Merge branches 'pm-domains', 'powercap' and 'pm-tools'
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
56  * framebuffer contents in-memory, aiming at reducing the required bandwidth
57  * during in-memory transfers and, therefore, reduce the power packet.
58  *
59  * The benefits of FBC are mostly visible with solid backgrounds and
60  * variation-less patterns.
61  *
62  * FBC-related functionality can be enabled by the means of the
63  * i915.i915_enable_fbc parameter
64  */
65
66 static void gen9_init_clock_gating(struct drm_device *dev)
67 {
68         struct drm_i915_private *dev_priv = dev->dev_private;
69
70         /*
71          * WaDisableSDEUnitClockGating:skl
72          * This seems to be a pre-production w/a.
73          */
74         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
75                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
76
77         /*
78          * WaDisableDgMirrorFixInHalfSliceChicken5:skl
79          * This is a pre-production w/a.
80          */
81         I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
82                    I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
83                    ~GEN9_DG_MIRROR_FIX_ENABLE);
84
85         /* Wa4x4STCOptimizationDisable:skl */
86         I915_WRITE(CACHE_MODE_1,
87                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
88 }
89
90 static void i8xx_disable_fbc(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         u32 fbc_ctl;
94
95         dev_priv->fbc.enabled = false;
96
97         /* Disable compression */
98         fbc_ctl = I915_READ(FBC_CONTROL);
99         if ((fbc_ctl & FBC_CTL_EN) == 0)
100                 return;
101
102         fbc_ctl &= ~FBC_CTL_EN;
103         I915_WRITE(FBC_CONTROL, fbc_ctl);
104
105         /* Wait for compressing bit to clear */
106         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
107                 DRM_DEBUG_KMS("FBC idle timed out\n");
108                 return;
109         }
110
111         DRM_DEBUG_KMS("disabled FBC\n");
112 }
113
114 static void i8xx_enable_fbc(struct drm_crtc *crtc)
115 {
116         struct drm_device *dev = crtc->dev;
117         struct drm_i915_private *dev_priv = dev->dev_private;
118         struct drm_framebuffer *fb = crtc->primary->fb;
119         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
121         int cfb_pitch;
122         int i;
123         u32 fbc_ctl;
124
125         dev_priv->fbc.enabled = true;
126
127         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
128         if (fb->pitches[0] < cfb_pitch)
129                 cfb_pitch = fb->pitches[0];
130
131         /* FBC_CTL wants 32B or 64B units */
132         if (IS_GEN2(dev))
133                 cfb_pitch = (cfb_pitch / 32) - 1;
134         else
135                 cfb_pitch = (cfb_pitch / 64) - 1;
136
137         /* Clear old tags */
138         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
139                 I915_WRITE(FBC_TAG + (i * 4), 0);
140
141         if (IS_GEN4(dev)) {
142                 u32 fbc_ctl2;
143
144                 /* Set it up... */
145                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
146                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
147                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
148                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
149         }
150
151         /* enable it... */
152         fbc_ctl = I915_READ(FBC_CONTROL);
153         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
154         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
155         if (IS_I945GM(dev))
156                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
157         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
158         fbc_ctl |= obj->fence_reg;
159         I915_WRITE(FBC_CONTROL, fbc_ctl);
160
161         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
162                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
163 }
164
165 static bool i8xx_fbc_enabled(struct drm_device *dev)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168
169         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
170 }
171
172 static void g4x_enable_fbc(struct drm_crtc *crtc)
173 {
174         struct drm_device *dev = crtc->dev;
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         struct drm_framebuffer *fb = crtc->primary->fb;
177         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
179         u32 dpfc_ctl;
180
181         dev_priv->fbc.enabled = true;
182
183         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
184         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
185                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
186         else
187                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
188         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
189
190         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
191
192         /* enable it... */
193         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
194
195         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
196 }
197
198 static void g4x_disable_fbc(struct drm_device *dev)
199 {
200         struct drm_i915_private *dev_priv = dev->dev_private;
201         u32 dpfc_ctl;
202
203         dev_priv->fbc.enabled = false;
204
205         /* Disable compression */
206         dpfc_ctl = I915_READ(DPFC_CONTROL);
207         if (dpfc_ctl & DPFC_CTL_EN) {
208                 dpfc_ctl &= ~DPFC_CTL_EN;
209                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
210
211                 DRM_DEBUG_KMS("disabled FBC\n");
212         }
213 }
214
215 static bool g4x_fbc_enabled(struct drm_device *dev)
216 {
217         struct drm_i915_private *dev_priv = dev->dev_private;
218
219         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
220 }
221
222 static void sandybridge_blit_fbc_update(struct drm_device *dev)
223 {
224         struct drm_i915_private *dev_priv = dev->dev_private;
225         u32 blt_ecoskpd;
226
227         /* Make sure blitter notifies FBC of writes */
228
229         /* Blitter is part of Media powerwell on VLV. No impact of
230          * his param in other platforms for now */
231         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
232
233         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
234         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
235                 GEN6_BLITTER_LOCK_SHIFT;
236         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
237         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
238         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
239         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
240                          GEN6_BLITTER_LOCK_SHIFT);
241         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
242         POSTING_READ(GEN6_BLITTER_ECOSKPD);
243
244         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
245 }
246
247 static void ironlake_enable_fbc(struct drm_crtc *crtc)
248 {
249         struct drm_device *dev = crtc->dev;
250         struct drm_i915_private *dev_priv = dev->dev_private;
251         struct drm_framebuffer *fb = crtc->primary->fb;
252         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
254         u32 dpfc_ctl;
255
256         dev_priv->fbc.enabled = true;
257
258         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
259         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
260                 dev_priv->fbc.threshold++;
261
262         switch (dev_priv->fbc.threshold) {
263         case 4:
264         case 3:
265                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
266                 break;
267         case 2:
268                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
269                 break;
270         case 1:
271                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
272                 break;
273         }
274         dpfc_ctl |= DPFC_CTL_FENCE_EN;
275         if (IS_GEN5(dev))
276                 dpfc_ctl |= obj->fence_reg;
277
278         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
279         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
280         /* enable it... */
281         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
282
283         if (IS_GEN6(dev)) {
284                 I915_WRITE(SNB_DPFC_CTL_SA,
285                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
286                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
287                 sandybridge_blit_fbc_update(dev);
288         }
289
290         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
291 }
292
293 static void ironlake_disable_fbc(struct drm_device *dev)
294 {
295         struct drm_i915_private *dev_priv = dev->dev_private;
296         u32 dpfc_ctl;
297
298         dev_priv->fbc.enabled = false;
299
300         /* Disable compression */
301         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
302         if (dpfc_ctl & DPFC_CTL_EN) {
303                 dpfc_ctl &= ~DPFC_CTL_EN;
304                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
305
306                 DRM_DEBUG_KMS("disabled FBC\n");
307         }
308 }
309
310 static bool ironlake_fbc_enabled(struct drm_device *dev)
311 {
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
315 }
316
317 static void gen7_enable_fbc(struct drm_crtc *crtc)
318 {
319         struct drm_device *dev = crtc->dev;
320         struct drm_i915_private *dev_priv = dev->dev_private;
321         struct drm_framebuffer *fb = crtc->primary->fb;
322         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
324         u32 dpfc_ctl;
325
326         dev_priv->fbc.enabled = true;
327
328         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
329         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
330                 dev_priv->fbc.threshold++;
331
332         switch (dev_priv->fbc.threshold) {
333         case 4:
334         case 3:
335                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
336                 break;
337         case 2:
338                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
339                 break;
340         case 1:
341                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
342                 break;
343         }
344
345         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
346
347         if (dev_priv->fbc.false_color)
348                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
349
350         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
351
352         if (IS_IVYBRIDGE(dev)) {
353                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
354                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
355                            I915_READ(ILK_DISPLAY_CHICKEN1) |
356                            ILK_FBCQ_DIS);
357         } else {
358                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
359                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
360                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
361                            HSW_FBCQ_DIS);
362         }
363
364         I915_WRITE(SNB_DPFC_CTL_SA,
365                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
366         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
367
368         sandybridge_blit_fbc_update(dev);
369
370         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
371 }
372
373 bool intel_fbc_enabled(struct drm_device *dev)
374 {
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         return dev_priv->fbc.enabled;
378 }
379
380 void bdw_fbc_sw_flush(struct drm_device *dev, u32 value)
381 {
382         struct drm_i915_private *dev_priv = dev->dev_private;
383
384         if (!IS_GEN8(dev))
385                 return;
386
387         if (!intel_fbc_enabled(dev))
388                 return;
389
390         I915_WRITE(MSG_FBC_REND_STATE, value);
391 }
392
393 static void intel_fbc_work_fn(struct work_struct *__work)
394 {
395         struct intel_fbc_work *work =
396                 container_of(to_delayed_work(__work),
397                              struct intel_fbc_work, work);
398         struct drm_device *dev = work->crtc->dev;
399         struct drm_i915_private *dev_priv = dev->dev_private;
400
401         mutex_lock(&dev->struct_mutex);
402         if (work == dev_priv->fbc.fbc_work) {
403                 /* Double check that we haven't switched fb without cancelling
404                  * the prior work.
405                  */
406                 if (work->crtc->primary->fb == work->fb) {
407                         dev_priv->display.enable_fbc(work->crtc);
408
409                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
410                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
411                         dev_priv->fbc.y = work->crtc->y;
412                 }
413
414                 dev_priv->fbc.fbc_work = NULL;
415         }
416         mutex_unlock(&dev->struct_mutex);
417
418         kfree(work);
419 }
420
421 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
422 {
423         if (dev_priv->fbc.fbc_work == NULL)
424                 return;
425
426         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
427
428         /* Synchronisation is provided by struct_mutex and checking of
429          * dev_priv->fbc.fbc_work, so we can perform the cancellation
430          * entirely asynchronously.
431          */
432         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
433                 /* tasklet was killed before being run, clean up */
434                 kfree(dev_priv->fbc.fbc_work);
435
436         /* Mark the work as no longer wanted so that if it does
437          * wake-up (because the work was already running and waiting
438          * for our mutex), it will discover that is no longer
439          * necessary to run.
440          */
441         dev_priv->fbc.fbc_work = NULL;
442 }
443
444 static void intel_enable_fbc(struct drm_crtc *crtc)
445 {
446         struct intel_fbc_work *work;
447         struct drm_device *dev = crtc->dev;
448         struct drm_i915_private *dev_priv = dev->dev_private;
449
450         if (!dev_priv->display.enable_fbc)
451                 return;
452
453         intel_cancel_fbc_work(dev_priv);
454
455         work = kzalloc(sizeof(*work), GFP_KERNEL);
456         if (work == NULL) {
457                 DRM_ERROR("Failed to allocate FBC work structure\n");
458                 dev_priv->display.enable_fbc(crtc);
459                 return;
460         }
461
462         work->crtc = crtc;
463         work->fb = crtc->primary->fb;
464         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
465
466         dev_priv->fbc.fbc_work = work;
467
468         /* Delay the actual enabling to let pageflipping cease and the
469          * display to settle before starting the compression. Note that
470          * this delay also serves a second purpose: it allows for a
471          * vblank to pass after disabling the FBC before we attempt
472          * to modify the control registers.
473          *
474          * A more complicated solution would involve tracking vblanks
475          * following the termination of the page-flipping sequence
476          * and indeed performing the enable as a co-routine and not
477          * waiting synchronously upon the vblank.
478          *
479          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
480          */
481         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
482 }
483
484 void intel_disable_fbc(struct drm_device *dev)
485 {
486         struct drm_i915_private *dev_priv = dev->dev_private;
487
488         intel_cancel_fbc_work(dev_priv);
489
490         if (!dev_priv->display.disable_fbc)
491                 return;
492
493         dev_priv->display.disable_fbc(dev);
494         dev_priv->fbc.plane = -1;
495 }
496
497 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
498                               enum no_fbc_reason reason)
499 {
500         if (dev_priv->fbc.no_fbc_reason == reason)
501                 return false;
502
503         dev_priv->fbc.no_fbc_reason = reason;
504         return true;
505 }
506
507 /**
508  * intel_update_fbc - enable/disable FBC as needed
509  * @dev: the drm_device
510  *
511  * Set up the framebuffer compression hardware at mode set time.  We
512  * enable it if possible:
513  *   - plane A only (on pre-965)
514  *   - no pixel mulitply/line duplication
515  *   - no alpha buffer discard
516  *   - no dual wide
517  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
518  *
519  * We can't assume that any compression will take place (worst case),
520  * so the compressed buffer has to be the same size as the uncompressed
521  * one.  It also must reside (along with the line length buffer) in
522  * stolen memory.
523  *
524  * We need to enable/disable FBC on a global basis.
525  */
526 void intel_update_fbc(struct drm_device *dev)
527 {
528         struct drm_i915_private *dev_priv = dev->dev_private;
529         struct drm_crtc *crtc = NULL, *tmp_crtc;
530         struct intel_crtc *intel_crtc;
531         struct drm_framebuffer *fb;
532         struct drm_i915_gem_object *obj;
533         const struct drm_display_mode *adjusted_mode;
534         unsigned int max_width, max_height;
535
536         if (!HAS_FBC(dev)) {
537                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
538                 return;
539         }
540
541         if (!i915.powersave) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
543                         DRM_DEBUG_KMS("fbc disabled per module param\n");
544                 return;
545         }
546
547         /*
548          * If FBC is already on, we just have to verify that we can
549          * keep it that way...
550          * Need to disable if:
551          *   - more than one pipe is active
552          *   - changing FBC params (stride, fence, mode)
553          *   - new fb is too large to fit in compressed buffer
554          *   - going to an unsupported config (interlace, pixel multiply, etc.)
555          */
556         for_each_crtc(dev, tmp_crtc) {
557                 if (intel_crtc_active(tmp_crtc) &&
558                     to_intel_crtc(tmp_crtc)->primary_enabled) {
559                         if (crtc) {
560                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
561                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
562                                 goto out_disable;
563                         }
564                         crtc = tmp_crtc;
565                 }
566         }
567
568         if (!crtc || crtc->primary->fb == NULL) {
569                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
570                         DRM_DEBUG_KMS("no output, disabling\n");
571                 goto out_disable;
572         }
573
574         intel_crtc = to_intel_crtc(crtc);
575         fb = crtc->primary->fb;
576         obj = intel_fb_obj(fb);
577         adjusted_mode = &intel_crtc->config.adjusted_mode;
578
579         if (i915.enable_fbc < 0) {
580                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
581                         DRM_DEBUG_KMS("disabled per chip default\n");
582                 goto out_disable;
583         }
584         if (!i915.enable_fbc) {
585                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
586                         DRM_DEBUG_KMS("fbc disabled per module param\n");
587                 goto out_disable;
588         }
589         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
590             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
591                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
592                         DRM_DEBUG_KMS("mode incompatible with compression, "
593                                       "disabling\n");
594                 goto out_disable;
595         }
596
597         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
598                 max_width = 4096;
599                 max_height = 4096;
600         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
601                 max_width = 4096;
602                 max_height = 2048;
603         } else {
604                 max_width = 2048;
605                 max_height = 1536;
606         }
607         if (intel_crtc->config.pipe_src_w > max_width ||
608             intel_crtc->config.pipe_src_h > max_height) {
609                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
610                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
611                 goto out_disable;
612         }
613         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
614             intel_crtc->plane != PLANE_A) {
615                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
616                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
617                 goto out_disable;
618         }
619
620         /* The use of a CPU fence is mandatory in order to detect writes
621          * by the CPU to the scanout and trigger updates to the FBC.
622          */
623         if (obj->tiling_mode != I915_TILING_X ||
624             obj->fence_reg == I915_FENCE_REG_NONE) {
625                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
626                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
627                 goto out_disable;
628         }
629         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
630             to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
631                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
632                         DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
633                 goto out_disable;
634         }
635
636         /* If the kernel debugger is active, always disable compression */
637         if (in_dbg_master())
638                 goto out_disable;
639
640         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
641                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
642                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
643                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
644                 goto out_disable;
645         }
646
647         /* If the scanout has not changed, don't modify the FBC settings.
648          * Note that we make the fundamental assumption that the fb->obj
649          * cannot be unpinned (and have its GTT offset and fence revoked)
650          * without first being decoupled from the scanout and FBC disabled.
651          */
652         if (dev_priv->fbc.plane == intel_crtc->plane &&
653             dev_priv->fbc.fb_id == fb->base.id &&
654             dev_priv->fbc.y == crtc->y)
655                 return;
656
657         if (intel_fbc_enabled(dev)) {
658                 /* We update FBC along two paths, after changing fb/crtc
659                  * configuration (modeswitching) and after page-flipping
660                  * finishes. For the latter, we know that not only did
661                  * we disable the FBC at the start of the page-flip
662                  * sequence, but also more than one vblank has passed.
663                  *
664                  * For the former case of modeswitching, it is possible
665                  * to switch between two FBC valid configurations
666                  * instantaneously so we do need to disable the FBC
667                  * before we can modify its control registers. We also
668                  * have to wait for the next vblank for that to take
669                  * effect. However, since we delay enabling FBC we can
670                  * assume that a vblank has passed since disabling and
671                  * that we can safely alter the registers in the deferred
672                  * callback.
673                  *
674                  * In the scenario that we go from a valid to invalid
675                  * and then back to valid FBC configuration we have
676                  * no strict enforcement that a vblank occurred since
677                  * disabling the FBC. However, along all current pipe
678                  * disabling paths we do need to wait for a vblank at
679                  * some point. And we wait before enabling FBC anyway.
680                  */
681                 DRM_DEBUG_KMS("disabling active FBC for update\n");
682                 intel_disable_fbc(dev);
683         }
684
685         intel_enable_fbc(crtc);
686         dev_priv->fbc.no_fbc_reason = FBC_OK;
687         return;
688
689 out_disable:
690         /* Multiple disables should be harmless */
691         if (intel_fbc_enabled(dev)) {
692                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
693                 intel_disable_fbc(dev);
694         }
695         i915_gem_stolen_cleanup_compression(dev);
696 }
697
698 static void i915_pineview_get_mem_freq(struct drm_device *dev)
699 {
700         struct drm_i915_private *dev_priv = dev->dev_private;
701         u32 tmp;
702
703         tmp = I915_READ(CLKCFG);
704
705         switch (tmp & CLKCFG_FSB_MASK) {
706         case CLKCFG_FSB_533:
707                 dev_priv->fsb_freq = 533; /* 133*4 */
708                 break;
709         case CLKCFG_FSB_800:
710                 dev_priv->fsb_freq = 800; /* 200*4 */
711                 break;
712         case CLKCFG_FSB_667:
713                 dev_priv->fsb_freq =  667; /* 167*4 */
714                 break;
715         case CLKCFG_FSB_400:
716                 dev_priv->fsb_freq = 400; /* 100*4 */
717                 break;
718         }
719
720         switch (tmp & CLKCFG_MEM_MASK) {
721         case CLKCFG_MEM_533:
722                 dev_priv->mem_freq = 533;
723                 break;
724         case CLKCFG_MEM_667:
725                 dev_priv->mem_freq = 667;
726                 break;
727         case CLKCFG_MEM_800:
728                 dev_priv->mem_freq = 800;
729                 break;
730         }
731
732         /* detect pineview DDR3 setting */
733         tmp = I915_READ(CSHRDDR3CTL);
734         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
735 }
736
737 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
738 {
739         struct drm_i915_private *dev_priv = dev->dev_private;
740         u16 ddrpll, csipll;
741
742         ddrpll = I915_READ16(DDRMPLL1);
743         csipll = I915_READ16(CSIPLL0);
744
745         switch (ddrpll & 0xff) {
746         case 0xc:
747                 dev_priv->mem_freq = 800;
748                 break;
749         case 0x10:
750                 dev_priv->mem_freq = 1066;
751                 break;
752         case 0x14:
753                 dev_priv->mem_freq = 1333;
754                 break;
755         case 0x18:
756                 dev_priv->mem_freq = 1600;
757                 break;
758         default:
759                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
760                                  ddrpll & 0xff);
761                 dev_priv->mem_freq = 0;
762                 break;
763         }
764
765         dev_priv->ips.r_t = dev_priv->mem_freq;
766
767         switch (csipll & 0x3ff) {
768         case 0x00c:
769                 dev_priv->fsb_freq = 3200;
770                 break;
771         case 0x00e:
772                 dev_priv->fsb_freq = 3733;
773                 break;
774         case 0x010:
775                 dev_priv->fsb_freq = 4266;
776                 break;
777         case 0x012:
778                 dev_priv->fsb_freq = 4800;
779                 break;
780         case 0x014:
781                 dev_priv->fsb_freq = 5333;
782                 break;
783         case 0x016:
784                 dev_priv->fsb_freq = 5866;
785                 break;
786         case 0x018:
787                 dev_priv->fsb_freq = 6400;
788                 break;
789         default:
790                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
791                                  csipll & 0x3ff);
792                 dev_priv->fsb_freq = 0;
793                 break;
794         }
795
796         if (dev_priv->fsb_freq == 3200) {
797                 dev_priv->ips.c_m = 0;
798         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
799                 dev_priv->ips.c_m = 1;
800         } else {
801                 dev_priv->ips.c_m = 2;
802         }
803 }
804
805 static const struct cxsr_latency cxsr_latency_table[] = {
806         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
807         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
808         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
809         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
810         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
811
812         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
813         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
814         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
815         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
816         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
817
818         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
819         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
820         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
821         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
822         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
823
824         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
825         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
826         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
827         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
828         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
829
830         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
831         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
832         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
833         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
834         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
835
836         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
837         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
838         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
839         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
840         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
841 };
842
843 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
844                                                          int is_ddr3,
845                                                          int fsb,
846                                                          int mem)
847 {
848         const struct cxsr_latency *latency;
849         int i;
850
851         if (fsb == 0 || mem == 0)
852                 return NULL;
853
854         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
855                 latency = &cxsr_latency_table[i];
856                 if (is_desktop == latency->is_desktop &&
857                     is_ddr3 == latency->is_ddr3 &&
858                     fsb == latency->fsb_freq && mem == latency->mem_freq)
859                         return latency;
860         }
861
862         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
863
864         return NULL;
865 }
866
867 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
868 {
869         struct drm_device *dev = dev_priv->dev;
870         u32 val;
871
872         if (IS_VALLEYVIEW(dev)) {
873                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
874         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
875                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
876         } else if (IS_PINEVIEW(dev)) {
877                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
878                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
879                 I915_WRITE(DSPFW3, val);
880         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
881                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
882                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
883                 I915_WRITE(FW_BLC_SELF, val);
884         } else if (IS_I915GM(dev)) {
885                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
886                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
887                 I915_WRITE(INSTPM, val);
888         } else {
889                 return;
890         }
891
892         DRM_DEBUG_KMS("memory self-refresh is %s\n",
893                       enable ? "enabled" : "disabled");
894 }
895
896 /*
897  * Latency for FIFO fetches is dependent on several factors:
898  *   - memory configuration (speed, channels)
899  *   - chipset
900  *   - current MCH state
901  * It can be fairly high in some situations, so here we assume a fairly
902  * pessimal value.  It's a tradeoff between extra memory fetches (if we
903  * set this value too high, the FIFO will fetch frequently to stay full)
904  * and power consumption (set it too low to save power and we might see
905  * FIFO underruns and display "flicker").
906  *
907  * A value of 5us seems to be a good balance; safe for very low end
908  * platforms but not overly aggressive on lower latency configs.
909  */
910 static const int pessimal_latency_ns = 5000;
911
912 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
913 {
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         uint32_t dsparb = I915_READ(DSPARB);
916         int size;
917
918         size = dsparb & 0x7f;
919         if (plane)
920                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
921
922         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
923                       plane ? "B" : "A", size);
924
925         return size;
926 }
927
928 static int i830_get_fifo_size(struct drm_device *dev, int plane)
929 {
930         struct drm_i915_private *dev_priv = dev->dev_private;
931         uint32_t dsparb = I915_READ(DSPARB);
932         int size;
933
934         size = dsparb & 0x1ff;
935         if (plane)
936                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
937         size >>= 1; /* Convert to cachelines */
938
939         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
940                       plane ? "B" : "A", size);
941
942         return size;
943 }
944
945 static int i845_get_fifo_size(struct drm_device *dev, int plane)
946 {
947         struct drm_i915_private *dev_priv = dev->dev_private;
948         uint32_t dsparb = I915_READ(DSPARB);
949         int size;
950
951         size = dsparb & 0x7f;
952         size >>= 2; /* Convert to cachelines */
953
954         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
955                       plane ? "B" : "A",
956                       size);
957
958         return size;
959 }
960
961 /* Pineview has different values for various configs */
962 static const struct intel_watermark_params pineview_display_wm = {
963         .fifo_size = PINEVIEW_DISPLAY_FIFO,
964         .max_wm = PINEVIEW_MAX_WM,
965         .default_wm = PINEVIEW_DFT_WM,
966         .guard_size = PINEVIEW_GUARD_WM,
967         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params pineview_display_hplloff_wm = {
970         .fifo_size = PINEVIEW_DISPLAY_FIFO,
971         .max_wm = PINEVIEW_MAX_WM,
972         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
973         .guard_size = PINEVIEW_GUARD_WM,
974         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params pineview_cursor_wm = {
977         .fifo_size = PINEVIEW_CURSOR_FIFO,
978         .max_wm = PINEVIEW_CURSOR_MAX_WM,
979         .default_wm = PINEVIEW_CURSOR_DFT_WM,
980         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
981         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
984         .fifo_size = PINEVIEW_CURSOR_FIFO,
985         .max_wm = PINEVIEW_CURSOR_MAX_WM,
986         .default_wm = PINEVIEW_CURSOR_DFT_WM,
987         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
988         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params g4x_wm_info = {
991         .fifo_size = G4X_FIFO_SIZE,
992         .max_wm = G4X_MAX_WM,
993         .default_wm = G4X_MAX_WM,
994         .guard_size = 2,
995         .cacheline_size = G4X_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params g4x_cursor_wm_info = {
998         .fifo_size = I965_CURSOR_FIFO,
999         .max_wm = I965_CURSOR_MAX_WM,
1000         .default_wm = I965_CURSOR_DFT_WM,
1001         .guard_size = 2,
1002         .cacheline_size = G4X_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params valleyview_wm_info = {
1005         .fifo_size = VALLEYVIEW_FIFO_SIZE,
1006         .max_wm = VALLEYVIEW_MAX_WM,
1007         .default_wm = VALLEYVIEW_MAX_WM,
1008         .guard_size = 2,
1009         .cacheline_size = G4X_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params valleyview_cursor_wm_info = {
1012         .fifo_size = I965_CURSOR_FIFO,
1013         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
1014         .default_wm = I965_CURSOR_DFT_WM,
1015         .guard_size = 2,
1016         .cacheline_size = G4X_FIFO_LINE_SIZE,
1017 };
1018 static const struct intel_watermark_params i965_cursor_wm_info = {
1019         .fifo_size = I965_CURSOR_FIFO,
1020         .max_wm = I965_CURSOR_MAX_WM,
1021         .default_wm = I965_CURSOR_DFT_WM,
1022         .guard_size = 2,
1023         .cacheline_size = I915_FIFO_LINE_SIZE,
1024 };
1025 static const struct intel_watermark_params i945_wm_info = {
1026         .fifo_size = I945_FIFO_SIZE,
1027         .max_wm = I915_MAX_WM,
1028         .default_wm = 1,
1029         .guard_size = 2,
1030         .cacheline_size = I915_FIFO_LINE_SIZE,
1031 };
1032 static const struct intel_watermark_params i915_wm_info = {
1033         .fifo_size = I915_FIFO_SIZE,
1034         .max_wm = I915_MAX_WM,
1035         .default_wm = 1,
1036         .guard_size = 2,
1037         .cacheline_size = I915_FIFO_LINE_SIZE,
1038 };
1039 static const struct intel_watermark_params i830_a_wm_info = {
1040         .fifo_size = I855GM_FIFO_SIZE,
1041         .max_wm = I915_MAX_WM,
1042         .default_wm = 1,
1043         .guard_size = 2,
1044         .cacheline_size = I830_FIFO_LINE_SIZE,
1045 };
1046 static const struct intel_watermark_params i830_bc_wm_info = {
1047         .fifo_size = I855GM_FIFO_SIZE,
1048         .max_wm = I915_MAX_WM/2,
1049         .default_wm = 1,
1050         .guard_size = 2,
1051         .cacheline_size = I830_FIFO_LINE_SIZE,
1052 };
1053 static const struct intel_watermark_params i845_wm_info = {
1054         .fifo_size = I830_FIFO_SIZE,
1055         .max_wm = I915_MAX_WM,
1056         .default_wm = 1,
1057         .guard_size = 2,
1058         .cacheline_size = I830_FIFO_LINE_SIZE,
1059 };
1060
1061 /**
1062  * intel_calculate_wm - calculate watermark level
1063  * @clock_in_khz: pixel clock
1064  * @wm: chip FIFO params
1065  * @pixel_size: display pixel size
1066  * @latency_ns: memory latency for the platform
1067  *
1068  * Calculate the watermark level (the level at which the display plane will
1069  * start fetching from memory again).  Each chip has a different display
1070  * FIFO size and allocation, so the caller needs to figure that out and pass
1071  * in the correct intel_watermark_params structure.
