spi: octeon: Convert to let spi core validate transfer speed
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int plane, i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
113
114         /* Clear old tags */
115         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
116                 I915_WRITE(FBC_TAG + (i * 4), 0);
117
118         if (IS_GEN4(dev)) {
119                 u32 fbc_ctl2;
120
121                 /* Set it up... */
122                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
123                 fbc_ctl2 |= plane;
124                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
125                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
126         }
127
128         /* enable it... */
129         fbc_ctl = I915_READ(FBC_CONTROL);
130         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
131         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
132         if (IS_I945GM(dev))
133                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
134         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
135         fbc_ctl |= obj->fence_reg;
136         I915_WRITE(FBC_CONTROL, fbc_ctl);
137
138         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
139                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
140 }
141
142 static bool i8xx_fbc_enabled(struct drm_device *dev)
143 {
144         struct drm_i915_private *dev_priv = dev->dev_private;
145
146         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
147 }
148
149 static void g4x_enable_fbc(struct drm_crtc *crtc)
150 {
151         struct drm_device *dev = crtc->dev;
152         struct drm_i915_private *dev_priv = dev->dev_private;
153         struct drm_framebuffer *fb = crtc->fb;
154         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
155         struct drm_i915_gem_object *obj = intel_fb->obj;
156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
157         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
158         u32 dpfc_ctl;
159
160         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
163
164         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
165
166         /* enable it... */
167         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
168
169         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
170 }
171
172 static void g4x_disable_fbc(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175         u32 dpfc_ctl;
176
177         /* Disable compression */
178         dpfc_ctl = I915_READ(DPFC_CONTROL);
179         if (dpfc_ctl & DPFC_CTL_EN) {
180                 dpfc_ctl &= ~DPFC_CTL_EN;
181                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
182
183                 DRM_DEBUG_KMS("disabled FBC\n");
184         }
185 }
186
187 static bool g4x_fbc_enabled(struct drm_device *dev)
188 {
189         struct drm_i915_private *dev_priv = dev->dev_private;
190
191         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
192 }
193
194 static void sandybridge_blit_fbc_update(struct drm_device *dev)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         u32 blt_ecoskpd;
198
199         /* Make sure blitter notifies FBC of writes */
200
201         /* Blitter is part of Media powerwell on VLV. No impact of
202          * his param in other platforms for now */
203         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
204
205         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
206         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
207                 GEN6_BLITTER_LOCK_SHIFT;
208         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
209         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
210         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
211         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
212                          GEN6_BLITTER_LOCK_SHIFT);
213         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
214         POSTING_READ(GEN6_BLITTER_ECOSKPD);
215
216         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
217 }
218
219 static void ironlake_enable_fbc(struct drm_crtc *crtc)
220 {
221         struct drm_device *dev = crtc->dev;
222         struct drm_i915_private *dev_priv = dev->dev_private;
223         struct drm_framebuffer *fb = crtc->fb;
224         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
225         struct drm_i915_gem_object *obj = intel_fb->obj;
226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
227         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
228         u32 dpfc_ctl;
229
230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231         dpfc_ctl &= DPFC_RESERVED;
232         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
233         /* Set persistent mode for front-buffer rendering, ala X. */
234         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
239
240         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
241         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
242         /* enable it... */
243         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
244
245         if (IS_GEN6(dev)) {
246                 I915_WRITE(SNB_DPFC_CTL_SA,
247                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
248                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
249                 sandybridge_blit_fbc_update(dev);
250         }
251
252         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
253 }
254
255 static void ironlake_disable_fbc(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258         u32 dpfc_ctl;
259
260         /* Disable compression */
261         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
262         if (dpfc_ctl & DPFC_CTL_EN) {
263                 dpfc_ctl &= ~DPFC_CTL_EN;
264                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
265
266                 DRM_DEBUG_KMS("disabled FBC\n");
267         }
268 }
269
270 static bool ironlake_fbc_enabled(struct drm_device *dev)
271 {
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
275 }
276
277 static void gen7_enable_fbc(struct drm_crtc *crtc)
278 {
279         struct drm_device *dev = crtc->dev;
280         struct drm_i915_private *dev_priv = dev->dev_private;
281         struct drm_framebuffer *fb = crtc->fb;
282         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
283         struct drm_i915_gem_object *obj = intel_fb->obj;
284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
285
286         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
287
288         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
289                    IVB_DPFC_CTL_FENCE_EN |
290                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
291
292         if (IS_IVYBRIDGE(dev)) {
293                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
294                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
295         } else {
296                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
297                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
298                            HSW_BYPASS_FBC_QUEUE);
299         }
300
301         I915_WRITE(SNB_DPFC_CTL_SA,
302                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305         sandybridge_blit_fbc_update(dev);
306
307         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
308 }
309
310 bool intel_fbc_enabled(struct drm_device *dev)
311 {
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         if (!dev_priv->display.fbc_enabled)
315                 return false;
316
317         return dev_priv->display.fbc_enabled(dev);
318 }
319
320 static void intel_fbc_work_fn(struct work_struct *__work)
321 {
322         struct intel_fbc_work *work =
323                 container_of(to_delayed_work(__work),
324                              struct intel_fbc_work, work);
325         struct drm_device *dev = work->crtc->dev;
326         struct drm_i915_private *dev_priv = dev->dev_private;
327
328         mutex_lock(&dev->struct_mutex);
329         if (work == dev_priv->fbc.fbc_work) {
330                 /* Double check that we haven't switched fb without cancelling
331                  * the prior work.
332                  */
333                 if (work->crtc->fb == work->fb) {
334                         dev_priv->display.enable_fbc(work->crtc);
335
336                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
337                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
338                         dev_priv->fbc.y = work->crtc->y;
339                 }
340
341                 dev_priv->fbc.fbc_work = NULL;
342         }
343         mutex_unlock(&dev->struct_mutex);
344
345         kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350         if (dev_priv->fbc.fbc_work == NULL)
351                 return;
352
353         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355         /* Synchronisation is provided by struct_mutex and checking of
356          * dev_priv->fbc.fbc_work, so we can perform the cancellation
357          * entirely asynchronously.
358          */
359         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
360                 /* tasklet was killed before being run, clean up */
361                 kfree(dev_priv->fbc.fbc_work);
362
363         /* Mark the work as no longer wanted so that if it does
364          * wake-up (because the work was already running and waiting
365          * for our mutex), it will discover that is no longer
366          * necessary to run.
367          */
368         dev_priv->fbc.fbc_work = NULL;
369 }
370
371 static void intel_enable_fbc(struct drm_crtc *crtc)
372 {
373         struct intel_fbc_work *work;
374         struct drm_device *dev = crtc->dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         if (!dev_priv->display.enable_fbc)
378                 return;
379
380         intel_cancel_fbc_work(dev_priv);
381
382         work = kzalloc(sizeof(*work), GFP_KERNEL);
383         if (work == NULL) {
384                 DRM_ERROR("Failed to allocate FBC work structure\n");
385                 dev_priv->display.enable_fbc(crtc);
386                 return;
387         }
388
389         work->crtc = crtc;
390         work->fb = crtc->fb;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc.fbc_work = work;
394
395         /* Delay the actual enabling to let pageflipping cease and the
396          * display to settle before starting the compression. Note that
397          * this delay also serves a second purpose: it allows for a
398          * vblank to pass after disabling the FBC before we attempt
399          * to modify the control registers.
400          *
401          * A more complicated solution would involve tracking vblanks
402          * following the termination of the page-flipping sequence
403          * and indeed performing the enable as a co-routine and not
404          * waiting synchronously upon the vblank.
405          *
406          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425                               enum no_fbc_reason reason)
426 {
427         if (dev_priv->fbc.no_fbc_reason == reason)
428                 return false;
429
430         dev_priv->fbc.no_fbc_reason = reason;
431         return true;
432 }
433
434 /**
435  * intel_update_fbc - enable/disable FBC as needed
436  * @dev: the drm_device
437  *
438  * Set up the framebuffer compression hardware at mode set time.  We
439  * enable it if possible:
440  *   - plane A only (on pre-965)
441  *   - no pixel mulitply/line duplication
442  *   - no alpha buffer discard
443  *   - no dual wide
444  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445  *
446  * We can't assume that any compression will take place (worst case),
447  * so the compressed buffer has to be the same size as the uncompressed
448  * one.  It also must reside (along with the line length buffer) in
449  * stolen memory.
450  *
451  * We need to enable/disable FBC on a global basis.
452  */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         struct drm_crtc *crtc = NULL, *tmp_crtc;
457         struct intel_crtc *intel_crtc;
458         struct drm_framebuffer *fb;
459         struct intel_framebuffer *intel_fb;
460         struct drm_i915_gem_object *obj;
461         const struct drm_display_mode *adjusted_mode;
462         unsigned int max_width, max_height;
463
464         if (!HAS_FBC(dev)) {
465                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
466                 return;
467         }
468
469         if (!i915_powersave) {
470                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
471                         DRM_DEBUG_KMS("fbc disabled per module param\n");
472                 return;
473         }
474
475         /*
476          * If FBC is already on, we just have to verify that we can
477          * keep it that way...
478          * Need to disable if:
479          *   - more than one pipe is active
480          *   - changing FBC params (stride, fence, mode)
481          *   - new fb is too large to fit in compressed buffer
482          *   - going to an unsupported config (interlace, pixel multiply, etc.)
483          */
484         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
485                 if (intel_crtc_active(tmp_crtc) &&
486                     to_intel_crtc(tmp_crtc)->primary_enabled) {
487                         if (crtc) {
488                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
489                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
490                                 goto out_disable;
491                         }
492                         crtc = tmp_crtc;
493                 }
494         }
495
496         if (!crtc || crtc->fb == NULL) {
497                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
498                         DRM_DEBUG_KMS("no output, disabling\n");
499                 goto out_disable;
500         }
501
502         intel_crtc = to_intel_crtc(crtc);
503         fb = crtc->fb;
504         intel_fb = to_intel_framebuffer(fb);
505         obj = intel_fb->obj;
506         adjusted_mode = &intel_crtc->config.adjusted_mode;
507
508         if (i915_enable_fbc < 0 &&
509             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
510                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
511                         DRM_DEBUG_KMS("disabled per chip default\n");
512                 goto out_disable;
513         }
514         if (!i915_enable_fbc) {
515                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
516                         DRM_DEBUG_KMS("fbc disabled per module param\n");
517                 goto out_disable;
518         }
519         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
520             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
521                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
522                         DRM_DEBUG_KMS("mode incompatible with compression, "
523                                       "disabling\n");
524                 goto out_disable;
525         }
526
527         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
528                 max_width = 4096;
529                 max_height = 2048;
530         } else {
531                 max_width = 2048;
532                 max_height = 1536;
533         }
534         if (intel_crtc->config.pipe_src_w > max_width ||
535             intel_crtc->config.pipe_src_h > max_height) {
536                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
537                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538                 goto out_disable;
539         }
540         if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
541             intel_crtc->plane != PLANE_A) {
542                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
543                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
544                 goto out_disable;
545         }
546
547         /* The use of a CPU fence is mandatory in order to detect writes
548          * by the CPU to the scanout and trigger updates to the FBC.
549          */
550         if (obj->tiling_mode != I915_TILING_X ||
551             obj->fence_reg == I915_FENCE_REG_NONE) {
552                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
553                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
554                 goto out_disable;
555         }
556
557         /* If the kernel debugger is active, always disable compression */
558         if (in_dbg_master())
559                 goto out_disable;
560
561         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
562                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
563                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
564                 goto out_disable;
565         }
566
567         /* If the scanout has not changed, don't modify the FBC settings.
568          * Note that we make the fundamental assumption that the fb->obj
569          * cannot be unpinned (and have its GTT offset and fence revoked)
570          * without first being decoupled from the scanout and FBC disabled.
571          */
572         if (dev_priv->fbc.plane == intel_crtc->plane &&
573             dev_priv->fbc.fb_id == fb->base.id &&
574             dev_priv->fbc.y == crtc->y)
575                 return;
576
577         if (intel_fbc_enabled(dev)) {
578                 /* We update FBC along two paths, after changing fb/crtc
579                  * configuration (modeswitching) and after page-flipping
580                  * finishes. For the latter, we know that not only did
581                  * we disable the FBC at the start of the page-flip
582                  * sequence, but also more than one vblank has passed.
583                  *
584                  * For the former case of modeswitching, it is possible
585                  * to switch between two FBC valid configurations
586                  * instantaneously so we do need to disable the FBC
587                  * before we can modify its control registers. We also
588                  * have to wait for the next vblank for that to take
589                  * effect. However, since we delay enabling FBC we can
590                  * assume that a vblank has passed since disabling and
591                  * that we can safely alter the registers in the deferred
592                  * callback.
593                  *
594                  * In the scenario that we go from a valid to invalid
595                  * and then back to valid FBC configuration we have
596                  * no strict enforcement that a vblank occurred since
597                  * disabling the FBC. However, along all current pipe
598                  * disabling paths we do need to wait for a vblank at
599                  * some point. And we wait before enabling FBC anyway.
600                  */
601                 DRM_DEBUG_KMS("disabling active FBC for update\n");
602                 intel_disable_fbc(dev);
603         }
604
605         intel_enable_fbc(crtc);
606         dev_priv->fbc.no_fbc_reason = FBC_OK;
607         return;
608
609 out_disable:
610         /* Multiple disables should be harmless */
611         if (intel_fbc_enabled(dev)) {
612                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
613                 intel_disable_fbc(dev);
614         }
615         i915_gem_stolen_cleanup_compression(dev);
616 }
617
618 static void i915_pineview_get_mem_freq(struct drm_device *dev)
619 {
620         drm_i915_private_t *dev_priv = dev->dev_private;
621         u32 tmp;
622
623         tmp = I915_READ(CLKCFG);
624
625         switch (tmp & CLKCFG_FSB_MASK) {
626         case CLKCFG_FSB_533:
627                 dev_priv->fsb_freq = 533; /* 133*4 */
628                 break;
629         case CLKCFG_FSB_800:
630                 dev_priv->fsb_freq = 800; /* 200*4 */
631                 break;
632         case CLKCFG_FSB_667:
633                 dev_priv->fsb_freq =  667; /* 167*4 */
634                 break;
635         case CLKCFG_FSB_400:
636                 dev_priv->fsb_freq = 400; /* 100*4 */
637                 break;
638         }
639
640         switch (tmp & CLKCFG_MEM_MASK) {
641         case CLKCFG_MEM_533:
642                 dev_priv->mem_freq = 533;
643                 break;
644         case CLKCFG_MEM_667:
645                 dev_priv->mem_freq = 667;
646                 break;
647         case CLKCFG_MEM_800:
648                 dev_priv->mem_freq = 800;
649                 break;
650         }
651
652         /* detect pineview DDR3 setting */
653         tmp = I915_READ(CSHRDDR3CTL);
654         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
655 }
656
657 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
658 {
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         u16 ddrpll, csipll;
661
662         ddrpll = I915_READ16(DDRMPLL1);
663         csipll = I915_READ16(CSIPLL0);
664
665         switch (ddrpll & 0xff) {
666         case 0xc:
667                 dev_priv->mem_freq = 800;
668                 break;
669         case 0x10:
670                 dev_priv->mem_freq = 1066;
671                 break;
672         case 0x14:
673                 dev_priv->mem_freq = 1333;
674                 break;
675         case 0x18:
676                 dev_priv->mem_freq = 1600;
677                 break;
678         default:
679                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
680                                  ddrpll & 0xff);
681                 dev_priv->mem_freq = 0;
682                 break;
683         }
684
685         dev_priv->ips.r_t = dev_priv->mem_freq;
686
687         switch (csipll & 0x3ff) {
688         case 0x00c:
689                 dev_priv->fsb_freq = 3200;
690                 break;
691         case 0x00e:
692                 dev_priv->fsb_freq = 3733;
693                 break;
694         case 0x010:
695                 dev_priv->fsb_freq = 4266;
696                 break;
697         case 0x012:
698                 dev_priv->fsb_freq = 4800;
699                 break;
700         case 0x014:
701                 dev_priv->fsb_freq = 5333;
702                 break;
703         case 0x016:
704                 dev_priv->fsb_freq = 5866;
705                 break;
706         case 0x018:
707                 dev_priv->fsb_freq = 6400;
708                 break;
709         default:
710                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
711                                  csipll & 0x3ff);
712                 dev_priv->fsb_freq = 0;
713                 break;
714         }
715
716         if (dev_priv->fsb_freq == 3200) {
717                 dev_priv->ips.c_m = 0;
718         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
719                 dev_priv->ips.c_m = 1;
720         } else {
721                 dev_priv->ips.c_m = 2;
722         }
723 }
724
725 static const struct cxsr_latency cxsr_latency_table[] = {
726         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
727         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
728         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
729         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
730         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
731
732         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
733         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
734         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
735         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
736         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
737
738         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
739         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
740         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
741         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
742         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
743
744         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
745         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
746         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
747         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
748         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
749
750         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
751         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
752         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
753         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
754         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
755
756         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
757         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
758         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
759         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
760         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
761 };
762
763 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
764                                                          int is_ddr3,
765                                                          int fsb,
766                                                          int mem)
767 {
768         const struct cxsr_latency *latency;
769         int i;
770
771         if (fsb == 0 || mem == 0)
772                 return NULL;
773
774         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
775                 latency = &cxsr_latency_table[i];
776                 if (is_desktop == latency->is_desktop &&
777                     is_ddr3 == latency->is_ddr3 &&
778                     fsb == latency->fsb_freq && mem == latency->mem_freq)
779                         return latency;
780         }
781
782         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
783
784         return NULL;
785 }
786
787 static void pineview_disable_cxsr(struct drm_device *dev)
788 {
789         struct drm_i915_private *dev_priv = dev->dev_private;
790
791         /* deactivate cxsr */
792         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
793 }
794
795 /*
796  * Latency for FIFO fetches is dependent on several factors:
797  *   - memory configuration (speed, channels)
798  *   - chipset
799  *   - current MCH state
800  * It can be fairly high in some situations, so here we assume a fairly
801  * pessimal value.  It's a tradeoff between extra memory fetches (if we
802  * set this value too high, the FIFO will fetch frequently to stay full)
803  * and power consumption (set it too low to save power and we might see
804  * FIFO underruns and display "flicker").
805  *
806  * A value of 5us seems to be a good balance; safe for very low end
807  * platforms but not overly aggressive on lower latency configs.
