drm/i915: Do not allow buffers at offset 0
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /**
36  * RC6 is a special power stage which allows the GPU to enter an very
37  * low-voltage mode when idle, using down to 0V while at this stage.  This
38  * stage is entered automatically when the GPU is idle when RC6 support is
39  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40  *
41  * There are different RC6 modes available in Intel GPU, which differentiate
42  * among each other with the latency required to enter and leave RC6 and
43  * voltage consumed by the GPU in different states.
44  *
45  * The combination of the following flags define which states GPU is allowed
46  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
47  * RC6pp is deepest RC6. Their support by hardware varies according to the
48  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
49  * which brings the most power savings; deeper states save more power, but
50  * require higher latency to switch to and wake up.
51  */
52 #define INTEL_RC6_ENABLE                        (1<<0)
53 #define INTEL_RC6p_ENABLE                       (1<<1)
54 #define INTEL_RC6pp_ENABLE                      (1<<2)
55
56 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
57  * framebuffer contents in-memory, aiming at reducing the required bandwidth
58  * during in-memory transfers and, therefore, reduce the power packet.
59  *
60  * The benefits of FBC are mostly visible with solid backgrounds and
61  * variation-less patterns.
62  *
63  * FBC-related functionality can be enabled by the means of the
64  * i915.i915_enable_fbc parameter
65  */
66
67 static void i8xx_disable_fbc(struct drm_device *dev)
68 {
69         struct drm_i915_private *dev_priv = dev->dev_private;
70         u32 fbc_ctl;
71
72         /* Disable compression */
73         fbc_ctl = I915_READ(FBC_CONTROL);
74         if ((fbc_ctl & FBC_CTL_EN) == 0)
75                 return;
76
77         fbc_ctl &= ~FBC_CTL_EN;
78         I915_WRITE(FBC_CONTROL, fbc_ctl);
79
80         /* Wait for compressing bit to clear */
81         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
82                 DRM_DEBUG_KMS("FBC idle timed out\n");
83                 return;
84         }
85
86         DRM_DEBUG_KMS("disabled FBC\n");
87 }
88
89 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
90 {
91         struct drm_device *dev = crtc->dev;
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct drm_framebuffer *fb = crtc->fb;
94         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
95         struct drm_i915_gem_object *obj = intel_fb->obj;
96         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
97         int cfb_pitch;
98         int plane, i;
99         u32 fbc_ctl, fbc_ctl2;
100
101         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
102         if (fb->pitches[0] < cfb_pitch)
103                 cfb_pitch = fb->pitches[0];
104
105         /* FBC_CTL wants 64B units */
106         cfb_pitch = (cfb_pitch / 64) - 1;
107         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
108
109         /* Clear old tags */
110         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111                 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113         /* Set it up... */
114         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
115         fbc_ctl2 |= plane;
116         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
117         I915_WRITE(FBC_FENCE_OFF, crtc->y);
118
119         /* enable it... */
120         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
121         if (IS_I945GM(dev))
122                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
123         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
124         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
125         fbc_ctl |= obj->fence_reg;
126         I915_WRITE(FBC_CONTROL, fbc_ctl);
127
128         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
129                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
130 }
131
132 static bool i8xx_fbc_enabled(struct drm_device *dev)
133 {
134         struct drm_i915_private *dev_priv = dev->dev_private;
135
136         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
137 }
138
139 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
140 {
141         struct drm_device *dev = crtc->dev;
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         struct drm_framebuffer *fb = crtc->fb;
144         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
145         struct drm_i915_gem_object *obj = intel_fb->obj;
146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
147         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
148         unsigned long stall_watermark = 200;
149         u32 dpfc_ctl;
150
151         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
152         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
153         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
154
155         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
156                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
157                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
158         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
159
160         /* enable it... */
161         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
162
163         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
164 }
165
166 static void g4x_disable_fbc(struct drm_device *dev)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         u32 dpfc_ctl;
170
171         /* Disable compression */
172         dpfc_ctl = I915_READ(DPFC_CONTROL);
173         if (dpfc_ctl & DPFC_CTL_EN) {
174                 dpfc_ctl &= ~DPFC_CTL_EN;
175                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
176
177                 DRM_DEBUG_KMS("disabled FBC\n");
178         }
179 }
180
181 static bool g4x_fbc_enabled(struct drm_device *dev)
182 {
183         struct drm_i915_private *dev_priv = dev->dev_private;
184
185         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
186 }
187
188 static void sandybridge_blit_fbc_update(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         u32 blt_ecoskpd;
192
193         /* Make sure blitter notifies FBC of writes */
194
195         /* Blitter is part of Media powerwell on VLV. No impact of
196          * his param in other platforms for now */
197         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
198
199         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
200         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
201                 GEN6_BLITTER_LOCK_SHIFT;
202         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
203         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
204         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
206                          GEN6_BLITTER_LOCK_SHIFT);
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         POSTING_READ(GEN6_BLITTER_ECOSKPD);
209
210         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
211 }
212
213 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
214 {
215         struct drm_device *dev = crtc->dev;
216         struct drm_i915_private *dev_priv = dev->dev_private;
217         struct drm_framebuffer *fb = crtc->fb;
218         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
219         struct drm_i915_gem_object *obj = intel_fb->obj;
220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
221         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
222         unsigned long stall_watermark = 200;
223         u32 dpfc_ctl;
224
225         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
226         dpfc_ctl &= DPFC_RESERVED;
227         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
228         /* Set persistent mode for front-buffer rendering, ala X. */
229         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
230         dpfc_ctl |= DPFC_CTL_FENCE_EN;
231         if (IS_GEN5(dev))
232                 dpfc_ctl |= obj->fence_reg;
233         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
234
235         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
236                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
237                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
238         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
239         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
240         /* enable it... */
241         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
242
243         if (IS_GEN6(dev)) {
244                 I915_WRITE(SNB_DPFC_CTL_SA,
245                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
246                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
247                 sandybridge_blit_fbc_update(dev);
248         }
249
250         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
251 }
252
253 static void ironlake_disable_fbc(struct drm_device *dev)
254 {
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         u32 dpfc_ctl;
257
258         /* Disable compression */
259         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
260         if (dpfc_ctl & DPFC_CTL_EN) {
261                 dpfc_ctl &= ~DPFC_CTL_EN;
262                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
263
264                 DRM_DEBUG_KMS("disabled FBC\n");
265         }
266 }
267
268 static bool ironlake_fbc_enabled(struct drm_device *dev)
269 {
270         struct drm_i915_private *dev_priv = dev->dev_private;
271
272         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
273 }
274
275 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
276 {
277         struct drm_device *dev = crtc->dev;
278         struct drm_i915_private *dev_priv = dev->dev_private;
279         struct drm_framebuffer *fb = crtc->fb;
280         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
281         struct drm_i915_gem_object *obj = intel_fb->obj;
282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
283
284         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
285
286         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
287                    IVB_DPFC_CTL_FENCE_EN |
288                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
289
290         if (IS_IVYBRIDGE(dev)) {
291                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
292                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
293         } else {
294                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
295                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
296                            HSW_BYPASS_FBC_QUEUE);
297         }
298
299         I915_WRITE(SNB_DPFC_CTL_SA,
300                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303         sandybridge_blit_fbc_update(dev);
304
305         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310         struct drm_i915_private *dev_priv = dev->dev_private;
311
312         if (!dev_priv->display.fbc_enabled)
313                 return false;
314
315         return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320         struct intel_fbc_work *work =
321                 container_of(to_delayed_work(__work),
322                              struct intel_fbc_work, work);
323         struct drm_device *dev = work->crtc->dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         mutex_lock(&dev->struct_mutex);
327         if (work == dev_priv->fbc.fbc_work) {
328                 /* Double check that we haven't switched fb without cancelling
329                  * the prior work.
330                  */
331                 if (work->crtc->fb == work->fb) {
332                         dev_priv->display.enable_fbc(work->crtc,
333                                                      work->interval);
334
335                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337                         dev_priv->fbc.y = work->crtc->y;
338                 }
339
340                 dev_priv->fbc.fbc_work = NULL;
341         }
342         mutex_unlock(&dev->struct_mutex);
343
344         kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349         if (dev_priv->fbc.fbc_work == NULL)
350                 return;
351
352         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354         /* Synchronisation is provided by struct_mutex and checking of
355          * dev_priv->fbc.fbc_work, so we can perform the cancellation
356          * entirely asynchronously.
357          */
358         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359                 /* tasklet was killed before being run, clean up */
360                 kfree(dev_priv->fbc.fbc_work);
361
362         /* Mark the work as no longer wanted so that if it does
363          * wake-up (because the work was already running and waiting
364          * for our mutex), it will discover that is no longer
365          * necessary to run.
366          */
367         dev_priv->fbc.fbc_work = NULL;
368 }
369
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372         struct intel_fbc_work *work;
373         struct drm_device *dev = crtc->dev;
374         struct drm_i915_private *dev_priv = dev->dev_private;
375
376         if (!dev_priv->display.enable_fbc)
377                 return;
378
379         intel_cancel_fbc_work(dev_priv);
380
381         work = kzalloc(sizeof(*work), GFP_KERNEL);
382         if (work == NULL) {
383                 DRM_ERROR("Failed to allocate FBC work structure\n");
384                 dev_priv->display.enable_fbc(crtc, interval);
385                 return;
386         }
387
388         work->crtc = crtc;
389         work->fb = crtc->fb;
390         work->interval = interval;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc.fbc_work = work;
394
395         /* Delay the actual enabling to let pageflipping cease and the
396          * display to settle before starting the compression. Note that
397          * this delay also serves a second purpose: it allows for a
398          * vblank to pass after disabling the FBC before we attempt
399          * to modify the control registers.
400          *
401          * A more complicated solution would involve tracking vblanks
402          * following the termination of the page-flipping sequence
403          * and indeed performing the enable as a co-routine and not
404          * waiting synchronously upon the vblank.
405          *
406          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425                               enum no_fbc_reason reason)
426 {
427         if (dev_priv->fbc.no_fbc_reason == reason)
428                 return false;
429
430         dev_priv->fbc.no_fbc_reason = reason;
431         return true;
432 }
433
434 /**
435  * intel_update_fbc - enable/disable FBC as needed
436  * @dev: the drm_device
437  *
438  * Set up the framebuffer compression hardware at mode set time.  We
439  * enable it if possible:
440  *   - plane A only (on pre-965)
441  *   - no pixel mulitply/line duplication
442  *   - no alpha buffer discard
443  *   - no dual wide
444  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445  *
446  * We can't assume that any compression will take place (worst case),
447  * so the compressed buffer has to be the same size as the uncompressed
448  * one.  It also must reside (along with the line length buffer) in
449  * stolen memory.
450  *
451  * We need to enable/disable FBC on a global basis.
452  */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         struct drm_crtc *crtc = NULL, *tmp_crtc;
457         struct intel_crtc *intel_crtc;
458         struct drm_framebuffer *fb;
459         struct intel_framebuffer *intel_fb;
460         struct drm_i915_gem_object *obj;
461         const struct drm_display_mode *adjusted_mode;
462         unsigned int max_width, max_height;
463
464         if (!I915_HAS_FBC(dev)) {
465                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
466                 return;
467         }
468
469         if (!i915_powersave) {
470                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
471                         DRM_DEBUG_KMS("fbc disabled per module param\n");
472                 return;
473         }
474
475         /*
476          * If FBC is already on, we just have to verify that we can
477          * keep it that way...
478          * Need to disable if:
479          *   - more than one pipe is active
480          *   - changing FBC params (stride, fence, mode)
481          *   - new fb is too large to fit in compressed buffer
482          *   - going to an unsupported config (interlace, pixel multiply, etc.)
483          */
484         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
485                 if (intel_crtc_active(tmp_crtc) &&
486                     to_intel_crtc(tmp_crtc)->primary_enabled) {
487                         if (crtc) {
488                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
489                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
490                                 goto out_disable;
491                         }
492                         crtc = tmp_crtc;
493                 }
494         }
495
496         if (!crtc || crtc->fb == NULL) {
497                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
498                         DRM_DEBUG_KMS("no output, disabling\n");
499                 goto out_disable;
500         }
501
502         intel_crtc = to_intel_crtc(crtc);
503         fb = crtc->fb;
504         intel_fb = to_intel_framebuffer(fb);
505         obj = intel_fb->obj;
506         adjusted_mode = &intel_crtc->config.adjusted_mode;
507
508         if (i915_enable_fbc < 0 &&
509             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
510                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
511                         DRM_DEBUG_KMS("disabled per chip default\n");
512                 goto out_disable;
513         }
514         if (!i915_enable_fbc) {
515                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
516                         DRM_DEBUG_KMS("fbc disabled per module param\n");
517                 goto out_disable;
518         }
519         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
520             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
521                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
522                         DRM_DEBUG_KMS("mode incompatible with compression, "
523                                       "disabling\n");
524                 goto out_disable;
525         }
526
527         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
528                 max_width = 4096;
529                 max_height = 2048;
530         } else {
531                 max_width = 2048;
532                 max_height = 1536;
533         }
534         if (intel_crtc->config.pipe_src_w > max_width ||
535             intel_crtc->config.pipe_src_h > max_height) {
536                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
537                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538                 goto out_disable;
539         }
540         if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
541             intel_crtc->plane != PLANE_A) {
542                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
543                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
544                 goto out_disable;
545         }
546
547         /* The use of a CPU fence is mandatory in order to detect writes
548          * by the CPU to the scanout and trigger updates to the FBC.
549          */
550         if (obj->tiling_mode != I915_TILING_X ||
551             obj->fence_reg == I915_FENCE_REG_NONE) {
552                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
553                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
554                 goto out_disable;
555         }
556
557         /* If the kernel debugger is active, always disable compression */
558         if (in_dbg_master())
559                 goto out_disable;
560
561         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
562                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
563                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
564                 goto out_disable;
565         }
566
567         /* If the scanout has not changed, don't modify the FBC settings.
568          * Note that we make the fundamental assumption that the fb->obj
569          * cannot be unpinned (and have its GTT offset and fence revoked)
570          * without first being decoupled from the scanout and FBC disabled.
571          */
572         if (dev_priv->fbc.plane == intel_crtc->plane &&
573             dev_priv->fbc.fb_id == fb->base.id &&
574             dev_priv->fbc.y == crtc->y)
575                 return;
576
577         if (intel_fbc_enabled(dev)) {
578                 /* We update FBC along two paths, after changing fb/crtc
579                  * configuration (modeswitching) and after page-flipping
580                  * finishes. For the latter, we know that not only did
581                  * we disable the FBC at the start of the page-flip
582                  * sequence, but also more than one vblank has passed.
583                  *
584                  * For the former case of modeswitching, it is possible
585                  * to switch between two FBC valid configurations
586                  * instantaneously so we do need to disable the FBC
587                  * before we can modify its control registers. We also
588                  * have to wait for the next vblank for that to take
589                  * effect. However, since we delay enabling FBC we can
590                  * assume that a vblank has passed since disabling and
591                  * that we can safely alter the registers in the deferred
592                  * callback.
593                  *
594                  * In the scenario that we go from a valid to invalid
595                  * and then back to valid FBC configuration we have
596                  * no strict enforcement that a vblank occurred since
597                  * disabling the FBC. However, along all current pipe
598                  * disabling paths we do need to wait for a vblank at
599                  * some point. And we wait before enabling FBC anyway.
600                  */
601                 DRM_DEBUG_KMS("disabling active FBC for update\n");
602                 intel_disable_fbc(dev);
603         }
604
605         intel_enable_fbc(crtc, 500);
606         dev_priv->fbc.no_fbc_reason = FBC_OK;
607         return;
608
609 out_disable:
610         /* Multiple disables should be harmless */
611         if (intel_fbc_enabled(dev)) {
612                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
613                 intel_disable_fbc(dev);
614         }
615         i915_gem_stolen_cleanup_compression(dev);
616 }
617
618 static void i915_pineview_get_mem_freq(struct drm_device *dev)
619 {
620         drm_i915_private_t *dev_priv = dev->dev_private;
621         u32 tmp;
622
623         tmp = I915_READ(CLKCFG);
624
625         switch (tmp & CLKCFG_FSB_MASK) {
626         case CLKCFG_FSB_533:
627                 dev_priv->fsb_freq = 533; /* 133*4 */
628                 break;
629         case CLKCFG_FSB_800:
630                 dev_priv->fsb_freq = 800; /* 200*4 */
631                 break;
632         case CLKCFG_FSB_667:
633                 dev_priv->fsb_freq =  667; /* 167*4 */
634                 break;
635         case CLKCFG_FSB_400:
636                 dev_priv->fsb_freq = 400; /* 100*4 */
637                 break;
638         }
639
640         switch (tmp & CLKCFG_MEM_MASK) {
641         case CLKCFG_MEM_533:
642                 dev_priv->mem_freq = 533;
643                 break;
644         case CLKCFG_MEM_667:
645                 dev_priv->mem_freq = 667;
646                 break;
647         case CLKCFG_MEM_800:
648                 dev_priv->mem_freq = 800;
649                 break;
650         }
651
652         /* detect pineview DDR3 setting */
653         tmp = I915_READ(CSHRDDR3CTL);
654         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655 }
656
657 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
658 {
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         u16 ddrpll, csipll;
661
662         ddrpll = I915_READ16(DDRMPLL1);
663         csipll = I915_READ16(CSIPLL0);
664
665         switch (ddrpll & 0xff) {
666         case 0xc:
667                 dev_priv->mem_freq = 800;
668                 break;
669         case 0x10:
670                 dev_priv->mem_freq = 1066;
671                 break;
672         case 0x14:
673                 dev_priv->mem_freq = 1333;
674                 break;
675         case 0x18:
676                 dev_priv->mem_freq = 1600;
677                 break;
678         default:
679                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
680                                  ddrpll & 0xff);
681                 dev_priv->mem_freq = 0;
682                 break;
683         }
684
685         dev_priv->ips.r_t = dev_priv->mem_freq;
686
687         switch (csipll & 0x3ff) {
688         case 0x00c:
689                 dev_priv->fsb_freq = 3200;
690                 break;
691         case 0x00e:
692                 dev_priv->fsb_freq = 3733;
693                 break;
694         case 0x010:
695                 dev_priv->fsb_freq = 4266;
696                 break;
697         case 0x012:
698                 dev_priv->fsb_freq = 4800;
699                 break;
700         case 0x014:
701                 dev_priv->fsb_freq = 5333;
702                 break;
703         case 0x016:
704                 dev_priv->fsb_freq = 5866;
705                 break;
706         case 0x018:
707                 dev_priv->fsb_freq = 6400;
708                 break;
709         default:
710                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
711                                  csipll & 0x3ff);
712                 dev_priv->fsb_freq = 0;
713                 break;
714         }
715
716         if (dev_priv->fsb_freq == 3200) {
717                 dev_priv->ips.c_m = 0;
718         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
719                 dev_priv->ips.c_m = 1;
720         } else {
721                 dev_priv->ips.c_m = 2;
722         }
723 }
724
725 static const struct cxsr_latency cxsr_latency_table[] = {
726         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
727         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
728         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
729         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
730         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
731
732         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
733         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
734         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
735         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
736         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
737
738         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
739         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
740         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
741         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
742         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
743
744         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
745         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
746         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
747         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
748         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
749
750         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
751         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
752         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
753         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
754         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
755
756         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
757         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
758         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
759         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
760         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
761 };
762
763 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
764                                                          int is_ddr3,
765                                                          int fsb,
766                                                          int mem)
767 {
768         const struct cxsr_latency *latency;
769         int i;
770
771         if (fsb == 0 || mem == 0)
772                 return NULL;
773
774         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
775                 latency = &cxsr_latency_table[i];
776                 if (is_desktop == latency->is_desktop &&
777                     is_ddr3 == latency->is_ddr3 &&
778                     fsb == latency->fsb_freq && mem == latency->mem_freq)
779                         return latency;
780         }
781
782         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
783
784         return NULL;
785 }
786
787 static void pineview_disable_cxsr(struct drm_device *dev)
788 {
789         struct drm_i915_private *dev_priv = dev->dev_private;
790
791         /* deactivate cxsr */
792         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
793 }
794
795 /*
796  * Latency for FIFO fetches is dependent on several factors:
797  *   - memory configuration (speed, channels)
798  *   - chipset
799  *   - current MCH state
800  * It can be fairly high in some situations, so here we assume a fairly
801  * pessimal value.  It's a tradeoff between extra memory fetches (if we
802  * set this value too high, the FIFO will fetch frequently to stay full)
803  * and power consumption (set it too low to save power and we might see
804  * FIFO underruns and display "flicker").
805  *
806  * A value of 5us seems to be a good balance; safe for very low end
807  * platforms but not overly aggressive on lower latency configs.
