Merge tag 'drm-intel-next-2015-02-27' of git://anongit.freedesktop.org/drm-intel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66         struct drm_i915_private *dev_priv = dev->dev_private;
67
68         gen9_init_clock_gating(dev);
69
70         if (INTEL_REVID(dev) == SKL_REVID_A0) {
71                 /*
72                  * WaDisableSDEUnitClockGating:skl
73                  * WaSetGAPSunitClckGateDisable:skl
74                  */
75                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76                            GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78         }
79
80         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81                 /* WaDisableHDCInvalidation:skl */
82                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83                            BDW_DISABLE_HDC_INVALIDATION);
84
85                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
87                            I915_READ(FF_SLICE_CS_CHICKEN2) |
88                            GEN9_TSG_BARRIER_ACK_DISABLE);
89         }
90
91         if (INTEL_REVID(dev) <= SKL_REVID_E0)
92                 /* WaDisableLSQCROPERFforOCL:skl */
93                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94                            GEN8_LQSC_RO_PERF_DIS);
95 }
96
97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99         struct drm_i915_private *dev_priv = dev->dev_private;
100         u32 tmp;
101
102         tmp = I915_READ(CLKCFG);
103
104         switch (tmp & CLKCFG_FSB_MASK) {
105         case CLKCFG_FSB_533:
106                 dev_priv->fsb_freq = 533; /* 133*4 */
107                 break;
108         case CLKCFG_FSB_800:
109                 dev_priv->fsb_freq = 800; /* 200*4 */
110                 break;
111         case CLKCFG_FSB_667:
112                 dev_priv->fsb_freq =  667; /* 167*4 */
113                 break;
114         case CLKCFG_FSB_400:
115                 dev_priv->fsb_freq = 400; /* 100*4 */
116                 break;
117         }
118
119         switch (tmp & CLKCFG_MEM_MASK) {
120         case CLKCFG_MEM_533:
121                 dev_priv->mem_freq = 533;
122                 break;
123         case CLKCFG_MEM_667:
124                 dev_priv->mem_freq = 667;
125                 break;
126         case CLKCFG_MEM_800:
127                 dev_priv->mem_freq = 800;
128                 break;
129         }
130
131         /* detect pineview DDR3 setting */
132         tmp = I915_READ(CSHRDDR3CTL);
133         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135
136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139         u16 ddrpll, csipll;
140
141         ddrpll = I915_READ16(DDRMPLL1);
142         csipll = I915_READ16(CSIPLL0);
143
144         switch (ddrpll & 0xff) {
145         case 0xc:
146                 dev_priv->mem_freq = 800;
147                 break;
148         case 0x10:
149                 dev_priv->mem_freq = 1066;
150                 break;
151         case 0x14:
152                 dev_priv->mem_freq = 1333;
153                 break;
154         case 0x18:
155                 dev_priv->mem_freq = 1600;
156                 break;
157         default:
158                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159                                  ddrpll & 0xff);
160                 dev_priv->mem_freq = 0;
161                 break;
162         }
163
164         dev_priv->ips.r_t = dev_priv->mem_freq;
165
166         switch (csipll & 0x3ff) {
167         case 0x00c:
168                 dev_priv->fsb_freq = 3200;
169                 break;
170         case 0x00e:
171                 dev_priv->fsb_freq = 3733;
172                 break;
173         case 0x010:
174                 dev_priv->fsb_freq = 4266;
175                 break;
176         case 0x012:
177                 dev_priv->fsb_freq = 4800;
178                 break;
179         case 0x014:
180                 dev_priv->fsb_freq = 5333;
181                 break;
182         case 0x016:
183                 dev_priv->fsb_freq = 5866;
184                 break;
185         case 0x018:
186                 dev_priv->fsb_freq = 6400;
187                 break;
188         default:
189                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190                                  csipll & 0x3ff);
191                 dev_priv->fsb_freq = 0;
192                 break;
193         }
194
195         if (dev_priv->fsb_freq == 3200) {
196                 dev_priv->ips.c_m = 0;
197         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198                 dev_priv->ips.c_m = 1;
199         } else {
200                 dev_priv->ips.c_m = 2;
201         }
202 }
203
204 static const struct cxsr_latency cxsr_latency_table[] = {
205         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
206         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
207         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
208         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
209         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
210
211         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
212         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
213         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
214         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
215         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
216
217         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
218         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
219         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
220         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
221         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
222
223         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
224         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
225         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
226         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
227         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
228
229         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
230         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
231         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
232         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
233         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
234
235         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
236         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
237         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
238         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
239         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
240 };
241
242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243                                                          int is_ddr3,
244                                                          int fsb,
245                                                          int mem)
246 {
247         const struct cxsr_latency *latency;
248         int i;
249
250         if (fsb == 0 || mem == 0)
251                 return NULL;
252
253         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254                 latency = &cxsr_latency_table[i];
255                 if (is_desktop == latency->is_desktop &&
256                     is_ddr3 == latency->is_ddr3 &&
257                     fsb == latency->fsb_freq && mem == latency->mem_freq)
258                         return latency;
259         }
260
261         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263         return NULL;
264 }
265
266 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
267 {
268         struct drm_device *dev = dev_priv->dev;
269         u32 val;
270
271         if (IS_VALLEYVIEW(dev)) {
272                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
273         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
274                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
275         } else if (IS_PINEVIEW(dev)) {
276                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
277                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
278                 I915_WRITE(DSPFW3, val);
279         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
280                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
281                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
282                 I915_WRITE(FW_BLC_SELF, val);
283         } else if (IS_I915GM(dev)) {
284                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
285                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
286                 I915_WRITE(INSTPM, val);
287         } else {
288                 return;
289         }
290
291         DRM_DEBUG_KMS("memory self-refresh is %s\n",
292                       enable ? "enabled" : "disabled");
293 }
294
295 /*
296  * Latency for FIFO fetches is dependent on several factors:
297  *   - memory configuration (speed, channels)
298  *   - chipset
299  *   - current MCH state
300  * It can be fairly high in some situations, so here we assume a fairly
301  * pessimal value.  It's a tradeoff between extra memory fetches (if we
302  * set this value too high, the FIFO will fetch frequently to stay full)
303  * and power consumption (set it too low to save power and we might see
304  * FIFO underruns and display "flicker").
305  *
306  * A value of 5us seems to be a good balance; safe for very low end
307  * platforms but not overly aggressive on lower latency configs.
308  */
309 static const int pessimal_latency_ns = 5000;
310
311 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
312 {
313         struct drm_i915_private *dev_priv = dev->dev_private;
314         uint32_t dsparb = I915_READ(DSPARB);
315         int size;
316
317         size = dsparb & 0x7f;
318         if (plane)
319                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
320
321         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
322                       plane ? "B" : "A", size);
323
324         return size;
325 }
326
327 static int i830_get_fifo_size(struct drm_device *dev, int plane)
328 {
329         struct drm_i915_private *dev_priv = dev->dev_private;
330         uint32_t dsparb = I915_READ(DSPARB);
331         int size;
332
333         size = dsparb & 0x1ff;
334         if (plane)
335                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
336         size >>= 1; /* Convert to cachelines */
337
338         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
339                       plane ? "B" : "A", size);
340
341         return size;
342 }
343
344 static int i845_get_fifo_size(struct drm_device *dev, int plane)
345 {
346         struct drm_i915_private *dev_priv = dev->dev_private;
347         uint32_t dsparb = I915_READ(DSPARB);
348         int size;
349
350         size = dsparb & 0x7f;
351         size >>= 2; /* Convert to cachelines */
352
353         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
354                       plane ? "B" : "A",
355                       size);
356
357         return size;
358 }
359
360 /* Pineview has different values for various configs */
361 static const struct intel_watermark_params pineview_display_wm = {
362         .fifo_size = PINEVIEW_DISPLAY_FIFO,
363         .max_wm = PINEVIEW_MAX_WM,
364         .default_wm = PINEVIEW_DFT_WM,
365         .guard_size = PINEVIEW_GUARD_WM,
366         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
367 };
368 static const struct intel_watermark_params pineview_display_hplloff_wm = {
369         .fifo_size = PINEVIEW_DISPLAY_FIFO,
370         .max_wm = PINEVIEW_MAX_WM,
371         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
372         .guard_size = PINEVIEW_GUARD_WM,
373         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
374 };
375 static const struct intel_watermark_params pineview_cursor_wm = {
376         .fifo_size = PINEVIEW_CURSOR_FIFO,
377         .max_wm = PINEVIEW_CURSOR_MAX_WM,
378         .default_wm = PINEVIEW_CURSOR_DFT_WM,
379         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
380         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
381 };
382 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
383         .fifo_size = PINEVIEW_CURSOR_FIFO,
384         .max_wm = PINEVIEW_CURSOR_MAX_WM,
385         .default_wm = PINEVIEW_CURSOR_DFT_WM,
386         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
387         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
388 };
389 static const struct intel_watermark_params g4x_wm_info = {
390         .fifo_size = G4X_FIFO_SIZE,
391         .max_wm = G4X_MAX_WM,
392         .default_wm = G4X_MAX_WM,
393         .guard_size = 2,
394         .cacheline_size = G4X_FIFO_LINE_SIZE,
395 };
396 static const struct intel_watermark_params g4x_cursor_wm_info = {
397         .fifo_size = I965_CURSOR_FIFO,
398         .max_wm = I965_CURSOR_MAX_WM,
399         .default_wm = I965_CURSOR_DFT_WM,
400         .guard_size = 2,
401         .cacheline_size = G4X_FIFO_LINE_SIZE,
402 };
403 static const struct intel_watermark_params valleyview_wm_info = {
404         .fifo_size = VALLEYVIEW_FIFO_SIZE,
405         .max_wm = VALLEYVIEW_MAX_WM,
406         .default_wm = VALLEYVIEW_MAX_WM,
407         .guard_size = 2,
408         .cacheline_size = G4X_FIFO_LINE_SIZE,
409 };
410 static const struct intel_watermark_params valleyview_cursor_wm_info = {
411         .fifo_size = I965_CURSOR_FIFO,
412         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
413         .default_wm = I965_CURSOR_DFT_WM,
414         .guard_size = 2,
415         .cacheline_size = G4X_FIFO_LINE_SIZE,
416 };
417 static const struct intel_watermark_params i965_cursor_wm_info = {
418         .fifo_size = I965_CURSOR_FIFO,
419         .max_wm = I965_CURSOR_MAX_WM,
420         .default_wm = I965_CURSOR_DFT_WM,
421         .guard_size = 2,
422         .cacheline_size = I915_FIFO_LINE_SIZE,
423 };
424 static const struct intel_watermark_params i945_wm_info = {
425         .fifo_size = I945_FIFO_SIZE,
426         .max_wm = I915_MAX_WM,
427         .default_wm = 1,
428         .guard_size = 2,
429         .cacheline_size = I915_FIFO_LINE_SIZE,
430 };
431 static const struct intel_watermark_params i915_wm_info = {
432         .fifo_size = I915_FIFO_SIZE,
433         .max_wm = I915_MAX_WM,
434         .default_wm = 1,
435         .guard_size = 2,
436         .cacheline_size = I915_FIFO_LINE_SIZE,
437 };
438 static const struct intel_watermark_params i830_a_wm_info = {
439         .fifo_size = I855GM_FIFO_SIZE,
440         .max_wm = I915_MAX_WM,
441         .default_wm = 1,
442         .guard_size = 2,
443         .cacheline_size = I830_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params i830_bc_wm_info = {
446         .fifo_size = I855GM_FIFO_SIZE,
447         .max_wm = I915_MAX_WM/2,
448         .default_wm = 1,
449         .guard_size = 2,
450         .cacheline_size = I830_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params i845_wm_info = {
453         .fifo_size = I830_FIFO_SIZE,
454         .max_wm = I915_MAX_WM,
455         .default_wm = 1,
456         .guard_size = 2,
457         .cacheline_size = I830_FIFO_LINE_SIZE,
458 };
459
460 /**
461  * intel_calculate_wm - calculate watermark level
462  * @clock_in_khz: pixel clock
463  * @wm: chip FIFO params
464  * @pixel_size: display pixel size
465  * @latency_ns: memory latency for the platform
466  *
467  * Calculate the watermark level (the level at which the display plane will
468  * start fetching from memory again).  Each chip has a different display
469  * FIFO size and allocation, so the caller needs to figure that out and pass
470  * in the correct intel_watermark_params structure.
471  *
472  * As the pixel clock runs, the FIFO will be drained at a rate that depends
473  * on the pixel size.  When it reaches the watermark level, it'll start
474  * fetching FIFO line sized based chunks from memory until the FIFO fills
475  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
476  * will occur, and a display engine hang could result.
477  */
478 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
479                                         const struct intel_watermark_params *wm,
480                                         int fifo_size,
481                                         int pixel_size,
482                                         unsigned long latency_ns)
483 {
484         long entries_required, wm_size;
485
486         /*
487          * Note: we need to make sure we don't overflow for various clock &
488          * latency values.
489          * clocks go from a few thousand to several hundred thousand.
490          * latency is usually a few thousand
491          */
492         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
493                 1000;
494         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
495
496         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
497
498         wm_size = fifo_size - (entries_required + wm->guard_size);
499
500         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
501
502         /* Don't promote wm_size to unsigned... */
503         if (wm_size > (long)wm->max_wm)
504                 wm_size = wm->max_wm;
505         if (wm_size <= 0)
506                 wm_size = wm->default_wm;
507
508         /*
509          * Bspec seems to indicate that the value shouldn't be lower than
510          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
511          * Lets go for 8 which is the burst size since certain platforms
512          * already use a hardcoded 8 (which is what the spec says should be
513          * done).
514          */
515         if (wm_size <= 8)
516                 wm_size = 8;
517
518         return wm_size;
519 }
520
521 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
522 {
523         struct drm_crtc *crtc, *enabled = NULL;
524
525         for_each_crtc(dev, crtc) {
526                 if (intel_crtc_active(crtc)) {
527                         if (enabled)
528                                 return NULL;
529                         enabled = crtc;
530                 }
531         }
532
533         return enabled;
534 }
535
536 static void pineview_update_wm(struct drm_crtc *unused_crtc)
537 {
538         struct drm_device *dev = unused_crtc->dev;
539         struct drm_i915_private *dev_priv = dev->dev_private;
540         struct drm_crtc *crtc;
541         const struct cxsr_latency *latency;
542         u32 reg;
543         unsigned long wm;
544
545         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
546                                          dev_priv->fsb_freq, dev_priv->mem_freq);
547         if (!latency) {
548                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
549                 intel_set_memory_cxsr(dev_priv, false);
550                 return;
551         }
552
553         crtc = single_enabled_crtc(dev);
554         if (crtc) {
555                 const struct drm_display_mode *adjusted_mode;
556                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
557                 int clock;
558
559                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
560                 clock = adjusted_mode->crtc_clock;
561
562                 /* Display SR */
563                 wm = intel_calculate_wm(clock, &pineview_display_wm,
564                                         pineview_display_wm.fifo_size,
565                                         pixel_size, latency->display_sr);
566                 reg = I915_READ(DSPFW1);
567                 reg &= ~DSPFW_SR_MASK;
568                 reg |= wm << DSPFW_SR_SHIFT;
569                 I915_WRITE(DSPFW1, reg);
570                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
571
572                 /* cursor SR */
573                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
574                                         pineview_display_wm.fifo_size,
575                                         pixel_size, latency->cursor_sr);
576                 reg = I915_READ(DSPFW3);
577                 reg &= ~DSPFW_CURSOR_SR_MASK;
578                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
579                 I915_WRITE(DSPFW3, reg);
580
581                 /* Display HPLL off SR */
582                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
583                                         pineview_display_hplloff_wm.fifo_size,
584                                         pixel_size, latency->display_hpll_disable);
585                 reg = I915_READ(DSPFW3);
586                 reg &= ~DSPFW_HPLL_SR_MASK;
587                 reg |= wm & DSPFW_HPLL_SR_MASK;
588                 I915_WRITE(DSPFW3, reg);
589
590                 /* cursor HPLL off SR */
591                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
592                                         pineview_display_hplloff_wm.fifo_size,
593                                         pixel_size, latency->cursor_hpll_disable);
594                 reg = I915_READ(DSPFW3);
595                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
596                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
597                 I915_WRITE(DSPFW3, reg);
598                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
599
600                 intel_set_memory_cxsr(dev_priv, true);
601         } else {
602                 intel_set_memory_cxsr(dev_priv, false);
603         }
604 }
605
606 static bool g4x_compute_wm0(struct drm_device *dev,
607                             int plane,
608                             const struct intel_watermark_params *display,
609                             int display_latency_ns,
610                             const struct intel_watermark_params *cursor,
611                             int cursor_latency_ns,
612                             int *plane_wm,
613                             int *cursor_wm)
614 {
615         struct drm_crtc *crtc;
616         const struct drm_display_mode *adjusted_mode;
617         int htotal, hdisplay, clock, pixel_size;
618         int line_time_us, line_count;
619         int entries, tlb_miss;
620
621         crtc = intel_get_crtc_for_plane(dev, plane);
622         if (!intel_crtc_active(crtc)) {
623                 *cursor_wm = cursor->guard_size;
624                 *plane_wm = display->guard_size;
625                 return false;
626         }
627
628         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
629         clock = adjusted_mode->crtc_clock;
630         htotal = adjusted_mode->crtc_htotal;
631         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
632         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
633
634         /* Use the small buffer method to calculate plane watermark */
635         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
636         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
637         if (tlb_miss > 0)
638                 entries += tlb_miss;
639         entries = DIV_ROUND_UP(entries, display->cacheline_size);
640         *plane_wm = entries + display->guard_size;
641         if (*plane_wm > (int)display->max_wm)
642                 *plane_wm = display->max_wm;
643
644         /* Use the large buffer method to calculate cursor watermark */
645         line_time_us = max(htotal * 1000 / clock, 1);
646         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
647         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
648         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
649         if (tlb_miss > 0)
650                 entries += tlb_miss;
651         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
652         *cursor_wm = entries + cursor->guard_size;
653         if (*cursor_wm > (int)cursor->max_wm)
654                 *cursor_wm = (int)cursor->max_wm;
655
656         return true;
657 }
658
659 /*
660  * Check the wm result.
661  *
662  * If any calculated watermark values is larger than the maximum value that
663  * can be programmed into the associated watermark register, that watermark
664  * must be disabled.
665  */
666 static bool g4x_check_srwm(struct drm_device *dev,
667                            int display_wm, int cursor_wm,
668                            const struct intel_watermark_params *display,
669                            const struct intel_watermark_params *cursor)
670 {
671         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
672                       display_wm, cursor_wm);
673
674         if (display_wm > display->max_wm) {
675                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
676                               display_wm, display->max_wm);
677                 return false;
678         }
679
680         if (cursor_wm > cursor->max_wm) {
681                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
682                               cursor_wm, cursor->max_wm);
683                 return false;
684         }
685
686         if (!(display_wm || cursor_wm)) {
687                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
688                 return false;
689         }
690
691         return true;
692 }
693
694 static bool g4x_compute_srwm(struct drm_device *dev,
695                              int plane,
696                              int latency_ns,
697                              const struct intel_watermark_params *display,
698                              const struct intel_watermark_params *cursor,
699                              int *display_wm, int *cursor_wm)
700 {
701         struct drm_crtc *crtc;
702         const struct drm_display_mode *adjusted_mode;
703         int hdisplay, htotal, pixel_size, clock;
704         unsigned long line_time_us;
705         int line_count, line_size;
706         int small, large;
707         int entries;
708
709         if (!latency_ns) {
710                 *display_wm = *cursor_wm = 0;
711                 return false;
712         }
713
714         crtc = intel_get_crtc_for_plane(dev, plane);
715         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
716         clock = adjusted_mode->crtc_clock;
717         htotal = adjusted_mode->crtc_htotal;
718         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
719         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
720
721         line_time_us = max(htotal * 1000 / clock, 1);
722         line_count = (latency_ns / line_time_us + 1000) / 1000;
723         line_size = hdisplay * pixel_size;
724
725         /* Use the minimum of the small and large buffer method for primary */
726         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
727         large = line_count * line_size;
728
729         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
730         *display_wm = entries + display->guard_size;
731
732         /* calculate the self-refresh watermark for display cursor */
733         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
734         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735         *cursor_wm = entries + cursor->guard_size;
736
737         return g4x_check_srwm(dev,
738                               *display_wm, *cursor_wm,
739                               display, cursor);
740 }
741
742 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
743                                       int pixel_size,
744                                       int *prec_mult,
745                                       int *drain_latency)
746 {
747         struct drm_device *dev = crtc->dev;
748         int entries;
749         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
750
751         if (WARN(clock == 0, "Pixel clock is zero!\n"))
752                 return false;
753
754         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
755                 return false;
756
757         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
758         if (IS_CHERRYVIEW(dev))
759                 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
760                                                DRAIN_LATENCY_PRECISION_16;
761         else
762                 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
763                                                DRAIN_LATENCY_PRECISION_32;
764         *drain_latency = (64 * (*prec_mult) * 4) / entries;
765
766         if (*drain_latency > DRAIN_LATENCY_MASK)
767                 *drain_latency = DRAIN_LATENCY_MASK;
768
769         return true;
770 }
771
772 /*
773  * Update drain latency registers of memory arbiter
774  *
775  * Valleyview SoC has a new memory arbiter and needs drain latency registers
776  * to be programmed. Each plane has a drain latency multiplier and a drain
777  * latency value.
778  */
779
780 static void vlv_update_drain_latency(struct drm_crtc *crtc)
781 {
782         struct drm_device *dev = crtc->dev;
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
785         int pixel_size;
786         int drain_latency;
787         enum pipe pipe = intel_crtc->pipe;
788         int plane_prec, prec_mult, plane_dl;
789         const int high_precision = IS_CHERRYVIEW(dev) ?
790                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
791
792         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
793                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
794                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
795
796         if (!intel_crtc_active(crtc)) {
797                 I915_WRITE(VLV_DDL(pipe), plane_dl);
798                 return;
799         }
800
801         /* Primary plane Drain Latency */
802         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
803         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
804                 plane_prec = (prec_mult == high_precision) ?
805                                            DDL_PLANE_PRECISION_HIGH :
806                                            DDL_PLANE_PRECISION_LOW;
807                 plane_dl |= plane_prec | drain_latency;
808         }
809
810         /* Cursor Drain Latency
811          * BPP is always 4 for cursor
812          */
813         pixel_size = 4;
814
815         /* Program cursor DL only if it is enabled */
816         if (intel_crtc->cursor_base &&
817             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
818                 plane_prec = (prec_mult == high_precision) ?