808  */
809 static const int latency_ns = 5000;
810
811 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
812 {
813         struct drm_i915_private *dev_priv = dev->dev_private;
814         uint32_t dsparb = I915_READ(DSPARB);
815         int size;
816
817         size = dsparb & 0x7f;
818         if (plane)
819                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
820
821         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
822                       plane ? "B" : "A", size);
823
824         return size;
825 }
826
827 static int i830_get_fifo_size(struct drm_device *dev, int plane)
828 {
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         uint32_t dsparb = I915_READ(DSPARB);
831         int size;
832
833         size = dsparb & 0x1ff;
834         if (plane)
835                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
836         size >>= 1; /* Convert to cachelines */
837
838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839                       plane ? "B" : "A", size);
840
841         return size;
842 }
843
844 static int i845_get_fifo_size(struct drm_device *dev, int plane)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         uint32_t dsparb = I915_READ(DSPARB);
848         int size;
849
850         size = dsparb & 0x7f;
851         size >>= 2; /* Convert to cachelines */
852
853         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854                       plane ? "B" : "A",
855                       size);
856
857         return size;
858 }
859
860 /* Pineview has different values for various configs */
861 static const struct intel_watermark_params pineview_display_wm = {
862         PINEVIEW_DISPLAY_FIFO,
863         PINEVIEW_MAX_WM,
864         PINEVIEW_DFT_WM,
865         PINEVIEW_GUARD_WM,
866         PINEVIEW_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params pineview_display_hplloff_wm = {
869         PINEVIEW_DISPLAY_FIFO,
870         PINEVIEW_MAX_WM,
871         PINEVIEW_DFT_HPLLOFF_WM,
872         PINEVIEW_GUARD_WM,
873         PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_cursor_wm = {
876         PINEVIEW_CURSOR_FIFO,
877         PINEVIEW_CURSOR_MAX_WM,
878         PINEVIEW_CURSOR_DFT_WM,
879         PINEVIEW_CURSOR_GUARD_WM,
880         PINEVIEW_FIFO_LINE_SIZE,
881 };
882 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883         PINEVIEW_CURSOR_FIFO,
884         PINEVIEW_CURSOR_MAX_WM,
885         PINEVIEW_CURSOR_DFT_WM,
886         PINEVIEW_CURSOR_GUARD_WM,
887         PINEVIEW_FIFO_LINE_SIZE
888 };
889 static const struct intel_watermark_params g4x_wm_info = {
890         G4X_FIFO_SIZE,
891         G4X_MAX_WM,
892         G4X_MAX_WM,
893         2,
894         G4X_FIFO_LINE_SIZE,
895 };
896 static const struct intel_watermark_params g4x_cursor_wm_info = {
897         I965_CURSOR_FIFO,
898         I965_CURSOR_MAX_WM,
899         I965_CURSOR_DFT_WM,
900         2,
901         G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params valleyview_wm_info = {
904         VALLEYVIEW_FIFO_SIZE,
905         VALLEYVIEW_MAX_WM,
906         VALLEYVIEW_MAX_WM,
907         2,
908         G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_cursor_wm_info = {
911         I965_CURSOR_FIFO,
912         VALLEYVIEW_CURSOR_MAX_WM,
913         I965_CURSOR_DFT_WM,
914         2,
915         G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params i965_cursor_wm_info = {
918         I965_CURSOR_FIFO,
919         I965_CURSOR_MAX_WM,
920         I965_CURSOR_DFT_WM,
921         2,
922         I915_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i945_wm_info = {
925         I945_FIFO_SIZE,
926         I915_MAX_WM,
927         1,
928         2,
929         I915_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params i915_wm_info = {
932         I915_FIFO_SIZE,
933         I915_MAX_WM,
934         1,
935         2,
936         I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i830_wm_info = {
939         I855GM_FIFO_SIZE,
940         I915_MAX_WM,
941         1,
942         2,
943         I830_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i845_wm_info = {
946         I830_FIFO_SIZE,
947         I915_MAX_WM,
948         1,
949         2,
950         I830_FIFO_LINE_SIZE
951 };
952
953 /**
954  * intel_calculate_wm - calculate watermark level
955  * @clock_in_khz: pixel clock
956  * @wm: chip FIFO params
957  * @pixel_size: display pixel size
958  * @latency_ns: memory latency for the platform
959  *
960  * Calculate the watermark level (the level at which the display plane will
961  * start fetching from memory again).  Each chip has a different display
962  * FIFO size and allocation, so the caller needs to figure that out and pass
963  * in the correct intel_watermark_params structure.
964  *
965  * As the pixel clock runs, the FIFO will be drained at a rate that depends
966  * on the pixel size.  When it reaches the watermark level, it'll start
967  * fetching FIFO line sized based chunks from memory until the FIFO fills
968  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
969  * will occur, and a display engine hang could result.
970  */
971 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
972                                         const struct intel_watermark_params *wm,
973                                         int fifo_size,
974                                         int pixel_size,
975                                         unsigned long latency_ns)
976 {
977         long entries_required, wm_size;
978
979         /*
980          * Note: we need to make sure we don't overflow for various clock &
981          * latency values.
982          * clocks go from a few thousand to several hundred thousand.
983          * latency is usually a few thousand
984          */
985         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
986                 1000;
987         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
988
989         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
990
991         wm_size = fifo_size - (entries_required + wm->guard_size);
992
993         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
994
995         /* Don't promote wm_size to unsigned... */
996         if (wm_size > (long)wm->max_wm)
997                 wm_size = wm->max_wm;
998         if (wm_size <= 0)
999                 wm_size = wm->default_wm;
1000         return wm_size;
1001 }
1002
1003 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1004 {
1005         struct drm_crtc *crtc, *enabled = NULL;
1006
1007         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1008                 if (intel_crtc_active(crtc)) {
1009                         if (enabled)
1010                                 return NULL;
1011                         enabled = crtc;
1012                 }
1013         }
1014
1015         return enabled;
1016 }
1017
1018 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1019 {
1020         struct drm_device *dev = unused_crtc->dev;
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         struct drm_crtc *crtc;
1023         const struct cxsr_latency *latency;
1024         u32 reg;
1025         unsigned long wm;
1026
1027         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1028                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1029         if (!latency) {
1030                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1031                 pineview_disable_cxsr(dev);
1032                 return;
1033         }
1034
1035         crtc = single_enabled_crtc(dev);
1036         if (crtc) {
1037                 const struct drm_display_mode *adjusted_mode;
1038                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1039                 int clock;
1040
1041                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1042                 clock = adjusted_mode->crtc_clock;
1043
1044                 /* Display SR */
1045                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1046                                         pineview_display_wm.fifo_size,
1047                                         pixel_size, latency->display_sr);
1048                 reg = I915_READ(DSPFW1);
1049                 reg &= ~DSPFW_SR_MASK;
1050                 reg |= wm << DSPFW_SR_SHIFT;
1051                 I915_WRITE(DSPFW1, reg);
1052                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1053
1054                 /* cursor SR */
1055                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1056                                         pineview_display_wm.fifo_size,
1057                                         pixel_size, latency->cursor_sr);
1058                 reg = I915_READ(DSPFW3);
1059                 reg &= ~DSPFW_CURSOR_SR_MASK;
1060                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1061                 I915_WRITE(DSPFW3, reg);
1062
1063                 /* Display HPLL off SR */
1064                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1065                                         pineview_display_hplloff_wm.fifo_size,
1066                                         pixel_size, latency->display_hpll_disable);
1067                 reg = I915_READ(DSPFW3);
1068                 reg &= ~DSPFW_HPLL_SR_MASK;
1069                 reg |= wm & DSPFW_HPLL_SR_MASK;
1070                 I915_WRITE(DSPFW3, reg);
1071
1072                 /* cursor HPLL off SR */
1073                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1074                                         pineview_display_hplloff_wm.fifo_size,
1075                                         pixel_size, latency->cursor_hpll_disable);
1076                 reg = I915_READ(DSPFW3);
1077                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1078                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1079                 I915_WRITE(DSPFW3, reg);
1080                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1081
1082                 /* activate cxsr */
1083                 I915_WRITE(DSPFW3,
1084                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1085                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1086         } else {
1087                 pineview_disable_cxsr(dev);
1088                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1089         }
1090 }
1091
1092 static bool g4x_compute_wm0(struct drm_device *dev,
1093                             int plane,
1094                             const struct intel_watermark_params *display,
1095                             int display_latency_ns,
1096                             const struct intel_watermark_params *cursor,
1097                             int cursor_latency_ns,
1098                             int *plane_wm,
1099                             int *cursor_wm)
1100 {
1101         struct drm_crtc *crtc;
1102         const struct drm_display_mode *adjusted_mode;
1103         int htotal, hdisplay, clock, pixel_size;
1104         int line_time_us, line_count;
1105         int entries, tlb_miss;
1106
1107         crtc = intel_get_crtc_for_plane(dev, plane);
1108         if (!intel_crtc_active(crtc)) {
1109                 *cursor_wm = cursor->guard_size;
1110                 *plane_wm = display->guard_size;
1111                 return false;
1112         }
1113
1114         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1115         clock = adjusted_mode->crtc_clock;
1116         htotal = adjusted_mode->crtc_htotal;
1117         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1118         pixel_size = crtc->fb->bits_per_pixel / 8;
1119
1120         /* Use the small buffer method to calculate plane watermark */
1121         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1122         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1123         if (tlb_miss > 0)
1124                 entries += tlb_miss;
1125         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1126         *plane_wm = entries + display->guard_size;
1127         if (*plane_wm > (int)display->max_wm)
1128                 *plane_wm = display->max_wm;
1129
1130         /* Use the large buffer method to calculate cursor watermark */
1131         line_time_us = ((htotal * 1000) / clock);
1132         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1133         entries = line_count * 64 * pixel_size;
1134         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1135         if (tlb_miss > 0)
1136                 entries += tlb_miss;
1137         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1138         *cursor_wm = entries + cursor->guard_size;
1139         if (*cursor_wm > (int)cursor->max_wm)
1140                 *cursor_wm = (int)cursor->max_wm;
1141
1142         return true;
1143 }
1144
1145 /*
1146  * Check the wm result.
1147  *
1148  * If any calculated watermark values is larger than the maximum value that
1149  * can be programmed into the associated watermark register, that watermark
1150  * must be disabled.
1151  */
1152 static bool g4x_check_srwm(struct drm_device *dev,
1153                            int display_wm, int cursor_wm,
1154                            const struct intel_watermark_params *display,
1155                            const struct intel_watermark_params *cursor)
1156 {
1157         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1158                       display_wm, cursor_wm);
1159
1160         if (display_wm > display->max_wm) {
1161                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1162                               display_wm, display->max_wm);
1163                 return false;
1164         }
1165
1166         if (cursor_wm > cursor->max_wm) {
1167                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1168                               cursor_wm, cursor->max_wm);
1169                 return false;
1170         }
1171
1172         if (!(display_wm || cursor_wm)) {
1173                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1174                 return false;
1175         }
1176
1177         return true;
1178 }
1179
1180 static bool g4x_compute_srwm(struct drm_device *dev,
1181                              int plane,
1182                              int latency_ns,
1183                              const struct intel_watermark_params *display,
1184                              const struct intel_watermark_params *cursor,
1185                              int *display_wm, int *cursor_wm)
1186 {
1187         struct drm_crtc *crtc;
1188         const struct drm_display_mode *adjusted_mode;
1189         int hdisplay, htotal, pixel_size, clock;
1190         unsigned long line_time_us;
1191         int line_count, line_size;
1192         int small, large;
1193         int entries;
1194
1195         if (!latency_ns) {
1196                 *display_wm = *cursor_wm = 0;
1197                 return false;
1198         }
1199
1200         crtc = intel_get_crtc_for_plane(dev, plane);
1201         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1202         clock = adjusted_mode->crtc_clock;
1203         htotal = adjusted_mode->crtc_htotal;
1204         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1205         pixel_size = crtc->fb->bits_per_pixel / 8;
1206
1207         line_time_us = (htotal * 1000) / clock;
1208         line_count = (latency_ns / line_time_us + 1000) / 1000;
1209         line_size = hdisplay * pixel_size;
1210
1211         /* Use the minimum of the small and large buffer method for primary */
1212         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1213         large = line_count * line_size;
1214
1215         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1216         *display_wm = entries + display->guard_size;
1217
1218         /* calculate the self-refresh watermark for display cursor */
1219         entries = line_count * pixel_size * 64;
1220         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1221         *cursor_wm = entries + cursor->guard_size;
1222
1223         return g4x_check_srwm(dev,
1224                               *display_wm, *cursor_wm,
1225                               display, cursor);
1226 }
1227
1228 static bool vlv_compute_drain_latency(struct drm_device *dev,
1229                                      int plane,
1230                                      int *plane_prec_mult,
1231                                      int *plane_dl,
1232                                      int *cursor_prec_mult,
1233                                      int *cursor_dl)
1234 {
1235         struct drm_crtc *crtc;
1236         int clock, pixel_size;
1237         int entries;
1238
1239         crtc = intel_get_crtc_for_plane(dev, plane);
1240         if (!intel_crtc_active(crtc))
1241                 return false;
1242
1243         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1244         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1245
1246         entries = (clock / 1000) * pixel_size;
1247         *plane_prec_mult = (entries > 256) ?
1248                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1249         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1250                                                      pixel_size);
1251
1252         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1253         *cursor_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1256
1257         return true;
1258 }
1259
1260 /*
1261  * Update drain latency registers of memory arbiter
1262  *
1263  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1264  * to be programmed. Each plane has a drain latency multiplier and a drain
1265  * latency value.
1266  */
1267
1268 static void vlv_update_drain_latency(struct drm_device *dev)
1269 {
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1272         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1273         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1274                                                         either 16 or 32 */
1275
1276         /* For plane A, Cursor A */
1277         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1278                                       &cursor_prec_mult, &cursora_dl)) {
1279                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1281                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1283
1284                 I915_WRITE(VLV_DDL1, cursora_prec |
1285                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1286                                 planea_prec | planea_dl);
1287         }
1288
1289         /* For plane B, Cursor B */
1290         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1291                                       &cursor_prec_mult, &cursorb_dl)) {
1292                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1293                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1294                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1295                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1296
1297                 I915_WRITE(VLV_DDL2, cursorb_prec |
1298                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1299                                 planeb_prec | planeb_dl);
1300         }
1301 }
1302
1303 #define single_plane_enabled(mask) is_power_of_2(mask)
1304
1305 static void valleyview_update_wm(struct drm_crtc *crtc)
1306 {
1307         struct drm_device *dev = crtc->dev;
1308         static const int sr_latency_ns = 12000;
1309         struct drm_i915_private *dev_priv = dev->dev_private;
1310         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1311         int plane_sr, cursor_sr;
1312         int ignore_plane_sr, ignore_cursor_sr;
1313         unsigned int enabled = 0;
1314
1315         vlv_update_drain_latency(dev);
1316
1317         if (g4x_compute_wm0(dev, PIPE_A,
1318                             &valleyview_wm_info, latency_ns,
1319                             &valleyview_cursor_wm_info, latency_ns,
1320                             &planea_wm, &cursora_wm))
1321                 enabled |= 1 << PIPE_A;
1322
1323         if (g4x_compute_wm0(dev, PIPE_B,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planeb_wm, &cursorb_wm))
1327                 enabled |= 1 << PIPE_B;
1328
1329         if (single_plane_enabled(enabled) &&
1330             g4x_compute_srwm(dev, ffs(enabled) - 1,
1331                              sr_latency_ns,
1332                              &valleyview_wm_info,
1333                              &valleyview_cursor_wm_info,
1334                              &plane_sr, &ignore_cursor_sr) &&
1335             g4x_compute_srwm(dev, ffs(enabled) - 1,
1336                              2*sr_latency_ns,
1337                              &valleyview_wm_info,
1338                              &valleyview_cursor_wm_info,
1339                              &ignore_plane_sr, &cursor_sr)) {
1340                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1341         } else {
1342                 I915_WRITE(FW_BLC_SELF_VLV,
1343                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1344                 plane_sr = cursor_sr = 0;
1345         }
1346
1347         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1348                       planea_wm, cursora_wm,
1349                       planeb_wm, cursorb_wm,
1350                       plane_sr, cursor_sr);
1351
1352         I915_WRITE(DSPFW1,
1353                    (plane_sr << DSPFW_SR_SHIFT) |
1354                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1355                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1356                    planea_wm);
1357         I915_WRITE(DSPFW2,
1358                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1359                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1360         I915_WRITE(DSPFW3,
1361                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1362                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1363 }
1364
1365 static void g4x_update_wm(struct drm_crtc *crtc)
1366 {
1367         struct drm_device *dev = crtc->dev;
1368         static const int sr_latency_ns = 12000;
1369         struct drm_i915_private *dev_priv = dev->dev_private;
1370         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371         int plane_sr, cursor_sr;
1372         unsigned int enabled = 0;
1373
1374         if (g4x_compute_wm0(dev, PIPE_A,
1375                             &g4x_wm_info, latency_ns,
1376                             &g4x_cursor_wm_info, latency_ns,
1377                             &planea_wm, &cursora_wm))
1378                 enabled |= 1 << PIPE_A;
1379
1380         if (g4x_compute_wm0(dev, PIPE_B,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planeb_wm, &cursorb_wm))
1384                 enabled |= 1 << PIPE_B;
1385
1386         if (single_plane_enabled(enabled) &&
1387             g4x_compute_srwm(dev, ffs(enabled) - 1,
1388                              sr_latency_ns,
1389                              &g4x_wm_info,
1390                              &g4x_cursor_wm_info,
1391                              &plane_sr, &cursor_sr)) {
1392                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1393         } else {
1394                 I915_WRITE(FW_BLC_SELF,
1395                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1396                 plane_sr = cursor_sr = 0;
1397         }
1398
1399         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1400                       planea_wm, cursora_wm,
1401                       planeb_wm, cursorb_wm,
1402                       plane_sr, cursor_sr);
1403
1404         I915_WRITE(DSPFW1,
1405                    (plane_sr << DSPFW_SR_SHIFT) |
1406                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1407                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1408                    planea_wm);
1409         I915_WRITE(DSPFW2,
1410                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1411                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1412         /* HPLL off in SR has some issues on G4x... disable it */
1413         I915_WRITE(DSPFW3,
1414                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1415                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1416 }
1417
1418 static void i965_update_wm(struct drm_crtc *unused_crtc)
1419 {
1420         struct drm_device *dev = unused_crtc->dev;
1421         struct drm_i915_private *dev_priv = dev->dev_private;
1422         struct drm_crtc *crtc;
1423         int srwm = 1;
1424         int cursor_sr = 16;
1425
1426         /* Calc sr entries for one plane configs */
1427         crtc = single_enabled_crtc(dev);
1428         if (crtc) {
1429                 /* self-refresh has much higher latency */
1430                 static const int sr_latency_ns = 12000;
1431                 const struct drm_display_mode *adjusted_mode =
1432                         &to_intel_crtc(crtc)->config.adjusted_mode;
1433                 int clock = adjusted_mode->crtc_clock;
1434                 int htotal = adjusted_mode->crtc_htotal;
1435                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1436                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1437                 unsigned long line_time_us;
1438                 int entries;
1439
1440                 line_time_us = ((htotal * 1000) / clock);
1441
1442                 /* Use ns/us then divide to preserve precision */
1443                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1444                         pixel_size * hdisplay;
1445                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1446                 srwm = I965_FIFO_SIZE - entries;
1447                 if (srwm < 0)
1448                         srwm = 1;
1449                 srwm &= 0x1ff;
1450                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1451                               entries, srwm);
1452
1453                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1454                         pixel_size * 64;
1455                 entries = DIV_ROUND_UP(entries,
1456                                           i965_cursor_wm_info.cacheline_size);
1457                 cursor_sr = i965_cursor_wm_info.fifo_size -
1458                         (entries + i965_cursor_wm_info.guard_size);
1459
1460                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1461                         cursor_sr = i965_cursor_wm_info.max_wm;
1462
1463                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1464                               "cursor %d\n", srwm, cursor_sr);
1465
1466                 if (IS_CRESTLINE(dev))
1467                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1468         } else {
1469                 /* Turn off self refresh if both pipes are enabled */
1470                 if (IS_CRESTLINE(dev))
1471                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1472                                    & ~FW_BLC_SELF_EN);
1473         }
1474
1475         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1476                       srwm);
1477
1478         /* 965 has limitations... */
1479         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1480                    (8 << 16) | (8 << 8) | (8 << 0));
1481         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1482         /* update cursor SR watermark */
1483         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1484 }
1485
1486 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1487 {
1488         struct drm_device *dev = unused_crtc->dev;
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490         const struct intel_watermark_params *wm_info;
1491         uint32_t fwater_lo;
1492         uint32_t fwater_hi;
1493         int cwm, srwm = 1;
1494         int fifo_size;
1495         int planea_wm, planeb_wm;
1496         struct drm_crtc *crtc, *enabled = NULL;
1497
1498         if (IS_I945GM(dev))
1499                 wm_info = &i945_wm_info;
1500         else if (!IS_GEN2(dev))
1501                 wm_info = &i915_wm_info;
1502         else
1503                 wm_info = &i830_wm_info;
1504
1505         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1506         crtc = intel_get_crtc_for_plane(dev, 0);
1507         if (intel_crtc_active(crtc)) {
1508                 const struct drm_display_mode *adjusted_mode;
1509                 int cpp = crtc->fb->bits_per_pixel / 8;
1510                 if (IS_GEN2(dev))
1511                         cpp = 4;
1512
1513                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1514                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1515                                                wm_info, fifo_size, cpp,
1516                                                latency_ns);
1517                 enabled = crtc;
1518         } else
1519                 planea_wm = fifo_size - wm_info->guard_size;
1520
1521         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1522         crtc = intel_get_crtc_for_plane(dev, 1);
1523         if (intel_crtc_active(crtc)) {
1524                 const struct drm_display_mode *adjusted_mode;
1525                 int cpp = crtc->fb->bits_per_pixel / 8;
1526                 if (IS_GEN2(dev))
1527                         cpp = 4;
1528
1529                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1530                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1531                                                wm_info, fifo_size, cpp,
1532                                                latency_ns);
1533                 if (enabled == NULL)
1534                         enabled = crtc;
1535                 else
1536                         enabled = NULL;
1537         } else
1538                 planeb_wm = fifo_size - wm_info->guard_size;
1539
1540         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1541
1542         /*
1543          * Overlay gets an aggressive default since video jitter is bad.