808  */
809 static const int latency_ns = 5000;
810
811 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
812 {
813         struct drm_i915_private *dev_priv = dev->dev_private;
814         uint32_t dsparb = I915_READ(DSPARB);
815         int size;
816
817         size = dsparb & 0x7f;
818         if (plane)
819                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
820
821         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822                       plane ? "B" : "A", size);
823
824         return size;
825 }
826
827 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
828 {
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         uint32_t dsparb = I915_READ(DSPARB);
831         int size;
832
833         size = dsparb & 0x1ff;
834         if (plane)
835                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
836         size >>= 1; /* Convert to cachelines */
837
838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839                       plane ? "B" : "A", size);
840
841         return size;
842 }
843
844 static int i845_get_fifo_size(struct drm_device *dev, int plane)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         uint32_t dsparb = I915_READ(DSPARB);
848         int size;
849
850         size = dsparb & 0x7f;
851         size >>= 2; /* Convert to cachelines */
852
853         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854                       plane ? "B" : "A",
855                       size);
856
857         return size;
858 }
859
860 static int i830_get_fifo_size(struct drm_device *dev, int plane)
861 {
862         struct drm_i915_private *dev_priv = dev->dev_private;
863         uint32_t dsparb = I915_READ(DSPARB);
864         int size;
865
866         size = dsparb & 0x7f;
867         size >>= 1; /* Convert to cachelines */
868
869         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
870                       plane ? "B" : "A", size);
871
872         return size;
873 }
874
875 /* Pineview has different values for various configs */
876 static const struct intel_watermark_params pineview_display_wm = {
877         PINEVIEW_DISPLAY_FIFO,
878         PINEVIEW_MAX_WM,
879         PINEVIEW_DFT_WM,
880         PINEVIEW_GUARD_WM,
881         PINEVIEW_FIFO_LINE_SIZE
882 };
883 static const struct intel_watermark_params pineview_display_hplloff_wm = {
884         PINEVIEW_DISPLAY_FIFO,
885         PINEVIEW_MAX_WM,
886         PINEVIEW_DFT_HPLLOFF_WM,
887         PINEVIEW_GUARD_WM,
888         PINEVIEW_FIFO_LINE_SIZE
889 };
890 static const struct intel_watermark_params pineview_cursor_wm = {
891         PINEVIEW_CURSOR_FIFO,
892         PINEVIEW_CURSOR_MAX_WM,
893         PINEVIEW_CURSOR_DFT_WM,
894         PINEVIEW_CURSOR_GUARD_WM,
895         PINEVIEW_FIFO_LINE_SIZE,
896 };
897 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
898         PINEVIEW_CURSOR_FIFO,
899         PINEVIEW_CURSOR_MAX_WM,
900         PINEVIEW_CURSOR_DFT_WM,
901         PINEVIEW_CURSOR_GUARD_WM,
902         PINEVIEW_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params g4x_wm_info = {
905         G4X_FIFO_SIZE,
906         G4X_MAX_WM,
907         G4X_MAX_WM,
908         2,
909         G4X_FIFO_LINE_SIZE,
910 };
911 static const struct intel_watermark_params g4x_cursor_wm_info = {
912         I965_CURSOR_FIFO,
913         I965_CURSOR_MAX_WM,
914         I965_CURSOR_DFT_WM,
915         2,
916         G4X_FIFO_LINE_SIZE,
917 };
918 static const struct intel_watermark_params valleyview_wm_info = {
919         VALLEYVIEW_FIFO_SIZE,
920         VALLEYVIEW_MAX_WM,
921         VALLEYVIEW_MAX_WM,
922         2,
923         G4X_FIFO_LINE_SIZE,
924 };
925 static const struct intel_watermark_params valleyview_cursor_wm_info = {
926         I965_CURSOR_FIFO,
927         VALLEYVIEW_CURSOR_MAX_WM,
928         I965_CURSOR_DFT_WM,
929         2,
930         G4X_FIFO_LINE_SIZE,
931 };
932 static const struct intel_watermark_params i965_cursor_wm_info = {
933         I965_CURSOR_FIFO,
934         I965_CURSOR_MAX_WM,
935         I965_CURSOR_DFT_WM,
936         2,
937         I915_FIFO_LINE_SIZE,
938 };
939 static const struct intel_watermark_params i945_wm_info = {
940         I945_FIFO_SIZE,
941         I915_MAX_WM,
942         1,
943         2,
944         I915_FIFO_LINE_SIZE
945 };
946 static const struct intel_watermark_params i915_wm_info = {
947         I915_FIFO_SIZE,
948         I915_MAX_WM,
949         1,
950         2,
951         I915_FIFO_LINE_SIZE
952 };
953 static const struct intel_watermark_params i855_wm_info = {
954         I855GM_FIFO_SIZE,
955         I915_MAX_WM,
956         1,
957         2,
958         I830_FIFO_LINE_SIZE
959 };
960 static const struct intel_watermark_params i830_wm_info = {
961         I830_FIFO_SIZE,
962         I915_MAX_WM,
963         1,
964         2,
965         I830_FIFO_LINE_SIZE
966 };
967
968 static const struct intel_watermark_params ironlake_display_wm_info = {
969         ILK_DISPLAY_FIFO,
970         ILK_DISPLAY_MAXWM,
971         ILK_DISPLAY_DFTWM,
972         2,
973         ILK_FIFO_LINE_SIZE
974 };
975 static const struct intel_watermark_params ironlake_cursor_wm_info = {
976         ILK_CURSOR_FIFO,
977         ILK_CURSOR_MAXWM,
978         ILK_CURSOR_DFTWM,
979         2,
980         ILK_FIFO_LINE_SIZE
981 };
982 static const struct intel_watermark_params ironlake_display_srwm_info = {
983         ILK_DISPLAY_SR_FIFO,
984         ILK_DISPLAY_MAX_SRWM,
985         ILK_DISPLAY_DFT_SRWM,
986         2,
987         ILK_FIFO_LINE_SIZE
988 };
989 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
990         ILK_CURSOR_SR_FIFO,
991         ILK_CURSOR_MAX_SRWM,
992         ILK_CURSOR_DFT_SRWM,
993         2,
994         ILK_FIFO_LINE_SIZE
995 };
996
997 static const struct intel_watermark_params sandybridge_display_wm_info = {
998         SNB_DISPLAY_FIFO,
999         SNB_DISPLAY_MAXWM,
1000         SNB_DISPLAY_DFTWM,
1001         2,
1002         SNB_FIFO_LINE_SIZE
1003 };
1004 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1005         SNB_CURSOR_FIFO,
1006         SNB_CURSOR_MAXWM,
1007         SNB_CURSOR_DFTWM,
1008         2,
1009         SNB_FIFO_LINE_SIZE
1010 };
1011 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1012         SNB_DISPLAY_SR_FIFO,
1013         SNB_DISPLAY_MAX_SRWM,
1014         SNB_DISPLAY_DFT_SRWM,
1015         2,
1016         SNB_FIFO_LINE_SIZE
1017 };
1018 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1019         SNB_CURSOR_SR_FIFO,
1020         SNB_CURSOR_MAX_SRWM,
1021         SNB_CURSOR_DFT_SRWM,
1022         2,
1023         SNB_FIFO_LINE_SIZE
1024 };
1025
1026
1027 /**
1028  * intel_calculate_wm - calculate watermark level
1029  * @clock_in_khz: pixel clock
1030  * @wm: chip FIFO params
1031  * @pixel_size: display pixel size
1032  * @latency_ns: memory latency for the platform
1033  *
1034  * Calculate the watermark level (the level at which the display plane will
1035  * start fetching from memory again).  Each chip has a different display
1036  * FIFO size and allocation, so the caller needs to figure that out and pass
1037  * in the correct intel_watermark_params structure.
1038  *
1039  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1040  * on the pixel size.  When it reaches the watermark level, it'll start
1041  * fetching FIFO line sized based chunks from memory until the FIFO fills
1042  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1043  * will occur, and a display engine hang could result.
1044  */
1045 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1046                                         const struct intel_watermark_params *wm,
1047                                         int fifo_size,
1048                                         int pixel_size,
1049                                         unsigned long latency_ns)
1050 {
1051         long entries_required, wm_size;
1052
1053         /*
1054          * Note: we need to make sure we don't overflow for various clock &
1055          * latency values.
1056          * clocks go from a few thousand to several hundred thousand.
1057          * latency is usually a few thousand
1058          */
1059         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1060                 1000;
1061         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1062
1063         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1064
1065         wm_size = fifo_size - (entries_required + wm->guard_size);
1066
1067         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1068
1069         /* Don't promote wm_size to unsigned... */
1070         if (wm_size > (long)wm->max_wm)
1071                 wm_size = wm->max_wm;
1072         if (wm_size <= 0)
1073                 wm_size = wm->default_wm;
1074         return wm_size;
1075 }
1076
1077 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1078 {
1079         struct drm_crtc *crtc, *enabled = NULL;
1080
1081         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1082                 if (intel_crtc_active(crtc)) {
1083                         if (enabled)
1084                                 return NULL;
1085                         enabled = crtc;
1086                 }
1087         }
1088
1089         return enabled;
1090 }
1091
1092 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1093 {
1094         struct drm_device *dev = unused_crtc->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         struct drm_crtc *crtc;
1097         const struct cxsr_latency *latency;
1098         u32 reg;
1099         unsigned long wm;
1100
1101         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1102                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1103         if (!latency) {
1104                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1105                 pineview_disable_cxsr(dev);
1106                 return;
1107         }
1108
1109         crtc = single_enabled_crtc(dev);
1110         if (crtc) {
1111                 const struct drm_display_mode *adjusted_mode;
1112                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1113                 int clock;
1114
1115                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1116                 clock = adjusted_mode->crtc_clock;
1117
1118                 /* Display SR */
1119                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1120                                         pineview_display_wm.fifo_size,
1121                                         pixel_size, latency->display_sr);
1122                 reg = I915_READ(DSPFW1);
1123                 reg &= ~DSPFW_SR_MASK;
1124                 reg |= wm << DSPFW_SR_SHIFT;
1125                 I915_WRITE(DSPFW1, reg);
1126                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1127
1128                 /* cursor SR */
1129                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1130                                         pineview_display_wm.fifo_size,
1131                                         pixel_size, latency->cursor_sr);
1132                 reg = I915_READ(DSPFW3);
1133                 reg &= ~DSPFW_CURSOR_SR_MASK;
1134                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1135                 I915_WRITE(DSPFW3, reg);
1136
1137                 /* Display HPLL off SR */
1138                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1139                                         pineview_display_hplloff_wm.fifo_size,
1140                                         pixel_size, latency->display_hpll_disable);
1141                 reg = I915_READ(DSPFW3);
1142                 reg &= ~DSPFW_HPLL_SR_MASK;
1143                 reg |= wm & DSPFW_HPLL_SR_MASK;
1144                 I915_WRITE(DSPFW3, reg);
1145
1146                 /* cursor HPLL off SR */
1147                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1148                                         pineview_display_hplloff_wm.fifo_size,
1149                                         pixel_size, latency->cursor_hpll_disable);
1150                 reg = I915_READ(DSPFW3);
1151                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1152                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1153                 I915_WRITE(DSPFW3, reg);
1154                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1155
1156                 /* activate cxsr */
1157                 I915_WRITE(DSPFW3,
1158                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1159                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1160         } else {
1161                 pineview_disable_cxsr(dev);
1162                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1163         }
1164 }
1165
1166 static bool g4x_compute_wm0(struct drm_device *dev,
1167                             int plane,
1168                             const struct intel_watermark_params *display,
1169                             int display_latency_ns,
1170                             const struct intel_watermark_params *cursor,
1171                             int cursor_latency_ns,
1172                             int *plane_wm,
1173                             int *cursor_wm)
1174 {
1175         struct drm_crtc *crtc;
1176         const struct drm_display_mode *adjusted_mode;
1177         int htotal, hdisplay, clock, pixel_size;
1178         int line_time_us, line_count;
1179         int entries, tlb_miss;
1180
1181         crtc = intel_get_crtc_for_plane(dev, plane);
1182         if (!intel_crtc_active(crtc)) {
1183                 *cursor_wm = cursor->guard_size;
1184                 *plane_wm = display->guard_size;
1185                 return false;
1186         }
1187
1188         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1189         clock = adjusted_mode->crtc_clock;
1190         htotal = adjusted_mode->htotal;
1191         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1192         pixel_size = crtc->fb->bits_per_pixel / 8;
1193
1194         /* Use the small buffer method to calculate plane watermark */
1195         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1196         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1197         if (tlb_miss > 0)
1198                 entries += tlb_miss;
1199         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1200         *plane_wm = entries + display->guard_size;
1201         if (*plane_wm > (int)display->max_wm)
1202                 *plane_wm = display->max_wm;
1203
1204         /* Use the large buffer method to calculate cursor watermark */
1205         line_time_us = ((htotal * 1000) / clock);
1206         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1207         entries = line_count * 64 * pixel_size;
1208         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1209         if (tlb_miss > 0)
1210                 entries += tlb_miss;
1211         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1212         *cursor_wm = entries + cursor->guard_size;
1213         if (*cursor_wm > (int)cursor->max_wm)
1214                 *cursor_wm = (int)cursor->max_wm;
1215
1216         return true;
1217 }
1218
1219 /*
1220  * Check the wm result.
1221  *
1222  * If any calculated watermark values is larger than the maximum value that
1223  * can be programmed into the associated watermark register, that watermark
1224  * must be disabled.
1225  */
1226 static bool g4x_check_srwm(struct drm_device *dev,
1227                            int display_wm, int cursor_wm,
1228                            const struct intel_watermark_params *display,
1229                            const struct intel_watermark_params *cursor)
1230 {
1231         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1232                       display_wm, cursor_wm);
1233
1234         if (display_wm > display->max_wm) {
1235                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1236                               display_wm, display->max_wm);
1237                 return false;
1238         }
1239
1240         if (cursor_wm > cursor->max_wm) {
1241                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1242                               cursor_wm, cursor->max_wm);
1243                 return false;
1244         }
1245
1246         if (!(display_wm || cursor_wm)) {
1247                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1248                 return false;
1249         }
1250
1251         return true;
1252 }
1253
1254 static bool g4x_compute_srwm(struct drm_device *dev,
1255                              int plane,
1256                              int latency_ns,
1257                              const struct intel_watermark_params *display,
1258                              const struct intel_watermark_params *cursor,
1259                              int *display_wm, int *cursor_wm)
1260 {
1261         struct drm_crtc *crtc;
1262         const struct drm_display_mode *adjusted_mode;
1263         int hdisplay, htotal, pixel_size, clock;
1264         unsigned long line_time_us;
1265         int line_count, line_size;
1266         int small, large;
1267         int entries;
1268
1269         if (!latency_ns) {
1270                 *display_wm = *cursor_wm = 0;
1271                 return false;
1272         }
1273
1274         crtc = intel_get_crtc_for_plane(dev, plane);
1275         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1276         clock = adjusted_mode->crtc_clock;
1277         htotal = adjusted_mode->htotal;
1278         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1279         pixel_size = crtc->fb->bits_per_pixel / 8;
1280
1281         line_time_us = (htotal * 1000) / clock;
1282         line_count = (latency_ns / line_time_us + 1000) / 1000;
1283         line_size = hdisplay * pixel_size;
1284
1285         /* Use the minimum of the small and large buffer method for primary */
1286         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1287         large = line_count * line_size;
1288
1289         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1290         *display_wm = entries + display->guard_size;
1291
1292         /* calculate the self-refresh watermark for display cursor */
1293         entries = line_count * pixel_size * 64;
1294         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1295         *cursor_wm = entries + cursor->guard_size;
1296
1297         return g4x_check_srwm(dev,
1298                               *display_wm, *cursor_wm,
1299                               display, cursor);
1300 }
1301
1302 static bool vlv_compute_drain_latency(struct drm_device *dev,
1303                                      int plane,
1304                                      int *plane_prec_mult,
1305                                      int *plane_dl,
1306                                      int *cursor_prec_mult,
1307                                      int *cursor_dl)
1308 {
1309         struct drm_crtc *crtc;
1310         int clock, pixel_size;
1311         int entries;
1312
1313         crtc = intel_get_crtc_for_plane(dev, plane);
1314         if (!intel_crtc_active(crtc))
1315                 return false;
1316
1317         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1318         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1319
1320         entries = (clock / 1000) * pixel_size;
1321         *plane_prec_mult = (entries > 256) ?
1322                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1323         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1324                                                      pixel_size);
1325
1326         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1327         *cursor_prec_mult = (entries > 256) ?
1328                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1329         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1330
1331         return true;
1332 }
1333
1334 /*
1335  * Update drain latency registers of memory arbiter
1336  *
1337  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1338  * to be programmed. Each plane has a drain latency multiplier and a drain
1339  * latency value.
1340  */
1341
1342 static void vlv_update_drain_latency(struct drm_device *dev)
1343 {
1344         struct drm_i915_private *dev_priv = dev->dev_private;
1345         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1346         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1347         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1348                                                         either 16 or 32 */
1349
1350         /* For plane A, Cursor A */
1351         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1352                                       &cursor_prec_mult, &cursora_dl)) {
1353                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1354                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1355                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1357
1358                 I915_WRITE(VLV_DDL1, cursora_prec |
1359                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1360                                 planea_prec | planea_dl);
1361         }
1362
1363         /* For plane B, Cursor B */
1364         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1365                                       &cursor_prec_mult, &cursorb_dl)) {
1366                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1367                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1368                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1369                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1370
1371                 I915_WRITE(VLV_DDL2, cursorb_prec |
1372                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1373                                 planeb_prec | planeb_dl);
1374         }
1375 }
1376
1377 #define single_plane_enabled(mask) is_power_of_2(mask)
1378
1379 static void valleyview_update_wm(struct drm_crtc *crtc)
1380 {
1381         struct drm_device *dev = crtc->dev;
1382         static const int sr_latency_ns = 12000;
1383         struct drm_i915_private *dev_priv = dev->dev_private;
1384         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1385         int plane_sr, cursor_sr;
1386         int ignore_plane_sr, ignore_cursor_sr;
1387         unsigned int enabled = 0;
1388
1389         vlv_update_drain_latency(dev);
1390
1391         if (g4x_compute_wm0(dev, PIPE_A,
1392                             &valleyview_wm_info, latency_ns,
1393                             &valleyview_cursor_wm_info, latency_ns,
1394                             &planea_wm, &cursora_wm))
1395                 enabled |= 1 << PIPE_A;
1396
1397         if (g4x_compute_wm0(dev, PIPE_B,
1398                             &valleyview_wm_info, latency_ns,
1399                             &valleyview_cursor_wm_info, latency_ns,
1400                             &planeb_wm, &cursorb_wm))
1401                 enabled |= 1 << PIPE_B;
1402
1403         if (single_plane_enabled(enabled) &&
1404             g4x_compute_srwm(dev, ffs(enabled) - 1,
1405                              sr_latency_ns,
1406                              &valleyview_wm_info,
1407                              &valleyview_cursor_wm_info,
1408                              &plane_sr, &ignore_cursor_sr) &&
1409             g4x_compute_srwm(dev, ffs(enabled) - 1,
1410                              2*sr_latency_ns,
1411                              &valleyview_wm_info,
1412                              &valleyview_cursor_wm_info,
1413                              &ignore_plane_sr, &cursor_sr)) {
1414                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1415         } else {
1416                 I915_WRITE(FW_BLC_SELF_VLV,
1417                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1418                 plane_sr = cursor_sr = 0;
1419         }
1420
1421         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422                       planea_wm, cursora_wm,
1423                       planeb_wm, cursorb_wm,
1424                       plane_sr, cursor_sr);
1425
1426         I915_WRITE(DSPFW1,
1427                    (plane_sr << DSPFW_SR_SHIFT) |
1428                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1429                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1430                    planea_wm);
1431         I915_WRITE(DSPFW2,
1432                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1434         I915_WRITE(DSPFW3,
1435                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1436                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1437 }
1438
1439 static void g4x_update_wm(struct drm_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->dev;
1442         static const int sr_latency_ns = 12000;
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1445         int plane_sr, cursor_sr;
1446         unsigned int enabled = 0;
1447
1448         if (g4x_compute_wm0(dev, PIPE_A,
1449                             &g4x_wm_info, latency_ns,
1450                             &g4x_cursor_wm_info, latency_ns,
1451                             &planea_wm, &cursora_wm))
1452                 enabled |= 1 << PIPE_A;
1453
1454         if (g4x_compute_wm0(dev, PIPE_B,
1455                             &g4x_wm_info, latency_ns,
1456                             &g4x_cursor_wm_info, latency_ns,
1457                             &planeb_wm, &cursorb_wm))
1458                 enabled |= 1 << PIPE_B;
1459
1460         if (single_plane_enabled(enabled) &&
1461             g4x_compute_srwm(dev, ffs(enabled) - 1,
1462                              sr_latency_ns,
1463                              &g4x_wm_info,
1464                              &g4x_cursor_wm_info,
1465                              &plane_sr, &cursor_sr)) {
1466                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1467         } else {
1468                 I915_WRITE(FW_BLC_SELF,
1469                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1470                 plane_sr = cursor_sr = 0;
1471         }
1472
1473         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1474                       planea_wm, cursora_wm,
1475                       planeb_wm, cursorb_wm,
1476                       plane_sr, cursor_sr);
1477
1478         I915_WRITE(DSPFW1,
1479                    (plane_sr << DSPFW_SR_SHIFT) |
1480                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1481                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1482                    planea_wm);
1483         I915_WRITE(DSPFW2,
1484                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1485                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1486         /* HPLL off in SR has some issues on G4x... disable it */
1487         I915_WRITE(DSPFW3,
1488                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1489                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i965_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         struct drm_crtc *crtc;
1497         int srwm = 1;
1498         int cursor_sr = 16;
1499
1500         /* Calc sr entries for one plane configs */
1501         crtc = single_enabled_crtc(dev);
1502         if (crtc) {
1503                 /* self-refresh has much higher latency */
1504                 static const int sr_latency_ns = 12000;
1505                 const struct drm_display_mode *adjusted_mode =
1506                         &to_intel_crtc(crtc)->config.adjusted_mode;
1507                 int clock = adjusted_mode->crtc_clock;
1508                 int htotal = adjusted_mode->htotal;
1509                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1510                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1511                 unsigned long line_time_us;
1512                 int entries;
1513
1514                 line_time_us = ((htotal * 1000) / clock);
1515
1516                 /* Use ns/us then divide to preserve precision */
1517                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1518                         pixel_size * hdisplay;
1519                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1520                 srwm = I965_FIFO_SIZE - entries;
1521                 if (srwm < 0)
1522                         srwm = 1;
1523                 srwm &= 0x1ff;
1524                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1525                               entries, srwm);
1526
1527                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1528                         pixel_size * 64;
1529                 entries = DIV_ROUND_UP(entries,
1530                                           i965_cursor_wm_info.cacheline_size);
1531                 cursor_sr = i965_cursor_wm_info.fifo_size -
1532                         (entries + i965_cursor_wm_info.guard_size);
1533
1534                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1535                         cursor_sr = i965_cursor_wm_info.max_wm;
1536
1537                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1538                               "cursor %d\n", srwm, cursor_sr);
1539
1540                 if (IS_CRESTLINE(dev))
1541                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1542         } else {
1543                 /* Turn off self refresh if both pipes are enabled */
1544                 if (IS_CRESTLINE(dev))
1545                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1546                                    & ~FW_BLC_SELF_EN);
1547         }
1548
1549         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1550                       srwm);
1551
1552         /* 965 has limitations... */
1553         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1554                    (8 << 16) | (8 << 8) | (8 << 0));
1555         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1556         /* update cursor SR watermark */
1557         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1558 }
1559
1560 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1561 {
1562         struct drm_device *dev = unused_crtc->dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         const struct intel_watermark_params *wm_info;
1565         uint32_t fwater_lo;
1566         uint32_t fwater_hi;
1567         int cwm, srwm = 1;
1568         int fifo_size;
1569         int planea_wm, planeb_wm;
1570         struct drm_crtc *crtc, *enabled = NULL;
1571
1572         if (IS_I945GM(dev))
1573                 wm_info = &i945_wm_info;
1574         else if (!IS_GEN2(dev))
1575                 wm_info = &i915_wm_info;
1576         else
1577                 wm_info = &i855_wm_info;
1578
1579         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1580         crtc = intel_get_crtc_for_plane(dev, 0);
1581         if (intel_crtc_active(crtc)) {
1582                 const struct drm_display_mode *adjusted_mode;
1583                 int cpp = crtc->fb->bits_per_pixel / 8;
1584                 if (IS_GEN2(dev))
1585                         cpp = 4;
1586
1587                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1588                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1589                                                wm_info, fifo_size, cpp,
1590                                                latency_ns);
1591                 enabled = crtc;
1592         } else
1593                 planea_wm = fifo_size - wm_info->guard_size;
1594
1595         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1596         crtc = intel_get_crtc_for_plane(dev, 1);
1597         if (intel_crtc_active(crtc)) {
1598                 const struct drm_display_mode *adjusted_mode;
1599                 int cpp = crtc->fb->bits_per_pixel / 8;
1600                 if (IS_GEN2(dev))
1601                         cpp = 4;
1602
1603                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1604                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1605                                                wm_info, fifo_size, cpp,
1606                                                latency_ns);
1607                 if (enabled == NULL)
1608                         enabled = crtc;
1609                 else
1610                         enabled = NULL;
1611         } else
1612                 planeb_wm = fifo_size - wm_info->guard_size;
1613
1614         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1615
1616         /*
1617          * Overlay gets an aggressive default since video jitter is bad.