1072  *
1073  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1074  * on the pixel size.  When it reaches the watermark level, it'll start
1075  * fetching FIFO line sized based chunks from memory until the FIFO fills
1076  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1077  * will occur, and a display engine hang could result.
1078  */
1079 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1080                                         const struct intel_watermark_params *wm,
1081                                         int fifo_size,
1082                                         int pixel_size,
1083                                         unsigned long latency_ns)
1084 {
1085         long entries_required, wm_size;
1086
1087         /*
1088          * Note: we need to make sure we don't overflow for various clock &
1089          * latency values.
1090          * clocks go from a few thousand to several hundred thousand.
1091          * latency is usually a few thousand
1092          */
1093         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1094                 1000;
1095         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1096
1097         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1098
1099         wm_size = fifo_size - (entries_required + wm->guard_size);
1100
1101         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1102
1103         /* Don't promote wm_size to unsigned... */
1104         if (wm_size > (long)wm->max_wm)
1105                 wm_size = wm->max_wm;
1106         if (wm_size <= 0)
1107                 wm_size = wm->default_wm;
1108
1109         /*
1110          * Bspec seems to indicate that the value shouldn't be lower than
1111          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
1112          * Lets go for 8 which is the burst size since certain platforms
1113          * already use a hardcoded 8 (which is what the spec says should be
1114          * done).
1115          */
1116         if (wm_size <= 8)
1117                 wm_size = 8;
1118
1119         return wm_size;
1120 }
1121
1122 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1123 {
1124         struct drm_crtc *crtc, *enabled = NULL;
1125
1126         for_each_crtc(dev, crtc) {
1127                 if (intel_crtc_active(crtc)) {
1128                         if (enabled)
1129                                 return NULL;
1130                         enabled = crtc;
1131                 }
1132         }
1133
1134         return enabled;
1135 }
1136
1137 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1138 {
1139         struct drm_device *dev = unused_crtc->dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct drm_crtc *crtc;
1142         const struct cxsr_latency *latency;
1143         u32 reg;
1144         unsigned long wm;
1145
1146         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1147                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1148         if (!latency) {
1149                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1150                 intel_set_memory_cxsr(dev_priv, false);
1151                 return;
1152         }
1153
1154         crtc = single_enabled_crtc(dev);
1155         if (crtc) {
1156                 const struct drm_display_mode *adjusted_mode;
1157                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1158                 int clock;
1159
1160                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1161                 clock = adjusted_mode->crtc_clock;
1162
1163                 /* Display SR */
1164                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1165                                         pineview_display_wm.fifo_size,
1166                                         pixel_size, latency->display_sr);
1167                 reg = I915_READ(DSPFW1);
1168                 reg &= ~DSPFW_SR_MASK;
1169                 reg |= wm << DSPFW_SR_SHIFT;
1170                 I915_WRITE(DSPFW1, reg);
1171                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1172
1173                 /* cursor SR */
1174                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1175                                         pineview_display_wm.fifo_size,
1176                                         pixel_size, latency->cursor_sr);
1177                 reg = I915_READ(DSPFW3);
1178                 reg &= ~DSPFW_CURSOR_SR_MASK;
1179                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1180                 I915_WRITE(DSPFW3, reg);
1181
1182                 /* Display HPLL off SR */
1183                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1184                                         pineview_display_hplloff_wm.fifo_size,
1185                                         pixel_size, latency->display_hpll_disable);
1186                 reg = I915_READ(DSPFW3);
1187                 reg &= ~DSPFW_HPLL_SR_MASK;
1188                 reg |= wm & DSPFW_HPLL_SR_MASK;
1189                 I915_WRITE(DSPFW3, reg);
1190
1191                 /* cursor HPLL off SR */
1192                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1193                                         pineview_display_hplloff_wm.fifo_size,
1194                                         pixel_size, latency->cursor_hpll_disable);
1195                 reg = I915_READ(DSPFW3);
1196                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1197                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1198                 I915_WRITE(DSPFW3, reg);
1199                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1200
1201                 intel_set_memory_cxsr(dev_priv, true);
1202         } else {
1203                 intel_set_memory_cxsr(dev_priv, false);
1204         }
1205 }
1206
1207 static bool g4x_compute_wm0(struct drm_device *dev,
1208                             int plane,
1209                             const struct intel_watermark_params *display,
1210                             int display_latency_ns,
1211                             const struct intel_watermark_params *cursor,
1212                             int cursor_latency_ns,
1213                             int *plane_wm,
1214                             int *cursor_wm)
1215 {
1216         struct drm_crtc *crtc;
1217         const struct drm_display_mode *adjusted_mode;
1218         int htotal, hdisplay, clock, pixel_size;
1219         int line_time_us, line_count;
1220         int entries, tlb_miss;
1221
1222         crtc = intel_get_crtc_for_plane(dev, plane);
1223         if (!intel_crtc_active(crtc)) {
1224                 *cursor_wm = cursor->guard_size;
1225                 *plane_wm = display->guard_size;
1226                 return false;
1227         }
1228
1229         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1230         clock = adjusted_mode->crtc_clock;
1231         htotal = adjusted_mode->crtc_htotal;
1232         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1233         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1234
1235         /* Use the small buffer method to calculate plane watermark */
1236         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1237         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1238         if (tlb_miss > 0)
1239                 entries += tlb_miss;
1240         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1241         *plane_wm = entries + display->guard_size;
1242         if (*plane_wm > (int)display->max_wm)
1243                 *plane_wm = display->max_wm;
1244
1245         /* Use the large buffer method to calculate cursor watermark */
1246         line_time_us = max(htotal * 1000 / clock, 1);
1247         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1248         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1249         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1250         if (tlb_miss > 0)
1251                 entries += tlb_miss;
1252         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1253         *cursor_wm = entries + cursor->guard_size;
1254         if (*cursor_wm > (int)cursor->max_wm)
1255                 *cursor_wm = (int)cursor->max_wm;
1256
1257         return true;
1258 }
1259
1260 /*
1261  * Check the wm result.
1262  *
1263  * If any calculated watermark values is larger than the maximum value that
1264  * can be programmed into the associated watermark register, that watermark
1265  * must be disabled.
1266  */
1267 static bool g4x_check_srwm(struct drm_device *dev,
1268                            int display_wm, int cursor_wm,
1269                            const struct intel_watermark_params *display,
1270                            const struct intel_watermark_params *cursor)
1271 {
1272         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1273                       display_wm, cursor_wm);
1274
1275         if (display_wm > display->max_wm) {
1276                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1277                               display_wm, display->max_wm);
1278                 return false;
1279         }
1280
1281         if (cursor_wm > cursor->max_wm) {
1282                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1283                               cursor_wm, cursor->max_wm);
1284                 return false;
1285         }
1286
1287         if (!(display_wm || cursor_wm)) {
1288                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1289                 return false;
1290         }
1291
1292         return true;
1293 }
1294
1295 static bool g4x_compute_srwm(struct drm_device *dev,
1296                              int plane,
1297                              int latency_ns,
1298                              const struct intel_watermark_params *display,
1299                              const struct intel_watermark_params *cursor,
1300                              int *display_wm, int *cursor_wm)
1301 {
1302         struct drm_crtc *crtc;
1303         const struct drm_display_mode *adjusted_mode;
1304         int hdisplay, htotal, pixel_size, clock;
1305         unsigned long line_time_us;
1306         int line_count, line_size;
1307         int small, large;
1308         int entries;
1309
1310         if (!latency_ns) {
1311                 *display_wm = *cursor_wm = 0;
1312                 return false;
1313         }
1314
1315         crtc = intel_get_crtc_for_plane(dev, plane);
1316         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1317         clock = adjusted_mode->crtc_clock;
1318         htotal = adjusted_mode->crtc_htotal;
1319         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1320         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1321
1322         line_time_us = max(htotal * 1000 / clock, 1);
1323         line_count = (latency_ns / line_time_us + 1000) / 1000;
1324         line_size = hdisplay * pixel_size;
1325
1326         /* Use the minimum of the small and large buffer method for primary */
1327         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1328         large = line_count * line_size;
1329
1330         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1331         *display_wm = entries + display->guard_size;
1332
1333         /* calculate the self-refresh watermark for display cursor */
1334         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1335         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1336         *cursor_wm = entries + cursor->guard_size;
1337
1338         return g4x_check_srwm(dev,
1339                               *display_wm, *cursor_wm,
1340                               display, cursor);
1341 }
1342
1343 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1344                                       int pixel_size,
1345                                       int *prec_mult,
1346                                       int *drain_latency)
1347 {
1348         struct drm_device *dev = crtc->dev;
1349         int entries;
1350         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1351
1352         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1353                 return false;
1354
1355         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1356                 return false;
1357
1358         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1359         if (IS_CHERRYVIEW(dev))
1360                 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
1361                                                DRAIN_LATENCY_PRECISION_16;
1362         else
1363                 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1364                                                DRAIN_LATENCY_PRECISION_32;
1365         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1366
1367         if (*drain_latency > DRAIN_LATENCY_MASK)
1368                 *drain_latency = DRAIN_LATENCY_MASK;
1369
1370         return true;
1371 }
1372
1373 /*
1374  * Update drain latency registers of memory arbiter
1375  *
1376  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1377  * to be programmed. Each plane has a drain latency multiplier and a drain
1378  * latency value.
1379  */
1380
1381 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1382 {
1383         struct drm_device *dev = crtc->dev;
1384         struct drm_i915_private *dev_priv = dev->dev_private;
1385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1386         int pixel_size;
1387         int drain_latency;
1388         enum pipe pipe = intel_crtc->pipe;
1389         int plane_prec, prec_mult, plane_dl;
1390         const int high_precision = IS_CHERRYVIEW(dev) ?
1391                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1392
1393         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
1394                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
1395                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1396
1397         if (!intel_crtc_active(crtc)) {
1398                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1399                 return;
1400         }
1401
1402         /* Primary plane Drain Latency */
1403         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1404         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1405                 plane_prec = (prec_mult == high_precision) ?
1406                                            DDL_PLANE_PRECISION_HIGH :
1407                                            DDL_PLANE_PRECISION_LOW;
1408                 plane_dl |= plane_prec | drain_latency;
1409         }
1410
1411         /* Cursor Drain Latency
1412          * BPP is always 4 for cursor
1413          */
1414         pixel_size = 4;
1415
1416         /* Program cursor DL only if it is enabled */
1417         if (intel_crtc->cursor_base &&
1418             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1419                 plane_prec = (prec_mult == high_precision) ?
1420                                            DDL_CURSOR_PRECISION_HIGH :
1421                                            DDL_CURSOR_PRECISION_LOW;
1422                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1423         }
1424
1425         I915_WRITE(VLV_DDL(pipe), plane_dl);
1426 }
1427
1428 #define single_plane_enabled(mask) is_power_of_2(mask)
1429
1430 static void valleyview_update_wm(struct drm_crtc *crtc)
1431 {
1432         struct drm_device *dev = crtc->dev;
1433         static const int sr_latency_ns = 12000;
1434         struct drm_i915_private *dev_priv = dev->dev_private;
1435         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1436         int plane_sr, cursor_sr;
1437         int ignore_plane_sr, ignore_cursor_sr;
1438         unsigned int enabled = 0;
1439         bool cxsr_enabled;
1440
1441         vlv_update_drain_latency(crtc);
1442
1443         if (g4x_compute_wm0(dev, PIPE_A,
1444                             &valleyview_wm_info, pessimal_latency_ns,
1445                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1446                             &planea_wm, &cursora_wm))
1447                 enabled |= 1 << PIPE_A;
1448
1449         if (g4x_compute_wm0(dev, PIPE_B,
1450                             &valleyview_wm_info, pessimal_latency_ns,
1451                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1452                             &planeb_wm, &cursorb_wm))
1453                 enabled |= 1 << PIPE_B;
1454
1455         if (single_plane_enabled(enabled) &&
1456             g4x_compute_srwm(dev, ffs(enabled) - 1,
1457                              sr_latency_ns,
1458                              &valleyview_wm_info,
1459                              &valleyview_cursor_wm_info,
1460                              &plane_sr, &ignore_cursor_sr) &&
1461             g4x_compute_srwm(dev, ffs(enabled) - 1,
1462                              2*sr_latency_ns,
1463                              &valleyview_wm_info,
1464                              &valleyview_cursor_wm_info,
1465                              &ignore_plane_sr, &cursor_sr)) {
1466                 cxsr_enabled = true;
1467         } else {
1468                 cxsr_enabled = false;
1469                 intel_set_memory_cxsr(dev_priv, false);
1470                 plane_sr = cursor_sr = 0;
1471         }
1472
1473         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1474                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1475                       planea_wm, cursora_wm,
1476                       planeb_wm, cursorb_wm,
1477                       plane_sr, cursor_sr);
1478
1479         I915_WRITE(DSPFW1,
1480                    (plane_sr << DSPFW_SR_SHIFT) |
1481                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1482                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1483                    (planea_wm << DSPFW_PLANEA_SHIFT));
1484         I915_WRITE(DSPFW2,
1485                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1486                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1487         I915_WRITE(DSPFW3,
1488                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1489                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490
1491         if (cxsr_enabled)
1492                 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 static void cherryview_update_wm(struct drm_crtc *crtc)
1496 {
1497         struct drm_device *dev = crtc->dev;
1498         static const int sr_latency_ns = 12000;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         int planea_wm, planeb_wm, planec_wm;
1501         int cursora_wm, cursorb_wm, cursorc_wm;
1502         int plane_sr, cursor_sr;
1503         int ignore_plane_sr, ignore_cursor_sr;
1504         unsigned int enabled = 0;
1505         bool cxsr_enabled;
1506
1507         vlv_update_drain_latency(crtc);
1508
1509         if (g4x_compute_wm0(dev, PIPE_A,
1510                             &valleyview_wm_info, pessimal_latency_ns,
1511                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1512                             &planea_wm, &cursora_wm))
1513                 enabled |= 1 << PIPE_A;
1514
1515         if (g4x_compute_wm0(dev, PIPE_B,
1516                             &valleyview_wm_info, pessimal_latency_ns,
1517                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1518                             &planeb_wm, &cursorb_wm))
1519                 enabled |= 1 << PIPE_B;
1520
1521         if (g4x_compute_wm0(dev, PIPE_C,
1522                             &valleyview_wm_info, pessimal_latency_ns,
1523                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1524                             &planec_wm, &cursorc_wm))
1525                 enabled |= 1 << PIPE_C;
1526
1527         if (single_plane_enabled(enabled) &&
1528             g4x_compute_srwm(dev, ffs(enabled) - 1,
1529                              sr_latency_ns,
1530                              &valleyview_wm_info,
1531                              &valleyview_cursor_wm_info,
1532                              &plane_sr, &ignore_cursor_sr) &&
1533             g4x_compute_srwm(dev, ffs(enabled) - 1,
1534                              2*sr_latency_ns,
1535                              &valleyview_wm_info,
1536                              &valleyview_cursor_wm_info,
1537                              &ignore_plane_sr, &cursor_sr)) {
1538                 cxsr_enabled = true;
1539         } else {
1540                 cxsr_enabled = false;
1541                 intel_set_memory_cxsr(dev_priv, false);
1542                 plane_sr = cursor_sr = 0;
1543         }
1544
1545         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1546                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1547                       "SR: plane=%d, cursor=%d\n",
1548                       planea_wm, cursora_wm,
1549                       planeb_wm, cursorb_wm,
1550                       planec_wm, cursorc_wm,
1551                       plane_sr, cursor_sr);
1552
1553         I915_WRITE(DSPFW1,
1554                    (plane_sr << DSPFW_SR_SHIFT) |
1555                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1556                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1557                    (planea_wm << DSPFW_PLANEA_SHIFT));
1558         I915_WRITE(DSPFW2,
1559                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1560                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1561         I915_WRITE(DSPFW3,
1562                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1563                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1564         I915_WRITE(DSPFW9_CHV,
1565                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1566                                               DSPFW_CURSORC_MASK)) |
1567                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1568                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1569
1570         if (cxsr_enabled)
1571                 intel_set_memory_cxsr(dev_priv, true);
1572 }
1573
1574 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1575                                         struct drm_crtc *crtc,
1576                                         uint32_t sprite_width,
1577                                         uint32_t sprite_height,
1578                                         int pixel_size,
1579                                         bool enabled, bool scaled)
1580 {
1581         struct drm_device *dev = crtc->dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         int pipe = to_intel_plane(plane)->pipe;
1584         int sprite = to_intel_plane(plane)->plane;
1585         int drain_latency;
1586         int plane_prec;
1587         int sprite_dl;
1588         int prec_mult;
1589         const int high_precision = IS_CHERRYVIEW(dev) ?
1590                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1591
1592         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
1593                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1594
1595         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1596                                                  &drain_latency)) {
1597                 plane_prec = (prec_mult == high_precision) ?
1598                                            DDL_SPRITE_PRECISION_HIGH(sprite) :
1599                                            DDL_SPRITE_PRECISION_LOW(sprite);
1600                 sprite_dl |= plane_prec |
1601                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1602         }
1603
1604         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1605 }
1606
1607 static void g4x_update_wm(struct drm_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->dev;
1610         static const int sr_latency_ns = 12000;
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1613         int plane_sr, cursor_sr;
1614         unsigned int enabled = 0;
1615         bool cxsr_enabled;
1616
1617         if (g4x_compute_wm0(dev, PIPE_A,
1618                             &g4x_wm_info, pessimal_latency_ns,
1619                             &g4x_cursor_wm_info, pessimal_latency_ns,
1620                             &planea_wm, &cursora_wm))
1621                 enabled |= 1 << PIPE_A;
1622
1623         if (g4x_compute_wm0(dev, PIPE_B,
1624                             &g4x_wm_info, pessimal_latency_ns,
1625                             &g4x_cursor_wm_info, pessimal_latency_ns,
1626                             &planeb_wm, &cursorb_wm))
1627                 enabled |= 1 << PIPE_B;
1628
1629         if (single_plane_enabled(enabled) &&
1630             g4x_compute_srwm(dev, ffs(enabled) - 1,
1631                              sr_latency_ns,
1632                              &g4x_wm_info,
1633                              &g4x_cursor_wm_info,
1634                              &plane_sr, &cursor_sr)) {
1635                 cxsr_enabled = true;
1636         } else {
1637                 cxsr_enabled = false;
1638                 intel_set_memory_cxsr(dev_priv, false);
1639                 plane_sr = cursor_sr = 0;
1640         }
1641
1642         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1643                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1644                       planea_wm, cursora_wm,
1645                       planeb_wm, cursorb_wm,
1646                       plane_sr, cursor_sr);
1647
1648         I915_WRITE(DSPFW1,
1649                    (plane_sr << DSPFW_SR_SHIFT) |
1650                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1651                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1652                    (planea_wm << DSPFW_PLANEA_SHIFT));
1653         I915_WRITE(DSPFW2,
1654                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1655                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1656         /* HPLL off in SR has some issues on G4x... disable it */
1657         I915_WRITE(DSPFW3,
1658                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1659                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1660
1661         if (cxsr_enabled)
1662                 intel_set_memory_cxsr(dev_priv, true);
1663 }
1664
1665 static void i965_update_wm(struct drm_crtc *unused_crtc)
1666 {
1667         struct drm_device *dev = unused_crtc->dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         struct drm_crtc *crtc;
1670         int srwm = 1;
1671         int cursor_sr = 16;
1672         bool cxsr_enabled;
1673
1674         /* Calc sr entries for one plane configs */
1675         crtc = single_enabled_crtc(dev);
1676         if (crtc) {
1677                 /* self-refresh has much higher latency */
1678                 static const int sr_latency_ns = 12000;
1679                 const struct drm_display_mode *adjusted_mode =
1680                         &to_intel_crtc(crtc)->config.adjusted_mode;
1681                 int clock = adjusted_mode->crtc_clock;
1682                 int htotal = adjusted_mode->crtc_htotal;
1683                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1684                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1685                 unsigned long line_time_us;
1686                 int entries;
1687
1688                 line_time_us = max(htotal * 1000 / clock, 1);
1689
1690                 /* Use ns/us then divide to preserve precision */
1691                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1692                         pixel_size * hdisplay;
1693                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1694                 srwm = I965_FIFO_SIZE - entries;
1695                 if (srwm < 0)
1696                         srwm = 1;
1697                 srwm &= 0x1ff;
1698                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1699                               entries, srwm);
1700
1701                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1702                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1703                 entries = DIV_ROUND_UP(entries,
1704                                           i965_cursor_wm_info.cacheline_size);
1705                 cursor_sr = i965_cursor_wm_info.fifo_size -
1706                         (entries + i965_cursor_wm_info.guard_size);
1707
1708                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1709                         cursor_sr = i965_cursor_wm_info.max_wm;
1710
1711                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1712                               "cursor %d\n", srwm, cursor_sr);
1713
1714                 cxsr_enabled = true;
1715         } else {
1716                 cxsr_enabled = false;
1717                 /* Turn off self refresh if both pipes are enabled */
1718                 intel_set_memory_cxsr(dev_priv, false);
1719         }
1720
1721         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1722                       srwm);
1723
1724         /* 965 has limitations... */
1725         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1726                    (8 << DSPFW_CURSORB_SHIFT) |
1727                    (8 << DSPFW_PLANEB_SHIFT) |
1728                    (8 << DSPFW_PLANEA_SHIFT));
1729         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1730                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1731         /* update cursor SR watermark */
1732         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1733
1734         if (cxsr_enabled)
1735                 intel_set_memory_cxsr(dev_priv, true);
1736 }
1737
1738 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1739 {
1740         struct drm_device *dev = unused_crtc->dev;
1741         struct drm_i915_private *dev_priv = dev->dev_private;
1742         const struct intel_watermark_params *wm_info;
1743         uint32_t fwater_lo;
1744         uint32_t fwater_hi;
1745         int cwm, srwm = 1;
1746         int fifo_size;
1747         int planea_wm, planeb_wm;
1748         struct drm_crtc *crtc, *enabled = NULL;
1749
1750         if (IS_I945GM(dev))
1751                 wm_info = &i945_wm_info;
1752         else if (!IS_GEN2(dev))
1753                 wm_info = &i915_wm_info;
1754         else
1755                 wm_info = &i830_a_wm_info;
1756
1757         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1758         crtc = intel_get_crtc_for_plane(dev, 0);
1759         if (intel_crtc_active(crtc)) {
1760                 const struct drm_display_mode *adjusted_mode;
1761                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1762                 if (IS_GEN2(dev))
1763                         cpp = 4;
1764
1765                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1766                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1767                                                wm_info, fifo_size, cpp,
1768                                                pessimal_latency_ns);
1769                 enabled = crtc;
1770         } else {
1771                 planea_wm = fifo_size - wm_info->guard_size;
1772                 if (planea_wm > (long)wm_info->max_wm)
1773                         planea_wm = wm_info->max_wm;
1774         }
1775
1776         if (IS_GEN2(dev))
1777                 wm_info = &i830_bc_wm_info;
1778
1779         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1780         crtc = intel_get_crtc_for_plane(dev, 1);
1781         if (intel_crtc_active(crtc)) {
1782                 const struct drm_display_mode *adjusted_mode;
1783                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1784                 if (IS_GEN2(dev))
1785                         cpp = 4;
1786
1787                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1788                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1789                                                wm_info, fifo_size, cpp,
1790                                                pessimal_latency_ns);
1791                 if (enabled == NULL)
1792                         enabled = crtc;
1793                 else
1794                         enabled = NULL;
1795         } else {
1796                 planeb_wm = fifo_size - wm_info->guard_size;
1797                 if (planeb_wm > (long)wm_info->max_wm)
1798                         planeb_wm = wm_info->max_wm;
1799         }
1800
1801         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1802
1803         if (IS_I915GM(dev) && enabled) {
1804                 struct drm_i915_gem_object *obj;
1805
1806                 obj = intel_fb_obj(enabled->primary->fb);
1807
1808                 /* self-refresh seems busted with untiled */
1809                 if (obj->tiling_mode == I915_TILING_NONE)
1810                         enabled = NULL;
1811         }
1812
1813         /*
1814          * Overlay gets an aggressive default since video jitter is bad.