1544          */
1545         cwm = 2;
1546
1547         /* Play safe and disable self-refresh before adjusting watermarks. */
1548         if (IS_I945G(dev) || IS_I945GM(dev))
1549                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1550         else if (IS_I915GM(dev))
1551                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1552
1553         /* Calc sr entries for one plane configs */
1554         if (HAS_FW_BLC(dev) && enabled) {
1555                 /* self-refresh has much higher latency */
1556                 static const int sr_latency_ns = 6000;
1557                 const struct drm_display_mode *adjusted_mode =
1558                         &to_intel_crtc(enabled)->config.adjusted_mode;
1559                 int clock = adjusted_mode->crtc_clock;
1560                 int htotal = adjusted_mode->crtc_htotal;
1561                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1562                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1563                 unsigned long line_time_us;
1564                 int entries;
1565
1566                 line_time_us = (htotal * 1000) / clock;
1567
1568                 /* Use ns/us then divide to preserve precision */
1569                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1570                         pixel_size * hdisplay;
1571                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1572                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1573                 srwm = wm_info->fifo_size - entries;
1574                 if (srwm < 0)
1575                         srwm = 1;
1576
1577                 if (IS_I945G(dev) || IS_I945GM(dev))
1578                         I915_WRITE(FW_BLC_SELF,
1579                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1580                 else if (IS_I915GM(dev))
1581                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1582         }
1583
1584         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1585                       planea_wm, planeb_wm, cwm, srwm);
1586
1587         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1588         fwater_hi = (cwm & 0x1f);
1589
1590         /* Set request length to 8 cachelines per fetch */
1591         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1592         fwater_hi = fwater_hi | (1 << 8);
1593
1594         I915_WRITE(FW_BLC, fwater_lo);
1595         I915_WRITE(FW_BLC2, fwater_hi);
1596
1597         if (HAS_FW_BLC(dev)) {
1598                 if (enabled) {
1599                         if (IS_I945G(dev) || IS_I945GM(dev))
1600                                 I915_WRITE(FW_BLC_SELF,
1601                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1602                         else if (IS_I915GM(dev))
1603                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1604                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1605                 } else
1606                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1607         }
1608 }
1609
1610 static void i845_update_wm(struct drm_crtc *unused_crtc)
1611 {
1612         struct drm_device *dev = unused_crtc->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614         struct drm_crtc *crtc;
1615         const struct drm_display_mode *adjusted_mode;
1616         uint32_t fwater_lo;
1617         int planea_wm;
1618
1619         crtc = single_enabled_crtc(dev);
1620         if (crtc == NULL)
1621                 return;
1622
1623         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1624         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1625                                        &i845_wm_info,
1626                                        dev_priv->display.get_fifo_size(dev, 0),
1627                                        4, latency_ns);
1628         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1629         fwater_lo |= (3<<8) | planea_wm;
1630
1631         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1632
1633         I915_WRITE(FW_BLC, fwater_lo);
1634 }
1635
1636 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1637                                     struct drm_crtc *crtc)
1638 {
1639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1640         uint32_t pixel_rate;
1641
1642         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1643
1644         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1645          * adjust the pixel_rate here. */
1646
1647         if (intel_crtc->config.pch_pfit.enabled) {
1648                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1649                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1650
1651                 pipe_w = intel_crtc->config.pipe_src_w;
1652                 pipe_h = intel_crtc->config.pipe_src_h;
1653                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1654                 pfit_h = pfit_size & 0xFFFF;
1655                 if (pipe_w < pfit_w)
1656                         pipe_w = pfit_w;
1657                 if (pipe_h < pfit_h)
1658                         pipe_h = pfit_h;
1659
1660                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1661                                      pfit_w * pfit_h);
1662         }
1663
1664         return pixel_rate;
1665 }
1666
1667 /* latency must be in 0.1us units. */
1668 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1669                                uint32_t latency)
1670 {
1671         uint64_t ret;
1672
1673         if (WARN(latency == 0, "Latency value missing\n"))
1674                 return UINT_MAX;
1675
1676         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1677         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1678
1679         return ret;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1684                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint32_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1693         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1694         ret = DIV_ROUND_UP(ret, 64) + 2;
1695         return ret;
1696 }
1697
1698 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1699                            uint8_t bytes_per_pixel)
1700 {
1701         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1702 }
1703
1704 struct ilk_pipe_wm_parameters {
1705         bool active;
1706         uint32_t pipe_htotal;
1707         uint32_t pixel_rate;
1708         struct intel_plane_wm_parameters pri;
1709         struct intel_plane_wm_parameters spr;
1710         struct intel_plane_wm_parameters cur;
1711 };
1712
1713 struct ilk_wm_maximums {
1714         uint16_t pri;
1715         uint16_t spr;
1716         uint16_t cur;
1717         uint16_t fbc;
1718 };
1719
1720 /* used in computing the new watermarks state */
1721 struct intel_wm_config {
1722         unsigned int num_pipes_active;
1723         bool sprites_enabled;
1724         bool sprites_scaled;
1725 };
1726
1727 /*
1728  * For both WM_PIPE and WM_LP.
1729  * mem_value must be in 0.1us units.
1730  */
1731 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1732                                    uint32_t mem_value,
1733                                    bool is_lp)
1734 {
1735         uint32_t method1, method2;
1736
1737         if (!params->active || !params->pri.enabled)
1738                 return 0;
1739
1740         method1 = ilk_wm_method1(params->pixel_rate,
1741                                  params->pri.bytes_per_pixel,
1742                                  mem_value);
1743
1744         if (!is_lp)
1745                 return method1;
1746
1747         method2 = ilk_wm_method2(params->pixel_rate,
1748                                  params->pipe_htotal,
1749                                  params->pri.horiz_pixels,
1750                                  params->pri.bytes_per_pixel,
1751                                  mem_value);
1752
1753         return min(method1, method2);
1754 }
1755
1756 /*
1757  * For both WM_PIPE and WM_LP.
1758  * mem_value must be in 0.1us units.
1759  */
1760 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1761                                    uint32_t mem_value)
1762 {
1763         uint32_t method1, method2;
1764
1765         if (!params->active || !params->spr.enabled)
1766                 return 0;
1767
1768         method1 = ilk_wm_method1(params->pixel_rate,
1769                                  params->spr.bytes_per_pixel,
1770                                  mem_value);
1771         method2 = ilk_wm_method2(params->pixel_rate,
1772                                  params->pipe_htotal,
1773                                  params->spr.horiz_pixels,
1774                                  params->spr.bytes_per_pixel,
1775                                  mem_value);
1776         return min(method1, method2);
1777 }
1778
1779 /*
1780  * For both WM_PIPE and WM_LP.
1781  * mem_value must be in 0.1us units.
1782  */
1783 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1784                                    uint32_t mem_value)
1785 {
1786         if (!params->active || !params->cur.enabled)
1787                 return 0;
1788
1789         return ilk_wm_method2(params->pixel_rate,
1790                               params->pipe_htotal,
1791                               params->cur.horiz_pixels,
1792                               params->cur.bytes_per_pixel,
1793                               mem_value);
1794 }
1795
1796 /* Only for WM_LP. */
1797 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1798                                    uint32_t pri_val)
1799 {
1800         if (!params->active || !params->pri.enabled)
1801                 return 0;
1802
1803         return ilk_wm_fbc(pri_val,
1804                           params->pri.horiz_pixels,
1805                           params->pri.bytes_per_pixel);
1806 }
1807
1808 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1809 {
1810         if (INTEL_INFO(dev)->gen >= 8)
1811                 return 3072;
1812         else if (INTEL_INFO(dev)->gen >= 7)
1813                 return 768;
1814         else
1815                 return 512;
1816 }
1817
1818 /* Calculate the maximum primary/sprite plane watermark */
1819 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1820                                      int level,
1821                                      const struct intel_wm_config *config,
1822                                      enum intel_ddb_partitioning ddb_partitioning,
1823                                      bool is_sprite)
1824 {
1825         unsigned int fifo_size = ilk_display_fifo_size(dev);
1826         unsigned int max;
1827
1828         /* if sprites aren't enabled, sprites get nothing */
1829         if (is_sprite && !config->sprites_enabled)
1830                 return 0;
1831
1832         /* HSW allows LP1+ watermarks even with multiple pipes */
1833         if (level == 0 || config->num_pipes_active > 1) {
1834                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1835
1836                 /*
1837                  * For some reason the non self refresh
1838                  * FIFO size is only half of the self
1839                  * refresh FIFO size on ILK/SNB.
1840                  */
1841                 if (INTEL_INFO(dev)->gen <= 6)
1842                         fifo_size /= 2;
1843         }
1844
1845         if (config->sprites_enabled) {
1846                 /* level 0 is always calculated with 1:1 split */
1847                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1848                         if (is_sprite)
1849                                 fifo_size *= 5;
1850                         fifo_size /= 6;
1851                 } else {
1852                         fifo_size /= 2;
1853                 }
1854         }
1855
1856         /* clamp to max that the registers can hold */
1857         if (INTEL_INFO(dev)->gen >= 8)
1858                 max = level == 0 ? 255 : 2047;
1859         else if (INTEL_INFO(dev)->gen >= 7)
1860                 /* IVB/HSW primary/sprite plane watermarks */
1861                 max = level == 0 ? 127 : 1023;
1862         else if (!is_sprite)
1863                 /* ILK/SNB primary plane watermarks */
1864                 max = level == 0 ? 127 : 511;
1865         else
1866                 /* ILK/SNB sprite plane watermarks */
1867                 max = level == 0 ? 63 : 255;
1868
1869         return min(fifo_size, max);
1870 }
1871
1872 /* Calculate the maximum cursor plane watermark */
1873 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1874                                       int level,
1875                                       const struct intel_wm_config *config)
1876 {
1877         /* HSW LP1+ watermarks w/ multiple pipes */
1878         if (level > 0 && config->num_pipes_active > 1)
1879                 return 64;
1880
1881         /* otherwise just report max that registers can hold */
1882         if (INTEL_INFO(dev)->gen >= 7)
1883                 return level == 0 ? 63 : 255;
1884         else
1885                 return level == 0 ? 31 : 63;
1886 }
1887
1888 /* Calculate the maximum FBC watermark */
1889 static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
1890 {
1891         /* max that registers can hold */
1892         if (INTEL_INFO(dev)->gen >= 8)
1893                 return 31;
1894         else
1895                 return 15;
1896 }
1897
1898 static void ilk_compute_wm_maximums(struct drm_device *dev,
1899                                     int level,
1900                                     const struct intel_wm_config *config,
1901                                     enum intel_ddb_partitioning ddb_partitioning,
1902                                     struct ilk_wm_maximums *max)
1903 {
1904         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1905         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1906         max->cur = ilk_cursor_wm_max(dev, level, config);
1907         max->fbc = ilk_fbc_wm_max(dev);
1908 }
1909
1910 static bool ilk_validate_wm_level(int level,
1911                                   const struct ilk_wm_maximums *max,
1912                                   struct intel_wm_level *result)
1913 {
1914         bool ret;
1915
1916         /* already determined to be invalid? */
1917         if (!result->enable)
1918                 return false;
1919
1920         result->enable = result->pri_val <= max->pri &&
1921                          result->spr_val <= max->spr &&
1922                          result->cur_val <= max->cur;
1923
1924         ret = result->enable;
1925
1926         /*
1927          * HACK until we can pre-compute everything,
1928          * and thus fail gracefully if LP0 watermarks
1929          * are exceeded...
1930          */
1931         if (level == 0 && !result->enable) {
1932                 if (result->pri_val > max->pri)
1933                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1934                                       level, result->pri_val, max->pri);
1935                 if (result->spr_val > max->spr)
1936                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1937                                       level, result->spr_val, max->spr);
1938                 if (result->cur_val > max->cur)
1939                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1940                                       level, result->cur_val, max->cur);
1941
1942                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1943                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1944                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1945                 result->enable = true;
1946         }
1947
1948         return ret;
1949 }
1950
1951 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
1952                                  int level,
1953                                  const struct ilk_pipe_wm_parameters *p,
1954                                  struct intel_wm_level *result)
1955 {
1956         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1957         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1958         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1959
1960         /* WM1+ latency values stored in 0.5us units */
1961         if (level > 0) {
1962                 pri_latency *= 5;
1963                 spr_latency *= 5;
1964                 cur_latency *= 5;
1965         }
1966
1967         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1968         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1969         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1970         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1971         result->enable = true;
1972 }
1973
1974 static uint32_t
1975 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1976 {
1977         struct drm_i915_private *dev_priv = dev->dev_private;
1978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1979         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1980         u32 linetime, ips_linetime;
1981
1982         if (!intel_crtc_active(crtc))
1983                 return 0;
1984
1985         /* The WM are computed with base on how long it takes to fill a single
1986          * row at the given clock rate, multiplied by 8.
1987          * */
1988         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1989                                      mode->crtc_clock);
1990         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1991                                          intel_ddi_get_cdclk_freq(dev_priv));
1992
1993         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1994                PIPE_WM_LINETIME_TIME(linetime);
1995 }
1996
1997 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
1998 {
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000
2001         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2002                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2003
2004                 wm[0] = (sskpd >> 56) & 0xFF;
2005                 if (wm[0] == 0)
2006                         wm[0] = sskpd & 0xF;
2007                 wm[1] = (sskpd >> 4) & 0xFF;
2008                 wm[2] = (sskpd >> 12) & 0xFF;
2009                 wm[3] = (sskpd >> 20) & 0x1FF;
2010                 wm[4] = (sskpd >> 32) & 0x1FF;
2011         } else if (INTEL_INFO(dev)->gen >= 6) {
2012                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2013
2014                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2015                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2016                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2017                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2018         } else if (INTEL_INFO(dev)->gen >= 5) {
2019                 uint32_t mltr = I915_READ(MLTR_ILK);
2020
2021                 /* ILK primary LP0 latency is 700 ns */
2022                 wm[0] = 7;
2023                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2024                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2025         }
2026 }
2027
2028 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2029 {
2030         /* ILK sprite LP0 latency is 1300 ns */
2031         if (INTEL_INFO(dev)->gen == 5)
2032                 wm[0] = 13;
2033 }
2034
2035 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2036 {
2037         /* ILK cursor LP0 latency is 1300 ns */
2038         if (INTEL_INFO(dev)->gen == 5)
2039                 wm[0] = 13;
2040
2041         /* WaDoubleCursorLP3Latency:ivb */
2042         if (IS_IVYBRIDGE(dev))
2043                 wm[3] *= 2;
2044 }
2045
2046 static int ilk_wm_max_level(const struct drm_device *dev)
2047 {
2048         /* how many WM levels are we expecting */
2049         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2050                 return 4;
2051         else if (INTEL_INFO(dev)->gen >= 6)
2052                 return 3;
2053         else
2054                 return 2;
2055 }
2056
2057 static void intel_print_wm_latency(struct drm_device *dev,
2058                                    const char *name,
2059                                    const uint16_t wm[5])
2060 {
2061         int level, max_level = ilk_wm_max_level(dev);
2062
2063         for (level = 0; level <= max_level; level++) {
2064                 unsigned int latency = wm[level];
2065
2066                 if (latency == 0) {
2067                         DRM_ERROR("%s WM%d latency not provided\n",
2068                                   name, level);
2069                         continue;
2070                 }
2071
2072                 /* WM1+ latency values in 0.5us units */
2073                 if (level > 0)
2074                         latency *= 5;
2075
2076                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2077                               name, level, wm[level],
2078                               latency / 10, latency % 10);
2079         }
2080 }
2081
2082 static void intel_setup_wm_latency(struct drm_device *dev)
2083 {
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085
2086         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2087
2088         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2089                sizeof(dev_priv->wm.pri_latency));
2090         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2091                sizeof(dev_priv->wm.pri_latency));
2092
2093         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2094         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2095
2096         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2097         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2098         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2099 }
2100
2101 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2102                                       struct ilk_pipe_wm_parameters *p,
2103                                       struct intel_wm_config *config)
2104 {
2105         struct drm_device *dev = crtc->dev;
2106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2107         enum pipe pipe = intel_crtc->pipe;
2108         struct drm_plane *plane;
2109
2110         p->active = intel_crtc_active(crtc);
2111         if (p->active) {
2112                 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2113                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2114                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2115                 p->cur.bytes_per_pixel = 4;
2116                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2117                 p->cur.horiz_pixels = 64;
2118                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2119                 p->pri.enabled = true;
2120                 p->cur.enabled = true;
2121         }
2122
2123         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2124                 config->num_pipes_active += intel_crtc_active(crtc);
2125
2126         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2127                 struct intel_plane *intel_plane = to_intel_plane(plane);
2128
2129                 if (intel_plane->pipe == pipe)
2130                         p->spr = intel_plane->wm;
2131
2132                 config->sprites_enabled |= intel_plane->wm.enabled;
2133                 config->sprites_scaled |= intel_plane->wm.scaled;
2134         }
2135 }
2136
2137 /* Compute new watermarks for the pipe */
2138 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2139                                   const struct ilk_pipe_wm_parameters *params,
2140                                   struct intel_pipe_wm *pipe_wm)
2141 {
2142         struct drm_device *dev = crtc->dev;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         int level, max_level = ilk_wm_max_level(dev);
2145         /* LP0 watermark maximums depend on this pipe alone */
2146         struct intel_wm_config config = {
2147                 .num_pipes_active = 1,
2148                 .sprites_enabled = params->spr.enabled,
2149                 .sprites_scaled = params->spr.scaled,
2150         };
2151         struct ilk_wm_maximums max;
2152
2153         /* LP0 watermarks always use 1/2 DDB partitioning */
2154         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2155
2156         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2157         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2158                 max_level = 1;
2159
2160         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2161         if (params->spr.scaled)
2162                 max_level = 0;
2163
2164         for (level = 0; level <= max_level; level++)
2165                 ilk_compute_wm_level(dev_priv, level, params,
2166                                      &pipe_wm->wm[level]);
2167
2168         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2169                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2170
2171         /* At least LP0 must be valid */
2172         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2173 }
2174
2175 /*
2176  * Merge the watermarks from all active pipes for a specific level.
2177  */
2178 static void ilk_merge_wm_level(struct drm_device *dev,
2179                                int level,
2180                                struct intel_wm_level *ret_wm)
2181 {
2182         const struct intel_crtc *intel_crtc;
2183
2184         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2185                 const struct intel_wm_level *wm =
2186                         &intel_crtc->wm.active.wm[level];
2187
2188                 if (!wm->enable)
2189                         return;
2190
2191                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2192                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2193                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2194                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2195         }
2196
2197         ret_wm->enable = true;
2198 }
2199
2200 /*
2201  * Merge all low power watermarks for all active pipes.
2202  */
2203 static void ilk_wm_merge(struct drm_device *dev,
2204                          const struct intel_wm_config *config,
2205                          const struct ilk_wm_maximums *max,
2206                          struct intel_pipe_wm *merged)
2207 {
2208         int level, max_level = ilk_wm_max_level(dev);
2209
2210         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2211         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2212             config->num_pipes_active > 1)
2213                 return;
2214
2215         /* ILK: FBC WM must be disabled always */
2216         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2217
2218         /* merge each WM1+ level */
2219         for (level = 1; level <= max_level; level++) {
2220                 struct intel_wm_level *wm = &merged->wm[level];
2221
2222                 ilk_merge_wm_level(dev, level, wm);
2223
2224                 if (!ilk_validate_wm_level(level, max, wm))
2225                         break;
2226
2227                 /*
2228                  * The spec says it is preferred to disable
2229                  * FBC WMs instead of disabling a WM level.
2230                  */
2231                 if (wm->fbc_val > max->fbc) {
2232                         merged->fbc_wm_enabled = false;
2233                         wm->fbc_val = 0;
2234                 }
2235         }
2236
2237         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2238         /*
2239          * FIXME this is racy. FBC might get enabled later.
2240          * What we should check here is whether FBC can be
2241          * enabled sometime later.