1618          */
1619         cwm = 2;
1620
1621         /* Play safe and disable self-refresh before adjusting watermarks. */
1622         if (IS_I945G(dev) || IS_I945GM(dev))
1623                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1624         else if (IS_I915GM(dev))
1625                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1626
1627         /* Calc sr entries for one plane configs */
1628         if (HAS_FW_BLC(dev) && enabled) {
1629                 /* self-refresh has much higher latency */
1630                 static const int sr_latency_ns = 6000;
1631                 const struct drm_display_mode *adjusted_mode =
1632                         &to_intel_crtc(enabled)->config.adjusted_mode;
1633                 int clock = adjusted_mode->crtc_clock;
1634                 int htotal = adjusted_mode->htotal;
1635                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1636                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1637                 unsigned long line_time_us;
1638                 int entries;
1639
1640                 line_time_us = (htotal * 1000) / clock;
1641
1642                 /* Use ns/us then divide to preserve precision */
1643                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1644                         pixel_size * hdisplay;
1645                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1646                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1647                 srwm = wm_info->fifo_size - entries;
1648                 if (srwm < 0)
1649                         srwm = 1;
1650
1651                 if (IS_I945G(dev) || IS_I945GM(dev))
1652                         I915_WRITE(FW_BLC_SELF,
1653                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1654                 else if (IS_I915GM(dev))
1655                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1656         }
1657
1658         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1659                       planea_wm, planeb_wm, cwm, srwm);
1660
1661         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1662         fwater_hi = (cwm & 0x1f);
1663
1664         /* Set request length to 8 cachelines per fetch */
1665         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1666         fwater_hi = fwater_hi | (1 << 8);
1667
1668         I915_WRITE(FW_BLC, fwater_lo);
1669         I915_WRITE(FW_BLC2, fwater_hi);
1670
1671         if (HAS_FW_BLC(dev)) {
1672                 if (enabled) {
1673                         if (IS_I945G(dev) || IS_I945GM(dev))
1674                                 I915_WRITE(FW_BLC_SELF,
1675                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1676                         else if (IS_I915GM(dev))
1677                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1678                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1679                 } else
1680                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1681         }
1682 }
1683
1684 static void i830_update_wm(struct drm_crtc *unused_crtc)
1685 {
1686         struct drm_device *dev = unused_crtc->dev;
1687         struct drm_i915_private *dev_priv = dev->dev_private;
1688         struct drm_crtc *crtc;
1689         const struct drm_display_mode *adjusted_mode;
1690         uint32_t fwater_lo;
1691         int planea_wm;
1692
1693         crtc = single_enabled_crtc(dev);
1694         if (crtc == NULL)
1695                 return;
1696
1697         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1698         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1699                                        &i830_wm_info,
1700                                        dev_priv->display.get_fifo_size(dev, 0),
1701                                        4, latency_ns);
1702         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1703         fwater_lo |= (3<<8) | planea_wm;
1704
1705         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1706
1707         I915_WRITE(FW_BLC, fwater_lo);
1708 }
1709
1710 /*
1711  * Check the wm result.
1712  *
1713  * If any calculated watermark values is larger than the maximum value that
1714  * can be programmed into the associated watermark register, that watermark
1715  * must be disabled.
1716  */
1717 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1718                                 int fbc_wm, int display_wm, int cursor_wm,
1719                                 const struct intel_watermark_params *display,
1720                                 const struct intel_watermark_params *cursor)
1721 {
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723
1724         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1725                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1726
1727         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1728                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1729                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1730
1731                 /* fbc has it's own way to disable FBC WM */
1732                 I915_WRITE(DISP_ARB_CTL,
1733                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1734                 return false;
1735         } else if (INTEL_INFO(dev)->gen >= 6) {
1736                 /* enable FBC WM (except on ILK, where it must remain off) */
1737                 I915_WRITE(DISP_ARB_CTL,
1738                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1739         }
1740
1741         if (display_wm > display->max_wm) {
1742                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1743                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1744                 return false;
1745         }
1746
1747         if (cursor_wm > cursor->max_wm) {
1748                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1749                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1750                 return false;
1751         }
1752
1753         if (!(fbc_wm || display_wm || cursor_wm)) {
1754                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1755                 return false;
1756         }
1757
1758         return true;
1759 }
1760
1761 /*
1762  * Compute watermark values of WM[1-3],
1763  */
1764 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1765                                   int latency_ns,
1766                                   const struct intel_watermark_params *display,
1767                                   const struct intel_watermark_params *cursor,
1768                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1769 {
1770         struct drm_crtc *crtc;
1771         const struct drm_display_mode *adjusted_mode;
1772         unsigned long line_time_us;
1773         int hdisplay, htotal, pixel_size, clock;
1774         int line_count, line_size;
1775         int small, large;
1776         int entries;
1777
1778         if (!latency_ns) {
1779                 *fbc_wm = *display_wm = *cursor_wm = 0;
1780                 return false;
1781         }
1782
1783         crtc = intel_get_crtc_for_plane(dev, plane);
1784         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1785         clock = adjusted_mode->crtc_clock;
1786         htotal = adjusted_mode->htotal;
1787         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1788         pixel_size = crtc->fb->bits_per_pixel / 8;
1789
1790         line_time_us = (htotal * 1000) / clock;
1791         line_count = (latency_ns / line_time_us + 1000) / 1000;
1792         line_size = hdisplay * pixel_size;
1793
1794         /* Use the minimum of the small and large buffer method for primary */
1795         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1796         large = line_count * line_size;
1797
1798         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1799         *display_wm = entries + display->guard_size;
1800
1801         /*
1802          * Spec says:
1803          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1804          */
1805         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1806
1807         /* calculate the self-refresh watermark for display cursor */
1808         entries = line_count * pixel_size * 64;
1809         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1810         *cursor_wm = entries + cursor->guard_size;
1811
1812         return ironlake_check_srwm(dev, level,
1813                                    *fbc_wm, *display_wm, *cursor_wm,
1814                                    display, cursor);
1815 }
1816
1817 static void ironlake_update_wm(struct drm_crtc *crtc)
1818 {
1819         struct drm_device *dev = crtc->dev;
1820         struct drm_i915_private *dev_priv = dev->dev_private;
1821         int fbc_wm, plane_wm, cursor_wm;
1822         unsigned int enabled;
1823
1824         enabled = 0;
1825         if (g4x_compute_wm0(dev, PIPE_A,
1826                             &ironlake_display_wm_info,
1827                             dev_priv->wm.pri_latency[0] * 100,
1828                             &ironlake_cursor_wm_info,
1829                             dev_priv->wm.cur_latency[0] * 100,
1830                             &plane_wm, &cursor_wm)) {
1831                 I915_WRITE(WM0_PIPEA_ILK,
1832                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1833                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1834                               " plane %d, " "cursor: %d\n",
1835                               plane_wm, cursor_wm);
1836                 enabled |= 1 << PIPE_A;
1837         }
1838
1839         if (g4x_compute_wm0(dev, PIPE_B,
1840                             &ironlake_display_wm_info,
1841                             dev_priv->wm.pri_latency[0] * 100,
1842                             &ironlake_cursor_wm_info,
1843                             dev_priv->wm.cur_latency[0] * 100,
1844                             &plane_wm, &cursor_wm)) {
1845                 I915_WRITE(WM0_PIPEB_ILK,
1846                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1847                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1848                               " plane %d, cursor: %d\n",
1849                               plane_wm, cursor_wm);
1850                 enabled |= 1 << PIPE_B;
1851         }
1852
1853         /*
1854          * Calculate and update the self-refresh watermark only when one
1855          * display plane is used.
1856          */
1857         I915_WRITE(WM3_LP_ILK, 0);
1858         I915_WRITE(WM2_LP_ILK, 0);
1859         I915_WRITE(WM1_LP_ILK, 0);
1860
1861         if (!single_plane_enabled(enabled))
1862                 return;
1863         enabled = ffs(enabled) - 1;
1864
1865         /* WM1 */
1866         if (!ironlake_compute_srwm(dev, 1, enabled,
1867                                    dev_priv->wm.pri_latency[1] * 500,
1868                                    &ironlake_display_srwm_info,
1869                                    &ironlake_cursor_srwm_info,
1870                                    &fbc_wm, &plane_wm, &cursor_wm))
1871                 return;
1872
1873         I915_WRITE(WM1_LP_ILK,
1874                    WM1_LP_SR_EN |
1875                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1876                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1877                    (plane_wm << WM1_LP_SR_SHIFT) |
1878                    cursor_wm);
1879
1880         /* WM2 */
1881         if (!ironlake_compute_srwm(dev, 2, enabled,
1882                                    dev_priv->wm.pri_latency[2] * 500,
1883                                    &ironlake_display_srwm_info,
1884                                    &ironlake_cursor_srwm_info,
1885                                    &fbc_wm, &plane_wm, &cursor_wm))
1886                 return;
1887
1888         I915_WRITE(WM2_LP_ILK,
1889                    WM2_LP_EN |
1890                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1891                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1892                    (plane_wm << WM1_LP_SR_SHIFT) |
1893                    cursor_wm);
1894
1895         /*
1896          * WM3 is unsupported on ILK, probably because we don't have latency
1897          * data for that power state
1898          */
1899 }
1900
1901 static void sandybridge_update_wm(struct drm_crtc *crtc)
1902 {
1903         struct drm_device *dev = crtc->dev;
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
1906         u32 val;
1907         int fbc_wm, plane_wm, cursor_wm;
1908         unsigned int enabled;
1909
1910         enabled = 0;
1911         if (g4x_compute_wm0(dev, PIPE_A,
1912                             &sandybridge_display_wm_info, latency,
1913                             &sandybridge_cursor_wm_info, latency,
1914                             &plane_wm, &cursor_wm)) {
1915                 val = I915_READ(WM0_PIPEA_ILK);
1916                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1917                 I915_WRITE(WM0_PIPEA_ILK, val |
1918                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1919                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1920                               " plane %d, " "cursor: %d\n",
1921                               plane_wm, cursor_wm);
1922                 enabled |= 1 << PIPE_A;
1923         }
1924
1925         if (g4x_compute_wm0(dev, PIPE_B,
1926                             &sandybridge_display_wm_info, latency,
1927                             &sandybridge_cursor_wm_info, latency,
1928                             &plane_wm, &cursor_wm)) {
1929                 val = I915_READ(WM0_PIPEB_ILK);
1930                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1931                 I915_WRITE(WM0_PIPEB_ILK, val |
1932                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1933                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1934                               " plane %d, cursor: %d\n",
1935                               plane_wm, cursor_wm);
1936                 enabled |= 1 << PIPE_B;
1937         }
1938
1939         /*
1940          * Calculate and update the self-refresh watermark only when one
1941          * display plane is used.
1942          *
1943          * SNB support 3 levels of watermark.
1944          *
1945          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1946          * and disabled in the descending order
1947          *
1948          */
1949         I915_WRITE(WM3_LP_ILK, 0);
1950         I915_WRITE(WM2_LP_ILK, 0);
1951         I915_WRITE(WM1_LP_ILK, 0);
1952
1953         if (!single_plane_enabled(enabled) ||
1954             dev_priv->sprite_scaling_enabled)
1955                 return;
1956         enabled = ffs(enabled) - 1;
1957
1958         /* WM1 */
1959         if (!ironlake_compute_srwm(dev, 1, enabled,
1960                                    dev_priv->wm.pri_latency[1] * 500,
1961                                    &sandybridge_display_srwm_info,
1962                                    &sandybridge_cursor_srwm_info,
1963                                    &fbc_wm, &plane_wm, &cursor_wm))
1964                 return;
1965
1966         I915_WRITE(WM1_LP_ILK,
1967                    WM1_LP_SR_EN |
1968                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1969                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1970                    (plane_wm << WM1_LP_SR_SHIFT) |
1971                    cursor_wm);
1972
1973         /* WM2 */
1974         if (!ironlake_compute_srwm(dev, 2, enabled,
1975                                    dev_priv->wm.pri_latency[2] * 500,
1976                                    &sandybridge_display_srwm_info,
1977                                    &sandybridge_cursor_srwm_info,
1978                                    &fbc_wm, &plane_wm, &cursor_wm))
1979                 return;
1980
1981         I915_WRITE(WM2_LP_ILK,
1982                    WM2_LP_EN |
1983                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1984                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1985                    (plane_wm << WM1_LP_SR_SHIFT) |
1986                    cursor_wm);
1987
1988         /* WM3 */
1989         if (!ironlake_compute_srwm(dev, 3, enabled,
1990                                    dev_priv->wm.pri_latency[3] * 500,
1991                                    &sandybridge_display_srwm_info,
1992                                    &sandybridge_cursor_srwm_info,
1993                                    &fbc_wm, &plane_wm, &cursor_wm))
1994                 return;
1995
1996         I915_WRITE(WM3_LP_ILK,
1997                    WM3_LP_EN |
1998                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1999                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2000                    (plane_wm << WM1_LP_SR_SHIFT) |
2001                    cursor_wm);
2002 }
2003
2004 static void ivybridge_update_wm(struct drm_crtc *crtc)
2005 {
2006         struct drm_device *dev = crtc->dev;
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
2009         u32 val;
2010         int fbc_wm, plane_wm, cursor_wm;
2011         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
2012         unsigned int enabled;
2013
2014         enabled = 0;
2015         if (g4x_compute_wm0(dev, PIPE_A,
2016                             &sandybridge_display_wm_info, latency,
2017                             &sandybridge_cursor_wm_info, latency,
2018                             &plane_wm, &cursor_wm)) {
2019                 val = I915_READ(WM0_PIPEA_ILK);
2020                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2021                 I915_WRITE(WM0_PIPEA_ILK, val |
2022                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2023                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2024                               " plane %d, " "cursor: %d\n",
2025                               plane_wm, cursor_wm);
2026                 enabled |= 1 << PIPE_A;
2027         }
2028
2029         if (g4x_compute_wm0(dev, PIPE_B,
2030                             &sandybridge_display_wm_info, latency,
2031                             &sandybridge_cursor_wm_info, latency,
2032                             &plane_wm, &cursor_wm)) {
2033                 val = I915_READ(WM0_PIPEB_ILK);
2034                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2035                 I915_WRITE(WM0_PIPEB_ILK, val |
2036                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2037                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2038                               " plane %d, cursor: %d\n",
2039                               plane_wm, cursor_wm);
2040                 enabled |= 1 << PIPE_B;
2041         }
2042
2043         if (g4x_compute_wm0(dev, PIPE_C,
2044                             &sandybridge_display_wm_info, latency,
2045                             &sandybridge_cursor_wm_info, latency,
2046                             &plane_wm, &cursor_wm)) {
2047                 val = I915_READ(WM0_PIPEC_IVB);
2048                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2049                 I915_WRITE(WM0_PIPEC_IVB, val |
2050                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2051                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2052                               " plane %d, cursor: %d\n",
2053                               plane_wm, cursor_wm);
2054                 enabled |= 1 << PIPE_C;
2055         }
2056
2057         /*
2058          * Calculate and update the self-refresh watermark only when one
2059          * display plane is used.
2060          *
2061          * SNB support 3 levels of watermark.
2062          *
2063          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2064          * and disabled in the descending order
2065          *
2066          */
2067         I915_WRITE(WM3_LP_ILK, 0);
2068         I915_WRITE(WM2_LP_ILK, 0);
2069         I915_WRITE(WM1_LP_ILK, 0);
2070
2071         if (!single_plane_enabled(enabled) ||
2072             dev_priv->sprite_scaling_enabled)
2073                 return;
2074         enabled = ffs(enabled) - 1;
2075
2076         /* WM1 */
2077         if (!ironlake_compute_srwm(dev, 1, enabled,
2078                                    dev_priv->wm.pri_latency[1] * 500,
2079                                    &sandybridge_display_srwm_info,
2080                                    &sandybridge_cursor_srwm_info,
2081                                    &fbc_wm, &plane_wm, &cursor_wm))
2082                 return;
2083
2084         I915_WRITE(WM1_LP_ILK,
2085                    WM1_LP_SR_EN |
2086                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2087                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2088                    (plane_wm << WM1_LP_SR_SHIFT) |
2089                    cursor_wm);
2090
2091         /* WM2 */
2092         if (!ironlake_compute_srwm(dev, 2, enabled,
2093                                    dev_priv->wm.pri_latency[2] * 500,
2094                                    &sandybridge_display_srwm_info,
2095                                    &sandybridge_cursor_srwm_info,
2096                                    &fbc_wm, &plane_wm, &cursor_wm))
2097                 return;
2098
2099         I915_WRITE(WM2_LP_ILK,
2100                    WM2_LP_EN |
2101                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2102                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2103                    (plane_wm << WM1_LP_SR_SHIFT) |
2104                    cursor_wm);
2105
2106         /* WM3, note we have to correct the cursor latency */
2107         if (!ironlake_compute_srwm(dev, 3, enabled,
2108                                    dev_priv->wm.pri_latency[3] * 500,
2109                                    &sandybridge_display_srwm_info,
2110                                    &sandybridge_cursor_srwm_info,
2111                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2112             !ironlake_compute_srwm(dev, 3, enabled,
2113                                    dev_priv->wm.cur_latency[3] * 500,
2114                                    &sandybridge_display_srwm_info,
2115                                    &sandybridge_cursor_srwm_info,
2116                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2117                 return;
2118
2119         I915_WRITE(WM3_LP_ILK,
2120                    WM3_LP_EN |
2121                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2122                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2123                    (plane_wm << WM1_LP_SR_SHIFT) |
2124                    cursor_wm);
2125 }
2126
2127 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2128                                     struct drm_crtc *crtc)
2129 {
2130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2131         uint32_t pixel_rate;
2132
2133         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2134
2135         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2136          * adjust the pixel_rate here. */
2137
2138         if (intel_crtc->config.pch_pfit.enabled) {
2139                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2140                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2141
2142                 pipe_w = intel_crtc->config.pipe_src_w;
2143                 pipe_h = intel_crtc->config.pipe_src_h;
2144                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2145                 pfit_h = pfit_size & 0xFFFF;
2146                 if (pipe_w < pfit_w)
2147                         pipe_w = pfit_w;
2148                 if (pipe_h < pfit_h)
2149                         pipe_h = pfit_h;
2150
2151                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2152                                      pfit_w * pfit_h);
2153         }
2154
2155         return pixel_rate;
2156 }
2157
2158 /* latency must be in 0.1us units. */
2159 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2160                                uint32_t latency)
2161 {
2162         uint64_t ret;
2163
2164         if (WARN(latency == 0, "Latency value missing\n"))
2165                 return UINT_MAX;
2166
2167         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2168         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2169
2170         return ret;
2171 }
2172
2173 /* latency must be in 0.1us units. */
2174 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2175                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2176                                uint32_t latency)
2177 {
2178         uint32_t ret;
2179
2180         if (WARN(latency == 0, "Latency value missing\n"))
2181                 return UINT_MAX;
2182
2183         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2184         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2185         ret = DIV_ROUND_UP(ret, 64) + 2;
2186         return ret;
2187 }
2188
2189 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2190                            uint8_t bytes_per_pixel)
2191 {
2192         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2193 }
2194
2195 struct hsw_pipe_wm_parameters {
2196         bool active;
2197         uint32_t pipe_htotal;
2198         uint32_t pixel_rate;
2199         struct intel_plane_wm_parameters pri;
2200         struct intel_plane_wm_parameters spr;
2201         struct intel_plane_wm_parameters cur;
2202 };
2203
2204 struct hsw_wm_maximums {
2205         uint16_t pri;
2206         uint16_t spr;
2207         uint16_t cur;
2208         uint16_t fbc;
2209 };
2210
2211 /* used in computing the new watermarks state */
2212 struct intel_wm_config {
2213         unsigned int num_pipes_active;
2214         bool sprites_enabled;
2215         bool sprites_scaled;
2216 };
2217
2218 /*
2219  * For both WM_PIPE and WM_LP.
2220  * mem_value must be in 0.1us units.
2221  */
2222 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2223                                    uint32_t mem_value,
2224                                    bool is_lp)
2225 {
2226         uint32_t method1, method2;
2227
2228         if (!params->active || !params->pri.enabled)
2229                 return 0;
2230
2231         method1 = ilk_wm_method1(params->pixel_rate,
2232                                  params->pri.bytes_per_pixel,
2233                                  mem_value);
2234
2235         if (!is_lp)
2236                 return method1;
2237
2238         method2 = ilk_wm_method2(params->pixel_rate,
2239                                  params->pipe_htotal,
2240                                  params->pri.horiz_pixels,
2241                                  params->pri.bytes_per_pixel,
2242                                  mem_value);
2243
2244         return min(method1, method2);
2245 }
2246
2247 /*
2248  * For both WM_PIPE and WM_LP.
2249  * mem_value must be in 0.1us units.
2250  */
2251 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2252                                    uint32_t mem_value)
2253 {
2254         uint32_t method1, method2;
2255
2256         if (!params->active || !params->spr.enabled)
2257                 return 0;
2258
2259         method1 = ilk_wm_method1(params->pixel_rate,
2260                                  params->spr.bytes_per_pixel,
2261                                  mem_value);
2262         method2 = ilk_wm_method2(params->pixel_rate,
2263                                  params->pipe_htotal,
2264                                  params->spr.horiz_pixels,
2265                                  params->spr.bytes_per_pixel,
2266                                  mem_value);
2267         return min(method1, method2);
2268 }
2269
2270 /*
2271  * For both WM_PIPE and WM_LP.
2272  * mem_value must be in 0.1us units.
2273  */
2274 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2275                                    uint32_t mem_value)
2276 {
2277         if (!params->active || !params->cur.enabled)
2278                 return 0;
2279
2280         return ilk_wm_method2(params->pixel_rate,
2281                               params->pipe_htotal,
2282                               params->cur.horiz_pixels,
2283                               params->cur.bytes_per_pixel,
2284                               mem_value);
2285 }
2286
2287 /* Only for WM_LP. */
2288 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2289                                    uint32_t pri_val)
2290 {
2291         if (!params->active || !params->pri.enabled)
2292                 return 0;
2293
2294         return ilk_wm_fbc(pri_val,
2295                           params->pri.horiz_pixels,
2296                           params->pri.bytes_per_pixel);
2297 }
2298
2299 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2300 {
2301         if (INTEL_INFO(dev)->gen >= 8)
2302                 return 3072;
2303         else if (INTEL_INFO(dev)->gen >= 7)
2304                 return 768;
2305         else
2306                 return 512;
2307 }
2308
2309 /* Calculate the maximum primary/sprite plane watermark */
2310 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2311                                      int level,
2312                                      const struct intel_wm_config *config,
2313                                      enum intel_ddb_partitioning ddb_partitioning,
2314                                      bool is_sprite)
2315 {
2316         unsigned int fifo_size = ilk_display_fifo_size(dev);
2317         unsigned int max;
2318
2319         /* if sprites aren't enabled, sprites get nothing */
2320         if (is_sprite && !config->sprites_enabled)
2321                 return 0;
2322
2323         /* HSW allows LP1+ watermarks even with multiple pipes */
2324         if (level == 0 || config->num_pipes_active > 1) {
2325                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2326
2327                 /*
2328                  * For some reason the non self refresh
2329                  * FIFO size is only half of the self
2330                  * refresh FIFO size on ILK/SNB.