819                                            DDL_CURSOR_PRECISION_HIGH :
820                                            DDL_CURSOR_PRECISION_LOW;
821                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
822         }
823
824         I915_WRITE(VLV_DDL(pipe), plane_dl);
825 }
826
827 #define single_plane_enabled(mask) is_power_of_2(mask)
828
829 static void valleyview_update_wm(struct drm_crtc *crtc)
830 {
831         struct drm_device *dev = crtc->dev;
832         static const int sr_latency_ns = 12000;
833         struct drm_i915_private *dev_priv = dev->dev_private;
834         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
835         int plane_sr, cursor_sr;
836         int ignore_plane_sr, ignore_cursor_sr;
837         unsigned int enabled = 0;
838         bool cxsr_enabled;
839
840         vlv_update_drain_latency(crtc);
841
842         if (g4x_compute_wm0(dev, PIPE_A,
843                             &valleyview_wm_info, pessimal_latency_ns,
844                             &valleyview_cursor_wm_info, pessimal_latency_ns,
845                             &planea_wm, &cursora_wm))
846                 enabled |= 1 << PIPE_A;
847
848         if (g4x_compute_wm0(dev, PIPE_B,
849                             &valleyview_wm_info, pessimal_latency_ns,
850                             &valleyview_cursor_wm_info, pessimal_latency_ns,
851                             &planeb_wm, &cursorb_wm))
852                 enabled |= 1 << PIPE_B;
853
854         if (single_plane_enabled(enabled) &&
855             g4x_compute_srwm(dev, ffs(enabled) - 1,
856                              sr_latency_ns,
857                              &valleyview_wm_info,
858                              &valleyview_cursor_wm_info,
859                              &plane_sr, &ignore_cursor_sr) &&
860             g4x_compute_srwm(dev, ffs(enabled) - 1,
861                              2*sr_latency_ns,
862                              &valleyview_wm_info,
863                              &valleyview_cursor_wm_info,
864                              &ignore_plane_sr, &cursor_sr)) {
865                 cxsr_enabled = true;
866         } else {
867                 cxsr_enabled = false;
868                 intel_set_memory_cxsr(dev_priv, false);
869                 plane_sr = cursor_sr = 0;
870         }
871
872         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
873                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
874                       planea_wm, cursora_wm,
875                       planeb_wm, cursorb_wm,
876                       plane_sr, cursor_sr);
877
878         I915_WRITE(DSPFW1,
879                    (plane_sr << DSPFW_SR_SHIFT) |
880                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
881                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
882                    (planea_wm << DSPFW_PLANEA_SHIFT));
883         I915_WRITE(DSPFW2,
884                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
885                    (cursora_wm << DSPFW_CURSORA_SHIFT));
886         I915_WRITE(DSPFW3,
887                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
888                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
889
890         if (cxsr_enabled)
891                 intel_set_memory_cxsr(dev_priv, true);
892 }
893
894 static void cherryview_update_wm(struct drm_crtc *crtc)
895 {
896         struct drm_device *dev = crtc->dev;
897         static const int sr_latency_ns = 12000;
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         int planea_wm, planeb_wm, planec_wm;
900         int cursora_wm, cursorb_wm, cursorc_wm;
901         int plane_sr, cursor_sr;
902         int ignore_plane_sr, ignore_cursor_sr;
903         unsigned int enabled = 0;
904         bool cxsr_enabled;
905
906         vlv_update_drain_latency(crtc);
907
908         if (g4x_compute_wm0(dev, PIPE_A,
909                             &valleyview_wm_info, pessimal_latency_ns,
910                             &valleyview_cursor_wm_info, pessimal_latency_ns,
911                             &planea_wm, &cursora_wm))
912                 enabled |= 1 << PIPE_A;
913
914         if (g4x_compute_wm0(dev, PIPE_B,
915                             &valleyview_wm_info, pessimal_latency_ns,
916                             &valleyview_cursor_wm_info, pessimal_latency_ns,
917                             &planeb_wm, &cursorb_wm))
918                 enabled |= 1 << PIPE_B;
919
920         if (g4x_compute_wm0(dev, PIPE_C,
921                             &valleyview_wm_info, pessimal_latency_ns,
922                             &valleyview_cursor_wm_info, pessimal_latency_ns,
923                             &planec_wm, &cursorc_wm))
924                 enabled |= 1 << PIPE_C;
925
926         if (single_plane_enabled(enabled) &&
927             g4x_compute_srwm(dev, ffs(enabled) - 1,
928                              sr_latency_ns,
929                              &valleyview_wm_info,
930                              &valleyview_cursor_wm_info,
931                              &plane_sr, &ignore_cursor_sr) &&
932             g4x_compute_srwm(dev, ffs(enabled) - 1,
933                              2*sr_latency_ns,
934                              &valleyview_wm_info,
935                              &valleyview_cursor_wm_info,
936                              &ignore_plane_sr, &cursor_sr)) {
937                 cxsr_enabled = true;
938         } else {
939                 cxsr_enabled = false;
940                 intel_set_memory_cxsr(dev_priv, false);
941                 plane_sr = cursor_sr = 0;
942         }
943
944         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
945                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
946                       "SR: plane=%d, cursor=%d\n",
947                       planea_wm, cursora_wm,
948                       planeb_wm, cursorb_wm,
949                       planec_wm, cursorc_wm,
950                       plane_sr, cursor_sr);
951
952         I915_WRITE(DSPFW1,
953                    (plane_sr << DSPFW_SR_SHIFT) |
954                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
955                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
956                    (planea_wm << DSPFW_PLANEA_SHIFT));
957         I915_WRITE(DSPFW2,
958                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
959                    (cursora_wm << DSPFW_CURSORA_SHIFT));
960         I915_WRITE(DSPFW3,
961                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
962                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
963         I915_WRITE(DSPFW9_CHV,
964                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
965                                               DSPFW_CURSORC_MASK)) |
966                    (planec_wm << DSPFW_PLANEC_SHIFT) |
967                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
968
969         if (cxsr_enabled)
970                 intel_set_memory_cxsr(dev_priv, true);
971 }
972
973 static void valleyview_update_sprite_wm(struct drm_plane *plane,
974                                         struct drm_crtc *crtc,
975                                         uint32_t sprite_width,
976                                         uint32_t sprite_height,
977                                         int pixel_size,
978                                         bool enabled, bool scaled)
979 {
980         struct drm_device *dev = crtc->dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         int pipe = to_intel_plane(plane)->pipe;
983         int sprite = to_intel_plane(plane)->plane;
984         int drain_latency;
985         int plane_prec;
986         int sprite_dl;
987         int prec_mult;
988         const int high_precision = IS_CHERRYVIEW(dev) ?
989                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
990
991         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
992                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
993
994         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
995                                                  &drain_latency)) {
996                 plane_prec = (prec_mult == high_precision) ?
997                                            DDL_SPRITE_PRECISION_HIGH(sprite) :
998                                            DDL_SPRITE_PRECISION_LOW(sprite);
999                 sprite_dl |= plane_prec |
1000                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1001         }
1002
1003         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1004 }
1005
1006 static void g4x_update_wm(struct drm_crtc *crtc)
1007 {
1008         struct drm_device *dev = crtc->dev;
1009         static const int sr_latency_ns = 12000;
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1012         int plane_sr, cursor_sr;
1013         unsigned int enabled = 0;
1014         bool cxsr_enabled;
1015
1016         if (g4x_compute_wm0(dev, PIPE_A,
1017                             &g4x_wm_info, pessimal_latency_ns,
1018                             &g4x_cursor_wm_info, pessimal_latency_ns,
1019                             &planea_wm, &cursora_wm))
1020                 enabled |= 1 << PIPE_A;
1021
1022         if (g4x_compute_wm0(dev, PIPE_B,
1023                             &g4x_wm_info, pessimal_latency_ns,
1024                             &g4x_cursor_wm_info, pessimal_latency_ns,
1025                             &planeb_wm, &cursorb_wm))
1026                 enabled |= 1 << PIPE_B;
1027
1028         if (single_plane_enabled(enabled) &&
1029             g4x_compute_srwm(dev, ffs(enabled) - 1,
1030                              sr_latency_ns,
1031                              &g4x_wm_info,
1032                              &g4x_cursor_wm_info,
1033                              &plane_sr, &cursor_sr)) {
1034                 cxsr_enabled = true;
1035         } else {
1036                 cxsr_enabled = false;
1037                 intel_set_memory_cxsr(dev_priv, false);
1038                 plane_sr = cursor_sr = 0;
1039         }
1040
1041         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1042                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1043                       planea_wm, cursora_wm,
1044                       planeb_wm, cursorb_wm,
1045                       plane_sr, cursor_sr);
1046
1047         I915_WRITE(DSPFW1,
1048                    (plane_sr << DSPFW_SR_SHIFT) |
1049                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1050                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1051                    (planea_wm << DSPFW_PLANEA_SHIFT));
1052         I915_WRITE(DSPFW2,
1053                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1054                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1055         /* HPLL off in SR has some issues on G4x... disable it */
1056         I915_WRITE(DSPFW3,
1057                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1058                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1059
1060         if (cxsr_enabled)
1061                 intel_set_memory_cxsr(dev_priv, true);
1062 }
1063
1064 static void i965_update_wm(struct drm_crtc *unused_crtc)
1065 {
1066         struct drm_device *dev = unused_crtc->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         struct drm_crtc *crtc;
1069         int srwm = 1;
1070         int cursor_sr = 16;
1071         bool cxsr_enabled;
1072
1073         /* Calc sr entries for one plane configs */
1074         crtc = single_enabled_crtc(dev);
1075         if (crtc) {
1076                 /* self-refresh has much higher latency */
1077                 static const int sr_latency_ns = 12000;
1078                 const struct drm_display_mode *adjusted_mode =
1079                         &to_intel_crtc(crtc)->config->base.adjusted_mode;
1080                 int clock = adjusted_mode->crtc_clock;
1081                 int htotal = adjusted_mode->crtc_htotal;
1082                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1083                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1084                 unsigned long line_time_us;
1085                 int entries;
1086
1087                 line_time_us = max(htotal * 1000 / clock, 1);
1088
1089                 /* Use ns/us then divide to preserve precision */
1090                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1091                         pixel_size * hdisplay;
1092                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1093                 srwm = I965_FIFO_SIZE - entries;
1094                 if (srwm < 0)
1095                         srwm = 1;
1096                 srwm &= 0x1ff;
1097                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1098                               entries, srwm);
1099
1100                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1101                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1102                 entries = DIV_ROUND_UP(entries,
1103                                           i965_cursor_wm_info.cacheline_size);
1104                 cursor_sr = i965_cursor_wm_info.fifo_size -
1105                         (entries + i965_cursor_wm_info.guard_size);
1106
1107                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1108                         cursor_sr = i965_cursor_wm_info.max_wm;
1109
1110                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1111                               "cursor %d\n", srwm, cursor_sr);
1112
1113                 cxsr_enabled = true;
1114         } else {
1115                 cxsr_enabled = false;
1116                 /* Turn off self refresh if both pipes are enabled */
1117                 intel_set_memory_cxsr(dev_priv, false);
1118         }
1119
1120         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1121                       srwm);
1122
1123         /* 965 has limitations... */
1124         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1125                    (8 << DSPFW_CURSORB_SHIFT) |
1126                    (8 << DSPFW_PLANEB_SHIFT) |
1127                    (8 << DSPFW_PLANEA_SHIFT));
1128         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1129                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1130         /* update cursor SR watermark */
1131         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1132
1133         if (cxsr_enabled)
1134                 intel_set_memory_cxsr(dev_priv, true);
1135 }
1136
1137 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1138 {
1139         struct drm_device *dev = unused_crtc->dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         const struct intel_watermark_params *wm_info;
1142         uint32_t fwater_lo;
1143         uint32_t fwater_hi;
1144         int cwm, srwm = 1;
1145         int fifo_size;
1146         int planea_wm, planeb_wm;
1147         struct drm_crtc *crtc, *enabled = NULL;
1148
1149         if (IS_I945GM(dev))
1150                 wm_info = &i945_wm_info;
1151         else if (!IS_GEN2(dev))
1152                 wm_info = &i915_wm_info;
1153         else
1154                 wm_info = &i830_a_wm_info;
1155
1156         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1157         crtc = intel_get_crtc_for_plane(dev, 0);
1158         if (intel_crtc_active(crtc)) {
1159                 const struct drm_display_mode *adjusted_mode;
1160                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1161                 if (IS_GEN2(dev))
1162                         cpp = 4;
1163
1164                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1165                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1166                                                wm_info, fifo_size, cpp,
1167                                                pessimal_latency_ns);
1168                 enabled = crtc;
1169         } else {
1170                 planea_wm = fifo_size - wm_info->guard_size;
1171                 if (planea_wm > (long)wm_info->max_wm)
1172                         planea_wm = wm_info->max_wm;
1173         }
1174
1175         if (IS_GEN2(dev))
1176                 wm_info = &i830_bc_wm_info;
1177
1178         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1179         crtc = intel_get_crtc_for_plane(dev, 1);
1180         if (intel_crtc_active(crtc)) {
1181                 const struct drm_display_mode *adjusted_mode;
1182                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1183                 if (IS_GEN2(dev))
1184                         cpp = 4;
1185
1186                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1187                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1188                                                wm_info, fifo_size, cpp,
1189                                                pessimal_latency_ns);
1190                 if (enabled == NULL)
1191                         enabled = crtc;
1192                 else
1193                         enabled = NULL;
1194         } else {
1195                 planeb_wm = fifo_size - wm_info->guard_size;
1196                 if (planeb_wm > (long)wm_info->max_wm)
1197                         planeb_wm = wm_info->max_wm;
1198         }
1199
1200         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1201
1202         if (IS_I915GM(dev) && enabled) {
1203                 struct drm_i915_gem_object *obj;
1204
1205                 obj = intel_fb_obj(enabled->primary->fb);
1206
1207                 /* self-refresh seems busted with untiled */
1208                 if (obj->tiling_mode == I915_TILING_NONE)
1209                         enabled = NULL;
1210         }
1211
1212         /*
1213          * Overlay gets an aggressive default since video jitter is bad.
1214          */
1215         cwm = 2;
1216
1217         /* Play safe and disable self-refresh before adjusting watermarks. */
1218         intel_set_memory_cxsr(dev_priv, false);
1219
1220         /* Calc sr entries for one plane configs */
1221         if (HAS_FW_BLC(dev) && enabled) {
1222                 /* self-refresh has much higher latency */
1223                 static const int sr_latency_ns = 6000;
1224                 const struct drm_display_mode *adjusted_mode =
1225                         &to_intel_crtc(enabled)->config->base.adjusted_mode;
1226                 int clock = adjusted_mode->crtc_clock;
1227                 int htotal = adjusted_mode->crtc_htotal;
1228                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1229                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1230                 unsigned long line_time_us;
1231                 int entries;
1232
1233                 line_time_us = max(htotal * 1000 / clock, 1);
1234
1235                 /* Use ns/us then divide to preserve precision */
1236                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1237                         pixel_size * hdisplay;
1238                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1239                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1240                 srwm = wm_info->fifo_size - entries;
1241                 if (srwm < 0)
1242                         srwm = 1;
1243
1244                 if (IS_I945G(dev) || IS_I945GM(dev))
1245                         I915_WRITE(FW_BLC_SELF,
1246                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1247                 else if (IS_I915GM(dev))
1248                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1249         }
1250
1251         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1252                       planea_wm, planeb_wm, cwm, srwm);
1253
1254         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1255         fwater_hi = (cwm & 0x1f);
1256
1257         /* Set request length to 8 cachelines per fetch */
1258         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1259         fwater_hi = fwater_hi | (1 << 8);
1260
1261         I915_WRITE(FW_BLC, fwater_lo);
1262         I915_WRITE(FW_BLC2, fwater_hi);
1263
1264         if (enabled)
1265                 intel_set_memory_cxsr(dev_priv, true);
1266 }
1267
1268 static void i845_update_wm(struct drm_crtc *unused_crtc)
1269 {
1270         struct drm_device *dev = unused_crtc->dev;
1271         struct drm_i915_private *dev_priv = dev->dev_private;
1272         struct drm_crtc *crtc;
1273         const struct drm_display_mode *adjusted_mode;
1274         uint32_t fwater_lo;
1275         int planea_wm;
1276
1277         crtc = single_enabled_crtc(dev);
1278         if (crtc == NULL)
1279                 return;
1280
1281         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1282         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1283                                        &i845_wm_info,
1284                                        dev_priv->display.get_fifo_size(dev, 0),
1285                                        4, pessimal_latency_ns);
1286         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1287         fwater_lo |= (3<<8) | planea_wm;
1288
1289         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1290
1291         I915_WRITE(FW_BLC, fwater_lo);
1292 }
1293
1294 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1295                                     struct drm_crtc *crtc)
1296 {
1297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1298         uint32_t pixel_rate;
1299
1300         pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1301
1302         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1303          * adjust the pixel_rate here. */
1304
1305         if (intel_crtc->config->pch_pfit.enabled) {
1306                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1307                 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1308
1309                 pipe_w = intel_crtc->config->pipe_src_w;
1310                 pipe_h = intel_crtc->config->pipe_src_h;
1311                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1312                 pfit_h = pfit_size & 0xFFFF;
1313                 if (pipe_w < pfit_w)
1314                         pipe_w = pfit_w;
1315                 if (pipe_h < pfit_h)
1316                         pipe_h = pfit_h;
1317
1318                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1319                                      pfit_w * pfit_h);
1320         }
1321
1322         return pixel_rate;
1323 }
1324
1325 /* latency must be in 0.1us units. */
1326 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1327                                uint32_t latency)
1328 {
1329         uint64_t ret;
1330
1331         if (WARN(latency == 0, "Latency value missing\n"))
1332                 return UINT_MAX;
1333
1334         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1335         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1336
1337         return ret;
1338 }
1339
1340 /* latency must be in 0.1us units. */
1341 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1342                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1343                                uint32_t latency)
1344 {
1345         uint32_t ret;
1346
1347         if (WARN(latency == 0, "Latency value missing\n"))
1348                 return UINT_MAX;
1349
1350         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1351         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1352         ret = DIV_ROUND_UP(ret, 64) + 2;
1353         return ret;
1354 }
1355
1356 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1357                            uint8_t bytes_per_pixel)
1358 {
1359         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1360 }
1361
1362 struct skl_pipe_wm_parameters {
1363         bool active;
1364         uint32_t pipe_htotal;
1365         uint32_t pixel_rate; /* in KHz */
1366         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1367         struct intel_plane_wm_parameters cursor;
1368 };
1369
1370 struct ilk_pipe_wm_parameters {
1371         bool active;
1372         uint32_t pipe_htotal;
1373         uint32_t pixel_rate;
1374         struct intel_plane_wm_parameters pri;
1375         struct intel_plane_wm_parameters spr;
1376         struct intel_plane_wm_parameters cur;
1377 };
1378
1379 struct ilk_wm_maximums {
1380         uint16_t pri;
1381         uint16_t spr;
1382         uint16_t cur;
1383         uint16_t fbc;
1384 };
1385
1386 /* used in computing the new watermarks state */
1387 struct intel_wm_config {
1388         unsigned int num_pipes_active;
1389         bool sprites_enabled;
1390         bool sprites_scaled;
1391 };
1392
1393 /*
1394  * For both WM_PIPE and WM_LP.
1395  * mem_value must be in 0.1us units.
1396  */
1397 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1398                                    uint32_t mem_value,
1399                                    bool is_lp)
1400 {
1401         uint32_t method1, method2;
1402
1403         if (!params->active || !params->pri.enabled)
1404                 return 0;
1405
1406         method1 = ilk_wm_method1(params->pixel_rate,
1407                                  params->pri.bytes_per_pixel,
1408                                  mem_value);
1409
1410         if (!is_lp)
1411                 return method1;
1412
1413         method2 = ilk_wm_method2(params->pixel_rate,
1414                                  params->pipe_htotal,
1415                                  params->pri.horiz_pixels,
1416                                  params->pri.bytes_per_pixel,
1417                                  mem_value);
1418
1419         return min(method1, method2);
1420 }
1421
1422 /*
1423  * For both WM_PIPE and WM_LP.
1424  * mem_value must be in 0.1us units.
1425  */
1426 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1427                                    uint32_t mem_value)
1428 {
1429         uint32_t method1, method2;
1430
1431         if (!params->active || !params->spr.enabled)
1432                 return 0;
1433
1434         method1 = ilk_wm_method1(params->pixel_rate,
1435                                  params->spr.bytes_per_pixel,
1436                                  mem_value);
1437         method2 = ilk_wm_method2(params->pixel_rate,
1438                                  params->pipe_htotal,
1439                                  params->spr.horiz_pixels,
1440                                  params->spr.bytes_per_pixel,
1441                                  mem_value);
1442         return min(method1, method2);
1443 }
1444
1445 /*
1446  * For both WM_PIPE and WM_LP.
1447  * mem_value must be in 0.1us units.
1448  */
1449 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1450                                    uint32_t mem_value)
1451 {
1452         if (!params->active || !params->cur.enabled)
1453                 return 0;
1454
1455         return ilk_wm_method2(params->pixel_rate,
1456                               params->pipe_htotal,
1457                               params->cur.horiz_pixels,
1458                               params->cur.bytes_per_pixel,
1459                               mem_value);
1460 }
1461
1462 /* Only for WM_LP. */
1463 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1464                                    uint32_t pri_val)
1465 {
1466         if (!params->active || !params->pri.enabled)
1467                 return 0;
1468
1469         return ilk_wm_fbc(pri_val,
1470                           params->pri.horiz_pixels,
1471                           params->pri.bytes_per_pixel);
1472 }
1473
1474 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1475 {
1476         if (INTEL_INFO(dev)->gen >= 8)
1477                 return 3072;
1478         else if (INTEL_INFO(dev)->gen >= 7)
1479                 return 768;
1480         else
1481                 return 512;
1482 }
1483
1484 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1485                                          int level, bool is_sprite)
1486 {
1487         if (INTEL_INFO(dev)->gen >= 8)
1488                 /* BDW primary/sprite plane watermarks */
1489                 return level == 0 ? 255 : 2047;
1490         else if (INTEL_INFO(dev)->gen >= 7)
1491                 /* IVB/HSW primary/sprite plane watermarks */
1492                 return level == 0 ? 127 : 1023;
1493         else if (!is_sprite)
1494                 /* ILK/SNB primary plane watermarks */
1495                 return level == 0 ? 127 : 511;
1496         else
1497                 /* ILK/SNB sprite plane watermarks */
1498                 return level == 0 ? 63 : 255;
1499 }
1500
1501 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1502                                           int level)
1503 {
1504         if (INTEL_INFO(dev)->gen >= 7)
1505                 return level == 0 ? 63 : 255;
1506         else
1507                 return level == 0 ? 31 : 63;
1508 }
1509
1510 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1511 {
1512         if (INTEL_INFO(dev)->gen >= 8)
1513                 return 31;
1514         else
1515                 return 15;
1516 }
1517
1518 /* Calculate the maximum primary/sprite plane watermark */
1519 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1520                                      int level,
1521                                      const struct intel_wm_config *config,
1522                                      enum intel_ddb_partitioning ddb_partitioning,
1523                                      bool is_sprite)
1524 {
1525         unsigned int fifo_size = ilk_display_fifo_size(dev);
1526
1527         /* if sprites aren't enabled, sprites get nothing */
1528         if (is_sprite && !config->sprites_enabled)
1529                 return 0;
1530
1531         /* HSW allows LP1+ watermarks even with multiple pipes */
1532         if (level == 0 || config->num_pipes_active > 1) {
1533                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1534
1535                 /*
1536                  * For some reason the non self refresh
1537                  * FIFO size is only half of the self
1538                  * refresh FIFO size on ILK/SNB.
1539                  */
1540                 if (INTEL_INFO(dev)->gen <= 6)
1541                         fifo_size /= 2;
1542         }
1543
1544         if (config->sprites_enabled) {
1545                 /* level 0 is always calculated with 1:1 split */
1546                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1547                         if (is_sprite)
1548                                 fifo_size *= 5;
1549                         fifo_size /= 6;
1550                 } else {
1551                         fifo_size /= 2;
1552                 }
1553         }
1554
1555         /* clamp to max that the registers can hold */
1556         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1557 }
1558
1559 /* Calculate the maximum cursor plane watermark */
1560 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1561                                       int level,
1562                                       const struct intel_wm_config *config)
1563 {
1564         /* HSW LP1+ watermarks w/ multiple pipes */
1565         if (level > 0 && config->num_pipes_active > 1)
1566                 return 64;
1567
1568         /* otherwise just report max that registers can hold */
1569         return ilk_cursor_wm_reg_max(dev, level);
1570 }
1571
1572 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1573                                     int level,
1574                                     const struct intel_wm_config *config,
1575                                     enum intel_ddb_partitioning ddb_partitioning,
1576                                     struct ilk_wm_maximums *max)
1577 {
1578         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1579         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1580         max->cur = ilk_cursor_wm_max(dev, level, config);
1581         max->fbc = ilk_fbc_wm_reg_max(dev);
1582 }
1583
1584 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1585                                         int level,
1586                                         struct ilk_wm_maximums *max)
1587 {
1588         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1589         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1590         max->cur = ilk_cursor_wm_reg_max(dev, level);
1591         max->fbc = ilk_fbc_wm_reg_max(dev);
1592 }
1593
1594 static bool ilk_validate_wm_level(int level,
1595                                   const struct ilk_wm_maximums *max,
1596                                   struct intel_wm_level *result)
1597 {
1598         bool ret;
1599
1600         /* already determined to be invalid? */
1601         if (!result->enable)
1602                 return false;
1603
1604         result->enable = result->pri_val <= max->pri &&
1605                          result->spr_val <= max->spr &&
1606                          result->cur_val <= max->cur;
1607
1608         ret = result->enable;
1609
1610         /*
1611          * HACK until we can pre-compute everything,
1612          * and thus fail gracefully if LP0 watermarks
1613          * are exceeded...
