Merge tag 'v3.18' into for_next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         if (dev_priv->fbc.false_color)
313                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317         if (IS_IVYBRIDGE(dev)) {
318                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
319                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
320                            I915_READ(ILK_DISPLAY_CHICKEN1) |
321                            ILK_FBCQ_DIS);
322         } else {
323                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326                            HSW_FBCQ_DIS);
327         }
328
329         I915_WRITE(SNB_DPFC_CTL_SA,
330                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333         sandybridge_blit_fbc_update(dev);
334
335         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 }
337
338 bool intel_fbc_enabled(struct drm_device *dev)
339 {
340         struct drm_i915_private *dev_priv = dev->dev_private;
341
342         if (!dev_priv->display.fbc_enabled)
343                 return false;
344
345         return dev_priv->display.fbc_enabled(dev);
346 }
347
348 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
349 {
350         struct drm_i915_private *dev_priv = dev->dev_private;
351
352         if (!IS_GEN8(dev))
353                 return;
354
355         I915_WRITE(MSG_FBC_REND_STATE, value);
356 }
357
358 static void intel_fbc_work_fn(struct work_struct *__work)
359 {
360         struct intel_fbc_work *work =
361                 container_of(to_delayed_work(__work),
362                              struct intel_fbc_work, work);
363         struct drm_device *dev = work->crtc->dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365
366         mutex_lock(&dev->struct_mutex);
367         if (work == dev_priv->fbc.fbc_work) {
368                 /* Double check that we haven't switched fb without cancelling
369                  * the prior work.
370                  */
371                 if (work->crtc->primary->fb == work->fb) {
372                         dev_priv->display.enable_fbc(work->crtc);
373
374                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376                         dev_priv->fbc.y = work->crtc->y;
377                 }
378
379                 dev_priv->fbc.fbc_work = NULL;
380         }
381         mutex_unlock(&dev->struct_mutex);
382
383         kfree(work);
384 }
385
386 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
387 {
388         if (dev_priv->fbc.fbc_work == NULL)
389                 return;
390
391         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
392
393         /* Synchronisation is provided by struct_mutex and checking of
394          * dev_priv->fbc.fbc_work, so we can perform the cancellation
395          * entirely asynchronously.
396          */
397         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398                 /* tasklet was killed before being run, clean up */
399                 kfree(dev_priv->fbc.fbc_work);
400
401         /* Mark the work as no longer wanted so that if it does
402          * wake-up (because the work was already running and waiting
403          * for our mutex), it will discover that is no longer
404          * necessary to run.
405          */
406         dev_priv->fbc.fbc_work = NULL;
407 }
408
409 static void intel_enable_fbc(struct drm_crtc *crtc)
410 {
411         struct intel_fbc_work *work;
412         struct drm_device *dev = crtc->dev;
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         if (!dev_priv->display.enable_fbc)
416                 return;
417
418         intel_cancel_fbc_work(dev_priv);
419
420         work = kzalloc(sizeof(*work), GFP_KERNEL);
421         if (work == NULL) {
422                 DRM_ERROR("Failed to allocate FBC work structure\n");
423                 dev_priv->display.enable_fbc(crtc);
424                 return;
425         }
426
427         work->crtc = crtc;
428         work->fb = crtc->primary->fb;
429         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
430
431         dev_priv->fbc.fbc_work = work;
432
433         /* Delay the actual enabling to let pageflipping cease and the
434          * display to settle before starting the compression. Note that
435          * this delay also serves a second purpose: it allows for a
436          * vblank to pass after disabling the FBC before we attempt
437          * to modify the control registers.
438          *
439          * A more complicated solution would involve tracking vblanks
440          * following the termination of the page-flipping sequence
441          * and indeed performing the enable as a co-routine and not
442          * waiting synchronously upon the vblank.
443          *
444          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445          */
446         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
447 }
448
449 void intel_disable_fbc(struct drm_device *dev)
450 {
451         struct drm_i915_private *dev_priv = dev->dev_private;
452
453         intel_cancel_fbc_work(dev_priv);
454
455         if (!dev_priv->display.disable_fbc)
456                 return;
457
458         dev_priv->display.disable_fbc(dev);
459         dev_priv->fbc.plane = -1;
460 }
461
462 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
463                               enum no_fbc_reason reason)
464 {
465         if (dev_priv->fbc.no_fbc_reason == reason)
466                 return false;
467
468         dev_priv->fbc.no_fbc_reason = reason;
469         return true;
470 }
471
472 /**
473  * intel_update_fbc - enable/disable FBC as needed
474  * @dev: the drm_device
475  *
476  * Set up the framebuffer compression hardware at mode set time.  We
477  * enable it if possible:
478  *   - plane A only (on pre-965)
479  *   - no pixel mulitply/line duplication
480  *   - no alpha buffer discard
481  *   - no dual wide
482  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483  *
484  * We can't assume that any compression will take place (worst case),
485  * so the compressed buffer has to be the same size as the uncompressed
486  * one.  It also must reside (along with the line length buffer) in
487  * stolen memory.