2331                  */
2332                 if (INTEL_INFO(dev)->gen <= 6)
2333                         fifo_size /= 2;
2334         }
2335
2336         if (config->sprites_enabled) {
2337                 /* level 0 is always calculated with 1:1 split */
2338                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2339                         if (is_sprite)
2340                                 fifo_size *= 5;
2341                         fifo_size /= 6;
2342                 } else {
2343                         fifo_size /= 2;
2344                 }
2345         }
2346
2347         /* clamp to max that the registers can hold */
2348         if (INTEL_INFO(dev)->gen >= 8)
2349                 max = level == 0 ? 255 : 2047;
2350         else if (INTEL_INFO(dev)->gen >= 7)
2351                 /* IVB/HSW primary/sprite plane watermarks */
2352                 max = level == 0 ? 127 : 1023;
2353         else if (!is_sprite)
2354                 /* ILK/SNB primary plane watermarks */
2355                 max = level == 0 ? 127 : 511;
2356         else
2357                 /* ILK/SNB sprite plane watermarks */
2358                 max = level == 0 ? 63 : 255;
2359
2360         return min(fifo_size, max);
2361 }
2362
2363 /* Calculate the maximum cursor plane watermark */
2364 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2365                                       int level,
2366                                       const struct intel_wm_config *config)
2367 {
2368         /* HSW LP1+ watermarks w/ multiple pipes */
2369         if (level > 0 && config->num_pipes_active > 1)
2370                 return 64;
2371
2372         /* otherwise just report max that registers can hold */
2373         if (INTEL_INFO(dev)->gen >= 7)
2374                 return level == 0 ? 63 : 255;
2375         else
2376                 return level == 0 ? 31 : 63;
2377 }
2378
2379 /* Calculate the maximum FBC watermark */
2380 static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2381 {
2382         /* max that registers can hold */
2383         if (INTEL_INFO(dev)->gen >= 8)
2384                 return 31;
2385         else
2386                 return 15;
2387 }
2388
2389 static void ilk_compute_wm_maximums(struct drm_device *dev,
2390                                     int level,
2391                                     const struct intel_wm_config *config,
2392                                     enum intel_ddb_partitioning ddb_partitioning,
2393                                     struct hsw_wm_maximums *max)
2394 {
2395         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2396         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2397         max->cur = ilk_cursor_wm_max(dev, level, config);
2398         max->fbc = ilk_fbc_wm_max(dev);
2399 }
2400
2401 static bool ilk_validate_wm_level(int level,
2402                                   const struct hsw_wm_maximums *max,
2403                                   struct intel_wm_level *result)
2404 {
2405         bool ret;
2406
2407         /* already determined to be invalid? */
2408         if (!result->enable)
2409                 return false;
2410
2411         result->enable = result->pri_val <= max->pri &&
2412                          result->spr_val <= max->spr &&
2413                          result->cur_val <= max->cur;
2414
2415         ret = result->enable;
2416
2417         /*
2418          * HACK until we can pre-compute everything,
2419          * and thus fail gracefully if LP0 watermarks
2420          * are exceeded...
2421          */
2422         if (level == 0 && !result->enable) {
2423                 if (result->pri_val > max->pri)
2424                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2425                                       level, result->pri_val, max->pri);
2426                 if (result->spr_val > max->spr)
2427                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2428                                       level, result->spr_val, max->spr);
2429                 if (result->cur_val > max->cur)
2430                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2431                                       level, result->cur_val, max->cur);
2432
2433                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2434                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2435                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2436                 result->enable = true;
2437         }
2438
2439         return ret;
2440 }
2441
2442 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2443                                  int level,
2444                                  const struct hsw_pipe_wm_parameters *p,
2445                                  struct intel_wm_level *result)
2446 {
2447         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2448         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2449         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2450
2451         /* WM1+ latency values stored in 0.5us units */
2452         if (level > 0) {
2453                 pri_latency *= 5;
2454                 spr_latency *= 5;
2455                 cur_latency *= 5;
2456         }
2457
2458         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2459         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2460         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2461         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2462         result->enable = true;
2463 }
2464
2465 static uint32_t
2466 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2467 {
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2470         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2471         u32 linetime, ips_linetime;
2472
2473         if (!intel_crtc_active(crtc))
2474                 return 0;
2475
2476         /* The WM are computed with base on how long it takes to fill a single
2477          * row at the given clock rate, multiplied by 8.
2478          * */
2479         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2480         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2481                                          intel_ddi_get_cdclk_freq(dev_priv));
2482
2483         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2484                PIPE_WM_LINETIME_TIME(linetime);
2485 }
2486
2487 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2488 {
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490
2491         if (IS_HASWELL(dev)) {
2492                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2493
2494                 wm[0] = (sskpd >> 56) & 0xFF;
2495                 if (wm[0] == 0)
2496                         wm[0] = sskpd & 0xF;
2497                 wm[1] = (sskpd >> 4) & 0xFF;
2498                 wm[2] = (sskpd >> 12) & 0xFF;
2499                 wm[3] = (sskpd >> 20) & 0x1FF;
2500                 wm[4] = (sskpd >> 32) & 0x1FF;
2501         } else if (INTEL_INFO(dev)->gen >= 6) {
2502                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2503
2504                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2505                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2506                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2507                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2508         } else if (INTEL_INFO(dev)->gen >= 5) {
2509                 uint32_t mltr = I915_READ(MLTR_ILK);
2510
2511                 /* ILK primary LP0 latency is 700 ns */
2512                 wm[0] = 7;
2513                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2514                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2515         }
2516 }
2517
2518 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2519 {
2520         /* ILK sprite LP0 latency is 1300 ns */
2521         if (INTEL_INFO(dev)->gen == 5)
2522                 wm[0] = 13;
2523 }
2524
2525 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2526 {
2527         /* ILK cursor LP0 latency is 1300 ns */
2528         if (INTEL_INFO(dev)->gen == 5)
2529                 wm[0] = 13;
2530
2531         /* WaDoubleCursorLP3Latency:ivb */
2532         if (IS_IVYBRIDGE(dev))
2533                 wm[3] *= 2;
2534 }
2535
2536 static int ilk_wm_max_level(const struct drm_device *dev)
2537 {
2538         /* how many WM levels are we expecting */
2539         if (IS_HASWELL(dev))
2540                 return 4;
2541         else if (INTEL_INFO(dev)->gen >= 6)
2542                 return 3;
2543         else
2544                 return 2;
2545 }
2546
2547 static void intel_print_wm_latency(struct drm_device *dev,
2548                                    const char *name,
2549                                    const uint16_t wm[5])
2550 {
2551         int level, max_level = ilk_wm_max_level(dev);
2552
2553         for (level = 0; level <= max_level; level++) {
2554                 unsigned int latency = wm[level];
2555
2556                 if (latency == 0) {
2557                         DRM_ERROR("%s WM%d latency not provided\n",
2558                                   name, level);
2559                         continue;
2560                 }
2561
2562                 /* WM1+ latency values in 0.5us units */
2563                 if (level > 0)
2564                         latency *= 5;
2565
2566                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2567                               name, level, wm[level],
2568                               latency / 10, latency % 10);
2569         }
2570 }
2571
2572 static void intel_setup_wm_latency(struct drm_device *dev)
2573 {
2574         struct drm_i915_private *dev_priv = dev->dev_private;
2575
2576         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2577
2578         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2579                sizeof(dev_priv->wm.pri_latency));
2580         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2581                sizeof(dev_priv->wm.pri_latency));
2582
2583         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2584         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2585
2586         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2587         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2588         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2589 }
2590
2591 static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
2592                                       struct hsw_pipe_wm_parameters *p,
2593                                       struct intel_wm_config *config)
2594 {
2595         struct drm_device *dev = crtc->dev;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         enum pipe pipe = intel_crtc->pipe;
2598         struct drm_plane *plane;
2599
2600         p->active = intel_crtc_active(crtc);
2601         if (p->active) {
2602                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2603                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2604                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2605                 p->cur.bytes_per_pixel = 4;
2606                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2607                 p->cur.horiz_pixels = 64;
2608                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2609                 p->pri.enabled = true;
2610                 p->cur.enabled = true;
2611         }
2612
2613         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2614                 config->num_pipes_active += intel_crtc_active(crtc);
2615
2616         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2617                 struct intel_plane *intel_plane = to_intel_plane(plane);
2618
2619                 if (intel_plane->pipe == pipe)
2620                         p->spr = intel_plane->wm;
2621
2622                 config->sprites_enabled |= intel_plane->wm.enabled;
2623                 config->sprites_scaled |= intel_plane->wm.scaled;
2624         }
2625 }
2626
2627 /* Compute new watermarks for the pipe */
2628 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2629                                   const struct hsw_pipe_wm_parameters *params,
2630                                   struct intel_pipe_wm *pipe_wm)
2631 {
2632         struct drm_device *dev = crtc->dev;
2633         struct drm_i915_private *dev_priv = dev->dev_private;
2634         int level, max_level = ilk_wm_max_level(dev);
2635         /* LP0 watermark maximums depend on this pipe alone */
2636         struct intel_wm_config config = {
2637                 .num_pipes_active = 1,
2638                 .sprites_enabled = params->spr.enabled,
2639                 .sprites_scaled = params->spr.scaled,
2640         };
2641         struct hsw_wm_maximums max;
2642
2643         /* LP0 watermarks always use 1/2 DDB partitioning */
2644         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2645
2646         for (level = 0; level <= max_level; level++)
2647                 ilk_compute_wm_level(dev_priv, level, params,
2648                                      &pipe_wm->wm[level]);
2649
2650         pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2651
2652         /* At least LP0 must be valid */
2653         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2654 }
2655
2656 /*
2657  * Merge the watermarks from all active pipes for a specific level.
2658  */
2659 static void ilk_merge_wm_level(struct drm_device *dev,
2660                                int level,
2661                                struct intel_wm_level *ret_wm)
2662 {
2663         const struct intel_crtc *intel_crtc;
2664
2665         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2666                 const struct intel_wm_level *wm =
2667                         &intel_crtc->wm.active.wm[level];
2668
2669                 if (!wm->enable)
2670                         return;
2671
2672                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2673                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2674                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2675                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2676         }
2677
2678         ret_wm->enable = true;
2679 }
2680
2681 /*
2682  * Merge all low power watermarks for all active pipes.
2683  */
2684 static void ilk_wm_merge(struct drm_device *dev,
2685                          const struct hsw_wm_maximums *max,
2686                          struct intel_pipe_wm *merged)
2687 {
2688         int level, max_level = ilk_wm_max_level(dev);
2689
2690         merged->fbc_wm_enabled = true;
2691
2692         /* merge each WM1+ level */
2693         for (level = 1; level <= max_level; level++) {
2694                 struct intel_wm_level *wm = &merged->wm[level];
2695
2696                 ilk_merge_wm_level(dev, level, wm);
2697
2698                 if (!ilk_validate_wm_level(level, max, wm))
2699                         break;
2700
2701                 /*
2702                  * The spec says it is preferred to disable
2703                  * FBC WMs instead of disabling a WM level.
2704                  */
2705                 if (wm->fbc_val > max->fbc) {
2706                         merged->fbc_wm_enabled = false;
2707                         wm->fbc_val = 0;
2708                 }
2709         }
2710 }
2711
2712 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2713 {
2714         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2715         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2716 }
2717
2718 static void hsw_compute_wm_results(struct drm_device *dev,
2719                                    const struct intel_pipe_wm *merged,
2720                                    enum intel_ddb_partitioning partitioning,
2721                                    struct hsw_wm_values *results)
2722 {
2723         struct intel_crtc *intel_crtc;
2724         int level, wm_lp;
2725
2726         results->enable_fbc_wm = merged->fbc_wm_enabled;
2727         results->partitioning = partitioning;
2728
2729         /* LP1+ register values */
2730         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2731                 const struct intel_wm_level *r;
2732
2733                 level = ilk_wm_lp_to_level(wm_lp, merged);
2734
2735                 r = &merged->wm[level];
2736                 if (!r->enable)
2737                         break;
2738
2739                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2740                         ((level * 2) << WM1_LP_LATENCY_SHIFT) |
2741                         (r->pri_val << WM1_LP_SR_SHIFT) |
2742                         r->cur_val;
2743
2744                 if (INTEL_INFO(dev)->gen >= 8)
2745                         results->wm_lp[wm_lp - 1] |=
2746                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2747                 else
2748                         results->wm_lp[wm_lp - 1] |=
2749                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2750
2751                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2752         }
2753
2754         /* LP0 register values */
2755         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2756                 enum pipe pipe = intel_crtc->pipe;
2757                 const struct intel_wm_level *r =
2758                         &intel_crtc->wm.active.wm[0];
2759
2760                 if (WARN_ON(!r->enable))
2761                         continue;
2762
2763                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2764
2765                 results->wm_pipe[pipe] =
2766                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2767                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2768                         r->cur_val;
2769         }
2770 }
2771
2772 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2773  * case both are at the same level. Prefer r1 in case they're the same. */
2774 static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
2775                                                   struct intel_pipe_wm *r1,
2776                                                   struct intel_pipe_wm *r2)
2777 {
2778         int level, max_level = ilk_wm_max_level(dev);
2779         int level1 = 0, level2 = 0;
2780
2781         for (level = 1; level <= max_level; level++) {
2782                 if (r1->wm[level].enable)
2783                         level1 = level;
2784                 if (r2->wm[level].enable)
2785                         level2 = level;
2786         }
2787
2788         if (level1 == level2) {
2789                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2790                         return r2;
2791                 else
2792                         return r1;
2793         } else if (level1 > level2) {
2794                 return r1;
2795         } else {
2796                 return r2;
2797         }
2798 }
2799
2800 /* dirty bits used to track which watermarks need changes */
2801 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2802 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2803 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2804 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2805 #define WM_DIRTY_FBC (1 << 24)
2806 #define WM_DIRTY_DDB (1 << 25)
2807
2808 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2809                                          const struct hsw_wm_values *old,
2810                                          const struct hsw_wm_values *new)
2811 {
2812         unsigned int dirty = 0;
2813         enum pipe pipe;
2814         int wm_lp;
2815
2816         for_each_pipe(pipe) {
2817                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2818                         dirty |= WM_DIRTY_LINETIME(pipe);
2819                         /* Must disable LP1+ watermarks too */
2820                         dirty |= WM_DIRTY_LP_ALL;
2821                 }
2822
2823                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2824                         dirty |= WM_DIRTY_PIPE(pipe);
2825                         /* Must disable LP1+ watermarks too */
2826                         dirty |= WM_DIRTY_LP_ALL;
2827                 }
2828         }
2829
2830         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2831                 dirty |= WM_DIRTY_FBC;
2832                 /* Must disable LP1+ watermarks too */
2833                 dirty |= WM_DIRTY_LP_ALL;
2834         }
2835
2836         if (old->partitioning != new->partitioning) {
2837                 dirty |= WM_DIRTY_DDB;
2838                 /* Must disable LP1+ watermarks too */
2839                 dirty |= WM_DIRTY_LP_ALL;
2840         }
2841
2842         /* LP1+ watermarks already deemed dirty, no need to continue */
2843         if (dirty & WM_DIRTY_LP_ALL)
2844                 return dirty;
2845
2846         /* Find the lowest numbered LP1+ watermark in need of an update... */
2847         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2848                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2849                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2850                         break;
2851         }
2852
2853         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2854         for (; wm_lp <= 3; wm_lp++)
2855                 dirty |= WM_DIRTY_LP(wm_lp);
2856
2857         return dirty;
2858 }
2859
2860 /*
2861  * The spec says we shouldn't write when we don't need, because every write
2862  * causes WMs to be re-evaluated, expending some power.
2863  */
2864 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2865                                 struct hsw_wm_values *results)
2866 {
2867         struct hsw_wm_values *previous = &dev_priv->wm.hw;
2868         unsigned int dirty;
2869         uint32_t val;
2870
2871         dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2872         if (!dirty)
2873                 return;
2874
2875         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2876                 I915_WRITE(WM3_LP_ILK, 0);
2877         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2878                 I915_WRITE(WM2_LP_ILK, 0);
2879         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2880                 I915_WRITE(WM1_LP_ILK, 0);
2881
2882         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2883                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2884         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2885                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2886         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2887                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2888
2889         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2890                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2891         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2892                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2893         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2894                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2895
2896         if (dirty & WM_DIRTY_DDB) {
2897                 val = I915_READ(WM_MISC);
2898                 if (results->partitioning == INTEL_DDB_PART_1_2)
2899                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2900                 else
2901                         val |= WM_MISC_DATA_PARTITION_5_6;
2902                 I915_WRITE(WM_MISC, val);
2903         }
2904
2905         if (dirty & WM_DIRTY_FBC) {
2906                 val = I915_READ(DISP_ARB_CTL);
2907                 if (results->enable_fbc_wm)
2908                         val &= ~DISP_FBC_WM_DIS;
2909                 else
2910                         val |= DISP_FBC_WM_DIS;
2911                 I915_WRITE(DISP_ARB_CTL, val);
2912         }
2913
2914         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2915                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2916         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2917                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2918         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2919                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2920
2921         if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2922                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2923         if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2924                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2925         if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2926                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2927
2928         dev_priv->wm.hw = *results;
2929 }
2930
2931 static void haswell_update_wm(struct drm_crtc *crtc)
2932 {
2933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2934         struct drm_device *dev = crtc->dev;
2935         struct drm_i915_private *dev_priv = dev->dev_private;
2936         struct hsw_wm_maximums max;
2937         struct hsw_pipe_wm_parameters params = {};
2938         struct hsw_wm_values results = {};
2939         enum intel_ddb_partitioning partitioning;
2940         struct intel_pipe_wm pipe_wm = {};
2941         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2942         struct intel_wm_config config = {};
2943
2944         hsw_compute_wm_parameters(crtc, &params, &config);
2945
2946         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2947
2948         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2949                 return;
2950
2951         intel_crtc->wm.active = pipe_wm;
2952
2953         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2954         ilk_wm_merge(dev, &max, &lp_wm_1_2);
2955
2956         /* 5/6 split only in single pipe config on IVB+ */
2957         if (INTEL_INFO(dev)->gen >= 7 &&
2958             config.num_pipes_active == 1 && config.sprites_enabled) {
2959                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2960                 ilk_wm_merge(dev, &max, &lp_wm_5_6);
2961
2962                 best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2963         } else {
2964                 best_lp_wm = &lp_wm_1_2;
2965         }
2966
2967         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2968                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2969
2970         hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2971
2972         hsw_write_wm_values(dev_priv, &results);
2973 }
2974
2975 static void haswell_update_sprite_wm(struct drm_plane *plane,
2976                                      struct drm_crtc *crtc,
2977                                      uint32_t sprite_width, int pixel_size,
2978                                      bool enabled, bool scaled)
2979 {
2980         struct intel_plane *intel_plane = to_intel_plane(plane);
2981
2982         intel_plane->wm.enabled = enabled;
2983         intel_plane->wm.scaled = scaled;
2984         intel_plane->wm.horiz_pixels = sprite_width;
2985         intel_plane->wm.bytes_per_pixel = pixel_size;
2986
2987         haswell_update_wm(crtc);
2988 }
2989
2990 static bool
2991 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2992                               uint32_t sprite_width, int pixel_size,
2993                               const struct intel_watermark_params *display,
2994                               int display_latency_ns, int *sprite_wm)
2995 {
2996         struct drm_crtc *crtc;
2997         int clock;
2998         int entries, tlb_miss;
2999
3000         crtc = intel_get_crtc_for_plane(dev, plane);
3001         if (!intel_crtc_active(crtc)) {
3002                 *sprite_wm = display->guard_size;
3003                 return false;
3004         }
3005
3006         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3007
3008         /* Use the small buffer method to calculate the sprite watermark */
3009         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3010         tlb_miss = display->fifo_size*display->cacheline_size -
3011                 sprite_width * 8;
3012         if (tlb_miss > 0)
3013                 entries += tlb_miss;
3014         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3015         *sprite_wm = entries + display->guard_size;
3016         if (*sprite_wm > (int)display->max_wm)
3017                 *sprite_wm = display->max_wm;
3018
3019         return true;
3020 }
3021
3022 static bool
3023 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
3024                                 uint32_t sprite_width, int pixel_size,
3025                                 const struct intel_watermark_params *display,
3026                                 int latency_ns, int *sprite_wm)
3027 {
3028         struct drm_crtc *crtc;
3029         unsigned long line_time_us;
3030         int clock;
3031         int line_count, line_size;
3032         int small, large;
3033         int entries;
3034
3035         if (!latency_ns) {
3036                 *sprite_wm = 0;
3037                 return false;
3038         }
3039
3040         crtc = intel_get_crtc_for_plane(dev, plane);
3041         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3042         if (!clock) {
3043                 *sprite_wm = 0;
3044                 return false;
3045         }
3046
3047         line_time_us = (sprite_width * 1000) / clock;
3048         if (!line_time_us) {
3049                 *sprite_wm = 0;
3050                 return false;
3051         }
3052
3053         line_count = (latency_ns / line_time_us + 1000) / 1000;
3054         line_size = sprite_width * pixel_size;
3055
3056         /* Use the minimum of the small and large buffer method for primary */
3057         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3058         large = line_count * line_size;
3059
3060         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3061         *sprite_wm = entries + display->guard_size;
3062
3063         return *sprite_wm > 0x3ff ? false : true;
3064 }
3065
3066 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
3067                                          struct drm_crtc *crtc,
3068                                          uint32_t sprite_width, int pixel_size,
3069                                          bool enabled, bool scaled)
3070 {
3071         struct drm_device *dev = plane->dev;
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         int pipe = to_intel_plane(plane)->pipe;
3074         int latency = dev_priv->wm.spr_latency[0] * 100;        /* In unit 0.1us */
3075         u32 val;
3076         int sprite_wm, reg;
3077         int ret;
3078
3079         if (!enabled)
3080                 return;
3081
3082         switch (pipe) {
3083         case 0:
3084                 reg = WM0_PIPEA_ILK;
3085                 break;
3086         case 1:
3087                 reg = WM0_PIPEB_ILK;
3088                 break;
3089         case 2:
3090                 reg = WM0_PIPEC_IVB;
3091                 break;
3092         default:
3093                 return; /* bad pipe */
3094         }
3095
3096         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3097                                             &sandybridge_display_wm_info,
3098                                             latency, &sprite_wm);
3099         if (!ret) {
3100                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3101                               pipe_name(pipe));
3102                 return;
3103         }
3104
3105         val = I915_READ(reg);
3106         val &= ~WM0_PIPE_SPRITE_MASK;
3107         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3108         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3109
3110
3111         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3112                                               pixel_size,
3113                                               &sandybridge_display_srwm_info,
3114                                               dev_priv->wm.spr_latency[1] * 500,
3115                                               &sprite_wm);
3116         if (!ret) {
3117                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3118                               pipe_name(pipe));
3119                 return;
3120         }
3121         I915_WRITE(WM1S_LP_ILK, sprite_wm);
3122
3123         /* Only IVB has two more LP watermarks for sprite */
3124         if (!IS_IVYBRIDGE(dev))
3125                 return;
3126
3127         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3128                                               pixel_size,
3129                                               &sandybridge_display_srwm_info,
3130                                               dev_priv->wm.spr_latency[2] * 500,
3131                                               &sprite_wm);
3132         if (!ret) {
3133                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3134                               pipe_name(pipe));
3135                 return;
3136         }
3137         I915_WRITE(WM2S_LP_IVB, sprite_wm);
3138
3139         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3140                                               pixel_size,
3141                                               &sandybridge_display_srwm_info,
3142                                               dev_priv->wm.spr_latency[3] * 500,
3143                                               &sprite_wm);
3144         if (!ret) {
3145                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3146                               pipe_name(pipe));
3147                 return;
3148         }
3149         I915_WRITE(WM3S_LP_IVB, sprite_wm);
3150 }
3151
3152 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3153 {
3154         struct drm_device *dev = crtc->dev;
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3158         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3159         enum pipe pipe = intel_crtc->pipe;
3160         static const unsigned int wm0_pipe_reg[] = {
3161                 [PIPE_A] = WM0_PIPEA_ILK,
3162                 [PIPE_B] = WM0_PIPEB_ILK,
3163                 [PIPE_C] = WM0_PIPEC_IVB,
3164         };
3165
3166         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3167         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3168
3169         if (intel_crtc_active(crtc)) {
3170                 u32 tmp = hw->wm_pipe[pipe];
3171
3172                 /*
3173                  * For active pipes LP0 watermark is marked as
3174                  * enabled, and LP1+ watermaks as disabled since
3175                  * we can't really reverse compute them in case
3176                  * multiple pipes are active.