1815          */
1816         cwm = 2;
1817
1818         /* Play safe and disable self-refresh before adjusting watermarks. */
1819         intel_set_memory_cxsr(dev_priv, false);
1820
1821         /* Calc sr entries for one plane configs */
1822         if (HAS_FW_BLC(dev) && enabled) {
1823                 /* self-refresh has much higher latency */
1824                 static const int sr_latency_ns = 6000;
1825                 const struct drm_display_mode *adjusted_mode =
1826                         &to_intel_crtc(enabled)->config.adjusted_mode;
1827                 int clock = adjusted_mode->crtc_clock;
1828                 int htotal = adjusted_mode->crtc_htotal;
1829                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1830                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1831                 unsigned long line_time_us;
1832                 int entries;
1833
1834                 line_time_us = max(htotal * 1000 / clock, 1);
1835
1836                 /* Use ns/us then divide to preserve precision */
1837                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1838                         pixel_size * hdisplay;
1839                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1840                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1841                 srwm = wm_info->fifo_size - entries;
1842                 if (srwm < 0)
1843                         srwm = 1;
1844
1845                 if (IS_I945G(dev) || IS_I945GM(dev))
1846                         I915_WRITE(FW_BLC_SELF,
1847                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1848                 else if (IS_I915GM(dev))
1849                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1850         }
1851
1852         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1853                       planea_wm, planeb_wm, cwm, srwm);
1854
1855         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1856         fwater_hi = (cwm & 0x1f);
1857
1858         /* Set request length to 8 cachelines per fetch */
1859         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1860         fwater_hi = fwater_hi | (1 << 8);
1861
1862         I915_WRITE(FW_BLC, fwater_lo);
1863         I915_WRITE(FW_BLC2, fwater_hi);
1864
1865         if (enabled)
1866                 intel_set_memory_cxsr(dev_priv, true);
1867 }
1868
1869 static void i845_update_wm(struct drm_crtc *unused_crtc)
1870 {
1871         struct drm_device *dev = unused_crtc->dev;
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873         struct drm_crtc *crtc;
1874         const struct drm_display_mode *adjusted_mode;
1875         uint32_t fwater_lo;
1876         int planea_wm;
1877
1878         crtc = single_enabled_crtc(dev);
1879         if (crtc == NULL)
1880                 return;
1881
1882         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1883         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1884                                        &i845_wm_info,
1885                                        dev_priv->display.get_fifo_size(dev, 0),
1886                                        4, pessimal_latency_ns);
1887         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1888         fwater_lo |= (3<<8) | planea_wm;
1889
1890         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1891
1892         I915_WRITE(FW_BLC, fwater_lo);
1893 }
1894
1895 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1896                                     struct drm_crtc *crtc)
1897 {
1898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1899         uint32_t pixel_rate;
1900
1901         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1902
1903         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1904          * adjust the pixel_rate here. */
1905
1906         if (intel_crtc->config.pch_pfit.enabled) {
1907                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1908                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1909
1910                 pipe_w = intel_crtc->config.pipe_src_w;
1911                 pipe_h = intel_crtc->config.pipe_src_h;
1912                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1913                 pfit_h = pfit_size & 0xFFFF;
1914                 if (pipe_w < pfit_w)
1915                         pipe_w = pfit_w;
1916                 if (pipe_h < pfit_h)
1917                         pipe_h = pfit_h;
1918
1919                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1920                                      pfit_w * pfit_h);
1921         }
1922
1923         return pixel_rate;
1924 }
1925
1926 /* latency must be in 0.1us units. */
1927 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1928                                uint32_t latency)
1929 {
1930         uint64_t ret;
1931
1932         if (WARN(latency == 0, "Latency value missing\n"))
1933                 return UINT_MAX;
1934
1935         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1936         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1937
1938         return ret;
1939 }
1940
1941 /* latency must be in 0.1us units. */
1942 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1943                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1944                                uint32_t latency)
1945 {
1946         uint32_t ret;
1947
1948         if (WARN(latency == 0, "Latency value missing\n"))
1949                 return UINT_MAX;
1950
1951         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1952         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1953         ret = DIV_ROUND_UP(ret, 64) + 2;
1954         return ret;
1955 }
1956
1957 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1958                            uint8_t bytes_per_pixel)
1959 {
1960         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1961 }
1962
1963 struct skl_pipe_wm_parameters {
1964         bool active;
1965         uint32_t pipe_htotal;
1966         uint32_t pixel_rate; /* in KHz */
1967         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1968         struct intel_plane_wm_parameters cursor;
1969 };
1970
1971 struct ilk_pipe_wm_parameters {
1972         bool active;
1973         uint32_t pipe_htotal;
1974         uint32_t pixel_rate;
1975         struct intel_plane_wm_parameters pri;
1976         struct intel_plane_wm_parameters spr;
1977         struct intel_plane_wm_parameters cur;
1978 };
1979
1980 struct ilk_wm_maximums {
1981         uint16_t pri;
1982         uint16_t spr;
1983         uint16_t cur;
1984         uint16_t fbc;
1985 };
1986
1987 /* used in computing the new watermarks state */
1988 struct intel_wm_config {
1989         unsigned int num_pipes_active;
1990         bool sprites_enabled;
1991         bool sprites_scaled;
1992 };
1993
1994 /*
1995  * For both WM_PIPE and WM_LP.
1996  * mem_value must be in 0.1us units.
1997  */
1998 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1999                                    uint32_t mem_value,
2000                                    bool is_lp)
2001 {
2002         uint32_t method1, method2;
2003
2004         if (!params->active || !params->pri.enabled)
2005                 return 0;
2006
2007         method1 = ilk_wm_method1(params->pixel_rate,
2008                                  params->pri.bytes_per_pixel,
2009                                  mem_value);
2010
2011         if (!is_lp)
2012                 return method1;
2013
2014         method2 = ilk_wm_method2(params->pixel_rate,
2015                                  params->pipe_htotal,
2016                                  params->pri.horiz_pixels,
2017                                  params->pri.bytes_per_pixel,
2018                                  mem_value);
2019
2020         return min(method1, method2);
2021 }
2022
2023 /*
2024  * For both WM_PIPE and WM_LP.
2025  * mem_value must be in 0.1us units.
2026  */
2027 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
2028                                    uint32_t mem_value)
2029 {
2030         uint32_t method1, method2;
2031
2032         if (!params->active || !params->spr.enabled)
2033                 return 0;
2034
2035         method1 = ilk_wm_method1(params->pixel_rate,
2036                                  params->spr.bytes_per_pixel,
2037                                  mem_value);
2038         method2 = ilk_wm_method2(params->pixel_rate,
2039                                  params->pipe_htotal,
2040                                  params->spr.horiz_pixels,
2041                                  params->spr.bytes_per_pixel,
2042                                  mem_value);
2043         return min(method1, method2);
2044 }
2045
2046 /*
2047  * For both WM_PIPE and WM_LP.
2048  * mem_value must be in 0.1us units.
2049  */
2050 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2051                                    uint32_t mem_value)
2052 {
2053         if (!params->active || !params->cur.enabled)
2054                 return 0;
2055
2056         return ilk_wm_method2(params->pixel_rate,
2057                               params->pipe_htotal,
2058                               params->cur.horiz_pixels,
2059                               params->cur.bytes_per_pixel,
2060                               mem_value);
2061 }
2062
2063 /* Only for WM_LP. */
2064 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2065                                    uint32_t pri_val)
2066 {
2067         if (!params->active || !params->pri.enabled)
2068                 return 0;
2069
2070         return ilk_wm_fbc(pri_val,
2071                           params->pri.horiz_pixels,
2072                           params->pri.bytes_per_pixel);
2073 }
2074
2075 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2076 {
2077         if (INTEL_INFO(dev)->gen >= 8)
2078                 return 3072;
2079         else if (INTEL_INFO(dev)->gen >= 7)
2080                 return 768;
2081         else
2082                 return 512;
2083 }
2084
2085 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2086                                          int level, bool is_sprite)
2087 {
2088         if (INTEL_INFO(dev)->gen >= 8)
2089                 /* BDW primary/sprite plane watermarks */
2090                 return level == 0 ? 255 : 2047;
2091         else if (INTEL_INFO(dev)->gen >= 7)
2092                 /* IVB/HSW primary/sprite plane watermarks */
2093                 return level == 0 ? 127 : 1023;
2094         else if (!is_sprite)
2095                 /* ILK/SNB primary plane watermarks */
2096                 return level == 0 ? 127 : 511;
2097         else
2098                 /* ILK/SNB sprite plane watermarks */
2099                 return level == 0 ? 63 : 255;
2100 }
2101
2102 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2103                                           int level)
2104 {
2105         if (INTEL_INFO(dev)->gen >= 7)
2106                 return level == 0 ? 63 : 255;
2107         else
2108                 return level == 0 ? 31 : 63;
2109 }
2110
2111 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2112 {
2113         if (INTEL_INFO(dev)->gen >= 8)
2114                 return 31;
2115         else
2116                 return 15;
2117 }
2118
2119 /* Calculate the maximum primary/sprite plane watermark */
2120 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2121                                      int level,
2122                                      const struct intel_wm_config *config,
2123                                      enum intel_ddb_partitioning ddb_partitioning,
2124                                      bool is_sprite)
2125 {
2126         unsigned int fifo_size = ilk_display_fifo_size(dev);
2127
2128         /* if sprites aren't enabled, sprites get nothing */
2129         if (is_sprite && !config->sprites_enabled)
2130                 return 0;
2131
2132         /* HSW allows LP1+ watermarks even with multiple pipes */
2133         if (level == 0 || config->num_pipes_active > 1) {
2134                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2135
2136                 /*
2137                  * For some reason the non self refresh
2138                  * FIFO size is only half of the self
2139                  * refresh FIFO size on ILK/SNB.
2140                  */
2141                 if (INTEL_INFO(dev)->gen <= 6)
2142                         fifo_size /= 2;
2143         }
2144
2145         if (config->sprites_enabled) {
2146                 /* level 0 is always calculated with 1:1 split */
2147                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2148                         if (is_sprite)
2149                                 fifo_size *= 5;
2150                         fifo_size /= 6;
2151                 } else {
2152                         fifo_size /= 2;
2153                 }
2154         }
2155
2156         /* clamp to max that the registers can hold */
2157         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2158 }
2159
2160 /* Calculate the maximum cursor plane watermark */
2161 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2162                                       int level,
2163                                       const struct intel_wm_config *config)
2164 {
2165         /* HSW LP1+ watermarks w/ multiple pipes */
2166         if (level > 0 && config->num_pipes_active > 1)
2167                 return 64;
2168
2169         /* otherwise just report max that registers can hold */
2170         return ilk_cursor_wm_reg_max(dev, level);
2171 }
2172
2173 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2174                                     int level,
2175                                     const struct intel_wm_config *config,
2176                                     enum intel_ddb_partitioning ddb_partitioning,
2177                                     struct ilk_wm_maximums *max)
2178 {
2179         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2180         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2181         max->cur = ilk_cursor_wm_max(dev, level, config);
2182         max->fbc = ilk_fbc_wm_reg_max(dev);
2183 }
2184
2185 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2186                                         int level,
2187                                         struct ilk_wm_maximums *max)
2188 {
2189         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2190         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2191         max->cur = ilk_cursor_wm_reg_max(dev, level);
2192         max->fbc = ilk_fbc_wm_reg_max(dev);
2193 }
2194
2195 static bool ilk_validate_wm_level(int level,
2196                                   const struct ilk_wm_maximums *max,
2197                                   struct intel_wm_level *result)
2198 {
2199         bool ret;
2200
2201         /* already determined to be invalid? */
2202         if (!result->enable)
2203                 return false;
2204
2205         result->enable = result->pri_val <= max->pri &&
2206                          result->spr_val <= max->spr &&
2207                          result->cur_val <= max->cur;
2208
2209         ret = result->enable;
2210
2211         /*
2212          * HACK until we can pre-compute everything,
2213          * and thus fail gracefully if LP0 watermarks
2214          * are exceeded...
2215          */
2216         if (level == 0 && !result->enable) {
2217                 if (result->pri_val > max->pri)
2218                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2219                                       level, result->pri_val, max->pri);
2220                 if (result->spr_val > max->spr)
2221                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2222                                       level, result->spr_val, max->spr);
2223                 if (result->cur_val > max->cur)
2224                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2225                                       level, result->cur_val, max->cur);
2226
2227                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2228                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2229                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2230                 result->enable = true;
2231         }
2232
2233         return ret;
2234 }
2235
2236 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2237                                  int level,
2238                                  const struct ilk_pipe_wm_parameters *p,
2239                                  struct intel_wm_level *result)
2240 {
2241         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2242         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2243         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2244
2245         /* WM1+ latency values stored in 0.5us units */
2246         if (level > 0) {
2247                 pri_latency *= 5;
2248                 spr_latency *= 5;
2249                 cur_latency *= 5;
2250         }
2251
2252         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2253         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2254         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2255         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2256         result->enable = true;
2257 }
2258
2259 static uint32_t
2260 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2261 {
2262         struct drm_i915_private *dev_priv = dev->dev_private;
2263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2264         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2265         u32 linetime, ips_linetime;
2266
2267         if (!intel_crtc_active(crtc))
2268                 return 0;
2269
2270         /* The WM are computed with base on how long it takes to fill a single
2271          * row at the given clock rate, multiplied by 8.
2272          * */
2273         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2274                                      mode->crtc_clock);
2275         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2276                                          intel_ddi_get_cdclk_freq(dev_priv));
2277
2278         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2279                PIPE_WM_LINETIME_TIME(linetime);
2280 }
2281
2282 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285
2286         if (IS_GEN9(dev)) {
2287                 uint32_t val;
2288                 int ret, i;
2289                 int level, max_level = ilk_wm_max_level(dev);
2290
2291                 /* read the first set of memory latencies[0:3] */
2292                 val = 0; /* data0 to be programmed to 0 for first set */
2293                 mutex_lock(&dev_priv->rps.hw_lock);
2294                 ret = sandybridge_pcode_read(dev_priv,
2295                                              GEN9_PCODE_READ_MEM_LATENCY,
2296                                              &val);
2297                 mutex_unlock(&dev_priv->rps.hw_lock);
2298
2299                 if (ret) {
2300                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2301                         return;
2302                 }
2303
2304                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2305                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2306                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2307                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2308                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2309                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2310                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2311
2312                 /* read the second set of memory latencies[4:7] */
2313                 val = 1; /* data0 to be programmed to 1 for second set */
2314                 mutex_lock(&dev_priv->rps.hw_lock);
2315                 ret = sandybridge_pcode_read(dev_priv,
2316                                              GEN9_PCODE_READ_MEM_LATENCY,
2317                                              &val);
2318                 mutex_unlock(&dev_priv->rps.hw_lock);
2319                 if (ret) {
2320                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2321                         return;
2322                 }
2323
2324                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2325                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2326                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2327                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2328                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2329                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2330                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2331
2332                 /*
2333                  * punit doesn't take into account the read latency so we need
2334                  * to add 2us to the various latency levels we retrieve from
2335                  * the punit.
2336                  *   - W0 is a bit special in that it's the only level that
2337                  *   can't be disabled if we want to have display working, so
2338                  *   we always add 2us there.
2339                  *   - For levels >=1, punit returns 0us latency when they are
2340                  *   disabled, so we respect that and don't add 2us then
2341                  *
2342                  * Additionally, if a level n (n > 1) has a 0us latency, all
2343                  * levels m (m >= n) need to be disabled. We make sure to
2344                  * sanitize the values out of the punit to satisfy this
2345                  * requirement.
2346                  */
2347                 wm[0] += 2;
2348                 for (level = 1; level <= max_level; level++)
2349                         if (wm[level] != 0)
2350                                 wm[level] += 2;
2351                         else {
2352                                 for (i = level + 1; i <= max_level; i++)
2353                                         wm[i] = 0;
2354
2355                                 break;
2356                         }
2357         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2358                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2359
2360                 wm[0] = (sskpd >> 56) & 0xFF;
2361                 if (wm[0] == 0)
2362                         wm[0] = sskpd & 0xF;
2363                 wm[1] = (sskpd >> 4) & 0xFF;
2364                 wm[2] = (sskpd >> 12) & 0xFF;
2365                 wm[3] = (sskpd >> 20) & 0x1FF;
2366                 wm[4] = (sskpd >> 32) & 0x1FF;
2367         } else if (INTEL_INFO(dev)->gen >= 6) {
2368                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2369
2370                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2371                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2372                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2373                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2374         } else if (INTEL_INFO(dev)->gen >= 5) {
2375                 uint32_t mltr = I915_READ(MLTR_ILK);
2376
2377                 /* ILK primary LP0 latency is 700 ns */
2378                 wm[0] = 7;
2379                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2380                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2381         }
2382 }
2383
2384 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2385 {
2386         /* ILK sprite LP0 latency is 1300 ns */
2387         if (INTEL_INFO(dev)->gen == 5)
2388                 wm[0] = 13;
2389 }
2390
2391 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2392 {
2393         /* ILK cursor LP0 latency is 1300 ns */
2394         if (INTEL_INFO(dev)->gen == 5)
2395                 wm[0] = 13;
2396
2397         /* WaDoubleCursorLP3Latency:ivb */
2398         if (IS_IVYBRIDGE(dev))
2399                 wm[3] *= 2;
2400 }
2401
2402 int ilk_wm_max_level(const struct drm_device *dev)
2403 {
2404         /* how many WM levels are we expecting */
2405         if (IS_GEN9(dev))
2406                 return 7;
2407         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2408                 return 4;
2409         else if (INTEL_INFO(dev)->gen >= 6)
2410                 return 3;
2411         else
2412                 return 2;
2413 }
2414
2415 static void intel_print_wm_latency(struct drm_device *dev,
2416                                    const char *name,
2417                                    const uint16_t wm[8])
2418 {
2419         int level, max_level = ilk_wm_max_level(dev);
2420
2421         for (level = 0; level <= max_level; level++) {
2422                 unsigned int latency = wm[level];
2423
2424                 if (latency == 0) {
2425                         DRM_ERROR("%s WM%d latency not provided\n",
2426                                   name, level);
2427                         continue;
2428                 }
2429
2430                 /*
2431                  * - latencies are in us on gen9.
2432                  * - before then, WM1+ latency values are in 0.5us units
2433                  */
2434                 if (IS_GEN9(dev))
2435                         latency *= 10;
2436                 else if (level > 0)
2437                         latency *= 5;
2438
2439                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2440                               name, level, wm[level],
2441                               latency / 10, latency % 10);
2442         }
2443 }
2444
2445 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2446                                     uint16_t wm[5], uint16_t min)
2447 {
2448         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2449
2450         if (wm[0] >= min)
2451                 return false;
2452
2453         wm[0] = max(wm[0], min);
2454         for (level = 1; level <= max_level; level++)
2455                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2456
2457         return true;
2458 }
2459
2460 static void snb_wm_latency_quirk(struct drm_device *dev)
2461 {
2462         struct drm_i915_private *dev_priv = dev->dev_private;
2463         bool changed;
2464
2465         /*
2466          * The BIOS provided WM memory latency values are often
2467          * inadequate for high resolution displays. Adjust them.
2468          */
2469         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2470                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2471                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2472
2473         if (!changed)
2474                 return;
2475
2476         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2477         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2478         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2479         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2480 }
2481
2482 static void ilk_setup_wm_latency(struct drm_device *dev)
2483 {
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485
2486         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2487
2488         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2489                sizeof(dev_priv->wm.pri_latency));
2490         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2491                sizeof(dev_priv->wm.pri_latency));
2492
2493         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2494         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2495
2496         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2497         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2498         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2499
2500         if (IS_GEN6(dev))
2501                 snb_wm_latency_quirk(dev);
2502 }
2503
2504 static void skl_setup_wm_latency(struct drm_device *dev)
2505 {
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507
2508         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2509         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2510 }
2511
2512 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2513                                       struct ilk_pipe_wm_parameters *p)
2514 {
2515         struct drm_device *dev = crtc->dev;
2516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517         enum pipe pipe = intel_crtc->pipe;
2518         struct drm_plane *plane;
2519
2520         if (!intel_crtc_active(crtc))
2521                 return;
2522
2523         p->active = true;
2524         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2525         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2526         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2527         p->cur.bytes_per_pixel = 4;
2528         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2529         p->cur.horiz_pixels = intel_crtc->cursor_width;
2530         /* TODO: for now, assume primary and cursor planes are always enabled. */
2531         p->pri.enabled = true;
2532         p->cur.enabled = true;
2533
2534         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2535                 struct intel_plane *intel_plane = to_intel_plane(plane);
2536
2537                 if (intel_plane->pipe == pipe) {
2538                         p->spr = intel_plane->wm;
2539                         break;
2540                 }
2541         }
2542 }
2543
2544 static void ilk_compute_wm_config(struct drm_device *dev,
2545                                   struct intel_wm_config *config)
2546 {
2547         struct intel_crtc *intel_crtc;
2548
2549         /* Compute the currently _active_ config */
2550         for_each_intel_crtc(dev, intel_crtc) {
2551                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2552
2553                 if (!wm->pipe_enabled)
2554                         continue;
2555
2556                 config->sprites_enabled |= wm->sprites_enabled;
2557                 config->sprites_scaled |= wm->sprites_scaled;
2558                 config->num_pipes_active++;
2559         }
2560 }
2561
2562 /* Compute new watermarks for the pipe */
2563 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2564                                   const struct ilk_pipe_wm_parameters *params,
2565                                   struct intel_pipe_wm *pipe_wm)
2566 {
2567         struct drm_device *dev = crtc->dev;
2568         const struct drm_i915_private *dev_priv = dev->dev_private;
2569         int level, max_level = ilk_wm_max_level(dev);
2570         /* LP0 watermark maximums depend on this pipe alone */
2571         struct intel_wm_config config = {
2572                 .num_pipes_active = 1,
2573                 .sprites_enabled = params->spr.enabled,
2574                 .sprites_scaled = params->spr.scaled,
2575         };
2576         struct ilk_wm_maximums max;
2577
2578         pipe_wm->pipe_enabled = params->active;
2579         pipe_wm->sprites_enabled = params->spr.enabled;
2580         pipe_wm->sprites_scaled = params->spr.scaled;
2581
2582         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2583         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2584                 max_level = 1;
2585
2586         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2587         if (params->spr.scaled)
2588                 max_level = 0;
2589
2590         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2594
2595         /* LP0 watermarks always use 1/2 DDB partitioning */
2596         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2597
2598         /* At least LP0 must be valid */
2599         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2600                 return false;
2601
2602         ilk_compute_wm_reg_maximums(dev, 1, &max);
2603
2604         for (level = 1; level <= max_level; level++) {
2605                 struct intel_wm_level wm = {};
2606
2607                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2608
2609                 /*
2610                  * Disable any watermark level that exceeds the
2611                  * register maximums since such watermarks are
2612                  * always invalid.
2613                  */
2614                 if (!ilk_validate_wm_level(level, &max, &wm))
2615                         break;
2616
2617                 pipe_wm->wm[level] = wm;
2618         }
2619
2620         return true;
2621 }
2622
2623 /*
2624  * Merge the watermarks from all active pipes for a specific level.
2625  */
2626 static void ilk_merge_wm_level(struct drm_device *dev,
2627                                int level,
2628                                struct intel_wm_level *ret_wm)
2629 {
2630         const struct intel_crtc *intel_crtc;
2631
2632         ret_wm->enable = true;
2633
2634         for_each_intel_crtc(dev, intel_crtc) {
2635                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2636                 const struct intel_wm_level *wm = &active->wm[level];
2637
2638                 if (!active->pipe_enabled)
2639                         continue;
2640
2641                 /*
2642                  * The watermark values may have been used in the past,
2643                  * so we must maintain them in the registers for some
2644                  * time even if the level is now disabled.
2645                  */
2646                 if (!wm->enable)
2647                         ret_wm->enable = false;
2648
2649                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2650                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2651                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2652                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2653         }
2654 }
2655
2656 /*
2657  * Merge all low power watermarks for all active pipes.
2658  */
2659 static void ilk_wm_merge(struct drm_device *dev,
2660                          const struct intel_wm_config *config,
2661                          const struct ilk_wm_maximums *max,
2662                          struct intel_pipe_wm *merged)
2663 {
2664         int level, max_level = ilk_wm_max_level(dev);
2665         int last_enabled_level = max_level;
2666
2667         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2668         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2669             config->num_pipes_active > 1)
2670                 return;
2671
2672         /* ILK: FBC WM must be disabled always */
2673         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2674
2675         /* merge each WM1+ level */
2676         for (level = 1; level <= max_level; level++) {
2677                 struct intel_wm_level *wm = &merged->wm[level];
2678
2679                 ilk_merge_wm_level(dev, level, wm);
2680
2681                 if (level > last_enabled_level)
2682                         wm->enable = false;
2683                 else if (!ilk_validate_wm_level(level, max, wm))
2684                         /* make sure all following levels get disabled */
2685                         last_enabled_level = level - 1;
2686
2687                 /*
2688                  * The spec says it is preferred to disable
2689                  * FBC WMs instead of disabling a WM level.
2690                  */
2691                 if (wm->fbc_val > max->fbc) {
2692                         if (wm->enable)
2693                                 merged->fbc_wm_enabled = false;
2694                         wm->fbc_val = 0;
2695                 }
2696         }
2697
2698         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2699         /*
2700          * FIXME this is racy. FBC might get enabled later.
2701          * What we should check here is whether FBC can be
2702          * enabled sometime later.
2703          */
2704         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2705                 for (level = 2; level <= max_level; level++) {
2706                         struct intel_wm_level *wm = &merged->wm[level];
2707
2708                         wm->enable = false;
2709                 }
2710         }
2711 }
2712
2713 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2714 {
2715         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2716         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2717 }
2718
2719 /* The value we need to program into the WM_LPx latency field */
2720 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2721 {
2722         struct drm_i915_private *dev_priv = dev->dev_private;
2723
2724         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2725                 return 2 * level;
2726         else
2727                 return dev_priv->wm.pri_latency[level];
2728 }
2729
2730 static void ilk_compute_wm_results(struct drm_device *dev,
2731                                    const struct intel_pipe_wm *merged,
2732                                    enum intel_ddb_partitioning partitioning,
2733                                    struct ilk_wm_values *results)
2734 {
2735         struct intel_crtc *intel_crtc;
2736         int level, wm_lp;
2737
2738         results->enable_fbc_wm = merged->fbc_wm_enabled;
2739         results->partitioning = partitioning;
2740
2741         /* LP1+ register values */
2742         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2743                 const struct intel_wm_level *r;
2744
2745                 level = ilk_wm_lp_to_level(wm_lp, merged);
2746
2747                 r = &merged->wm[level];
2748
2749                 /*
2750                  * Maintain the watermark values even if the level is
2751                  * disabled. Doing otherwise could cause underruns.