2242          */
2243         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2244                 for (level = 2; level <= max_level; level++) {
2245                         struct intel_wm_level *wm = &merged->wm[level];
2246
2247                         wm->enable = false;
2248                 }
2249         }
2250 }
2251
2252 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2253 {
2254         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2255         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2256 }
2257
2258 /* The value we need to program into the WM_LPx latency field */
2259 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2260 {
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262
2263         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2264                 return 2 * level;
2265         else
2266                 return dev_priv->wm.pri_latency[level];
2267 }
2268
2269 static void ilk_compute_wm_results(struct drm_device *dev,
2270                                    const struct intel_pipe_wm *merged,
2271                                    enum intel_ddb_partitioning partitioning,
2272                                    struct ilk_wm_values *results)
2273 {
2274         struct intel_crtc *intel_crtc;
2275         int level, wm_lp;
2276
2277         results->enable_fbc_wm = merged->fbc_wm_enabled;
2278         results->partitioning = partitioning;
2279
2280         /* LP1+ register values */
2281         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2282                 const struct intel_wm_level *r;
2283
2284                 level = ilk_wm_lp_to_level(wm_lp, merged);
2285
2286                 r = &merged->wm[level];
2287                 if (!r->enable)
2288                         break;
2289
2290                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2291                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2292                         (r->pri_val << WM1_LP_SR_SHIFT) |
2293                         r->cur_val;
2294
2295                 if (INTEL_INFO(dev)->gen >= 8)
2296                         results->wm_lp[wm_lp - 1] |=
2297                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2298                 else
2299                         results->wm_lp[wm_lp - 1] |=
2300                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2301
2302                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2303                         WARN_ON(wm_lp != 1);
2304                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2305                 } else
2306                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2307         }
2308
2309         /* LP0 register values */
2310         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2311                 enum pipe pipe = intel_crtc->pipe;
2312                 const struct intel_wm_level *r =
2313                         &intel_crtc->wm.active.wm[0];
2314
2315                 if (WARN_ON(!r->enable))
2316                         continue;
2317
2318                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2319
2320                 results->wm_pipe[pipe] =
2321                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2322                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2323                         r->cur_val;
2324         }
2325 }
2326
2327 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2328  * case both are at the same level. Prefer r1 in case they're the same. */
2329 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2330                                                   struct intel_pipe_wm *r1,
2331                                                   struct intel_pipe_wm *r2)
2332 {
2333         int level, max_level = ilk_wm_max_level(dev);
2334         int level1 = 0, level2 = 0;
2335
2336         for (level = 1; level <= max_level; level++) {
2337                 if (r1->wm[level].enable)
2338                         level1 = level;
2339                 if (r2->wm[level].enable)
2340                         level2 = level;
2341         }
2342
2343         if (level1 == level2) {
2344                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2345                         return r2;
2346                 else
2347                         return r1;
2348         } else if (level1 > level2) {
2349                 return r1;
2350         } else {
2351                 return r2;
2352         }
2353 }
2354
2355 /* dirty bits used to track which watermarks need changes */
2356 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2357 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2358 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2359 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2360 #define WM_DIRTY_FBC (1 << 24)
2361 #define WM_DIRTY_DDB (1 << 25)
2362
2363 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2364                                          const struct ilk_wm_values *old,
2365                                          const struct ilk_wm_values *new)
2366 {
2367         unsigned int dirty = 0;
2368         enum pipe pipe;
2369         int wm_lp;
2370
2371         for_each_pipe(pipe) {
2372                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2373                         dirty |= WM_DIRTY_LINETIME(pipe);
2374                         /* Must disable LP1+ watermarks too */
2375                         dirty |= WM_DIRTY_LP_ALL;
2376                 }
2377
2378                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2379                         dirty |= WM_DIRTY_PIPE(pipe);
2380                         /* Must disable LP1+ watermarks too */
2381                         dirty |= WM_DIRTY_LP_ALL;
2382                 }
2383         }
2384
2385         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2386                 dirty |= WM_DIRTY_FBC;
2387                 /* Must disable LP1+ watermarks too */
2388                 dirty |= WM_DIRTY_LP_ALL;
2389         }
2390
2391         if (old->partitioning != new->partitioning) {
2392                 dirty |= WM_DIRTY_DDB;
2393                 /* Must disable LP1+ watermarks too */
2394                 dirty |= WM_DIRTY_LP_ALL;
2395         }
2396
2397         /* LP1+ watermarks already deemed dirty, no need to continue */
2398         if (dirty & WM_DIRTY_LP_ALL)
2399                 return dirty;
2400
2401         /* Find the lowest numbered LP1+ watermark in need of an update... */
2402         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2403                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2404                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2405                         break;
2406         }
2407
2408         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2409         for (; wm_lp <= 3; wm_lp++)
2410                 dirty |= WM_DIRTY_LP(wm_lp);
2411
2412         return dirty;
2413 }
2414
2415 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2416                                unsigned int dirty)
2417 {
2418         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2419         bool changed = false;
2420
2421         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2422                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2423                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2424                 changed = true;
2425         }
2426         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2427                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2428                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2429                 changed = true;
2430         }
2431         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2432                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2433                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2434                 changed = true;
2435         }
2436
2437         /*
2438          * Don't touch WM1S_LP_EN here.
2439          * Doing so could cause underruns.
2440          */
2441
2442         return changed;
2443 }
2444
2445 /*
2446  * The spec says we shouldn't write when we don't need, because every write
2447  * causes WMs to be re-evaluated, expending some power.
2448  */
2449 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2450                                 struct ilk_wm_values *results)
2451 {
2452         struct drm_device *dev = dev_priv->dev;
2453         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2454         unsigned int dirty;
2455         uint32_t val;
2456
2457         dirty = ilk_compute_wm_dirty(dev, previous, results);
2458         if (!dirty)
2459                 return;
2460
2461         _ilk_disable_lp_wm(dev_priv, dirty);
2462
2463         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2464                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2465         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2466                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2467         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2468                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2469
2470         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2471                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2472         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2473                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2474         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2475                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2476
2477         if (dirty & WM_DIRTY_DDB) {
2478                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2479                         val = I915_READ(WM_MISC);
2480                         if (results->partitioning == INTEL_DDB_PART_1_2)
2481                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2482                         else
2483                                 val |= WM_MISC_DATA_PARTITION_5_6;
2484                         I915_WRITE(WM_MISC, val);
2485                 } else {
2486                         val = I915_READ(DISP_ARB_CTL2);
2487                         if (results->partitioning == INTEL_DDB_PART_1_2)
2488                                 val &= ~DISP_DATA_PARTITION_5_6;
2489                         else
2490                                 val |= DISP_DATA_PARTITION_5_6;
2491                         I915_WRITE(DISP_ARB_CTL2, val);
2492                 }
2493         }
2494
2495         if (dirty & WM_DIRTY_FBC) {
2496                 val = I915_READ(DISP_ARB_CTL);
2497                 if (results->enable_fbc_wm)
2498                         val &= ~DISP_FBC_WM_DIS;
2499                 else
2500                         val |= DISP_FBC_WM_DIS;
2501                 I915_WRITE(DISP_ARB_CTL, val);
2502         }
2503
2504         if (dirty & WM_DIRTY_LP(1) &&
2505             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2506                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2507
2508         if (INTEL_INFO(dev)->gen >= 7) {
2509                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2510                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2511                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2512                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2513         }
2514
2515         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2516                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2517         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2518                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2519         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2520                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2521
2522         dev_priv->wm.hw = *results;
2523 }
2524
2525 static bool ilk_disable_lp_wm(struct drm_device *dev)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528
2529         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2530 }
2531
2532 static void ilk_update_wm(struct drm_crtc *crtc)
2533 {
2534         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2535         struct drm_device *dev = crtc->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537         struct ilk_wm_maximums max;
2538         struct ilk_pipe_wm_parameters params = {};
2539         struct ilk_wm_values results = {};
2540         enum intel_ddb_partitioning partitioning;
2541         struct intel_pipe_wm pipe_wm = {};
2542         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2543         struct intel_wm_config config = {};
2544
2545         ilk_compute_wm_parameters(crtc, &params, &config);
2546
2547         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2548
2549         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2550                 return;
2551
2552         intel_crtc->wm.active = pipe_wm;
2553
2554         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2555         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2556
2557         /* 5/6 split only in single pipe config on IVB+ */
2558         if (INTEL_INFO(dev)->gen >= 7 &&
2559             config.num_pipes_active == 1 && config.sprites_enabled) {
2560                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2561                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2562
2563                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2564         } else {
2565                 best_lp_wm = &lp_wm_1_2;
2566         }
2567
2568         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2569                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2570
2571         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2572
2573         ilk_write_wm_values(dev_priv, &results);
2574 }
2575
2576 static void ilk_update_sprite_wm(struct drm_plane *plane,
2577                                      struct drm_crtc *crtc,
2578                                      uint32_t sprite_width, int pixel_size,
2579                                      bool enabled, bool scaled)
2580 {
2581         struct drm_device *dev = plane->dev;
2582         struct intel_plane *intel_plane = to_intel_plane(plane);
2583
2584         intel_plane->wm.enabled = enabled;
2585         intel_plane->wm.scaled = scaled;
2586         intel_plane->wm.horiz_pixels = sprite_width;
2587         intel_plane->wm.bytes_per_pixel = pixel_size;
2588
2589         /*
2590          * IVB workaround: must disable low power watermarks for at least
2591          * one frame before enabling scaling.  LP watermarks can be re-enabled
2592          * when scaling is disabled.
2593          *
2594          * WaCxSRDisabledForSpriteScaling:ivb
2595          */
2596         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2597                 intel_wait_for_vblank(dev, intel_plane->pipe);
2598
2599         ilk_update_wm(crtc);
2600 }
2601
2602 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2603 {
2604         struct drm_device *dev = crtc->dev;
2605         struct drm_i915_private *dev_priv = dev->dev_private;
2606         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2608         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2609         enum pipe pipe = intel_crtc->pipe;
2610         static const unsigned int wm0_pipe_reg[] = {
2611                 [PIPE_A] = WM0_PIPEA_ILK,
2612                 [PIPE_B] = WM0_PIPEB_ILK,
2613                 [PIPE_C] = WM0_PIPEC_IVB,
2614         };
2615
2616         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2617         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2618                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2619
2620         if (intel_crtc_active(crtc)) {
2621                 u32 tmp = hw->wm_pipe[pipe];
2622
2623                 /*
2624                  * For active pipes LP0 watermark is marked as
2625                  * enabled, and LP1+ watermaks as disabled since
2626                  * we can't really reverse compute them in case
2627                  * multiple pipes are active.
2628                  */
2629                 active->wm[0].enable = true;
2630                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2631                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2632                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2633                 active->linetime = hw->wm_linetime[pipe];
2634         } else {
2635                 int level, max_level = ilk_wm_max_level(dev);
2636
2637                 /*
2638                  * For inactive pipes, all watermark levels
2639                  * should be marked as enabled but zeroed,
2640                  * which is what we'd compute them to.
2641                  */
2642                 for (level = 0; level <= max_level; level++)
2643                         active->wm[level].enable = true;
2644         }
2645 }
2646
2647 void ilk_wm_get_hw_state(struct drm_device *dev)
2648 {
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2651         struct drm_crtc *crtc;
2652
2653         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2654                 ilk_pipe_wm_get_hw_state(crtc);
2655
2656         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2657         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2658         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2659
2660         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2661         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2662         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2663
2664         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2665                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2666                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2667         else if (IS_IVYBRIDGE(dev))
2668                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2669                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2670
2671         hw->enable_fbc_wm =
2672                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2673 }
2674
2675 /**
2676  * intel_update_watermarks - update FIFO watermark values based on current modes
2677  *
2678  * Calculate watermark values for the various WM regs based on current mode
2679  * and plane configuration.
2680  *
2681  * There are several cases to deal with here:
2682  *   - normal (i.e. non-self-refresh)
2683  *   - self-refresh (SR) mode
2684  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2685  *   - lines are small relative to FIFO size (buffer can hold more than 2
2686  *     lines), so need to account for TLB latency
2687  *
2688  *   The normal calculation is:
2689  *     watermark = dotclock * bytes per pixel * latency
2690  *   where latency is platform & configuration dependent (we assume pessimal
2691  *   values here).
2692  *
2693  *   The SR calculation is:
2694  *     watermark = (trunc(latency/line time)+1) * surface width *
2695  *       bytes per pixel
2696  *   where
2697  *     line time = htotal / dotclock
2698  *     surface width = hdisplay for normal plane and 64 for cursor
2699  *   and latency is assumed to be high, as above.
2700  *
2701  * The final value programmed to the register should always be rounded up,
2702  * and include an extra 2 entries to account for clock crossings.
2703  *
2704  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2705  * to set the non-SR watermarks to 8.
2706  */
2707 void intel_update_watermarks(struct drm_crtc *crtc)
2708 {
2709         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2710
2711         if (dev_priv->display.update_wm)
2712                 dev_priv->display.update_wm(crtc);
2713 }
2714
2715 void intel_update_sprite_watermarks(struct drm_plane *plane,
2716                                     struct drm_crtc *crtc,
2717                                     uint32_t sprite_width, int pixel_size,
2718                                     bool enabled, bool scaled)
2719 {
2720         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2721
2722         if (dev_priv->display.update_sprite_wm)
2723                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2724                                                    pixel_size, enabled, scaled);
2725 }
2726
2727 static struct drm_i915_gem_object *
2728 intel_alloc_context_page(struct drm_device *dev)
2729 {
2730         struct drm_i915_gem_object *ctx;
2731         int ret;
2732
2733         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2734
2735         ctx = i915_gem_alloc_object(dev, 4096);
2736         if (!ctx) {
2737                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2738                 return NULL;
2739         }
2740
2741         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2742         if (ret) {
2743                 DRM_ERROR("failed to pin power context: %d\n", ret);
2744                 goto err_unref;
2745         }
2746
2747         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2748         if (ret) {
2749                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2750                 goto err_unpin;
2751         }
2752
2753         return ctx;
2754
2755 err_unpin:
2756         i915_gem_object_unpin(ctx);
2757 err_unref:
2758         drm_gem_object_unreference(&ctx->base);
2759         return NULL;
2760 }
2761
2762 /**
2763  * Lock protecting IPS related data structures
2764  */
2765 DEFINE_SPINLOCK(mchdev_lock);
2766
2767 /* Global for IPS driver to get at the current i915 device. Protected by
2768  * mchdev_lock. */
2769 static struct drm_i915_private *i915_mch_dev;
2770
2771 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2772 {
2773         struct drm_i915_private *dev_priv = dev->dev_private;
2774         u16 rgvswctl;
2775
2776         assert_spin_locked(&mchdev_lock);
2777
2778         rgvswctl = I915_READ16(MEMSWCTL);
2779         if (rgvswctl & MEMCTL_CMD_STS) {
2780                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2781                 return false; /* still busy with another command */
2782         }
2783
2784         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2785                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2786         I915_WRITE16(MEMSWCTL, rgvswctl);
2787         POSTING_READ16(MEMSWCTL);
2788
2789         rgvswctl |= MEMCTL_CMD_STS;
2790         I915_WRITE16(MEMSWCTL, rgvswctl);
2791
2792         return true;
2793 }
2794
2795 static void ironlake_enable_drps(struct drm_device *dev)
2796 {
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         u32 rgvmodectl = I915_READ(MEMMODECTL);
2799         u8 fmax, fmin, fstart, vstart;
2800
2801         spin_lock_irq(&mchdev_lock);
2802
2803         /* Enable temp reporting */
2804         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2805         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2806
2807         /* 100ms RC evaluation intervals */
2808         I915_WRITE(RCUPEI, 100000);
2809         I915_WRITE(RCDNEI, 100000);
2810
2811         /* Set max/min thresholds to 90ms and 80ms respectively */
2812         I915_WRITE(RCBMAXAVG, 90000);
2813         I915_WRITE(RCBMINAVG, 80000);
2814
2815         I915_WRITE(MEMIHYST, 1);
2816
2817         /* Set up min, max, and cur for interrupt handling */
2818         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2819         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2820         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2821                 MEMMODE_FSTART_SHIFT;
2822
2823         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2824                 PXVFREQ_PX_SHIFT;
2825
2826         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2827         dev_priv->ips.fstart = fstart;
2828
2829         dev_priv->ips.max_delay = fstart;
2830         dev_priv->ips.min_delay = fmin;
2831         dev_priv->ips.cur_delay = fstart;
2832
2833         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2834                          fmax, fmin, fstart);
2835
2836         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2837
2838         /*
2839          * Interrupts will be enabled in ironlake_irq_postinstall
2840          */
2841
2842         I915_WRITE(VIDSTART, vstart);
2843         POSTING_READ(VIDSTART);
2844
2845         rgvmodectl |= MEMMODE_SWMODE_EN;
2846         I915_WRITE(MEMMODECTL, rgvmodectl);
2847
2848         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2849                 DRM_ERROR("stuck trying to change perf mode\n");
2850         mdelay(1);
2851
2852         ironlake_set_drps(dev, fstart);
2853
2854         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2855                 I915_READ(0x112e0);
2856         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2857         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2858         getrawmonotonic(&dev_priv->ips.last_time2);
2859
2860         spin_unlock_irq(&mchdev_lock);
2861 }
2862
2863 static void ironlake_disable_drps(struct drm_device *dev)
2864 {
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         u16 rgvswctl;
2867
2868         spin_lock_irq(&mchdev_lock);
2869
2870         rgvswctl = I915_READ16(MEMSWCTL);
2871
2872         /* Ack interrupts, disable EFC interrupt */
2873         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2874         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2875         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2876         I915_WRITE(DEIIR, DE_PCU_EVENT);
2877         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2878
2879         /* Go back to the starting frequency */
2880         ironlake_set_drps(dev, dev_priv->ips.fstart);
2881         mdelay(1);
2882         rgvswctl |= MEMCTL_CMD_STS;
2883         I915_WRITE(MEMSWCTL, rgvswctl);
2884         mdelay(1);
2885
2886         spin_unlock_irq(&mchdev_lock);
2887 }
2888
2889 /* There's a funny hw issue where the hw returns all 0 when reading from
2890  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2891  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2892  * all limits and the gpu stuck at whatever frequency it is at atm).