3177                  */
3178                 active->wm[0].enable = true;
3179                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3180                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3181                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3182                 active->linetime = hw->wm_linetime[pipe];
3183         } else {
3184                 int level, max_level = ilk_wm_max_level(dev);
3185
3186                 /*
3187                  * For inactive pipes, all watermark levels
3188                  * should be marked as enabled but zeroed,
3189                  * which is what we'd compute them to.
3190                  */
3191                 for (level = 0; level <= max_level; level++)
3192                         active->wm[level].enable = true;
3193         }
3194 }
3195
3196 void ilk_wm_get_hw_state(struct drm_device *dev)
3197 {
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         struct hsw_wm_values *hw = &dev_priv->wm.hw;
3200         struct drm_crtc *crtc;
3201
3202         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3203                 ilk_pipe_wm_get_hw_state(crtc);
3204
3205         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3206         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3207         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3208
3209         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3210         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3211         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3212
3213         hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3214                 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3215
3216         hw->enable_fbc_wm =
3217                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3218 }
3219
3220 /**
3221  * intel_update_watermarks - update FIFO watermark values based on current modes
3222  *
3223  * Calculate watermark values for the various WM regs based on current mode
3224  * and plane configuration.
3225  *
3226  * There are several cases to deal with here:
3227  *   - normal (i.e. non-self-refresh)
3228  *   - self-refresh (SR) mode
3229  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3230  *   - lines are small relative to FIFO size (buffer can hold more than 2
3231  *     lines), so need to account for TLB latency
3232  *
3233  *   The normal calculation is:
3234  *     watermark = dotclock * bytes per pixel * latency
3235  *   where latency is platform & configuration dependent (we assume pessimal
3236  *   values here).
3237  *
3238  *   The SR calculation is:
3239  *     watermark = (trunc(latency/line time)+1) * surface width *
3240  *       bytes per pixel
3241  *   where
3242  *     line time = htotal / dotclock
3243  *     surface width = hdisplay for normal plane and 64 for cursor
3244  *   and latency is assumed to be high, as above.
3245  *
3246  * The final value programmed to the register should always be rounded up,
3247  * and include an extra 2 entries to account for clock crossings.
3248  *
3249  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3250  * to set the non-SR watermarks to 8.
3251  */
3252 void intel_update_watermarks(struct drm_crtc *crtc)
3253 {
3254         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3255
3256         if (dev_priv->display.update_wm)
3257                 dev_priv->display.update_wm(crtc);
3258 }
3259
3260 void intel_update_sprite_watermarks(struct drm_plane *plane,
3261                                     struct drm_crtc *crtc,
3262                                     uint32_t sprite_width, int pixel_size,
3263                                     bool enabled, bool scaled)
3264 {
3265         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3266
3267         if (dev_priv->display.update_sprite_wm)
3268                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3269                                                    pixel_size, enabled, scaled);
3270 }
3271
3272 static struct drm_i915_gem_object *
3273 intel_alloc_context_page(struct drm_device *dev)
3274 {
3275         struct drm_i915_gem_object *ctx;
3276         int ret;
3277
3278         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3279
3280         ctx = i915_gem_alloc_object(dev, 4096);
3281         if (!ctx) {
3282                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3283                 return NULL;
3284         }
3285
3286         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3287         if (ret) {
3288                 DRM_ERROR("failed to pin power context: %d\n", ret);
3289                 goto err_unref;
3290         }
3291
3292         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3293         if (ret) {
3294                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3295                 goto err_unpin;
3296         }
3297
3298         return ctx;
3299
3300 err_unpin:
3301         i915_gem_object_ggtt_unpin(ctx);
3302 err_unref:
3303         drm_gem_object_unreference(&ctx->base);
3304         return NULL;
3305 }
3306
3307 /**
3308  * Lock protecting IPS related data structures
3309  */
3310 DEFINE_SPINLOCK(mchdev_lock);
3311
3312 /* Global for IPS driver to get at the current i915 device. Protected by
3313  * mchdev_lock. */
3314 static struct drm_i915_private *i915_mch_dev;
3315
3316 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3317 {
3318         struct drm_i915_private *dev_priv = dev->dev_private;
3319         u16 rgvswctl;
3320
3321         assert_spin_locked(&mchdev_lock);
3322
3323         rgvswctl = I915_READ16(MEMSWCTL);
3324         if (rgvswctl & MEMCTL_CMD_STS) {
3325                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3326                 return false; /* still busy with another command */
3327         }
3328
3329         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3330                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3331         I915_WRITE16(MEMSWCTL, rgvswctl);
3332         POSTING_READ16(MEMSWCTL);
3333
3334         rgvswctl |= MEMCTL_CMD_STS;
3335         I915_WRITE16(MEMSWCTL, rgvswctl);
3336
3337         return true;
3338 }
3339
3340 static void ironlake_enable_drps(struct drm_device *dev)
3341 {
3342         struct drm_i915_private *dev_priv = dev->dev_private;
3343         u32 rgvmodectl = I915_READ(MEMMODECTL);
3344         u8 fmax, fmin, fstart, vstart;
3345
3346         spin_lock_irq(&mchdev_lock);
3347
3348         /* Enable temp reporting */
3349         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3350         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3351
3352         /* 100ms RC evaluation intervals */
3353         I915_WRITE(RCUPEI, 100000);
3354         I915_WRITE(RCDNEI, 100000);
3355
3356         /* Set max/min thresholds to 90ms and 80ms respectively */
3357         I915_WRITE(RCBMAXAVG, 90000);
3358         I915_WRITE(RCBMINAVG, 80000);
3359
3360         I915_WRITE(MEMIHYST, 1);
3361
3362         /* Set up min, max, and cur for interrupt handling */
3363         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3364         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3365         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3366                 MEMMODE_FSTART_SHIFT;
3367
3368         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3369                 PXVFREQ_PX_SHIFT;
3370
3371         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3372         dev_priv->ips.fstart = fstart;
3373
3374         dev_priv->ips.max_delay = fstart;
3375         dev_priv->ips.min_delay = fmin;
3376         dev_priv->ips.cur_delay = fstart;
3377
3378         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3379                          fmax, fmin, fstart);
3380
3381         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3382
3383         /*
3384          * Interrupts will be enabled in ironlake_irq_postinstall
3385          */
3386
3387         I915_WRITE(VIDSTART, vstart);
3388         POSTING_READ(VIDSTART);
3389
3390         rgvmodectl |= MEMMODE_SWMODE_EN;
3391         I915_WRITE(MEMMODECTL, rgvmodectl);
3392
3393         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3394                 DRM_ERROR("stuck trying to change perf mode\n");
3395         mdelay(1);
3396
3397         ironlake_set_drps(dev, fstart);
3398
3399         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3400                 I915_READ(0x112e0);
3401         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3402         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3403         getrawmonotonic(&dev_priv->ips.last_time2);
3404
3405         spin_unlock_irq(&mchdev_lock);
3406 }
3407
3408 static void ironlake_disable_drps(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411         u16 rgvswctl;
3412
3413         spin_lock_irq(&mchdev_lock);
3414
3415         rgvswctl = I915_READ16(MEMSWCTL);
3416
3417         /* Ack interrupts, disable EFC interrupt */
3418         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3419         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3420         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3421         I915_WRITE(DEIIR, DE_PCU_EVENT);
3422         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3423
3424         /* Go back to the starting frequency */
3425         ironlake_set_drps(dev, dev_priv->ips.fstart);
3426         mdelay(1);
3427         rgvswctl |= MEMCTL_CMD_STS;
3428         I915_WRITE(MEMSWCTL, rgvswctl);
3429         mdelay(1);
3430
3431         spin_unlock_irq(&mchdev_lock);
3432 }
3433
3434 /* There's a funny hw issue where the hw returns all 0 when reading from
3435  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3436  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3437  * all limits and the gpu stuck at whatever frequency it is at atm).
3438  */
3439 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3440 {
3441         u32 limits;
3442
3443         /* Only set the down limit when we've reached the lowest level to avoid
3444          * getting more interrupts, otherwise leave this clear. This prevents a
3445          * race in the hw when coming out of rc6: There's a tiny window where
3446          * the hw runs at the minimal clock before selecting the desired
3447          * frequency, if the down threshold expires in that window we will not
3448          * receive a down interrupt. */
3449         limits = dev_priv->rps.max_delay << 24;
3450         if (val <= dev_priv->rps.min_delay)
3451                 limits |= dev_priv->rps.min_delay << 16;
3452
3453         return limits;
3454 }
3455
3456 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3457 {
3458         int new_power;
3459
3460         new_power = dev_priv->rps.power;
3461         switch (dev_priv->rps.power) {
3462         case LOW_POWER:
3463                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
3464                         new_power = BETWEEN;
3465                 break;
3466
3467         case BETWEEN:
3468                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
3469                         new_power = LOW_POWER;
3470                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
3471                         new_power = HIGH_POWER;
3472                 break;
3473
3474         case HIGH_POWER:
3475                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
3476                         new_power = BETWEEN;
3477                 break;
3478         }
3479         /* Max/min bins are special */
3480         if (val == dev_priv->rps.min_delay)
3481                 new_power = LOW_POWER;
3482         if (val == dev_priv->rps.max_delay)
3483                 new_power = HIGH_POWER;
3484         if (new_power == dev_priv->rps.power)
3485                 return;
3486
3487         /* Note the units here are not exactly 1us, but 1280ns. */
3488         switch (new_power) {
3489         case LOW_POWER:
3490                 /* Upclock if more than 95% busy over 16ms */
3491                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3492                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3493
3494                 /* Downclock if less than 85% busy over 32ms */
3495                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3496                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3497
3498                 I915_WRITE(GEN6_RP_CONTROL,
3499                            GEN6_RP_MEDIA_TURBO |
3500                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3501                            GEN6_RP_MEDIA_IS_GFX |
3502                            GEN6_RP_ENABLE |
3503                            GEN6_RP_UP_BUSY_AVG |
3504                            GEN6_RP_DOWN_IDLE_AVG);
3505                 break;
3506
3507         case BETWEEN:
3508                 /* Upclock if more than 90% busy over 13ms */
3509                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3510                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3511
3512                 /* Downclock if less than 75% busy over 32ms */
3513                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3514                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3515
3516                 I915_WRITE(GEN6_RP_CONTROL,
3517                            GEN6_RP_MEDIA_TURBO |
3518                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3519                            GEN6_RP_MEDIA_IS_GFX |
3520                            GEN6_RP_ENABLE |
3521                            GEN6_RP_UP_BUSY_AVG |
3522                            GEN6_RP_DOWN_IDLE_AVG);
3523                 break;
3524
3525         case HIGH_POWER:
3526                 /* Upclock if more than 85% busy over 10ms */
3527                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3528                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3529
3530                 /* Downclock if less than 60% busy over 32ms */
3531                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3532                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3533
3534                 I915_WRITE(GEN6_RP_CONTROL,
3535                            GEN6_RP_MEDIA_TURBO |
3536                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3537                            GEN6_RP_MEDIA_IS_GFX |
3538                            GEN6_RP_ENABLE |
3539                            GEN6_RP_UP_BUSY_AVG |
3540                            GEN6_RP_DOWN_IDLE_AVG);
3541                 break;
3542         }
3543
3544         dev_priv->rps.power = new_power;
3545         dev_priv->rps.last_adj = 0;
3546 }
3547
3548 void gen6_set_rps(struct drm_device *dev, u8 val)
3549 {
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551
3552         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3553         WARN_ON(val > dev_priv->rps.max_delay);
3554         WARN_ON(val < dev_priv->rps.min_delay);
3555
3556         if (val == dev_priv->rps.cur_delay)
3557                 return;
3558
3559         gen6_set_rps_thresholds(dev_priv, val);
3560
3561         if (IS_HASWELL(dev))
3562                 I915_WRITE(GEN6_RPNSWREQ,
3563                            HSW_FREQUENCY(val));
3564         else
3565                 I915_WRITE(GEN6_RPNSWREQ,
3566                            GEN6_FREQUENCY(val) |
3567                            GEN6_OFFSET(0) |
3568                            GEN6_AGGRESSIVE_TURBO);
3569
3570         /* Make sure we continue to get interrupts
3571          * until we hit the minimum or maximum frequencies.
3572          */
3573         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3574                    gen6_rps_limits(dev_priv, val));
3575
3576         POSTING_READ(GEN6_RPNSWREQ);
3577
3578         dev_priv->rps.cur_delay = val;
3579
3580         trace_intel_gpu_freq_change(val * 50);
3581 }
3582
3583 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3584 {
3585         mutex_lock(&dev_priv->rps.hw_lock);
3586         if (dev_priv->rps.enabled) {
3587                 if (dev_priv->info->is_valleyview)
3588                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3589                 else
3590                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3591                 dev_priv->rps.last_adj = 0;
3592         }
3593         mutex_unlock(&dev_priv->rps.hw_lock);
3594 }
3595
3596 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3597 {
3598         mutex_lock(&dev_priv->rps.hw_lock);
3599         if (dev_priv->rps.enabled) {
3600                 if (dev_priv->info->is_valleyview)
3601                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3602                 else
3603                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3604                 dev_priv->rps.last_adj = 0;
3605         }
3606         mutex_unlock(&dev_priv->rps.hw_lock);
3607 }
3608
3609 void valleyview_set_rps(struct drm_device *dev, u8 val)
3610 {
3611         struct drm_i915_private *dev_priv = dev->dev_private;
3612
3613         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3614         WARN_ON(val > dev_priv->rps.max_delay);
3615         WARN_ON(val < dev_priv->rps.min_delay);
3616
3617         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3618                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3619                          dev_priv->rps.cur_delay,
3620                          vlv_gpu_freq(dev_priv, val), val);
3621
3622         if (val == dev_priv->rps.cur_delay)
3623                 return;
3624
3625         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3626
3627         dev_priv->rps.cur_delay = val;
3628
3629         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3630 }
3631
3632 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3633 {
3634         struct drm_i915_private *dev_priv = dev->dev_private;
3635
3636         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3637         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3638         /* Complete PM interrupt masking here doesn't race with the rps work
3639          * item again unmasking PM interrupts because that is using a different
3640          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3641          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3642
3643         spin_lock_irq(&dev_priv->irq_lock);
3644         dev_priv->rps.pm_iir = 0;
3645         spin_unlock_irq(&dev_priv->irq_lock);
3646
3647         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3648 }
3649
3650 static void gen6_disable_rps(struct drm_device *dev)
3651 {
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653
3654         I915_WRITE(GEN6_RC_CONTROL, 0);
3655         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3656
3657         gen6_disable_rps_interrupts(dev);
3658 }
3659
3660 static void valleyview_disable_rps(struct drm_device *dev)
3661 {
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663
3664         I915_WRITE(GEN6_RC_CONTROL, 0);
3665
3666         gen6_disable_rps_interrupts(dev);
3667
3668         if (dev_priv->vlv_pctx) {
3669                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3670                 dev_priv->vlv_pctx = NULL;
3671         }
3672 }
3673
3674 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3675 {
3676         if (IS_GEN6(dev))
3677                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3678
3679         if (IS_HASWELL(dev))
3680                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3681
3682         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3683                         (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3684                         (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3685                         (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3686 }
3687
3688 int intel_enable_rc6(const struct drm_device *dev)
3689 {
3690         /* No RC6 before Ironlake */
3691         if (INTEL_INFO(dev)->gen < 5)
3692                 return 0;
3693
3694         /* Respect the kernel parameter if it is set */
3695         if (i915_enable_rc6 >= 0)
3696                 return i915_enable_rc6;
3697
3698         /* Disable RC6 on Ironlake */
3699         if (INTEL_INFO(dev)->gen == 5)
3700                 return 0;
3701
3702         if (IS_HASWELL(dev))
3703                 return INTEL_RC6_ENABLE;
3704
3705         /* snb/ivb have more than one rc6 state. */
3706         if (INTEL_INFO(dev)->gen == 6)
3707                 return INTEL_RC6_ENABLE;
3708
3709         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3710 }
3711
3712 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3713 {
3714         struct drm_i915_private *dev_priv = dev->dev_private;
3715         u32 enabled_intrs;
3716
3717         spin_lock_irq(&dev_priv->irq_lock);
3718         WARN_ON(dev_priv->rps.pm_iir);
3719         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3720         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3721         spin_unlock_irq(&dev_priv->irq_lock);
3722
3723         /* only unmask PM interrupts we need. Mask all others. */
3724         enabled_intrs = GEN6_PM_RPS_EVENTS;
3725
3726         /* IVB and SNB hard hangs on looping batchbuffer
3727          * if GEN6_PM_UP_EI_EXPIRED is masked.
3728          */
3729         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3730                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3731
3732         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3733 }
3734
3735 static void gen8_enable_rps(struct drm_device *dev)
3736 {
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         struct intel_ring_buffer *ring;
3739         uint32_t rc6_mask = 0, rp_state_cap;
3740         int unused;
3741
3742         /* 1a: Software RC state - RC0 */
3743         I915_WRITE(GEN6_RC_STATE, 0);
3744
3745         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3746          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3747         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3748
3749         /* 2a: Disable RC states. */
3750         I915_WRITE(GEN6_RC_CONTROL, 0);
3751
3752         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3753
3754         /* 2b: Program RC6 thresholds.*/
3755         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3756         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3757         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3758         for_each_ring(ring, dev_priv, unused)
3759                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3760         I915_WRITE(GEN6_RC_SLEEP, 0);
3761         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3762
3763         /* 3: Enable RC6 */
3764         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3765                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3766         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3767         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3768                         GEN6_RC_CTL_EI_MODE(1) |
3769                         rc6_mask);
3770
3771         /* 4 Program defaults and thresholds for RPS*/
3772         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3773         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3774         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3775         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3776
3777         /* Docs recommend 900MHz, and 300 MHz respectively */
3778         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3779                    dev_priv->rps.max_delay << 24 |
3780                    dev_priv->rps.min_delay << 16);
3781
3782         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3783         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3784         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3785         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3786
3787         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3788
3789         /* 5: Enable RPS */
3790         I915_WRITE(GEN6_RP_CONTROL,
3791                    GEN6_RP_MEDIA_TURBO |
3792                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3793                    GEN6_RP_MEDIA_IS_GFX |
3794                    GEN6_RP_ENABLE |
3795                    GEN6_RP_UP_BUSY_AVG |
3796                    GEN6_RP_DOWN_IDLE_AVG);
3797
3798         /* 6: Ring frequency + overclocking (our driver does this later */
3799
3800         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3801
3802         gen6_enable_rps_interrupts(dev);
3803
3804         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3805 }
3806
3807 static void gen6_enable_rps(struct drm_device *dev)
3808 {
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         struct intel_ring_buffer *ring;
3811         u32 rp_state_cap;
3812         u32 gt_perf_status;
3813         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3814         u32 gtfifodbg;
3815         int rc6_mode;
3816         int i, ret;
3817
3818         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3819
3820         /* Here begins a magic sequence of register writes to enable
3821          * auto-downclocking.
3822          *
3823          * Perhaps there might be some value in exposing these to
3824          * userspace...