2752                  */
2753                 results->wm_lp[wm_lp - 1] =
2754                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2755                         (r->pri_val << WM1_LP_SR_SHIFT) |
2756                         r->cur_val;
2757
2758                 if (r->enable)
2759                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2760
2761                 if (INTEL_INFO(dev)->gen >= 8)
2762                         results->wm_lp[wm_lp - 1] |=
2763                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2764                 else
2765                         results->wm_lp[wm_lp - 1] |=
2766                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2767
2768                 /*
2769                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2770                  * level is disabled. Doing otherwise could cause underruns.
2771                  */
2772                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2773                         WARN_ON(wm_lp != 1);
2774                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2775                 } else
2776                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2777         }
2778
2779         /* LP0 register values */
2780         for_each_intel_crtc(dev, intel_crtc) {
2781                 enum pipe pipe = intel_crtc->pipe;
2782                 const struct intel_wm_level *r =
2783                         &intel_crtc->wm.active.wm[0];
2784
2785                 if (WARN_ON(!r->enable))
2786                         continue;
2787
2788                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2789
2790                 results->wm_pipe[pipe] =
2791                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2792                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2793                         r->cur_val;
2794         }
2795 }
2796
2797 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2798  * case both are at the same level. Prefer r1 in case they're the same. */
2799 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2800                                                   struct intel_pipe_wm *r1,
2801                                                   struct intel_pipe_wm *r2)
2802 {
2803         int level, max_level = ilk_wm_max_level(dev);
2804         int level1 = 0, level2 = 0;
2805
2806         for (level = 1; level <= max_level; level++) {
2807                 if (r1->wm[level].enable)
2808                         level1 = level;
2809                 if (r2->wm[level].enable)
2810                         level2 = level;
2811         }
2812
2813         if (level1 == level2) {
2814                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2815                         return r2;
2816                 else
2817                         return r1;
2818         } else if (level1 > level2) {
2819                 return r1;
2820         } else {
2821                 return r2;
2822         }
2823 }
2824
2825 /* dirty bits used to track which watermarks need changes */
2826 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2827 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2828 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2829 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2830 #define WM_DIRTY_FBC (1 << 24)
2831 #define WM_DIRTY_DDB (1 << 25)
2832
2833 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2834                                          const struct ilk_wm_values *old,
2835                                          const struct ilk_wm_values *new)
2836 {
2837         unsigned int dirty = 0;
2838         enum pipe pipe;
2839         int wm_lp;
2840
2841         for_each_pipe(dev_priv, pipe) {
2842                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2843                         dirty |= WM_DIRTY_LINETIME(pipe);
2844                         /* Must disable LP1+ watermarks too */
2845                         dirty |= WM_DIRTY_LP_ALL;
2846                 }
2847
2848                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2849                         dirty |= WM_DIRTY_PIPE(pipe);
2850                         /* Must disable LP1+ watermarks too */
2851                         dirty |= WM_DIRTY_LP_ALL;
2852                 }
2853         }
2854
2855         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2856                 dirty |= WM_DIRTY_FBC;
2857                 /* Must disable LP1+ watermarks too */
2858                 dirty |= WM_DIRTY_LP_ALL;
2859         }
2860
2861         if (old->partitioning != new->partitioning) {
2862                 dirty |= WM_DIRTY_DDB;
2863                 /* Must disable LP1+ watermarks too */
2864                 dirty |= WM_DIRTY_LP_ALL;
2865         }
2866
2867         /* LP1+ watermarks already deemed dirty, no need to continue */
2868         if (dirty & WM_DIRTY_LP_ALL)
2869                 return dirty;
2870
2871         /* Find the lowest numbered LP1+ watermark in need of an update... */
2872         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2873                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2874                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2875                         break;
2876         }
2877
2878         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2879         for (; wm_lp <= 3; wm_lp++)
2880                 dirty |= WM_DIRTY_LP(wm_lp);
2881
2882         return dirty;
2883 }
2884
2885 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2886                                unsigned int dirty)
2887 {
2888         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2889         bool changed = false;
2890
2891         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2892                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2893                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2894                 changed = true;
2895         }
2896         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2897                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2898                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2899                 changed = true;
2900         }
2901         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2902                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2903                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2904                 changed = true;
2905         }
2906
2907         /*
2908          * Don't touch WM1S_LP_EN here.
2909          * Doing so could cause underruns.
2910          */
2911
2912         return changed;
2913 }
2914
2915 /*
2916  * The spec says we shouldn't write when we don't need, because every write
2917  * causes WMs to be re-evaluated, expending some power.
2918  */
2919 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2920                                 struct ilk_wm_values *results)
2921 {
2922         struct drm_device *dev = dev_priv->dev;
2923         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2924         unsigned int dirty;
2925         uint32_t val;
2926
2927         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2928         if (!dirty)
2929                 return;
2930
2931         _ilk_disable_lp_wm(dev_priv, dirty);
2932
2933         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2934                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2935         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2936                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2937         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2938                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2939
2940         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2941                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2942         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2943                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2944         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2945                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2946
2947         if (dirty & WM_DIRTY_DDB) {
2948                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2949                         val = I915_READ(WM_MISC);
2950                         if (results->partitioning == INTEL_DDB_PART_1_2)
2951                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2952                         else
2953                                 val |= WM_MISC_DATA_PARTITION_5_6;
2954                         I915_WRITE(WM_MISC, val);
2955                 } else {
2956                         val = I915_READ(DISP_ARB_CTL2);
2957                         if (results->partitioning == INTEL_DDB_PART_1_2)
2958                                 val &= ~DISP_DATA_PARTITION_5_6;
2959                         else
2960                                 val |= DISP_DATA_PARTITION_5_6;
2961                         I915_WRITE(DISP_ARB_CTL2, val);
2962                 }
2963         }
2964
2965         if (dirty & WM_DIRTY_FBC) {
2966                 val = I915_READ(DISP_ARB_CTL);
2967                 if (results->enable_fbc_wm)
2968                         val &= ~DISP_FBC_WM_DIS;
2969                 else
2970                         val |= DISP_FBC_WM_DIS;
2971                 I915_WRITE(DISP_ARB_CTL, val);
2972         }
2973
2974         if (dirty & WM_DIRTY_LP(1) &&
2975             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2976                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2977
2978         if (INTEL_INFO(dev)->gen >= 7) {
2979                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2980                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2981                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2982                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2983         }
2984
2985         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2986                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2987         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2988                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2989         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2990                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2991
2992         dev_priv->wm.hw = *results;
2993 }
2994
2995 static bool ilk_disable_lp_wm(struct drm_device *dev)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998
2999         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3000 }
3001
3002 /*
3003  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
3004  * different active planes.
3005  */
3006
3007 #define SKL_DDB_SIZE            896     /* in blocks */
3008
3009 static void
3010 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3011                                    struct drm_crtc *for_crtc,
3012                                    const struct intel_wm_config *config,
3013                                    const struct skl_pipe_wm_parameters *params,
3014                                    struct skl_ddb_entry *alloc /* out */)
3015 {
3016         struct drm_crtc *crtc;
3017         unsigned int pipe_size, ddb_size;
3018         int nth_active_pipe;
3019
3020         if (!params->active) {
3021                 alloc->start = 0;
3022                 alloc->end = 0;
3023                 return;
3024         }
3025
3026         ddb_size = SKL_DDB_SIZE;
3027
3028         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3029
3030         nth_active_pipe = 0;
3031         for_each_crtc(dev, crtc) {
3032                 if (!intel_crtc_active(crtc))
3033                         continue;
3034
3035                 if (crtc == for_crtc)
3036                         break;
3037
3038                 nth_active_pipe++;
3039         }
3040
3041         pipe_size = ddb_size / config->num_pipes_active;
3042         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
3043         alloc->end = alloc->start + pipe_size;
3044 }
3045
3046 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
3047 {
3048         if (config->num_pipes_active == 1)
3049                 return 32;
3050
3051         return 8;
3052 }
3053
3054 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3055 {
3056         entry->start = reg & 0x3ff;
3057         entry->end = (reg >> 16) & 0x3ff;
3058         if (entry->end)
3059                 entry->end += 1;
3060 }
3061
3062 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3063                           struct skl_ddb_allocation *ddb /* out */)
3064 {
3065         struct drm_device *dev = dev_priv->dev;
3066         enum pipe pipe;
3067         int plane;
3068         u32 val;
3069
3070         for_each_pipe(dev_priv, pipe) {
3071                 for_each_plane(pipe, plane) {
3072                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3073                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3074                                                    val);
3075                 }
3076
3077                 val = I915_READ(CUR_BUF_CFG(pipe));
3078                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
3079         }
3080 }
3081
3082 static unsigned int
3083 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
3084 {
3085         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
3086 }
3087
3088 /*
3089  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3090  * a 8192x4096@32bpp framebuffer:
3091  *   3 * 4096 * 8192  * 4 < 2^32
3092  */
3093 static unsigned int
3094 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
3095                                  const struct skl_pipe_wm_parameters *params)
3096 {
3097         unsigned int total_data_rate = 0;
3098         int plane;
3099
3100         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3101                 const struct intel_plane_wm_parameters *p;
3102
3103                 p = &params->plane[plane];
3104                 if (!p->enabled)
3105                         continue;
3106
3107                 total_data_rate += skl_plane_relative_data_rate(p);
3108         }
3109
3110         return total_data_rate;
3111 }
3112
3113 static void
3114 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
3115                       const struct intel_wm_config *config,
3116                       const struct skl_pipe_wm_parameters *params,
3117                       struct skl_ddb_allocation *ddb /* out */)
3118 {
3119         struct drm_device *dev = crtc->dev;
3120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3121         enum pipe pipe = intel_crtc->pipe;
3122         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3123         uint16_t alloc_size, start, cursor_blocks;
3124         unsigned int total_data_rate;
3125         int plane;
3126
3127         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
3128         alloc_size = skl_ddb_entry_size(alloc);
3129         if (alloc_size == 0) {
3130                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3131                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
3132                 return;
3133         }
3134
3135         cursor_blocks = skl_cursor_allocation(config);
3136         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
3137         ddb->cursor[pipe].end = alloc->end;
3138
3139         alloc_size -= cursor_blocks;
3140         alloc->end -= cursor_blocks;
3141
3142         /*
3143          * Each active plane get a portion of the remaining space, in
3144          * proportion to the amount of data they need to fetch from memory.
3145          *
3146          * FIXME: we may not allocate every single block here.
3147          */
3148         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3149
3150         start = alloc->start;
3151         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3152                 const struct intel_plane_wm_parameters *p;
3153                 unsigned int data_rate;
3154                 uint16_t plane_blocks;
3155
3156                 p = &params->plane[plane];
3157                 if (!p->enabled)
3158                         continue;
3159
3160                 data_rate = skl_plane_relative_data_rate(p);
3161
3162                 /*
3163                  * promote the expression to 64 bits to avoid overflowing, the
3164                  * result is < available as data_rate / total_data_rate < 1
3165                  */
3166                 plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
3167                                        total_data_rate);
3168
3169                 ddb->plane[pipe][plane].start = start;
3170                 ddb->plane[pipe][plane].end = start + plane_blocks;
3171
3172                 start += plane_blocks;
3173         }
3174
3175 }
3176
3177 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_config *config)
3178 {
3179         /* TODO: Take into account the scalers once we support them */
3180         return config->adjusted_mode.crtc_clock;
3181 }
3182
3183 /*
3184  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3185  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3186  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3187  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3188 */
3189 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3190                                uint32_t latency)
3191 {
3192         uint32_t wm_intermediate_val, ret;
3193
3194         if (latency == 0)
3195                 return UINT_MAX;
3196
3197         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
3198         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3199
3200         return ret;
3201 }
3202
3203 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3204                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3205                                uint32_t latency)
3206 {
3207         uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
3208
3209         if (latency == 0)
3210                 return UINT_MAX;
3211
3212         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3213         wm_intermediate_val = latency * pixel_rate;
3214         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3215                                 plane_bytes_per_line;
3216
3217         return ret;
3218 }
3219
3220 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3221                                        const struct intel_crtc *intel_crtc)
3222 {
3223         struct drm_device *dev = intel_crtc->base.dev;
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3226         enum pipe pipe = intel_crtc->pipe;
3227
3228         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3229                    sizeof(new_ddb->plane[pipe])))
3230                 return true;
3231
3232         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3233                     sizeof(new_ddb->cursor[pipe])))
3234                 return true;
3235
3236         return false;
3237 }
3238
3239 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3240                                              struct intel_wm_config *config)
3241 {
3242         struct drm_crtc *crtc;
3243         struct drm_plane *plane;
3244
3245         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3246                 config->num_pipes_active += intel_crtc_active(crtc);
3247
3248         /* FIXME: I don't think we need those two global parameters on SKL */
3249         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3250                 struct intel_plane *intel_plane = to_intel_plane(plane);
3251
3252                 config->sprites_enabled |= intel_plane->wm.enabled;
3253                 config->sprites_scaled |= intel_plane->wm.scaled;
3254         }
3255 }
3256
3257 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3258                                            struct skl_pipe_wm_parameters *p)
3259 {
3260         struct drm_device *dev = crtc->dev;
3261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3262         enum pipe pipe = intel_crtc->pipe;
3263         struct drm_plane *plane;
3264         int i = 1; /* Index for sprite planes start */
3265
3266         p->active = intel_crtc_active(crtc);
3267         if (p->active) {
3268                 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
3269                 p->pixel_rate = skl_pipe_pixel_rate(&intel_crtc->config);
3270
3271                 /*
3272                  * For now, assume primary and cursor planes are always enabled.
3273                  */
3274                 p->plane[0].enabled = true;
3275                 p->plane[0].bytes_per_pixel =
3276                         crtc->primary->fb->bits_per_pixel / 8;
3277                 p->plane[0].horiz_pixels = intel_crtc->config.pipe_src_w;
3278                 p->plane[0].vert_pixels = intel_crtc->config.pipe_src_h;
3279
3280                 p->cursor.enabled = true;
3281                 p->cursor.bytes_per_pixel = 4;
3282                 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
3283                                          intel_crtc->cursor_width : 64;
3284         }
3285
3286         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3287                 struct intel_plane *intel_plane = to_intel_plane(plane);
3288
3289                 if (intel_plane->pipe == pipe)
3290                         p->plane[i++] = intel_plane->wm;
3291         }
3292 }
3293
3294 static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
3295                                  struct intel_plane_wm_parameters *p_params,
3296                                  uint16_t ddb_allocation,
3297                                  uint32_t mem_value,
3298                                  uint16_t *out_blocks, /* out */
3299                                  uint8_t *out_lines /* out */)
3300 {
3301         uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
3302         uint32_t result_bytes;
3303
3304         if (mem_value == 0 || !p->active || !p_params->enabled)
3305                 return false;
3306
3307         method1 = skl_wm_method1(p->pixel_rate,
3308                                  p_params->bytes_per_pixel,
3309                                  mem_value);
3310         method2 = skl_wm_method2(p->pixel_rate,
3311                                  p->pipe_htotal,
3312                                  p_params->horiz_pixels,
3313                                  p_params->bytes_per_pixel,
3314                                  mem_value);
3315
3316         plane_bytes_per_line = p_params->horiz_pixels *
3317                                         p_params->bytes_per_pixel;
3318
3319         /* For now xtile and linear */
3320         if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
3321                 result_bytes = min(method1, method2);
3322         else
3323                 result_bytes = method1;
3324
3325         res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
3326         res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
3327
3328         if (res_blocks > ddb_allocation || res_lines > 31)
3329                 return false;
3330
3331         *out_blocks = res_blocks;
3332         *out_lines = res_lines;
3333
3334         return true;
3335 }
3336
3337 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3338                                  struct skl_ddb_allocation *ddb,
3339                                  struct skl_pipe_wm_parameters *p,
3340                                  enum pipe pipe,
3341                                  int level,
3342                                  int num_planes,
3343                                  struct skl_wm_level *result)
3344 {
3345         uint16_t latency = dev_priv->wm.skl_latency[level];
3346         uint16_t ddb_blocks;
3347         int i;
3348
3349         for (i = 0; i < num_planes; i++) {
3350                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3351
3352                 result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
3353                                                 ddb_blocks,
3354                                                 latency,
3355                                                 &result->plane_res_b[i],
3356                                                 &result->plane_res_l[i]);
3357         }
3358
3359         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3360         result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
3361                                                  latency, &result->cursor_res_b,
3362                                                  &result->cursor_res_l);
3363 }
3364
3365 static uint32_t
3366 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3367 {
3368         if (!intel_crtc_active(crtc))
3369                 return 0;
3370
3371         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3372
3373 }
3374
3375 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3376                                       struct skl_pipe_wm_parameters *params,
3377                                       struct skl_wm_level *trans_wm /* out */)
3378 {
3379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3380         int i;
3381
3382         if (!params->active)
3383                 return;
3384
3385         /* Until we know more, just disable transition WMs */
3386         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3387                 trans_wm->plane_en[i] = false;
3388         trans_wm->cursor_en = false;
3389 }
3390
3391 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3392                                 struct skl_ddb_allocation *ddb,
3393                                 struct skl_pipe_wm_parameters *params,
3394                                 struct skl_pipe_wm *pipe_wm)
3395 {
3396         struct drm_device *dev = crtc->dev;
3397         const struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399         int level, max_level = ilk_wm_max_level(dev);
3400
3401         for (level = 0; level <= max_level; level++) {
3402                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3403                                      level, intel_num_planes(intel_crtc),
3404                                      &pipe_wm->wm[level]);
3405         }
3406         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3407
3408         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3409 }
3410
3411 static void skl_compute_wm_results(struct drm_device *dev,
3412                                    struct skl_pipe_wm_parameters *p,
3413                                    struct skl_pipe_wm *p_wm,
3414                                    struct skl_wm_values *r,
3415                                    struct intel_crtc *intel_crtc)
3416 {
3417         int level, max_level = ilk_wm_max_level(dev);
3418         enum pipe pipe = intel_crtc->pipe;
3419         uint32_t temp;
3420         int i;
3421
3422         for (level = 0; level <= max_level; level++) {
3423                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3424                         temp = 0;
3425
3426                         temp |= p_wm->wm[level].plane_res_l[i] <<
3427                                         PLANE_WM_LINES_SHIFT;
3428                         temp |= p_wm->wm[level].plane_res_b[i];
3429                         if (p_wm->wm[level].plane_en[i])
3430                                 temp |= PLANE_WM_EN;
3431
3432                         r->plane[pipe][i][level] = temp;
3433                 }
3434
3435                 temp = 0;
3436
3437                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3438                 temp |= p_wm->wm[level].cursor_res_b;
3439
3440                 if (p_wm->wm[level].cursor_en)
3441                         temp |= PLANE_WM_EN;
3442
3443                 r->cursor[pipe][level] = temp;
3444
3445         }
3446
3447         /* transition WMs */
3448         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3449                 temp = 0;
3450                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3451                 temp |= p_wm->trans_wm.plane_res_b[i];
3452                 if (p_wm->trans_wm.plane_en[i])
3453                         temp |= PLANE_WM_EN;
3454
3455                 r->plane_trans[pipe][i] = temp;
3456         }
3457
3458         temp = 0;
3459         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3460         temp |= p_wm->trans_wm.cursor_res_b;
3461         if (p_wm->trans_wm.cursor_en)
3462                 temp |= PLANE_WM_EN;
3463
3464         r->cursor_trans[pipe] = temp;
3465
3466         r->wm_linetime[pipe] = p_wm->linetime;
3467 }
3468
3469 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3470                                 const struct skl_ddb_entry *entry)
3471 {
3472         if (entry->end)
3473                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3474         else
3475                 I915_WRITE(reg, 0);
3476 }
3477
3478 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3479                                 const struct skl_wm_values *new)
3480 {
3481         struct drm_device *dev = dev_priv->dev;
3482         struct intel_crtc *crtc;
3483
3484         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3485                 int i, level, max_level = ilk_wm_max_level(dev);
3486                 enum pipe pipe = crtc->pipe;
3487
3488                 if (!new->dirty[pipe])
3489                         continue;
3490
3491                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3492
3493                 for (level = 0; level <= max_level; level++) {
3494                         for (i = 0; i < intel_num_planes(crtc); i++)
3495                                 I915_WRITE(PLANE_WM(pipe, i, level),
3496                                            new->plane[pipe][i][level]);
3497                         I915_WRITE(CUR_WM(pipe, level),
3498                                    new->cursor[pipe][level]);
3499                 }
3500                 for (i = 0; i < intel_num_planes(crtc); i++)
3501                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3502                                    new->plane_trans[pipe][i]);
3503                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3504
3505                 for (i = 0; i < intel_num_planes(crtc); i++)
3506                         skl_ddb_entry_write(dev_priv,
3507                                             PLANE_BUF_CFG(pipe, i),
3508                                             &new->ddb.plane[pipe][i]);
3509
3510                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3511                                     &new->ddb.cursor[pipe]);
3512         }
3513 }
3514
3515 /*
3516  * When setting up a new DDB allocation arrangement, we need to correctly
3517  * sequence the times at which the new allocations for the pipes are taken into
3518  * account or we'll have pipes fetching from space previously allocated to
3519  * another pipe.
3520  *
3521  * Roughly the sequence looks like:
3522  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3523  *     overlapping with a previous light-up pipe (another way to put it is:
3524  *     pipes with their new allocation strickly included into their old ones).
3525  *  2. re-allocate the other pipes that get their allocation reduced
3526  *  3. allocate the pipes having their allocation increased
3527  *
3528  * Steps 1. and 2. are here to take care of the following case:
3529  * - Initially DDB looks like this:
3530  *     |   B    |   C    |
3531  * - enable pipe A.
3532  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3533  *   allocation
3534  *     |  A  |  B  |  C  |
3535  *
3536  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3537  */
3538
3539 static void
3540 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3541 {
3542         struct drm_device *dev = dev_priv->dev;
3543         int plane;
3544
3545         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3546
3547         for_each_plane(pipe, plane) {
3548                 I915_WRITE(PLANE_SURF(pipe, plane),
3549                            I915_READ(PLANE_SURF(pipe, plane)));
3550         }
3551         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3552 }
3553
3554 static bool
3555 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3556                             const struct skl_ddb_allocation *new,
3557                             enum pipe pipe)
3558 {
3559         uint16_t old_size, new_size;
3560
3561         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3562         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3563
3564         return old_size != new_size &&
3565                new->pipe[pipe].start >= old->pipe[pipe].start &&
3566                new->pipe[pipe].end <= old->pipe[pipe].end;
3567 }
3568
3569 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3570                                 struct skl_wm_values *new_values)
3571 {
3572         struct drm_device *dev = dev_priv->dev;
3573         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3574         bool reallocated[I915_MAX_PIPES] = {false, false, false};
3575         struct intel_crtc *crtc;
3576         enum pipe pipe;
3577
3578         new_ddb = &new_values->ddb;
3579         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3580
3581         /*
3582          * First pass: flush the pipes with the new allocation contained into
3583          * the old space.
3584          *
3585          * We'll wait for the vblank on those pipes to ensure we can safely
3586          * re-allocate the freed space without this pipe fetching from it.
3587          */
3588         for_each_intel_crtc(dev, crtc) {
3589                 if (!crtc->active)
3590                         continue;
3591
3592                 pipe = crtc->pipe;
3593
3594                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3595                         continue;
3596
3597                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3598                 intel_wait_for_vblank(dev, pipe);
3599
3600                 reallocated[pipe] = true;
3601         }
3602
3603
3604         /*
3605          * Second pass: flush the pipes that are having their allocation
3606          * reduced, but overlapping with a previous allocation.
3607          *
3608          * Here as well we need to wait for the vblank to make sure the freed
3609          * space is not used anymore.
3610          */
3611         for_each_intel_crtc(dev, crtc) {
3612                 if (!crtc->active)
3613                         continue;
3614
3615                 pipe = crtc->pipe;
3616
3617                 if (reallocated[pipe])
3618                         continue;
3619
3620                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3621                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3622                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3623                         intel_wait_for_vblank(dev, pipe);
3624                 }
3625
3626                 reallocated[pipe] = true;
3627         }
3628
3629         /*
3630          * Third pass: flush the pipes that got more space allocated.
3631          *
3632          * We don't need to actively wait for the update here, next vblank
3633          * will just get more DDB space with the correct WM values.
3634          */
3635         for_each_intel_crtc(dev, crtc) {
3636                 if (!crtc->active)
3637                         continue;
3638
3639                 pipe = crtc->pipe;
3640
3641                 /*
3642                  * At this point, only the pipes more space than before are
3643                  * left to re-allocate.
3644                  */
3645                 if (reallocated[pipe])
3646                         continue;
3647
3648                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3649         }
3650 }
3651
3652 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3653                                struct skl_pipe_wm_parameters *params,
3654                                struct intel_wm_config *config,
3655                                struct skl_ddb_allocation *ddb, /* out */
3656                                struct skl_pipe_wm *pipe_wm /* out */)
3657 {
3658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3659
3660         skl_compute_wm_pipe_parameters(crtc, params);
3661         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3662         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3663
3664         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3665                 return false;
3666
3667         intel_crtc->wm.skl_active = *pipe_wm;
3668         return true;
3669 }
3670
3671 static void skl_update_other_pipe_wm(struct drm_device *dev,
3672                                      struct drm_crtc *crtc,
3673                                      struct intel_wm_config *config,
3674                                      struct skl_wm_values *r)
3675 {
3676         struct intel_crtc *intel_crtc;
3677         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3678
3679         /*
3680          * If the WM update hasn't changed the allocation for this_crtc (the
3681          * crtc we are currently computing the new WM values for), other
3682          * enabled crtcs will keep the same allocation and we don't need to
3683          * recompute anything for them.
3684          */
3685         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3686                 return;
3687
3688         /*
3689          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3690          * other active pipes need new DDB allocation and WM values.
3691          */
3692         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3693                                 base.head) {
3694                 struct skl_pipe_wm_parameters params = {};
3695                 struct skl_pipe_wm pipe_wm = {};
3696                 bool wm_changed;
3697
3698                 if (this_crtc->pipe == intel_crtc->pipe)
3699                         continue;
3700
3701                 if (!intel_crtc->active)
3702                         continue;
3703
3704                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3705                                                 &params, config,
3706                                                 &r->ddb, &pipe_wm);
3707
3708                 /*
3709                  * If we end up re-computing the other pipe WM values, it's
3710                  * because it was really needed, so we expect the WM values to
3711                  * be different.