1614          */
1615         if (level == 0 && !result->enable) {
1616                 if (result->pri_val > max->pri)
1617                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1618                                       level, result->pri_val, max->pri);
1619                 if (result->spr_val > max->spr)
1620                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1621                                       level, result->spr_val, max->spr);
1622                 if (result->cur_val > max->cur)
1623                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1624                                       level, result->cur_val, max->cur);
1625
1626                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1627                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1628                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1629                 result->enable = true;
1630         }
1631
1632         return ret;
1633 }
1634
1635 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1636                                  int level,
1637                                  const struct ilk_pipe_wm_parameters *p,
1638                                  struct intel_wm_level *result)
1639 {
1640         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1641         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1642         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1643
1644         /* WM1+ latency values stored in 0.5us units */
1645         if (level > 0) {
1646                 pri_latency *= 5;
1647                 spr_latency *= 5;
1648                 cur_latency *= 5;
1649         }
1650
1651         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1652         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1653         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1654         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1655         result->enable = true;
1656 }
1657
1658 static uint32_t
1659 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1660 {
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1663         struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1664         u32 linetime, ips_linetime;
1665
1666         if (!intel_crtc_active(crtc))
1667                 return 0;
1668
1669         /* The WM are computed with base on how long it takes to fill a single
1670          * row at the given clock rate, multiplied by 8.
1671          * */
1672         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1673                                      mode->crtc_clock);
1674         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1675                                          intel_ddi_get_cdclk_freq(dev_priv));
1676
1677         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1678                PIPE_WM_LINETIME_TIME(linetime);
1679 }
1680
1681 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1682 {
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685         if (IS_GEN9(dev)) {
1686                 uint32_t val;
1687                 int ret, i;
1688                 int level, max_level = ilk_wm_max_level(dev);
1689
1690                 /* read the first set of memory latencies[0:3] */
1691                 val = 0; /* data0 to be programmed to 0 for first set */
1692                 mutex_lock(&dev_priv->rps.hw_lock);
1693                 ret = sandybridge_pcode_read(dev_priv,
1694                                              GEN9_PCODE_READ_MEM_LATENCY,
1695                                              &val);
1696                 mutex_unlock(&dev_priv->rps.hw_lock);
1697
1698                 if (ret) {
1699                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1700                         return;
1701                 }
1702
1703                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1704                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1705                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1706                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1707                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1708                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1709                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1710
1711                 /* read the second set of memory latencies[4:7] */
1712                 val = 1; /* data0 to be programmed to 1 for second set */
1713                 mutex_lock(&dev_priv->rps.hw_lock);
1714                 ret = sandybridge_pcode_read(dev_priv,
1715                                              GEN9_PCODE_READ_MEM_LATENCY,
1716                                              &val);
1717                 mutex_unlock(&dev_priv->rps.hw_lock);
1718                 if (ret) {
1719                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1720                         return;
1721                 }
1722
1723                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1724                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1725                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1726                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1727                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1728                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1729                                 GEN9_MEM_LATENCY_LEVEL_MASK;
1730
1731                 /*
1732                  * WaWmMemoryReadLatency:skl
1733                  *
1734                  * punit doesn't take into account the read latency so we need
1735                  * to add 2us to the various latency levels we retrieve from
1736                  * the punit.
1737                  *   - W0 is a bit special in that it's the only level that
1738                  *   can't be disabled if we want to have display working, so
1739                  *   we always add 2us there.
1740                  *   - For levels >=1, punit returns 0us latency when they are
1741                  *   disabled, so we respect that and don't add 2us then
1742                  *
1743                  * Additionally, if a level n (n > 1) has a 0us latency, all
1744                  * levels m (m >= n) need to be disabled. We make sure to
1745                  * sanitize the values out of the punit to satisfy this
1746                  * requirement.
1747                  */
1748                 wm[0] += 2;
1749                 for (level = 1; level <= max_level; level++)
1750                         if (wm[level] != 0)
1751                                 wm[level] += 2;
1752                         else {
1753                                 for (i = level + 1; i <= max_level; i++)
1754                                         wm[i] = 0;
1755
1756                                 break;
1757                         }
1758         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1759                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1760
1761                 wm[0] = (sskpd >> 56) & 0xFF;
1762                 if (wm[0] == 0)
1763                         wm[0] = sskpd & 0xF;
1764                 wm[1] = (sskpd >> 4) & 0xFF;
1765                 wm[2] = (sskpd >> 12) & 0xFF;
1766                 wm[3] = (sskpd >> 20) & 0x1FF;
1767                 wm[4] = (sskpd >> 32) & 0x1FF;
1768         } else if (INTEL_INFO(dev)->gen >= 6) {
1769                 uint32_t sskpd = I915_READ(MCH_SSKPD);
1770
1771                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1772                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1773                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1774                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1775         } else if (INTEL_INFO(dev)->gen >= 5) {
1776                 uint32_t mltr = I915_READ(MLTR_ILK);
1777
1778                 /* ILK primary LP0 latency is 700 ns */
1779                 wm[0] = 7;
1780                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1781                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1782         }
1783 }
1784
1785 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1786 {
1787         /* ILK sprite LP0 latency is 1300 ns */
1788         if (INTEL_INFO(dev)->gen == 5)
1789                 wm[0] = 13;
1790 }
1791
1792 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1793 {
1794         /* ILK cursor LP0 latency is 1300 ns */
1795         if (INTEL_INFO(dev)->gen == 5)
1796                 wm[0] = 13;
1797
1798         /* WaDoubleCursorLP3Latency:ivb */
1799         if (IS_IVYBRIDGE(dev))
1800                 wm[3] *= 2;
1801 }
1802
1803 int ilk_wm_max_level(const struct drm_device *dev)
1804 {
1805         /* how many WM levels are we expecting */
1806         if (IS_GEN9(dev))
1807                 return 7;
1808         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1809                 return 4;
1810         else if (INTEL_INFO(dev)->gen >= 6)
1811                 return 3;
1812         else
1813                 return 2;
1814 }
1815
1816 static void intel_print_wm_latency(struct drm_device *dev,
1817                                    const char *name,
1818                                    const uint16_t wm[8])
1819 {
1820         int level, max_level = ilk_wm_max_level(dev);
1821
1822         for (level = 0; level <= max_level; level++) {
1823                 unsigned int latency = wm[level];
1824
1825                 if (latency == 0) {
1826                         DRM_ERROR("%s WM%d latency not provided\n",
1827                                   name, level);
1828                         continue;
1829                 }
1830
1831                 /*
1832                  * - latencies are in us on gen9.
1833                  * - before then, WM1+ latency values are in 0.5us units
1834                  */
1835                 if (IS_GEN9(dev))
1836                         latency *= 10;
1837                 else if (level > 0)
1838                         latency *= 5;
1839
1840                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1841                               name, level, wm[level],
1842                               latency / 10, latency % 10);
1843         }
1844 }
1845
1846 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1847                                     uint16_t wm[5], uint16_t min)
1848 {
1849         int level, max_level = ilk_wm_max_level(dev_priv->dev);
1850
1851         if (wm[0] >= min)
1852                 return false;
1853
1854         wm[0] = max(wm[0], min);
1855         for (level = 1; level <= max_level; level++)
1856                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1857
1858         return true;
1859 }
1860
1861 static void snb_wm_latency_quirk(struct drm_device *dev)
1862 {
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         bool changed;
1865
1866         /*
1867          * The BIOS provided WM memory latency values are often
1868          * inadequate for high resolution displays. Adjust them.
1869          */
1870         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1871                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1872                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1873
1874         if (!changed)
1875                 return;
1876
1877         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1878         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1879         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1880         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1881 }
1882
1883 static void ilk_setup_wm_latency(struct drm_device *dev)
1884 {
1885         struct drm_i915_private *dev_priv = dev->dev_private;
1886
1887         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1888
1889         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1890                sizeof(dev_priv->wm.pri_latency));
1891         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1892                sizeof(dev_priv->wm.pri_latency));
1893
1894         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1895         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1896
1897         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1898         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1899         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1900
1901         if (IS_GEN6(dev))
1902                 snb_wm_latency_quirk(dev);
1903 }
1904
1905 static void skl_setup_wm_latency(struct drm_device *dev)
1906 {
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1910         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1911 }
1912
1913 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1914                                       struct ilk_pipe_wm_parameters *p)
1915 {
1916         struct drm_device *dev = crtc->dev;
1917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1918         enum pipe pipe = intel_crtc->pipe;
1919         struct drm_plane *plane;
1920
1921         if (!intel_crtc_active(crtc))
1922                 return;
1923
1924         p->active = true;
1925         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1926         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1927         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1928         p->cur.bytes_per_pixel = 4;
1929         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1930         p->cur.horiz_pixels = intel_crtc->cursor_width;
1931         /* TODO: for now, assume primary and cursor planes are always enabled. */
1932         p->pri.enabled = true;
1933         p->cur.enabled = true;
1934
1935         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1936                 struct intel_plane *intel_plane = to_intel_plane(plane);
1937
1938                 if (intel_plane->pipe == pipe) {
1939                         p->spr = intel_plane->wm;
1940                         break;
1941                 }
1942         }
1943 }
1944
1945 static void ilk_compute_wm_config(struct drm_device *dev,
1946                                   struct intel_wm_config *config)
1947 {
1948         struct intel_crtc *intel_crtc;
1949
1950         /* Compute the currently _active_ config */
1951         for_each_intel_crtc(dev, intel_crtc) {
1952                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1953
1954                 if (!wm->pipe_enabled)
1955                         continue;
1956
1957                 config->sprites_enabled |= wm->sprites_enabled;
1958                 config->sprites_scaled |= wm->sprites_scaled;
1959                 config->num_pipes_active++;
1960         }
1961 }
1962
1963 /* Compute new watermarks for the pipe */
1964 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1965                                   const struct ilk_pipe_wm_parameters *params,
1966                                   struct intel_pipe_wm *pipe_wm)
1967 {
1968         struct drm_device *dev = crtc->dev;
1969         const struct drm_i915_private *dev_priv = dev->dev_private;
1970         int level, max_level = ilk_wm_max_level(dev);
1971         /* LP0 watermark maximums depend on this pipe alone */
1972         struct intel_wm_config config = {
1973                 .num_pipes_active = 1,
1974                 .sprites_enabled = params->spr.enabled,
1975                 .sprites_scaled = params->spr.scaled,
1976         };
1977         struct ilk_wm_maximums max;
1978
1979         pipe_wm->pipe_enabled = params->active;
1980         pipe_wm->sprites_enabled = params->spr.enabled;
1981         pipe_wm->sprites_scaled = params->spr.scaled;
1982
1983         /* ILK/SNB: LP2+ watermarks only w/o sprites */
1984         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1985                 max_level = 1;
1986
1987         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1988         if (params->spr.scaled)
1989                 max_level = 0;
1990
1991         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1992
1993         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1994                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1995
1996         /* LP0 watermarks always use 1/2 DDB partitioning */
1997         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1998
1999         /* At least LP0 must be valid */
2000         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2001                 return false;
2002
2003         ilk_compute_wm_reg_maximums(dev, 1, &max);
2004
2005         for (level = 1; level <= max_level; level++) {
2006                 struct intel_wm_level wm = {};
2007
2008                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2009
2010                 /*
2011                  * Disable any watermark level that exceeds the
2012                  * register maximums since such watermarks are
2013                  * always invalid.
2014                  */
2015                 if (!ilk_validate_wm_level(level, &max, &wm))
2016                         break;
2017
2018                 pipe_wm->wm[level] = wm;
2019         }
2020
2021         return true;
2022 }
2023
2024 /*
2025  * Merge the watermarks from all active pipes for a specific level.
2026  */
2027 static void ilk_merge_wm_level(struct drm_device *dev,
2028                                int level,
2029                                struct intel_wm_level *ret_wm)
2030 {
2031         const struct intel_crtc *intel_crtc;
2032
2033         ret_wm->enable = true;
2034
2035         for_each_intel_crtc(dev, intel_crtc) {
2036                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2037                 const struct intel_wm_level *wm = &active->wm[level];
2038
2039                 if (!active->pipe_enabled)
2040                         continue;
2041
2042                 /*
2043                  * The watermark values may have been used in the past,
2044                  * so we must maintain them in the registers for some
2045                  * time even if the level is now disabled.
2046                  */
2047                 if (!wm->enable)
2048                         ret_wm->enable = false;
2049
2050                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2051                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2052                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2053                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2054         }
2055 }
2056
2057 /*
2058  * Merge all low power watermarks for all active pipes.
2059  */
2060 static void ilk_wm_merge(struct drm_device *dev,
2061                          const struct intel_wm_config *config,
2062                          const struct ilk_wm_maximums *max,
2063                          struct intel_pipe_wm *merged)
2064 {
2065         int level, max_level = ilk_wm_max_level(dev);
2066         int last_enabled_level = max_level;
2067
2068         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2069         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2070             config->num_pipes_active > 1)
2071                 return;
2072
2073         /* ILK: FBC WM must be disabled always */
2074         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2075
2076         /* merge each WM1+ level */
2077         for (level = 1; level <= max_level; level++) {
2078                 struct intel_wm_level *wm = &merged->wm[level];
2079
2080                 ilk_merge_wm_level(dev, level, wm);
2081
2082                 if (level > last_enabled_level)
2083                         wm->enable = false;
2084                 else if (!ilk_validate_wm_level(level, max, wm))
2085                         /* make sure all following levels get disabled */
2086                         last_enabled_level = level - 1;
2087
2088                 /*
2089                  * The spec says it is preferred to disable
2090                  * FBC WMs instead of disabling a WM level.
2091                  */
2092                 if (wm->fbc_val > max->fbc) {
2093                         if (wm->enable)
2094                                 merged->fbc_wm_enabled = false;
2095                         wm->fbc_val = 0;
2096                 }
2097         }
2098
2099         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2100         /*
2101          * FIXME this is racy. FBC might get enabled later.
2102          * What we should check here is whether FBC can be
2103          * enabled sometime later.
2104          */
2105         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2106                 for (level = 2; level <= max_level; level++) {
2107                         struct intel_wm_level *wm = &merged->wm[level];
2108
2109                         wm->enable = false;
2110                 }
2111         }
2112 }
2113
2114 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2115 {
2116         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2117         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2118 }
2119
2120 /* The value we need to program into the WM_LPx latency field */
2121 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2122 {
2123         struct drm_i915_private *dev_priv = dev->dev_private;
2124
2125         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2126                 return 2 * level;
2127         else
2128                 return dev_priv->wm.pri_latency[level];
2129 }
2130
2131 static void ilk_compute_wm_results(struct drm_device *dev,
2132                                    const struct intel_pipe_wm *merged,
2133                                    enum intel_ddb_partitioning partitioning,
2134                                    struct ilk_wm_values *results)
2135 {
2136         struct intel_crtc *intel_crtc;
2137         int level, wm_lp;
2138
2139         results->enable_fbc_wm = merged->fbc_wm_enabled;
2140         results->partitioning = partitioning;
2141
2142         /* LP1+ register values */
2143         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2144                 const struct intel_wm_level *r;
2145
2146                 level = ilk_wm_lp_to_level(wm_lp, merged);
2147
2148                 r = &merged->wm[level];
2149
2150                 /*
2151                  * Maintain the watermark values even if the level is
2152                  * disabled. Doing otherwise could cause underruns.
2153                  */
2154                 results->wm_lp[wm_lp - 1] =
2155                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2156                         (r->pri_val << WM1_LP_SR_SHIFT) |
2157                         r->cur_val;
2158
2159                 if (r->enable)
2160                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2161
2162                 if (INTEL_INFO(dev)->gen >= 8)
2163                         results->wm_lp[wm_lp - 1] |=
2164                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2165                 else
2166                         results->wm_lp[wm_lp - 1] |=
2167                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2168
2169                 /*
2170                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2171                  * level is disabled. Doing otherwise could cause underruns.
2172                  */
2173                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2174                         WARN_ON(wm_lp != 1);
2175                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2176                 } else
2177                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2178         }
2179
2180         /* LP0 register values */
2181         for_each_intel_crtc(dev, intel_crtc) {
2182                 enum pipe pipe = intel_crtc->pipe;
2183                 const struct intel_wm_level *r =
2184                         &intel_crtc->wm.active.wm[0];
2185
2186                 if (WARN_ON(!r->enable))
2187                         continue;
2188
2189                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2190
2191                 results->wm_pipe[pipe] =
2192                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2193                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2194                         r->cur_val;
2195         }
2196 }
2197
2198 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2199  * case both are at the same level. Prefer r1 in case they're the same. */
2200 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2201                                                   struct intel_pipe_wm *r1,
2202                                                   struct intel_pipe_wm *r2)
2203 {
2204         int level, max_level = ilk_wm_max_level(dev);
2205         int level1 = 0, level2 = 0;
2206
2207         for (level = 1; level <= max_level; level++) {
2208                 if (r1->wm[level].enable)
2209                         level1 = level;
2210                 if (r2->wm[level].enable)
2211                         level2 = level;
2212         }
2213
2214         if (level1 == level2) {
2215                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2216                         return r2;
2217                 else
2218                         return r1;
2219         } else if (level1 > level2) {
2220                 return r1;
2221         } else {
2222                 return r2;
2223         }
2224 }
2225
2226 /* dirty bits used to track which watermarks need changes */
2227 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2228 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2229 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2230 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2231 #define WM_DIRTY_FBC (1 << 24)
2232 #define WM_DIRTY_DDB (1 << 25)
2233
2234 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2235                                          const struct ilk_wm_values *old,
2236                                          const struct ilk_wm_values *new)
2237 {
2238         unsigned int dirty = 0;
2239         enum pipe pipe;
2240         int wm_lp;
2241
2242         for_each_pipe(dev_priv, pipe) {
2243                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2244                         dirty |= WM_DIRTY_LINETIME(pipe);
2245                         /* Must disable LP1+ watermarks too */
2246                         dirty |= WM_DIRTY_LP_ALL;
2247                 }
2248
2249                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2250                         dirty |= WM_DIRTY_PIPE(pipe);
2251                         /* Must disable LP1+ watermarks too */
2252                         dirty |= WM_DIRTY_LP_ALL;
2253                 }
2254         }
2255
2256         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2257                 dirty |= WM_DIRTY_FBC;
2258                 /* Must disable LP1+ watermarks too */
2259                 dirty |= WM_DIRTY_LP_ALL;
2260         }
2261
2262         if (old->partitioning != new->partitioning) {
2263                 dirty |= WM_DIRTY_DDB;
2264                 /* Must disable LP1+ watermarks too */
2265                 dirty |= WM_DIRTY_LP_ALL;
2266         }
2267
2268         /* LP1+ watermarks already deemed dirty, no need to continue */
2269         if (dirty & WM_DIRTY_LP_ALL)
2270                 return dirty;
2271
2272         /* Find the lowest numbered LP1+ watermark in need of an update... */
2273         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2274                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2275                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2276                         break;
2277         }
2278
2279         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2280         for (; wm_lp <= 3; wm_lp++)
2281                 dirty |= WM_DIRTY_LP(wm_lp);
2282
2283         return dirty;
2284 }
2285
2286 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2287                                unsigned int dirty)
2288 {
2289         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2290         bool changed = false;
2291
2292         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2293                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2294                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2295                 changed = true;
2296         }
2297         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2298                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2299                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2300                 changed = true;
2301         }
2302         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2303                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2304                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2305                 changed = true;
2306         }
2307
2308         /*
2309          * Don't touch WM1S_LP_EN here.
2310          * Doing so could cause underruns.
2311          */
2312
2313         return changed;
2314 }
2315
2316 /*
2317  * The spec says we shouldn't write when we don't need, because every write
2318  * causes WMs to be re-evaluated, expending some power.
2319  */
2320 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2321                                 struct ilk_wm_values *results)
2322 {
2323         struct drm_device *dev = dev_priv->dev;
2324         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2325         unsigned int dirty;
2326         uint32_t val;
2327
2328         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2329         if (!dirty)
2330                 return;
2331
2332         _ilk_disable_lp_wm(dev_priv, dirty);
2333
2334         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2335                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2336         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2337                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2338         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2339                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2340
2341         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2342                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2343         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2344                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2345         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2346                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2347
2348         if (dirty & WM_DIRTY_DDB) {
2349                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2350                         val = I915_READ(WM_MISC);
2351                         if (results->partitioning == INTEL_DDB_PART_1_2)
2352                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2353                         else
2354                                 val |= WM_MISC_DATA_PARTITION_5_6;
2355                         I915_WRITE(WM_MISC, val);
2356                 } else {
2357                         val = I915_READ(DISP_ARB_CTL2);
2358                         if (results->partitioning == INTEL_DDB_PART_1_2)
2359                                 val &= ~DISP_DATA_PARTITION_5_6;
2360                         else
2361                                 val |= DISP_DATA_PARTITION_5_6;
2362                         I915_WRITE(DISP_ARB_CTL2, val);
2363                 }
2364         }
2365
2366         if (dirty & WM_DIRTY_FBC) {
2367                 val = I915_READ(DISP_ARB_CTL);
2368                 if (results->enable_fbc_wm)
2369                         val &= ~DISP_FBC_WM_DIS;
2370                 else
2371                         val |= DISP_FBC_WM_DIS;
2372                 I915_WRITE(DISP_ARB_CTL, val);
2373         }
2374
2375         if (dirty & WM_DIRTY_LP(1) &&
2376             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2377                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2378
2379         if (INTEL_INFO(dev)->gen >= 7) {
2380                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2381                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2382                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2383                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2384         }
2385
2386         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2387                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2388         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2389                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2390         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2391                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2392
2393         dev_priv->wm.hw = *results;
2394 }
2395
2396 static bool ilk_disable_lp_wm(struct drm_device *dev)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399
2400         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2401 }
2402
2403 /*
2404  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2405  * different active planes.
2406  */
2407
2408 #define SKL_DDB_SIZE            896     /* in blocks */
2409
2410 static void
2411 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2412                                    struct drm_crtc *for_crtc,
2413                                    const struct intel_wm_config *config,
2414                                    const struct skl_pipe_wm_parameters *params,
2415                                    struct skl_ddb_entry *alloc /* out */)
2416 {
2417         struct drm_crtc *crtc;
2418         unsigned int pipe_size, ddb_size;
2419         int nth_active_pipe;
2420
2421         if (!params->active) {
2422                 alloc->start = 0;
2423                 alloc->end = 0;
2424                 return;
2425         }
2426
2427         ddb_size = SKL_DDB_SIZE;
2428
2429         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2430
2431         nth_active_pipe = 0;
2432         for_each_crtc(dev, crtc) {
2433                 if (!intel_crtc_active(crtc))
2434                         continue;
2435
2436                 if (crtc == for_crtc)
2437                         break;
2438
2439                 nth_active_pipe++;
2440         }
2441
2442         pipe_size = ddb_size / config->num_pipes_active;
2443         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2444         alloc->end = alloc->start + pipe_size;
2445 }
2446
2447 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2448 {
2449         if (config->num_pipes_active == 1)
2450                 return 32;
2451
2452         return 8;
2453 }
2454
2455 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2456 {
2457         entry->start = reg & 0x3ff;
2458         entry->end = (reg >> 16) & 0x3ff;
2459         if (entry->end)
2460                 entry->end += 1;
2461 }
2462
2463 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2464                           struct skl_ddb_allocation *ddb /* out */)
2465 {
2466         struct drm_device *dev = dev_priv->dev;
2467         enum pipe pipe;
2468         int plane;
2469         u32 val;
2470
2471         for_each_pipe(dev_priv, pipe) {
2472                 for_each_plane(pipe, plane) {
2473                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2474                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2475                                                    val);
2476                 }
2477
2478                 val = I915_READ(CUR_BUF_CFG(pipe));
2479                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2480         }
2481 }
2482
2483 static unsigned int
2484 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2485 {
2486         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2487 }
2488
2489 /*
2490  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2491  * a 8192x4096@32bpp framebuffer:
2492  *   3 * 4096 * 8192  * 4 < 2^32
2493  */
2494 static unsigned int
2495 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2496                                  const struct skl_pipe_wm_parameters *params)
2497 {
2498         unsigned int total_data_rate = 0;
2499         int plane;
2500
2501         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2502                 const struct intel_plane_wm_parameters *p;
2503
2504                 p = &params->plane[plane];
2505                 if (!p->enabled)
2506                         continue;
2507
2508                 total_data_rate += skl_plane_relative_data_rate(p);
2509         }
2510
2511         return total_data_rate;
2512 }
2513
2514 static void
2515 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2516                       const struct intel_wm_config *config,
2517                       const struct skl_pipe_wm_parameters *params,
2518                       struct skl_ddb_allocation *ddb /* out */)
2519 {
2520         struct drm_device *dev = crtc->dev;
2521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2522         enum pipe pipe = intel_crtc->pipe;
2523         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2524         uint16_t alloc_size, start, cursor_blocks;
2525         uint16_t minimum[I915_MAX_PLANES];
2526         unsigned int total_data_rate;
2527         int plane;
2528
2529         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2530         alloc_size = skl_ddb_entry_size(alloc);
2531         if (alloc_size == 0) {
2532                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2533                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2534                 return;
2535         }
2536
2537         cursor_blocks = skl_cursor_allocation(config);
2538         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2539         ddb->cursor[pipe].end = alloc->end;
2540
2541         alloc_size -= cursor_blocks;
2542         alloc->end -= cursor_blocks;
2543
2544         /* 1. Allocate the mininum required blocks for each active plane */
2545         for_each_plane(pipe, plane) {
2546                 const struct intel_plane_wm_parameters *p;
2547
2548                 p = &params->plane[plane];
2549                 if (!p->enabled)
2550                         continue;
2551
2552                 minimum[plane] = 8;
2553                 alloc_size -= minimum[plane];
2554         }
2555
2556         /*
2557          * 2. Distribute the remaining space in proportion to the amount of
2558          * data each plane needs to fetch from memory.