488  *
489  * We need to enable/disable FBC on a global basis.
490  */
491 void intel_update_fbc(struct drm_device *dev)
492 {
493         struct drm_i915_private *dev_priv = dev->dev_private;
494         struct drm_crtc *crtc = NULL, *tmp_crtc;
495         struct intel_crtc *intel_crtc;
496         struct drm_framebuffer *fb;
497         struct drm_i915_gem_object *obj;
498         const struct drm_display_mode *adjusted_mode;
499         unsigned int max_width, max_height;
500
501         if (!HAS_FBC(dev)) {
502                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503                 return;
504         }
505
506         if (!i915.powersave) {
507                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508                         DRM_DEBUG_KMS("fbc disabled per module param\n");
509                 return;
510         }
511
512         /*
513          * If FBC is already on, we just have to verify that we can
514          * keep it that way...
515          * Need to disable if:
516          *   - more than one pipe is active
517          *   - changing FBC params (stride, fence, mode)
518          *   - new fb is too large to fit in compressed buffer
519          *   - going to an unsupported config (interlace, pixel multiply, etc.)
520          */
521         for_each_crtc(dev, tmp_crtc) {
522                 if (intel_crtc_active(tmp_crtc) &&
523                     to_intel_crtc(tmp_crtc)->primary_enabled) {
524                         if (crtc) {
525                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
526                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527                                 goto out_disable;
528                         }
529                         crtc = tmp_crtc;
530                 }
531         }
532
533         if (!crtc || crtc->primary->fb == NULL) {
534                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
535                         DRM_DEBUG_KMS("no output, disabling\n");
536                 goto out_disable;
537         }
538
539         intel_crtc = to_intel_crtc(crtc);
540         fb = crtc->primary->fb;
541         obj = intel_fb_obj(fb);
542         adjusted_mode = &intel_crtc->config.adjusted_mode;
543
544         if (i915.enable_fbc < 0) {
545                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
546                         DRM_DEBUG_KMS("disabled per chip default\n");
547                 goto out_disable;
548         }
549         if (!i915.enable_fbc) {
550                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
551                         DRM_DEBUG_KMS("fbc disabled per module param\n");
552                 goto out_disable;
553         }
554         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
555             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
557                         DRM_DEBUG_KMS("mode incompatible with compression, "
558                                       "disabling\n");
559                 goto out_disable;
560         }
561
562         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
563                 max_width = 4096;
564                 max_height = 4096;
565         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566                 max_width = 4096;
567                 max_height = 2048;
568         } else {
569                 max_width = 2048;
570                 max_height = 1536;
571         }
572         if (intel_crtc->config.pipe_src_w > max_width ||
573             intel_crtc->config.pipe_src_h > max_height) {
574                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
575                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576                 goto out_disable;
577         }
578         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579             intel_crtc->plane != PLANE_A) {
580                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
582                 goto out_disable;
583         }
584
585         /* The use of a CPU fence is mandatory in order to detect writes
586          * by the CPU to the scanout and trigger updates to the FBC.
587          */
588         if (obj->tiling_mode != I915_TILING_X ||
589             obj->fence_reg == I915_FENCE_REG_NONE) {
590                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
591                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592                 goto out_disable;
593         }
594         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
595             to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
596                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
597                         DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
598                 goto out_disable;
599         }
600
601         /* If the kernel debugger is active, always disable compression */
602         if (in_dbg_master())
603                 goto out_disable;
604
605         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
606                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
607                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
608                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609                 goto out_disable;
610         }
611
612         /* If the scanout has not changed, don't modify the FBC settings.
613          * Note that we make the fundamental assumption that the fb->obj
614          * cannot be unpinned (and have its GTT offset and fence revoked)
615          * without first being decoupled from the scanout and FBC disabled.