3712                  */
3713                 WARN_ON(!wm_changed);
3714
3715                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3716                 r->dirty[intel_crtc->pipe] = true;
3717         }
3718 }
3719
3720 static void skl_update_wm(struct drm_crtc *crtc)
3721 {
3722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3723         struct drm_device *dev = crtc->dev;
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         struct skl_pipe_wm_parameters params = {};
3726         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3727         struct skl_pipe_wm pipe_wm = {};
3728         struct intel_wm_config config = {};
3729
3730         memset(results, 0, sizeof(*results));
3731
3732         skl_compute_wm_global_parameters(dev, &config);
3733
3734         if (!skl_update_pipe_wm(crtc, &params, &config,
3735                                 &results->ddb, &pipe_wm))
3736                 return;
3737
3738         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3739         results->dirty[intel_crtc->pipe] = true;
3740
3741         skl_update_other_pipe_wm(dev, crtc, &config, results);
3742         skl_write_wm_values(dev_priv, results);
3743         skl_flush_wm_values(dev_priv, results);
3744
3745         /* store the new configuration */
3746         dev_priv->wm.skl_hw = *results;
3747 }
3748
3749 static void
3750 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3751                      uint32_t sprite_width, uint32_t sprite_height,
3752                      int pixel_size, bool enabled, bool scaled)
3753 {
3754         struct intel_plane *intel_plane = to_intel_plane(plane);
3755
3756         intel_plane->wm.enabled = enabled;
3757         intel_plane->wm.scaled = scaled;
3758         intel_plane->wm.horiz_pixels = sprite_width;
3759         intel_plane->wm.vert_pixels = sprite_height;
3760         intel_plane->wm.bytes_per_pixel = pixel_size;
3761
3762         skl_update_wm(crtc);
3763 }
3764
3765 static void ilk_update_wm(struct drm_crtc *crtc)
3766 {
3767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768         struct drm_device *dev = crtc->dev;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770         struct ilk_wm_maximums max;
3771         struct ilk_pipe_wm_parameters params = {};
3772         struct ilk_wm_values results = {};
3773         enum intel_ddb_partitioning partitioning;
3774         struct intel_pipe_wm pipe_wm = {};
3775         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3776         struct intel_wm_config config = {};
3777
3778         ilk_compute_wm_parameters(crtc, &params);
3779
3780         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3781
3782         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3783                 return;
3784
3785         intel_crtc->wm.active = pipe_wm;
3786
3787         ilk_compute_wm_config(dev, &config);
3788
3789         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3790         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3791
3792         /* 5/6 split only in single pipe config on IVB+ */
3793         if (INTEL_INFO(dev)->gen >= 7 &&
3794             config.num_pipes_active == 1 && config.sprites_enabled) {
3795                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3796                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3797
3798                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3799         } else {
3800                 best_lp_wm = &lp_wm_1_2;
3801         }
3802
3803         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3804                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3805
3806         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3807
3808         ilk_write_wm_values(dev_priv, &results);
3809 }
3810
3811 static void
3812 ilk_update_sprite_wm(struct drm_plane *plane,
3813                      struct drm_crtc *crtc,
3814                      uint32_t sprite_width, uint32_t sprite_height,
3815                      int pixel_size, bool enabled, bool scaled)
3816 {
3817         struct drm_device *dev = plane->dev;
3818         struct intel_plane *intel_plane = to_intel_plane(plane);
3819
3820         intel_plane->wm.enabled = enabled;
3821         intel_plane->wm.scaled = scaled;
3822         intel_plane->wm.horiz_pixels = sprite_width;
3823         intel_plane->wm.vert_pixels = sprite_width;
3824         intel_plane->wm.bytes_per_pixel = pixel_size;
3825
3826         /*
3827          * IVB workaround: must disable low power watermarks for at least
3828          * one frame before enabling scaling.  LP watermarks can be re-enabled
3829          * when scaling is disabled.
3830          *
3831          * WaCxSRDisabledForSpriteScaling:ivb
3832          */
3833         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3834                 intel_wait_for_vblank(dev, intel_plane->pipe);
3835
3836         ilk_update_wm(crtc);
3837 }
3838
3839 static void skl_pipe_wm_active_state(uint32_t val,
3840                                      struct skl_pipe_wm *active,
3841                                      bool is_transwm,
3842                                      bool is_cursor,
3843                                      int i,
3844                                      int level)
3845 {
3846         bool is_enabled = (val & PLANE_WM_EN) != 0;
3847
3848         if (!is_transwm) {
3849                 if (!is_cursor) {
3850                         active->wm[level].plane_en[i] = is_enabled;
3851                         active->wm[level].plane_res_b[i] =
3852                                         val & PLANE_WM_BLOCKS_MASK;
3853                         active->wm[level].plane_res_l[i] =
3854                                         (val >> PLANE_WM_LINES_SHIFT) &
3855                                                 PLANE_WM_LINES_MASK;
3856                 } else {
3857                         active->wm[level].cursor_en = is_enabled;
3858                         active->wm[level].cursor_res_b =
3859                                         val & PLANE_WM_BLOCKS_MASK;
3860                         active->wm[level].cursor_res_l =
3861                                         (val >> PLANE_WM_LINES_SHIFT) &
3862                                                 PLANE_WM_LINES_MASK;
3863                 }
3864         } else {
3865                 if (!is_cursor) {
3866                         active->trans_wm.plane_en[i] = is_enabled;
3867                         active->trans_wm.plane_res_b[i] =
3868                                         val & PLANE_WM_BLOCKS_MASK;
3869                         active->trans_wm.plane_res_l[i] =
3870                                         (val >> PLANE_WM_LINES_SHIFT) &
3871                                                 PLANE_WM_LINES_MASK;
3872                 } else {
3873                         active->trans_wm.cursor_en = is_enabled;
3874                         active->trans_wm.cursor_res_b =
3875                                         val & PLANE_WM_BLOCKS_MASK;
3876                         active->trans_wm.cursor_res_l =
3877                                         (val >> PLANE_WM_LINES_SHIFT) &
3878                                                 PLANE_WM_LINES_MASK;
3879                 }
3880         }
3881 }
3882
3883 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3884 {
3885         struct drm_device *dev = crtc->dev;
3886         struct drm_i915_private *dev_priv = dev->dev_private;
3887         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3889         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3890         enum pipe pipe = intel_crtc->pipe;
3891         int level, i, max_level;
3892         uint32_t temp;
3893
3894         max_level = ilk_wm_max_level(dev);
3895
3896         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3897
3898         for (level = 0; level <= max_level; level++) {
3899                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3900                         hw->plane[pipe][i][level] =
3901                                         I915_READ(PLANE_WM(pipe, i, level));
3902                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3903         }
3904
3905         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3906                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3907         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3908
3909         if (!intel_crtc_active(crtc))
3910                 return;
3911
3912         hw->dirty[pipe] = true;
3913
3914         active->linetime = hw->wm_linetime[pipe];
3915
3916         for (level = 0; level <= max_level; level++) {
3917                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3918                         temp = hw->plane[pipe][i][level];
3919                         skl_pipe_wm_active_state(temp, active, false,
3920                                                 false, i, level);
3921                 }
3922                 temp = hw->cursor[pipe][level];
3923                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3924         }
3925
3926         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3927                 temp = hw->plane_trans[pipe][i];
3928                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3929         }
3930
3931         temp = hw->cursor_trans[pipe];
3932         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3933 }
3934
3935 void skl_wm_get_hw_state(struct drm_device *dev)
3936 {
3937         struct drm_i915_private *dev_priv = dev->dev_private;
3938         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3939         struct drm_crtc *crtc;
3940
3941         skl_ddb_get_hw_state(dev_priv, ddb);
3942         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3943                 skl_pipe_wm_get_hw_state(crtc);
3944 }
3945
3946 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3947 {
3948         struct drm_device *dev = crtc->dev;
3949         struct drm_i915_private *dev_priv = dev->dev_private;
3950         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3951         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3952         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3953         enum pipe pipe = intel_crtc->pipe;
3954         static const unsigned int wm0_pipe_reg[] = {
3955                 [PIPE_A] = WM0_PIPEA_ILK,
3956                 [PIPE_B] = WM0_PIPEB_ILK,
3957                 [PIPE_C] = WM0_PIPEC_IVB,
3958         };
3959
3960         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3961         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3962                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3963
3964         active->pipe_enabled = intel_crtc_active(crtc);
3965
3966         if (active->pipe_enabled) {
3967                 u32 tmp = hw->wm_pipe[pipe];
3968
3969                 /*
3970                  * For active pipes LP0 watermark is marked as
3971                  * enabled, and LP1+ watermaks as disabled since
3972                  * we can't really reverse compute them in case
3973                  * multiple pipes are active.
3974                  */
3975                 active->wm[0].enable = true;
3976                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3977                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3978                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3979                 active->linetime = hw->wm_linetime[pipe];
3980         } else {
3981                 int level, max_level = ilk_wm_max_level(dev);
3982
3983                 /*
3984                  * For inactive pipes, all watermark levels
3985                  * should be marked as enabled but zeroed,
3986                  * which is what we'd compute them to.
3987                  */
3988                 for (level = 0; level <= max_level; level++)
3989                         active->wm[level].enable = true;
3990         }
3991 }
3992
3993 void ilk_wm_get_hw_state(struct drm_device *dev)
3994 {
3995         struct drm_i915_private *dev_priv = dev->dev_private;
3996         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3997         struct drm_crtc *crtc;
3998
3999         for_each_crtc(dev, crtc)
4000                 ilk_pipe_wm_get_hw_state(crtc);
4001
4002         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4003         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4004         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4005
4006         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4007         if (INTEL_INFO(dev)->gen >= 7) {
4008                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4009                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4010         }
4011
4012         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4013                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4014                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4015         else if (IS_IVYBRIDGE(dev))
4016                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4017                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4018
4019         hw->enable_fbc_wm =
4020                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4021 }
4022
4023 /**
4024  * intel_update_watermarks - update FIFO watermark values based on current modes
4025  *
4026  * Calculate watermark values for the various WM regs based on current mode
4027  * and plane configuration.
4028  *
4029  * There are several cases to deal with here:
4030  *   - normal (i.e. non-self-refresh)
4031  *   - self-refresh (SR) mode
4032  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4033  *   - lines are small relative to FIFO size (buffer can hold more than 2
4034  *     lines), so need to account for TLB latency
4035  *
4036  *   The normal calculation is:
4037  *     watermark = dotclock * bytes per pixel * latency
4038  *   where latency is platform & configuration dependent (we assume pessimal
4039  *   values here).
4040  *
4041  *   The SR calculation is:
4042  *     watermark = (trunc(latency/line time)+1) * surface width *
4043  *       bytes per pixel
4044  *   where
4045  *     line time = htotal / dotclock
4046  *     surface width = hdisplay for normal plane and 64 for cursor
4047  *   and latency is assumed to be high, as above.
4048  *
4049  * The final value programmed to the register should always be rounded up,
4050  * and include an extra 2 entries to account for clock crossings.
4051  *
4052  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4053  * to set the non-SR watermarks to 8.
4054  */
4055 void intel_update_watermarks(struct drm_crtc *crtc)
4056 {
4057         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4058
4059         if (dev_priv->display.update_wm)
4060                 dev_priv->display.update_wm(crtc);
4061 }
4062
4063 void intel_update_sprite_watermarks(struct drm_plane *plane,
4064                                     struct drm_crtc *crtc,
4065                                     uint32_t sprite_width,
4066                                     uint32_t sprite_height,
4067                                     int pixel_size,
4068                                     bool enabled, bool scaled)
4069 {
4070         struct drm_i915_private *dev_priv = plane->dev->dev_private;
4071
4072         if (dev_priv->display.update_sprite_wm)
4073                 dev_priv->display.update_sprite_wm(plane, crtc,
4074                                                    sprite_width, sprite_height,
4075                                                    pixel_size, enabled, scaled);
4076 }
4077
4078 static struct drm_i915_gem_object *
4079 intel_alloc_context_page(struct drm_device *dev)
4080 {
4081         struct drm_i915_gem_object *ctx;
4082         int ret;
4083
4084         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4085
4086         ctx = i915_gem_alloc_object(dev, 4096);
4087         if (!ctx) {
4088                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4089                 return NULL;
4090         }
4091
4092         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
4093         if (ret) {
4094                 DRM_ERROR("failed to pin power context: %d\n", ret);
4095                 goto err_unref;
4096         }
4097
4098         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
4099         if (ret) {
4100                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4101                 goto err_unpin;
4102         }
4103
4104         return ctx;
4105
4106 err_unpin:
4107         i915_gem_object_ggtt_unpin(ctx);
4108 err_unref:
4109         drm_gem_object_unreference(&ctx->base);
4110         return NULL;
4111 }
4112
4113 /**
4114  * Lock protecting IPS related data structures
4115  */
4116 DEFINE_SPINLOCK(mchdev_lock);
4117
4118 /* Global for IPS driver to get at the current i915 device. Protected by
4119  * mchdev_lock. */
4120 static struct drm_i915_private *i915_mch_dev;
4121
4122 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4123 {
4124         struct drm_i915_private *dev_priv = dev->dev_private;
4125         u16 rgvswctl;
4126
4127         assert_spin_locked(&mchdev_lock);
4128
4129         rgvswctl = I915_READ16(MEMSWCTL);
4130         if (rgvswctl & MEMCTL_CMD_STS) {
4131                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4132                 return false; /* still busy with another command */
4133         }
4134
4135         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4136                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4137         I915_WRITE16(MEMSWCTL, rgvswctl);
4138         POSTING_READ16(MEMSWCTL);
4139
4140         rgvswctl |= MEMCTL_CMD_STS;
4141         I915_WRITE16(MEMSWCTL, rgvswctl);
4142
4143         return true;
4144 }
4145
4146 static void ironlake_enable_drps(struct drm_device *dev)
4147 {
4148         struct drm_i915_private *dev_priv = dev->dev_private;
4149         u32 rgvmodectl = I915_READ(MEMMODECTL);
4150         u8 fmax, fmin, fstart, vstart;
4151
4152         spin_lock_irq(&mchdev_lock);
4153
4154         /* Enable temp reporting */
4155         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4156         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4157
4158         /* 100ms RC evaluation intervals */
4159         I915_WRITE(RCUPEI, 100000);
4160         I915_WRITE(RCDNEI, 100000);
4161
4162         /* Set max/min thresholds to 90ms and 80ms respectively */
4163         I915_WRITE(RCBMAXAVG, 90000);
4164         I915_WRITE(RCBMINAVG, 80000);
4165
4166         I915_WRITE(MEMIHYST, 1);
4167
4168         /* Set up min, max, and cur for interrupt handling */
4169         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4170         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4171         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4172                 MEMMODE_FSTART_SHIFT;
4173
4174         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4175                 PXVFREQ_PX_SHIFT;
4176
4177         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4178         dev_priv->ips.fstart = fstart;
4179
4180         dev_priv->ips.max_delay = fstart;
4181         dev_priv->ips.min_delay = fmin;
4182         dev_priv->ips.cur_delay = fstart;
4183
4184         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4185                          fmax, fmin, fstart);
4186
4187         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4188
4189         /*
4190          * Interrupts will be enabled in ironlake_irq_postinstall
4191          */
4192
4193         I915_WRITE(VIDSTART, vstart);
4194         POSTING_READ(VIDSTART);
4195
4196         rgvmodectl |= MEMMODE_SWMODE_EN;
4197         I915_WRITE(MEMMODECTL, rgvmodectl);
4198
4199         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4200                 DRM_ERROR("stuck trying to change perf mode\n");
4201         mdelay(1);
4202
4203         ironlake_set_drps(dev, fstart);
4204
4205         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4206                 I915_READ(0x112e0);
4207         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4208         dev_priv->ips.last_count2 = I915_READ(0x112f4);
4209         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4210
4211         spin_unlock_irq(&mchdev_lock);
4212 }
4213
4214 static void ironlake_disable_drps(struct drm_device *dev)
4215 {
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         u16 rgvswctl;
4218
4219         spin_lock_irq(&mchdev_lock);
4220
4221         rgvswctl = I915_READ16(MEMSWCTL);
4222
4223         /* Ack interrupts, disable EFC interrupt */
4224         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4225         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4226         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4227         I915_WRITE(DEIIR, DE_PCU_EVENT);
4228         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4229
4230         /* Go back to the starting frequency */
4231         ironlake_set_drps(dev, dev_priv->ips.fstart);
4232         mdelay(1);
4233         rgvswctl |= MEMCTL_CMD_STS;
4234         I915_WRITE(MEMSWCTL, rgvswctl);
4235         mdelay(1);
4236
4237         spin_unlock_irq(&mchdev_lock);
4238 }
4239
4240 /* There's a funny hw issue where the hw returns all 0 when reading from
4241  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4242  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4243  * all limits and the gpu stuck at whatever frequency it is at atm).
4244  */
4245 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4246 {
4247         u32 limits;
4248
4249         /* Only set the down limit when we've reached the lowest level to avoid
4250          * getting more interrupts, otherwise leave this clear. This prevents a
4251          * race in the hw when coming out of rc6: There's a tiny window where
4252          * the hw runs at the minimal clock before selecting the desired
4253          * frequency, if the down threshold expires in that window we will not
4254          * receive a down interrupt. */
4255         limits = dev_priv->rps.max_freq_softlimit << 24;
4256         if (val <= dev_priv->rps.min_freq_softlimit)
4257                 limits |= dev_priv->rps.min_freq_softlimit << 16;
4258
4259         return limits;
4260 }
4261
4262 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4263 {
4264         int new_power;
4265
4266         new_power = dev_priv->rps.power;
4267         switch (dev_priv->rps.power) {
4268         case LOW_POWER:
4269                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4270                         new_power = BETWEEN;
4271                 break;
4272
4273         case BETWEEN:
4274                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4275                         new_power = LOW_POWER;
4276                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4277                         new_power = HIGH_POWER;
4278                 break;
4279
4280         case HIGH_POWER:
4281                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4282                         new_power = BETWEEN;
4283                 break;
4284         }
4285         /* Max/min bins are special */
4286         if (val == dev_priv->rps.min_freq_softlimit)
4287                 new_power = LOW_POWER;
4288         if (val == dev_priv->rps.max_freq_softlimit)
4289                 new_power = HIGH_POWER;
4290         if (new_power == dev_priv->rps.power)
4291                 return;
4292
4293         /* Note the units here are not exactly 1us, but 1280ns. */
4294         switch (new_power) {
4295         case LOW_POWER:
4296                 /* Upclock if more than 95% busy over 16ms */
4297                 I915_WRITE(GEN6_RP_UP_EI, 12500);
4298                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
4299
4300                 /* Downclock if less than 85% busy over 32ms */
4301                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4302                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
4303
4304                 I915_WRITE(GEN6_RP_CONTROL,
4305                            GEN6_RP_MEDIA_TURBO |
4306                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
4307                            GEN6_RP_MEDIA_IS_GFX |
4308                            GEN6_RP_ENABLE |
4309                            GEN6_RP_UP_BUSY_AVG |
4310                            GEN6_RP_DOWN_IDLE_AVG);
4311                 break;
4312
4313         case BETWEEN:
4314                 /* Upclock if more than 90% busy over 13ms */
4315                 I915_WRITE(GEN6_RP_UP_EI, 10250);
4316                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
4317
4318                 /* Downclock if less than 75% busy over 32ms */
4319                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4320                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
4321
4322                 I915_WRITE(GEN6_RP_CONTROL,
4323                            GEN6_RP_MEDIA_TURBO |
4324                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
4325                            GEN6_RP_MEDIA_IS_GFX |
4326                            GEN6_RP_ENABLE |
4327                            GEN6_RP_UP_BUSY_AVG |
4328                            GEN6_RP_DOWN_IDLE_AVG);
4329                 break;
4330
4331         case HIGH_POWER:
4332                 /* Upclock if more than 85% busy over 10ms */
4333                 I915_WRITE(GEN6_RP_UP_EI, 8000);
4334                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
4335
4336                 /* Downclock if less than 60% busy over 32ms */
4337                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
4338                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
4339
4340                 I915_WRITE(GEN6_RP_CONTROL,
4341                            GEN6_RP_MEDIA_TURBO |
4342                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
4343                            GEN6_RP_MEDIA_IS_GFX |
4344                            GEN6_RP_ENABLE |
4345                            GEN6_RP_UP_BUSY_AVG |
4346                            GEN6_RP_DOWN_IDLE_AVG);
4347                 break;
4348         }
4349
4350         dev_priv->rps.power = new_power;
4351         dev_priv->rps.last_adj = 0;
4352 }
4353
4354 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4355 {
4356         u32 mask = 0;
4357
4358         if (val > dev_priv->rps.min_freq_softlimit)
4359                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4360         if (val < dev_priv->rps.max_freq_softlimit)
4361                 mask |= GEN6_PM_RP_UP_THRESHOLD;
4362
4363         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
4364         mask &= dev_priv->pm_rps_events;
4365
4366         /* IVB and SNB hard hangs on looping batchbuffer
4367          * if GEN6_PM_UP_EI_EXPIRED is masked.
4368          */
4369         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
4370                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
4371
4372         if (IS_GEN8(dev_priv->dev))
4373                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4374
4375         return ~mask;
4376 }
4377
4378 /* gen6_set_rps is called to update the frequency request, but should also be
4379  * called when the range (min_delay and max_delay) is modified so that we can
4380  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4381 void gen6_set_rps(struct drm_device *dev, u8 val)
4382 {
4383         struct drm_i915_private *dev_priv = dev->dev_private;
4384
4385         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4386         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
4387         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4388
4389         /* min/max delay may still have been modified so be sure to
4390          * write the limits value.
4391          */
4392         if (val != dev_priv->rps.cur_freq) {
4393                 gen6_set_rps_thresholds(dev_priv, val);
4394
4395                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4396                         I915_WRITE(GEN6_RPNSWREQ,
4397                                    HSW_FREQUENCY(val));
4398                 else
4399                         I915_WRITE(GEN6_RPNSWREQ,
4400                                    GEN6_FREQUENCY(val) |
4401                                    GEN6_OFFSET(0) |
4402                                    GEN6_AGGRESSIVE_TURBO);
4403         }
4404
4405         /* Make sure we continue to get interrupts
4406          * until we hit the minimum or maximum frequencies.
4407          */
4408         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
4409         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4410
4411         POSTING_READ(GEN6_RPNSWREQ);
4412
4413         dev_priv->rps.cur_freq = val;
4414         trace_intel_gpu_freq_change(val * 50);
4415 }
4416
4417 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4418  *
4419  * * If Gfx is Idle, then
4420  * 1. Mask Turbo interrupts
4421  * 2. Bring up Gfx clock
4422  * 3. Change the freq to Rpn and wait till P-Unit updates freq
4423  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4424  * 5. Unmask Turbo interrupts
4425 */
4426 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4427 {
4428         struct drm_device *dev = dev_priv->dev;
4429
4430         /* Latest VLV doesn't need to force the gfx clock */
4431         if (dev->pdev->revision >= 0xd) {
4432                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4433                 return;
4434         }
4435
4436         /*
4437          * When we are idle.  Drop to min voltage state.