2559          *
2560          * FIXME: we may not allocate every single block here.
2561          */
2562         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2563
2564         start = alloc->start;
2565         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2566                 const struct intel_plane_wm_parameters *p;
2567                 unsigned int data_rate;
2568                 uint16_t plane_blocks;
2569
2570                 p = &params->plane[plane];
2571                 if (!p->enabled)
2572                         continue;
2573
2574                 data_rate = skl_plane_relative_data_rate(p);
2575
2576                 /*
2577                  * promote the expression to 64 bits to avoid overflowing, the
2578                  * result is < available as data_rate / total_data_rate < 1
2579                  */
2580                 plane_blocks = minimum[plane];
2581                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2582                                         total_data_rate);
2583
2584                 ddb->plane[pipe][plane].start = start;
2585                 ddb->plane[pipe][plane].end = start + plane_blocks;
2586
2587                 start += plane_blocks;
2588         }
2589
2590 }
2591
2592 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2593 {
2594         /* TODO: Take into account the scalers once we support them */
2595         return config->base.adjusted_mode.crtc_clock;
2596 }
2597
2598 /*
2599  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2600  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2601  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2602  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2603 */
2604 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2605                                uint32_t latency)
2606 {
2607         uint32_t wm_intermediate_val, ret;
2608
2609         if (latency == 0)
2610                 return UINT_MAX;
2611
2612         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2613         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2614
2615         return ret;
2616 }
2617
2618 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2619                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2620                                uint64_t tiling, uint32_t latency)
2621 {
2622         uint32_t ret;
2623         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2624         uint32_t wm_intermediate_val;
2625
2626         if (latency == 0)
2627                 return UINT_MAX;
2628
2629         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2630
2631         if (tiling == I915_FORMAT_MOD_Y_TILED ||
2632             tiling == I915_FORMAT_MOD_Yf_TILED) {
2633                 plane_bytes_per_line *= 4;
2634                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2635                 plane_blocks_per_line /= 4;
2636         } else {
2637                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2638         }
2639
2640         wm_intermediate_val = latency * pixel_rate;
2641         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2642                                 plane_blocks_per_line;
2643
2644         return ret;
2645 }
2646
2647 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2648                                        const struct intel_crtc *intel_crtc)
2649 {
2650         struct drm_device *dev = intel_crtc->base.dev;
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2653         enum pipe pipe = intel_crtc->pipe;
2654
2655         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2656                    sizeof(new_ddb->plane[pipe])))
2657                 return true;
2658
2659         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2660                     sizeof(new_ddb->cursor[pipe])))
2661                 return true;
2662
2663         return false;
2664 }
2665
2666 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2667                                              struct intel_wm_config *config)
2668 {
2669         struct drm_crtc *crtc;
2670         struct drm_plane *plane;
2671
2672         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2673                 config->num_pipes_active += intel_crtc_active(crtc);
2674
2675         /* FIXME: I don't think we need those two global parameters on SKL */
2676         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2677                 struct intel_plane *intel_plane = to_intel_plane(plane);
2678
2679                 config->sprites_enabled |= intel_plane->wm.enabled;
2680                 config->sprites_scaled |= intel_plane->wm.scaled;
2681         }
2682 }
2683
2684 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2685                                            struct skl_pipe_wm_parameters *p)
2686 {
2687         struct drm_device *dev = crtc->dev;
2688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2689         enum pipe pipe = intel_crtc->pipe;
2690         struct drm_plane *plane;
2691         struct drm_framebuffer *fb;
2692         int i = 1; /* Index for sprite planes start */
2693
2694         p->active = intel_crtc_active(crtc);
2695         if (p->active) {
2696                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2697                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2698
2699                 /*
2700                  * For now, assume primary and cursor planes are always enabled.
2701                  */
2702                 p->plane[0].enabled = true;
2703                 p->plane[0].bytes_per_pixel =
2704                         crtc->primary->fb->bits_per_pixel / 8;
2705                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2706                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2707                 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2708                 fb = crtc->primary->state->fb;
2709                 /*
2710                  * Framebuffer can be NULL on plane disable, but it does not
2711                  * matter for watermarks if we assume no tiling in that case.
2712                  */
2713                 if (fb)
2714                         p->plane[0].tiling = fb->modifier[0];
2715
2716                 p->cursor.enabled = true;
2717                 p->cursor.bytes_per_pixel = 4;
2718                 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2719                                          intel_crtc->cursor_width : 64;
2720         }
2721
2722         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2723                 struct intel_plane *intel_plane = to_intel_plane(plane);
2724
2725                 if (intel_plane->pipe == pipe &&
2726                         plane->type == DRM_PLANE_TYPE_OVERLAY)
2727                         p->plane[i++] = intel_plane->wm;
2728         }
2729 }
2730
2731 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2732                                  struct skl_pipe_wm_parameters *p,
2733                                  struct intel_plane_wm_parameters *p_params,
2734                                  uint16_t ddb_allocation,
2735                                  int level,
2736                                  uint16_t *out_blocks, /* out */
2737                                  uint8_t *out_lines /* out */)
2738 {
2739         uint32_t latency = dev_priv->wm.skl_latency[level];
2740         uint32_t method1, method2;
2741         uint32_t plane_bytes_per_line, plane_blocks_per_line;
2742         uint32_t res_blocks, res_lines;
2743         uint32_t selected_result;
2744
2745         if (latency == 0 || !p->active || !p_params->enabled)
2746                 return false;
2747
2748         method1 = skl_wm_method1(p->pixel_rate,
2749                                  p_params->bytes_per_pixel,
2750                                  latency);
2751         method2 = skl_wm_method2(p->pixel_rate,
2752                                  p->pipe_htotal,
2753                                  p_params->horiz_pixels,
2754                                  p_params->bytes_per_pixel,
2755                                  p_params->tiling,
2756                                  latency);
2757
2758         plane_bytes_per_line = p_params->horiz_pixels *
2759                                         p_params->bytes_per_pixel;
2760         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2761
2762         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2763             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2764                 uint32_t y_tile_minimum = plane_blocks_per_line * 4;
2765                 selected_result = max(method2, y_tile_minimum);
2766         } else {
2767                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2768                         selected_result = min(method1, method2);
2769                 else
2770                         selected_result = method1;
2771         }
2772
2773         res_blocks = selected_result + 1;
2774         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2775
2776         if (level >= 1 && level <= 7) {
2777                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2778                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2779                         res_lines += 4;
2780                 else
2781                         res_blocks++;
2782         }
2783
2784         if (res_blocks >= ddb_allocation || res_lines > 31)
2785                 return false;
2786
2787         *out_blocks = res_blocks;
2788         *out_lines = res_lines;
2789
2790         return true;
2791 }
2792
2793 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2794                                  struct skl_ddb_allocation *ddb,
2795                                  struct skl_pipe_wm_parameters *p,
2796                                  enum pipe pipe,
2797                                  int level,
2798                                  int num_planes,
2799                                  struct skl_wm_level *result)
2800 {
2801         uint16_t ddb_blocks;
2802         int i;
2803
2804         for (i = 0; i < num_planes; i++) {
2805                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2806
2807                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2808                                                 p, &p->plane[i],
2809                                                 ddb_blocks,
2810                                                 level,
2811                                                 &result->plane_res_b[i],
2812                                                 &result->plane_res_l[i]);
2813         }
2814
2815         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2816         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2817                                                  ddb_blocks, level,
2818                                                  &result->cursor_res_b,
2819                                                  &result->cursor_res_l);
2820 }
2821
2822 static uint32_t
2823 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2824 {
2825         if (!intel_crtc_active(crtc))
2826                 return 0;
2827
2828         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2829
2830 }
2831
2832 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2833                                       struct skl_pipe_wm_parameters *params,
2834                                       struct skl_wm_level *trans_wm /* out */)
2835 {
2836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2837         int i;
2838
2839         if (!params->active)
2840                 return;
2841
2842         /* Until we know more, just disable transition WMs */
2843         for (i = 0; i < intel_num_planes(intel_crtc); i++)
2844                 trans_wm->plane_en[i] = false;
2845         trans_wm->cursor_en = false;
2846 }
2847
2848 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2849                                 struct skl_ddb_allocation *ddb,
2850                                 struct skl_pipe_wm_parameters *params,
2851                                 struct skl_pipe_wm *pipe_wm)
2852 {
2853         struct drm_device *dev = crtc->dev;
2854         const struct drm_i915_private *dev_priv = dev->dev_private;
2855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2856         int level, max_level = ilk_wm_max_level(dev);
2857
2858         for (level = 0; level <= max_level; level++) {
2859                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2860                                      level, intel_num_planes(intel_crtc),
2861                                      &pipe_wm->wm[level]);
2862         }
2863         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2864
2865         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2866 }
2867
2868 static void skl_compute_wm_results(struct drm_device *dev,
2869                                    struct skl_pipe_wm_parameters *p,
2870                                    struct skl_pipe_wm *p_wm,
2871                                    struct skl_wm_values *r,
2872                                    struct intel_crtc *intel_crtc)
2873 {
2874         int level, max_level = ilk_wm_max_level(dev);
2875         enum pipe pipe = intel_crtc->pipe;
2876         uint32_t temp;
2877         int i;
2878
2879         for (level = 0; level <= max_level; level++) {
2880                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2881                         temp = 0;
2882
2883                         temp |= p_wm->wm[level].plane_res_l[i] <<
2884                                         PLANE_WM_LINES_SHIFT;
2885                         temp |= p_wm->wm[level].plane_res_b[i];
2886                         if (p_wm->wm[level].plane_en[i])
2887                                 temp |= PLANE_WM_EN;
2888
2889                         r->plane[pipe][i][level] = temp;
2890                 }
2891
2892                 temp = 0;
2893
2894                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2895                 temp |= p_wm->wm[level].cursor_res_b;
2896
2897                 if (p_wm->wm[level].cursor_en)
2898                         temp |= PLANE_WM_EN;
2899
2900                 r->cursor[pipe][level] = temp;
2901
2902         }
2903
2904         /* transition WMs */
2905         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2906                 temp = 0;
2907                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2908                 temp |= p_wm->trans_wm.plane_res_b[i];
2909                 if (p_wm->trans_wm.plane_en[i])
2910                         temp |= PLANE_WM_EN;
2911
2912                 r->plane_trans[pipe][i] = temp;
2913         }
2914
2915         temp = 0;
2916         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2917         temp |= p_wm->trans_wm.cursor_res_b;
2918         if (p_wm->trans_wm.cursor_en)
2919                 temp |= PLANE_WM_EN;
2920
2921         r->cursor_trans[pipe] = temp;
2922
2923         r->wm_linetime[pipe] = p_wm->linetime;
2924 }
2925
2926 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2927                                 const struct skl_ddb_entry *entry)
2928 {
2929         if (entry->end)
2930                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2931         else
2932                 I915_WRITE(reg, 0);
2933 }
2934
2935 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2936                                 const struct skl_wm_values *new)
2937 {
2938         struct drm_device *dev = dev_priv->dev;
2939         struct intel_crtc *crtc;
2940
2941         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2942                 int i, level, max_level = ilk_wm_max_level(dev);
2943                 enum pipe pipe = crtc->pipe;
2944
2945                 if (!new->dirty[pipe])
2946                         continue;
2947
2948                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2949
2950                 for (level = 0; level <= max_level; level++) {
2951                         for (i = 0; i < intel_num_planes(crtc); i++)
2952                                 I915_WRITE(PLANE_WM(pipe, i, level),
2953                                            new->plane[pipe][i][level]);
2954                         I915_WRITE(CUR_WM(pipe, level),
2955                                    new->cursor[pipe][level]);
2956                 }
2957                 for (i = 0; i < intel_num_planes(crtc); i++)
2958                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
2959                                    new->plane_trans[pipe][i]);
2960                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2961
2962                 for (i = 0; i < intel_num_planes(crtc); i++)
2963                         skl_ddb_entry_write(dev_priv,
2964                                             PLANE_BUF_CFG(pipe, i),
2965                                             &new->ddb.plane[pipe][i]);
2966
2967                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2968                                     &new->ddb.cursor[pipe]);
2969         }
2970 }
2971
2972 /*
2973  * When setting up a new DDB allocation arrangement, we need to correctly
2974  * sequence the times at which the new allocations for the pipes are taken into
2975  * account or we'll have pipes fetching from space previously allocated to
2976  * another pipe.
2977  *
2978  * Roughly the sequence looks like:
2979  *  1. re-allocate the pipe(s) with the allocation being reduced and not
2980  *     overlapping with a previous light-up pipe (another way to put it is:
2981  *     pipes with their new allocation strickly included into their old ones).
2982  *  2. re-allocate the other pipes that get their allocation reduced
2983  *  3. allocate the pipes having their allocation increased
2984  *
2985  * Steps 1. and 2. are here to take care of the following case:
2986  * - Initially DDB looks like this:
2987  *     |   B    |   C    |
2988  * - enable pipe A.
2989  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2990  *   allocation
2991  *     |  A  |  B  |  C  |
2992  *
2993  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2994  */
2995
2996 static void
2997 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2998 {
2999         struct drm_device *dev = dev_priv->dev;
3000         int plane;
3001
3002         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3003
3004         for_each_plane(pipe, plane) {
3005                 I915_WRITE(PLANE_SURF(pipe, plane),
3006                            I915_READ(PLANE_SURF(pipe, plane)));
3007         }
3008         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3009 }
3010
3011 static bool
3012 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3013                             const struct skl_ddb_allocation *new,
3014                             enum pipe pipe)
3015 {
3016         uint16_t old_size, new_size;
3017
3018         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3019         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3020
3021         return old_size != new_size &&
3022                new->pipe[pipe].start >= old->pipe[pipe].start &&
3023                new->pipe[pipe].end <= old->pipe[pipe].end;
3024 }
3025
3026 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3027                                 struct skl_wm_values *new_values)
3028 {
3029         struct drm_device *dev = dev_priv->dev;
3030         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3031         bool reallocated[I915_MAX_PIPES] = {false, false, false};
3032         struct intel_crtc *crtc;
3033         enum pipe pipe;
3034
3035         new_ddb = &new_values->ddb;
3036         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3037
3038         /*
3039          * First pass: flush the pipes with the new allocation contained into
3040          * the old space.
3041          *
3042          * We'll wait for the vblank on those pipes to ensure we can safely
3043          * re-allocate the freed space without this pipe fetching from it.
3044          */
3045         for_each_intel_crtc(dev, crtc) {
3046                 if (!crtc->active)
3047                         continue;
3048
3049                 pipe = crtc->pipe;
3050
3051                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3052                         continue;
3053
3054                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3055                 intel_wait_for_vblank(dev, pipe);
3056
3057                 reallocated[pipe] = true;
3058         }
3059
3060
3061         /*
3062          * Second pass: flush the pipes that are having their allocation
3063          * reduced, but overlapping with a previous allocation.
3064          *
3065          * Here as well we need to wait for the vblank to make sure the freed
3066          * space is not used anymore.
3067          */
3068         for_each_intel_crtc(dev, crtc) {
3069                 if (!crtc->active)
3070                         continue;
3071
3072                 pipe = crtc->pipe;
3073
3074                 if (reallocated[pipe])
3075                         continue;
3076
3077                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3078                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3079                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3080                         intel_wait_for_vblank(dev, pipe);
3081                         reallocated[pipe] = true;
3082                 }
3083         }
3084
3085         /*
3086          * Third pass: flush the pipes that got more space allocated.
3087          *
3088          * We don't need to actively wait for the update here, next vblank
3089          * will just get more DDB space with the correct WM values.
3090          */
3091         for_each_intel_crtc(dev, crtc) {
3092                 if (!crtc->active)
3093                         continue;
3094
3095                 pipe = crtc->pipe;
3096
3097                 /*
3098                  * At this point, only the pipes more space than before are
3099                  * left to re-allocate.
3100                  */
3101                 if (reallocated[pipe])
3102                         continue;
3103
3104                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3105         }
3106 }
3107
3108 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3109                                struct skl_pipe_wm_parameters *params,
3110                                struct intel_wm_config *config,
3111                                struct skl_ddb_allocation *ddb, /* out */
3112                                struct skl_pipe_wm *pipe_wm /* out */)
3113 {
3114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3115
3116         skl_compute_wm_pipe_parameters(crtc, params);
3117         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3118         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3119
3120         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3121                 return false;
3122
3123         intel_crtc->wm.skl_active = *pipe_wm;
3124         return true;
3125 }
3126
3127 static void skl_update_other_pipe_wm(struct drm_device *dev,
3128                                      struct drm_crtc *crtc,
3129                                      struct intel_wm_config *config,
3130                                      struct skl_wm_values *r)
3131 {
3132         struct intel_crtc *intel_crtc;
3133         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3134
3135         /*
3136          * If the WM update hasn't changed the allocation for this_crtc (the
3137          * crtc we are currently computing the new WM values for), other
3138          * enabled crtcs will keep the same allocation and we don't need to
3139          * recompute anything for them.
3140          */
3141         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3142                 return;
3143
3144         /*
3145          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3146          * other active pipes need new DDB allocation and WM values.
3147          */
3148         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3149                                 base.head) {
3150                 struct skl_pipe_wm_parameters params = {};
3151                 struct skl_pipe_wm pipe_wm = {};
3152                 bool wm_changed;
3153
3154                 if (this_crtc->pipe == intel_crtc->pipe)
3155                         continue;
3156
3157                 if (!intel_crtc->active)
3158                         continue;
3159
3160                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3161                                                 &params, config,
3162                                                 &r->ddb, &pipe_wm);
3163
3164                 /*
3165                  * If we end up re-computing the other pipe WM values, it's
3166                  * because it was really needed, so we expect the WM values to
3167                  * be different.
3168                  */
3169                 WARN_ON(!wm_changed);
3170
3171                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3172                 r->dirty[intel_crtc->pipe] = true;
3173         }
3174 }
3175
3176 static void skl_update_wm(struct drm_crtc *crtc)
3177 {
3178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3179         struct drm_device *dev = crtc->dev;
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         struct skl_pipe_wm_parameters params = {};
3182         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3183         struct skl_pipe_wm pipe_wm = {};
3184         struct intel_wm_config config = {};
3185
3186         memset(results, 0, sizeof(*results));
3187
3188         skl_compute_wm_global_parameters(dev, &config);
3189
3190         if (!skl_update_pipe_wm(crtc, &params, &config,
3191                                 &results->ddb, &pipe_wm))
3192                 return;
3193
3194         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3195         results->dirty[intel_crtc->pipe] = true;
3196
3197         skl_update_other_pipe_wm(dev, crtc, &config, results);
3198         skl_write_wm_values(dev_priv, results);
3199         skl_flush_wm_values(dev_priv, results);
3200
3201         /* store the new configuration */
3202         dev_priv->wm.skl_hw = *results;
3203 }
3204
3205 static void
3206 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3207                      uint32_t sprite_width, uint32_t sprite_height,
3208                      int pixel_size, bool enabled, bool scaled)
3209 {
3210         struct intel_plane *intel_plane = to_intel_plane(plane);
3211         struct drm_framebuffer *fb = plane->state->fb;
3212
3213         intel_plane->wm.enabled = enabled;
3214         intel_plane->wm.scaled = scaled;
3215         intel_plane->wm.horiz_pixels = sprite_width;
3216         intel_plane->wm.vert_pixels = sprite_height;
3217         intel_plane->wm.bytes_per_pixel = pixel_size;
3218         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3219         /*
3220          * Framebuffer can be NULL on plane disable, but it does not
3221          * matter for watermarks if we assume no tiling in that case.
3222          */
3223         if (fb)
3224                 intel_plane->wm.tiling = fb->modifier[0];
3225
3226         skl_update_wm(crtc);
3227 }
3228
3229 static void ilk_update_wm(struct drm_crtc *crtc)
3230 {
3231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3232         struct drm_device *dev = crtc->dev;
3233         struct drm_i915_private *dev_priv = dev->dev_private;
3234         struct ilk_wm_maximums max;
3235         struct ilk_pipe_wm_parameters params = {};
3236         struct ilk_wm_values results = {};
3237         enum intel_ddb_partitioning partitioning;
3238         struct intel_pipe_wm pipe_wm = {};
3239         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3240         struct intel_wm_config config = {};
3241
3242         ilk_compute_wm_parameters(crtc, &params);
3243
3244         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3245
3246         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3247                 return;
3248
3249         intel_crtc->wm.active = pipe_wm;
3250
3251         ilk_compute_wm_config(dev, &config);
3252
3253         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3254         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3255
3256         /* 5/6 split only in single pipe config on IVB+ */
3257         if (INTEL_INFO(dev)->gen >= 7 &&
3258             config.num_pipes_active == 1 && config.sprites_enabled) {
3259                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3260                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3261
3262                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3263         } else {
3264                 best_lp_wm = &lp_wm_1_2;
3265         }
3266
3267         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3268                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3269
3270         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3271
3272         ilk_write_wm_values(dev_priv, &results);
3273 }
3274
3275 static void
3276 ilk_update_sprite_wm(struct drm_plane *plane,
3277                      struct drm_crtc *crtc,
3278                      uint32_t sprite_width, uint32_t sprite_height,
3279                      int pixel_size, bool enabled, bool scaled)
3280 {
3281         struct drm_device *dev = plane->dev;
3282         struct intel_plane *intel_plane = to_intel_plane(plane);
3283
3284         intel_plane->wm.enabled = enabled;
3285         intel_plane->wm.scaled = scaled;
3286         intel_plane->wm.horiz_pixels = sprite_width;
3287         intel_plane->wm.vert_pixels = sprite_width;
3288         intel_plane->wm.bytes_per_pixel = pixel_size;
3289
3290         /*
3291          * IVB workaround: must disable low power watermarks for at least
3292          * one frame before enabling scaling.  LP watermarks can be re-enabled
3293          * when scaling is disabled.