2893  */
2894 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2895 {
2896         u32 limits;
2897
2898         /* Only set the down limit when we've reached the lowest level to avoid
2899          * getting more interrupts, otherwise leave this clear. This prevents a
2900          * race in the hw when coming out of rc6: There's a tiny window where
2901          * the hw runs at the minimal clock before selecting the desired
2902          * frequency, if the down threshold expires in that window we will not
2903          * receive a down interrupt. */
2904         limits = dev_priv->rps.max_delay << 24;
2905         if (val <= dev_priv->rps.min_delay)
2906                 limits |= dev_priv->rps.min_delay << 16;
2907
2908         return limits;
2909 }
2910
2911 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2912 {
2913         int new_power;
2914
2915         new_power = dev_priv->rps.power;
2916         switch (dev_priv->rps.power) {
2917         case LOW_POWER:
2918                 if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2919                         new_power = BETWEEN;
2920                 break;
2921
2922         case BETWEEN:
2923                 if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2924                         new_power = LOW_POWER;
2925                 else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2926                         new_power = HIGH_POWER;
2927                 break;
2928
2929         case HIGH_POWER:
2930                 if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2931                         new_power = BETWEEN;
2932                 break;
2933         }
2934         /* Max/min bins are special */
2935         if (val == dev_priv->rps.min_delay)
2936                 new_power = LOW_POWER;
2937         if (val == dev_priv->rps.max_delay)
2938                 new_power = HIGH_POWER;
2939         if (new_power == dev_priv->rps.power)
2940                 return;
2941
2942         /* Note the units here are not exactly 1us, but 1280ns. */
2943         switch (new_power) {
2944         case LOW_POWER:
2945                 /* Upclock if more than 95% busy over 16ms */
2946                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2947                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2948
2949                 /* Downclock if less than 85% busy over 32ms */
2950                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2951                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2952
2953                 I915_WRITE(GEN6_RP_CONTROL,
2954                            GEN6_RP_MEDIA_TURBO |
2955                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2956                            GEN6_RP_MEDIA_IS_GFX |
2957                            GEN6_RP_ENABLE |
2958                            GEN6_RP_UP_BUSY_AVG |
2959                            GEN6_RP_DOWN_IDLE_AVG);
2960                 break;
2961
2962         case BETWEEN:
2963                 /* Upclock if more than 90% busy over 13ms */
2964                 I915_WRITE(GEN6_RP_UP_EI, 10250);
2965                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2966
2967                 /* Downclock if less than 75% busy over 32ms */
2968                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2969                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2970
2971                 I915_WRITE(GEN6_RP_CONTROL,
2972                            GEN6_RP_MEDIA_TURBO |
2973                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2974                            GEN6_RP_MEDIA_IS_GFX |
2975                            GEN6_RP_ENABLE |
2976                            GEN6_RP_UP_BUSY_AVG |
2977                            GEN6_RP_DOWN_IDLE_AVG);
2978                 break;
2979
2980         case HIGH_POWER:
2981                 /* Upclock if more than 85% busy over 10ms */
2982                 I915_WRITE(GEN6_RP_UP_EI, 8000);
2983                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2984
2985                 /* Downclock if less than 60% busy over 32ms */
2986                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2987                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2988
2989                 I915_WRITE(GEN6_RP_CONTROL,
2990                            GEN6_RP_MEDIA_TURBO |
2991                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2992                            GEN6_RP_MEDIA_IS_GFX |
2993                            GEN6_RP_ENABLE |
2994                            GEN6_RP_UP_BUSY_AVG |
2995                            GEN6_RP_DOWN_IDLE_AVG);
2996                 break;
2997         }
2998
2999         dev_priv->rps.power = new_power;
3000         dev_priv->rps.last_adj = 0;
3001 }
3002
3003 void gen6_set_rps(struct drm_device *dev, u8 val)
3004 {
3005         struct drm_i915_private *dev_priv = dev->dev_private;
3006
3007         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3008         WARN_ON(val > dev_priv->rps.max_delay);
3009         WARN_ON(val < dev_priv->rps.min_delay);
3010
3011         if (val == dev_priv->rps.cur_delay)
3012                 return;
3013
3014         gen6_set_rps_thresholds(dev_priv, val);
3015
3016         if (IS_HASWELL(dev))
3017                 I915_WRITE(GEN6_RPNSWREQ,
3018                            HSW_FREQUENCY(val));
3019         else
3020                 I915_WRITE(GEN6_RPNSWREQ,
3021                            GEN6_FREQUENCY(val) |
3022                            GEN6_OFFSET(0) |
3023                            GEN6_AGGRESSIVE_TURBO);
3024
3025         /* Make sure we continue to get interrupts
3026          * until we hit the minimum or maximum frequencies.
3027          */
3028         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3029                    gen6_rps_limits(dev_priv, val));
3030
3031         POSTING_READ(GEN6_RPNSWREQ);
3032
3033         dev_priv->rps.cur_delay = val;
3034
3035         trace_intel_gpu_freq_change(val * 50);
3036 }
3037
3038 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3039 {
3040         struct drm_device *dev = dev_priv->dev;
3041
3042         mutex_lock(&dev_priv->rps.hw_lock);
3043         if (dev_priv->rps.enabled) {
3044                 if (IS_VALLEYVIEW(dev))
3045                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3046                 else
3047                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3048                 dev_priv->rps.last_adj = 0;
3049         }
3050         mutex_unlock(&dev_priv->rps.hw_lock);
3051 }
3052
3053 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3054 {
3055         struct drm_device *dev = dev_priv->dev;
3056
3057         mutex_lock(&dev_priv->rps.hw_lock);
3058         if (dev_priv->rps.enabled) {
3059                 if (IS_VALLEYVIEW(dev))
3060                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3061                 else
3062                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3063                 dev_priv->rps.last_adj = 0;
3064         }
3065         mutex_unlock(&dev_priv->rps.hw_lock);
3066 }
3067
3068 void valleyview_set_rps(struct drm_device *dev, u8 val)
3069 {
3070         struct drm_i915_private *dev_priv = dev->dev_private;
3071
3072         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3073         WARN_ON(val > dev_priv->rps.max_delay);
3074         WARN_ON(val < dev_priv->rps.min_delay);
3075
3076         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3077                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3078                          dev_priv->rps.cur_delay,
3079                          vlv_gpu_freq(dev_priv, val), val);
3080
3081         if (val == dev_priv->rps.cur_delay)
3082                 return;
3083
3084         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3085
3086         dev_priv->rps.cur_delay = val;
3087
3088         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3089 }
3090
3091 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3096         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3097         /* Complete PM interrupt masking here doesn't race with the rps work
3098          * item again unmasking PM interrupts because that is using a different
3099          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3100          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3101
3102         spin_lock_irq(&dev_priv->irq_lock);
3103         dev_priv->rps.pm_iir = 0;
3104         spin_unlock_irq(&dev_priv->irq_lock);
3105
3106         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3107 }
3108
3109 static void gen6_disable_rps(struct drm_device *dev)
3110 {
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112
3113         I915_WRITE(GEN6_RC_CONTROL, 0);
3114         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3115
3116         gen6_disable_rps_interrupts(dev);
3117 }
3118
3119 static void valleyview_disable_rps(struct drm_device *dev)
3120 {
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122
3123         I915_WRITE(GEN6_RC_CONTROL, 0);
3124
3125         gen6_disable_rps_interrupts(dev);
3126
3127         if (dev_priv->vlv_pctx) {
3128                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3129                 dev_priv->vlv_pctx = NULL;
3130         }
3131 }
3132
3133 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3134 {
3135         if (IS_GEN6(dev))
3136                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3137
3138         if (IS_HASWELL(dev))
3139                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3140
3141         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3142                         (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3143                         (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3144                         (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3145 }
3146
3147 int intel_enable_rc6(const struct drm_device *dev)
3148 {
3149         /* No RC6 before Ironlake */
3150         if (INTEL_INFO(dev)->gen < 5)
3151                 return 0;
3152
3153         /* Respect the kernel parameter if it is set */
3154         if (i915_enable_rc6 >= 0)
3155                 return i915_enable_rc6;
3156
3157         /* Disable RC6 on Ironlake */
3158         if (INTEL_INFO(dev)->gen == 5)
3159                 return 0;
3160
3161         if (IS_HASWELL(dev))
3162                 return INTEL_RC6_ENABLE;
3163
3164         /* snb/ivb have more than one rc6 state. */
3165         if (INTEL_INFO(dev)->gen == 6)
3166                 return INTEL_RC6_ENABLE;
3167
3168         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3169 }
3170
3171 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3172 {
3173         struct drm_i915_private *dev_priv = dev->dev_private;
3174         u32 enabled_intrs;
3175
3176         spin_lock_irq(&dev_priv->irq_lock);
3177         WARN_ON(dev_priv->rps.pm_iir);
3178         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3179         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3180         spin_unlock_irq(&dev_priv->irq_lock);
3181
3182         /* only unmask PM interrupts we need. Mask all others. */
3183         enabled_intrs = GEN6_PM_RPS_EVENTS;
3184
3185         /* IVB and SNB hard hangs on looping batchbuffer
3186          * if GEN6_PM_UP_EI_EXPIRED is masked.
3187          */
3188         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3189                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3190
3191         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3192 }
3193
3194 static void gen8_enable_rps(struct drm_device *dev)
3195 {
3196         struct drm_i915_private *dev_priv = dev->dev_private;
3197         struct intel_ring_buffer *ring;
3198         uint32_t rc6_mask = 0, rp_state_cap;
3199         int unused;
3200
3201         /* 1a: Software RC state - RC0 */
3202         I915_WRITE(GEN6_RC_STATE, 0);
3203
3204         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3205          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3206         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3207
3208         /* 2a: Disable RC states. */
3209         I915_WRITE(GEN6_RC_CONTROL, 0);
3210
3211         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3212
3213         /* 2b: Program RC6 thresholds.*/
3214         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3215         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3216         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3217         for_each_ring(ring, dev_priv, unused)
3218                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3219         I915_WRITE(GEN6_RC_SLEEP, 0);
3220         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3221
3222         /* 3: Enable RC6 */
3223         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3224                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3225         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3226         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3227                         GEN6_RC_CTL_EI_MODE(1) |
3228                         rc6_mask);
3229
3230         /* 4 Program defaults and thresholds for RPS*/
3231         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3232         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3233         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3234         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3235
3236         /* Docs recommend 900MHz, and 300 MHz respectively */
3237         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3238                    dev_priv->rps.max_delay << 24 |
3239                    dev_priv->rps.min_delay << 16);
3240
3241         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3242         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3243         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3244         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3245
3246         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3247
3248         /* 5: Enable RPS */
3249         I915_WRITE(GEN6_RP_CONTROL,
3250                    GEN6_RP_MEDIA_TURBO |
3251                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3252                    GEN6_RP_MEDIA_IS_GFX |
3253                    GEN6_RP_ENABLE |
3254                    GEN6_RP_UP_BUSY_AVG |
3255                    GEN6_RP_DOWN_IDLE_AVG);
3256
3257         /* 6: Ring frequency + overclocking (our driver does this later */
3258
3259         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3260
3261         gen6_enable_rps_interrupts(dev);
3262
3263         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3264 }
3265
3266 static void gen6_enable_rps(struct drm_device *dev)
3267 {
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct intel_ring_buffer *ring;
3270         u32 rp_state_cap;
3271         u32 gt_perf_status;
3272         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3273         u32 gtfifodbg;
3274         int rc6_mode;
3275         int i, ret;
3276
3277         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3278
3279         /* Here begins a magic sequence of register writes to enable
3280          * auto-downclocking.
3281          *
3282          * Perhaps there might be some value in exposing these to
3283          * userspace...
3284          */
3285         I915_WRITE(GEN6_RC_STATE, 0);
3286
3287         /* Clear the DBG now so we don't confuse earlier errors */
3288         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3289                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3290                 I915_WRITE(GTFIFODBG, gtfifodbg);
3291         }
3292
3293         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3294
3295         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3296         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3297
3298         /* In units of 50MHz */
3299         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3300         dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3301         dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3302         dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3303         dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3304         dev_priv->rps.cur_delay = 0;
3305
3306         /* disable the counters and set deterministic thresholds */
3307         I915_WRITE(GEN6_RC_CONTROL, 0);
3308
3309         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3310         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3311         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3312         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3313         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3314
3315         for_each_ring(ring, dev_priv, i)
3316                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3317
3318         I915_WRITE(GEN6_RC_SLEEP, 0);
3319         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3320         if (IS_IVYBRIDGE(dev))
3321                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3322         else
3323                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3324         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3325         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3326
3327         /* Check if we are enabling RC6 */
3328         rc6_mode = intel_enable_rc6(dev_priv->dev);
3329         if (rc6_mode & INTEL_RC6_ENABLE)
3330                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3331
3332         /* We don't use those on Haswell */
3333         if (!IS_HASWELL(dev)) {
3334                 if (rc6_mode & INTEL_RC6p_ENABLE)
3335                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3336
3337                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3338                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3339         }
3340
3341         intel_print_rc6_info(dev, rc6_mask);
3342
3343         I915_WRITE(GEN6_RC_CONTROL,
3344                    rc6_mask |
3345                    GEN6_RC_CTL_EI_MODE(1) |
3346                    GEN6_RC_CTL_HW_ENABLE);
3347
3348         /* Power down if completely idle for over 50ms */
3349         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3350         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3351
3352         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3353         if (!ret) {
3354                 pcu_mbox = 0;
3355                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3356                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3357                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3358                                          (dev_priv->rps.max_delay & 0xff) * 50,
3359                                          (pcu_mbox & 0xff) * 50);
3360                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3361                 }
3362         } else {
3363                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3364         }
3365
3366         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3367         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3368
3369         gen6_enable_rps_interrupts(dev);
3370
3371         rc6vids = 0;
3372         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3373         if (IS_GEN6(dev) && ret) {
3374                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3375         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3376                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3377                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3378                 rc6vids &= 0xffff00;
3379                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3380                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3381                 if (ret)
3382                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3383         }
3384
3385         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3386 }
3387
3388 void gen6_update_ring_freq(struct drm_device *dev)
3389 {
3390         struct drm_i915_private *dev_priv = dev->dev_private;
3391         int min_freq = 15;
3392         unsigned int gpu_freq;
3393         unsigned int max_ia_freq, min_ring_freq;
3394         int scaling_factor = 180;
3395         struct cpufreq_policy *policy;
3396
3397         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3398
3399         policy = cpufreq_cpu_get(0);
3400         if (policy) {
3401                 max_ia_freq = policy->cpuinfo.max_freq;
3402                 cpufreq_cpu_put(policy);
3403         } else {
3404                 /*
3405                  * Default to measured freq if none found, PCU will ensure we
3406                  * don't go over
3407                  */
3408                 max_ia_freq = tsc_khz;
3409         }
3410
3411         /* Convert from kHz to MHz */
3412         max_ia_freq /= 1000;
3413
3414         min_ring_freq = I915_READ(DCLK) & 0xf;
3415         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3416         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3417
3418         /*
3419          * For each potential GPU frequency, load a ring frequency we'd like
3420          * to use for memory access.  We do this by specifying the IA frequency
3421          * the PCU should use as a reference to determine the ring frequency.
3422          */
3423         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3424              gpu_freq--) {
3425                 int diff = dev_priv->rps.max_delay - gpu_freq;
3426                 unsigned int ia_freq = 0, ring_freq = 0;
3427
3428                 if (INTEL_INFO(dev)->gen >= 8) {
3429                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3430                         ring_freq = max(min_ring_freq, gpu_freq);
3431                 } else if (IS_HASWELL(dev)) {
3432                         ring_freq = mult_frac(gpu_freq, 5, 4);
3433                         ring_freq = max(min_ring_freq, ring_freq);
3434                         /* leave ia_freq as the default, chosen by cpufreq */
3435                 } else {
3436                         /* On older processors, there is no separate ring
3437                          * clock domain, so in order to boost the bandwidth
3438                          * of the ring, we need to upclock the CPU (ia_freq).
3439                          *
3440                          * For GPU frequencies less than 750MHz,
3441                          * just use the lowest ring freq.
3442                          */
3443                         if (gpu_freq < min_freq)
3444                                 ia_freq = 800;
3445                         else
3446                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3447                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3448                 }
3449
3450                 sandybridge_pcode_write(dev_priv,
3451                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3452                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3453                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3454                                         gpu_freq);
3455         }
3456 }
3457
3458 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3459 {
3460         u32 val, rp0;
3461
3462         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3463
3464         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3465         /* Clamp to max */
3466         rp0 = min_t(u32, rp0, 0xea);
3467
3468         return rp0;
3469 }
3470
3471 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3472 {
3473         u32 val, rpe;
3474
3475         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3476         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3477         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3478         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3479
3480         return rpe;
3481 }
3482
3483 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3484 {
3485         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3486 }
3487
3488 static void valleyview_setup_pctx(struct drm_device *dev)
3489 {
3490         struct drm_i915_private *dev_priv = dev->dev_private;
3491         struct drm_i915_gem_object *pctx;
3492         unsigned long pctx_paddr;
3493         u32 pcbr;
3494         int pctx_size = 24*1024;
3495
3496         pcbr = I915_READ(VLV_PCBR);
3497         if (pcbr) {
3498                 /* BIOS set it up already, grab the pre-alloc'd space */
3499                 int pcbr_offset;
3500
3501                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3502                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3503                                                                       pcbr_offset,
3504                                                                       I915_GTT_OFFSET_NONE,
3505                                                                       pctx_size);
3506                 goto out;
3507         }
3508
3509         /*
3510          * From the Gunit register HAS:
3511          * The Gfx driver is expected to program this register and ensure
3512          * proper allocation within Gfx stolen memory.  For example, this
3513          * register should be programmed such than the PCBR range does not
3514          * overlap with other ranges, such as the frame buffer, protected
3515          * memory, or any other relevant ranges.
3516          */
3517         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3518         if (!pctx) {
3519                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3520                 return;
3521         }
3522
3523         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3524         I915_WRITE(VLV_PCBR, pctx_paddr);
3525
3526 out:
3527         dev_priv->vlv_pctx = pctx;
3528 }
3529
3530 static void valleyview_enable_rps(struct drm_device *dev)
3531 {
3532         struct drm_i915_private *dev_priv = dev->dev_private;
3533         struct intel_ring_buffer *ring;
3534         u32 gtfifodbg, val, rc6_mode = 0;
3535         int i;
3536
3537         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3538
3539         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3540                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3541                                  gtfifodbg);
3542                 I915_WRITE(GTFIFODBG, gtfifodbg);
3543         }
3544
3545         valleyview_setup_pctx(dev);
3546
3547         /* If VLV, Forcewake all wells, else re-direct to regular path */
3548         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3549
3550         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3551         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3552         I915_WRITE(GEN6_RP_UP_EI, 66000);
3553         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3554
3555         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3556
3557         I915_WRITE(GEN6_RP_CONTROL,
3558                    GEN6_RP_MEDIA_TURBO |
3559                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3560                    GEN6_RP_MEDIA_IS_GFX |
3561                    GEN6_RP_ENABLE |
3562                    GEN6_RP_UP_BUSY_AVG |
3563                    GEN6_RP_DOWN_IDLE_CONT);
3564
3565         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3566         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3567         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3568
3569         for_each_ring(ring, dev_priv, i)
3570                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3571
3572         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3573
3574         /* allows RC6 residency counter to work */
3575         I915_WRITE(VLV_COUNTER_CONTROL,
3576                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3577                                       VLV_MEDIA_RC6_COUNT_EN |
3578                                       VLV_RENDER_RC6_COUNT_EN));
3579         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3580                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3581
3582         intel_print_rc6_info(dev, rc6_mode);
3583
3584         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3585
3586         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3587
3588         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3589         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3590
3591         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3592         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3593                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3594                          dev_priv->rps.cur_delay);
3595
3596         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3597         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3598         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3599                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
3600                          dev_priv->rps.max_delay);
3601
3602         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3603         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3604                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3605                          dev_priv->rps.rpe_delay);
3606
3607         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3608         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3609                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
3610                          dev_priv->rps.min_delay);
3611
3612         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3613                          vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
3614                          dev_priv->rps.rpe_delay);
3615
3616         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3617
3618         gen6_enable_rps_interrupts(dev);
3619
3620         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3621 }
3622
3623 void ironlake_teardown_rc6(struct drm_device *dev)
3624 {
3625         struct drm_i915_private *dev_priv = dev->dev_private;
3626
3627         if (dev_priv->ips.renderctx) {
3628                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3629                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3630                 dev_priv->ips.renderctx = NULL;
3631         }
3632
3633         if (dev_priv->ips.pwrctx) {
3634                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3635                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3636                 dev_priv->ips.pwrctx = NULL;
3637         }
3638 }
3639
3640 static void ironlake_disable_rc6(struct drm_device *dev)
3641 {
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643
3644         if (I915_READ(PWRCTXA)) {
3645                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3646                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3647                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3648                          50);
3649
3650                 I915_WRITE(PWRCTXA, 0);
3651                 POSTING_READ(PWRCTXA);
3652
3653                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3654                 POSTING_READ(RSTDBYCTL);
3655         }
3656 }
3657
3658 static int ironlake_setup_rc6(struct drm_device *dev)
3659 {
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661
3662         if (dev_priv->ips.renderctx == NULL)
3663                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3664         if (!dev_priv->ips.renderctx)
3665                 return -ENOMEM;
3666
3667         if (dev_priv->ips.pwrctx == NULL)
3668                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3669         if (!dev_priv->ips.pwrctx) {
3670                 ironlake_teardown_rc6(dev);
3671                 return -ENOMEM;
3672         }
3673
3674         return 0;
3675 }
3676
3677 static void ironlake_enable_rc6(struct drm_device *dev)
3678 {
3679         struct drm_i915_private *dev_priv = dev->dev_private;
3680         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3681         bool was_interruptible;
3682         int ret;
3683
3684         /* rc6 disabled by default due to repeated reports of hanging during
3685          * boot and resume.
3686          */
3687         if (!intel_enable_rc6(dev))
3688                 return;
3689
3690         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3691
3692         ret = ironlake_setup_rc6(dev);
3693         if (ret)
3694                 return;
3695
3696         was_interruptible = dev_priv->mm.interruptible;
3697         dev_priv->mm.interruptible = false;
3698
3699         /*
3700          * GPU can automatically power down the render unit if given a page
3701          * to save state.