4438          */
4439
4440         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
4441                 return;
4442
4443         /* Mask turbo interrupt so that they will not come in between */
4444         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4445
4446         vlv_force_gfx_clock(dev_priv, true);
4447
4448         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
4449
4450         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
4451                                         dev_priv->rps.min_freq_softlimit);
4452
4453         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4454                                 & GENFREQSTATUS) == 0, 100))
4455                 DRM_ERROR("timed out waiting for Punit\n");
4456
4457         vlv_force_gfx_clock(dev_priv, false);
4458
4459         I915_WRITE(GEN6_PMINTRMSK,
4460                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4461 }
4462
4463 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4464 {
4465         struct drm_device *dev = dev_priv->dev;
4466
4467         mutex_lock(&dev_priv->rps.hw_lock);
4468         if (dev_priv->rps.enabled) {
4469                 if (IS_CHERRYVIEW(dev))
4470                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4471                 else if (IS_VALLEYVIEW(dev))
4472                         vlv_set_rps_idle(dev_priv);
4473                 else
4474                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4475                 dev_priv->rps.last_adj = 0;
4476         }
4477         mutex_unlock(&dev_priv->rps.hw_lock);
4478 }
4479
4480 void gen6_rps_boost(struct drm_i915_private *dev_priv)
4481 {
4482         struct drm_device *dev = dev_priv->dev;
4483
4484         mutex_lock(&dev_priv->rps.hw_lock);
4485         if (dev_priv->rps.enabled) {
4486                 if (IS_VALLEYVIEW(dev))
4487                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4488                 else
4489                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4490                 dev_priv->rps.last_adj = 0;
4491         }
4492         mutex_unlock(&dev_priv->rps.hw_lock);
4493 }
4494
4495 void valleyview_set_rps(struct drm_device *dev, u8 val)
4496 {
4497         struct drm_i915_private *dev_priv = dev->dev_private;
4498
4499         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4500         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
4501         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4502
4503         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4504                       "Odd GPU freq value\n"))
4505                 val &= ~1;
4506
4507         if (val != dev_priv->rps.cur_freq)
4508                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4509
4510         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4511
4512         dev_priv->rps.cur_freq = val;
4513         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
4514 }
4515
4516 static void gen9_disable_rps(struct drm_device *dev)
4517 {
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519
4520         I915_WRITE(GEN6_RC_CONTROL, 0);
4521 }
4522
4523 static void gen6_disable_rps(struct drm_device *dev)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526
4527         I915_WRITE(GEN6_RC_CONTROL, 0);
4528         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4529 }
4530
4531 static void cherryview_disable_rps(struct drm_device *dev)
4532 {
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535         I915_WRITE(GEN6_RC_CONTROL, 0);
4536 }
4537
4538 static void valleyview_disable_rps(struct drm_device *dev)
4539 {
4540         struct drm_i915_private *dev_priv = dev->dev_private;
4541
4542         /* we're doing forcewake before Disabling RC6,
4543          * This what the BIOS expects when going into suspend */
4544         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4545
4546         I915_WRITE(GEN6_RC_CONTROL, 0);
4547
4548         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4549 }
4550
4551 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4552 {
4553         if (IS_VALLEYVIEW(dev)) {
4554                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4555                         mode = GEN6_RC_CTL_RC6_ENABLE;
4556                 else
4557                         mode = 0;
4558         }
4559         if (HAS_RC6p(dev))
4560                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4561                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4562                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4563                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4564
4565         else
4566                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4567                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4568 }
4569
4570 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4571 {
4572         /* No RC6 before Ironlake */
4573         if (INTEL_INFO(dev)->gen < 5)
4574                 return 0;
4575
4576         /* RC6 is only on Ironlake mobile not on desktop */
4577         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4578                 return 0;
4579
4580         /* Respect the kernel parameter if it is set */
4581         if (enable_rc6 >= 0) {
4582                 int mask;
4583
4584                 if (HAS_RC6p(dev))
4585                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4586                                INTEL_RC6pp_ENABLE;
4587                 else
4588                         mask = INTEL_RC6_ENABLE;
4589
4590                 if ((enable_rc6 & mask) != enable_rc6)
4591                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4592                                       enable_rc6 & mask, enable_rc6, mask);
4593
4594                 return enable_rc6 & mask;
4595         }
4596
4597         /* Disable RC6 on Ironlake */
4598         if (INTEL_INFO(dev)->gen == 5)
4599                 return 0;
4600
4601         if (IS_IVYBRIDGE(dev))
4602                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4603
4604         return INTEL_RC6_ENABLE;
4605 }
4606
4607 int intel_enable_rc6(const struct drm_device *dev)
4608 {
4609         return i915.enable_rc6;
4610 }
4611
4612 static void gen6_init_rps_frequencies(struct drm_device *dev)
4613 {
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         uint32_t rp_state_cap;
4616         u32 ddcc_status = 0;
4617         int ret;
4618
4619         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4620         /* All of these values are in units of 50MHz */
4621         dev_priv->rps.cur_freq          = 0;
4622         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4623         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
4624         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
4625         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
4626         /* hw_max = RP0 until we check for overclocking */
4627         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4628
4629         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4630         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4631                 ret = sandybridge_pcode_read(dev_priv,
4632                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4633                                         &ddcc_status);
4634                 if (0 == ret)
4635                         dev_priv->rps.efficient_freq =
4636                                 (ddcc_status >> 8) & 0xff;
4637         }
4638
4639         /* Preserve min/max settings in case of re-init */
4640         if (dev_priv->rps.max_freq_softlimit == 0)
4641                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4642
4643         if (dev_priv->rps.min_freq_softlimit == 0) {
4644                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4645                         dev_priv->rps.min_freq_softlimit =
4646                                 /* max(RPe, 450 MHz) */
4647                                 max(dev_priv->rps.efficient_freq, (u8) 9);
4648                 else
4649                         dev_priv->rps.min_freq_softlimit =
4650                                 dev_priv->rps.min_freq;
4651         }
4652 }
4653
4654 static void gen9_enable_rps(struct drm_device *dev)
4655 {
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         struct intel_engine_cs *ring;
4658         uint32_t rc6_mask = 0;
4659         int unused;
4660
4661         /* 1a: Software RC state - RC0 */
4662         I915_WRITE(GEN6_RC_STATE, 0);
4663
4664         /* 1b: Get forcewake during program sequence. Although the driver
4665          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4666         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4667
4668         /* 2a: Disable RC states. */
4669         I915_WRITE(GEN6_RC_CONTROL, 0);
4670
4671         /* 2b: Program RC6 thresholds.*/
4672         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4673         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4674         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4675         for_each_ring(ring, dev_priv, unused)
4676                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4677         I915_WRITE(GEN6_RC_SLEEP, 0);
4678         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4679
4680         /* 3a: Enable RC6 */
4681         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4682                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4683         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4684                         "on" : "off");
4685         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4686                                    GEN6_RC_CTL_EI_MODE(1) |
4687                                    rc6_mask);
4688
4689         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4690
4691 }
4692
4693 static void gen8_enable_rps(struct drm_device *dev)
4694 {
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct intel_engine_cs *ring;
4697         uint32_t rc6_mask = 0;
4698         int unused;
4699
4700         /* 1a: Software RC state - RC0 */
4701         I915_WRITE(GEN6_RC_STATE, 0);
4702
4703         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4704          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4705         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4706
4707         /* 2a: Disable RC states. */
4708         I915_WRITE(GEN6_RC_CONTROL, 0);
4709
4710         /* Initialize rps frequencies */
4711         gen6_init_rps_frequencies(dev);
4712
4713         /* 2b: Program RC6 thresholds.*/
4714         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4715         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4716         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4717         for_each_ring(ring, dev_priv, unused)
4718                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4719         I915_WRITE(GEN6_RC_SLEEP, 0);
4720         if (IS_BROADWELL(dev))
4721                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4722         else
4723                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4724
4725         /* 3: Enable RC6 */
4726         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4727                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4728         intel_print_rc6_info(dev, rc6_mask);
4729         if (IS_BROADWELL(dev))
4730                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4731                                 GEN7_RC_CTL_TO_MODE |
4732                                 rc6_mask);
4733         else
4734                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4735                                 GEN6_RC_CTL_EI_MODE(1) |
4736                                 rc6_mask);
4737
4738         /* 4 Program defaults and thresholds for RPS*/
4739         I915_WRITE(GEN6_RPNSWREQ,
4740                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4741         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4742                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4743         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4744         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4745
4746         /* Docs recommend 900MHz, and 300 MHz respectively */
4747         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4748                    dev_priv->rps.max_freq_softlimit << 24 |
4749                    dev_priv->rps.min_freq_softlimit << 16);
4750
4751         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4752         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4753         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4754         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4755
4756         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4757
4758         /* 5: Enable RPS */
4759         I915_WRITE(GEN6_RP_CONTROL,
4760                    GEN6_RP_MEDIA_TURBO |
4761                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4762                    GEN6_RP_MEDIA_IS_GFX |
4763                    GEN6_RP_ENABLE |
4764                    GEN6_RP_UP_BUSY_AVG |
4765                    GEN6_RP_DOWN_IDLE_AVG);
4766
4767         /* 6: Ring frequency + overclocking (our driver does this later */
4768
4769         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4770         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4771
4772         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4773 }
4774
4775 static void gen6_enable_rps(struct drm_device *dev)
4776 {
4777         struct drm_i915_private *dev_priv = dev->dev_private;
4778         struct intel_engine_cs *ring;
4779         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4780         u32 gtfifodbg;
4781         int rc6_mode;
4782         int i, ret;
4783
4784         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4785
4786         /* Here begins a magic sequence of register writes to enable
4787          * auto-downclocking.
4788          *
4789          * Perhaps there might be some value in exposing these to
4790          * userspace...
4791          */
4792         I915_WRITE(GEN6_RC_STATE, 0);
4793
4794         /* Clear the DBG now so we don't confuse earlier errors */
4795         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4796                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4797                 I915_WRITE(GTFIFODBG, gtfifodbg);
4798         }
4799
4800         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4801
4802         /* Initialize rps frequencies */
4803         gen6_init_rps_frequencies(dev);
4804
4805         /* disable the counters and set deterministic thresholds */
4806         I915_WRITE(GEN6_RC_CONTROL, 0);
4807
4808         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4809         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4810         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4811         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4812         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4813
4814         for_each_ring(ring, dev_priv, i)
4815                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4816
4817         I915_WRITE(GEN6_RC_SLEEP, 0);
4818         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4819         if (IS_IVYBRIDGE(dev))
4820                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4821         else
4822                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4823         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4824         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4825
4826         /* Check if we are enabling RC6 */
4827         rc6_mode = intel_enable_rc6(dev_priv->dev);
4828         if (rc6_mode & INTEL_RC6_ENABLE)
4829                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4830
4831         /* We don't use those on Haswell */
4832         if (!IS_HASWELL(dev)) {
4833                 if (rc6_mode & INTEL_RC6p_ENABLE)
4834                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4835
4836                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4837                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4838         }
4839
4840         intel_print_rc6_info(dev, rc6_mask);
4841
4842         I915_WRITE(GEN6_RC_CONTROL,
4843                    rc6_mask |
4844                    GEN6_RC_CTL_EI_MODE(1) |
4845                    GEN6_RC_CTL_HW_ENABLE);
4846
4847         /* Power down if completely idle for over 50ms */
4848         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4849         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4850
4851         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4852         if (ret)
4853                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4854
4855         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4856         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4857                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4858                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4859                                  (pcu_mbox & 0xff) * 50);
4860                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4861         }
4862
4863         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4864         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4865
4866         rc6vids = 0;
4867         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4868         if (IS_GEN6(dev) && ret) {
4869                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4870         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4871                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4872                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4873                 rc6vids &= 0xffff00;
4874                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4875                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4876                 if (ret)
4877                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4878         }
4879
4880         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4881 }
4882
4883 static void __gen6_update_ring_freq(struct drm_device *dev)
4884 {
4885         struct drm_i915_private *dev_priv = dev->dev_private;
4886         int min_freq = 15;
4887         unsigned int gpu_freq;
4888         unsigned int max_ia_freq, min_ring_freq;
4889         int scaling_factor = 180;
4890         struct cpufreq_policy *policy;
4891
4892         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4893
4894         policy = cpufreq_cpu_get(0);
4895         if (policy) {
4896                 max_ia_freq = policy->cpuinfo.max_freq;
4897                 cpufreq_cpu_put(policy);
4898         } else {
4899                 /*
4900                  * Default to measured freq if none found, PCU will ensure we
4901                  * don't go over
4902                  */
4903                 max_ia_freq = tsc_khz;
4904         }
4905
4906         /* Convert from kHz to MHz */
4907         max_ia_freq /= 1000;
4908
4909         min_ring_freq = I915_READ(DCLK) & 0xf;
4910         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4911         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4912
4913         /*
4914          * For each potential GPU frequency, load a ring frequency we'd like
4915          * to use for memory access.  We do this by specifying the IA frequency
4916          * the PCU should use as a reference to determine the ring frequency.
4917          */
4918         for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4919              gpu_freq--) {
4920                 int diff = dev_priv->rps.max_freq - gpu_freq;
4921                 unsigned int ia_freq = 0, ring_freq = 0;
4922
4923                 if (INTEL_INFO(dev)->gen >= 8) {
4924                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4925                         ring_freq = max(min_ring_freq, gpu_freq);
4926                 } else if (IS_HASWELL(dev)) {
4927                         ring_freq = mult_frac(gpu_freq, 5, 4);
4928                         ring_freq = max(min_ring_freq, ring_freq);
4929                         /* leave ia_freq as the default, chosen by cpufreq */
4930                 } else {
4931                         /* On older processors, there is no separate ring
4932                          * clock domain, so in order to boost the bandwidth
4933                          * of the ring, we need to upclock the CPU (ia_freq).
4934                          *
4935                          * For GPU frequencies less than 750MHz,
4936                          * just use the lowest ring freq.
4937                          */
4938                         if (gpu_freq < min_freq)
4939                                 ia_freq = 800;
4940                         else
4941                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4942                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4943                 }
4944
4945                 sandybridge_pcode_write(dev_priv,
4946                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4947                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4948                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4949                                         gpu_freq);
4950         }
4951 }
4952
4953 void gen6_update_ring_freq(struct drm_device *dev)
4954 {
4955         struct drm_i915_private *dev_priv = dev->dev_private;
4956
4957         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4958                 return;
4959
4960         mutex_lock(&dev_priv->rps.hw_lock);
4961         __gen6_update_ring_freq(dev);
4962         mutex_unlock(&dev_priv->rps.hw_lock);
4963 }
4964
4965 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4966 {
4967         u32 val, rp0;
4968
4969         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4970         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4971
4972         return rp0;
4973 }
4974
4975 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4976 {
4977         u32 val, rpe;
4978
4979         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4980         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4981
4982         return rpe;
4983 }
4984
4985 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4986 {
4987         u32 val, rp1;
4988
4989         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4990         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4991
4992         return rp1;
4993 }
4994
4995 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4996 {
4997         u32 val, rpn;
4998
4999         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5000         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
5001         return rpn;
5002 }
5003
5004 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5005 {
5006         u32 val, rp1;
5007
5008         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5009
5010         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5011
5012         return rp1;
5013 }
5014
5015 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5016 {
5017         u32 val, rp0;
5018
5019         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5020
5021         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5022         /* Clamp to max */
5023         rp0 = min_t(u32, rp0, 0xea);
5024
5025         return rp0;
5026 }
5027
5028 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5029 {
5030         u32 val, rpe;
5031
5032         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5033         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5034         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5035         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5036
5037         return rpe;
5038 }
5039
5040 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5041 {
5042         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5043 }
5044
5045 /* Check that the pctx buffer wasn't move under us. */
5046 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5047 {
5048         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5049
5050         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5051                              dev_priv->vlv_pctx->stolen->start);
5052 }
5053
5054
5055 /* Check that the pcbr address is not empty. */
5056 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5057 {
5058         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5059
5060         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5061 }
5062
5063 static void cherryview_setup_pctx(struct drm_device *dev)
5064 {
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066         unsigned long pctx_paddr, paddr;
5067         struct i915_gtt *gtt = &dev_priv->gtt;
5068         u32 pcbr;
5069         int pctx_size = 32*1024;
5070
5071         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5072
5073         pcbr = I915_READ(VLV_PCBR);
5074         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5075                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5076                 paddr = (dev_priv->mm.stolen_base +
5077                          (gtt->stolen_size - pctx_size));
5078
5079                 pctx_paddr = (paddr & (~4095));
5080                 I915_WRITE(VLV_PCBR, pctx_paddr);
5081         }
5082
5083         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5084 }
5085
5086 static void valleyview_setup_pctx(struct drm_device *dev)
5087 {
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         struct drm_i915_gem_object *pctx;
5090         unsigned long pctx_paddr;
5091         u32 pcbr;
5092         int pctx_size = 24*1024;
5093
5094         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5095
5096         pcbr = I915_READ(VLV_PCBR);
5097         if (pcbr) {
5098                 /* BIOS set it up already, grab the pre-alloc'd space */
5099                 int pcbr_offset;
5100
5101                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5102                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5103                                                                       pcbr_offset,
5104                                                                       I915_GTT_OFFSET_NONE,
5105                                                                       pctx_size);
5106                 goto out;
5107         }
5108
5109         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5110
5111         /*
5112          * From the Gunit register HAS:
5113          * The Gfx driver is expected to program this register and ensure
5114          * proper allocation within Gfx stolen memory.  For example, this
5115          * register should be programmed such than the PCBR range does not
5116          * overlap with other ranges, such as the frame buffer, protected
5117          * memory, or any other relevant ranges.
5118          */
5119         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5120         if (!pctx) {
5121                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5122                 return;
5123         }
5124
5125         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5126         I915_WRITE(VLV_PCBR, pctx_paddr);
5127
5128 out:
5129         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5130         dev_priv->vlv_pctx = pctx;
5131 }
5132
5133 static void valleyview_cleanup_pctx(struct drm_device *dev)
5134 {
5135         struct drm_i915_private *dev_priv = dev->dev_private;
5136
5137         if (WARN_ON(!dev_priv->vlv_pctx))
5138                 return;
5139
5140         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5141         dev_priv->vlv_pctx = NULL;
5142 }
5143
5144 static void valleyview_init_gt_powersave(struct drm_device *dev)
5145 {
5146         struct drm_i915_private *dev_priv = dev->dev_private;
5147         u32 val;
5148
5149         valleyview_setup_pctx(dev);
5150
5151         mutex_lock(&dev_priv->rps.hw_lock);
5152
5153         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5154         switch ((val >> 6) & 3) {
5155         case 0:
5156         case 1:
5157                 dev_priv->mem_freq = 800;
5158                 break;
5159         case 2:
5160                 dev_priv->mem_freq = 1066;
5161                 break;
5162         case 3:
5163                 dev_priv->mem_freq = 1333;
5164                 break;
5165         }
5166         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5167
5168         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5169         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5170         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5171                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5172                          dev_priv->rps.max_freq);
5173
5174         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5175         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5176                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5177                          dev_priv->rps.efficient_freq);
5178
5179         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5180         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5181                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5182                          dev_priv->rps.rp1_freq);
5183
5184         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5185         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5186                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5187                          dev_priv->rps.min_freq);
5188
5189         /* Preserve min/max settings in case of re-init */
5190         if (dev_priv->rps.max_freq_softlimit == 0)
5191                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5192
5193         if (dev_priv->rps.min_freq_softlimit == 0)
5194                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5195
5196         mutex_unlock(&dev_priv->rps.hw_lock);
5197 }
5198
5199 static void cherryview_init_gt_powersave(struct drm_device *dev)
5200 {
5201         struct drm_i915_private *dev_priv = dev->dev_private;
5202         u32 val;
5203
5204         cherryview_setup_pctx(dev);
5205
5206         mutex_lock(&dev_priv->rps.hw_lock);
5207
5208         mutex_lock(&dev_priv->dpio_lock);
5209         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5210         mutex_unlock(&dev_priv->dpio_lock);
5211
5212         switch ((val >> 2) & 0x7) {
5213         case 0:
5214         case 1:
5215                 dev_priv->rps.cz_freq = 200;
5216                 dev_priv->mem_freq = 1600;
5217                 break;
5218         case 2:
5219                 dev_priv->rps.cz_freq = 267;
5220                 dev_priv->mem_freq = 1600;
5221                 break;
5222         case 3:
5223                 dev_priv->rps.cz_freq = 333;
5224                 dev_priv->mem_freq = 2000;
5225                 break;
5226         case 4:
5227                 dev_priv->rps.cz_freq = 320;
5228                 dev_priv->mem_freq = 1600;
5229                 break;
5230         case 5:
5231                 dev_priv->rps.cz_freq = 400;
5232                 dev_priv->mem_freq = 1600;
5233                 break;
5234         }
5235         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5236
5237         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5238         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5239         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5240                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5241                          dev_priv->rps.max_freq);
5242
5243         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5244         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5245                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5246                          dev_priv->rps.efficient_freq);
5247
5248         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5249         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5250                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5251                          dev_priv->rps.rp1_freq);
5252
5253         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
5254         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5255                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5256                          dev_priv->rps.min_freq);
5257
5258         WARN_ONCE((dev_priv->rps.max_freq |
5259                    dev_priv->rps.efficient_freq |
5260                    dev_priv->rps.rp1_freq |
5261                    dev_priv->rps.min_freq) & 1,
5262                   "Odd GPU freq values\n");
5263
5264         /* Preserve min/max settings in case of re-init */
5265         if (dev_priv->rps.max_freq_softlimit == 0)
5266                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5267
5268         if (dev_priv->rps.min_freq_softlimit == 0)
5269                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5270
5271         mutex_unlock(&dev_priv->rps.hw_lock);
5272 }
5273
5274 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5275 {
5276         valleyview_cleanup_pctx(dev);
5277 }
5278
5279 static void cherryview_enable_rps(struct drm_device *dev)
5280 {
5281         struct drm_i915_private *dev_priv = dev->dev_private;
5282         struct intel_engine_cs *ring;
5283         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5284         int i;
5285
5286         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5287
5288         gtfifodbg = I915_READ(GTFIFODBG);
5289         if (gtfifodbg) {
5290                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5291                                  gtfifodbg);
5292                 I915_WRITE(GTFIFODBG, gtfifodbg);
5293         }
5294
5295         cherryview_check_pctx(dev_priv);
5296
5297         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5298          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5299         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
5300
5301         /* 2a: Program RC6 thresholds.*/
5302         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5303         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5304         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5305
5306         for_each_ring(ring, dev_priv, i)
5307                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5308         I915_WRITE(GEN6_RC_SLEEP, 0);
5309
5310         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5311
5312         /* allows RC6 residency counter to work */
5313         I915_WRITE(VLV_COUNTER_CONTROL,
5314                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5315                                       VLV_MEDIA_RC6_COUNT_EN |
5316                                       VLV_RENDER_RC6_COUNT_EN));
5317
5318         /* For now we assume BIOS is allocating and populating the PCBR  */
5319         pcbr = I915_READ(VLV_PCBR);
5320
5321         /* 3: Enable RC6 */
5322         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5323                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5324                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
5325
5326         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5327
5328         /* 4 Program defaults and thresholds for RPS*/
5329         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5330         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5331         I915_WRITE(GEN6_RP_UP_EI, 66000);
5332         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5333
5334         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5335
5336         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
5337         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
5338         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
5339
5340         /* 5: Enable RPS */
5341         I915_WRITE(GEN6_RP_CONTROL,
5342                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5343                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
5344                    GEN6_RP_ENABLE |
5345                    GEN6_RP_UP_BUSY_AVG |
5346                    GEN6_RP_DOWN_IDLE_AVG);
5347
5348         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5349
5350         /* RPS code assumes GPLL is used */
5351         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5352
5353         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5354         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5355
5356         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5357         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5358                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5359                          dev_priv->rps.cur_freq);
5360
5361         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5362                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5363                          dev_priv->rps.efficient_freq);
5364
5365         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5366
5367         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
5368 }
5369
5370 static void valleyview_enable_rps(struct drm_device *dev)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_engine_cs *ring;
5374         u32 gtfifodbg, val, rc6_mode = 0;
5375         int i;
5376
5377         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5378
5379         valleyview_check_pctx(dev_priv);
5380
5381         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5382                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5383                                  gtfifodbg);
5384                 I915_WRITE(GTFIFODBG, gtfifodbg);
5385         }
5386
5387         /* If VLV, Forcewake all wells, else re-direct to regular path */
5388         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
5389
5390         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5391         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5392         I915_WRITE(GEN6_RP_UP_EI, 66000);
5393         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5394
5395         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5396         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
5397
5398         I915_WRITE(GEN6_RP_CONTROL,
5399                    GEN6_RP_MEDIA_TURBO |
5400                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5401                    GEN6_RP_MEDIA_IS_GFX |
5402                    GEN6_RP_ENABLE |
5403                    GEN6_RP_UP_BUSY_AVG |
5404                    GEN6_RP_DOWN_IDLE_CONT);
5405
5406         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5407         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5408         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5409
5410         for_each_ring(ring, dev_priv, i)
5411                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5412
5413         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5414
5415         /* allows RC6 residency counter to work */
5416         I915_WRITE(VLV_COUNTER_CONTROL,
5417                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5418                                       VLV_RENDER_RC0_COUNT_EN |
5419                                       VLV_MEDIA_RC6_COUNT_EN |
5420                                       VLV_RENDER_RC6_COUNT_EN));
5421
5422         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5423                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5424
5425         intel_print_rc6_info(dev, rc6_mode);
5426
5427         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5428
5429         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5430
5431         /* RPS code assumes GPLL is used */
5432         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5433
5434         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5435         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5436
5437         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5438         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5439                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5440                          dev_priv->rps.cur_freq);
5441
5442         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5443                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5444                          dev_priv->rps.efficient_freq);
5445
5446         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5447
5448         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
5449 }
5450
5451 void ironlake_teardown_rc6(struct drm_device *dev)
5452 {
5453         struct drm_i915_private *dev_priv = dev->dev_private;
5454
5455         if (dev_priv->ips.renderctx) {
5456                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
5457                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
5458                 dev_priv->ips.renderctx = NULL;
5459         }
5460
5461         if (dev_priv->ips.pwrctx) {
5462                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
5463                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
5464                 dev_priv->ips.pwrctx = NULL;
5465         }
5466 }
5467
5468 static void ironlake_disable_rc6(struct drm_device *dev)
5469 {
5470         struct drm_i915_private *dev_priv = dev->dev_private;
5471
5472         if (I915_READ(PWRCTXA)) {
5473                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
5474                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
5475                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
5476                          50);
5477
5478                 I915_WRITE(PWRCTXA, 0);
5479                 POSTING_READ(PWRCTXA);
5480
5481                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5482                 POSTING_READ(RSTDBYCTL);
5483         }
5484 }
5485
5486 static int ironlake_setup_rc6(struct drm_device *dev)
5487 {
5488         struct drm_i915_private *dev_priv = dev->dev_private;
5489
5490         if (dev_priv->ips.renderctx == NULL)
5491                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
5492         if (!dev_priv->ips.renderctx)
5493                 return -ENOMEM;
5494
5495         if (dev_priv->ips.pwrctx == NULL)
5496                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
5497         if (!dev_priv->ips.pwrctx) {
5498                 ironlake_teardown_rc6(dev);
5499                 return -ENOMEM;
5500         }
5501
5502         return 0;
5503 }
5504
5505 static void ironlake_enable_rc6(struct drm_device *dev)
5506 {
5507         struct drm_i915_private *dev_priv = dev->dev_private;
5508         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
5509         bool was_interruptible;
5510         int ret;
5511
5512         /* rc6 disabled by default due to repeated reports of hanging during
5513          * boot and resume.
5514          */
5515         if (!intel_enable_rc6(dev))
5516                 return;
5517
5518         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5519
5520         ret = ironlake_setup_rc6(dev);
5521         if (ret)
5522                 return;
5523
5524         was_interruptible = dev_priv->mm.interruptible;
5525         dev_priv->mm.interruptible = false;
5526
5527         /*
5528          * GPU can automatically power down the render unit if given a page
5529          * to save state.
5530          */
5531         ret = intel_ring_begin(ring, 6);
5532         if (ret) {
5533                 ironlake_teardown_rc6(dev);
5534                 dev_priv->mm.interruptible = was_interruptible;
5535                 return;
5536         }
5537
5538         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
5539         intel_ring_emit(ring, MI_SET_CONTEXT);
5540         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
5541                         MI_MM_SPACE_GTT |
5542                         MI_SAVE_EXT_STATE_EN |
5543                         MI_RESTORE_EXT_STATE_EN |
5544                         MI_RESTORE_INHIBIT);
5545         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5546         intel_ring_emit(ring, MI_NOOP);
5547         intel_ring_emit(ring, MI_FLUSH);
5548         intel_ring_advance(ring);
5549
5550         /*
5551          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5552          * does an implicit flush, combined with MI_FLUSH above, it should be
5553          * safe to assume that renderctx is valid
5554          */
5555         ret = intel_ring_idle(ring);
5556         dev_priv->mm.interruptible = was_interruptible;
5557         if (ret) {
5558                 DRM_ERROR("failed to enable ironlake power savings\n");
5559                 ironlake_teardown_rc6(dev);
5560                 return;
5561         }
5562
5563         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5564         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5565
5566         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5567 }
5568
5569 static unsigned long intel_pxfreq(u32 vidfreq)
5570 {
5571         unsigned long freq;
5572         int div = (vidfreq & 0x3f0000) >> 16;
5573         int post = (vidfreq & 0x3000) >> 12;
5574         int pre = (vidfreq & 0x7);
5575
5576         if (!pre)
5577                 return 0;
5578
5579         freq = ((div * 133333) / ((1<<post) * pre));
5580
5581         return freq;
5582 }
5583
5584 static const struct cparams {
5585         u16 i;
5586         u16 t;
5587         u16 m;
5588         u16 c;
5589 } cparams[] = {
5590         { 1, 1333, 301, 28664 },
5591         { 1, 1066, 294, 24460 },
5592         { 1, 800, 294, 25192 },
5593         { 0, 1333, 276, 27605 },
5594         { 0, 1066, 276, 27605 },
5595         { 0, 800, 231, 23784 },
5596 };
5597
5598 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5599 {
5600         u64 total_count, diff, ret;
5601         u32 count1, count2, count3, m = 0, c = 0;
5602         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5603         int i;
5604
5605         assert_spin_locked(&mchdev_lock);
5606
5607         diff1 = now - dev_priv->ips.last_time1;
5608
5609         /* Prevent division-by-zero if we are asking too fast.