3294          *
3295          * WaCxSRDisabledForSpriteScaling:ivb
3296          */
3297         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3298                 intel_wait_for_vblank(dev, intel_plane->pipe);
3299
3300         ilk_update_wm(crtc);
3301 }
3302
3303 static void skl_pipe_wm_active_state(uint32_t val,
3304                                      struct skl_pipe_wm *active,
3305                                      bool is_transwm,
3306                                      bool is_cursor,
3307                                      int i,
3308                                      int level)
3309 {
3310         bool is_enabled = (val & PLANE_WM_EN) != 0;
3311
3312         if (!is_transwm) {
3313                 if (!is_cursor) {
3314                         active->wm[level].plane_en[i] = is_enabled;
3315                         active->wm[level].plane_res_b[i] =
3316                                         val & PLANE_WM_BLOCKS_MASK;
3317                         active->wm[level].plane_res_l[i] =
3318                                         (val >> PLANE_WM_LINES_SHIFT) &
3319                                                 PLANE_WM_LINES_MASK;
3320                 } else {
3321                         active->wm[level].cursor_en = is_enabled;
3322                         active->wm[level].cursor_res_b =
3323                                         val & PLANE_WM_BLOCKS_MASK;
3324                         active->wm[level].cursor_res_l =
3325                                         (val >> PLANE_WM_LINES_SHIFT) &
3326                                                 PLANE_WM_LINES_MASK;
3327                 }
3328         } else {
3329                 if (!is_cursor) {
3330                         active->trans_wm.plane_en[i] = is_enabled;
3331                         active->trans_wm.plane_res_b[i] =
3332                                         val & PLANE_WM_BLOCKS_MASK;
3333                         active->trans_wm.plane_res_l[i] =
3334                                         (val >> PLANE_WM_LINES_SHIFT) &
3335                                                 PLANE_WM_LINES_MASK;
3336                 } else {
3337                         active->trans_wm.cursor_en = is_enabled;
3338                         active->trans_wm.cursor_res_b =
3339                                         val & PLANE_WM_BLOCKS_MASK;
3340                         active->trans_wm.cursor_res_l =
3341                                         (val >> PLANE_WM_LINES_SHIFT) &
3342                                                 PLANE_WM_LINES_MASK;
3343                 }
3344         }
3345 }
3346
3347 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3348 {
3349         struct drm_device *dev = crtc->dev;
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3354         enum pipe pipe = intel_crtc->pipe;
3355         int level, i, max_level;
3356         uint32_t temp;
3357
3358         max_level = ilk_wm_max_level(dev);
3359
3360         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3361
3362         for (level = 0; level <= max_level; level++) {
3363                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3364                         hw->plane[pipe][i][level] =
3365                                         I915_READ(PLANE_WM(pipe, i, level));
3366                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3367         }
3368
3369         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3370                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3371         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3372
3373         if (!intel_crtc_active(crtc))
3374                 return;
3375
3376         hw->dirty[pipe] = true;
3377
3378         active->linetime = hw->wm_linetime[pipe];
3379
3380         for (level = 0; level <= max_level; level++) {
3381                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3382                         temp = hw->plane[pipe][i][level];
3383                         skl_pipe_wm_active_state(temp, active, false,
3384                                                 false, i, level);
3385                 }
3386                 temp = hw->cursor[pipe][level];
3387                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3388         }
3389
3390         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3391                 temp = hw->plane_trans[pipe][i];
3392                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3393         }
3394
3395         temp = hw->cursor_trans[pipe];
3396         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3397 }
3398
3399 void skl_wm_get_hw_state(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3403         struct drm_crtc *crtc;
3404
3405         skl_ddb_get_hw_state(dev_priv, ddb);
3406         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3407                 skl_pipe_wm_get_hw_state(crtc);
3408 }
3409
3410 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3411 {
3412         struct drm_device *dev = crtc->dev;
3413         struct drm_i915_private *dev_priv = dev->dev_private;
3414         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3416         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3417         enum pipe pipe = intel_crtc->pipe;
3418         static const unsigned int wm0_pipe_reg[] = {
3419                 [PIPE_A] = WM0_PIPEA_ILK,
3420                 [PIPE_B] = WM0_PIPEB_ILK,
3421                 [PIPE_C] = WM0_PIPEC_IVB,
3422         };
3423
3424         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3425         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3426                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3427
3428         active->pipe_enabled = intel_crtc_active(crtc);
3429
3430         if (active->pipe_enabled) {
3431                 u32 tmp = hw->wm_pipe[pipe];
3432
3433                 /*
3434                  * For active pipes LP0 watermark is marked as
3435                  * enabled, and LP1+ watermaks as disabled since
3436                  * we can't really reverse compute them in case
3437                  * multiple pipes are active.
3438                  */
3439                 active->wm[0].enable = true;
3440                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3441                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3442                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3443                 active->linetime = hw->wm_linetime[pipe];
3444         } else {
3445                 int level, max_level = ilk_wm_max_level(dev);
3446
3447                 /*
3448                  * For inactive pipes, all watermark levels
3449                  * should be marked as enabled but zeroed,
3450                  * which is what we'd compute them to.
3451                  */
3452                 for (level = 0; level <= max_level; level++)
3453                         active->wm[level].enable = true;
3454         }
3455 }
3456
3457 void ilk_wm_get_hw_state(struct drm_device *dev)
3458 {
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3461         struct drm_crtc *crtc;
3462
3463         for_each_crtc(dev, crtc)
3464                 ilk_pipe_wm_get_hw_state(crtc);
3465
3466         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3467         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3468         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3469
3470         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3471         if (INTEL_INFO(dev)->gen >= 7) {
3472                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3473                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3474         }
3475
3476         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3477                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3478                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3479         else if (IS_IVYBRIDGE(dev))
3480                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3481                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3482
3483         hw->enable_fbc_wm =
3484                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3485 }
3486
3487 /**
3488  * intel_update_watermarks - update FIFO watermark values based on current modes
3489  *
3490  * Calculate watermark values for the various WM regs based on current mode
3491  * and plane configuration.
3492  *
3493  * There are several cases to deal with here:
3494  *   - normal (i.e. non-self-refresh)
3495  *   - self-refresh (SR) mode
3496  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3497  *   - lines are small relative to FIFO size (buffer can hold more than 2
3498  *     lines), so need to account for TLB latency
3499  *
3500  *   The normal calculation is:
3501  *     watermark = dotclock * bytes per pixel * latency
3502  *   where latency is platform & configuration dependent (we assume pessimal
3503  *   values here).
3504  *
3505  *   The SR calculation is:
3506  *     watermark = (trunc(latency/line time)+1) * surface width *
3507  *       bytes per pixel
3508  *   where
3509  *     line time = htotal / dotclock
3510  *     surface width = hdisplay for normal plane and 64 for cursor
3511  *   and latency is assumed to be high, as above.
3512  *
3513  * The final value programmed to the register should always be rounded up,
3514  * and include an extra 2 entries to account for clock crossings.
3515  *
3516  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3517  * to set the non-SR watermarks to 8.
3518  */
3519 void intel_update_watermarks(struct drm_crtc *crtc)
3520 {
3521         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3522
3523         if (dev_priv->display.update_wm)
3524                 dev_priv->display.update_wm(crtc);
3525 }
3526
3527 void intel_update_sprite_watermarks(struct drm_plane *plane,
3528                                     struct drm_crtc *crtc,
3529                                     uint32_t sprite_width,
3530                                     uint32_t sprite_height,
3531                                     int pixel_size,
3532                                     bool enabled, bool scaled)
3533 {
3534         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3535
3536         if (dev_priv->display.update_sprite_wm)
3537                 dev_priv->display.update_sprite_wm(plane, crtc,
3538                                                    sprite_width, sprite_height,
3539                                                    pixel_size, enabled, scaled);
3540 }
3541
3542 static struct drm_i915_gem_object *
3543 intel_alloc_context_page(struct drm_device *dev)
3544 {
3545         struct drm_i915_gem_object *ctx;
3546         int ret;
3547
3548         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3549
3550         ctx = i915_gem_alloc_object(dev, 4096);
3551         if (!ctx) {
3552                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3553                 return NULL;
3554         }
3555
3556         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3557         if (ret) {
3558                 DRM_ERROR("failed to pin power context: %d\n", ret);
3559                 goto err_unref;
3560         }
3561
3562         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3563         if (ret) {
3564                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3565                 goto err_unpin;
3566         }
3567
3568         return ctx;
3569
3570 err_unpin:
3571         i915_gem_object_ggtt_unpin(ctx);
3572 err_unref:
3573         drm_gem_object_unreference(&ctx->base);
3574         return NULL;
3575 }
3576
3577 /**
3578  * Lock protecting IPS related data structures
3579  */
3580 DEFINE_SPINLOCK(mchdev_lock);
3581
3582 /* Global for IPS driver to get at the current i915 device. Protected by
3583  * mchdev_lock. */
3584 static struct drm_i915_private *i915_mch_dev;
3585
3586 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3587 {
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         u16 rgvswctl;
3590
3591         assert_spin_locked(&mchdev_lock);
3592
3593         rgvswctl = I915_READ16(MEMSWCTL);
3594         if (rgvswctl & MEMCTL_CMD_STS) {
3595                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3596                 return false; /* still busy with another command */
3597         }
3598
3599         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3600                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3601         I915_WRITE16(MEMSWCTL, rgvswctl);
3602         POSTING_READ16(MEMSWCTL);
3603
3604         rgvswctl |= MEMCTL_CMD_STS;
3605         I915_WRITE16(MEMSWCTL, rgvswctl);
3606
3607         return true;
3608 }
3609
3610 static void ironlake_enable_drps(struct drm_device *dev)
3611 {
3612         struct drm_i915_private *dev_priv = dev->dev_private;
3613         u32 rgvmodectl = I915_READ(MEMMODECTL);
3614         u8 fmax, fmin, fstart, vstart;
3615
3616         spin_lock_irq(&mchdev_lock);
3617
3618         /* Enable temp reporting */
3619         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3620         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3621
3622         /* 100ms RC evaluation intervals */
3623         I915_WRITE(RCUPEI, 100000);
3624         I915_WRITE(RCDNEI, 100000);
3625
3626         /* Set max/min thresholds to 90ms and 80ms respectively */
3627         I915_WRITE(RCBMAXAVG, 90000);
3628         I915_WRITE(RCBMINAVG, 80000);
3629
3630         I915_WRITE(MEMIHYST, 1);
3631
3632         /* Set up min, max, and cur for interrupt handling */
3633         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3634         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3635         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3636                 MEMMODE_FSTART_SHIFT;
3637
3638         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3639                 PXVFREQ_PX_SHIFT;
3640
3641         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3642         dev_priv->ips.fstart = fstart;
3643
3644         dev_priv->ips.max_delay = fstart;
3645         dev_priv->ips.min_delay = fmin;
3646         dev_priv->ips.cur_delay = fstart;
3647
3648         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3649                          fmax, fmin, fstart);
3650
3651         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3652
3653         /*
3654          * Interrupts will be enabled in ironlake_irq_postinstall
3655          */
3656
3657         I915_WRITE(VIDSTART, vstart);
3658         POSTING_READ(VIDSTART);
3659
3660         rgvmodectl |= MEMMODE_SWMODE_EN;
3661         I915_WRITE(MEMMODECTL, rgvmodectl);
3662
3663         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3664                 DRM_ERROR("stuck trying to change perf mode\n");
3665         mdelay(1);
3666
3667         ironlake_set_drps(dev, fstart);
3668
3669         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3670                 I915_READ(0x112e0);
3671         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3672         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3673         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3674
3675         spin_unlock_irq(&mchdev_lock);
3676 }
3677
3678 static void ironlake_disable_drps(struct drm_device *dev)
3679 {
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         u16 rgvswctl;
3682
3683         spin_lock_irq(&mchdev_lock);
3684
3685         rgvswctl = I915_READ16(MEMSWCTL);
3686
3687         /* Ack interrupts, disable EFC interrupt */
3688         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3689         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3690         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3691         I915_WRITE(DEIIR, DE_PCU_EVENT);
3692         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3693
3694         /* Go back to the starting frequency */
3695         ironlake_set_drps(dev, dev_priv->ips.fstart);
3696         mdelay(1);
3697         rgvswctl |= MEMCTL_CMD_STS;
3698         I915_WRITE(MEMSWCTL, rgvswctl);
3699         mdelay(1);
3700
3701         spin_unlock_irq(&mchdev_lock);
3702 }
3703
3704 /* There's a funny hw issue where the hw returns all 0 when reading from
3705  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3706  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3707  * all limits and the gpu stuck at whatever frequency it is at atm).
3708  */
3709 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3710 {
3711         u32 limits;
3712
3713         /* Only set the down limit when we've reached the lowest level to avoid
3714          * getting more interrupts, otherwise leave this clear. This prevents a
3715          * race in the hw when coming out of rc6: There's a tiny window where
3716          * the hw runs at the minimal clock before selecting the desired
3717          * frequency, if the down threshold expires in that window we will not
3718          * receive a down interrupt. */
3719         limits = dev_priv->rps.max_freq_softlimit << 24;
3720         if (val <= dev_priv->rps.min_freq_softlimit)
3721                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3722
3723         return limits;
3724 }
3725
3726 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3727 {
3728         int new_power;
3729
3730         new_power = dev_priv->rps.power;
3731         switch (dev_priv->rps.power) {
3732         case LOW_POWER:
3733                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3734                         new_power = BETWEEN;
3735                 break;
3736
3737         case BETWEEN:
3738                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3739                         new_power = LOW_POWER;
3740                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3741                         new_power = HIGH_POWER;
3742                 break;
3743
3744         case HIGH_POWER:
3745                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3746                         new_power = BETWEEN;
3747                 break;
3748         }
3749         /* Max/min bins are special */
3750         if (val == dev_priv->rps.min_freq_softlimit)
3751                 new_power = LOW_POWER;
3752         if (val == dev_priv->rps.max_freq_softlimit)
3753                 new_power = HIGH_POWER;
3754         if (new_power == dev_priv->rps.power)
3755                 return;
3756
3757         /* Note the units here are not exactly 1us, but 1280ns. */
3758         switch (new_power) {
3759         case LOW_POWER:
3760                 /* Upclock if more than 95% busy over 16ms */
3761                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3762                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3763
3764                 /* Downclock if less than 85% busy over 32ms */
3765                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3766                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3767
3768                 I915_WRITE(GEN6_RP_CONTROL,
3769                            GEN6_RP_MEDIA_TURBO |
3770                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3771                            GEN6_RP_MEDIA_IS_GFX |
3772                            GEN6_RP_ENABLE |
3773                            GEN6_RP_UP_BUSY_AVG |
3774                            GEN6_RP_DOWN_IDLE_AVG);
3775                 break;
3776
3777         case BETWEEN:
3778                 /* Upclock if more than 90% busy over 13ms */
3779                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3780                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3781
3782                 /* Downclock if less than 75% busy over 32ms */
3783                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3784                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3785
3786                 I915_WRITE(GEN6_RP_CONTROL,
3787                            GEN6_RP_MEDIA_TURBO |
3788                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3789                            GEN6_RP_MEDIA_IS_GFX |
3790                            GEN6_RP_ENABLE |
3791                            GEN6_RP_UP_BUSY_AVG |
3792                            GEN6_RP_DOWN_IDLE_AVG);
3793                 break;
3794
3795         case HIGH_POWER:
3796                 /* Upclock if more than 85% busy over 10ms */
3797                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3798                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3799
3800                 /* Downclock if less than 60% busy over 32ms */
3801                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3802                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3803
3804                 I915_WRITE(GEN6_RP_CONTROL,
3805                            GEN6_RP_MEDIA_TURBO |
3806                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3807                            GEN6_RP_MEDIA_IS_GFX |
3808                            GEN6_RP_ENABLE |
3809                            GEN6_RP_UP_BUSY_AVG |
3810                            GEN6_RP_DOWN_IDLE_AVG);
3811                 break;
3812         }
3813
3814         dev_priv->rps.power = new_power;
3815         dev_priv->rps.last_adj = 0;
3816 }
3817
3818 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3819 {
3820         u32 mask = 0;
3821
3822         if (val > dev_priv->rps.min_freq_softlimit)
3823                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3824         if (val < dev_priv->rps.max_freq_softlimit)
3825                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3826
3827         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3828         mask &= dev_priv->pm_rps_events;
3829
3830         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3831 }
3832
3833 /* gen6_set_rps is called to update the frequency request, but should also be
3834  * called when the range (min_delay and max_delay) is modified so that we can
3835  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3836 static void gen6_set_rps(struct drm_device *dev, u8 val)
3837 {
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839
3840         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3841         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3842         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3843
3844         /* min/max delay may still have been modified so be sure to
3845          * write the limits value.
3846          */
3847         if (val != dev_priv->rps.cur_freq) {
3848                 gen6_set_rps_thresholds(dev_priv, val);
3849
3850                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3851                         I915_WRITE(GEN6_RPNSWREQ,
3852                                    HSW_FREQUENCY(val));
3853                 else
3854                         I915_WRITE(GEN6_RPNSWREQ,
3855                                    GEN6_FREQUENCY(val) |
3856                                    GEN6_OFFSET(0) |
3857                                    GEN6_AGGRESSIVE_TURBO);
3858         }
3859
3860         /* Make sure we continue to get interrupts
3861          * until we hit the minimum or maximum frequencies.
3862          */
3863         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3864         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3865
3866         POSTING_READ(GEN6_RPNSWREQ);
3867
3868         dev_priv->rps.cur_freq = val;
3869         trace_intel_gpu_freq_change(val * 50);
3870 }
3871
3872 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3873 {
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3877         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3878         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3879
3880         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3881                       "Odd GPU freq value\n"))
3882                 val &= ~1;
3883
3884         if (val != dev_priv->rps.cur_freq)
3885                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3886
3887         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3888
3889         dev_priv->rps.cur_freq = val;
3890         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3891 }
3892
3893 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3894  *
3895  * * If Gfx is Idle, then
3896  * 1. Mask Turbo interrupts
3897  * 2. Bring up Gfx clock
3898  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3899  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3900  * 5. Unmask Turbo interrupts
3901 */
3902 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3903 {
3904         struct drm_device *dev = dev_priv->dev;
3905
3906         /* CHV and latest VLV don't need to force the gfx clock */
3907         if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3908                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3909                 return;
3910         }
3911
3912         /*
3913          * When we are idle.  Drop to min voltage state.
3914          */
3915
3916         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3917                 return;
3918
3919         /* Mask turbo interrupt so that they will not come in between */
3920         I915_WRITE(GEN6_PMINTRMSK,
3921                    gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3922
3923         vlv_force_gfx_clock(dev_priv, true);
3924
3925         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3926
3927         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3928                                         dev_priv->rps.min_freq_softlimit);
3929
3930         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3931                                 & GENFREQSTATUS) == 0, 100))
3932                 DRM_ERROR("timed out waiting for Punit\n");
3933
3934         vlv_force_gfx_clock(dev_priv, false);
3935
3936         I915_WRITE(GEN6_PMINTRMSK,
3937                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3938 }
3939
3940 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3941 {
3942         struct drm_device *dev = dev_priv->dev;
3943
3944         mutex_lock(&dev_priv->rps.hw_lock);
3945         if (dev_priv->rps.enabled) {
3946                 if (IS_VALLEYVIEW(dev))
3947                         vlv_set_rps_idle(dev_priv);
3948                 else
3949                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3950                 dev_priv->rps.last_adj = 0;
3951         }
3952         mutex_unlock(&dev_priv->rps.hw_lock);
3953 }
3954
3955 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3956 {
3957         mutex_lock(&dev_priv->rps.hw_lock);
3958         if (dev_priv->rps.enabled) {
3959                 intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3960                 dev_priv->rps.last_adj = 0;
3961         }
3962         mutex_unlock(&dev_priv->rps.hw_lock);
3963 }
3964
3965 void intel_set_rps(struct drm_device *dev, u8 val)
3966 {
3967         if (IS_VALLEYVIEW(dev))
3968                 valleyview_set_rps(dev, val);
3969         else
3970                 gen6_set_rps(dev, val);
3971 }
3972
3973 static void gen9_disable_rps(struct drm_device *dev)
3974 {
3975         struct drm_i915_private *dev_priv = dev->dev_private;
3976
3977         I915_WRITE(GEN6_RC_CONTROL, 0);
3978         I915_WRITE(GEN9_PG_ENABLE, 0);
3979 }
3980
3981 static void gen6_disable_rps(struct drm_device *dev)
3982 {
3983         struct drm_i915_private *dev_priv = dev->dev_private;
3984
3985         I915_WRITE(GEN6_RC_CONTROL, 0);
3986         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3987 }
3988
3989 static void cherryview_disable_rps(struct drm_device *dev)
3990 {
3991         struct drm_i915_private *dev_priv = dev->dev_private;
3992
3993         I915_WRITE(GEN6_RC_CONTROL, 0);
3994 }
3995
3996 static void valleyview_disable_rps(struct drm_device *dev)
3997 {
3998         struct drm_i915_private *dev_priv = dev->dev_private;
3999
4000         /* we're doing forcewake before Disabling RC6,
4001          * This what the BIOS expects when going into suspend */
4002         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4003
4004         I915_WRITE(GEN6_RC_CONTROL, 0);
4005
4006         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4007 }
4008
4009 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4010 {
4011         if (IS_VALLEYVIEW(dev)) {
4012                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4013                         mode = GEN6_RC_CTL_RC6_ENABLE;
4014                 else
4015                         mode = 0;
4016         }
4017         if (HAS_RC6p(dev))
4018                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4019                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4020                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4021                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4022
4023         else
4024                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4025                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4026 }
4027
4028 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4029 {
4030         /* No RC6 before Ironlake */
4031         if (INTEL_INFO(dev)->gen < 5)
4032                 return 0;
4033
4034         /* RC6 is only on Ironlake mobile not on desktop */
4035         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4036                 return 0;
4037
4038         /* Respect the kernel parameter if it is set */
4039         if (enable_rc6 >= 0) {
4040                 int mask;
4041
4042                 if (HAS_RC6p(dev))
4043                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4044                                INTEL_RC6pp_ENABLE;
4045                 else
4046                         mask = INTEL_RC6_ENABLE;
4047
4048                 if ((enable_rc6 & mask) != enable_rc6)
4049                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4050                                       enable_rc6 & mask, enable_rc6, mask);
4051
4052                 return enable_rc6 & mask;
4053         }
4054
4055         /* Disable RC6 on Ironlake */
4056         if (INTEL_INFO(dev)->gen == 5)
4057                 return 0;
4058
4059         if (IS_IVYBRIDGE(dev))
4060                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4061
4062         return INTEL_RC6_ENABLE;
4063 }
4064
4065 int intel_enable_rc6(const struct drm_device *dev)
4066 {
4067         return i915.enable_rc6;
4068 }
4069
4070 static void gen6_init_rps_frequencies(struct drm_device *dev)
4071 {
4072         struct drm_i915_private *dev_priv = dev->dev_private;
4073         uint32_t rp_state_cap;
4074         u32 ddcc_status = 0;
4075         int ret;
4076
4077         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4078         /* All of these values are in units of 50MHz */
4079         dev_priv->rps.cur_freq          = 0;
4080         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4081         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
4082         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
4083         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
4084         /* hw_max = RP0 until we check for overclocking */
4085         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4086
4087         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4088         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4089                 ret = sandybridge_pcode_read(dev_priv,
4090                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4091                                         &ddcc_status);
4092                 if (0 == ret)
4093                         dev_priv->rps.efficient_freq =
4094                                 clamp_t(u8,
4095                                         ((ddcc_status >> 8) & 0xff),
4096                                         dev_priv->rps.min_freq,
4097                                         dev_priv->rps.max_freq);
4098         }
4099
4100         /* Preserve min/max settings in case of re-init */
4101         if (dev_priv->rps.max_freq_softlimit == 0)
4102                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4103
4104         if (dev_priv->rps.min_freq_softlimit == 0) {
4105                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4106                         dev_priv->rps.min_freq_softlimit =
4107                                 /* max(RPe, 450 MHz) */
4108                                 max(dev_priv->rps.efficient_freq, (u8) 9);
4109                 else
4110                         dev_priv->rps.min_freq_softlimit =
4111                                 dev_priv->rps.min_freq;
4112         }
4113 }
4114
4115 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4116 static void gen9_enable_rps(struct drm_device *dev)
4117 {
4118         struct drm_i915_private *dev_priv = dev->dev_private;
4119
4120         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4121
4122         gen6_init_rps_frequencies(dev);
4123
4124         I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
4125         I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);
4126
4127         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4128         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
4129         I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
4130         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
4131         I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
4132         I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
4133         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4134         I915_WRITE(GEN6_PMINTRMSK, 0x6);
4135         I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
4136                    GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
4137                    GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
4138                    GEN6_RP_DOWN_IDLE_AVG);
4139
4140         gen6_enable_rps_interrupts(dev);
4141
4142         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4143 }
4144
4145 static void gen9_enable_rc6(struct drm_device *dev)
4146 {
4147         struct drm_i915_private *dev_priv = dev->dev_private;
4148         struct intel_engine_cs *ring;
4149         uint32_t rc6_mask = 0;
4150         int unused;
4151
4152         /* 1a: Software RC state - RC0 */
4153         I915_WRITE(GEN6_RC_STATE, 0);
4154
4155         /* 1b: Get forcewake during program sequence. Although the driver
4156          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4157         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4158
4159         /* 2a: Disable RC states. */
4160         I915_WRITE(GEN6_RC_CONTROL, 0);
4161
4162         /* 2b: Program RC6 thresholds.*/
4163         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4164         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4165         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4166         for_each_ring(ring, dev_priv, unused)
4167                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4168         I915_WRITE(GEN6_RC_SLEEP, 0);
4169         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4170
4171         /* 2c: Program Coarse Power Gating Policies. */
4172         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4173         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4174
4175         /* 3a: Enable RC6 */
4176         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4177                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4178         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4179                         "on" : "off");
4180         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4181                                    GEN6_RC_CTL_EI_MODE(1) |
4182                                    rc6_mask);
4183
4184         /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4185         I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4186
4187         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4188
4189 }
4190
4191 static void gen8_enable_rps(struct drm_device *dev)
4192 {
4193         struct drm_i915_private *dev_priv = dev->dev_private;
4194         struct intel_engine_cs *ring;
4195         uint32_t rc6_mask = 0;
4196         int unused;
4197
4198         /* 1a: Software RC state - RC0 */
4199         I915_WRITE(GEN6_RC_STATE, 0);
4200
4201         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4202          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4203         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4204
4205         /* 2a: Disable RC states. */
4206         I915_WRITE(GEN6_RC_CONTROL, 0);
4207
4208         /* Initialize rps frequencies */
4209         gen6_init_rps_frequencies(dev);
4210
4211         /* 2b: Program RC6 thresholds.*/
4212         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4213         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4214         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4215         for_each_ring(ring, dev_priv, unused)
4216                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4217         I915_WRITE(GEN6_RC_SLEEP, 0);
4218         if (IS_BROADWELL(dev))
4219                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4220         else
4221                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4222
4223         /* 3: Enable RC6 */
4224         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4225                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4226         intel_print_rc6_info(dev, rc6_mask);
4227         if (IS_BROADWELL(dev))
4228                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4229                                 GEN7_RC_CTL_TO_MODE |
4230                                 rc6_mask);
4231         else
4232                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4233                                 GEN6_RC_CTL_EI_MODE(1) |
4234                                 rc6_mask);
4235
4236         /* 4 Program defaults and thresholds for RPS*/
4237         I915_WRITE(GEN6_RPNSWREQ,
4238                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4239         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4240                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4241         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4242         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4243
4244         /* Docs recommend 900MHz, and 300 MHz respectively */
4245         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4246                    dev_priv->rps.max_freq_softlimit << 24 |
4247                    dev_priv->rps.min_freq_softlimit << 16);
4248
4249         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4250         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4251         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4252         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4253
4254         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4255
4256         /* 5: Enable RPS */
4257         I915_WRITE(GEN6_RP_CONTROL,
4258                    GEN6_RP_MEDIA_TURBO |
4259                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4260                    GEN6_RP_MEDIA_IS_GFX |
4261                    GEN6_RP_ENABLE |
4262                    GEN6_RP_UP_BUSY_AVG |
4263                    GEN6_RP_DOWN_IDLE_AVG);
4264
4265         /* 6: Ring frequency + overclocking (our driver does this later */
4266
4267         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4268         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4269
4270         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4271 }
4272
4273 static void gen6_enable_rps(struct drm_device *dev)
4274 {
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         struct intel_engine_cs *ring;
4277         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4278         u32 gtfifodbg;
4279         int rc6_mode;
4280         int i, ret;
4281
4282         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4283
4284         /* Here begins a magic sequence of register writes to enable
4285          * auto-downclocking.