3702          */
3703         ret = intel_ring_begin(ring, 6);
3704         if (ret) {
3705                 ironlake_teardown_rc6(dev);
3706                 dev_priv->mm.interruptible = was_interruptible;
3707                 return;
3708         }
3709
3710         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3711         intel_ring_emit(ring, MI_SET_CONTEXT);
3712         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3713                         MI_MM_SPACE_GTT |
3714                         MI_SAVE_EXT_STATE_EN |
3715                         MI_RESTORE_EXT_STATE_EN |
3716                         MI_RESTORE_INHIBIT);
3717         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3718         intel_ring_emit(ring, MI_NOOP);
3719         intel_ring_emit(ring, MI_FLUSH);
3720         intel_ring_advance(ring);
3721
3722         /*
3723          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3724          * does an implicit flush, combined with MI_FLUSH above, it should be
3725          * safe to assume that renderctx is valid
3726          */
3727         ret = intel_ring_idle(ring);
3728         dev_priv->mm.interruptible = was_interruptible;
3729         if (ret) {
3730                 DRM_ERROR("failed to enable ironlake power savings\n");
3731                 ironlake_teardown_rc6(dev);
3732                 return;
3733         }
3734
3735         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3736         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3737
3738         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3739 }
3740
3741 static unsigned long intel_pxfreq(u32 vidfreq)
3742 {
3743         unsigned long freq;
3744         int div = (vidfreq & 0x3f0000) >> 16;
3745         int post = (vidfreq & 0x3000) >> 12;
3746         int pre = (vidfreq & 0x7);
3747
3748         if (!pre)
3749                 return 0;
3750
3751         freq = ((div * 133333) / ((1<<post) * pre));
3752
3753         return freq;
3754 }
3755
3756 static const struct cparams {
3757         u16 i;
3758         u16 t;
3759         u16 m;
3760         u16 c;
3761 } cparams[] = {
3762         { 1, 1333, 301, 28664 },
3763         { 1, 1066, 294, 24460 },
3764         { 1, 800, 294, 25192 },
3765         { 0, 1333, 276, 27605 },
3766         { 0, 1066, 276, 27605 },
3767         { 0, 800, 231, 23784 },
3768 };
3769
3770 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3771 {
3772         u64 total_count, diff, ret;
3773         u32 count1, count2, count3, m = 0, c = 0;
3774         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3775         int i;
3776
3777         assert_spin_locked(&mchdev_lock);
3778
3779         diff1 = now - dev_priv->ips.last_time1;
3780
3781         /* Prevent division-by-zero if we are asking too fast.
3782          * Also, we don't get interesting results if we are polling
3783          * faster than once in 10ms, so just return the saved value
3784          * in such cases.
3785          */
3786         if (diff1 <= 10)
3787                 return dev_priv->ips.chipset_power;
3788
3789         count1 = I915_READ(DMIEC);
3790         count2 = I915_READ(DDREC);
3791         count3 = I915_READ(CSIEC);
3792
3793         total_count = count1 + count2 + count3;
3794
3795         /* FIXME: handle per-counter overflow */
3796         if (total_count < dev_priv->ips.last_count1) {
3797                 diff = ~0UL - dev_priv->ips.last_count1;
3798                 diff += total_count;
3799         } else {
3800                 diff = total_count - dev_priv->ips.last_count1;
3801         }
3802
3803         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3804                 if (cparams[i].i == dev_priv->ips.c_m &&
3805                     cparams[i].t == dev_priv->ips.r_t) {
3806                         m = cparams[i].m;
3807                         c = cparams[i].c;
3808                         break;
3809                 }
3810         }
3811
3812         diff = div_u64(diff, diff1);
3813         ret = ((m * diff) + c);
3814         ret = div_u64(ret, 10);
3815
3816         dev_priv->ips.last_count1 = total_count;
3817         dev_priv->ips.last_time1 = now;
3818
3819         dev_priv->ips.chipset_power = ret;
3820
3821         return ret;
3822 }
3823
3824 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3825 {
3826         unsigned long val;
3827
3828         if (dev_priv->info->gen != 5)
3829                 return 0;
3830
3831         spin_lock_irq(&mchdev_lock);
3832
3833         val = __i915_chipset_val(dev_priv);
3834
3835         spin_unlock_irq(&mchdev_lock);
3836
3837         return val;
3838 }
3839
3840 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3841 {
3842         unsigned long m, x, b;
3843         u32 tsfs;
3844
3845         tsfs = I915_READ(TSFS);
3846
3847         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3848         x = I915_READ8(TR1);
3849
3850         b = tsfs & TSFS_INTR_MASK;
3851
3852         return ((m * x) / 127) - b;
3853 }
3854
3855 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3856 {
3857         static const struct v_table {
3858                 u16 vd; /* in .1 mil */
3859                 u16 vm; /* in .1 mil */
3860         } v_table[] = {
3861                 { 0, 0, },
3862                 { 375, 0, },
3863                 { 500, 0, },
3864                 { 625, 0, },
3865                 { 750, 0, },
3866                 { 875, 0, },
3867                 { 1000, 0, },
3868                 { 1125, 0, },
3869                 { 4125, 3000, },
3870                 { 4125, 3000, },
3871                 { 4125, 3000, },
3872                 { 4125, 3000, },
3873                 { 4125, 3000, },
3874                 { 4125, 3000, },
3875                 { 4125, 3000, },
3876                 { 4125, 3000, },
3877                 { 4125, 3000, },
3878                 { 4125, 3000, },
3879                 { 4125, 3000, },
3880                 { 4125, 3000, },
3881                 { 4125, 3000, },
3882                 { 4125, 3000, },
3883                 { 4125, 3000, },
3884                 { 4125, 3000, },
3885                 { 4125, 3000, },
3886                 { 4125, 3000, },
3887                 { 4125, 3000, },
3888                 { 4125, 3000, },
3889                 { 4125, 3000, },
3890                 { 4125, 3000, },
3891                 { 4125, 3000, },
3892                 { 4125, 3000, },
3893                 { 4250, 3125, },
3894                 { 4375, 3250, },
3895                 { 4500, 3375, },
3896                 { 4625, 3500, },
3897                 { 4750, 3625, },
3898                 { 4875, 3750, },
3899                 { 5000, 3875, },
3900                 { 5125, 4000, },
3901                 { 5250, 4125, },
3902                 { 5375, 4250, },
3903                 { 5500, 4375, },
3904                 { 5625, 4500, },
3905                 { 5750, 4625, },
3906                 { 5875, 4750, },
3907                 { 6000, 4875, },
3908                 { 6125, 5000, },
3909                 { 6250, 5125, },
3910                 { 6375, 5250, },
3911                 { 6500, 5375, },
3912                 { 6625, 5500, },
3913                 { 6750, 5625, },
3914                 { 6875, 5750, },
3915                 { 7000, 5875, },
3916                 { 7125, 6000, },
3917                 { 7250, 6125, },
3918                 { 7375, 6250, },
3919                 { 7500, 6375, },
3920                 { 7625, 6500, },
3921                 { 7750, 6625, },
3922                 { 7875, 6750, },
3923                 { 8000, 6875, },
3924                 { 8125, 7000, },
3925                 { 8250, 7125, },
3926                 { 8375, 7250, },
3927                 { 8500, 7375, },
3928                 { 8625, 7500, },
3929                 { 8750, 7625, },
3930                 { 8875, 7750, },
3931                 { 9000, 7875, },
3932                 { 9125, 8000, },
3933                 { 9250, 8125, },
3934                 { 9375, 8250, },
3935                 { 9500, 8375, },
3936                 { 9625, 8500, },
3937                 { 9750, 8625, },
3938                 { 9875, 8750, },
3939                 { 10000, 8875, },
3940                 { 10125, 9000, },
3941                 { 10250, 9125, },
3942                 { 10375, 9250, },
3943                 { 10500, 9375, },
3944                 { 10625, 9500, },
3945                 { 10750, 9625, },
3946                 { 10875, 9750, },
3947                 { 11000, 9875, },
3948                 { 11125, 10000, },
3949                 { 11250, 10125, },
3950                 { 11375, 10250, },
3951                 { 11500, 10375, },
3952                 { 11625, 10500, },
3953                 { 11750, 10625, },
3954                 { 11875, 10750, },
3955                 { 12000, 10875, },
3956                 { 12125, 11000, },
3957                 { 12250, 11125, },
3958                 { 12375, 11250, },
3959                 { 12500, 11375, },
3960                 { 12625, 11500, },
3961                 { 12750, 11625, },
3962                 { 12875, 11750, },
3963                 { 13000, 11875, },
3964                 { 13125, 12000, },
3965                 { 13250, 12125, },
3966                 { 13375, 12250, },
3967                 { 13500, 12375, },
3968                 { 13625, 12500, },
3969                 { 13750, 12625, },
3970                 { 13875, 12750, },
3971                 { 14000, 12875, },
3972                 { 14125, 13000, },
3973                 { 14250, 13125, },
3974                 { 14375, 13250, },
3975                 { 14500, 13375, },
3976                 { 14625, 13500, },
3977                 { 14750, 13625, },
3978                 { 14875, 13750, },
3979                 { 15000, 13875, },
3980                 { 15125, 14000, },
3981                 { 15250, 14125, },
3982                 { 15375, 14250, },
3983                 { 15500, 14375, },
3984                 { 15625, 14500, },
3985                 { 15750, 14625, },
3986                 { 15875, 14750, },
3987                 { 16000, 14875, },
3988                 { 16125, 15000, },
3989         };
3990         if (dev_priv->info->is_mobile)
3991                 return v_table[pxvid].vm;
3992         else
3993                 return v_table[pxvid].vd;
3994 }
3995
3996 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3997 {
3998         struct timespec now, diff1;
3999         u64 diff;
4000         unsigned long diffms;
4001         u32 count;
4002
4003         assert_spin_locked(&mchdev_lock);
4004
4005         getrawmonotonic(&now);
4006         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4007
4008         /* Don't divide by 0 */
4009         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4010         if (!diffms)
4011                 return;
4012
4013         count = I915_READ(GFXEC);
4014
4015         if (count < dev_priv->ips.last_count2) {
4016                 diff = ~0UL - dev_priv->ips.last_count2;
4017                 diff += count;
4018         } else {
4019                 diff = count - dev_priv->ips.last_count2;
4020         }
4021
4022         dev_priv->ips.last_count2 = count;
4023         dev_priv->ips.last_time2 = now;
4024
4025         /* More magic constants... */
4026         diff = diff * 1181;
4027         diff = div_u64(diff, diffms * 10);
4028         dev_priv->ips.gfx_power = diff;
4029 }
4030
4031 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4032 {
4033         if (dev_priv->info->gen != 5)
4034                 return;
4035
4036         spin_lock_irq(&mchdev_lock);
4037
4038         __i915_update_gfx_val(dev_priv);
4039
4040         spin_unlock_irq(&mchdev_lock);
4041 }
4042
4043 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4044 {
4045         unsigned long t, corr, state1, corr2, state2;
4046         u32 pxvid, ext_v;
4047
4048         assert_spin_locked(&mchdev_lock);
4049
4050         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4051         pxvid = (pxvid >> 24) & 0x7f;
4052         ext_v = pvid_to_extvid(dev_priv, pxvid);
4053
4054         state1 = ext_v;
4055
4056         t = i915_mch_val(dev_priv);
4057
4058         /* Revel in the empirically derived constants */
4059
4060         /* Correction factor in 1/100000 units */
4061         if (t > 80)
4062                 corr = ((t * 2349) + 135940);
4063         else if (t >= 50)
4064                 corr = ((t * 964) + 29317);
4065         else /* < 50 */
4066                 corr = ((t * 301) + 1004);
4067
4068         corr = corr * ((150142 * state1) / 10000 - 78642);
4069         corr /= 100000;
4070         corr2 = (corr * dev_priv->ips.corr);
4071
4072         state2 = (corr2 * state1) / 10000;
4073         state2 /= 100; /* convert to mW */
4074
4075         __i915_update_gfx_val(dev_priv);
4076
4077         return dev_priv->ips.gfx_power + state2;
4078 }
4079
4080 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4081 {
4082         unsigned long val;
4083
4084         if (dev_priv->info->gen != 5)
4085                 return 0;
4086
4087         spin_lock_irq(&mchdev_lock);
4088
4089         val = __i915_gfx_val(dev_priv);
4090
4091         spin_unlock_irq(&mchdev_lock);
4092
4093         return val;
4094 }
4095
4096 /**
4097  * i915_read_mch_val - return value for IPS use
4098  *
4099  * Calculate and return a value for the IPS driver to use when deciding whether
4100  * we have thermal and power headroom to increase CPU or GPU power budget.
4101  */
4102 unsigned long i915_read_mch_val(void)
4103 {
4104         struct drm_i915_private *dev_priv;
4105         unsigned long chipset_val, graphics_val, ret = 0;
4106
4107         spin_lock_irq(&mchdev_lock);
4108         if (!i915_mch_dev)
4109                 goto out_unlock;
4110         dev_priv = i915_mch_dev;
4111
4112         chipset_val = __i915_chipset_val(dev_priv);
4113         graphics_val = __i915_gfx_val(dev_priv);
4114
4115         ret = chipset_val + graphics_val;
4116
4117 out_unlock:
4118         spin_unlock_irq(&mchdev_lock);
4119
4120         return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4123
4124 /**
4125  * i915_gpu_raise - raise GPU frequency limit
4126  *
4127  * Raise the limit; IPS indicates we have thermal headroom.
4128  */
4129 bool i915_gpu_raise(void)
4130 {
4131         struct drm_i915_private *dev_priv;
4132         bool ret = true;
4133
4134         spin_lock_irq(&mchdev_lock);
4135         if (!i915_mch_dev) {
4136                 ret = false;
4137                 goto out_unlock;
4138         }
4139         dev_priv = i915_mch_dev;
4140
4141         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4142                 dev_priv->ips.max_delay--;
4143
4144 out_unlock:
4145         spin_unlock_irq(&mchdev_lock);
4146
4147         return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4150
4151 /**
4152  * i915_gpu_lower - lower GPU frequency limit
4153  *
4154  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4155  * frequency maximum.
4156  */
4157 bool i915_gpu_lower(void)
4158 {
4159         struct drm_i915_private *dev_priv;
4160         bool ret = true;
4161
4162         spin_lock_irq(&mchdev_lock);
4163         if (!i915_mch_dev) {
4164                 ret = false;
4165                 goto out_unlock;
4166         }
4167         dev_priv = i915_mch_dev;
4168
4169         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4170                 dev_priv->ips.max_delay++;
4171
4172 out_unlock:
4173         spin_unlock_irq(&mchdev_lock);
4174
4175         return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4178
4179 /**
4180  * i915_gpu_busy - indicate GPU business to IPS
4181  *
4182  * Tell the IPS driver whether or not the GPU is busy.
4183  */
4184 bool i915_gpu_busy(void)
4185 {
4186         struct drm_i915_private *dev_priv;
4187         struct intel_ring_buffer *ring;
4188         bool ret = false;
4189         int i;
4190
4191         spin_lock_irq(&mchdev_lock);
4192         if (!i915_mch_dev)
4193                 goto out_unlock;
4194         dev_priv = i915_mch_dev;
4195
4196         for_each_ring(ring, dev_priv, i)
4197                 ret |= !list_empty(&ring->request_list);
4198
4199 out_unlock:
4200         spin_unlock_irq(&mchdev_lock);
4201
4202         return ret;
4203 }
4204 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4205
4206 /**
4207  * i915_gpu_turbo_disable - disable graphics turbo
4208  *
4209  * Disable graphics turbo by resetting the max frequency and setting the
4210  * current frequency to the default.
4211  */
4212 bool i915_gpu_turbo_disable(void)
4213 {
4214         struct drm_i915_private *dev_priv;
4215         bool ret = true;
4216
4217         spin_lock_irq(&mchdev_lock);
4218         if (!i915_mch_dev) {
4219                 ret = false;
4220                 goto out_unlock;
4221         }
4222         dev_priv = i915_mch_dev;
4223
4224         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4225
4226         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4227                 ret = false;
4228
4229 out_unlock:
4230         spin_unlock_irq(&mchdev_lock);
4231
4232         return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4235
4236 /**
4237  * Tells the intel_ips driver that the i915 driver is now loaded, if
4238  * IPS got loaded first.
4239  *
4240  * This awkward dance is so that neither module has to depend on the
4241  * other in order for IPS to do the appropriate communication of
4242  * GPU turbo limits to i915.
4243  */
4244 static void
4245 ips_ping_for_i915_load(void)
4246 {
4247         void (*link)(void);
4248
4249         link = symbol_get(ips_link_to_i915_driver);
4250         if (link) {
4251                 link();
4252                 symbol_put(ips_link_to_i915_driver);
4253         }
4254 }
4255
4256 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4257 {
4258         /* We only register the i915 ips part with intel-ips once everything is
4259          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4260         spin_lock_irq(&mchdev_lock);
4261         i915_mch_dev = dev_priv;
4262         spin_unlock_irq(&mchdev_lock);
4263
4264         ips_ping_for_i915_load();
4265 }
4266
4267 void intel_gpu_ips_teardown(void)
4268 {
4269         spin_lock_irq(&mchdev_lock);
4270         i915_mch_dev = NULL;
4271         spin_unlock_irq(&mchdev_lock);
4272 }
4273 static void intel_init_emon(struct drm_device *dev)
4274 {
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         u32 lcfuse;
4277         u8 pxw[16];
4278         int i;
4279
4280         /* Disable to program */
4281         I915_WRITE(ECR, 0);
4282         POSTING_READ(ECR);
4283
4284         /* Program energy weights for various events */
4285         I915_WRITE(SDEW, 0x15040d00);
4286         I915_WRITE(CSIEW0, 0x007f0000);
4287         I915_WRITE(CSIEW1, 0x1e220004);
4288         I915_WRITE(CSIEW2, 0x04000004);
4289
4290         for (i = 0; i < 5; i++)
4291                 I915_WRITE(PEW + (i * 4), 0);
4292         for (i = 0; i < 3; i++)
4293                 I915_WRITE(DEW + (i * 4), 0);
4294
4295         /* Program P-state weights to account for frequency power adjustment */
4296         for (i = 0; i < 16; i++) {
4297                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4298                 unsigned long freq = intel_pxfreq(pxvidfreq);
4299                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4300                         PXVFREQ_PX_SHIFT;
4301                 unsigned long val;
4302
4303                 val = vid * vid;
4304                 val *= (freq / 1000);
4305                 val *= 255;
4306                 val /= (127*127*900);
4307                 if (val > 0xff)
4308                         DRM_ERROR("bad pxval: %ld\n", val);
4309                 pxw[i] = val;
4310         }
4311         /* Render standby states get 0 weight */
4312         pxw[14] = 0;
4313         pxw[15] = 0;
4314
4315         for (i = 0; i < 4; i++) {
4316                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4317                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4318                 I915_WRITE(PXW + (i * 4), val);
4319         }
4320
4321         /* Adjust magic regs to magic values (more experimental results) */
4322         I915_WRITE(OGW0, 0);
4323         I915_WRITE(OGW1, 0);
4324         I915_WRITE(EG0, 0x00007f00);
4325         I915_WRITE(EG1, 0x0000000e);
4326         I915_WRITE(EG2, 0x000e0000);
4327         I915_WRITE(EG3, 0x68000300);
4328         I915_WRITE(EG4, 0x42000000);
4329         I915_WRITE(EG5, 0x00140031);
4330         I915_WRITE(EG6, 0);
4331         I915_WRITE(EG7, 0);
4332
4333         for (i = 0; i < 8; i++)
4334                 I915_WRITE(PXWL + (i * 4), 0);
4335
4336         /* Enable PMON + select events */
4337         I915_WRITE(ECR, 0x80000019);
4338
4339         lcfuse = I915_READ(LCFUSE02);
4340
4341         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4342 }
4343
4344 void intel_disable_gt_powersave(struct drm_device *dev)
4345 {
4346         struct drm_i915_private *dev_priv = dev->dev_private;
4347
4348         /* Interrupts should be disabled already to avoid re-arming. */
4349         WARN_ON(dev->irq_enabled);
4350
4351         if (IS_IRONLAKE_M(dev)) {
4352                 ironlake_disable_drps(dev);
4353                 ironlake_disable_rc6(dev);
4354         } else if (INTEL_INFO(dev)->gen >= 6) {
4355                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4356                 cancel_work_sync(&dev_priv->rps.work);
4357                 mutex_lock(&dev_priv->rps.hw_lock);
4358                 if (IS_VALLEYVIEW(dev))
4359                         valleyview_disable_rps(dev);
4360                 else
4361                         gen6_disable_rps(dev);
4362                 dev_priv->rps.enabled = false;
4363                 mutex_unlock(&dev_priv->rps.hw_lock);
4364         }
4365 }
4366
4367 static void intel_gen6_powersave_work(struct work_struct *work)
4368 {
4369         struct drm_i915_private *dev_priv =
4370                 container_of(work, struct drm_i915_private,
4371                              rps.delayed_resume_work.work);
4372         struct drm_device *dev = dev_priv->dev;
4373
4374         mutex_lock(&dev_priv->rps.hw_lock);
4375
4376         if (IS_VALLEYVIEW(dev)) {
4377                 valleyview_enable_rps(dev);
4378         } else if (IS_BROADWELL(dev)) {
4379                 gen8_enable_rps(dev);
4380                 gen6_update_ring_freq(dev);
4381         } else {
4382                 gen6_enable_rps(dev);
4383                 gen6_update_ring_freq(dev);
4384         }
4385         dev_priv->rps.enabled = true;
4386         mutex_unlock(&dev_priv->rps.hw_lock);
4387 }
4388
4389 void intel_enable_gt_powersave(struct drm_device *dev)
4390 {
4391         struct drm_i915_private *dev_priv = dev->dev_private;
4392
4393         if (IS_IRONLAKE_M(dev)) {
4394                 ironlake_enable_drps(dev);
4395                 ironlake_enable_rc6(dev);
4396                 intel_init_emon(dev);
4397         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4398                 /*
4399                  * PCU communication is slow and this doesn't need to be
4400                  * done at any specific time, so do this out of our fast path
4401                  * to make resume and init faster.