5610          * Also, we don't get interesting results if we are polling
5611          * faster than once in 10ms, so just return the saved value
5612          * in such cases.
5613          */
5614         if (diff1 <= 10)
5615                 return dev_priv->ips.chipset_power;
5616
5617         count1 = I915_READ(DMIEC);
5618         count2 = I915_READ(DDREC);
5619         count3 = I915_READ(CSIEC);
5620
5621         total_count = count1 + count2 + count3;
5622
5623         /* FIXME: handle per-counter overflow */
5624         if (total_count < dev_priv->ips.last_count1) {
5625                 diff = ~0UL - dev_priv->ips.last_count1;
5626                 diff += total_count;
5627         } else {
5628                 diff = total_count - dev_priv->ips.last_count1;
5629         }
5630
5631         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5632                 if (cparams[i].i == dev_priv->ips.c_m &&
5633                     cparams[i].t == dev_priv->ips.r_t) {
5634                         m = cparams[i].m;
5635                         c = cparams[i].c;
5636                         break;
5637                 }
5638         }
5639
5640         diff = div_u64(diff, diff1);
5641         ret = ((m * diff) + c);
5642         ret = div_u64(ret, 10);
5643
5644         dev_priv->ips.last_count1 = total_count;
5645         dev_priv->ips.last_time1 = now;
5646
5647         dev_priv->ips.chipset_power = ret;
5648
5649         return ret;
5650 }
5651
5652 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5653 {
5654         struct drm_device *dev = dev_priv->dev;
5655         unsigned long val;
5656
5657         if (INTEL_INFO(dev)->gen != 5)
5658                 return 0;
5659
5660         spin_lock_irq(&mchdev_lock);
5661
5662         val = __i915_chipset_val(dev_priv);
5663
5664         spin_unlock_irq(&mchdev_lock);
5665
5666         return val;
5667 }
5668
5669 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5670 {
5671         unsigned long m, x, b;
5672         u32 tsfs;
5673
5674         tsfs = I915_READ(TSFS);
5675
5676         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5677         x = I915_READ8(TR1);
5678
5679         b = tsfs & TSFS_INTR_MASK;
5680
5681         return ((m * x) / 127) - b;
5682 }
5683
5684 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5685 {
5686         struct drm_device *dev = dev_priv->dev;
5687         static const struct v_table {
5688                 u16 vd; /* in .1 mil */
5689                 u16 vm; /* in .1 mil */
5690         } v_table[] = {
5691                 { 0, 0, },
5692                 { 375, 0, },
5693                 { 500, 0, },
5694                 { 625, 0, },
5695                 { 750, 0, },
5696                 { 875, 0, },
5697                 { 1000, 0, },
5698                 { 1125, 0, },
5699                 { 4125, 3000, },
5700                 { 4125, 3000, },
5701                 { 4125, 3000, },
5702                 { 4125, 3000, },
5703                 { 4125, 3000, },
5704                 { 4125, 3000, },
5705                 { 4125, 3000, },
5706                 { 4125, 3000, },
5707                 { 4125, 3000, },
5708                 { 4125, 3000, },
5709                 { 4125, 3000, },
5710                 { 4125, 3000, },
5711                 { 4125, 3000, },
5712                 { 4125, 3000, },
5713                 { 4125, 3000, },
5714                 { 4125, 3000, },
5715                 { 4125, 3000, },
5716                 { 4125, 3000, },
5717                 { 4125, 3000, },
5718                 { 4125, 3000, },
5719                 { 4125, 3000, },
5720                 { 4125, 3000, },
5721                 { 4125, 3000, },
5722                 { 4125, 3000, },
5723                 { 4250, 3125, },
5724                 { 4375, 3250, },
5725                 { 4500, 3375, },
5726                 { 4625, 3500, },
5727                 { 4750, 3625, },
5728                 { 4875, 3750, },
5729                 { 5000, 3875, },
5730                 { 5125, 4000, },
5731                 { 5250, 4125, },
5732                 { 5375, 4250, },
5733                 { 5500, 4375, },
5734                 { 5625, 4500, },
5735                 { 5750, 4625, },
5736                 { 5875, 4750, },
5737                 { 6000, 4875, },
5738                 { 6125, 5000, },
5739                 { 6250, 5125, },
5740                 { 6375, 5250, },
5741                 { 6500, 5375, },
5742                 { 6625, 5500, },
5743                 { 6750, 5625, },
5744                 { 6875, 5750, },
5745                 { 7000, 5875, },
5746                 { 7125, 6000, },
5747                 { 7250, 6125, },
5748                 { 7375, 6250, },
5749                 { 7500, 6375, },
5750                 { 7625, 6500, },
5751                 { 7750, 6625, },
5752                 { 7875, 6750, },
5753                 { 8000, 6875, },
5754                 { 8125, 7000, },
5755                 { 8250, 7125, },
5756                 { 8375, 7250, },
5757                 { 8500, 7375, },
5758                 { 8625, 7500, },
5759                 { 8750, 7625, },
5760                 { 8875, 7750, },
5761                 { 9000, 7875, },
5762                 { 9125, 8000, },
5763                 { 9250, 8125, },
5764                 { 9375, 8250, },
5765                 { 9500, 8375, },
5766                 { 9625, 8500, },
5767                 { 9750, 8625, },
5768                 { 9875, 8750, },
5769                 { 10000, 8875, },
5770                 { 10125, 9000, },
5771                 { 10250, 9125, },
5772                 { 10375, 9250, },
5773                 { 10500, 9375, },
5774                 { 10625, 9500, },
5775                 { 10750, 9625, },
5776                 { 10875, 9750, },
5777                 { 11000, 9875, },
5778                 { 11125, 10000, },
5779                 { 11250, 10125, },
5780                 { 11375, 10250, },
5781                 { 11500, 10375, },
5782                 { 11625, 10500, },
5783                 { 11750, 10625, },
5784                 { 11875, 10750, },
5785                 { 12000, 10875, },
5786                 { 12125, 11000, },
5787                 { 12250, 11125, },
5788                 { 12375, 11250, },
5789                 { 12500, 11375, },
5790                 { 12625, 11500, },
5791                 { 12750, 11625, },
5792                 { 12875, 11750, },
5793                 { 13000, 11875, },
5794                 { 13125, 12000, },
5795                 { 13250, 12125, },
5796                 { 13375, 12250, },
5797                 { 13500, 12375, },
5798                 { 13625, 12500, },
5799                 { 13750, 12625, },
5800                 { 13875, 12750, },
5801                 { 14000, 12875, },
5802                 { 14125, 13000, },
5803                 { 14250, 13125, },
5804                 { 14375, 13250, },
5805                 { 14500, 13375, },
5806                 { 14625, 13500, },
5807                 { 14750, 13625, },
5808                 { 14875, 13750, },
5809                 { 15000, 13875, },
5810                 { 15125, 14000, },
5811                 { 15250, 14125, },
5812                 { 15375, 14250, },
5813                 { 15500, 14375, },
5814                 { 15625, 14500, },
5815                 { 15750, 14625, },
5816                 { 15875, 14750, },
5817                 { 16000, 14875, },
5818                 { 16125, 15000, },
5819         };
5820         if (INTEL_INFO(dev)->is_mobile)
5821                 return v_table[pxvid].vm;
5822         else
5823                 return v_table[pxvid].vd;
5824 }
5825
5826 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5827 {
5828         u64 now, diff, diffms;
5829         u32 count;
5830
5831         assert_spin_locked(&mchdev_lock);
5832
5833         now = ktime_get_raw_ns();
5834         diffms = now - dev_priv->ips.last_time2;
5835         do_div(diffms, NSEC_PER_MSEC);
5836
5837         /* Don't divide by 0 */
5838         if (!diffms)
5839                 return;
5840
5841         count = I915_READ(GFXEC);
5842
5843         if (count < dev_priv->ips.last_count2) {
5844                 diff = ~0UL - dev_priv->ips.last_count2;
5845                 diff += count;
5846         } else {
5847                 diff = count - dev_priv->ips.last_count2;
5848         }
5849
5850         dev_priv->ips.last_count2 = count;
5851         dev_priv->ips.last_time2 = now;
5852
5853         /* More magic constants... */
5854         diff = diff * 1181;
5855         diff = div_u64(diff, diffms * 10);
5856         dev_priv->ips.gfx_power = diff;
5857 }
5858
5859 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5860 {
5861         struct drm_device *dev = dev_priv->dev;
5862
5863         if (INTEL_INFO(dev)->gen != 5)
5864                 return;
5865
5866         spin_lock_irq(&mchdev_lock);
5867
5868         __i915_update_gfx_val(dev_priv);
5869
5870         spin_unlock_irq(&mchdev_lock);
5871 }
5872
5873 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5874 {
5875         unsigned long t, corr, state1, corr2, state2;
5876         u32 pxvid, ext_v;
5877
5878         assert_spin_locked(&mchdev_lock);
5879
5880         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5881         pxvid = (pxvid >> 24) & 0x7f;
5882         ext_v = pvid_to_extvid(dev_priv, pxvid);
5883
5884         state1 = ext_v;
5885
5886         t = i915_mch_val(dev_priv);
5887
5888         /* Revel in the empirically derived constants */
5889
5890         /* Correction factor in 1/100000 units */
5891         if (t > 80)
5892                 corr = ((t * 2349) + 135940);
5893         else if (t >= 50)
5894                 corr = ((t * 964) + 29317);
5895         else /* < 50 */
5896                 corr = ((t * 301) + 1004);
5897
5898         corr = corr * ((150142 * state1) / 10000 - 78642);
5899         corr /= 100000;
5900         corr2 = (corr * dev_priv->ips.corr);
5901
5902         state2 = (corr2 * state1) / 10000;
5903         state2 /= 100; /* convert to mW */
5904
5905         __i915_update_gfx_val(dev_priv);
5906
5907         return dev_priv->ips.gfx_power + state2;
5908 }
5909
5910 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5911 {
5912         struct drm_device *dev = dev_priv->dev;
5913         unsigned long val;
5914
5915         if (INTEL_INFO(dev)->gen != 5)
5916                 return 0;
5917
5918         spin_lock_irq(&mchdev_lock);
5919
5920         val = __i915_gfx_val(dev_priv);
5921
5922         spin_unlock_irq(&mchdev_lock);
5923
5924         return val;
5925 }
5926
5927 /**
5928  * i915_read_mch_val - return value for IPS use
5929  *
5930  * Calculate and return a value for the IPS driver to use when deciding whether
5931  * we have thermal and power headroom to increase CPU or GPU power budget.
5932  */
5933 unsigned long i915_read_mch_val(void)
5934 {
5935         struct drm_i915_private *dev_priv;
5936         unsigned long chipset_val, graphics_val, ret = 0;
5937
5938         spin_lock_irq(&mchdev_lock);
5939         if (!i915_mch_dev)
5940                 goto out_unlock;
5941         dev_priv = i915_mch_dev;
5942
5943         chipset_val = __i915_chipset_val(dev_priv);
5944         graphics_val = __i915_gfx_val(dev_priv);
5945
5946         ret = chipset_val + graphics_val;
5947
5948 out_unlock:
5949         spin_unlock_irq(&mchdev_lock);
5950
5951         return ret;
5952 }
5953 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5954
5955 /**
5956  * i915_gpu_raise - raise GPU frequency limit
5957  *
5958  * Raise the limit; IPS indicates we have thermal headroom.
5959  */
5960 bool i915_gpu_raise(void)
5961 {
5962         struct drm_i915_private *dev_priv;
5963         bool ret = true;
5964
5965         spin_lock_irq(&mchdev_lock);
5966         if (!i915_mch_dev) {
5967                 ret = false;
5968                 goto out_unlock;
5969         }
5970         dev_priv = i915_mch_dev;
5971
5972         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5973                 dev_priv->ips.max_delay--;
5974
5975 out_unlock:
5976         spin_unlock_irq(&mchdev_lock);
5977
5978         return ret;
5979 }
5980 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5981
5982 /**
5983  * i915_gpu_lower - lower GPU frequency limit
5984  *
5985  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5986  * frequency maximum.
5987  */
5988 bool i915_gpu_lower(void)
5989 {
5990         struct drm_i915_private *dev_priv;
5991         bool ret = true;
5992
5993         spin_lock_irq(&mchdev_lock);
5994         if (!i915_mch_dev) {
5995                 ret = false;
5996                 goto out_unlock;
5997         }
5998         dev_priv = i915_mch_dev;
5999
6000         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6001                 dev_priv->ips.max_delay++;
6002
6003 out_unlock:
6004         spin_unlock_irq(&mchdev_lock);
6005
6006         return ret;
6007 }
6008 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6009
6010 /**
6011  * i915_gpu_busy - indicate GPU business to IPS
6012  *
6013  * Tell the IPS driver whether or not the GPU is busy.
6014  */
6015 bool i915_gpu_busy(void)
6016 {
6017         struct drm_i915_private *dev_priv;
6018         struct intel_engine_cs *ring;
6019         bool ret = false;
6020         int i;
6021
6022         spin_lock_irq(&mchdev_lock);
6023         if (!i915_mch_dev)
6024                 goto out_unlock;
6025         dev_priv = i915_mch_dev;
6026
6027         for_each_ring(ring, dev_priv, i)
6028                 ret |= !list_empty(&ring->request_list);
6029
6030 out_unlock:
6031         spin_unlock_irq(&mchdev_lock);
6032
6033         return ret;
6034 }
6035 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6036
6037 /**
6038  * i915_gpu_turbo_disable - disable graphics turbo
6039  *
6040  * Disable graphics turbo by resetting the max frequency and setting the
6041  * current frequency to the default.
6042  */
6043 bool i915_gpu_turbo_disable(void)
6044 {
6045         struct drm_i915_private *dev_priv;
6046         bool ret = true;
6047
6048         spin_lock_irq(&mchdev_lock);
6049         if (!i915_mch_dev) {
6050                 ret = false;
6051                 goto out_unlock;
6052         }
6053         dev_priv = i915_mch_dev;
6054
6055         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6056
6057         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6058                 ret = false;
6059
6060 out_unlock:
6061         spin_unlock_irq(&mchdev_lock);
6062
6063         return ret;
6064 }
6065 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6066
6067 /**
6068  * Tells the intel_ips driver that the i915 driver is now loaded, if
6069  * IPS got loaded first.
6070  *
6071  * This awkward dance is so that neither module has to depend on the
6072  * other in order for IPS to do the appropriate communication of
6073  * GPU turbo limits to i915.
6074  */
6075 static void
6076 ips_ping_for_i915_load(void)
6077 {
6078         void (*link)(void);
6079
6080         link = symbol_get(ips_link_to_i915_driver);
6081         if (link) {
6082                 link();
6083                 symbol_put(ips_link_to_i915_driver);
6084         }
6085 }
6086
6087 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6088 {
6089         /* We only register the i915 ips part with intel-ips once everything is
6090          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6091         spin_lock_irq(&mchdev_lock);
6092         i915_mch_dev = dev_priv;
6093         spin_unlock_irq(&mchdev_lock);
6094
6095         ips_ping_for_i915_load();
6096 }
6097
6098 void intel_gpu_ips_teardown(void)
6099 {
6100         spin_lock_irq(&mchdev_lock);
6101         i915_mch_dev = NULL;
6102         spin_unlock_irq(&mchdev_lock);
6103 }
6104
6105 static void intel_init_emon(struct drm_device *dev)
6106 {
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         u32 lcfuse;
6109         u8 pxw[16];
6110         int i;
6111
6112         /* Disable to program */
6113         I915_WRITE(ECR, 0);
6114         POSTING_READ(ECR);
6115
6116         /* Program energy weights for various events */
6117         I915_WRITE(SDEW, 0x15040d00);
6118         I915_WRITE(CSIEW0, 0x007f0000);
6119         I915_WRITE(CSIEW1, 0x1e220004);
6120         I915_WRITE(CSIEW2, 0x04000004);
6121
6122         for (i = 0; i < 5; i++)
6123                 I915_WRITE(PEW + (i * 4), 0);
6124         for (i = 0; i < 3; i++)
6125                 I915_WRITE(DEW + (i * 4), 0);
6126
6127         /* Program P-state weights to account for frequency power adjustment */
6128         for (i = 0; i < 16; i++) {
6129                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6130                 unsigned long freq = intel_pxfreq(pxvidfreq);
6131                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6132                         PXVFREQ_PX_SHIFT;
6133                 unsigned long val;
6134
6135                 val = vid * vid;
6136                 val *= (freq / 1000);
6137                 val *= 255;
6138                 val /= (127*127*900);
6139                 if (val > 0xff)
6140                         DRM_ERROR("bad pxval: %ld\n", val);
6141                 pxw[i] = val;
6142         }
6143         /* Render standby states get 0 weight */
6144         pxw[14] = 0;
6145         pxw[15] = 0;
6146
6147         for (i = 0; i < 4; i++) {
6148                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6149                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6150                 I915_WRITE(PXW + (i * 4), val);
6151         }
6152
6153         /* Adjust magic regs to magic values (more experimental results) */
6154         I915_WRITE(OGW0, 0);
6155         I915_WRITE(OGW1, 0);
6156         I915_WRITE(EG0, 0x00007f00);
6157         I915_WRITE(EG1, 0x0000000e);
6158         I915_WRITE(EG2, 0x000e0000);
6159         I915_WRITE(EG3, 0x68000300);
6160         I915_WRITE(EG4, 0x42000000);
6161         I915_WRITE(EG5, 0x00140031);
6162         I915_WRITE(EG6, 0);
6163         I915_WRITE(EG7, 0);
6164
6165         for (i = 0; i < 8; i++)
6166                 I915_WRITE(PXWL + (i * 4), 0);
6167
6168         /* Enable PMON + select events */
6169         I915_WRITE(ECR, 0x80000019);
6170
6171         lcfuse = I915_READ(LCFUSE02);
6172
6173         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6174 }
6175
6176 void intel_init_gt_powersave(struct drm_device *dev)
6177 {
6178         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6179
6180         if (IS_CHERRYVIEW(dev))
6181                 cherryview_init_gt_powersave(dev);
6182         else if (IS_VALLEYVIEW(dev))
6183                 valleyview_init_gt_powersave(dev);
6184 }
6185
6186 void intel_cleanup_gt_powersave(struct drm_device *dev)
6187 {
6188         if (IS_CHERRYVIEW(dev))
6189                 return;
6190         else if (IS_VALLEYVIEW(dev))
6191                 valleyview_cleanup_gt_powersave(dev);
6192 }
6193
6194 static void gen6_suspend_rps(struct drm_device *dev)
6195 {
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197
6198         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6199
6200         /*
6201          * TODO: disable RPS interrupts on GEN9+ too once RPS support
6202          * is added for it.
6203          */
6204         if (INTEL_INFO(dev)->gen < 9)
6205                 gen6_disable_rps_interrupts(dev);
6206 }
6207
6208 /**
6209  * intel_suspend_gt_powersave - suspend PM work and helper threads
6210  * @dev: drm device
6211  *
6212  * We don't want to disable RC6 or other features here, we just want
6213  * to make sure any work we've queued has finished and won't bother
6214  * us while we're suspended.
6215  */
6216 void intel_suspend_gt_powersave(struct drm_device *dev)
6217 {
6218         struct drm_i915_private *dev_priv = dev->dev_private;
6219
6220         if (INTEL_INFO(dev)->gen < 6)
6221                 return;
6222
6223         gen6_suspend_rps(dev);
6224
6225         /* Force GPU to min freq during suspend */
6226         gen6_rps_idle(dev_priv);
6227 }
6228
6229 void intel_disable_gt_powersave(struct drm_device *dev)
6230 {
6231         struct drm_i915_private *dev_priv = dev->dev_private;
6232
6233         if (IS_IRONLAKE_M(dev)) {
6234                 ironlake_disable_drps(dev);
6235                 ironlake_disable_rc6(dev);
6236         } else if (INTEL_INFO(dev)->gen >= 6) {
6237                 intel_suspend_gt_powersave(dev);
6238
6239                 mutex_lock(&dev_priv->rps.hw_lock);
6240                 if (INTEL_INFO(dev)->gen >= 9)
6241                         gen9_disable_rps(dev);
6242                 else if (IS_CHERRYVIEW(dev))
6243                         cherryview_disable_rps(dev);
6244                 else if (IS_VALLEYVIEW(dev))
6245                         valleyview_disable_rps(dev);
6246                 else
6247                         gen6_disable_rps(dev);
6248
6249                 dev_priv->rps.enabled = false;
6250                 mutex_unlock(&dev_priv->rps.hw_lock);
6251         }
6252 }
6253
6254 static void intel_gen6_powersave_work(struct work_struct *work)
6255 {
6256         struct drm_i915_private *dev_priv =
6257                 container_of(work, struct drm_i915_private,
6258                              rps.delayed_resume_work.work);
6259         struct drm_device *dev = dev_priv->dev;
6260
6261         mutex_lock(&dev_priv->rps.hw_lock);
6262
6263         /*
6264          * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
6265          * added for it.
6266          */
6267         if (INTEL_INFO(dev)->gen < 9)
6268                 gen6_reset_rps_interrupts(dev);
6269
6270         if (IS_CHERRYVIEW(dev)) {
6271                 cherryview_enable_rps(dev);
6272         } else if (IS_VALLEYVIEW(dev)) {
6273                 valleyview_enable_rps(dev);
6274         } else if (INTEL_INFO(dev)->gen >= 9) {
6275                 gen9_enable_rps(dev);
6276         } else if (IS_BROADWELL(dev)) {
6277                 gen8_enable_rps(dev);
6278                 __gen6_update_ring_freq(dev);
6279         } else {
6280                 gen6_enable_rps(dev);
6281                 __gen6_update_ring_freq(dev);
6282         }
6283         dev_priv->rps.enabled = true;
6284
6285         if (INTEL_INFO(dev)->gen < 9)
6286                 gen6_enable_rps_interrupts(dev);
6287
6288         mutex_unlock(&dev_priv->rps.hw_lock);
6289
6290         intel_runtime_pm_put(dev_priv);
6291 }
6292
6293 void intel_enable_gt_powersave(struct drm_device *dev)
6294 {
6295         struct drm_i915_private *dev_priv = dev->dev_private;
6296
6297         if (IS_IRONLAKE_M(dev)) {
6298                 mutex_lock(&dev->struct_mutex);
6299                 ironlake_enable_drps(dev);
6300                 ironlake_enable_rc6(dev);
6301                 intel_init_emon(dev);
6302                 mutex_unlock(&dev->struct_mutex);
6303         } else if (INTEL_INFO(dev)->gen >= 6) {
6304                 /*
6305                  * PCU communication is slow and this doesn't need to be
6306                  * done at any specific time, so do this out of our fast path
6307                  * to make resume and init faster.
6308                  *
6309                  * We depend on the HW RC6 power context save/restore
6310                  * mechanism when entering D3 through runtime PM suspend. So
6311                  * disable RPM until RPS/RC6 is properly setup. We can only
6312                  * get here via the driver load/system resume/runtime resume
6313                  * paths, so the _noresume version is enough (and in case of
6314                  * runtime resume it's necessary).
6315                  */
6316                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6317                                            round_jiffies_up_relative(HZ)))
6318                         intel_runtime_pm_get_noresume(dev_priv);
6319         }
6320 }
6321
6322 void intel_reset_gt_powersave(struct drm_device *dev)
6323 {
6324         struct drm_i915_private *dev_priv = dev->dev_private;
6325
6326         if (INTEL_INFO(dev)->gen < 6)
6327                 return;
6328
6329         gen6_suspend_rps(dev);
6330         dev_priv->rps.enabled = false;
6331 }
6332
6333 static void ibx_init_clock_gating(struct drm_device *dev)
6334 {
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336
6337         /*
6338          * On Ibex Peak and Cougar Point, we need to disable clock
6339          * gating for the panel power sequencer or it will fail to
6340          * start up when no ports are active.
6341          */
6342         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6343 }
6344
6345 static void g4x_disable_trickle_feed(struct drm_device *dev)
6346 {
6347         struct drm_i915_private *dev_priv = dev->dev_private;
6348         int pipe;
6349
6350         for_each_pipe(dev_priv, pipe) {
6351                 I915_WRITE(DSPCNTR(pipe),
6352                            I915_READ(DSPCNTR(pipe)) |
6353                            DISPPLANE_TRICKLE_FEED_DISABLE);
6354                 intel_flush_primary_plane(dev_priv, pipe);
6355         }
6356 }
6357
6358 static void ilk_init_lp_watermarks(struct drm_device *dev)
6359 {
6360         struct drm_i915_private *dev_priv = dev->dev_private;
6361
6362         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6363         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6364         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6365
6366         /*
6367          * Don't touch WM1S_LP_EN here.
6368          * Doing so could cause underruns.
6369          */
6370 }
6371
6372 static void ironlake_init_clock_gating(struct drm_device *dev)
6373 {
6374         struct drm_i915_private *dev_priv = dev->dev_private;
6375         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6376
6377         /*
6378          * Required for FBC
6379          * WaFbcDisableDpfcClockGating:ilk
6380          */
6381         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6382                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6383                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6384
6385         I915_WRITE(PCH_3DCGDIS0,
6386                    MARIUNIT_CLOCK_GATE_DISABLE |
6387                    SVSMUNIT_CLOCK_GATE_DISABLE);
6388         I915_WRITE(PCH_3DCGDIS1,
6389                    VFMUNIT_CLOCK_GATE_DISABLE);
6390
6391         /*
6392          * According to the spec the following bits should be set in
6393          * order to enable memory self-refresh
6394          * The bit 22/21 of 0x42004
6395          * The bit 5 of 0x42020
6396          * The bit 15 of 0x45000
6397          */
6398         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6399                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6400                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6401         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6402         I915_WRITE(DISP_ARB_CTL,
6403                    (I915_READ(DISP_ARB_CTL) |
6404                     DISP_FBC_WM_DIS));
6405
6406         ilk_init_lp_watermarks(dev);
6407
6408         /*
6409          * Based on the document from hardware guys the following bits
6410          * should be set unconditionally in order to enable FBC.