4286          *
4287          * Perhaps there might be some value in exposing these to
4288          * userspace...
4289          */
4290         I915_WRITE(GEN6_RC_STATE, 0);
4291
4292         /* Clear the DBG now so we don't confuse earlier errors */
4293         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4294                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4295                 I915_WRITE(GTFIFODBG, gtfifodbg);
4296         }
4297
4298         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4299
4300         /* Initialize rps frequencies */
4301         gen6_init_rps_frequencies(dev);
4302
4303         /* disable the counters and set deterministic thresholds */
4304         I915_WRITE(GEN6_RC_CONTROL, 0);
4305
4306         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4307         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4308         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4309         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4310         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4311
4312         for_each_ring(ring, dev_priv, i)
4313                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4314
4315         I915_WRITE(GEN6_RC_SLEEP, 0);
4316         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4317         if (IS_IVYBRIDGE(dev))
4318                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4319         else
4320                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4321         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4322         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4323
4324         /* Check if we are enabling RC6 */
4325         rc6_mode = intel_enable_rc6(dev_priv->dev);
4326         if (rc6_mode & INTEL_RC6_ENABLE)
4327                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4328
4329         /* We don't use those on Haswell */
4330         if (!IS_HASWELL(dev)) {
4331                 if (rc6_mode & INTEL_RC6p_ENABLE)
4332                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4333
4334                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4335                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4336         }
4337
4338         intel_print_rc6_info(dev, rc6_mask);
4339
4340         I915_WRITE(GEN6_RC_CONTROL,
4341                    rc6_mask |
4342                    GEN6_RC_CTL_EI_MODE(1) |
4343                    GEN6_RC_CTL_HW_ENABLE);
4344
4345         /* Power down if completely idle for over 50ms */
4346         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4347         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4348
4349         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4350         if (ret)
4351                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4352
4353         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4354         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4355                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4356                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4357                                  (pcu_mbox & 0xff) * 50);
4358                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4359         }
4360
4361         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4362         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4363
4364         rc6vids = 0;
4365         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4366         if (IS_GEN6(dev) && ret) {
4367                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4368         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4369                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4370                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4371                 rc6vids &= 0xffff00;
4372                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4373                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4374                 if (ret)
4375                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4376         }
4377
4378         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4379 }
4380
4381 static void __gen6_update_ring_freq(struct drm_device *dev)
4382 {
4383         struct drm_i915_private *dev_priv = dev->dev_private;
4384         int min_freq = 15;
4385         unsigned int gpu_freq;
4386         unsigned int max_ia_freq, min_ring_freq;
4387         int scaling_factor = 180;
4388         struct cpufreq_policy *policy;
4389
4390         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4391
4392         policy = cpufreq_cpu_get(0);
4393         if (policy) {
4394                 max_ia_freq = policy->cpuinfo.max_freq;
4395                 cpufreq_cpu_put(policy);
4396         } else {
4397                 /*
4398                  * Default to measured freq if none found, PCU will ensure we
4399                  * don't go over
4400                  */
4401                 max_ia_freq = tsc_khz;
4402         }
4403
4404         /* Convert from kHz to MHz */
4405         max_ia_freq /= 1000;
4406
4407         min_ring_freq = I915_READ(DCLK) & 0xf;
4408         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4409         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4410
4411         /*
4412          * For each potential GPU frequency, load a ring frequency we'd like
4413          * to use for memory access.  We do this by specifying the IA frequency
4414          * the PCU should use as a reference to determine the ring frequency.
4415          */
4416         for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4417              gpu_freq--) {
4418                 int diff = dev_priv->rps.max_freq - gpu_freq;
4419                 unsigned int ia_freq = 0, ring_freq = 0;
4420
4421                 if (INTEL_INFO(dev)->gen >= 8) {
4422                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4423                         ring_freq = max(min_ring_freq, gpu_freq);
4424                 } else if (IS_HASWELL(dev)) {
4425                         ring_freq = mult_frac(gpu_freq, 5, 4);
4426                         ring_freq = max(min_ring_freq, ring_freq);
4427                         /* leave ia_freq as the default, chosen by cpufreq */
4428                 } else {
4429                         /* On older processors, there is no separate ring
4430                          * clock domain, so in order to boost the bandwidth
4431                          * of the ring, we need to upclock the CPU (ia_freq).
4432                          *
4433                          * For GPU frequencies less than 750MHz,
4434                          * just use the lowest ring freq.
4435                          */
4436                         if (gpu_freq < min_freq)
4437                                 ia_freq = 800;
4438                         else
4439                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4440                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4441                 }
4442
4443                 sandybridge_pcode_write(dev_priv,
4444                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4445                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4446                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4447                                         gpu_freq);
4448         }
4449 }
4450
4451 void gen6_update_ring_freq(struct drm_device *dev)
4452 {
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454
4455         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4456                 return;
4457
4458         mutex_lock(&dev_priv->rps.hw_lock);
4459         __gen6_update_ring_freq(dev);
4460         mutex_unlock(&dev_priv->rps.hw_lock);
4461 }
4462
4463 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4464 {
4465         struct drm_device *dev = dev_priv->dev;
4466         u32 val, rp0;
4467
4468         if (dev->pdev->revision >= 0x20) {
4469                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4470
4471                 switch (INTEL_INFO(dev)->eu_total) {
4472                 case 8:
4473                                 /* (2 * 4) config */
4474                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4475                                 break;
4476                 case 12:
4477                                 /* (2 * 6) config */
4478                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4479                                 break;
4480                 case 16:
4481                                 /* (2 * 8) config */
4482                 default:
4483                                 /* Setting (2 * 8) Min RP0 for any other combination */
4484                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4485                                 break;
4486                 }
4487                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4488         } else {
4489                 /* For pre-production hardware */
4490                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4491                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4492                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4493         }
4494         return rp0;
4495 }
4496
4497 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4498 {
4499         u32 val, rpe;
4500
4501         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4502         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4503
4504         return rpe;
4505 }
4506
4507 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4508 {
4509         struct drm_device *dev = dev_priv->dev;
4510         u32 val, rp1;
4511
4512         if (dev->pdev->revision >= 0x20) {
4513                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4514                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4515         } else {
4516                 /* For pre-production hardware */
4517                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4518                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4519                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4520         }
4521         return rp1;
4522 }
4523
4524 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4525 {
4526         struct drm_device *dev = dev_priv->dev;
4527         u32 val, rpn;
4528
4529         if (dev->pdev->revision >= 0x20) {
4530                 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4531                 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4532                        FB_GFX_FREQ_FUSE_MASK);
4533         } else { /* For pre-production hardware */
4534                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4535                 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4536                        PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4537         }
4538
4539         return rpn;
4540 }
4541
4542 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4543 {
4544         u32 val, rp1;
4545
4546         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4547
4548         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4549
4550         return rp1;
4551 }
4552
4553 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4554 {
4555         u32 val, rp0;
4556
4557         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4558
4559         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4560         /* Clamp to max */
4561         rp0 = min_t(u32, rp0, 0xea);
4562
4563         return rp0;
4564 }
4565
4566 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4567 {
4568         u32 val, rpe;
4569
4570         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4571         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4572         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4573         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4574
4575         return rpe;
4576 }
4577
4578 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4579 {
4580         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4581 }
4582
4583 /* Check that the pctx buffer wasn't move under us. */
4584 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4585 {
4586         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4587
4588         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4589                              dev_priv->vlv_pctx->stolen->start);
4590 }
4591
4592
4593 /* Check that the pcbr address is not empty. */
4594 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4595 {
4596         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4597
4598         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4599 }
4600
4601 static void cherryview_setup_pctx(struct drm_device *dev)
4602 {
4603         struct drm_i915_private *dev_priv = dev->dev_private;
4604         unsigned long pctx_paddr, paddr;
4605         struct i915_gtt *gtt = &dev_priv->gtt;
4606         u32 pcbr;
4607         int pctx_size = 32*1024;
4608
4609         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4610
4611         pcbr = I915_READ(VLV_PCBR);
4612         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4613                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4614                 paddr = (dev_priv->mm.stolen_base +
4615                          (gtt->stolen_size - pctx_size));
4616
4617                 pctx_paddr = (paddr & (~4095));
4618                 I915_WRITE(VLV_PCBR, pctx_paddr);
4619         }
4620
4621         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4622 }
4623
4624 static void valleyview_setup_pctx(struct drm_device *dev)
4625 {
4626         struct drm_i915_private *dev_priv = dev->dev_private;
4627         struct drm_i915_gem_object *pctx;
4628         unsigned long pctx_paddr;
4629         u32 pcbr;
4630         int pctx_size = 24*1024;
4631
4632         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4633
4634         pcbr = I915_READ(VLV_PCBR);
4635         if (pcbr) {
4636                 /* BIOS set it up already, grab the pre-alloc'd space */
4637                 int pcbr_offset;
4638
4639                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4640                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4641                                                                       pcbr_offset,
4642                                                                       I915_GTT_OFFSET_NONE,
4643                                                                       pctx_size);
4644                 goto out;
4645         }
4646
4647         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4648
4649         /*
4650          * From the Gunit register HAS:
4651          * The Gfx driver is expected to program this register and ensure
4652          * proper allocation within Gfx stolen memory.  For example, this
4653          * register should be programmed such than the PCBR range does not
4654          * overlap with other ranges, such as the frame buffer, protected
4655          * memory, or any other relevant ranges.
4656          */
4657         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4658         if (!pctx) {
4659                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4660                 return;
4661         }
4662
4663         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4664         I915_WRITE(VLV_PCBR, pctx_paddr);
4665
4666 out:
4667         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4668         dev_priv->vlv_pctx = pctx;
4669 }
4670
4671 static void valleyview_cleanup_pctx(struct drm_device *dev)
4672 {
4673         struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675         if (WARN_ON(!dev_priv->vlv_pctx))
4676                 return;
4677
4678         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4679         dev_priv->vlv_pctx = NULL;
4680 }
4681
4682 static void valleyview_init_gt_powersave(struct drm_device *dev)
4683 {
4684         struct drm_i915_private *dev_priv = dev->dev_private;
4685         u32 val;
4686
4687         valleyview_setup_pctx(dev);
4688
4689         mutex_lock(&dev_priv->rps.hw_lock);
4690
4691         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4692         switch ((val >> 6) & 3) {
4693         case 0:
4694         case 1:
4695                 dev_priv->mem_freq = 800;
4696                 break;
4697         case 2:
4698                 dev_priv->mem_freq = 1066;
4699                 break;
4700         case 3:
4701                 dev_priv->mem_freq = 1333;
4702                 break;
4703         }
4704         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4705
4706         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4707         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4708         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4709                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4710                          dev_priv->rps.max_freq);
4711
4712         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4713         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4714                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4715                          dev_priv->rps.efficient_freq);
4716
4717         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4718         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4719                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4720                          dev_priv->rps.rp1_freq);
4721
4722         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4723         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4724                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4725                          dev_priv->rps.min_freq);
4726
4727         /* Preserve min/max settings in case of re-init */
4728         if (dev_priv->rps.max_freq_softlimit == 0)
4729                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4730
4731         if (dev_priv->rps.min_freq_softlimit == 0)
4732                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4733
4734         mutex_unlock(&dev_priv->rps.hw_lock);
4735 }
4736
4737 static void cherryview_init_gt_powersave(struct drm_device *dev)
4738 {
4739         struct drm_i915_private *dev_priv = dev->dev_private;
4740         u32 val;
4741
4742         cherryview_setup_pctx(dev);
4743
4744         mutex_lock(&dev_priv->rps.hw_lock);
4745
4746         mutex_lock(&dev_priv->dpio_lock);
4747         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4748         mutex_unlock(&dev_priv->dpio_lock);
4749
4750         switch ((val >> 2) & 0x7) {
4751         case 0:
4752         case 1:
4753                 dev_priv->rps.cz_freq = 200;
4754                 dev_priv->mem_freq = 1600;
4755                 break;
4756         case 2:
4757                 dev_priv->rps.cz_freq = 267;
4758                 dev_priv->mem_freq = 1600;
4759                 break;
4760         case 3:
4761                 dev_priv->rps.cz_freq = 333;
4762                 dev_priv->mem_freq = 2000;
4763                 break;
4764         case 4:
4765                 dev_priv->rps.cz_freq = 320;
4766                 dev_priv->mem_freq = 1600;
4767                 break;
4768         case 5:
4769                 dev_priv->rps.cz_freq = 400;
4770                 dev_priv->mem_freq = 1600;
4771                 break;
4772         }
4773         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4774
4775         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4776         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4777         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4778                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4779                          dev_priv->rps.max_freq);
4780
4781         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4782         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4783                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4784                          dev_priv->rps.efficient_freq);
4785
4786         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4787         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4788                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4789                          dev_priv->rps.rp1_freq);
4790
4791         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4792         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4793                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4794                          dev_priv->rps.min_freq);
4795
4796         WARN_ONCE((dev_priv->rps.max_freq |
4797                    dev_priv->rps.efficient_freq |
4798                    dev_priv->rps.rp1_freq |
4799                    dev_priv->rps.min_freq) & 1,
4800                   "Odd GPU freq values\n");
4801
4802         /* Preserve min/max settings in case of re-init */
4803         if (dev_priv->rps.max_freq_softlimit == 0)
4804                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4805
4806         if (dev_priv->rps.min_freq_softlimit == 0)
4807                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4808
4809         mutex_unlock(&dev_priv->rps.hw_lock);
4810 }
4811
4812 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4813 {
4814         valleyview_cleanup_pctx(dev);
4815 }
4816
4817 static void cherryview_enable_rps(struct drm_device *dev)
4818 {
4819         struct drm_i915_private *dev_priv = dev->dev_private;
4820         struct intel_engine_cs *ring;
4821         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4822         int i;
4823
4824         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4825
4826         gtfifodbg = I915_READ(GTFIFODBG);
4827         if (gtfifodbg) {
4828                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4829                                  gtfifodbg);
4830                 I915_WRITE(GTFIFODBG, gtfifodbg);
4831         }
4832
4833         cherryview_check_pctx(dev_priv);
4834
4835         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4836          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4837         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838
4839         /*  Disable RC states. */
4840         I915_WRITE(GEN6_RC_CONTROL, 0);
4841
4842         /* 2a: Program RC6 thresholds.*/
4843         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4844         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4845         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4846
4847         for_each_ring(ring, dev_priv, i)
4848                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4849         I915_WRITE(GEN6_RC_SLEEP, 0);
4850
4851         /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4852         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4853
4854         /* allows RC6 residency counter to work */
4855         I915_WRITE(VLV_COUNTER_CONTROL,
4856                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4857                                       VLV_MEDIA_RC6_COUNT_EN |
4858                                       VLV_RENDER_RC6_COUNT_EN));
4859
4860         /* For now we assume BIOS is allocating and populating the PCBR  */
4861         pcbr = I915_READ(VLV_PCBR);
4862
4863         /* 3: Enable RC6 */
4864         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4865                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4866                 rc6_mode = GEN7_RC_CTL_TO_MODE;
4867
4868         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4869
4870         /* 4 Program defaults and thresholds for RPS*/
4871         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4872         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4873         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4874         I915_WRITE(GEN6_RP_UP_EI, 66000);
4875         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4876
4877         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4878
4879         /* 5: Enable RPS */
4880         I915_WRITE(GEN6_RP_CONTROL,
4881                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4882                    GEN6_RP_MEDIA_IS_GFX |
4883                    GEN6_RP_ENABLE |
4884                    GEN6_RP_UP_BUSY_AVG |
4885                    GEN6_RP_DOWN_IDLE_AVG);
4886
4887         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4888
4889         /* RPS code assumes GPLL is used */
4890         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4891
4892         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4893         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4894
4895         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4896         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4897                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4898                          dev_priv->rps.cur_freq);
4899
4900         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4901                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4902                          dev_priv->rps.efficient_freq);
4903
4904         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4905
4906         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907 }
4908
4909 static void valleyview_enable_rps(struct drm_device *dev)
4910 {
4911         struct drm_i915_private *dev_priv = dev->dev_private;
4912         struct intel_engine_cs *ring;
4913         u32 gtfifodbg, val, rc6_mode = 0;
4914         int i;
4915
4916         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4917
4918         valleyview_check_pctx(dev_priv);
4919
4920         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4921                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4922                                  gtfifodbg);
4923                 I915_WRITE(GTFIFODBG, gtfifodbg);
4924         }
4925
4926         /* If VLV, Forcewake all wells, else re-direct to regular path */
4927         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928
4929         /*  Disable RC states. */
4930         I915_WRITE(GEN6_RC_CONTROL, 0);
4931
4932         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4933         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4934         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4935         I915_WRITE(GEN6_RP_UP_EI, 66000);
4936         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4937
4938         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4939
4940         I915_WRITE(GEN6_RP_CONTROL,
4941                    GEN6_RP_MEDIA_TURBO |
4942                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4943                    GEN6_RP_MEDIA_IS_GFX |
4944                    GEN6_RP_ENABLE |
4945                    GEN6_RP_UP_BUSY_AVG |
4946                    GEN6_RP_DOWN_IDLE_CONT);
4947
4948         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4949         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4950         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4951
4952         for_each_ring(ring, dev_priv, i)
4953                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4954
4955         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4956
4957         /* allows RC6 residency counter to work */
4958         I915_WRITE(VLV_COUNTER_CONTROL,
4959                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4960                                       VLV_RENDER_RC0_COUNT_EN |
4961                                       VLV_MEDIA_RC6_COUNT_EN |
4962                                       VLV_RENDER_RC6_COUNT_EN));
4963
4964         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4965                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4966
4967         intel_print_rc6_info(dev, rc6_mode);
4968
4969         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4970
4971         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4972
4973         /* RPS code assumes GPLL is used */
4974         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4975
4976         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4977         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4978
4979         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4980         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4981                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4982                          dev_priv->rps.cur_freq);
4983
4984         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4985                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4986                          dev_priv->rps.efficient_freq);
4987
4988         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4989
4990         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991 }
4992
4993 void ironlake_teardown_rc6(struct drm_device *dev)
4994 {
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996
4997         if (dev_priv->ips.renderctx) {
4998                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4999                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
5000                 dev_priv->ips.renderctx = NULL;
5001         }
5002
5003         if (dev_priv->ips.pwrctx) {
5004                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
5005                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
5006                 dev_priv->ips.pwrctx = NULL;
5007         }
5008 }
5009
5010 static void ironlake_disable_rc6(struct drm_device *dev)
5011 {
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013
5014         if (I915_READ(PWRCTXA)) {
5015                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
5016                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
5017                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
5018                          50);
5019
5020                 I915_WRITE(PWRCTXA, 0);
5021                 POSTING_READ(PWRCTXA);
5022
5023                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5024                 POSTING_READ(RSTDBYCTL);
5025         }
5026 }
5027
5028 static int ironlake_setup_rc6(struct drm_device *dev)
5029 {
5030         struct drm_i915_private *dev_priv = dev->dev_private;
5031
5032         if (dev_priv->ips.renderctx == NULL)
5033                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
5034         if (!dev_priv->ips.renderctx)
5035                 return -ENOMEM;
5036
5037         if (dev_priv->ips.pwrctx == NULL)
5038                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
5039         if (!dev_priv->ips.pwrctx) {
5040                 ironlake_teardown_rc6(dev);
5041                 return -ENOMEM;
5042         }
5043
5044         return 0;
5045 }
5046
5047 static void ironlake_enable_rc6(struct drm_device *dev)
5048 {
5049         struct drm_i915_private *dev_priv = dev->dev_private;
5050         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
5051         bool was_interruptible;
5052         int ret;
5053
5054         /* rc6 disabled by default due to repeated reports of hanging during
5055          * boot and resume.
5056          */
5057         if (!intel_enable_rc6(dev))
5058                 return;
5059
5060         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5061
5062         ret = ironlake_setup_rc6(dev);
5063         if (ret)
5064                 return;
5065
5066         was_interruptible = dev_priv->mm.interruptible;
5067         dev_priv->mm.interruptible = false;
5068
5069         /*
5070          * GPU can automatically power down the render unit if given a page
5071          * to save state.
5072          */
5073         ret = intel_ring_begin(ring, 6);
5074         if (ret) {
5075                 ironlake_teardown_rc6(dev);
5076                 dev_priv->mm.interruptible = was_interruptible;
5077                 return;
5078         }
5079
5080         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
5081         intel_ring_emit(ring, MI_SET_CONTEXT);
5082         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
5083                         MI_MM_SPACE_GTT |
5084                         MI_SAVE_EXT_STATE_EN |
5085                         MI_RESTORE_EXT_STATE_EN |
5086                         MI_RESTORE_INHIBIT);
5087         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5088         intel_ring_emit(ring, MI_NOOP);
5089         intel_ring_emit(ring, MI_FLUSH);
5090         intel_ring_advance(ring);
5091
5092         /*
5093          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5094          * does an implicit flush, combined with MI_FLUSH above, it should be
5095          * safe to assume that renderctx is valid
5096          */
5097         ret = intel_ring_idle(ring);
5098         dev_priv->mm.interruptible = was_interruptible;
5099         if (ret) {
5100                 DRM_ERROR("failed to enable ironlake power savings\n");
5101                 ironlake_teardown_rc6(dev);
5102                 return;
5103         }
5104
5105         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5106         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5107
5108         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5109 }
5110
5111 static unsigned long intel_pxfreq(u32 vidfreq)
5112 {
5113         unsigned long freq;
5114         int div = (vidfreq & 0x3f0000) >> 16;
5115         int post = (vidfreq & 0x3000) >> 12;
5116         int pre = (vidfreq & 0x7);
5117
5118         if (!pre)
5119                 return 0;
5120
5121         freq = ((div * 133333) / ((1<<post) * pre));
5122
5123         return freq;
5124 }
5125
5126 static const struct cparams {
5127         u16 i;
5128         u16 t;
5129         u16 m;
5130         u16 c;
5131 } cparams[] = {
5132         { 1, 1333, 301, 28664 },
5133         { 1, 1066, 294, 24460 },
5134         { 1, 800, 294, 25192 },
5135         { 0, 1333, 276, 27605 },
5136         { 0, 1066, 276, 27605 },
5137         { 0, 800, 231, 23784 },
5138 };
5139
5140 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5141 {
5142         u64 total_count, diff, ret;
5143         u32 count1, count2, count3, m = 0, c = 0;
5144         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5145         int i;
5146
5147         assert_spin_locked(&mchdev_lock);
5148
5149         diff1 = now - dev_priv->ips.last_time1;
5150
5151         /* Prevent division-by-zero if we are asking too fast.