616          */
617         if (dev_priv->fbc.plane == intel_crtc->plane &&
618             dev_priv->fbc.fb_id == fb->base.id &&
619             dev_priv->fbc.y == crtc->y)
620                 return;
621
622         if (intel_fbc_enabled(dev)) {
623                 /* We update FBC along two paths, after changing fb/crtc
624                  * configuration (modeswitching) and after page-flipping
625                  * finishes. For the latter, we know that not only did
626                  * we disable the FBC at the start of the page-flip
627                  * sequence, but also more than one vblank has passed.
628                  *
629                  * For the former case of modeswitching, it is possible
630                  * to switch between two FBC valid configurations
631                  * instantaneously so we do need to disable the FBC
632                  * before we can modify its control registers. We also
633                  * have to wait for the next vblank for that to take
634                  * effect. However, since we delay enabling FBC we can
635                  * assume that a vblank has passed since disabling and
636                  * that we can safely alter the registers in the deferred
637                  * callback.
638                  *
639                  * In the scenario that we go from a valid to invalid
640                  * and then back to valid FBC configuration we have
641                  * no strict enforcement that a vblank occurred since
642                  * disabling the FBC. However, along all current pipe
643                  * disabling paths we do need to wait for a vblank at
644                  * some point. And we wait before enabling FBC anyway.
645                  */
646                 DRM_DEBUG_KMS("disabling active FBC for update\n");
647                 intel_disable_fbc(dev);
648         }
649
650         intel_enable_fbc(crtc);
651         dev_priv->fbc.no_fbc_reason = FBC_OK;
652         return;
653
654 out_disable:
655         /* Multiple disables should be harmless */
656         if (intel_fbc_enabled(dev)) {
657                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
658                 intel_disable_fbc(dev);
659         }
660         i915_gem_stolen_cleanup_compression(dev);
661 }
662
663 static void i915_pineview_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u32 tmp;
667
668         tmp = I915_READ(CLKCFG);
669
670         switch (tmp & CLKCFG_FSB_MASK) {
671         case CLKCFG_FSB_533:
672                 dev_priv->fsb_freq = 533; /* 133*4 */
673                 break;
674         case CLKCFG_FSB_800:
675                 dev_priv->fsb_freq = 800; /* 200*4 */
676                 break;
677         case CLKCFG_FSB_667:
678                 dev_priv->fsb_freq =  667; /* 167*4 */
679                 break;
680         case CLKCFG_FSB_400:
681                 dev_priv->fsb_freq = 400; /* 100*4 */
682                 break;
683         }
684
685         switch (tmp & CLKCFG_MEM_MASK) {
686         case CLKCFG_MEM_533:
687                 dev_priv->mem_freq = 533;
688                 break;
689         case CLKCFG_MEM_667:
690                 dev_priv->mem_freq = 667;
691                 break;
692         case CLKCFG_MEM_800:
693                 dev_priv->mem_freq = 800;
694                 break;
695         }
696
697         /* detect pineview DDR3 setting */
698         tmp = I915_READ(CSHRDDR3CTL);
699         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
700 }
701
702 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         u16 ddrpll, csipll;
706
707         ddrpll = I915_READ16(DDRMPLL1);
708         csipll = I915_READ16(CSIPLL0);
709
710         switch (ddrpll & 0xff) {
711         case 0xc:
712                 dev_priv->mem_freq = 800;
713                 break;
714         case 0x10:
715                 dev_priv->mem_freq = 1066;
716                 break;
717         case 0x14:
718                 dev_priv->mem_freq = 1333;
719                 break;
720         case 0x18:
721                 dev_priv->mem_freq = 1600;
722                 break;
723         default:
724                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
725                                  ddrpll & 0xff);
726                 dev_priv->mem_freq = 0;
727                 break;
728         }
729
730         dev_priv->ips.r_t = dev_priv->mem_freq;
731
732         switch (csipll & 0x3ff) {
733         case 0x00c:
734                 dev_priv->fsb_freq = 3200;
735                 break;
736         case 0x00e:
737                 dev_priv->fsb_freq = 3733;
738                 break;
739         case 0x010:
740                 dev_priv->fsb_freq = 4266;
741                 break;
742         case 0x012:
743                 dev_priv->fsb_freq = 4800;
744                 break;
745         case 0x014:
746                 dev_priv->fsb_freq = 5333;
747                 break;
748         case 0x016:
749                 dev_priv->fsb_freq = 5866;
750                 break;
751         case 0x018:
752                 dev_priv->fsb_freq = 6400;
753                 break;
754         default:
755                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
756                                  csipll & 0x3ff);
757                 dev_priv->fsb_freq = 0;
758                 break;
759         }
760
761         if (dev_priv->fsb_freq == 3200) {
762                 dev_priv->ips.c_m = 0;
763         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764                 dev_priv->ips.c_m = 1;
765         } else {
766                 dev_priv->ips.c_m = 2;
767         }
768 }
769
770 static const struct cxsr_latency cxsr_latency_table[] = {
771         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
772         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