3825          */
3826         I915_WRITE(GEN6_RC_STATE, 0);
3827
3828         /* Clear the DBG now so we don't confuse earlier errors */
3829         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3830                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3831                 I915_WRITE(GTFIFODBG, gtfifodbg);
3832         }
3833
3834         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3835
3836         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3837         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3838
3839         /* In units of 50MHz */
3840         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3841         dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3842         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3843         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3844         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3845         dev_priv->rps.cur_delay = 0;
3846
3847         /* disable the counters and set deterministic thresholds */
3848         I915_WRITE(GEN6_RC_CONTROL, 0);
3849
3850         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3851         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3852         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3853         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3854         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3855
3856         for_each_ring(ring, dev_priv, i)
3857                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3858
3859         I915_WRITE(GEN6_RC_SLEEP, 0);
3860         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3861         if (IS_IVYBRIDGE(dev))
3862                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3863         else
3864                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3865         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3866         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3867
3868         /* Check if we are enabling RC6 */
3869         rc6_mode = intel_enable_rc6(dev_priv->dev);
3870         if (rc6_mode & INTEL_RC6_ENABLE)
3871                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3872
3873         /* We don't use those on Haswell */
3874         if (!IS_HASWELL(dev)) {
3875                 if (rc6_mode & INTEL_RC6p_ENABLE)
3876                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3877
3878                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3879                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3880         }
3881
3882         intel_print_rc6_info(dev, rc6_mask);
3883
3884         I915_WRITE(GEN6_RC_CONTROL,
3885                    rc6_mask |
3886                    GEN6_RC_CTL_EI_MODE(1) |
3887                    GEN6_RC_CTL_HW_ENABLE);
3888
3889         /* Power down if completely idle for over 50ms */
3890         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3891         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3892
3893         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3894         if (!ret) {
3895                 pcu_mbox = 0;
3896                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3897                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3898                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3899                                          (dev_priv->rps.max_delay & 0xff) * 50,
3900                                          (pcu_mbox & 0xff) * 50);
3901                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3902                 }
3903         } else {
3904                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3905         }
3906
3907         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3908         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3909
3910         gen6_enable_rps_interrupts(dev);
3911
3912         rc6vids = 0;
3913         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3914         if (IS_GEN6(dev) && ret) {
3915                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3916         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3917                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3918                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3919                 rc6vids &= 0xffff00;
3920                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3921                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3922                 if (ret)
3923                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3924         }
3925
3926         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3927 }
3928
3929 void gen6_update_ring_freq(struct drm_device *dev)
3930 {
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         int min_freq = 15;
3933         unsigned int gpu_freq;
3934         unsigned int max_ia_freq, min_ring_freq;
3935         int scaling_factor = 180;
3936         struct cpufreq_policy *policy;
3937
3938         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3939
3940         policy = cpufreq_cpu_get(0);
3941         if (policy) {
3942                 max_ia_freq = policy->cpuinfo.max_freq;
3943                 cpufreq_cpu_put(policy);
3944         } else {
3945                 /*
3946                  * Default to measured freq if none found, PCU will ensure we
3947                  * don't go over
3948                  */
3949                 max_ia_freq = tsc_khz;
3950         }
3951
3952         /* Convert from kHz to MHz */
3953         max_ia_freq /= 1000;
3954
3955         min_ring_freq = I915_READ(DCLK) & 0xf;
3956         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3957         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3958
3959         /*
3960          * For each potential GPU frequency, load a ring frequency we'd like
3961          * to use for memory access.  We do this by specifying the IA frequency
3962          * the PCU should use as a reference to determine the ring frequency.
3963          */
3964         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3965              gpu_freq--) {
3966                 int diff = dev_priv->rps.max_delay - gpu_freq;
3967                 unsigned int ia_freq = 0, ring_freq = 0;
3968
3969                 if (INTEL_INFO(dev)->gen >= 8) {
3970                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3971                         ring_freq = max(min_ring_freq, gpu_freq);
3972                 } else if (IS_HASWELL(dev)) {
3973                         ring_freq = mult_frac(gpu_freq, 5, 4);
3974                         ring_freq = max(min_ring_freq, ring_freq);
3975                         /* leave ia_freq as the default, chosen by cpufreq */
3976                 } else {
3977                         /* On older processors, there is no separate ring
3978                          * clock domain, so in order to boost the bandwidth
3979                          * of the ring, we need to upclock the CPU (ia_freq).
3980                          *
3981                          * For GPU frequencies less than 750MHz,
3982                          * just use the lowest ring freq.
3983                          */
3984                         if (gpu_freq < min_freq)
3985                                 ia_freq = 800;
3986                         else
3987                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3988                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3989                 }
3990
3991                 sandybridge_pcode_write(dev_priv,
3992                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3993                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3994                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3995                                         gpu_freq);
3996         }
3997 }
3998
3999 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4000 {
4001         u32 val, rp0;
4002
4003         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4004
4005         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4006         /* Clamp to max */
4007         rp0 = min_t(u32, rp0, 0xea);
4008
4009         return rp0;
4010 }
4011
4012 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4013 {
4014         u32 val, rpe;
4015
4016         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4017         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4018         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4019         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4020
4021         return rpe;
4022 }
4023
4024 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4025 {
4026         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4027 }
4028
4029 static void valleyview_setup_pctx(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         struct drm_i915_gem_object *pctx;
4033         unsigned long pctx_paddr;
4034         u32 pcbr;
4035         int pctx_size = 24*1024;
4036
4037         pcbr = I915_READ(VLV_PCBR);
4038         if (pcbr) {
4039                 /* BIOS set it up already, grab the pre-alloc'd space */
4040                 int pcbr_offset;
4041
4042                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4043                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4044                                                                       pcbr_offset,
4045                                                                       I915_GTT_OFFSET_NONE,
4046                                                                       pctx_size);
4047                 goto out;
4048         }
4049
4050         /*
4051          * From the Gunit register HAS:
4052          * The Gfx driver is expected to program this register and ensure
4053          * proper allocation within Gfx stolen memory.  For example, this
4054          * register should be programmed such than the PCBR range does not
4055          * overlap with other ranges, such as the frame buffer, protected
4056          * memory, or any other relevant ranges.
4057          */
4058         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4059         if (!pctx) {
4060                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4061                 return;
4062         }
4063
4064         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4065         I915_WRITE(VLV_PCBR, pctx_paddr);
4066
4067 out:
4068         dev_priv->vlv_pctx = pctx;
4069 }
4070
4071 static void valleyview_enable_rps(struct drm_device *dev)
4072 {
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         struct intel_ring_buffer *ring;
4075         u32 gtfifodbg, val, rc6_mode = 0;
4076         int i;
4077
4078         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4079
4080         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4081                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4082                                  gtfifodbg);
4083                 I915_WRITE(GTFIFODBG, gtfifodbg);
4084         }
4085
4086         valleyview_setup_pctx(dev);
4087
4088         /* If VLV, Forcewake all wells, else re-direct to regular path */
4089         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4090
4091         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4092         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4093         I915_WRITE(GEN6_RP_UP_EI, 66000);
4094         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4095
4096         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4097
4098         I915_WRITE(GEN6_RP_CONTROL,
4099                    GEN6_RP_MEDIA_TURBO |
4100                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4101                    GEN6_RP_MEDIA_IS_GFX |
4102                    GEN6_RP_ENABLE |
4103                    GEN6_RP_UP_BUSY_AVG |
4104                    GEN6_RP_DOWN_IDLE_CONT);
4105
4106         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4107         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4108         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4109
4110         for_each_ring(ring, dev_priv, i)
4111                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4112
4113         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4114
4115         /* allows RC6 residency counter to work */
4116         I915_WRITE(VLV_COUNTER_CONTROL,
4117                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4118                                       VLV_MEDIA_RC6_COUNT_EN |
4119                                       VLV_RENDER_RC6_COUNT_EN));
4120         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4121                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4122
4123         intel_print_rc6_info(dev, rc6_mode);
4124
4125         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4126
4127         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4128
4129         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4130         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4131
4132         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4133         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4134                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4135                          dev_priv->rps.cur_delay);
4136
4137         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
4138         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4139         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4140                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4141                          dev_priv->rps.max_delay);
4142
4143         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
4144         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4145                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4146                          dev_priv->rps.rpe_delay);
4147
4148         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
4149         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4150                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4151                          dev_priv->rps.min_delay);
4152
4153         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4154                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4155                          dev_priv->rps.rpe_delay);
4156
4157         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4158
4159         gen6_enable_rps_interrupts(dev);
4160
4161         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4162 }
4163
4164 void ironlake_teardown_rc6(struct drm_device *dev)
4165 {
4166         struct drm_i915_private *dev_priv = dev->dev_private;
4167
4168         if (dev_priv->ips.renderctx) {
4169                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4170                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4171                 dev_priv->ips.renderctx = NULL;
4172         }
4173
4174         if (dev_priv->ips.pwrctx) {
4175                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4176                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4177                 dev_priv->ips.pwrctx = NULL;
4178         }
4179 }
4180
4181 static void ironlake_disable_rc6(struct drm_device *dev)
4182 {
4183         struct drm_i915_private *dev_priv = dev->dev_private;
4184
4185         if (I915_READ(PWRCTXA)) {
4186                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4187                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4188                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4189                          50);
4190
4191                 I915_WRITE(PWRCTXA, 0);
4192                 POSTING_READ(PWRCTXA);
4193
4194                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4195                 POSTING_READ(RSTDBYCTL);
4196         }
4197 }
4198
4199 static int ironlake_setup_rc6(struct drm_device *dev)
4200 {
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202
4203         if (dev_priv->ips.renderctx == NULL)
4204                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4205         if (!dev_priv->ips.renderctx)
4206                 return -ENOMEM;
4207
4208         if (dev_priv->ips.pwrctx == NULL)
4209                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4210         if (!dev_priv->ips.pwrctx) {
4211                 ironlake_teardown_rc6(dev);
4212                 return -ENOMEM;
4213         }
4214
4215         return 0;
4216 }
4217
4218 static void ironlake_enable_rc6(struct drm_device *dev)
4219 {
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4222         bool was_interruptible;
4223         int ret;
4224
4225         /* rc6 disabled by default due to repeated reports of hanging during
4226          * boot and resume.
4227          */
4228         if (!intel_enable_rc6(dev))
4229                 return;
4230
4231         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4232
4233         ret = ironlake_setup_rc6(dev);
4234         if (ret)
4235                 return;
4236
4237         was_interruptible = dev_priv->mm.interruptible;
4238         dev_priv->mm.interruptible = false;
4239
4240         /*
4241          * GPU can automatically power down the render unit if given a page
4242          * to save state.
4243          */
4244         ret = intel_ring_begin(ring, 6);
4245         if (ret) {
4246                 ironlake_teardown_rc6(dev);
4247                 dev_priv->mm.interruptible = was_interruptible;
4248                 return;
4249         }
4250
4251         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4252         intel_ring_emit(ring, MI_SET_CONTEXT);
4253         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4254                         MI_MM_SPACE_GTT |
4255                         MI_SAVE_EXT_STATE_EN |
4256                         MI_RESTORE_EXT_STATE_EN |
4257                         MI_RESTORE_INHIBIT);
4258         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4259         intel_ring_emit(ring, MI_NOOP);
4260         intel_ring_emit(ring, MI_FLUSH);
4261         intel_ring_advance(ring);
4262
4263         /*
4264          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4265          * does an implicit flush, combined with MI_FLUSH above, it should be
4266          * safe to assume that renderctx is valid
4267          */
4268         ret = intel_ring_idle(ring);
4269         dev_priv->mm.interruptible = was_interruptible;
4270         if (ret) {
4271                 DRM_ERROR("failed to enable ironlake power savings\n");
4272                 ironlake_teardown_rc6(dev);
4273                 return;
4274         }
4275
4276         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4277         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4278
4279         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4280 }
4281
4282 static unsigned long intel_pxfreq(u32 vidfreq)
4283 {
4284         unsigned long freq;
4285         int div = (vidfreq & 0x3f0000) >> 16;
4286         int post = (vidfreq & 0x3000) >> 12;
4287         int pre = (vidfreq & 0x7);
4288
4289         if (!pre)
4290                 return 0;
4291
4292         freq = ((div * 133333) / ((1<<post) * pre));
4293
4294         return freq;
4295 }
4296
4297 static const struct cparams {
4298         u16 i;
4299         u16 t;
4300         u16 m;
4301         u16 c;
4302 } cparams[] = {
4303         { 1, 1333, 301, 28664 },
4304         { 1, 1066, 294, 24460 },
4305         { 1, 800, 294, 25192 },
4306         { 0, 1333, 276, 27605 },
4307         { 0, 1066, 276, 27605 },
4308         { 0, 800, 231, 23784 },
4309 };
4310
4311 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4312 {
4313         u64 total_count, diff, ret;
4314         u32 count1, count2, count3, m = 0, c = 0;
4315         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4316         int i;
4317
4318         assert_spin_locked(&mchdev_lock);
4319
4320         diff1 = now - dev_priv->ips.last_time1;
4321
4322         /* Prevent division-by-zero if we are asking too fast.
4323          * Also, we don't get interesting results if we are polling
4324          * faster than once in 10ms, so just return the saved value
4325          * in such cases.
4326          */
4327         if (diff1 <= 10)
4328                 return dev_priv->ips.chipset_power;
4329
4330         count1 = I915_READ(DMIEC);
4331         count2 = I915_READ(DDREC);
4332         count3 = I915_READ(CSIEC);
4333
4334         total_count = count1 + count2 + count3;
4335
4336         /* FIXME: handle per-counter overflow */
4337         if (total_count < dev_priv->ips.last_count1) {
4338                 diff = ~0UL - dev_priv->ips.last_count1;
4339                 diff += total_count;
4340         } else {
4341                 diff = total_count - dev_priv->ips.last_count1;
4342         }
4343
4344         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4345                 if (cparams[i].i == dev_priv->ips.c_m &&
4346                     cparams[i].t == dev_priv->ips.r_t) {
4347                         m = cparams[i].m;
4348                         c = cparams[i].c;
4349                         break;
4350                 }
4351         }
4352
4353         diff = div_u64(diff, diff1);
4354         ret = ((m * diff) + c);
4355         ret = div_u64(ret, 10);
4356
4357         dev_priv->ips.last_count1 = total_count;
4358         dev_priv->ips.last_time1 = now;
4359
4360         dev_priv->ips.chipset_power = ret;
4361
4362         return ret;
4363 }
4364
4365 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4366 {
4367         unsigned long val;
4368
4369         if (dev_priv->info->gen != 5)
4370                 return 0;
4371
4372         spin_lock_irq(&mchdev_lock);
4373
4374         val = __i915_chipset_val(dev_priv);
4375
4376         spin_unlock_irq(&mchdev_lock);
4377
4378         return val;
4379 }
4380
4381 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4382 {
4383         unsigned long m, x, b;
4384         u32 tsfs;
4385
4386         tsfs = I915_READ(TSFS);
4387
4388         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4389         x = I915_READ8(TR1);
4390
4391         b = tsfs & TSFS_INTR_MASK;
4392
4393         return ((m * x) / 127) - b;
4394 }
4395
4396 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4397 {
4398         static const struct v_table {
4399                 u16 vd; /* in .1 mil */
4400                 u16 vm; /* in .1 mil */
4401         } v_table[] = {
4402                 { 0, 0, },
4403                 { 375, 0, },
4404                 { 500, 0, },
4405                 { 625, 0, },
4406                 { 750, 0, },
4407                 { 875, 0, },
4408                 { 1000, 0, },
4409                 { 1125, 0, },
4410                 { 4125, 3000, },
4411                 { 4125, 3000, },
4412                 { 4125, 3000, },
4413                 { 4125, 3000, },
4414                 { 4125, 3000, },
4415                 { 4125, 3000, },
4416                 { 4125, 3000, },
4417                 { 4125, 3000, },
4418                 { 4125, 3000, },
4419                 { 4125, 3000, },
4420                 { 4125, 3000, },
4421                 { 4125, 3000, },
4422                 { 4125, 3000, },
4423                 { 4125, 3000, },
4424                 { 4125, 3000, },
4425                 { 4125, 3000, },
4426                 { 4125, 3000, },
4427                 { 4125, 3000, },
4428                 { 4125, 3000, },
4429                 { 4125, 3000, },
4430                 { 4125, 3000, },
4431                 { 4125, 3000, },
4432                 { 4125, 3000, },
4433                 { 4125, 3000, },
4434                 { 4250, 3125, },
4435                 { 4375, 3250, },
4436                 { 4500, 3375, },
4437                 { 4625, 3500, },
4438                 { 4750, 3625, },
4439                 { 4875, 3750, },
4440                 { 5000, 3875, },
4441                 { 5125, 4000, },
4442                 { 5250, 4125, },
4443                 { 5375, 4250, },
4444                 { 5500, 4375, },
4445                 { 5625, 4500, },
4446                 { 5750, 4625, },
4447                 { 5875, 4750, },
4448                 { 6000, 4875, },
4449                 { 6125, 5000, },
4450                 { 6250, 5125, },
4451                 { 6375, 5250, },
4452                 { 6500, 5375, },
4453                 { 6625, 5500, },
4454                 { 6750, 5625, },
4455                 { 6875, 5750, },
4456                 { 7000, 5875, },
4457                 { 7125, 6000, },
4458                 { 7250, 6125, },
4459                 { 7375, 6250, },
4460                 { 7500, 6375, },
4461                 { 7625, 6500, },
4462                 { 7750, 6625, },
4463                 { 7875, 6750, },
4464                 { 8000, 6875, },
4465                 { 8125, 7000, },
4466                 { 8250, 7125, },
4467                 { 8375, 7250, },
4468                 { 8500, 7375, },
4469                 { 8625, 7500, },
4470                 { 8750, 7625, },
4471                 { 8875, 7750, },
4472                 { 9000, 7875, },
4473                 { 9125, 8000, },
4474                 { 9250, 8125, },
4475                 { 9375, 8250, },
4476                 { 9500, 8375, },
4477                 { 9625, 8500, },
4478                 { 9750, 8625, },
4479                 { 9875, 8750, },
4480                 { 10000, 8875, },
4481                 { 10125, 9000, },
4482                 { 10250, 9125, },
4483                 { 10375, 9250, },
4484                 { 10500, 9375, },
4485                 { 10625, 9500, },
4486                 { 10750, 9625, },
4487                 { 10875, 9750, },
4488                 { 11000, 9875, },
4489                 { 11125, 10000, },
4490                 { 11250, 10125, },
4491                 { 11375, 10250, },
4492                 { 11500, 10375, },
4493                 { 11625, 10500, },
4494                 { 11750, 10625, },
4495                 { 11875, 10750, },
4496                 { 12000, 10875, },
4497                 { 12125, 11000, },
4498                 { 12250, 11125, },
4499                 { 12375, 11250, },
4500                 { 12500, 11375, },
4501                 { 12625, 11500, },
4502                 { 12750, 11625, },
4503                 { 12875, 11750, },
4504                 { 13000, 11875, },
4505                 { 13125, 12000, },
4506                 { 13250, 12125, },
4507                 { 13375, 12250, },
4508                 { 13500, 12375, },
4509                 { 13625, 12500, },
4510                 { 13750, 12625, },
4511                 { 13875, 12750, },
4512                 { 14000, 12875, },
4513                 { 14125, 13000, },
4514                 { 14250, 13125, },
4515                 { 14375, 13250, },
4516                 { 14500, 13375, },
4517                 { 14625, 13500, },
4518                 { 14750, 13625, },
4519                 { 14875, 13750, },
4520                 { 15000, 13875, },
4521                 { 15125, 14000, },
4522                 { 15250, 14125, },
4523                 { 15375, 14250, },
4524                 { 15500, 14375, },
4525                 { 15625, 14500, },
4526                 { 15750, 14625, },
4527                 { 15875, 14750, },
4528                 { 16000, 14875, },
4529                 { 16125, 15000, },
4530         };
4531         if (dev_priv->info->is_mobile)
4532                 return v_table[pxvid].vm;
4533         else
4534                 return v_table[pxvid].vd;
4535 }
4536
4537 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4538 {
4539         struct timespec now, diff1;
4540         u64 diff;
4541         unsigned long diffms;
4542         u32 count;
4543
4544         assert_spin_locked(&mchdev_lock);
4545
4546         getrawmonotonic(&now);
4547         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4548
4549         /* Don't divide by 0 */
4550         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4551         if (!diffms)
4552                 return;
4553
4554         count = I915_READ(GFXEC);
4555
4556         if (count < dev_priv->ips.last_count2) {
4557                 diff = ~0UL - dev_priv->ips.last_count2;
4558                 diff += count;
4559         } else {
4560                 diff = count - dev_priv->ips.last_count2;
4561         }
4562
4563         dev_priv->ips.last_count2 = count;
4564         dev_priv->ips.last_time2 = now;
4565
4566         /* More magic constants... */
4567         diff = diff * 1181;
4568         diff = div_u64(diff, diffms * 10);
4569         dev_priv->ips.gfx_power = diff;
4570 }
4571
4572 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4573 {
4574         if (dev_priv->info->gen != 5)
4575                 return;
4576
4577         spin_lock_irq(&mchdev_lock);
4578
4579         __i915_update_gfx_val(dev_priv);
4580
4581         spin_unlock_irq(&mchdev_lock);
4582 }
4583
4584 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4585 {
4586         unsigned long t, corr, state1, corr2, state2;
4587         u32 pxvid, ext_v;
4588
4589         assert_spin_locked(&mchdev_lock);
4590
4591         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4592         pxvid = (pxvid >> 24) & 0x7f;
4593         ext_v = pvid_to_extvid(dev_priv, pxvid);
4594
4595         state1 = ext_v;
4596
4597         t = i915_mch_val(dev_priv);
4598
4599         /* Revel in the empirically derived constants */
4600
4601         /* Correction factor in 1/100000 units */
4602         if (t > 80)
4603                 corr = ((t * 2349) + 135940);
4604         else if (t >= 50)
4605                 corr = ((t * 964) + 29317);
4606         else /* < 50 */
4607                 corr = ((t * 301) + 1004);
4608
4609         corr = corr * ((150142 * state1) / 10000 - 78642);
4610         corr /= 100000;
4611         corr2 = (corr * dev_priv->ips.corr);
4612
4613         state2 = (corr2 * state1) / 10000;
4614         state2 /= 100; /* convert to mW */
4615
4616         __i915_update_gfx_val(dev_priv);
4617
4618         return dev_priv->ips.gfx_power + state2;
4619 }
4620
4621 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4622 {
4623         unsigned long val;
4624
4625         if (dev_priv->info->gen != 5)
4626                 return 0;
4627
4628         spin_lock_irq(&mchdev_lock);
4629
4630         val = __i915_gfx_val(dev_priv);
4631
4632         spin_unlock_irq(&mchdev_lock);
4633
4634         return val;
4635 }
4636
4637 /**
4638  * i915_read_mch_val - return value for IPS use
4639  *
4640  * Calculate and return a value for the IPS driver to use when deciding whether
4641  * we have thermal and power headroom to increase CPU or GPU power budget.
4642  */
4643 unsigned long i915_read_mch_val(void)
4644 {
4645         struct drm_i915_private *dev_priv;
4646         unsigned long chipset_val, graphics_val, ret = 0;
4647
4648         spin_lock_irq(&mchdev_lock);
4649         if (!i915_mch_dev)
4650                 goto out_unlock;
4651         dev_priv = i915_mch_dev;
4652
4653         chipset_val = __i915_chipset_val(dev_priv);
4654         graphics_val = __i915_gfx_val(dev_priv);
4655
4656         ret = chipset_val + graphics_val;
4657
4658 out_unlock:
4659         spin_unlock_irq(&mchdev_lock);
4660
4661         return ret;
4662 }
4663 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4664
4665 /**
4666  * i915_gpu_raise - raise GPU frequency limit
4667  *
4668  * Raise the limit; IPS indicates we have thermal headroom.