5152          * Also, we don't get interesting results if we are polling
5153          * faster than once in 10ms, so just return the saved value
5154          * in such cases.
5155          */
5156         if (diff1 <= 10)
5157                 return dev_priv->ips.chipset_power;
5158
5159         count1 = I915_READ(DMIEC);
5160         count2 = I915_READ(DDREC);
5161         count3 = I915_READ(CSIEC);
5162
5163         total_count = count1 + count2 + count3;
5164
5165         /* FIXME: handle per-counter overflow */
5166         if (total_count < dev_priv->ips.last_count1) {
5167                 diff = ~0UL - dev_priv->ips.last_count1;
5168                 diff += total_count;
5169         } else {
5170                 diff = total_count - dev_priv->ips.last_count1;
5171         }
5172
5173         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5174                 if (cparams[i].i == dev_priv->ips.c_m &&
5175                     cparams[i].t == dev_priv->ips.r_t) {
5176                         m = cparams[i].m;
5177                         c = cparams[i].c;
5178                         break;
5179                 }
5180         }
5181
5182         diff = div_u64(diff, diff1);
5183         ret = ((m * diff) + c);
5184         ret = div_u64(ret, 10);
5185
5186         dev_priv->ips.last_count1 = total_count;
5187         dev_priv->ips.last_time1 = now;
5188
5189         dev_priv->ips.chipset_power = ret;
5190
5191         return ret;
5192 }
5193
5194 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5195 {
5196         struct drm_device *dev = dev_priv->dev;
5197         unsigned long val;
5198
5199         if (INTEL_INFO(dev)->gen != 5)
5200                 return 0;
5201
5202         spin_lock_irq(&mchdev_lock);
5203
5204         val = __i915_chipset_val(dev_priv);
5205
5206         spin_unlock_irq(&mchdev_lock);
5207
5208         return val;
5209 }
5210
5211 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5212 {
5213         unsigned long m, x, b;
5214         u32 tsfs;
5215
5216         tsfs = I915_READ(TSFS);
5217
5218         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5219         x = I915_READ8(TR1);
5220
5221         b = tsfs & TSFS_INTR_MASK;
5222
5223         return ((m * x) / 127) - b;
5224 }
5225
5226 static int _pxvid_to_vd(u8 pxvid)
5227 {
5228         if (pxvid == 0)
5229                 return 0;
5230
5231         if (pxvid >= 8 && pxvid < 31)
5232                 pxvid = 31;
5233
5234         return (pxvid + 2) * 125;
5235 }
5236
5237 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5238 {
5239         struct drm_device *dev = dev_priv->dev;
5240         const int vd = _pxvid_to_vd(pxvid);
5241         const int vm = vd - 1125;
5242
5243         if (INTEL_INFO(dev)->is_mobile)
5244                 return vm > 0 ? vm : 0;
5245
5246         return vd;
5247 }
5248
5249 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5250 {
5251         u64 now, diff, diffms;
5252         u32 count;
5253
5254         assert_spin_locked(&mchdev_lock);
5255
5256         now = ktime_get_raw_ns();
5257         diffms = now - dev_priv->ips.last_time2;
5258         do_div(diffms, NSEC_PER_MSEC);
5259
5260         /* Don't divide by 0 */
5261         if (!diffms)
5262                 return;
5263
5264         count = I915_READ(GFXEC);
5265
5266         if (count < dev_priv->ips.last_count2) {
5267                 diff = ~0UL - dev_priv->ips.last_count2;
5268                 diff += count;
5269         } else {
5270                 diff = count - dev_priv->ips.last_count2;
5271         }
5272
5273         dev_priv->ips.last_count2 = count;
5274         dev_priv->ips.last_time2 = now;
5275
5276         /* More magic constants... */
5277         diff = diff * 1181;
5278         diff = div_u64(diff, diffms * 10);
5279         dev_priv->ips.gfx_power = diff;
5280 }
5281
5282 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5283 {
5284         struct drm_device *dev = dev_priv->dev;
5285
5286         if (INTEL_INFO(dev)->gen != 5)
5287                 return;
5288
5289         spin_lock_irq(&mchdev_lock);
5290
5291         __i915_update_gfx_val(dev_priv);
5292
5293         spin_unlock_irq(&mchdev_lock);
5294 }
5295
5296 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5297 {
5298         unsigned long t, corr, state1, corr2, state2;
5299         u32 pxvid, ext_v;
5300
5301         assert_spin_locked(&mchdev_lock);
5302
5303         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5304         pxvid = (pxvid >> 24) & 0x7f;
5305         ext_v = pvid_to_extvid(dev_priv, pxvid);
5306
5307         state1 = ext_v;
5308
5309         t = i915_mch_val(dev_priv);
5310
5311         /* Revel in the empirically derived constants */
5312
5313         /* Correction factor in 1/100000 units */
5314         if (t > 80)
5315                 corr = ((t * 2349) + 135940);
5316         else if (t >= 50)
5317                 corr = ((t * 964) + 29317);
5318         else /* < 50 */
5319                 corr = ((t * 301) + 1004);
5320
5321         corr = corr * ((150142 * state1) / 10000 - 78642);
5322         corr /= 100000;
5323         corr2 = (corr * dev_priv->ips.corr);
5324
5325         state2 = (corr2 * state1) / 10000;
5326         state2 /= 100; /* convert to mW */
5327
5328         __i915_update_gfx_val(dev_priv);
5329
5330         return dev_priv->ips.gfx_power + state2;
5331 }
5332
5333 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5334 {
5335         struct drm_device *dev = dev_priv->dev;
5336         unsigned long val;
5337
5338         if (INTEL_INFO(dev)->gen != 5)
5339                 return 0;
5340
5341         spin_lock_irq(&mchdev_lock);
5342
5343         val = __i915_gfx_val(dev_priv);
5344
5345         spin_unlock_irq(&mchdev_lock);
5346
5347         return val;
5348 }
5349
5350 /**
5351  * i915_read_mch_val - return value for IPS use
5352  *
5353  * Calculate and return a value for the IPS driver to use when deciding whether
5354  * we have thermal and power headroom to increase CPU or GPU power budget.
5355  */
5356 unsigned long i915_read_mch_val(void)
5357 {
5358         struct drm_i915_private *dev_priv;
5359         unsigned long chipset_val, graphics_val, ret = 0;
5360
5361         spin_lock_irq(&mchdev_lock);
5362         if (!i915_mch_dev)
5363                 goto out_unlock;
5364         dev_priv = i915_mch_dev;
5365
5366         chipset_val = __i915_chipset_val(dev_priv);
5367         graphics_val = __i915_gfx_val(dev_priv);
5368
5369         ret = chipset_val + graphics_val;
5370
5371 out_unlock:
5372         spin_unlock_irq(&mchdev_lock);
5373
5374         return ret;
5375 }
5376 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5377
5378 /**
5379  * i915_gpu_raise - raise GPU frequency limit
5380  *
5381  * Raise the limit; IPS indicates we have thermal headroom.
5382  */
5383 bool i915_gpu_raise(void)
5384 {
5385         struct drm_i915_private *dev_priv;
5386         bool ret = true;
5387
5388         spin_lock_irq(&mchdev_lock);
5389         if (!i915_mch_dev) {
5390                 ret = false;
5391                 goto out_unlock;
5392         }
5393         dev_priv = i915_mch_dev;
5394
5395         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5396                 dev_priv->ips.max_delay--;
5397
5398 out_unlock:
5399         spin_unlock_irq(&mchdev_lock);
5400
5401         return ret;
5402 }
5403 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5404
5405 /**
5406  * i915_gpu_lower - lower GPU frequency limit
5407  *
5408  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5409  * frequency maximum.
5410  */
5411 bool i915_gpu_lower(void)
5412 {
5413         struct drm_i915_private *dev_priv;
5414         bool ret = true;
5415
5416         spin_lock_irq(&mchdev_lock);
5417         if (!i915_mch_dev) {
5418                 ret = false;
5419                 goto out_unlock;
5420         }
5421         dev_priv = i915_mch_dev;
5422
5423         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5424                 dev_priv->ips.max_delay++;
5425
5426 out_unlock:
5427         spin_unlock_irq(&mchdev_lock);
5428
5429         return ret;
5430 }
5431 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5432
5433 /**
5434  * i915_gpu_busy - indicate GPU business to IPS
5435  *
5436  * Tell the IPS driver whether or not the GPU is busy.
5437  */
5438 bool i915_gpu_busy(void)
5439 {
5440         struct drm_i915_private *dev_priv;
5441         struct intel_engine_cs *ring;
5442         bool ret = false;
5443         int i;
5444
5445         spin_lock_irq(&mchdev_lock);
5446         if (!i915_mch_dev)
5447                 goto out_unlock;
5448         dev_priv = i915_mch_dev;
5449
5450         for_each_ring(ring, dev_priv, i)
5451                 ret |= !list_empty(&ring->request_list);
5452
5453 out_unlock:
5454         spin_unlock_irq(&mchdev_lock);
5455
5456         return ret;
5457 }
5458 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5459
5460 /**
5461  * i915_gpu_turbo_disable - disable graphics turbo
5462  *
5463  * Disable graphics turbo by resetting the max frequency and setting the
5464  * current frequency to the default.
5465  */
5466 bool i915_gpu_turbo_disable(void)
5467 {
5468         struct drm_i915_private *dev_priv;
5469         bool ret = true;
5470
5471         spin_lock_irq(&mchdev_lock);
5472         if (!i915_mch_dev) {
5473                 ret = false;
5474                 goto out_unlock;
5475         }
5476         dev_priv = i915_mch_dev;
5477
5478         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5479
5480         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5481                 ret = false;
5482
5483 out_unlock:
5484         spin_unlock_irq(&mchdev_lock);
5485
5486         return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5489
5490 /**
5491  * Tells the intel_ips driver that the i915 driver is now loaded, if
5492  * IPS got loaded first.
5493  *
5494  * This awkward dance is so that neither module has to depend on the
5495  * other in order for IPS to do the appropriate communication of
5496  * GPU turbo limits to i915.
5497  */
5498 static void
5499 ips_ping_for_i915_load(void)
5500 {
5501         void (*link)(void);
5502
5503         link = symbol_get(ips_link_to_i915_driver);
5504         if (link) {
5505                 link();
5506                 symbol_put(ips_link_to_i915_driver);
5507         }
5508 }
5509
5510 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5511 {
5512         /* We only register the i915 ips part with intel-ips once everything is
5513          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5514         spin_lock_irq(&mchdev_lock);
5515         i915_mch_dev = dev_priv;
5516         spin_unlock_irq(&mchdev_lock);
5517
5518         ips_ping_for_i915_load();
5519 }
5520
5521 void intel_gpu_ips_teardown(void)
5522 {
5523         spin_lock_irq(&mchdev_lock);
5524         i915_mch_dev = NULL;
5525         spin_unlock_irq(&mchdev_lock);
5526 }
5527
5528 static void intel_init_emon(struct drm_device *dev)
5529 {
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         u32 lcfuse;
5532         u8 pxw[16];
5533         int i;
5534
5535         /* Disable to program */
5536         I915_WRITE(ECR, 0);
5537         POSTING_READ(ECR);
5538
5539         /* Program energy weights for various events */
5540         I915_WRITE(SDEW, 0x15040d00);
5541         I915_WRITE(CSIEW0, 0x007f0000);
5542         I915_WRITE(CSIEW1, 0x1e220004);
5543         I915_WRITE(CSIEW2, 0x04000004);
5544
5545         for (i = 0; i < 5; i++)
5546                 I915_WRITE(PEW + (i * 4), 0);
5547         for (i = 0; i < 3; i++)
5548                 I915_WRITE(DEW + (i * 4), 0);
5549
5550         /* Program P-state weights to account for frequency power adjustment */
5551         for (i = 0; i < 16; i++) {
5552                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5553                 unsigned long freq = intel_pxfreq(pxvidfreq);
5554                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5555                         PXVFREQ_PX_SHIFT;
5556                 unsigned long val;
5557
5558                 val = vid * vid;
5559                 val *= (freq / 1000);
5560                 val *= 255;
5561                 val /= (127*127*900);
5562                 if (val > 0xff)
5563                         DRM_ERROR("bad pxval: %ld\n", val);
5564                 pxw[i] = val;
5565         }
5566         /* Render standby states get 0 weight */
5567         pxw[14] = 0;
5568         pxw[15] = 0;
5569
5570         for (i = 0; i < 4; i++) {
5571                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5572                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5573                 I915_WRITE(PXW + (i * 4), val);
5574         }
5575
5576         /* Adjust magic regs to magic values (more experimental results) */
5577         I915_WRITE(OGW0, 0);
5578         I915_WRITE(OGW1, 0);
5579         I915_WRITE(EG0, 0x00007f00);
5580         I915_WRITE(EG1, 0x0000000e);
5581         I915_WRITE(EG2, 0x000e0000);
5582         I915_WRITE(EG3, 0x68000300);
5583         I915_WRITE(EG4, 0x42000000);
5584         I915_WRITE(EG5, 0x00140031);
5585         I915_WRITE(EG6, 0);
5586         I915_WRITE(EG7, 0);
5587
5588         for (i = 0; i < 8; i++)
5589                 I915_WRITE(PXWL + (i * 4), 0);
5590
5591         /* Enable PMON + select events */
5592         I915_WRITE(ECR, 0x80000019);
5593
5594         lcfuse = I915_READ(LCFUSE02);
5595
5596         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5597 }
5598
5599 void intel_init_gt_powersave(struct drm_device *dev)
5600 {
5601         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5602
5603         if (IS_CHERRYVIEW(dev))
5604                 cherryview_init_gt_powersave(dev);
5605         else if (IS_VALLEYVIEW(dev))
5606                 valleyview_init_gt_powersave(dev);
5607 }
5608
5609 void intel_cleanup_gt_powersave(struct drm_device *dev)
5610 {
5611         if (IS_CHERRYVIEW(dev))
5612                 return;
5613         else if (IS_VALLEYVIEW(dev))
5614                 valleyview_cleanup_gt_powersave(dev);
5615 }
5616
5617 static void gen6_suspend_rps(struct drm_device *dev)
5618 {
5619         struct drm_i915_private *dev_priv = dev->dev_private;
5620
5621         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5622
5623         /*
5624          * TODO: disable RPS interrupts on GEN9+ too once RPS support
5625          * is added for it.
5626          */
5627         if (INTEL_INFO(dev)->gen < 9)
5628                 gen6_disable_rps_interrupts(dev);
5629 }
5630
5631 /**
5632  * intel_suspend_gt_powersave - suspend PM work and helper threads
5633  * @dev: drm device
5634  *
5635  * We don't want to disable RC6 or other features here, we just want
5636  * to make sure any work we've queued has finished and won't bother
5637  * us while we're suspended.
5638  */
5639 void intel_suspend_gt_powersave(struct drm_device *dev)
5640 {
5641         struct drm_i915_private *dev_priv = dev->dev_private;
5642
5643         if (INTEL_INFO(dev)->gen < 6)
5644                 return;
5645
5646         gen6_suspend_rps(dev);
5647
5648         /* Force GPU to min freq during suspend */
5649         gen6_rps_idle(dev_priv);
5650 }
5651
5652 void intel_disable_gt_powersave(struct drm_device *dev)
5653 {
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655
5656         if (IS_IRONLAKE_M(dev)) {
5657                 ironlake_disable_drps(dev);
5658                 ironlake_disable_rc6(dev);
5659         } else if (INTEL_INFO(dev)->gen >= 6) {
5660                 intel_suspend_gt_powersave(dev);
5661
5662                 mutex_lock(&dev_priv->rps.hw_lock);
5663                 if (INTEL_INFO(dev)->gen >= 9)
5664                         gen9_disable_rps(dev);
5665                 else if (IS_CHERRYVIEW(dev))
5666                         cherryview_disable_rps(dev);
5667                 else if (IS_VALLEYVIEW(dev))
5668                         valleyview_disable_rps(dev);
5669                 else
5670                         gen6_disable_rps(dev);
5671
5672                 dev_priv->rps.enabled = false;
5673                 mutex_unlock(&dev_priv->rps.hw_lock);
5674         }
5675 }
5676
5677 static void intel_gen6_powersave_work(struct work_struct *work)
5678 {
5679         struct drm_i915_private *dev_priv =
5680                 container_of(work, struct drm_i915_private,
5681                              rps.delayed_resume_work.work);
5682         struct drm_device *dev = dev_priv->dev;
5683
5684         mutex_lock(&dev_priv->rps.hw_lock);
5685
5686         /*
5687          * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5688          * added for it.
5689          */
5690         if (INTEL_INFO(dev)->gen < 9)
5691                 gen6_reset_rps_interrupts(dev);
5692
5693         if (IS_CHERRYVIEW(dev)) {
5694                 cherryview_enable_rps(dev);
5695         } else if (IS_VALLEYVIEW(dev)) {
5696                 valleyview_enable_rps(dev);
5697         } else if (INTEL_INFO(dev)->gen >= 9) {
5698                 gen9_enable_rc6(dev);
5699                 gen9_enable_rps(dev);
5700                 __gen6_update_ring_freq(dev);
5701         } else if (IS_BROADWELL(dev)) {
5702                 gen8_enable_rps(dev);
5703                 __gen6_update_ring_freq(dev);
5704         } else {
5705                 gen6_enable_rps(dev);
5706                 __gen6_update_ring_freq(dev);
5707         }
5708         dev_priv->rps.enabled = true;
5709
5710         if (INTEL_INFO(dev)->gen < 9)
5711                 gen6_enable_rps_interrupts(dev);
5712
5713         mutex_unlock(&dev_priv->rps.hw_lock);
5714
5715         intel_runtime_pm_put(dev_priv);
5716 }
5717
5718 void intel_enable_gt_powersave(struct drm_device *dev)
5719 {
5720         struct drm_i915_private *dev_priv = dev->dev_private;
5721
5722         /* Powersaving is controlled by the host when inside a VM */
5723         if (intel_vgpu_active(dev))
5724                 return;
5725
5726         if (IS_IRONLAKE_M(dev)) {
5727                 mutex_lock(&dev->struct_mutex);
5728                 ironlake_enable_drps(dev);
5729                 ironlake_enable_rc6(dev);
5730                 intel_init_emon(dev);
5731                 mutex_unlock(&dev->struct_mutex);
5732         } else if (INTEL_INFO(dev)->gen >= 6) {
5733                 /*
5734                  * PCU communication is slow and this doesn't need to be
5735                  * done at any specific time, so do this out of our fast path
5736                  * to make resume and init faster.
5737                  *
5738                  * We depend on the HW RC6 power context save/restore
5739                  * mechanism when entering D3 through runtime PM suspend. So
5740                  * disable RPM until RPS/RC6 is properly setup. We can only
5741                  * get here via the driver load/system resume/runtime resume
5742                  * paths, so the _noresume version is enough (and in case of
5743                  * runtime resume it's necessary).
5744                  */
5745                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5746                                            round_jiffies_up_relative(HZ)))
5747                         intel_runtime_pm_get_noresume(dev_priv);
5748         }
5749 }
5750
5751 void intel_reset_gt_powersave(struct drm_device *dev)
5752 {
5753         struct drm_i915_private *dev_priv = dev->dev_private;
5754
5755         if (INTEL_INFO(dev)->gen < 6)
5756                 return;
5757
5758         gen6_suspend_rps(dev);
5759         dev_priv->rps.enabled = false;
5760 }
5761
5762 static void ibx_init_clock_gating(struct drm_device *dev)
5763 {
5764         struct drm_i915_private *dev_priv = dev->dev_private;
5765
5766         /*
5767          * On Ibex Peak and Cougar Point, we need to disable clock
5768          * gating for the panel power sequencer or it will fail to
5769          * start up when no ports are active.
5770          */
5771         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5772 }
5773
5774 static void g4x_disable_trickle_feed(struct drm_device *dev)
5775 {
5776         struct drm_i915_private *dev_priv = dev->dev_private;
5777         int pipe;
5778
5779         for_each_pipe(dev_priv, pipe) {
5780                 I915_WRITE(DSPCNTR(pipe),
5781                            I915_READ(DSPCNTR(pipe)) |
5782                            DISPPLANE_TRICKLE_FEED_DISABLE);
5783                 intel_flush_primary_plane(dev_priv, pipe);
5784         }
5785 }
5786
5787 static void ilk_init_lp_watermarks(struct drm_device *dev)
5788 {
5789         struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5792         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5793         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5794
5795         /*
5796          * Don't touch WM1S_LP_EN here.
5797          * Doing so could cause underruns.
5798          */
5799 }
5800
5801 static void ironlake_init_clock_gating(struct drm_device *dev)
5802 {
5803         struct drm_i915_private *dev_priv = dev->dev_private;
5804         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5805
5806         /*
5807          * Required for FBC
5808          * WaFbcDisableDpfcClockGating:ilk
5809          */
5810         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5811                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5812                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5813
5814         I915_WRITE(PCH_3DCGDIS0,
5815                    MARIUNIT_CLOCK_GATE_DISABLE |
5816                    SVSMUNIT_CLOCK_GATE_DISABLE);
5817         I915_WRITE(PCH_3DCGDIS1,
5818                    VFMUNIT_CLOCK_GATE_DISABLE);
5819
5820         /*
5821          * According to the spec the following bits should be set in
5822          * order to enable memory self-refresh
5823          * The bit 22/21 of 0x42004
5824          * The bit 5 of 0x42020
5825          * The bit 15 of 0x45000
5826          */
5827         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5828                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5829                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5830         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5831         I915_WRITE(DISP_ARB_CTL,
5832                    (I915_READ(DISP_ARB_CTL) |
5833                     DISP_FBC_WM_DIS));
5834
5835         ilk_init_lp_watermarks(dev);
5836
5837         /*
5838          * Based on the document from hardware guys the following bits
5839          * should be set unconditionally in order to enable FBC.
5840          * The bit 22 of 0x42000
5841          * The bit 22 of 0x42004
5842          * The bit 7,8,9 of 0x42020.
5843          */
5844         if (IS_IRONLAKE_M(dev)) {
5845                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5846                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5847                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5848                            ILK_FBCQ_DIS);
5849                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5850                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5851                            ILK_DPARB_GATE);
5852         }
5853
5854         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5855
5856         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5857                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5858                    ILK_ELPIN_409_SELECT);
5859         I915_WRITE(_3D_CHICKEN2,
5860                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5861                    _3D_CHICKEN2_WM_READ_PIPELINED);
5862
5863         /* WaDisableRenderCachePipelinedFlush:ilk */
5864         I915_WRITE(CACHE_MODE_0,
5865                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5866
5867         /* WaDisable_RenderCache_OperationalFlush:ilk */
5868         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5869
5870         g4x_disable_trickle_feed(dev);
5871
5872         ibx_init_clock_gating(dev);
5873 }
5874
5875 static void cpt_init_clock_gating(struct drm_device *dev)
5876 {
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         int pipe;
5879         uint32_t val;
5880
5881         /*
5882          * On Ibex Peak and Cougar Point, we need to disable clock
5883          * gating for the panel power sequencer or it will fail to
5884          * start up when no ports are active.
5885          */
5886         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5887                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5888                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5889         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5890                    DPLS_EDP_PPS_FIX_DIS);
5891         /* The below fixes the weird display corruption, a few pixels shifted
5892          * downward, on (only) LVDS of some HP laptops with IVY.