773         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
774         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
775         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
776
777         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
778         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
779         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
780         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
781         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
782
783         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
784         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
785         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
786         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
787         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
788
789         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
790         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
791         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
792         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
793         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
794
795         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
796         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
797         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
798         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
799         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
800
801         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
802         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
803         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
804         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
805         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
806 };
807
808 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809                                                          int is_ddr3,
810                                                          int fsb,
811                                                          int mem)
812 {
813         const struct cxsr_latency *latency;
814         int i;
815
816         if (fsb == 0 || mem == 0)
817                 return NULL;
818
819         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
820                 latency = &cxsr_latency_table[i];
821                 if (is_desktop == latency->is_desktop &&
822                     is_ddr3 == latency->is_ddr3 &&
823                     fsb == latency->fsb_freq && mem == latency->mem_freq)
824                         return latency;
825         }
826
827         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
828
829         return NULL;
830 }
831
832 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833 {
834         struct drm_device *dev = dev_priv->dev;
835         u32 val;
836
837         if (IS_VALLEYVIEW(dev)) {
838                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
839         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
840                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
841         } else if (IS_PINEVIEW(dev)) {
842                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
843                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
844                 I915_WRITE(DSPFW3, val);
845         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
846                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
847                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
848                 I915_WRITE(FW_BLC_SELF, val);
849         } else if (IS_I915GM(dev)) {
850                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
851                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
852                 I915_WRITE(INSTPM, val);
853         } else {
854                 return;
855         }
856
857         DRM_DEBUG_KMS("memory self-refresh is %s\n",
858                       enable ? "enabled" : "disabled");
859 }
860
861 /*
862  * Latency for FIFO fetches is dependent on several factors:
863  *   - memory configuration (speed, channels)
864  *   - chipset
865  *   - current MCH state
866  * It can be fairly high in some situations, so here we assume a fairly
867  * pessimal value.  It's a tradeoff between extra memory fetches (if we
868  * set this value too high, the FIFO will fetch frequently to stay full)
869  * and power consumption (set it too low to save power and we might see
870  * FIFO underruns and display "flicker").
871  *
872  * A value of 5us seems to be a good balance; safe for very low end
873  * platforms but not overly aggressive on lower latency configs.
874  */
875 static const int pessimal_latency_ns = 5000;
876
877 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 {
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         uint32_t dsparb = I915_READ(DSPARB);
881         int size;
882
883         size = dsparb & 0x7f;
884         if (plane)
885                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
886
887         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
888                       plane ? "B" : "A", size);
889
890         return size;
891 }
892
893 static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 {
895         struct drm_i915_private *dev_priv = dev->dev_private;
896         uint32_t dsparb = I915_READ(DSPARB);
897         int size;
898
899         size = dsparb & 0x1ff;
900         if (plane)
901                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
902         size >>= 1; /* Convert to cachelines */
903
904         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
905                       plane ? "B" : "A", size);
906
907         return size;
908 }
909
910 static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         uint32_t dsparb = I915_READ(DSPARB);