4669  */
4670 bool i915_gpu_raise(void)
4671 {
4672         struct drm_i915_private *dev_priv;
4673         bool ret = true;
4674
4675         spin_lock_irq(&mchdev_lock);
4676         if (!i915_mch_dev) {
4677                 ret = false;
4678                 goto out_unlock;
4679         }
4680         dev_priv = i915_mch_dev;
4681
4682         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4683                 dev_priv->ips.max_delay--;
4684
4685 out_unlock:
4686         spin_unlock_irq(&mchdev_lock);
4687
4688         return ret;
4689 }
4690 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4691
4692 /**
4693  * i915_gpu_lower - lower GPU frequency limit
4694  *
4695  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4696  * frequency maximum.
4697  */
4698 bool i915_gpu_lower(void)
4699 {
4700         struct drm_i915_private *dev_priv;
4701         bool ret = true;
4702
4703         spin_lock_irq(&mchdev_lock);
4704         if (!i915_mch_dev) {
4705                 ret = false;
4706                 goto out_unlock;
4707         }
4708         dev_priv = i915_mch_dev;
4709
4710         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4711                 dev_priv->ips.max_delay++;
4712
4713 out_unlock:
4714         spin_unlock_irq(&mchdev_lock);
4715
4716         return ret;
4717 }
4718 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4719
4720 /**
4721  * i915_gpu_busy - indicate GPU business to IPS
4722  *
4723  * Tell the IPS driver whether or not the GPU is busy.
4724  */
4725 bool i915_gpu_busy(void)
4726 {
4727         struct drm_i915_private *dev_priv;
4728         struct intel_ring_buffer *ring;
4729         bool ret = false;
4730         int i;
4731
4732         spin_lock_irq(&mchdev_lock);
4733         if (!i915_mch_dev)
4734                 goto out_unlock;
4735         dev_priv = i915_mch_dev;
4736
4737         for_each_ring(ring, dev_priv, i)
4738                 ret |= !list_empty(&ring->request_list);
4739
4740 out_unlock:
4741         spin_unlock_irq(&mchdev_lock);
4742
4743         return ret;
4744 }
4745 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4746
4747 /**
4748  * i915_gpu_turbo_disable - disable graphics turbo
4749  *
4750  * Disable graphics turbo by resetting the max frequency and setting the
4751  * current frequency to the default.
4752  */
4753 bool i915_gpu_turbo_disable(void)
4754 {
4755         struct drm_i915_private *dev_priv;
4756         bool ret = true;
4757
4758         spin_lock_irq(&mchdev_lock);
4759         if (!i915_mch_dev) {
4760                 ret = false;
4761                 goto out_unlock;
4762         }
4763         dev_priv = i915_mch_dev;
4764
4765         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4766
4767         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4768                 ret = false;
4769
4770 out_unlock:
4771         spin_unlock_irq(&mchdev_lock);
4772
4773         return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4776
4777 /**
4778  * Tells the intel_ips driver that the i915 driver is now loaded, if
4779  * IPS got loaded first.
4780  *
4781  * This awkward dance is so that neither module has to depend on the
4782  * other in order for IPS to do the appropriate communication of
4783  * GPU turbo limits to i915.
4784  */
4785 static void
4786 ips_ping_for_i915_load(void)
4787 {
4788         void (*link)(void);
4789
4790         link = symbol_get(ips_link_to_i915_driver);
4791         if (link) {
4792                 link();
4793                 symbol_put(ips_link_to_i915_driver);
4794         }
4795 }
4796
4797 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4798 {
4799         /* We only register the i915 ips part with intel-ips once everything is
4800          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4801         spin_lock_irq(&mchdev_lock);
4802         i915_mch_dev = dev_priv;
4803         spin_unlock_irq(&mchdev_lock);
4804
4805         ips_ping_for_i915_load();
4806 }
4807
4808 void intel_gpu_ips_teardown(void)
4809 {
4810         spin_lock_irq(&mchdev_lock);
4811         i915_mch_dev = NULL;
4812         spin_unlock_irq(&mchdev_lock);
4813 }
4814 static void intel_init_emon(struct drm_device *dev)
4815 {
4816         struct drm_i915_private *dev_priv = dev->dev_private;
4817         u32 lcfuse;
4818         u8 pxw[16];
4819         int i;
4820
4821         /* Disable to program */
4822         I915_WRITE(ECR, 0);
4823         POSTING_READ(ECR);
4824
4825         /* Program energy weights for various events */
4826         I915_WRITE(SDEW, 0x15040d00);
4827         I915_WRITE(CSIEW0, 0x007f0000);
4828         I915_WRITE(CSIEW1, 0x1e220004);
4829         I915_WRITE(CSIEW2, 0x04000004);
4830
4831         for (i = 0; i < 5; i++)
4832                 I915_WRITE(PEW + (i * 4), 0);
4833         for (i = 0; i < 3; i++)
4834                 I915_WRITE(DEW + (i * 4), 0);
4835
4836         /* Program P-state weights to account for frequency power adjustment */
4837         for (i = 0; i < 16; i++) {
4838                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4839                 unsigned long freq = intel_pxfreq(pxvidfreq);
4840                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4841                         PXVFREQ_PX_SHIFT;
4842                 unsigned long val;
4843
4844                 val = vid * vid;
4845                 val *= (freq / 1000);
4846                 val *= 255;
4847                 val /= (127*127*900);
4848                 if (val > 0xff)
4849                         DRM_ERROR("bad pxval: %ld\n", val);
4850                 pxw[i] = val;
4851         }
4852         /* Render standby states get 0 weight */
4853         pxw[14] = 0;
4854         pxw[15] = 0;
4855
4856         for (i = 0; i < 4; i++) {
4857                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4858                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4859                 I915_WRITE(PXW + (i * 4), val);
4860         }
4861
4862         /* Adjust magic regs to magic values (more experimental results) */
4863         I915_WRITE(OGW0, 0);
4864         I915_WRITE(OGW1, 0);
4865         I915_WRITE(EG0, 0x00007f00);
4866         I915_WRITE(EG1, 0x0000000e);
4867         I915_WRITE(EG2, 0x000e0000);
4868         I915_WRITE(EG3, 0x68000300);
4869         I915_WRITE(EG4, 0x42000000);
4870         I915_WRITE(EG5, 0x00140031);
4871         I915_WRITE(EG6, 0);
4872         I915_WRITE(EG7, 0);
4873
4874         for (i = 0; i < 8; i++)
4875                 I915_WRITE(PXWL + (i * 4), 0);
4876
4877         /* Enable PMON + select events */
4878         I915_WRITE(ECR, 0x80000019);
4879
4880         lcfuse = I915_READ(LCFUSE02);
4881
4882         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4883 }
4884
4885 void intel_disable_gt_powersave(struct drm_device *dev)
4886 {
4887         struct drm_i915_private *dev_priv = dev->dev_private;
4888
4889         /* Interrupts should be disabled already to avoid re-arming. */
4890         WARN_ON(dev->irq_enabled);
4891
4892         if (IS_IRONLAKE_M(dev)) {
4893                 ironlake_disable_drps(dev);
4894                 ironlake_disable_rc6(dev);
4895         } else if (INTEL_INFO(dev)->gen >= 6) {
4896                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4897                 cancel_work_sync(&dev_priv->rps.work);
4898                 mutex_lock(&dev_priv->rps.hw_lock);
4899                 if (IS_VALLEYVIEW(dev))
4900                         valleyview_disable_rps(dev);
4901                 else
4902                         gen6_disable_rps(dev);
4903                 dev_priv->rps.enabled = false;
4904                 mutex_unlock(&dev_priv->rps.hw_lock);
4905         }
4906 }
4907
4908 static void intel_gen6_powersave_work(struct work_struct *work)
4909 {
4910         struct drm_i915_private *dev_priv =
4911                 container_of(work, struct drm_i915_private,
4912                              rps.delayed_resume_work.work);
4913         struct drm_device *dev = dev_priv->dev;
4914
4915         mutex_lock(&dev_priv->rps.hw_lock);
4916
4917         if (IS_VALLEYVIEW(dev)) {
4918                 valleyview_enable_rps(dev);
4919         } else if (IS_BROADWELL(dev)) {
4920                 gen8_enable_rps(dev);
4921                 gen6_update_ring_freq(dev);
4922         } else {
4923                 gen6_enable_rps(dev);
4924                 gen6_update_ring_freq(dev);
4925         }
4926         dev_priv->rps.enabled = true;
4927         mutex_unlock(&dev_priv->rps.hw_lock);
4928 }
4929
4930 void intel_enable_gt_powersave(struct drm_device *dev)
4931 {
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933
4934         if (IS_IRONLAKE_M(dev)) {
4935                 ironlake_enable_drps(dev);
4936                 ironlake_enable_rc6(dev);
4937                 intel_init_emon(dev);
4938         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4939                 /*
4940                  * PCU communication is slow and this doesn't need to be
4941                  * done at any specific time, so do this out of our fast path
4942                  * to make resume and init faster.
4943                  */
4944                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4945                                       round_jiffies_up_relative(HZ));
4946         }
4947 }
4948
4949 static void ibx_init_clock_gating(struct drm_device *dev)
4950 {
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952
4953         /*
4954          * On Ibex Peak and Cougar Point, we need to disable clock
4955          * gating for the panel power sequencer or it will fail to
4956          * start up when no ports are active.
4957          */
4958         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4959 }
4960
4961 static void g4x_disable_trickle_feed(struct drm_device *dev)
4962 {
4963         struct drm_i915_private *dev_priv = dev->dev_private;
4964         int pipe;
4965
4966         for_each_pipe(pipe) {
4967                 I915_WRITE(DSPCNTR(pipe),
4968                            I915_READ(DSPCNTR(pipe)) |
4969                            DISPPLANE_TRICKLE_FEED_DISABLE);
4970                 intel_flush_primary_plane(dev_priv, pipe);
4971         }
4972 }
4973
4974 static void ironlake_init_clock_gating(struct drm_device *dev)
4975 {
4976         struct drm_i915_private *dev_priv = dev->dev_private;
4977         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4978
4979         /*
4980          * Required for FBC
4981          * WaFbcDisableDpfcClockGating:ilk
4982          */
4983         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4984                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4985                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4986
4987         I915_WRITE(PCH_3DCGDIS0,
4988                    MARIUNIT_CLOCK_GATE_DISABLE |
4989                    SVSMUNIT_CLOCK_GATE_DISABLE);
4990         I915_WRITE(PCH_3DCGDIS1,
4991                    VFMUNIT_CLOCK_GATE_DISABLE);
4992
4993         /*
4994          * According to the spec the following bits should be set in
4995          * order to enable memory self-refresh
4996          * The bit 22/21 of 0x42004
4997          * The bit 5 of 0x42020
4998          * The bit 15 of 0x45000
4999          */
5000         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5001                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5002                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5003         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5004         I915_WRITE(DISP_ARB_CTL,
5005                    (I915_READ(DISP_ARB_CTL) |
5006                     DISP_FBC_WM_DIS));
5007         I915_WRITE(WM3_LP_ILK, 0);
5008         I915_WRITE(WM2_LP_ILK, 0);
5009         I915_WRITE(WM1_LP_ILK, 0);
5010
5011         /*
5012          * Based on the document from hardware guys the following bits
5013          * should be set unconditionally in order to enable FBC.
5014          * The bit 22 of 0x42000
5015          * The bit 22 of 0x42004
5016          * The bit 7,8,9 of 0x42020.
5017          */
5018         if (IS_IRONLAKE_M(dev)) {
5019                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5020                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5021                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5022                            ILK_FBCQ_DIS);
5023                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5024                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5025                            ILK_DPARB_GATE);
5026         }
5027
5028         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5029
5030         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5031                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5032                    ILK_ELPIN_409_SELECT);
5033         I915_WRITE(_3D_CHICKEN2,
5034                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5035                    _3D_CHICKEN2_WM_READ_PIPELINED);
5036
5037         /* WaDisableRenderCachePipelinedFlush:ilk */
5038         I915_WRITE(CACHE_MODE_0,
5039                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5040
5041         g4x_disable_trickle_feed(dev);
5042
5043         ibx_init_clock_gating(dev);
5044 }
5045
5046 static void cpt_init_clock_gating(struct drm_device *dev)
5047 {
5048         struct drm_i915_private *dev_priv = dev->dev_private;
5049         int pipe;
5050         uint32_t val;
5051
5052         /*
5053          * On Ibex Peak and Cougar Point, we need to disable clock
5054          * gating for the panel power sequencer or it will fail to
5055          * start up when no ports are active.
5056          */
5057         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5058                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5059                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5060         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5061                    DPLS_EDP_PPS_FIX_DIS);
5062         /* The below fixes the weird display corruption, a few pixels shifted
5063          * downward, on (only) LVDS of some HP laptops with IVY.
5064          */
5065         for_each_pipe(pipe) {
5066                 val = I915_READ(TRANS_CHICKEN2(pipe));
5067                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5068                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5069                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5070                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5071                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5072                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5073                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5074                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5075         }
5076         /* WADP0ClockGatingDisable */
5077         for_each_pipe(pipe) {
5078                 I915_WRITE(TRANS_CHICKEN1(pipe),
5079                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5080         }
5081 }
5082
5083 static void gen6_check_mch_setup(struct drm_device *dev)
5084 {
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086         uint32_t tmp;
5087
5088         tmp = I915_READ(MCH_SSKPD);
5089         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5090                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5091                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5092                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5093         }
5094 }
5095
5096 static void gen6_init_clock_gating(struct drm_device *dev)
5097 {
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5100
5101         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5102
5103         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5104                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5105                    ILK_ELPIN_409_SELECT);
5106
5107         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5108         I915_WRITE(_3D_CHICKEN,
5109                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5110
5111         /* WaSetupGtModeTdRowDispatch:snb */
5112         if (IS_SNB_GT1(dev))
5113                 I915_WRITE(GEN6_GT_MODE,
5114                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5115
5116         I915_WRITE(WM3_LP_ILK, 0);
5117         I915_WRITE(WM2_LP_ILK, 0);
5118         I915_WRITE(WM1_LP_ILK, 0);
5119
5120         I915_WRITE(CACHE_MODE_0,
5121                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5122
5123         I915_WRITE(GEN6_UCGCTL1,
5124                    I915_READ(GEN6_UCGCTL1) |
5125                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5126                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5127
5128         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5129          * gating disable must be set.  Failure to set it results in
5130          * flickering pixels due to Z write ordering failures after
5131          * some amount of runtime in the Mesa "fire" demo, and Unigine
5132          * Sanctuary and Tropics, and apparently anything else with
5133          * alpha test or pixel discard.
5134          *
5135          * According to the spec, bit 11 (RCCUNIT) must also be set,
5136          * but we didn't debug actual testcases to find it out.
5137          *
5138          * Also apply WaDisableVDSUnitClockGating:snb and
5139          * WaDisableRCPBUnitClockGating:snb.
5140          */
5141         I915_WRITE(GEN6_UCGCTL2,
5142                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5143                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5144                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5145
5146         /* Bspec says we need to always set all mask bits. */
5147         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
5148                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5149
5150         /*
5151          * According to the spec the following bits should be
5152          * set in order to enable memory self-refresh and fbc:
5153          * The bit21 and bit22 of 0x42000
5154          * The bit21 and bit22 of 0x42004
5155          * The bit5 and bit7 of 0x42020
5156          * The bit14 of 0x70180
5157          * The bit14 of 0x71180
5158          *
5159          * WaFbcAsynchFlipDisableFbcQueue:snb
5160          */
5161         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5162                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5163                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5164         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5165                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5166                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5167         I915_WRITE(ILK_DSPCLK_GATE_D,
5168                    I915_READ(ILK_DSPCLK_GATE_D) |
5169                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5170                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5171
5172         g4x_disable_trickle_feed(dev);
5173
5174         /* The default value should be 0x200 according to docs, but the two
5175          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
5176         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
5177         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5178
5179         cpt_init_clock_gating(dev);
5180
5181         gen6_check_mch_setup(dev);
5182 }
5183
5184 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5185 {
5186         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5187
5188         reg &= ~GEN7_FF_SCHED_MASK;
5189         reg |= GEN7_FF_TS_SCHED_HW;
5190         reg |= GEN7_FF_VS_SCHED_HW;
5191         reg |= GEN7_FF_DS_SCHED_HW;
5192
5193         if (IS_HASWELL(dev_priv->dev))
5194                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
5195
5196         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5197 }
5198
5199 static void lpt_init_clock_gating(struct drm_device *dev)
5200 {
5201         struct drm_i915_private *dev_priv = dev->dev_private;
5202
5203         /*
5204          * TODO: this bit should only be enabled when really needed, then
5205          * disabled when not needed anymore in order to save power.
5206          */
5207         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5208                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5209                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5210                            PCH_LP_PARTITION_LEVEL_DISABLE);
5211
5212         /* WADPOClockGatingDisable:hsw */
5213         I915_WRITE(_TRANSA_CHICKEN1,
5214                    I915_READ(_TRANSA_CHICKEN1) |
5215                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5216 }
5217
5218 static void lpt_suspend_hw(struct drm_device *dev)
5219 {
5220         struct drm_i915_private *dev_priv = dev->dev_private;
5221
5222         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5223                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5224
5225                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5226                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5227         }
5228 }
5229
5230 static void gen8_init_clock_gating(struct drm_device *dev)
5231 {
5232         struct drm_i915_private *dev_priv = dev->dev_private;
5233         enum pipe i;
5234
5235         I915_WRITE(WM3_LP_ILK, 0);
5236         I915_WRITE(WM2_LP_ILK, 0);
5237         I915_WRITE(WM1_LP_ILK, 0);
5238
5239         /* FIXME(BDW): Check all the w/a, some might only apply to
5240          * pre-production hw. */
5241
5242         WARN(!i915_preliminary_hw_support,
5243              "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
5244         I915_WRITE(HALF_SLICE_CHICKEN3,
5245                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5246         I915_WRITE(HALF_SLICE_CHICKEN3,
5247                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5248         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5249
5250         I915_WRITE(_3D_CHICKEN3,
5251                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5252
5253         I915_WRITE(COMMON_SLICE_CHICKEN2,
5254                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5255
5256         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5257                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5258
5259         /* WaSwitchSolVfFArbitrationPriority */
5260         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5261
5262         /* WaPsrDPAMaskVBlankInSRD */
5263         I915_WRITE(CHICKEN_PAR1_1,
5264                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5265
5266         /* WaPsrDPRSUnmaskVBlankInSRD */
5267         for_each_pipe(i) {
5268                 I915_WRITE(CHICKEN_PIPESL_1(i),
5269                            I915_READ(CHICKEN_PIPESL_1(i) |
5270                                      DPRS_MASK_VBLANK_SRD));
5271         }
5272 }
5273
5274 static void haswell_init_clock_gating(struct drm_device *dev)
5275 {
5276         struct drm_i915_private *dev_priv = dev->dev_private;
5277
5278         I915_WRITE(WM3_LP_ILK, 0);
5279         I915_WRITE(WM2_LP_ILK, 0);
5280         I915_WRITE(WM1_LP_ILK, 0);
5281
5282         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5283          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5284          */
5285         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5286
5287         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5288         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5289                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5290
5291         /* WaApplyL3ControlAndL3ChickenMode:hsw */
5292         I915_WRITE(GEN7_L3CNTLREG1,
5293                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5294         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5295                         GEN7_WA_L3_CHICKEN_MODE);
5296
5297         /* L3 caching of data atomics doesn't work -- disable it. */
5298         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5299         I915_WRITE(HSW_ROW_CHICKEN3,
5300                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5301
5302         /* This is required by WaCatErrorRejectionIssue:hsw */
5303         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5304                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5305                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5306
5307         /* WaVSRefCountFullforceMissDisable:hsw */
5308         gen7_setup_fixed_func_scheduler(dev_priv);
5309
5310         /* WaDisable4x2SubspanOptimization:hsw */
5311         I915_WRITE(CACHE_MODE_1,
5312                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5313
5314         /* WaSwitchSolVfFArbitrationPriority:hsw */
5315         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5316
5317         /* WaRsPkgCStateDisplayPMReq:hsw */
5318         I915_WRITE(CHICKEN_PAR1_1,
5319                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5320
5321         lpt_init_clock_gating(dev);
5322 }
5323
5324 static void ivybridge_init_clock_gating(struct drm_device *dev)
5325 {
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327         uint32_t snpcr;
5328
5329         I915_WRITE(WM3_LP_ILK, 0);
5330         I915_WRITE(WM2_LP_ILK, 0);
5331         I915_WRITE(WM1_LP_ILK, 0);
5332
5333         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5334
5335         /* WaDisableEarlyCull:ivb */
5336         I915_WRITE(_3D_CHICKEN3,
5337                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5338
5339         /* WaDisableBackToBackFlipFix:ivb */
5340         I915_WRITE(IVB_CHICKEN3,
5341                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5342                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5343
5344         /* WaDisablePSDDualDispatchEnable:ivb */
5345         if (IS_IVB_GT1(dev))
5346                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5347                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5348         else
5349                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5350                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5351
5352         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5353         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5354                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5355
5356         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5357         I915_WRITE(GEN7_L3CNTLREG1,
5358                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5359         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5360                    GEN7_WA_L3_CHICKEN_MODE);
5361         if (IS_IVB_GT1(dev))
5362                 I915_WRITE(GEN7_ROW_CHICKEN2,
5363                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5364         else
5365                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5366                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5367
5368
5369         /* WaForceL3Serialization:ivb */
5370         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5371                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5372
5373         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5374          * gating disable must be set.  Failure to set it results in
5375          * flickering pixels due to Z write ordering failures after
5376          * some amount of runtime in the Mesa "fire" demo, and Unigine
5377          * Sanctuary and Tropics, and apparently anything else with
5378          * alpha test or pixel discard.
5379          *
5380          * According to the spec, bit 11 (RCCUNIT) must also be set,
5381          * but we didn't debug actual testcases to find it out.
