012         if (IS_GEN9(dev_priv))
8013                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8014                                          GEN9_FREQ_SCALER);
8015         else if (IS_CHERRYVIEW(dev_priv))
8016                 return chv_gpu_freq(dev_priv, val);
8017         else if (IS_VALLEYVIEW(dev_priv))
8018                 return byt_gpu_freq(dev_priv, val);
8019         else
8020                 return val * GT_FREQUENCY_MULTIPLIER;
8021 }
8022
8023 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8024 {
8025         if (IS_GEN9(dev_priv))
8026                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8027                                          GT_FREQUENCY_MULTIPLIER);
8028         else if (IS_CHERRYVIEW(dev_priv))
8029                 return chv_freq_opcode(dev_priv, val);
8030         else if (IS_VALLEYVIEW(dev_priv))
8031                 return byt_freq_opcode(dev_priv, val);
8032         else
8033                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8034 }
8035
8036 struct request_boost {
8037         struct work_struct work;
8038         struct drm_i915_gem_request *req;
8039 };
8040
8041 static void __intel_rps_boost_work(struct work_struct *work)
8042 {
8043         struct request_boost *boost = container_of(work, struct request_boost, work);
8044         struct drm_i915_gem_request *req = boost->req;
8045
8046         if (!i915_gem_request_completed(req))
8047                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8048
8049         i915_gem_request_unreference(req);
8050         kfree(boost);
8051 }
8052
8053 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8054 {
8055         struct request_boost *boost;
8056
8057         if (req == NULL || INTEL_GEN(req->i915) < 6)
8058                 return;
8059
8060         if (i915_gem_request_completed(req))
8061                 return;
8062
8063         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8064         if (boost == NULL)
8065                 return;
8066
8067         i915_gem_request_reference(req);
8068         boost->req = req;
8069
8070         INIT_WORK(&boost->work, __intel_rps_boost_work);
8071         queue_work(req->i915->wq, &boost->work);
8072 }
8073
8074 void intel_pm_setup(struct drm_device *dev)
8075 {
8076         struct drm_i915_private *dev_priv = to_i915(dev);
8077
8078         mutex_init(&dev_priv->rps.hw_lock);
8079         spin_lock_init(&dev_priv->rps.client_lock);
8080
8081         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
8082                           intel_gen6_powersave_work);
8083         INIT_LIST_HEAD(&dev_priv->rps.clients);
8084         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
8085         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
8086
8087         dev_priv->pm.suspended = false;
8088         atomic_set(&dev_priv->pm.wakeref_count, 0);
8089         atomic_set(&dev_priv->pm.atomic_seq, 0);
8090 }