914         int size;
915
916         size = dsparb & 0x7f;
917         size >>= 2; /* Convert to cachelines */
918
919         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920                       plane ? "B" : "A",
921                       size);
922
923         return size;
924 }
925
926 /* Pineview has different values for various configs */
927 static const struct intel_watermark_params pineview_display_wm = {
928         .fifo_size = PINEVIEW_DISPLAY_FIFO,
929         .max_wm = PINEVIEW_MAX_WM,
930         .default_wm = PINEVIEW_DFT_WM,
931         .guard_size = PINEVIEW_GUARD_WM,
932         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 };
934 static const struct intel_watermark_params pineview_display_hplloff_wm = {
935         .fifo_size = PINEVIEW_DISPLAY_FIFO,
936         .max_wm = PINEVIEW_MAX_WM,
937         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
938         .guard_size = PINEVIEW_GUARD_WM,
939         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 };
941 static const struct intel_watermark_params pineview_cursor_wm = {
942         .fifo_size = PINEVIEW_CURSOR_FIFO,
943         .max_wm = PINEVIEW_CURSOR_MAX_WM,
944         .default_wm = PINEVIEW_CURSOR_DFT_WM,
945         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
946         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 };
948 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949         .fifo_size = PINEVIEW_CURSOR_FIFO,
950         .max_wm = PINEVIEW_CURSOR_MAX_WM,
951         .default_wm = PINEVIEW_CURSOR_DFT_WM,
952         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
953         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 };
955 static const struct intel_watermark_params g4x_wm_info = {
956         .fifo_size = G4X_FIFO_SIZE,
957         .max_wm = G4X_MAX_WM,
958         .default_wm = G4X_MAX_WM,
959         .guard_size = 2,
960         .cacheline_size = G4X_FIFO_LINE_SIZE,
961 };
962 static const struct intel_watermark_params g4x_cursor_wm_info = {
963         .fifo_size = I965_CURSOR_FIFO,
964         .max_wm = I965_CURSOR_MAX_WM,
965         .default_wm = I965_CURSOR_DFT_WM,
966         .guard_size = 2,
967         .cacheline_size = G4X_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params valleyview_wm_info = {
970         .fifo_size = VALLEYVIEW_FIFO_SIZE,
971         .max_wm = VALLEYVIEW_MAX_WM,
972         .default_wm = VALLEYVIEW_MAX_WM,
973         .guard_size = 2,
974         .cacheline_size = G4X_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params valleyview_cursor_wm_info = {
977         .fifo_size = I965_CURSOR_FIFO,
978         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
979         .default_wm = I965_CURSOR_DFT_WM,
980         .guard_size = 2,
981         .cacheline_size = G4X_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params i965_cursor_wm_info = {
984         .fifo_size = I965_CURSOR_FIFO,
985         .max_wm = I965_CURSOR_MAX_WM,
986         .default_wm = I965_CURSOR_DFT_WM,
987         .guard_size = 2,
988         .cacheline_size = I915_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params i945_wm_info = {
991         .fifo_size = I945_FIFO_SIZE,
992         .max_wm = I915_MAX_WM,
993         .default_wm = 1,
994         .guard_size = 2,
995         .cacheline_size = I915_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params i915_wm_info = {
998         .fifo_size = I915_FIFO_SIZE,
999         .max_wm = I915_MAX_WM,
1000         .default_wm = 1,
1001         .guard_size = 2,
1002         .cacheline_size = I915_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params i830_a_wm_info = {
1005         .fifo_size = I855GM_FIFO_SIZE,
1006         .max_wm = I915_MAX_WM,
1007         .default_wm = 1,
1008         .guard_size = 2,
1009         .cacheline_size = I830_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params i830_bc_wm_info = {
1012         .fifo_size = I855GM_FIFO_SIZE,
1013         .max_wm = I915_MAX_WM/2,
1014         .default_wm = 1,
1015         .guard_size = 2,
1016         .cacheline_size = I830_FIFO_LINE_SIZE,
1017 };
1018 static const struct intel_watermark_params i845_wm_info = {
1019         .fifo_size = I830_FIFO_SIZE,
1020         .max_wm = I915_MAX_WM,
1021         .default_wm = 1,
1022         .guard_size = 2,
1023         .cacheline_size = I830_FIFO_LINE_SIZE,
1024 };
1025
1026 /**
1027  * intel_calculate_wm - calculate watermark level
1028  * @clock_in_khz: pixel clock
1029  * @wm: chip FIFO params
1030  * @pixel_size: display pixel size
1031  * @latency_ns: memory latency for the platform
1032  *
1033  * Calculate the watermark level (the level at which the display plane will
1034  * start fetching from memory again).  Each chip has a different display
1035  * FIFO size and allocation, so the caller needs to figure that out and pass
1036  * in the correct intel_watermark_params structure.
1037  *
1038  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1039  * on the pixel size.  When it reaches the watermark level, it'll start
1040  * fetching FIFO line sized based chunks from memory until the FIFO fills
1041  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1042  * will occur, and a display engine hang could result.
1043  */
1044 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1045                                         const struct intel_watermark_params *wm,
1046                                         int fifo_size,
1047                                         int pixel_size,
1048                                         unsigned long latency_ns)
1049 {
1050         long entries_required, wm_size;
1051
1052         /*
1053          * Note: we need to make sure we don't overflow for various clock &
1054          * latency values.
1055          * clocks go from a few thousand to several hundred thousand.