6411          * The bit 22 of 0x42000
6412          * The bit 22 of 0x42004
6413          * The bit 7,8,9 of 0x42020.
6414          */
6415         if (IS_IRONLAKE_M(dev)) {
6416                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6417                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6418                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6419                            ILK_FBCQ_DIS);
6420                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6421                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6422                            ILK_DPARB_GATE);
6423         }
6424
6425         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6426
6427         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6428                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6429                    ILK_ELPIN_409_SELECT);
6430         I915_WRITE(_3D_CHICKEN2,
6431                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6432                    _3D_CHICKEN2_WM_READ_PIPELINED);
6433
6434         /* WaDisableRenderCachePipelinedFlush:ilk */
6435         I915_WRITE(CACHE_MODE_0,
6436                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6437
6438         /* WaDisable_RenderCache_OperationalFlush:ilk */
6439         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6440
6441         g4x_disable_trickle_feed(dev);
6442
6443         ibx_init_clock_gating(dev);
6444 }
6445
6446 static void cpt_init_clock_gating(struct drm_device *dev)
6447 {
6448         struct drm_i915_private *dev_priv = dev->dev_private;
6449         int pipe;
6450         uint32_t val;
6451
6452         /*
6453          * On Ibex Peak and Cougar Point, we need to disable clock
6454          * gating for the panel power sequencer or it will fail to
6455          * start up when no ports are active.
6456          */
6457         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6458                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6459                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6460         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6461                    DPLS_EDP_PPS_FIX_DIS);
6462         /* The below fixes the weird display corruption, a few pixels shifted
6463          * downward, on (only) LVDS of some HP laptops with IVY.
6464          */
6465         for_each_pipe(dev_priv, pipe) {
6466                 val = I915_READ(TRANS_CHICKEN2(pipe));
6467                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6468                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6469                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6470                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6471                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6472                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6473                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6474                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6475         }
6476         /* WADP0ClockGatingDisable */
6477         for_each_pipe(dev_priv, pipe) {
6478                 I915_WRITE(TRANS_CHICKEN1(pipe),
6479                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6480         }
6481 }
6482
6483 static void gen6_check_mch_setup(struct drm_device *dev)
6484 {
6485         struct drm_i915_private *dev_priv = dev->dev_private;
6486         uint32_t tmp;
6487
6488         tmp = I915_READ(MCH_SSKPD);
6489         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6490                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6491                               tmp);
6492 }
6493
6494 static void gen6_init_clock_gating(struct drm_device *dev)
6495 {
6496         struct drm_i915_private *dev_priv = dev->dev_private;
6497         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6498
6499         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6500
6501         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6502                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6503                    ILK_ELPIN_409_SELECT);
6504
6505         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6506         I915_WRITE(_3D_CHICKEN,
6507                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6508
6509         /* WaDisable_RenderCache_OperationalFlush:snb */
6510         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6511
6512         /*
6513          * BSpec recoomends 8x4 when MSAA is used,
6514          * however in practice 16x4 seems fastest.
6515          *
6516          * Note that PS/WM thread counts depend on the WIZ hashing
6517          * disable bit, which we don't touch here, but it's good
6518          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6519          */
6520         I915_WRITE(GEN6_GT_MODE,
6521                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6522
6523         ilk_init_lp_watermarks(dev);
6524
6525         I915_WRITE(CACHE_MODE_0,
6526                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6527
6528         I915_WRITE(GEN6_UCGCTL1,
6529                    I915_READ(GEN6_UCGCTL1) |
6530                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6531                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6532
6533         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6534          * gating disable must be set.  Failure to set it results in
6535          * flickering pixels due to Z write ordering failures after
6536          * some amount of runtime in the Mesa "fire" demo, and Unigine
6537          * Sanctuary and Tropics, and apparently anything else with
6538          * alpha test or pixel discard.
6539          *
6540          * According to the spec, bit 11 (RCCUNIT) must also be set,
6541          * but we didn't debug actual testcases to find it out.
6542          *
6543          * WaDisableRCCUnitClockGating:snb
6544          * WaDisableRCPBUnitClockGating:snb
6545          */
6546         I915_WRITE(GEN6_UCGCTL2,
6547                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6548                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6549
6550         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6551         I915_WRITE(_3D_CHICKEN3,
6552                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6553
6554         /*
6555          * Bspec says:
6556          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6557          * 3DSTATE_SF number of SF output attributes is more than 16."
6558          */
6559         I915_WRITE(_3D_CHICKEN3,
6560                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6561
6562         /*
6563          * According to the spec the following bits should be
6564          * set in order to enable memory self-refresh and fbc:
6565          * The bit21 and bit22 of 0x42000
6566          * The bit21 and bit22 of 0x42004
6567          * The bit5 and bit7 of 0x42020
6568          * The bit14 of 0x70180
6569          * The bit14 of 0x71180
6570          *
6571          * WaFbcAsynchFlipDisableFbcQueue:snb
6572          */
6573         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6574                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6575                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6576         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6577                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6578                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6579         I915_WRITE(ILK_DSPCLK_GATE_D,
6580                    I915_READ(ILK_DSPCLK_GATE_D) |
6581                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6582                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6583
6584         g4x_disable_trickle_feed(dev);
6585
6586         cpt_init_clock_gating(dev);
6587
6588         gen6_check_mch_setup(dev);
6589 }
6590
6591 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6592 {
6593         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6594
6595         /*
6596          * WaVSThreadDispatchOverride:ivb,vlv
6597          *
6598          * This actually overrides the dispatch
6599          * mode for all thread types.
6600          */
6601         reg &= ~GEN7_FF_SCHED_MASK;
6602         reg |= GEN7_FF_TS_SCHED_HW;
6603         reg |= GEN7_FF_VS_SCHED_HW;
6604         reg |= GEN7_FF_DS_SCHED_HW;
6605
6606         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6607 }
6608
6609 static void lpt_init_clock_gating(struct drm_device *dev)
6610 {
6611         struct drm_i915_private *dev_priv = dev->dev_private;
6612
6613         /*
6614          * TODO: this bit should only be enabled when really needed, then
6615          * disabled when not needed anymore in order to save power.
6616          */
6617         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6618                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6619                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6620                            PCH_LP_PARTITION_LEVEL_DISABLE);
6621
6622         /* WADPOClockGatingDisable:hsw */
6623         I915_WRITE(_TRANSA_CHICKEN1,
6624                    I915_READ(_TRANSA_CHICKEN1) |
6625                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6626 }
6627
6628 static void lpt_suspend_hw(struct drm_device *dev)
6629 {
6630         struct drm_i915_private *dev_priv = dev->dev_private;
6631
6632         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6633                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6634
6635                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6636                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6637         }
6638 }
6639
6640 static void broadwell_init_clock_gating(struct drm_device *dev)
6641 {
6642         struct drm_i915_private *dev_priv = dev->dev_private;
6643         enum pipe pipe;
6644
6645         I915_WRITE(WM3_LP_ILK, 0);
6646         I915_WRITE(WM2_LP_ILK, 0);
6647         I915_WRITE(WM1_LP_ILK, 0);
6648
6649         /* WaSwitchSolVfFArbitrationPriority:bdw */
6650         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6651
6652         /* WaPsrDPAMaskVBlankInSRD:bdw */
6653         I915_WRITE(CHICKEN_PAR1_1,
6654                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6655
6656         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6657         for_each_pipe(dev_priv, pipe) {
6658                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6659                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6660                            BDW_DPRS_MASK_VBLANK_SRD);
6661         }
6662
6663         /* WaVSRefCountFullforceMissDisable:bdw */
6664         /* WaDSRefCountFullforceMissDisable:bdw */
6665         I915_WRITE(GEN7_FF_THREAD_MODE,
6666                    I915_READ(GEN7_FF_THREAD_MODE) &
6667                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6668
6669         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6670                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6671
6672         /* WaDisableSDEUnitClockGating:bdw */
6673         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6674                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6675
6676         lpt_init_clock_gating(dev);
6677 }
6678
6679 static void haswell_init_clock_gating(struct drm_device *dev)
6680 {
6681         struct drm_i915_private *dev_priv = dev->dev_private;
6682
6683         ilk_init_lp_watermarks(dev);
6684
6685         /* L3 caching of data atomics doesn't work -- disable it. */
6686         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6687         I915_WRITE(HSW_ROW_CHICKEN3,
6688                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6689
6690         /* This is required by WaCatErrorRejectionIssue:hsw */
6691         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6692                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6693                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6694
6695         /* WaVSRefCountFullforceMissDisable:hsw */
6696         I915_WRITE(GEN7_FF_THREAD_MODE,
6697                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6698
6699         /* WaDisable_RenderCache_OperationalFlush:hsw */
6700         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6701
6702         /* enable HiZ Raw Stall Optimization */
6703         I915_WRITE(CACHE_MODE_0_GEN7,
6704                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6705
6706         /* WaDisable4x2SubspanOptimization:hsw */
6707         I915_WRITE(CACHE_MODE_1,
6708                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6709
6710         /*
6711          * BSpec recommends 8x4 when MSAA is used,
6712          * however in practice 16x4 seems fastest.
6713          *
6714          * Note that PS/WM thread counts depend on the WIZ hashing
6715          * disable bit, which we don't touch here, but it's good
6716          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6717          */
6718         I915_WRITE(GEN7_GT_MODE,
6719                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6720
6721         /* WaSwitchSolVfFArbitrationPriority:hsw */
6722         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6723
6724         /* WaRsPkgCStateDisplayPMReq:hsw */
6725         I915_WRITE(CHICKEN_PAR1_1,
6726                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6727
6728         lpt_init_clock_gating(dev);
6729 }
6730
6731 static void ivybridge_init_clock_gating(struct drm_device *dev)
6732 {
6733         struct drm_i915_private *dev_priv = dev->dev_private;
6734         uint32_t snpcr;
6735
6736         ilk_init_lp_watermarks(dev);
6737
6738         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6739
6740         /* WaDisableEarlyCull:ivb */
6741         I915_WRITE(_3D_CHICKEN3,
6742                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6743
6744         /* WaDisableBackToBackFlipFix:ivb */
6745         I915_WRITE(IVB_CHICKEN3,
6746                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6747                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6748
6749         /* WaDisablePSDDualDispatchEnable:ivb */
6750         if (IS_IVB_GT1(dev))
6751                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6752                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6753
6754         /* WaDisable_RenderCache_OperationalFlush:ivb */
6755         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6756
6757         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6758         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6759                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6760
6761         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6762         I915_WRITE(GEN7_L3CNTLREG1,
6763                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6764         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6765                    GEN7_WA_L3_CHICKEN_MODE);
6766         if (IS_IVB_GT1(dev))
6767                 I915_WRITE(GEN7_ROW_CHICKEN2,
6768                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6769         else {
6770                 /* must write both registers */
6771                 I915_WRITE(GEN7_ROW_CHICKEN2,
6772                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6773                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6774                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6775         }
6776
6777         /* WaForceL3Serialization:ivb */
6778         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6779                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6780
6781         /*
6782          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6783          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6784          */
6785         I915_WRITE(GEN6_UCGCTL2,
6786                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6787
6788         /* This is required by WaCatErrorRejectionIssue:ivb */
6789         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6790                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6791                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6792
6793         g4x_disable_trickle_feed(dev);
6794
6795         gen7_setup_fixed_func_scheduler(dev_priv);
6796
6797         if (0) { /* causes HiZ corruption on ivb:gt1 */
6798                 /* enable HiZ Raw Stall Optimization */
6799                 I915_WRITE(CACHE_MODE_0_GEN7,
6800                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6801         }
6802
6803         /* WaDisable4x2SubspanOptimization:ivb */
6804         I915_WRITE(CACHE_MODE_1,
6805                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6806
6807         /*
6808          * BSpec recommends 8x4 when MSAA is used,
6809          * however in practice 16x4 seems fastest.
6810          *
6811          * Note that PS/WM thread counts depend on the WIZ hashing
6812          * disable bit, which we don't touch here, but it's good
6813          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6814          */
6815         I915_WRITE(GEN7_GT_MODE,
6816                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6817
6818         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6819         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6820         snpcr |= GEN6_MBC_SNPCR_MED;
6821         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6822
6823         if (!HAS_PCH_NOP(dev))
6824                 cpt_init_clock_gating(dev);
6825
6826         gen6_check_mch_setup(dev);
6827 }
6828
6829 static void valleyview_init_clock_gating(struct drm_device *dev)
6830 {
6831         struct drm_i915_private *dev_priv = dev->dev_private;
6832
6833         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6834
6835         /* WaDisableEarlyCull:vlv */
6836         I915_WRITE(_3D_CHICKEN3,
6837                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6838
6839         /* WaDisableBackToBackFlipFix:vlv */
6840         I915_WRITE(IVB_CHICKEN3,
6841                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6842                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6843
6844         /* WaPsdDispatchEnable:vlv */
6845         /* WaDisablePSDDualDispatchEnable:vlv */
6846         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6847                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6848                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6849
6850         /* WaDisable_RenderCache_OperationalFlush:vlv */
6851         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6852
6853         /* WaForceL3Serialization:vlv */
6854         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6855                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6856
6857         /* WaDisableDopClockGating:vlv */
6858         I915_WRITE(GEN7_ROW_CHICKEN2,
6859                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6860
6861         /* This is required by WaCatErrorRejectionIssue:vlv */
6862         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6863                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6864                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6865
6866         gen7_setup_fixed_func_scheduler(dev_priv);
6867
6868         /*
6869          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6870          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6871          */
6872         I915_WRITE(GEN6_UCGCTL2,
6873                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6874
6875         /* WaDisableL3Bank2xClockGate:vlv
6876          * Disabling L3 clock gating- MMIO 940c[25] = 1
6877          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6878         I915_WRITE(GEN7_UCGCTL4,
6879                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6880
6881         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6882
6883         /*
6884          * BSpec says this must be set, even though
6885          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6886          */
6887         I915_WRITE(CACHE_MODE_1,
6888                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6889
6890         /*
6891          * WaIncreaseL3CreditsForVLVB0:vlv
6892          * This is the hardware default actually.
6893          */
6894         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6895
6896         /*
6897          * WaDisableVLVClockGating_VBIIssue:vlv
6898          * Disable clock gating on th GCFG unit to prevent a delay
6899          * in the reporting of vblank events.
6900          */
6901         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6902 }
6903
6904 static void cherryview_init_clock_gating(struct drm_device *dev)
6905 {
6906         struct drm_i915_private *dev_priv = dev->dev_private;
6907
6908         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6909
6910         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6911
6912         /* WaVSRefCountFullforceMissDisable:chv */
6913         /* WaDSRefCountFullforceMissDisable:chv */
6914         I915_WRITE(GEN7_FF_THREAD_MODE,
6915                    I915_READ(GEN7_FF_THREAD_MODE) &
6916                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6917
6918         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6919         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6920                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6921
6922         /* WaDisableCSUnitClockGating:chv */
6923         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6924                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6925
6926         /* WaDisableSDEUnitClockGating:chv */
6927         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6928                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6929 }
6930
6931 static void g4x_init_clock_gating(struct drm_device *dev)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934         uint32_t dspclk_gate;
6935
6936         I915_WRITE(RENCLK_GATE_D1, 0);
6937         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6938                    GS_UNIT_CLOCK_GATE_DISABLE |
6939                    CL_UNIT_CLOCK_GATE_DISABLE);
6940         I915_WRITE(RAMCLK_GATE_D, 0);
6941         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6942                 OVRUNIT_CLOCK_GATE_DISABLE |
6943                 OVCUNIT_CLOCK_GATE_DISABLE;
6944         if (IS_GM45(dev))
6945                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6946         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6947
6948         /* WaDisableRenderCachePipelinedFlush */
6949         I915_WRITE(CACHE_MODE_0,
6950                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6951
6952         /* WaDisable_RenderCache_OperationalFlush:g4x */
6953         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6954
6955         g4x_disable_trickle_feed(dev);
6956 }
6957
6958 static void crestline_init_clock_gating(struct drm_device *dev)
6959 {
6960         struct drm_i915_private *dev_priv = dev->dev_private;
6961
6962         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6963         I915_WRITE(RENCLK_GATE_D2, 0);
6964         I915_WRITE(DSPCLK_GATE_D, 0);
6965         I915_WRITE(RAMCLK_GATE_D, 0);
6966         I915_WRITE16(DEUC, 0);
6967         I915_WRITE(MI_ARB_STATE,
6968                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6969
6970         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6971         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6972 }
6973
6974 static void broadwater_init_clock_gating(struct drm_device *dev)
6975 {
6976         struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6979                    I965_RCC_CLOCK_GATE_DISABLE |
6980                    I965_RCPB_CLOCK_GATE_DISABLE |
6981                    I965_ISC_CLOCK_GATE_DISABLE |
6982                    I965_FBC_CLOCK_GATE_DISABLE);
6983         I915_WRITE(RENCLK_GATE_D2, 0);
6984         I915_WRITE(MI_ARB_STATE,
6985                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6986
6987         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6988         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6989 }
6990
6991 static void gen3_init_clock_gating(struct drm_device *dev)
6992 {
6993         struct drm_i915_private *dev_priv = dev->dev_private;
6994         u32 dstate = I915_READ(D_STATE);
6995
6996         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6997                 DSTATE_DOT_CLOCK_GATING;
6998         I915_WRITE(D_STATE, dstate);
6999
7000         if (IS_PINEVIEW(dev))
7001                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7002
7003         /* IIR "flip pending" means done if this bit is set */
7004         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7005
7006         /* interrupts should cause a wake up from C3 */
7007         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7008
7009         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7010         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7011
7012         I915_WRITE(MI_ARB_STATE,
7013                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7014 }
7015
7016 static void i85x_init_clock_gating(struct drm_device *dev)
7017 {
7018         struct drm_i915_private *dev_priv = dev->dev_private;
7019
7020         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7021
7022         /* interrupts should cause a wake up from C3 */
7023         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7024                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7025
7026         I915_WRITE(MEM_MODE,
7027                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7028 }
7029
7030 static void i830_init_clock_gating(struct drm_device *dev)
7031 {
7032         struct drm_i915_private *dev_priv = dev->dev_private;
7033
7034         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7035
7036         I915_WRITE(MEM_MODE,
7037                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7038                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7039 }
7040
7041 void intel_init_clock_gating(struct drm_device *dev)
7042 {
7043         struct drm_i915_private *dev_priv = dev->dev_private;
7044
7045         dev_priv->display.init_clock_gating(dev);
7046 }
7047
7048 void intel_suspend_hw(struct drm_device *dev)
7049 {
7050         if (HAS_PCH_LPT(dev))
7051                 lpt_suspend_hw(dev);
7052 }
7053
7054 static void intel_init_fbc(struct drm_i915_private *dev_priv)
7055 {
7056         if (!HAS_FBC(dev_priv)) {
7057                 dev_priv->fbc.enabled = false;
7058                 return;
7059         }
7060
7061         if (INTEL_INFO(dev_priv)->gen >= 7) {
7062                 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7063                 dev_priv->display.enable_fbc = gen7_enable_fbc;
7064                 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7065         } else if (INTEL_INFO(dev_priv)->gen >= 5) {
7066                 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7067                 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7068                 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7069         } else if (IS_GM45(dev_priv)) {
7070                 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7071                 dev_priv->display.enable_fbc = g4x_enable_fbc;
7072                 dev_priv->display.disable_fbc = g4x_disable_fbc;
7073         } else {
7074                 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7075                 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7076                 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7077
7078                 /* This value was pulled out of someone's hat */
7079                 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7080         }
7081
7082         dev_priv->fbc.enabled = dev_priv->display.fbc_enabled(dev_priv->dev);
7083 }
7084
7085 /* Set up chip specific power management-related functions */
7086 void intel_init_pm(struct drm_device *dev)
7087 {
7088         struct drm_i915_private *dev_priv = dev->dev_private;
7089
7090         intel_init_fbc(dev_priv);
7091
7092         /* For cxsr */
7093         if (IS_PINEVIEW(dev))
7094                 i915_pineview_get_mem_freq(dev);
7095         else if (IS_GEN5(dev))
7096                 i915_ironlake_get_mem_freq(dev);
7097
7098         /* For FIFO watermark updates */
7099         if (INTEL_INFO(dev)->gen >= 9) {
7100                 skl_setup_wm_latency(dev);
7101
7102                 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
7103                 dev_priv->display.update_wm = skl_update_wm;
7104                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7105         } else if (HAS_PCH_SPLIT(dev)) {
7106                 ilk_setup_wm_latency(dev);
7107
7108                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7109                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7110                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7111                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7112                         dev_priv->display.update_wm = ilk_update_wm;
7113                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7114                 } else {
7115                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7116                                       "Disable CxSR\n");
7117                 }
7118
7119                 if (IS_GEN5(dev))
7120                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7121                 else if (IS_GEN6(dev))
7122                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7123                 else if (IS_IVYBRIDGE(dev))
7124                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7125                 else if (IS_HASWELL(dev))
7126                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7127                 else if (INTEL_INFO(dev)->gen == 8)
7128                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7129         } else if (IS_CHERRYVIEW(dev)) {
7130                 dev_priv->display.update_wm = cherryview_update_wm;
7131                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7132                 dev_priv->display.init_clock_gating =
7133                         cherryview_init_clock_gating;
7134         } else if (IS_VALLEYVIEW(dev)) {
7135                 dev_priv->display.update_wm = valleyview_update_wm;
7136                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7137                 dev_priv->display.init_clock_gating =
7138                         valleyview_init_clock_gating;
7139         } else if (IS_PINEVIEW(dev)) {
7140                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7141                                             dev_priv->is_ddr3,
7142                                             dev_priv->fsb_freq,
7143                                             dev_priv->mem_freq)) {
7144                         DRM_INFO("failed to find known CxSR latency "
7145                                  "(found ddr%s fsb freq %d, mem freq %d), "
7146                                  "disabling CxSR\n",
7147                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7148                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7149                         /* Disable CxSR and never update its watermark again */
7150                         intel_set_memory_cxsr(dev_priv, false);
7151                         dev_priv->display.update_wm = NULL;
7152                 } else
7153                         dev_priv->display.update_wm = pineview_update_wm;
7154                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7155         } else if (IS_G4X(dev)) {
7156                 dev_priv->display.update_wm = g4x_update_wm;
7157                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7158         } else if (IS_GEN4(dev)) {
7159                 dev_priv->display.update_wm = i965_update_wm;
7160                 if (IS_CRESTLINE(dev))
7161                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7162                 else if (IS_BROADWATER(dev))
7163                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7164         } else if (IS_GEN3(dev)) {
7165                 dev_priv->display.update_wm = i9xx_update_wm;
7166                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7167                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7168         } else if (IS_GEN2(dev)) {
7169                 if (INTEL_INFO(dev)->num_pipes == 1) {
7170                         dev_priv->display.update_wm = i845_update_wm;
7171                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7172                 } else {
7173                         dev_priv->display.update_wm = i9xx_update_wm;
7174                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7175                 }
7176
7177                 if (IS_I85X(dev) || IS_I865G(dev))
7178                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7179                 else
7180                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7181         } else {
7182                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7183         }
7184 }
7185
7186 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7187 {
7188         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7189
7190         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7191                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7192                 return -EAGAIN;
7193         }
7194
7195         I915_WRITE(GEN6_PCODE_DATA, *val);
7196         I915_WRITE(GEN6_PCODE_DATA1, 0);
7197         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7198
7199         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7200                      500)) {
7201                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7202                 return -ETIMEDOUT;
7203         }
7204
7205         *val = I915_READ(GEN6_PCODE_DATA);
7206         I915_WRITE(GEN6_PCODE_DATA, 0);
7207
7208         return 0;
7209 }
7210
7211 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7212 {
7213         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7214
7215         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7216                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7217                 return -EAGAIN;
7218         }
7219
7220         I915_WRITE(GEN6_PCODE_DATA, val);
7221         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7222
7223         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7224                      500)) {
7225                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7226                 return -ETIMEDOUT;
7227         }
7228
7229         I915_WRITE(GEN6_PCODE_DATA, 0);
7230
7231         return 0;
7232 }
7233
7234 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7235 {
7236         switch (czclk_freq) {
7237         case 200:
7238                 return 10;
7239         case 267:
7240                 return 12;
7241         case 320:
7242         case 333:
7243                 return 16;
7244         case 400:
7245                 return 20;
7246         default:
7247                 return -1;
7248         }
7249 }
7250
7251 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7252 {
7253         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7254
7255         div = vlv_gpu_freq_div(czclk_freq);
7256         if (div < 0)
7257                 return div;
7258
7259         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7260 }
7261
7262 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7263 {
7264         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7265
7266         mul = vlv_gpu_freq_div(czclk_freq);
7267         if (mul < 0)
7268                 return mul;
7269
7270         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7271 }
7272
7273 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7274 {
7275         int div, czclk_freq = dev_priv->rps.cz_freq;
7276
7277         div = vlv_gpu_freq_div(czclk_freq) / 2;
7278         if (div < 0)
7279                 return div;
7280
7281         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7282 }
7283
7284 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7285 {
7286         int mul, czclk_freq = dev_priv->rps.cz_freq;
7287
7288         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7289         if (mul < 0)
7290                 return mul;
7291
7292         /* CHV needs even values */
7293         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7294 }
7295
7296 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7297 {
7298         int ret = -1;
7299
7300         if (IS_CHERRYVIEW(dev_priv->dev))
7301                 ret = chv_gpu_freq(dev_priv, val);
7302         else if (IS_VALLEYVIEW(dev_priv->dev))
7303                 ret = byt_gpu_freq(dev_priv, val);
7304
7305         return ret;
7306 }
7307
7308 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7309 {
7310         int ret = -1;
7311
7312         if (IS_CHERRYVIEW(dev_priv->dev))
7313                 ret = chv_freq_opcode(dev_priv, val);
7314         else if (IS_VALLEYVIEW(dev_priv->dev))
7315                 ret = byt_freq_opcode(dev_priv, val);
7316
7317         return ret;
7318 }
7319
7320 void intel_pm_setup(struct drm_device *dev)
7321 {
7322         struct drm_i915_private *dev_priv = dev->dev_private;
7323
7324         mutex_init(&dev_priv->rps.hw_lock);
7325
7326         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7327                           intel_gen6_powersave_work);
7328
7329         dev_priv->pm.suspended = false;
7330 }