4402                  */
4403                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4404                                       round_jiffies_up_relative(HZ));
4405         }
4406 }
4407
4408 static void ibx_init_clock_gating(struct drm_device *dev)
4409 {
4410         struct drm_i915_private *dev_priv = dev->dev_private;
4411
4412         /*
4413          * On Ibex Peak and Cougar Point, we need to disable clock
4414          * gating for the panel power sequencer or it will fail to
4415          * start up when no ports are active.
4416          */
4417         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4418 }
4419
4420 static void g4x_disable_trickle_feed(struct drm_device *dev)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         int pipe;
4424
4425         for_each_pipe(pipe) {
4426                 I915_WRITE(DSPCNTR(pipe),
4427                            I915_READ(DSPCNTR(pipe)) |
4428                            DISPPLANE_TRICKLE_FEED_DISABLE);
4429                 intel_flush_primary_plane(dev_priv, pipe);
4430         }
4431 }
4432
4433 static void ilk_init_lp_watermarks(struct drm_device *dev)
4434 {
4435         struct drm_i915_private *dev_priv = dev->dev_private;
4436
4437         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4438         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4439         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4440
4441         /*
4442          * Don't touch WM1S_LP_EN here.
4443          * Doing so could cause underruns.
4444          */
4445 }
4446
4447 static void ironlake_init_clock_gating(struct drm_device *dev)
4448 {
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4451
4452         /*
4453          * Required for FBC
4454          * WaFbcDisableDpfcClockGating:ilk
4455          */
4456         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4457                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4458                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4459
4460         I915_WRITE(PCH_3DCGDIS0,
4461                    MARIUNIT_CLOCK_GATE_DISABLE |
4462                    SVSMUNIT_CLOCK_GATE_DISABLE);
4463         I915_WRITE(PCH_3DCGDIS1,
4464                    VFMUNIT_CLOCK_GATE_DISABLE);
4465
4466         /*
4467          * According to the spec the following bits should be set in
4468          * order to enable memory self-refresh
4469          * The bit 22/21 of 0x42004
4470          * The bit 5 of 0x42020
4471          * The bit 15 of 0x45000
4472          */
4473         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4474                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4475                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4476         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4477         I915_WRITE(DISP_ARB_CTL,
4478                    (I915_READ(DISP_ARB_CTL) |
4479                     DISP_FBC_WM_DIS));
4480
4481         ilk_init_lp_watermarks(dev);
4482
4483         /*
4484          * Based on the document from hardware guys the following bits
4485          * should be set unconditionally in order to enable FBC.
4486          * The bit 22 of 0x42000
4487          * The bit 22 of 0x42004
4488          * The bit 7,8,9 of 0x42020.
4489          */
4490         if (IS_IRONLAKE_M(dev)) {
4491                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4492                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4493                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4494                            ILK_FBCQ_DIS);
4495                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4496                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4497                            ILK_DPARB_GATE);
4498         }
4499
4500         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4501
4502         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4503                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4504                    ILK_ELPIN_409_SELECT);
4505         I915_WRITE(_3D_CHICKEN2,
4506                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4507                    _3D_CHICKEN2_WM_READ_PIPELINED);
4508
4509         /* WaDisableRenderCachePipelinedFlush:ilk */
4510         I915_WRITE(CACHE_MODE_0,
4511                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4512
4513         g4x_disable_trickle_feed(dev);
4514
4515         ibx_init_clock_gating(dev);
4516 }
4517
4518 static void cpt_init_clock_gating(struct drm_device *dev)
4519 {
4520         struct drm_i915_private *dev_priv = dev->dev_private;
4521         int pipe;
4522         uint32_t val;
4523
4524         /*
4525          * On Ibex Peak and Cougar Point, we need to disable clock
4526          * gating for the panel power sequencer or it will fail to
4527          * start up when no ports are active.
4528          */
4529         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4530                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4531                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4532         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4533                    DPLS_EDP_PPS_FIX_DIS);
4534         /* The below fixes the weird display corruption, a few pixels shifted
4535          * downward, on (only) LVDS of some HP laptops with IVY.
4536          */
4537         for_each_pipe(pipe) {
4538                 val = I915_READ(TRANS_CHICKEN2(pipe));
4539                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4540                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4541                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4542                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4543                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4544                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4545                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4546                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4547         }
4548         /* WADP0ClockGatingDisable */
4549         for_each_pipe(pipe) {
4550                 I915_WRITE(TRANS_CHICKEN1(pipe),
4551                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4552         }
4553 }
4554
4555 static void gen6_check_mch_setup(struct drm_device *dev)
4556 {
4557         struct drm_i915_private *dev_priv = dev->dev_private;
4558         uint32_t tmp;
4559
4560         tmp = I915_READ(MCH_SSKPD);
4561         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4562                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4563                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4564                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4565         }
4566 }
4567
4568 static void gen6_init_clock_gating(struct drm_device *dev)
4569 {
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4572
4573         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4574
4575         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4576                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4577                    ILK_ELPIN_409_SELECT);
4578
4579         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4580         I915_WRITE(_3D_CHICKEN,
4581                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4582
4583         /* WaSetupGtModeTdRowDispatch:snb */
4584         if (IS_SNB_GT1(dev))
4585                 I915_WRITE(GEN6_GT_MODE,
4586                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4587
4588         ilk_init_lp_watermarks(dev);
4589
4590         I915_WRITE(CACHE_MODE_0,
4591                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4592
4593         I915_WRITE(GEN6_UCGCTL1,
4594                    I915_READ(GEN6_UCGCTL1) |
4595                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4596                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4597
4598         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4599          * gating disable must be set.  Failure to set it results in
4600          * flickering pixels due to Z write ordering failures after
4601          * some amount of runtime in the Mesa "fire" demo, and Unigine
4602          * Sanctuary and Tropics, and apparently anything else with
4603          * alpha test or pixel discard.
4604          *
4605          * According to the spec, bit 11 (RCCUNIT) must also be set,
4606          * but we didn't debug actual testcases to find it out.
4607          *
4608          * Also apply WaDisableVDSUnitClockGating:snb and
4609          * WaDisableRCPBUnitClockGating:snb.
4610          */
4611         I915_WRITE(GEN6_UCGCTL2,
4612                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4613                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4614                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4615
4616         /* Bspec says we need to always set all mask bits. */
4617         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4618                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4619
4620         /*
4621          * According to the spec the following bits should be
4622          * set in order to enable memory self-refresh and fbc:
4623          * The bit21 and bit22 of 0x42000
4624          * The bit21 and bit22 of 0x42004
4625          * The bit5 and bit7 of 0x42020
4626          * The bit14 of 0x70180
4627          * The bit14 of 0x71180
4628          *
4629          * WaFbcAsynchFlipDisableFbcQueue:snb
4630          */
4631         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4632                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4633                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4634         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4635                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4636                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4637         I915_WRITE(ILK_DSPCLK_GATE_D,
4638                    I915_READ(ILK_DSPCLK_GATE_D) |
4639                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4640                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4641
4642         g4x_disable_trickle_feed(dev);
4643
4644         /* The default value should be 0x200 according to docs, but the two
4645          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4646         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4647         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4648
4649         cpt_init_clock_gating(dev);
4650
4651         gen6_check_mch_setup(dev);
4652 }
4653
4654 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4655 {
4656         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4657
4658         reg &= ~GEN7_FF_SCHED_MASK;
4659         reg |= GEN7_FF_TS_SCHED_HW;
4660         reg |= GEN7_FF_VS_SCHED_HW;
4661         reg |= GEN7_FF_DS_SCHED_HW;
4662
4663         if (IS_HASWELL(dev_priv->dev))
4664                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4665
4666         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4667 }
4668
4669 static void lpt_init_clock_gating(struct drm_device *dev)
4670 {
4671         struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673         /*
4674          * TODO: this bit should only be enabled when really needed, then
4675          * disabled when not needed anymore in order to save power.
4676          */
4677         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4678                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4679                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4680                            PCH_LP_PARTITION_LEVEL_DISABLE);
4681
4682         /* WADPOClockGatingDisable:hsw */
4683         I915_WRITE(_TRANSA_CHICKEN1,
4684                    I915_READ(_TRANSA_CHICKEN1) |
4685                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4686 }
4687
4688 static void lpt_suspend_hw(struct drm_device *dev)
4689 {
4690         struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4693                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4694
4695                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4696                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4697         }
4698 }
4699
4700 static void gen8_init_clock_gating(struct drm_device *dev)
4701 {
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         enum pipe i;
4704
4705         I915_WRITE(WM3_LP_ILK, 0);
4706         I915_WRITE(WM2_LP_ILK, 0);
4707         I915_WRITE(WM1_LP_ILK, 0);
4708
4709         /* FIXME(BDW): Check all the w/a, some might only apply to
4710          * pre-production hw. */
4711
4712         WARN(!i915_preliminary_hw_support,
4713              "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
4714         I915_WRITE(HALF_SLICE_CHICKEN3,
4715                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4716         I915_WRITE(HALF_SLICE_CHICKEN3,
4717                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4718         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4719
4720         I915_WRITE(_3D_CHICKEN3,
4721                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4722
4723         I915_WRITE(COMMON_SLICE_CHICKEN2,
4724                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4725
4726         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4727                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4728
4729         /* WaSwitchSolVfFArbitrationPriority:bdw */
4730         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4731
4732         /* WaPsrDPAMaskVBlankInSRD:bdw */
4733         I915_WRITE(CHICKEN_PAR1_1,
4734                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4735
4736         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4737         for_each_pipe(i) {
4738                 I915_WRITE(CHICKEN_PIPESL_1(i),
4739                            I915_READ(CHICKEN_PIPESL_1(i) |
4740                                      DPRS_MASK_VBLANK_SRD));
4741         }
4742
4743         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4744          * workaround for for a possible hang in the unlikely event a TLB
4745          * invalidation occurs during a PSD flush.
4746          */
4747         I915_WRITE(HDC_CHICKEN0,
4748                    I915_READ(HDC_CHICKEN0) |
4749                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4750
4751         /* WaVSRefCountFullforceMissDisable:bdw */
4752         /* WaDSRefCountFullforceMissDisable:bdw */
4753         I915_WRITE(GEN7_FF_THREAD_MODE,
4754                    I915_READ(GEN7_FF_THREAD_MODE) &
4755                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4756 }
4757
4758 static void haswell_init_clock_gating(struct drm_device *dev)
4759 {
4760         struct drm_i915_private *dev_priv = dev->dev_private;
4761
4762         ilk_init_lp_watermarks(dev);
4763
4764         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4765          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4766          */
4767         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4768
4769         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4770         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4771                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4772
4773         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4774         I915_WRITE(GEN7_L3CNTLREG1,
4775                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4776         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4777                         GEN7_WA_L3_CHICKEN_MODE);
4778
4779         /* L3 caching of data atomics doesn't work -- disable it. */
4780         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4781         I915_WRITE(HSW_ROW_CHICKEN3,
4782                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4783
4784         /* This is required by WaCatErrorRejectionIssue:hsw */
4785         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4786                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4787                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4788
4789         /* WaVSRefCountFullforceMissDisable:hsw */
4790         gen7_setup_fixed_func_scheduler(dev_priv);
4791
4792         /* WaDisable4x2SubspanOptimization:hsw */
4793         I915_WRITE(CACHE_MODE_1,
4794                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4795
4796         /* WaSwitchSolVfFArbitrationPriority:hsw */
4797         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4798
4799         /* WaRsPkgCStateDisplayPMReq:hsw */
4800         I915_WRITE(CHICKEN_PAR1_1,
4801                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4802
4803         lpt_init_clock_gating(dev);
4804 }
4805
4806 static void ivybridge_init_clock_gating(struct drm_device *dev)
4807 {
4808         struct drm_i915_private *dev_priv = dev->dev_private;
4809         uint32_t snpcr;
4810
4811         ilk_init_lp_watermarks(dev);
4812
4813         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4814
4815         /* WaDisableEarlyCull:ivb */
4816         I915_WRITE(_3D_CHICKEN3,
4817                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4818
4819         /* WaDisableBackToBackFlipFix:ivb */
4820         I915_WRITE(IVB_CHICKEN3,
4821                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4822                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4823
4824         /* WaDisablePSDDualDispatchEnable:ivb */
4825         if (IS_IVB_GT1(dev))
4826                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4827                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4828         else
4829                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4830                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4831
4832         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4833         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4834                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4835
4836         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4837         I915_WRITE(GEN7_L3CNTLREG1,
4838                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4839         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4840                    GEN7_WA_L3_CHICKEN_MODE);
4841         if (IS_IVB_GT1(dev))
4842                 I915_WRITE(GEN7_ROW_CHICKEN2,
4843                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4844         else
4845                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4846                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4847
4848
4849         /* WaForceL3Serialization:ivb */
4850         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4851                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4852
4853         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4854          * gating disable must be set.  Failure to set it results in
4855          * flickering pixels due to Z write ordering failures after
4856          * some amount of runtime in the Mesa "fire" demo, and Unigine
4857          * Sanctuary and Tropics, and apparently anything else with
4858          * alpha test or pixel discard.
4859          *
4860          * According to the spec, bit 11 (RCCUNIT) must also be set,
4861          * but we didn't debug actual testcases to find it out.
4862          *
4863          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4864          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4865          */
4866         I915_WRITE(GEN6_UCGCTL2,
4867                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4868                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4869
4870         /* This is required by WaCatErrorRejectionIssue:ivb */
4871         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4872                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4873                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4874
4875         g4x_disable_trickle_feed(dev);
4876
4877         /* WaVSRefCountFullforceMissDisable:ivb */
4878         gen7_setup_fixed_func_scheduler(dev_priv);
4879
4880         /* WaDisable4x2SubspanOptimization:ivb */
4881         I915_WRITE(CACHE_MODE_1,
4882                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4883
4884         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4885         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4886         snpcr |= GEN6_MBC_SNPCR_MED;
4887         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4888
4889         if (!HAS_PCH_NOP(dev))
4890                 cpt_init_clock_gating(dev);
4891
4892         gen6_check_mch_setup(dev);
4893 }
4894
4895 static void valleyview_init_clock_gating(struct drm_device *dev)
4896 {
4897         struct drm_i915_private *dev_priv = dev->dev_private;
4898         u32 val;
4899
4900         mutex_lock(&dev_priv->rps.hw_lock);
4901         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4902         mutex_unlock(&dev_priv->rps.hw_lock);
4903         switch ((val >> 6) & 3) {
4904         case 0:
4905                 dev_priv->mem_freq = 800;
4906                 break;
4907         case 1:
4908                 dev_priv->mem_freq = 1066;
4909                 break;
4910         case 2:
4911                 dev_priv->mem_freq = 1333;
4912                 break;
4913         case 3:
4914                 dev_priv->mem_freq = 1333;
4915                 break;
4916         }
4917         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4918
4919         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4920
4921         /* WaDisableEarlyCull:vlv */
4922         I915_WRITE(_3D_CHICKEN3,
4923                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4924
4925         /* WaDisableBackToBackFlipFix:vlv */
4926         I915_WRITE(IVB_CHICKEN3,
4927                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4928                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4929
4930         /* WaDisablePSDDualDispatchEnable:vlv */
4931         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4932                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4933                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4934
4935         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4936         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4937                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4938
4939         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4940         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4941         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4942
4943         /* WaForceL3Serialization:vlv */
4944         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4945                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4946
4947         /* WaDisableDopClockGating:vlv */
4948         I915_WRITE(GEN7_ROW_CHICKEN2,
4949                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4950
4951         /* This is required by WaCatErrorRejectionIssue:vlv */
4952         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4953                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4954                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4955
4956         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4957          * gating disable must be set.  Failure to set it results in
4958          * flickering pixels due to Z write ordering failures after
4959          * some amount of runtime in the Mesa "fire" demo, and Unigine
4960          * Sanctuary and Tropics, and apparently anything else with
4961          * alpha test or pixel discard.
4962          *
4963          * According to the spec, bit 11 (RCCUNIT) must also be set,
4964          * but we didn't debug actual testcases to find it out.
4965          *
4966          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4967          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4968          *
4969          * Also apply WaDisableVDSUnitClockGating:vlv and
4970          * WaDisableRCPBUnitClockGating:vlv.
4971          */
4972         I915_WRITE(GEN6_UCGCTL2,
4973                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4974                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4975                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4976                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4977                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4978
4979         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4980
4981         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4982
4983         I915_WRITE(CACHE_MODE_1,
4984                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4985
4986         /*
4987          * WaDisableVLVClockGating_VBIIssue:vlv
4988          * Disable clock gating on th GCFG unit to prevent a delay
4989          * in the reporting of vblank events.