5382          *
5383          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5384          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5385          */
5386         I915_WRITE(GEN6_UCGCTL2,
5387                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5388                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5389
5390         /* This is required by WaCatErrorRejectionIssue:ivb */
5391         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5392                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5393                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5394
5395         g4x_disable_trickle_feed(dev);
5396
5397         /* WaVSRefCountFullforceMissDisable:ivb */
5398         gen7_setup_fixed_func_scheduler(dev_priv);
5399
5400         /* WaDisable4x2SubspanOptimization:ivb */
5401         I915_WRITE(CACHE_MODE_1,
5402                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5403
5404         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5405         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5406         snpcr |= GEN6_MBC_SNPCR_MED;
5407         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5408
5409         if (!HAS_PCH_NOP(dev))
5410                 cpt_init_clock_gating(dev);
5411
5412         gen6_check_mch_setup(dev);
5413 }
5414
5415 static void valleyview_init_clock_gating(struct drm_device *dev)
5416 {
5417         struct drm_i915_private *dev_priv = dev->dev_private;
5418         u32 val;
5419
5420         mutex_lock(&dev_priv->rps.hw_lock);
5421         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5422         mutex_unlock(&dev_priv->rps.hw_lock);
5423         switch ((val >> 6) & 3) {
5424         case 0:
5425                 dev_priv->mem_freq = 800;
5426                 break;
5427         case 1:
5428                 dev_priv->mem_freq = 1066;
5429                 break;
5430         case 2:
5431                 dev_priv->mem_freq = 1333;
5432                 break;
5433         case 3:
5434                 dev_priv->mem_freq = 1333;
5435                 break;
5436         }
5437         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5438
5439         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5440
5441         /* WaDisableEarlyCull:vlv */
5442         I915_WRITE(_3D_CHICKEN3,
5443                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5444
5445         /* WaDisableBackToBackFlipFix:vlv */
5446         I915_WRITE(IVB_CHICKEN3,
5447                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5448                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5449
5450         /* WaDisablePSDDualDispatchEnable:vlv */
5451         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5452                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5453                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5454
5455         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5456         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5457                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5458
5459         /* WaApplyL3ControlAndL3ChickenMode:vlv */
5460         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5461         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5462
5463         /* WaForceL3Serialization:vlv */
5464         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5465                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5466
5467         /* WaDisableDopClockGating:vlv */
5468         I915_WRITE(GEN7_ROW_CHICKEN2,
5469                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5470
5471         /* This is required by WaCatErrorRejectionIssue:vlv */
5472         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5473                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5474                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5475
5476         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5477          * gating disable must be set.  Failure to set it results in
5478          * flickering pixels due to Z write ordering failures after
5479          * some amount of runtime in the Mesa "fire" demo, and Unigine
5480          * Sanctuary and Tropics, and apparently anything else with
5481          * alpha test or pixel discard.
5482          *
5483          * According to the spec, bit 11 (RCCUNIT) must also be set,
5484          * but we didn't debug actual testcases to find it out.
5485          *
5486          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5487          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5488          *
5489          * Also apply WaDisableVDSUnitClockGating:vlv and
5490          * WaDisableRCPBUnitClockGating:vlv.
5491          */
5492         I915_WRITE(GEN6_UCGCTL2,
5493                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5494                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5495                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5496                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5497                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5498
5499         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5500
5501         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5502
5503         I915_WRITE(CACHE_MODE_1,
5504                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5505
5506         /*
5507          * WaDisableVLVClockGating_VBIIssue:vlv
5508          * Disable clock gating on th GCFG unit to prevent a delay
5509          * in the reporting of vblank events.
5510          */
5511         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5512
5513         /* Conservative clock gating settings for now */
5514         I915_WRITE(0x9400, 0xffffffff);
5515         I915_WRITE(0x9404, 0xffffffff);
5516         I915_WRITE(0x9408, 0xffffffff);
5517         I915_WRITE(0x940c, 0xffffffff);
5518         I915_WRITE(0x9410, 0xffffffff);
5519         I915_WRITE(0x9414, 0xffffffff);
5520         I915_WRITE(0x9418, 0xffffffff);
5521 }
5522
5523 static void g4x_init_clock_gating(struct drm_device *dev)
5524 {
5525         struct drm_i915_private *dev_priv = dev->dev_private;
5526         uint32_t dspclk_gate;
5527
5528         I915_WRITE(RENCLK_GATE_D1, 0);
5529         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5530                    GS_UNIT_CLOCK_GATE_DISABLE |
5531                    CL_UNIT_CLOCK_GATE_DISABLE);
5532         I915_WRITE(RAMCLK_GATE_D, 0);
5533         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5534                 OVRUNIT_CLOCK_GATE_DISABLE |
5535                 OVCUNIT_CLOCK_GATE_DISABLE;
5536         if (IS_GM45(dev))
5537                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5538         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5539
5540         /* WaDisableRenderCachePipelinedFlush */
5541         I915_WRITE(CACHE_MODE_0,
5542                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5543
5544         g4x_disable_trickle_feed(dev);
5545 }
5546
5547 static void crestline_init_clock_gating(struct drm_device *dev)
5548 {
5549         struct drm_i915_private *dev_priv = dev->dev_private;
5550
5551         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5552         I915_WRITE(RENCLK_GATE_D2, 0);
5553         I915_WRITE(DSPCLK_GATE_D, 0);
5554         I915_WRITE(RAMCLK_GATE_D, 0);
5555         I915_WRITE16(DEUC, 0);
5556         I915_WRITE(MI_ARB_STATE,
5557                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5558 }
5559
5560 static void broadwater_init_clock_gating(struct drm_device *dev)
5561 {
5562         struct drm_i915_private *dev_priv = dev->dev_private;
5563
5564         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5565                    I965_RCC_CLOCK_GATE_DISABLE |
5566                    I965_RCPB_CLOCK_GATE_DISABLE |
5567                    I965_ISC_CLOCK_GATE_DISABLE |
5568                    I965_FBC_CLOCK_GATE_DISABLE);
5569         I915_WRITE(RENCLK_GATE_D2, 0);
5570         I915_WRITE(MI_ARB_STATE,
5571                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5572 }
5573
5574 static void gen3_init_clock_gating(struct drm_device *dev)
5575 {
5576         struct drm_i915_private *dev_priv = dev->dev_private;
5577         u32 dstate = I915_READ(D_STATE);
5578
5579         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5580                 DSTATE_DOT_CLOCK_GATING;
5581         I915_WRITE(D_STATE, dstate);
5582
5583         if (IS_PINEVIEW(dev))
5584                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5585
5586         /* IIR "flip pending" means done if this bit is set */
5587         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5588 }
5589
5590 static void i85x_init_clock_gating(struct drm_device *dev)
5591 {
5592         struct drm_i915_private *dev_priv = dev->dev_private;
5593
5594         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5595 }
5596
5597 static void i830_init_clock_gating(struct drm_device *dev)
5598 {
5599         struct drm_i915_private *dev_priv = dev->dev_private;
5600
5601         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5602 }
5603
5604 void intel_init_clock_gating(struct drm_device *dev)
5605 {
5606         struct drm_i915_private *dev_priv = dev->dev_private;
5607
5608         dev_priv->display.init_clock_gating(dev);
5609 }
5610
5611 void intel_suspend_hw(struct drm_device *dev)
5612 {
5613         if (HAS_PCH_LPT(dev))
5614                 lpt_suspend_hw(dev);
5615 }
5616
5617 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5618         for (i = 0;                                                     \
5619              i < (power_domains)->power_well_count &&                   \
5620                  ((power_well) = &(power_domains)->power_wells[i]);     \
5621              i++)                                                       \
5622                 if ((power_well)->domains & (domain_mask))
5623
5624 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5625         for (i = (power_domains)->power_well_count - 1;                  \
5626              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5627              i--)                                                        \
5628                 if ((power_well)->domains & (domain_mask))
5629
5630 /**
5631  * We should only use the power well if we explicitly asked the hardware to
5632  * enable it, so check if it's enabled and also check if we've requested it to
5633  * be enabled.
5634  */
5635 static bool hsw_power_well_enabled(struct drm_device *dev,
5636                                    struct i915_power_well *power_well)
5637 {
5638         struct drm_i915_private *dev_priv = dev->dev_private;
5639
5640         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5641                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5642 }
5643
5644 bool intel_display_power_enabled_sw(struct drm_device *dev,
5645                                     enum intel_display_power_domain domain)
5646 {
5647         struct drm_i915_private *dev_priv = dev->dev_private;
5648         struct i915_power_domains *power_domains;
5649
5650         power_domains = &dev_priv->power_domains;
5651
5652         return power_domains->domain_use_count[domain];
5653 }
5654
5655 bool intel_display_power_enabled(struct drm_device *dev,
5656                                  enum intel_display_power_domain domain)
5657 {
5658         struct drm_i915_private *dev_priv = dev->dev_private;
5659         struct i915_power_domains *power_domains;
5660         struct i915_power_well *power_well;
5661         bool is_enabled;
5662         int i;
5663
5664         power_domains = &dev_priv->power_domains;
5665
5666         is_enabled = true;
5667
5668         mutex_lock(&power_domains->lock);
5669         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5670                 if (power_well->always_on)
5671                         continue;
5672
5673                 if (!power_well->is_enabled(dev, power_well)) {
5674                         is_enabled = false;
5675                         break;
5676                 }
5677         }
5678         mutex_unlock(&power_domains->lock);
5679
5680         return is_enabled;
5681 }
5682
5683 static void hsw_set_power_well(struct drm_device *dev,
5684                                struct i915_power_well *power_well, bool enable)
5685 {
5686         struct drm_i915_private *dev_priv = dev->dev_private;
5687         bool is_enabled, enable_requested;
5688         unsigned long irqflags;
5689         uint32_t tmp;
5690
5691         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5692         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5693         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5694
5695         if (enable) {
5696                 if (!enable_requested)
5697                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5698                                    HSW_PWR_WELL_ENABLE_REQUEST);
5699
5700                 if (!is_enabled) {
5701                         DRM_DEBUG_KMS("Enabling power well\n");
5702                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5703                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5704                                 DRM_ERROR("Timeout enabling power well\n");
5705                 }
5706
5707                 if (IS_BROADWELL(dev)) {
5708                         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5709                         I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5710                                    dev_priv->de_irq_mask[PIPE_B]);
5711                         I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5712                                    ~dev_priv->de_irq_mask[PIPE_B] |
5713                                    GEN8_PIPE_VBLANK);
5714                         I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5715                                    dev_priv->de_irq_mask[PIPE_C]);
5716                         I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5717                                    ~dev_priv->de_irq_mask[PIPE_C] |
5718                                    GEN8_PIPE_VBLANK);
5719                         POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5720                         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5721                 }
5722         } else {
5723                 if (enable_requested) {
5724                         enum pipe p;
5725
5726                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5727                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5728                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5729
5730                         /*
5731                          * After this, the registers on the pipes that are part
5732                          * of the power well will become zero, so we have to
5733                          * adjust our counters according to that.
5734                          *
5735                          * FIXME: Should we do this in general in
5736                          * drm_vblank_post_modeset?
5737                          */
5738                         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5739                         for_each_pipe(p)
5740                                 if (p != PIPE_A)
5741                                         dev->vblank[p].last = 0;
5742                         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5743                 }
5744         }
5745 }
5746
5747 static void __intel_power_well_get(struct drm_device *dev,
5748                                    struct i915_power_well *power_well)
5749 {
5750         if (!power_well->count++ && power_well->set)
5751                 power_well->set(dev, power_well, true);
5752 }
5753
5754 static void __intel_power_well_put(struct drm_device *dev,
5755                                    struct i915_power_well *power_well)
5756 {
5757         WARN_ON(!power_well->count);
5758
5759         if (!--power_well->count && power_well->set && i915_disable_power_well)
5760                 power_well->set(dev, power_well, false);
5761 }
5762
5763 void intel_display_power_get(struct drm_device *dev,
5764                              enum intel_display_power_domain domain)
5765 {
5766         struct drm_i915_private *dev_priv = dev->dev_private;
5767         struct i915_power_domains *power_domains;
5768         struct i915_power_well *power_well;
5769         int i;
5770
5771         power_domains = &dev_priv->power_domains;
5772
5773         mutex_lock(&power_domains->lock);
5774
5775         for_each_power_well(i, power_well, BIT(domain), power_domains)
5776                 __intel_power_well_get(dev, power_well);
5777
5778         power_domains->domain_use_count[domain]++;
5779
5780         mutex_unlock(&power_domains->lock);
5781 }
5782
5783 void intel_display_power_put(struct drm_device *dev,
5784                              enum intel_display_power_domain domain)
5785 {
5786         struct drm_i915_private *dev_priv = dev->dev_private;
5787         struct i915_power_domains *power_domains;
5788         struct i915_power_well *power_well;
5789         int i;
5790
5791         power_domains = &dev_priv->power_domains;
5792
5793         mutex_lock(&power_domains->lock);
5794
5795         WARN_ON(!power_domains->domain_use_count[domain]);
5796         power_domains->domain_use_count[domain]--;
5797
5798         for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5799                 __intel_power_well_put(dev, power_well);
5800
5801         mutex_unlock(&power_domains->lock);
5802 }
5803
5804 static struct i915_power_domains *hsw_pwr;
5805
5806 /* Display audio driver power well request */
5807 void i915_request_power_well(void)
5808 {
5809         struct drm_i915_private *dev_priv;
5810
5811         if (WARN_ON(!hsw_pwr))
5812                 return;
5813
5814         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5815                                 power_domains);
5816         intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5817 }
5818 EXPORT_SYMBOL_GPL(i915_request_power_well);
5819
5820 /* Display audio driver power well release */
5821 void i915_release_power_well(void)
5822 {
5823         struct drm_i915_private *dev_priv;
5824
5825         if (WARN_ON(!hsw_pwr))
5826                 return;
5827
5828         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5829                                 power_domains);
5830         intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5831 }
5832 EXPORT_SYMBOL_GPL(i915_release_power_well);
5833
5834 static struct i915_power_well i9xx_always_on_power_well[] = {
5835         {
5836                 .name = "always-on",
5837                 .always_on = 1,
5838                 .domains = POWER_DOMAIN_MASK,
5839         },
5840 };
5841
5842 static struct i915_power_well hsw_power_wells[] = {
5843         {
5844                 .name = "always-on",
5845                 .always_on = 1,
5846                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5847         },
5848         {
5849                 .name = "display",
5850                 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5851                 .is_enabled = hsw_power_well_enabled,
5852                 .set = hsw_set_power_well,
5853         },
5854 };
5855
5856 static struct i915_power_well bdw_power_wells[] = {
5857         {
5858                 .name = "always-on",
5859                 .always_on = 1,
5860                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5861         },
5862         {
5863                 .name = "display",
5864                 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5865                 .is_enabled = hsw_power_well_enabled,
5866                 .set = hsw_set_power_well,
5867         },
5868 };
5869
5870 #define set_power_wells(power_domains, __power_wells) ({                \
5871         (power_domains)->power_wells = (__power_wells);                 \
5872         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5873 })
5874
5875 int intel_power_domains_init(struct drm_device *dev)
5876 {
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5879
5880         mutex_init(&power_domains->lock);
5881
5882         /*
5883          * The enabling order will be from lower to higher indexed wells,
5884          * the disabling order is reversed.
5885          */
5886         if (IS_HASWELL(dev)) {
5887                 set_power_wells(power_domains, hsw_power_wells);
5888                 hsw_pwr = power_domains;
5889         } else if (IS_BROADWELL(dev)) {
5890                 set_power_wells(power_domains, bdw_power_wells);
5891                 hsw_pwr = power_domains;
5892         } else {
5893                 set_power_wells(power_domains, i9xx_always_on_power_well);
5894         }
5895
5896         return 0;
5897 }
5898
5899 void intel_power_domains_remove(struct drm_device *dev)
5900 {
5901         hsw_pwr = NULL;
5902 }
5903
5904 static void intel_power_domains_resume(struct drm_device *dev)
5905 {
5906         struct drm_i915_private *dev_priv = dev->dev_private;
5907         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5908         struct i915_power_well *power_well;
5909         int i;
5910
5911         mutex_lock(&power_domains->lock);
5912         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5913                 if (power_well->set)
5914                         power_well->set(dev, power_well, power_well->count > 0);
5915         }
5916         mutex_unlock(&power_domains->lock);
5917 }
5918
5919 /*
5920  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5921  * when not needed anymore. We have 4 registers that can request the power well
5922  * to be enabled, and it will only be disabled if none of the registers is
5923  * requesting it to be enabled.
5924  */
5925 void intel_power_domains_init_hw(struct drm_device *dev)
5926 {
5927         struct drm_i915_private *dev_priv = dev->dev_private;
5928
5929         /* For now, we need the power well to be always enabled. */
5930         intel_display_set_init_power(dev, true);
5931         intel_power_domains_resume(dev);
5932
5933         if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5934                 return;
5935
5936         /* We're taking over the BIOS, so clear any requests made by it since
5937          * the driver is in charge now. */
5938         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5939                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5940 }
5941
5942 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5943 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5944 {
5945         hsw_disable_package_c8(dev_priv);
5946 }
5947
5948 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5949 {
5950         hsw_enable_package_c8(dev_priv);
5951 }
5952
5953 /* Set up chip specific power management-related functions */
5954 void intel_init_pm(struct drm_device *dev)
5955 {
5956         struct drm_i915_private *dev_priv = dev->dev_private;
5957
5958         if (I915_HAS_FBC(dev)) {
5959                 if (INTEL_INFO(dev)->gen >= 7) {
5960                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5961                         dev_priv->display.enable_fbc = gen7_enable_fbc;
5962                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5963                 } else if (INTEL_INFO(dev)->gen >= 5) {
5964                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5965                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5966                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5967                 } else if (IS_GM45(dev)) {
5968                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5969                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5970                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5971                 } else {
5972                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5973                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5974                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5975                 }
5976         }
5977
5978         /* For cxsr */
5979         if (IS_PINEVIEW(dev))
5980                 i915_pineview_get_mem_freq(dev);
5981         else if (IS_GEN5(dev))
5982                 i915_ironlake_get_mem_freq(dev);
5983
5984         /* For FIFO watermark updates */
5985         if (HAS_PCH_SPLIT(dev)) {
5986                 intel_setup_wm_latency(dev);
5987
5988                 if (IS_GEN5(dev)) {
5989                         if (dev_priv->wm.pri_latency[1] &&
5990                             dev_priv->wm.spr_latency[1] &&
5991                             dev_priv->wm.cur_latency[1])
5992                                 dev_priv->display.update_wm = ironlake_update_wm;
5993                         else {
5994                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5995                                               "Disable CxSR\n");
5996                                 dev_priv->display.update_wm = NULL;
5997                         }
5998                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5999                 } else if (IS_GEN6(dev)) {
6000                         if (dev_priv->wm.pri_latency[0] &&
6001                             dev_priv->wm.spr_latency[0] &&
6002                             dev_priv->wm.cur_latency[0]) {
6003                                 dev_priv->display.update_wm = sandybridge_update_wm;
6004                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6005                         } else {
6006                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
6007                                               "Disable CxSR\n");
6008                                 dev_priv->display.update_wm = NULL;
6009                         }
6010                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6011                 } else if (IS_IVYBRIDGE(dev)) {
6012                         if (dev_priv->wm.pri_latency[0] &&
6013                             dev_priv->wm.spr_latency[0] &&
6014                             dev_priv->wm.cur_latency[0]) {
6015                                 dev_priv->display.update_wm = ivybridge_update_wm;
6016                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
6017                         } else {
6018                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
6019                                               "Disable CxSR\n");
6020                                 dev_priv->display.update_wm = NULL;
6021                         }
6022                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6023                 } else if (IS_HASWELL(dev)) {
6024                         if (dev_priv->wm.pri_latency[0] &&
6025                             dev_priv->wm.spr_latency[0] &&
6026                             dev_priv->wm.cur_latency[0]) {
6027                                 dev_priv->display.update_wm = haswell_update_wm;
6028                                 dev_priv->display.update_sprite_wm =
6029                                         haswell_update_sprite_wm;
6030                         } else {
6031                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
6032                                               "Disable CxSR\n");
6033                                 dev_priv->display.update_wm = NULL;
6034                         }
6035                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6036                 } else if (INTEL_INFO(dev)->gen == 8) {
6037                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6038                 } else
6039                         dev_priv->display.update_wm = NULL;
6040         } else if (IS_VALLEYVIEW(dev)) {
6041                 dev_priv->display.update_wm = valleyview_update_wm;
6042                 dev_priv->display.init_clock_gating =
6043                         valleyview_init_clock_gating;
6044         } else if (IS_PINEVIEW(dev)) {
6045                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6046                                             dev_priv->is_ddr3,
6047                                             dev_priv->fsb_freq,
6048                                             dev_priv->mem_freq)) {
6049                         DRM_INFO("failed to find known CxSR latency "
6050                                  "(found ddr%s fsb freq %d, mem freq %d), "
6051                                  "disabling CxSR\n",
6052                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6053                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6054                         /* Disable CxSR and never update its watermark again */
6055                         pineview_disable_cxsr(dev);
6056                         dev_priv->display.update_wm = NULL;
6057                 } else
6058                         dev_priv->display.update_wm = pineview_update_wm;
6059                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6060         } else if (IS_G4X(dev)) {
6061                 dev_priv->display.update_wm = g4x_update_wm;
6062                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6063         } else if (IS_GEN4(dev)) {
6064                 dev_priv->display.update_wm = i965_update_wm;
6065                 if (IS_CRESTLINE(dev))
6066                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6067                 else if (IS_BROADWATER(dev))
6068                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6069         } else if (IS_GEN3(dev)) {
6070                 dev_priv->display.update_wm = i9xx_update_wm;
6071                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6072                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6073         } else if (IS_I865G(dev)) {
6074                 dev_priv->display.update_wm = i830_update_wm;
6075                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6076                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6077         } else if (IS_I85X(dev)) {
6078                 dev_priv->display.update_wm = i9xx_update_wm;
6079                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6080                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6081         } else {
6082                 dev_priv->display.update_wm = i830_update_wm;
6083                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6084                 if (IS_845G(dev))
6085                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6086                 else
6087                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6088         }
6089 }
6090
6091 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6092 {
6093         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6094
6095         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6096                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6097                 return -EAGAIN;
6098         }
6099
6100         I915_WRITE(GEN6_PCODE_DATA, *val);
6101         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6102
6103         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6104                      500)) {
6105                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6106                 return -ETIMEDOUT;
6107         }
6108
6109         *val = I915_READ(GEN6_PCODE_DATA);
6110         I915_WRITE(GEN6_PCODE_DATA, 0);
6111
6112         return 0;
6113 }
6114
6115 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6116 {
6117         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6118
6119         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6120                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6121                 return -EAGAIN;
6122         }
6123
6124         I915_WRITE(GEN6_PCODE_DATA, val);
6125         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6126
6127         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6128                      500)) {
6129                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6130                 return -ETIMEDOUT;
6131         }
6132
6133         I915_WRITE(GEN6_PCODE_DATA, 0);
6134
6135         return 0;
6136 }
6137
6138 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6139 {
6140         int div;
6141
6142         /* 4 x czclk */
6143         switch (dev_priv->mem_freq) {
6144         case 800:
6145                 div = 10;
6146                 break;
6147         case 1066:
6148                 div = 12;
6149                 break;
6150         case 1333:
6151                 div = 16;
6152                 break;
6153         default:
6154                 return -1;
6155         }
6156
6157         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6158 }
6159
6160 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6161 {
6162         int mul;
6163
6164         /* 4 x czclk */
6165         switch (dev_priv->mem_freq) {
6166         case 800:
6167                 mul = 10;
6168                 break;
6169         case 1066:
6170                 mul = 12;
6171                 break;
6172         case 1333:
6173                 mul = 16;
6174                 break;
6175         default:
6176                 return -1;
6177         }
6178
6179         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6180 }
6181
6182 void intel_pm_init(struct drm_device *dev)
6183 {
6184         struct drm_i915_private *dev_priv = dev->dev_private;
6185
6186         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6187                           intel_gen6_powersave_work);
6188 }