5893          */
5894         for_each_pipe(dev_priv, pipe) {
5895                 val = I915_READ(TRANS_CHICKEN2(pipe));
5896                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5897                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5898                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5899                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5900                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5901                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5902                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5903                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5904         }
5905         /* WADP0ClockGatingDisable */
5906         for_each_pipe(dev_priv, pipe) {
5907                 I915_WRITE(TRANS_CHICKEN1(pipe),
5908                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5909         }
5910 }
5911
5912 static void gen6_check_mch_setup(struct drm_device *dev)
5913 {
5914         struct drm_i915_private *dev_priv = dev->dev_private;
5915         uint32_t tmp;
5916
5917         tmp = I915_READ(MCH_SSKPD);
5918         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5919                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5920                               tmp);
5921 }
5922
5923 static void gen6_init_clock_gating(struct drm_device *dev)
5924 {
5925         struct drm_i915_private *dev_priv = dev->dev_private;
5926         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5927
5928         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5929
5930         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5931                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5932                    ILK_ELPIN_409_SELECT);
5933
5934         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5935         I915_WRITE(_3D_CHICKEN,
5936                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5937
5938         /* WaDisable_RenderCache_OperationalFlush:snb */
5939         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5940
5941         /*
5942          * BSpec recoomends 8x4 when MSAA is used,
5943          * however in practice 16x4 seems fastest.
5944          *
5945          * Note that PS/WM thread counts depend on the WIZ hashing
5946          * disable bit, which we don't touch here, but it's good
5947          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5948          */
5949         I915_WRITE(GEN6_GT_MODE,
5950                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5951
5952         ilk_init_lp_watermarks(dev);
5953
5954         I915_WRITE(CACHE_MODE_0,
5955                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5956
5957         I915_WRITE(GEN6_UCGCTL1,
5958                    I915_READ(GEN6_UCGCTL1) |
5959                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5960                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5961
5962         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5963          * gating disable must be set.  Failure to set it results in
5964          * flickering pixels due to Z write ordering failures after
5965          * some amount of runtime in the Mesa "fire" demo, and Unigine
5966          * Sanctuary and Tropics, and apparently anything else with
5967          * alpha test or pixel discard.
5968          *
5969          * According to the spec, bit 11 (RCCUNIT) must also be set,
5970          * but we didn't debug actual testcases to find it out.
5971          *
5972          * WaDisableRCCUnitClockGating:snb
5973          * WaDisableRCPBUnitClockGating:snb
5974          */
5975         I915_WRITE(GEN6_UCGCTL2,
5976                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5977                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5978
5979         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5980         I915_WRITE(_3D_CHICKEN3,
5981                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5982
5983         /*
5984          * Bspec says:
5985          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5986          * 3DSTATE_SF number of SF output attributes is more than 16."
5987          */
5988         I915_WRITE(_3D_CHICKEN3,
5989                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5990
5991         /*
5992          * According to the spec the following bits should be
5993          * set in order to enable memory self-refresh and fbc:
5994          * The bit21 and bit22 of 0x42000
5995          * The bit21 and bit22 of 0x42004
5996          * The bit5 and bit7 of 0x42020
5997          * The bit14 of 0x70180
5998          * The bit14 of 0x71180
5999          *
6000          * WaFbcAsynchFlipDisableFbcQueue:snb
6001          */
6002         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6003                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6004                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6005         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6006                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6007                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6008         I915_WRITE(ILK_DSPCLK_GATE_D,
6009                    I915_READ(ILK_DSPCLK_GATE_D) |
6010                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6011                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6012
6013         g4x_disable_trickle_feed(dev);
6014
6015         cpt_init_clock_gating(dev);
6016
6017         gen6_check_mch_setup(dev);
6018 }
6019
6020 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6021 {
6022         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6023
6024         /*
6025          * WaVSThreadDispatchOverride:ivb,vlv
6026          *
6027          * This actually overrides the dispatch
6028          * mode for all thread types.
6029          */
6030         reg &= ~GEN7_FF_SCHED_MASK;
6031         reg |= GEN7_FF_TS_SCHED_HW;
6032         reg |= GEN7_FF_VS_SCHED_HW;
6033         reg |= GEN7_FF_DS_SCHED_HW;
6034
6035         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6036 }
6037
6038 static void lpt_init_clock_gating(struct drm_device *dev)
6039 {
6040         struct drm_i915_private *dev_priv = dev->dev_private;
6041
6042         /*
6043          * TODO: this bit should only be enabled when really needed, then
6044          * disabled when not needed anymore in order to save power.
6045          */
6046         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6047                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6048                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6049                            PCH_LP_PARTITION_LEVEL_DISABLE);
6050
6051         /* WADPOClockGatingDisable:hsw */
6052         I915_WRITE(_TRANSA_CHICKEN1,
6053                    I915_READ(_TRANSA_CHICKEN1) |
6054                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6055 }
6056
6057 static void lpt_suspend_hw(struct drm_device *dev)
6058 {
6059         struct drm_i915_private *dev_priv = dev->dev_private;
6060
6061         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6062                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6063
6064                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6065                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6066         }
6067 }
6068
6069 static void broadwell_init_clock_gating(struct drm_device *dev)
6070 {
6071         struct drm_i915_private *dev_priv = dev->dev_private;
6072         enum pipe pipe;
6073
6074         I915_WRITE(WM3_LP_ILK, 0);
6075         I915_WRITE(WM2_LP_ILK, 0);
6076         I915_WRITE(WM1_LP_ILK, 0);
6077
6078         /* WaSwitchSolVfFArbitrationPriority:bdw */
6079         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6080
6081         /* WaPsrDPAMaskVBlankInSRD:bdw */
6082         I915_WRITE(CHICKEN_PAR1_1,
6083                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6084
6085         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6086         for_each_pipe(dev_priv, pipe) {
6087                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6088                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6089                            BDW_DPRS_MASK_VBLANK_SRD);
6090         }
6091
6092         /* WaVSRefCountFullforceMissDisable:bdw */
6093         /* WaDSRefCountFullforceMissDisable:bdw */
6094         I915_WRITE(GEN7_FF_THREAD_MODE,
6095                    I915_READ(GEN7_FF_THREAD_MODE) &
6096                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6097
6098         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6099                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6100
6101         /* WaDisableSDEUnitClockGating:bdw */
6102         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6103                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6104
6105         lpt_init_clock_gating(dev);
6106 }
6107
6108 static void haswell_init_clock_gating(struct drm_device *dev)
6109 {
6110         struct drm_i915_private *dev_priv = dev->dev_private;
6111
6112         ilk_init_lp_watermarks(dev);
6113
6114         /* L3 caching of data atomics doesn't work -- disable it. */
6115         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6116         I915_WRITE(HSW_ROW_CHICKEN3,
6117                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6118
6119         /* This is required by WaCatErrorRejectionIssue:hsw */
6120         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6121                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6122                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6123
6124         /* WaVSRefCountFullforceMissDisable:hsw */
6125         I915_WRITE(GEN7_FF_THREAD_MODE,
6126                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6127
6128         /* WaDisable_RenderCache_OperationalFlush:hsw */
6129         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6130
6131         /* enable HiZ Raw Stall Optimization */
6132         I915_WRITE(CACHE_MODE_0_GEN7,
6133                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6134
6135         /* WaDisable4x2SubspanOptimization:hsw */
6136         I915_WRITE(CACHE_MODE_1,
6137                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6138
6139         /*
6140          * BSpec recommends 8x4 when MSAA is used,
6141          * however in practice 16x4 seems fastest.
6142          *
6143          * Note that PS/WM thread counts depend on the WIZ hashing
6144          * disable bit, which we don't touch here, but it's good
6145          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6146          */
6147         I915_WRITE(GEN7_GT_MODE,
6148                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6149
6150         /* WaSampleCChickenBitEnable:hsw */
6151         I915_WRITE(HALF_SLICE_CHICKEN3,
6152                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6153
6154         /* WaSwitchSolVfFArbitrationPriority:hsw */
6155         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6156
6157         /* WaRsPkgCStateDisplayPMReq:hsw */
6158         I915_WRITE(CHICKEN_PAR1_1,
6159                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6160
6161         lpt_init_clock_gating(dev);
6162 }
6163
6164 static void ivybridge_init_clock_gating(struct drm_device *dev)
6165 {
6166         struct drm_i915_private *dev_priv = dev->dev_private;
6167         uint32_t snpcr;
6168
6169         ilk_init_lp_watermarks(dev);
6170
6171         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6172
6173         /* WaDisableEarlyCull:ivb */
6174         I915_WRITE(_3D_CHICKEN3,
6175                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6176
6177         /* WaDisableBackToBackFlipFix:ivb */
6178         I915_WRITE(IVB_CHICKEN3,
6179                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6180                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6181
6182         /* WaDisablePSDDualDispatchEnable:ivb */
6183         if (IS_IVB_GT1(dev))
6184                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6185                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6186
6187         /* WaDisable_RenderCache_OperationalFlush:ivb */
6188         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6189
6190         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6191         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6192                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6193
6194         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6195         I915_WRITE(GEN7_L3CNTLREG1,
6196                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6197         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6198                    GEN7_WA_L3_CHICKEN_MODE);
6199         if (IS_IVB_GT1(dev))
6200                 I915_WRITE(GEN7_ROW_CHICKEN2,
6201                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6202         else {
6203                 /* must write both registers */
6204                 I915_WRITE(GEN7_ROW_CHICKEN2,
6205                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6206                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6207                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6208         }
6209
6210         /* WaForceL3Serialization:ivb */
6211         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6212                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6213
6214         /*
6215          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6216          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6217          */
6218         I915_WRITE(GEN6_UCGCTL2,
6219                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6220
6221         /* This is required by WaCatErrorRejectionIssue:ivb */
6222         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6223                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6224                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6225
6226         g4x_disable_trickle_feed(dev);
6227
6228         gen7_setup_fixed_func_scheduler(dev_priv);
6229
6230         if (0) { /* causes HiZ corruption on ivb:gt1 */
6231                 /* enable HiZ Raw Stall Optimization */
6232                 I915_WRITE(CACHE_MODE_0_GEN7,
6233                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6234         }
6235
6236         /* WaDisable4x2SubspanOptimization:ivb */
6237         I915_WRITE(CACHE_MODE_1,
6238                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6239
6240         /*
6241          * BSpec recommends 8x4 when MSAA is used,
6242          * however in practice 16x4 seems fastest.
6243          *
6244          * Note that PS/WM thread counts depend on the WIZ hashing
6245          * disable bit, which we don't touch here, but it's good
6246          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6247          */
6248         I915_WRITE(GEN7_GT_MODE,
6249                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6250
6251         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6252         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6253         snpcr |= GEN6_MBC_SNPCR_MED;
6254         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6255
6256         if (!HAS_PCH_NOP(dev))
6257                 cpt_init_clock_gating(dev);
6258
6259         gen6_check_mch_setup(dev);
6260 }
6261
6262 static void valleyview_init_clock_gating(struct drm_device *dev)
6263 {
6264         struct drm_i915_private *dev_priv = dev->dev_private;
6265
6266         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6267
6268         /* WaDisableEarlyCull:vlv */
6269         I915_WRITE(_3D_CHICKEN3,
6270                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6271
6272         /* WaDisableBackToBackFlipFix:vlv */
6273         I915_WRITE(IVB_CHICKEN3,
6274                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6275                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6276
6277         /* WaPsdDispatchEnable:vlv */
6278         /* WaDisablePSDDualDispatchEnable:vlv */
6279         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6280                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6281                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6282
6283         /* WaDisable_RenderCache_OperationalFlush:vlv */
6284         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6285
6286         /* WaForceL3Serialization:vlv */
6287         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6288                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6289
6290         /* WaDisableDopClockGating:vlv */
6291         I915_WRITE(GEN7_ROW_CHICKEN2,
6292                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6293
6294         /* This is required by WaCatErrorRejectionIssue:vlv */
6295         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6296                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6297                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6298
6299         gen7_setup_fixed_func_scheduler(dev_priv);
6300
6301         /*
6302          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6303          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6304          */
6305         I915_WRITE(GEN6_UCGCTL2,
6306                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6307
6308         /* WaDisableL3Bank2xClockGate:vlv
6309          * Disabling L3 clock gating- MMIO 940c[25] = 1
6310          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6311         I915_WRITE(GEN7_UCGCTL4,
6312                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6313
6314         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6315
6316         /*
6317          * BSpec says this must be set, even though
6318          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6319          */
6320         I915_WRITE(CACHE_MODE_1,
6321                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6322
6323         /*
6324          * BSpec recommends 8x4 when MSAA is used,
6325          * however in practice 16x4 seems fastest.
6326          *
6327          * Note that PS/WM thread counts depend on the WIZ hashing
6328          * disable bit, which we don't touch here, but it's good
6329          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6330          */
6331         I915_WRITE(GEN7_GT_MODE,
6332                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6333
6334         /*
6335          * WaIncreaseL3CreditsForVLVB0:vlv
6336          * This is the hardware default actually.
6337          */
6338         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6339
6340         /*
6341          * WaDisableVLVClockGating_VBIIssue:vlv
6342          * Disable clock gating on th GCFG unit to prevent a delay
6343          * in the reporting of vblank events.
6344          */
6345         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6346 }
6347
6348 static void cherryview_init_clock_gating(struct drm_device *dev)
6349 {
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351
6352         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6353
6354         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6355
6356         /* WaVSRefCountFullforceMissDisable:chv */
6357         /* WaDSRefCountFullforceMissDisable:chv */
6358         I915_WRITE(GEN7_FF_THREAD_MODE,
6359                    I915_READ(GEN7_FF_THREAD_MODE) &
6360                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6361
6362         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6363         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6364                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6365
6366         /* WaDisableCSUnitClockGating:chv */
6367         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6368                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6369
6370         /* WaDisableSDEUnitClockGating:chv */
6371         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6372                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6373 }
6374
6375 static void g4x_init_clock_gating(struct drm_device *dev)
6376 {
6377         struct drm_i915_private *dev_priv = dev->dev_private;
6378         uint32_t dspclk_gate;
6379
6380         I915_WRITE(RENCLK_GATE_D1, 0);
6381         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6382                    GS_UNIT_CLOCK_GATE_DISABLE |
6383                    CL_UNIT_CLOCK_GATE_DISABLE);
6384         I915_WRITE(RAMCLK_GATE_D, 0);
6385         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6386                 OVRUNIT_CLOCK_GATE_DISABLE |
6387                 OVCUNIT_CLOCK_GATE_DISABLE;
6388         if (IS_GM45(dev))
6389                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6390         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6391
6392         /* WaDisableRenderCachePipelinedFlush */
6393         I915_WRITE(CACHE_MODE_0,
6394                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6395
6396         /* WaDisable_RenderCache_OperationalFlush:g4x */
6397         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6398
6399         g4x_disable_trickle_feed(dev);
6400 }
6401
6402 static void crestline_init_clock_gating(struct drm_device *dev)
6403 {
6404         struct drm_i915_private *dev_priv = dev->dev_private;
6405
6406         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6407         I915_WRITE(RENCLK_GATE_D2, 0);
6408         I915_WRITE(DSPCLK_GATE_D, 0);
6409         I915_WRITE(RAMCLK_GATE_D, 0);
6410         I915_WRITE16(DEUC, 0);
6411         I915_WRITE(MI_ARB_STATE,
6412                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6413
6414         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6415         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6416 }
6417
6418 static void broadwater_init_clock_gating(struct drm_device *dev)
6419 {
6420         struct drm_i915_private *dev_priv = dev->dev_private;
6421
6422         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6423                    I965_RCC_CLOCK_GATE_DISABLE |
6424                    I965_RCPB_CLOCK_GATE_DISABLE |
6425                    I965_ISC_CLOCK_GATE_DISABLE |
6426                    I965_FBC_CLOCK_GATE_DISABLE);
6427         I915_WRITE(RENCLK_GATE_D2, 0);
6428         I915_WRITE(MI_ARB_STATE,
6429                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6430
6431         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6432         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6433 }
6434
6435 static void gen3_init_clock_gating(struct drm_device *dev)
6436 {
6437         struct drm_i915_private *dev_priv = dev->dev_private;
6438         u32 dstate = I915_READ(D_STATE);
6439
6440         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6441                 DSTATE_DOT_CLOCK_GATING;
6442         I915_WRITE(D_STATE, dstate);
6443
6444         if (IS_PINEVIEW(dev))
6445                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6446
6447         /* IIR "flip pending" means done if this bit is set */
6448         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6449
6450         /* interrupts should cause a wake up from C3 */
6451         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6452
6453         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6454         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6455
6456         I915_WRITE(MI_ARB_STATE,
6457                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6458 }
6459
6460 static void i85x_init_clock_gating(struct drm_device *dev)
6461 {
6462         struct drm_i915_private *dev_priv = dev->dev_private;
6463
6464         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6465
6466         /* interrupts should cause a wake up from C3 */
6467         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6468                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6469
6470         I915_WRITE(MEM_MODE,
6471                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6472 }
6473
6474 static void i830_init_clock_gating(struct drm_device *dev)
6475 {
6476         struct drm_i915_private *dev_priv = dev->dev_private;
6477
6478         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6479
6480         I915_WRITE(MEM_MODE,
6481                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6482                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6483 }
6484
6485 void intel_init_clock_gating(struct drm_device *dev)
6486 {
6487         struct drm_i915_private *dev_priv = dev->dev_private;
6488
6489         if (dev_priv->display.init_clock_gating)
6490                 dev_priv->display.init_clock_gating(dev);
6491 }
6492
6493 void intel_suspend_hw(struct drm_device *dev)
6494 {
6495         if (HAS_PCH_LPT(dev))
6496                 lpt_suspend_hw(dev);
6497 }
6498
6499 /* Set up chip specific power management-related functions */
6500 void intel_init_pm(struct drm_device *dev)
6501 {
6502         struct drm_i915_private *dev_priv = dev->dev_private;
6503
6504         intel_fbc_init(dev_priv);
6505
6506         /* For cxsr */
6507         if (IS_PINEVIEW(dev))
6508                 i915_pineview_get_mem_freq(dev);
6509         else if (IS_GEN5(dev))
6510                 i915_ironlake_get_mem_freq(dev);
6511
6512         /* For FIFO watermark updates */
6513         if (INTEL_INFO(dev)->gen >= 9) {
6514                 skl_setup_wm_latency(dev);
6515
6516                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
6517                 dev_priv->display.update_wm = skl_update_wm;
6518                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6519         } else if (HAS_PCH_SPLIT(dev)) {
6520                 ilk_setup_wm_latency(dev);
6521
6522                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6523                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6524                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6525                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6526                         dev_priv->display.update_wm = ilk_update_wm;
6527                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6528                 } else {
6529                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6530                                       "Disable CxSR\n");
6531                 }
6532
6533                 if (IS_GEN5(dev))
6534                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6535                 else if (IS_GEN6(dev))
6536                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6537                 else if (IS_IVYBRIDGE(dev))
6538                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6539                 else if (IS_HASWELL(dev))
6540                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6541                 else if (INTEL_INFO(dev)->gen == 8)
6542                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6543         } else if (IS_CHERRYVIEW(dev)) {
6544                 dev_priv->display.update_wm = cherryview_update_wm;
6545                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6546                 dev_priv->display.init_clock_gating =
6547                         cherryview_init_clock_gating;
6548         } else if (IS_VALLEYVIEW(dev)) {
6549                 dev_priv->display.update_wm = valleyview_update_wm;
6550                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6551                 dev_priv->display.init_clock_gating =
6552                         valleyview_init_clock_gating;
6553         } else if (IS_PINEVIEW(dev)) {
6554                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6555                                             dev_priv->is_ddr3,
6556                                             dev_priv->fsb_freq,
6557                                             dev_priv->mem_freq)) {
6558                         DRM_INFO("failed to find known CxSR latency "
6559                                  "(found ddr%s fsb freq %d, mem freq %d), "
6560                                  "disabling CxSR\n",
6561                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6562                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6563                         /* Disable CxSR and never update its watermark again */
6564                         intel_set_memory_cxsr(dev_priv, false);
6565                         dev_priv->display.update_wm = NULL;
6566                 } else
6567                         dev_priv->display.update_wm = pineview_update_wm;
6568                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6569         } else if (IS_G4X(dev)) {
6570                 dev_priv->display.update_wm = g4x_update_wm;
6571                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6572         } else if (IS_GEN4(dev)) {
6573                 dev_priv->display.update_wm = i965_update_wm;
6574                 if (IS_CRESTLINE(dev))
6575                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6576                 else if (IS_BROADWATER(dev))
6577                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6578         } else if (IS_GEN3(dev)) {
6579                 dev_priv->display.update_wm = i9xx_update_wm;
6580                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6581                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6582         } else if (IS_GEN2(dev)) {
6583                 if (INTEL_INFO(dev)->num_pipes == 1) {
6584                         dev_priv->display.update_wm = i845_update_wm;
6585                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6586                 } else {
6587                         dev_priv->display.update_wm = i9xx_update_wm;
6588                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6589                 }
6590
6591                 if (IS_I85X(dev) || IS_I865G(dev))
6592                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6593                 else
6594                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6595         } else {
6596                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6597         }
6598 }
6599
6600 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6601 {
6602         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6603
6604         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6605                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6606                 return -EAGAIN;
6607         }
6608
6609         I915_WRITE(GEN6_PCODE_DATA, *val);
6610         I915_WRITE(GEN6_PCODE_DATA1, 0);
6611         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6612
6613         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6614                      500)) {
6615                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6616                 return -ETIMEDOUT;
6617         }
6618
6619         *val = I915_READ(GEN6_PCODE_DATA);
6620         I915_WRITE(GEN6_PCODE_DATA, 0);
6621
6622         return 0;
6623 }
6624
6625 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6626 {
6627         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6628
6629         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6630                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6631                 return -EAGAIN;
6632         }
6633
6634         I915_WRITE(GEN6_PCODE_DATA, val);
6635         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6636
6637         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6638                      500)) {
6639                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6640                 return -ETIMEDOUT;
6641         }
6642
6643         I915_WRITE(GEN6_PCODE_DATA, 0);
6644
6645         return 0;
6646 }
6647
6648 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6649 {
6650         switch (czclk_freq) {
6651         case 200:
6652                 return 10;
6653         case 267:
6654                 return 12;
6655         case 320:
6656         case 333:
6657                 return 16;
6658         case 400:
6659                 return 20;
6660         default:
6661                 return -1;
6662         }
6663 }
6664
6665 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6666 {
6667         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6668
6669         div = vlv_gpu_freq_div(czclk_freq);
6670         if (div < 0)
6671                 return div;
6672
6673         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6674 }
6675
6676 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6677 {
6678         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6679
6680         mul = vlv_gpu_freq_div(czclk_freq);
6681         if (mul < 0)
6682                 return mul;
6683
6684         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6685 }
6686
6687 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6688 {
6689         int div, czclk_freq = dev_priv->rps.cz_freq;
6690
6691         div = vlv_gpu_freq_div(czclk_freq) / 2;
6692         if (div < 0)
6693                 return div;
6694
6695         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6696 }
6697
6698 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6699 {
6700         int mul, czclk_freq = dev_priv->rps.cz_freq;
6701
6702         mul = vlv_gpu_freq_div(czclk_freq) / 2;
6703         if (mul < 0)
6704                 return mul;
6705
6706         /* CHV needs even values */
6707         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6708 }
6709
6710 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6711 {
6712         if (IS_CHERRYVIEW(dev_priv->dev))
6713                 return chv_gpu_freq(dev_priv, val);
6714         else if (IS_VALLEYVIEW(dev_priv->dev))
6715                 return byt_gpu_freq(dev_priv, val);
6716         else
6717                 return val * GT_FREQUENCY_MULTIPLIER;
6718 }
6719
6720 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6721 {
6722         if (IS_CHERRYVIEW(dev_priv->dev))
6723                 return chv_freq_opcode(dev_priv, val);
6724         else if (IS_VALLEYVIEW(dev_priv->dev))
6725                 return byt_freq_opcode(dev_priv, val);
6726         else
6727                 return val / GT_FREQUENCY_MULTIPLIER;
6728 }
6729
6730 void intel_pm_setup(struct drm_device *dev)
6731 {
6732         struct drm_i915_private *dev_priv = dev->dev_private;
6733
6734         mutex_init(&dev_priv->rps.hw_lock);
6735
6736         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6737                           intel_gen6_powersave_work);
6738
6739         dev_priv->pm.suspended = false;
6740 }