4990          */
4991         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4992
4993         /* Conservative clock gating settings for now */
4994         I915_WRITE(0x9400, 0xffffffff);
4995         I915_WRITE(0x9404, 0xffffffff);
4996         I915_WRITE(0x9408, 0xffffffff);
4997         I915_WRITE(0x940c, 0xffffffff);
4998         I915_WRITE(0x9410, 0xffffffff);
4999         I915_WRITE(0x9414, 0xffffffff);
5000         I915_WRITE(0x9418, 0xffffffff);
5001 }
5002
5003 static void g4x_init_clock_gating(struct drm_device *dev)
5004 {
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006         uint32_t dspclk_gate;
5007
5008         I915_WRITE(RENCLK_GATE_D1, 0);
5009         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5010                    GS_UNIT_CLOCK_GATE_DISABLE |
5011                    CL_UNIT_CLOCK_GATE_DISABLE);
5012         I915_WRITE(RAMCLK_GATE_D, 0);
5013         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5014                 OVRUNIT_CLOCK_GATE_DISABLE |
5015                 OVCUNIT_CLOCK_GATE_DISABLE;
5016         if (IS_GM45(dev))
5017                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5018         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5019
5020         /* WaDisableRenderCachePipelinedFlush */
5021         I915_WRITE(CACHE_MODE_0,
5022                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5023
5024         g4x_disable_trickle_feed(dev);
5025 }
5026
5027 static void crestline_init_clock_gating(struct drm_device *dev)
5028 {
5029         struct drm_i915_private *dev_priv = dev->dev_private;
5030
5031         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5032         I915_WRITE(RENCLK_GATE_D2, 0);
5033         I915_WRITE(DSPCLK_GATE_D, 0);
5034         I915_WRITE(RAMCLK_GATE_D, 0);
5035         I915_WRITE16(DEUC, 0);
5036         I915_WRITE(MI_ARB_STATE,
5037                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5038 }
5039
5040 static void broadwater_init_clock_gating(struct drm_device *dev)
5041 {
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043
5044         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5045                    I965_RCC_CLOCK_GATE_DISABLE |
5046                    I965_RCPB_CLOCK_GATE_DISABLE |
5047                    I965_ISC_CLOCK_GATE_DISABLE |
5048                    I965_FBC_CLOCK_GATE_DISABLE);
5049         I915_WRITE(RENCLK_GATE_D2, 0);
5050         I915_WRITE(MI_ARB_STATE,
5051                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5052 }
5053
5054 static void gen3_init_clock_gating(struct drm_device *dev)
5055 {
5056         struct drm_i915_private *dev_priv = dev->dev_private;
5057         u32 dstate = I915_READ(D_STATE);
5058
5059         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5060                 DSTATE_DOT_CLOCK_GATING;
5061         I915_WRITE(D_STATE, dstate);
5062
5063         if (IS_PINEVIEW(dev))
5064                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5065
5066         /* IIR "flip pending" means done if this bit is set */
5067         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5068 }
5069
5070 static void i85x_init_clock_gating(struct drm_device *dev)
5071 {
5072         struct drm_i915_private *dev_priv = dev->dev_private;
5073
5074         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5075 }
5076
5077 static void i830_init_clock_gating(struct drm_device *dev)
5078 {
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080
5081         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5082 }
5083
5084 void intel_init_clock_gating(struct drm_device *dev)
5085 {
5086         struct drm_i915_private *dev_priv = dev->dev_private;
5087
5088         dev_priv->display.init_clock_gating(dev);
5089 }
5090
5091 void intel_suspend_hw(struct drm_device *dev)
5092 {
5093         if (HAS_PCH_LPT(dev))
5094                 lpt_suspend_hw(dev);
5095 }
5096
5097 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5098         for (i = 0;                                                     \
5099              i < (power_domains)->power_well_count &&                   \
5100                  ((power_well) = &(power_domains)->power_wells[i]);     \
5101              i++)                                                       \
5102                 if ((power_well)->domains & (domain_mask))
5103
5104 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5105         for (i = (power_domains)->power_well_count - 1;                  \
5106              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5107              i--)                                                        \
5108                 if ((power_well)->domains & (domain_mask))
5109
5110 /**
5111  * We should only use the power well if we explicitly asked the hardware to
5112  * enable it, so check if it's enabled and also check if we've requested it to
5113  * be enabled.
5114  */
5115 static bool hsw_power_well_enabled(struct drm_device *dev,
5116                                    struct i915_power_well *power_well)
5117 {
5118         struct drm_i915_private *dev_priv = dev->dev_private;
5119
5120         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5121                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5122 }
5123
5124 bool intel_display_power_enabled_sw(struct drm_device *dev,
5125                                     enum intel_display_power_domain domain)
5126 {
5127         struct drm_i915_private *dev_priv = dev->dev_private;
5128         struct i915_power_domains *power_domains;
5129
5130         power_domains = &dev_priv->power_domains;
5131
5132         return power_domains->domain_use_count[domain];
5133 }
5134
5135 bool intel_display_power_enabled(struct drm_device *dev,
5136                                  enum intel_display_power_domain domain)
5137 {
5138         struct drm_i915_private *dev_priv = dev->dev_private;
5139         struct i915_power_domains *power_domains;
5140         struct i915_power_well *power_well;
5141         bool is_enabled;
5142         int i;
5143
5144         power_domains = &dev_priv->power_domains;
5145
5146         is_enabled = true;
5147
5148         mutex_lock(&power_domains->lock);
5149         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5150                 if (power_well->always_on)
5151                         continue;
5152
5153                 if (!power_well->is_enabled(dev, power_well)) {
5154                         is_enabled = false;
5155                         break;
5156                 }
5157         }
5158         mutex_unlock(&power_domains->lock);
5159
5160         return is_enabled;
5161 }
5162
5163 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5164 {
5165         struct drm_device *dev = dev_priv->dev;
5166         unsigned long irqflags;
5167
5168         /*
5169          * After we re-enable the power well, if we touch VGA register 0x3d5
5170          * we'll get unclaimed register interrupts. This stops after we write
5171          * anything to the VGA MSR register. The vgacon module uses this
5172          * register all the time, so if we unbind our driver and, as a
5173          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5174          * console_unlock(). So make here we touch the VGA MSR register, making
5175          * sure vgacon can keep working normally without triggering interrupts
5176          * and error messages.
5177          */
5178         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5179         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5180         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5181
5182         if (IS_BROADWELL(dev)) {
5183                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5184                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5185                            dev_priv->de_irq_mask[PIPE_B]);
5186                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5187                            ~dev_priv->de_irq_mask[PIPE_B] |
5188                            GEN8_PIPE_VBLANK);
5189                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5190                            dev_priv->de_irq_mask[PIPE_C]);
5191                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5192                            ~dev_priv->de_irq_mask[PIPE_C] |
5193                            GEN8_PIPE_VBLANK);
5194                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5195                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5196         }
5197 }
5198
5199 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5200 {
5201         struct drm_device *dev = dev_priv->dev;
5202         enum pipe p;
5203         unsigned long irqflags;
5204
5205         /*
5206          * After this, the registers on the pipes that are part of the power
5207          * well will become zero, so we have to adjust our counters according to
5208          * that.
5209          *
5210          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5211          */
5212         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5213         for_each_pipe(p)
5214                 if (p != PIPE_A)
5215                         dev->vblank[p].last = 0;
5216         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5217 }
5218
5219 static void hsw_set_power_well(struct drm_device *dev,
5220                                struct i915_power_well *power_well, bool enable)
5221 {
5222         struct drm_i915_private *dev_priv = dev->dev_private;
5223         bool is_enabled, enable_requested;
5224         uint32_t tmp;
5225
5226         WARN_ON(dev_priv->pc8.enabled);
5227
5228         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5229         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5230         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5231
5232         if (enable) {
5233                 if (!enable_requested)
5234                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5235                                    HSW_PWR_WELL_ENABLE_REQUEST);
5236
5237                 if (!is_enabled) {
5238                         DRM_DEBUG_KMS("Enabling power well\n");
5239                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5240                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5241                                 DRM_ERROR("Timeout enabling power well\n");
5242                 }
5243
5244                 hsw_power_well_post_enable(dev_priv);
5245         } else {
5246                 if (enable_requested) {
5247                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5248                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5249                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5250
5251                         hsw_power_well_post_disable(dev_priv);
5252                 }
5253         }
5254 }
5255
5256 static void __intel_power_well_get(struct drm_device *dev,
5257                                    struct i915_power_well *power_well)
5258 {
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260
5261         if (!power_well->count++ && power_well->set) {
5262                 hsw_disable_package_c8(dev_priv);
5263                 power_well->set(dev, power_well, true);
5264         }
5265 }
5266
5267 static void __intel_power_well_put(struct drm_device *dev,
5268                                    struct i915_power_well *power_well)
5269 {
5270         struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272         WARN_ON(!power_well->count);
5273
5274         if (!--power_well->count && power_well->set &&
5275             i915_disable_power_well) {
5276                 power_well->set(dev, power_well, false);
5277                 hsw_enable_package_c8(dev_priv);
5278         }
5279 }
5280
5281 void intel_display_power_get(struct drm_device *dev,
5282                              enum intel_display_power_domain domain)
5283 {
5284         struct drm_i915_private *dev_priv = dev->dev_private;
5285         struct i915_power_domains *power_domains;
5286         struct i915_power_well *power_well;
5287         int i;
5288
5289         power_domains = &dev_priv->power_domains;
5290
5291         mutex_lock(&power_domains->lock);
5292
5293         for_each_power_well(i, power_well, BIT(domain), power_domains)
5294                 __intel_power_well_get(dev, power_well);
5295
5296         power_domains->domain_use_count[domain]++;
5297
5298         mutex_unlock(&power_domains->lock);
5299 }
5300
5301 void intel_display_power_put(struct drm_device *dev,
5302                              enum intel_display_power_domain domain)
5303 {
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305         struct i915_power_domains *power_domains;
5306         struct i915_power_well *power_well;
5307         int i;
5308
5309         power_domains = &dev_priv->power_domains;
5310
5311         mutex_lock(&power_domains->lock);
5312
5313         WARN_ON(!power_domains->domain_use_count[domain]);
5314         power_domains->domain_use_count[domain]--;
5315
5316         for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5317                 __intel_power_well_put(dev, power_well);
5318
5319         mutex_unlock(&power_domains->lock);
5320 }
5321
5322 static struct i915_power_domains *hsw_pwr;
5323
5324 /* Display audio driver power well request */
5325 void i915_request_power_well(void)
5326 {
5327         struct drm_i915_private *dev_priv;
5328
5329         if (WARN_ON(!hsw_pwr))
5330                 return;
5331
5332         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5333                                 power_domains);
5334         intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5335 }
5336 EXPORT_SYMBOL_GPL(i915_request_power_well);
5337
5338 /* Display audio driver power well release */
5339 void i915_release_power_well(void)
5340 {
5341         struct drm_i915_private *dev_priv;
5342
5343         if (WARN_ON(!hsw_pwr))
5344                 return;
5345
5346         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5347                                 power_domains);
5348         intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5349 }
5350 EXPORT_SYMBOL_GPL(i915_release_power_well);
5351
5352 static struct i915_power_well i9xx_always_on_power_well[] = {
5353         {
5354                 .name = "always-on",
5355                 .always_on = 1,
5356                 .domains = POWER_DOMAIN_MASK,
5357         },
5358 };
5359
5360 static struct i915_power_well hsw_power_wells[] = {
5361         {
5362                 .name = "always-on",
5363                 .always_on = 1,
5364                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5365         },
5366         {
5367                 .name = "display",
5368                 .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5369                 .is_enabled = hsw_power_well_enabled,
5370                 .set = hsw_set_power_well,
5371         },
5372 };
5373
5374 static struct i915_power_well bdw_power_wells[] = {
5375         {
5376                 .name = "always-on",
5377                 .always_on = 1,
5378                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5379         },
5380         {
5381                 .name = "display",
5382                 .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5383                 .is_enabled = hsw_power_well_enabled,
5384                 .set = hsw_set_power_well,
5385         },
5386 };
5387
5388 #define set_power_wells(power_domains, __power_wells) ({                \
5389         (power_domains)->power_wells = (__power_wells);                 \
5390         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5391 })
5392
5393 int intel_power_domains_init(struct drm_device *dev)
5394 {
5395         struct drm_i915_private *dev_priv = dev->dev_private;
5396         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5397
5398         mutex_init(&power_domains->lock);
5399
5400         /*
5401          * The enabling order will be from lower to higher indexed wells,
5402          * the disabling order is reversed.
5403          */
5404         if (IS_HASWELL(dev)) {
5405                 set_power_wells(power_domains, hsw_power_wells);
5406                 hsw_pwr = power_domains;
5407         } else if (IS_BROADWELL(dev)) {
5408                 set_power_wells(power_domains, bdw_power_wells);
5409                 hsw_pwr = power_domains;
5410         } else {
5411                 set_power_wells(power_domains, i9xx_always_on_power_well);
5412         }
5413
5414         return 0;
5415 }
5416
5417 void intel_power_domains_remove(struct drm_device *dev)
5418 {
5419         hsw_pwr = NULL;
5420 }
5421
5422 static void intel_power_domains_resume(struct drm_device *dev)
5423 {
5424         struct drm_i915_private *dev_priv = dev->dev_private;
5425         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5426         struct i915_power_well *power_well;
5427         int i;
5428
5429         mutex_lock(&power_domains->lock);
5430         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5431                 if (power_well->set)
5432                         power_well->set(dev, power_well, power_well->count > 0);
5433         }
5434         mutex_unlock(&power_domains->lock);
5435 }
5436
5437 /*
5438  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5439  * when not needed anymore. We have 4 registers that can request the power well
5440  * to be enabled, and it will only be disabled if none of the registers is
5441  * requesting it to be enabled.
5442  */
5443 void intel_power_domains_init_hw(struct drm_device *dev)
5444 {
5445         struct drm_i915_private *dev_priv = dev->dev_private;
5446
5447         /* For now, we need the power well to be always enabled. */
5448         intel_display_set_init_power(dev, true);
5449         intel_power_domains_resume(dev);
5450
5451         if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
5452                 return;
5453
5454         /* We're taking over the BIOS, so clear any requests made by it since
5455          * the driver is in charge now. */
5456         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5457                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5458 }
5459
5460 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5461 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5462 {
5463         hsw_disable_package_c8(dev_priv);
5464 }
5465
5466 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5467 {
5468         hsw_enable_package_c8(dev_priv);
5469 }
5470
5471 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5472 {
5473         struct drm_device *dev = dev_priv->dev;
5474         struct device *device = &dev->pdev->dev;
5475
5476         if (!HAS_RUNTIME_PM(dev))
5477                 return;
5478
5479         pm_runtime_get_sync(device);
5480         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5481 }
5482
5483 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5484 {
5485         struct drm_device *dev = dev_priv->dev;
5486         struct device *device = &dev->pdev->dev;
5487
5488         if (!HAS_RUNTIME_PM(dev))
5489                 return;
5490
5491         pm_runtime_mark_last_busy(device);
5492         pm_runtime_put_autosuspend(device);
5493 }
5494
5495 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5496 {
5497         struct drm_device *dev = dev_priv->dev;
5498         struct device *device = &dev->pdev->dev;
5499
5500         dev_priv->pm.suspended = false;
5501
5502         if (!HAS_RUNTIME_PM(dev))
5503                 return;
5504
5505         pm_runtime_set_active(device);
5506
5507         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5508         pm_runtime_mark_last_busy(device);
5509         pm_runtime_use_autosuspend(device);
5510 }
5511
5512 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5513 {
5514         struct drm_device *dev = dev_priv->dev;
5515         struct device *device = &dev->pdev->dev;
5516
5517         if (!HAS_RUNTIME_PM(dev))
5518                 return;
5519
5520         /* Make sure we're not suspended first. */
5521         pm_runtime_get_sync(device);
5522         pm_runtime_disable(device);
5523 }
5524
5525 /* Set up chip specific power management-related functions */
5526 void intel_init_pm(struct drm_device *dev)
5527 {
5528         struct drm_i915_private *dev_priv = dev->dev_private;
5529
5530         if (HAS_FBC(dev)) {
5531                 if (INTEL_INFO(dev)->gen >= 7) {
5532                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5533                         dev_priv->display.enable_fbc = gen7_enable_fbc;
5534                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5535                 } else if (INTEL_INFO(dev)->gen >= 5) {
5536                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5537                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5538                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5539                 } else if (IS_GM45(dev)) {
5540                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5541                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5542                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5543                 } else {
5544                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5545                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5546                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5547
5548                         /* This value was pulled out of someone's hat */
5549                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
5550                 }
5551         }
5552
5553         /* For cxsr */
5554         if (IS_PINEVIEW(dev))
5555                 i915_pineview_get_mem_freq(dev);
5556         else if (IS_GEN5(dev))
5557                 i915_ironlake_get_mem_freq(dev);
5558
5559         /* For FIFO watermark updates */
5560         if (HAS_PCH_SPLIT(dev)) {
5561                 intel_setup_wm_latency(dev);
5562
5563                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5564                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5565                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5566                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5567                         dev_priv->display.update_wm = ilk_update_wm;
5568                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
5569                 } else {
5570                         DRM_DEBUG_KMS("Failed to read display plane latency. "
5571                                       "Disable CxSR\n");
5572                 }
5573
5574                 if (IS_GEN5(dev))
5575                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5576                 else if (IS_GEN6(dev))
5577                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5578                 else if (IS_IVYBRIDGE(dev))
5579                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5580                 else if (IS_HASWELL(dev))
5581                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5582                 else if (INTEL_INFO(dev)->gen == 8)
5583                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
5584         } else if (IS_VALLEYVIEW(dev)) {
5585                 dev_priv->display.update_wm = valleyview_update_wm;
5586                 dev_priv->display.init_clock_gating =
5587                         valleyview_init_clock_gating;
5588         } else if (IS_PINEVIEW(dev)) {
5589                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5590                                             dev_priv->is_ddr3,
5591                                             dev_priv->fsb_freq,
5592                                             dev_priv->mem_freq)) {
5593                         DRM_INFO("failed to find known CxSR latency "
5594                                  "(found ddr%s fsb freq %d, mem freq %d), "
5595                                  "disabling CxSR\n",
5596                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5597                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5598                         /* Disable CxSR and never update its watermark again */
5599                         pineview_disable_cxsr(dev);
5600                         dev_priv->display.update_wm = NULL;
5601                 } else
5602                         dev_priv->display.update_wm = pineview_update_wm;
5603                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5604         } else if (IS_G4X(dev)) {
5605                 dev_priv->display.update_wm = g4x_update_wm;
5606                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5607         } else if (IS_GEN4(dev)) {
5608                 dev_priv->display.update_wm = i965_update_wm;
5609                 if (IS_CRESTLINE(dev))
5610                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5611                 else if (IS_BROADWATER(dev))
5612                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5613         } else if (IS_GEN3(dev)) {
5614                 dev_priv->display.update_wm = i9xx_update_wm;
5615                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5616                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5617         } else if (IS_GEN2(dev)) {
5618                 if (INTEL_INFO(dev)->num_pipes == 1) {
5619                         dev_priv->display.update_wm = i845_update_wm;
5620                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5621                 } else {
5622                         dev_priv->display.update_wm = i9xx_update_wm;
5623                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5624                 }
5625
5626                 if (IS_I85X(dev) || IS_I865G(dev))
5627                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5628                 else
5629                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
5630         } else {
5631                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
5632         }
5633 }
5634
5635 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5636 {
5637         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5638
5639         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5640                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5641                 return -EAGAIN;
5642         }
5643
5644         I915_WRITE(GEN6_PCODE_DATA, *val);
5645         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5646
5647         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5648                      500)) {
5649                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5650                 return -ETIMEDOUT;
5651         }
5652
5653         *val = I915_READ(GEN6_PCODE_DATA);
5654         I915_WRITE(GEN6_PCODE_DATA, 0);
5655
5656         return 0;
5657 }
5658
5659 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5660 {
5661         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5662
5663         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5664                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5665                 return -EAGAIN;
5666         }
5667
5668         I915_WRITE(GEN6_PCODE_DATA, val);
5669         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5670
5671         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5672                      500)) {
5673                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5674                 return -ETIMEDOUT;
5675         }
5676
5677         I915_WRITE(GEN6_PCODE_DATA, 0);
5678
5679         return 0;
5680 }
5681
5682 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
5683 {
5684         int div;
5685
5686         /* 4 x czclk */
5687         switch (dev_priv->mem_freq) {
5688         case 800:
5689                 div = 10;
5690                 break;
5691         case 1066:
5692                 div = 12;
5693                 break;
5694         case 1333:
5695                 div = 16;
5696                 break;
5697         default:
5698                 return -1;
5699         }
5700
5701         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
5702 }
5703
5704 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
5705 {
5706         int mul;
5707
5708         /* 4 x czclk */
5709         switch (dev_priv->mem_freq) {
5710         case 800:
5711                 mul = 10;
5712                 break;
5713         case 1066:
5714                 mul = 12;
5715                 break;
5716         case 1333:
5717                 mul = 16;
5718                 break;
5719         default:
5720                 return -1;
5721         }
5722
5723         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
5724 }
5725
5726 void intel_pm_setup(struct drm_device *dev)
5727 {
5728         struct drm_i915_private *dev_priv = dev->dev_private;
5729
5730         mutex_init(&dev_priv->rps.hw_lock);
5731
5732         mutex_init(&dev_priv->pc8.lock);
5733         dev_priv->pc8.requirements_met = false;
5734         dev_priv->pc8.gpu_idle = false;
5735         dev_priv->pc8.irqs_disabled = false;
5736         dev_priv->pc8.enabled = false;
5737         dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
5738         INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
5739         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5740                           intel_gen6_powersave_work);
5741 }