1056          * latency is usually a few thousand
1057          */
1058         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1059                 1000;
1060         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1061
1062         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1063
1064         wm_size = fifo_size - (entries_required + wm->guard_size);
1065
1066         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1067
1068         /* Don't promote wm_size to unsigned... */
1069         if (wm_size > (long)wm->max_wm)
1070                 wm_size = wm->max_wm;
1071         if (wm_size <= 0)
1072                 wm_size = wm->default_wm;
1073
1074         /*
1075          * Bspec seems to indicate that the value shouldn't be lower than
1076          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
1077          * Lets go for 8 which is the burst size since certain platforms
1078          * already use a hardcoded 8 (which is what the spec says should be
1079          * done).
1080          */
1081         if (wm_size <= 8)
1082                 wm_size = 8;
1083
1084         return wm_size;
1085 }
1086
1087 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1088 {
1089         struct drm_crtc *crtc, *enabled = NULL;
1090
1091         for_each_crtc(dev, crtc) {
1092                 if (intel_crtc_active(crtc)) {
1093                         if (enabled)
1094                                 return NULL;
1095                         enabled = crtc;
1096                 }
1097         }
1098
1099         return enabled;
1100 }
1101
1102 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1103 {
1104         struct drm_device *dev = unused_crtc->dev;
1105         struct drm_i915_private *dev_priv = dev->dev_private;
1106         struct drm_crtc *crtc;
1107         const struct cxsr_latency *latency;
1108         u32 reg;
1109         unsigned long wm;
1110
1111         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1112                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1113         if (!latency) {
1114                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1115                 intel_set_memory_cxsr(dev_priv, false);
1116                 return;
1117         }
1118
1119         crtc = single_enabled_crtc(dev);
1120         if (crtc) {
1121                 const struct drm_display_mode *adjusted_mode;
1122                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1123                 int clock;
1124
1125                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1126                 clock = adjusted_mode->crtc_clock;
1127
1128                 /* Display SR */
1129                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1130                                         pineview_display_wm.fifo_size,
1131                                         pixel_size, latency->display_sr);
1132                 reg = I915_READ(DSPFW1);
1133                 reg &= ~DSPFW_SR_MASK;
1134                 reg |= wm << DSPFW_SR_SHIFT;
1135                 I915_WRITE(DSPFW1, reg);
1136                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1137
1138                 /* cursor SR */
1139                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1140                                         pineview_display_wm.fifo_size,
1141                                         pixel_size, latency->cursor_sr);
1142                 reg = I915_READ(DSPFW3);
1143                 reg &= ~DSPFW_CURSOR_SR_MASK;
1144                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1145                 I915_WRITE(DSPFW3, reg);
1146
1147                 /* Display HPLL off SR */
1148                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1149                                         pineview_display_hplloff_wm.fifo_size,
1150                                         pixel_size, latency->display_hpll_disable);
1151                 reg = I915_READ(DSPFW3);
1152                 reg &= ~DSPFW_HPLL_SR_MASK;
1153                 reg |= wm & DSPFW_HPLL_SR_MASK;
1154                 I915_WRITE(DSPFW3, reg);
1155
1156                 /* cursor HPLL off SR */
1157                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1158                                         pineview_display_hplloff_wm.fifo_size,
1159                                         pixel_size, latency->cursor_hpll_disable);
1160                 reg = I915_READ(DSPFW3);
1161                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1162                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1163                 I915_WRITE(DSPFW3, reg);
1164                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1165
1166                 intel_set_memory_cxsr(dev_priv, true);
1167         } else {
1168                 intel_set_memory_cxsr(dev_priv, false);
1169         }
1170 }
1171
1172 static bool g4x_compute_wm0(struct drm_device *dev,
1173                             int plane,
1174                             const struct intel_watermark_params *display,
1175                             int display_latency_ns,
1176                             const struct intel_watermark_params *cursor,
1177                             int cursor_latency_ns,
1178                             int *plane_wm,
1179                             int *cursor_wm)
1180 {
1181         struct drm_crtc *crtc;
1182         const struct drm_display_mode *adjusted_mode;
1183         int htotal, hdisplay, clock, pixel_size;
1184         int line_time_us, line_count;
1185         int entries, tlb_miss;
1186
1187         crtc = intel_get_crtc_for_plane(dev, plane);
1188         if (!intel_crtc_active(crtc)) {
1189                 *cursor_wm = cursor->guard_size;
1190                 *plane_wm = display->guard_size;
1191                 return false;
1192         }
1193
1194         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1195         clock = adjusted_mode->crtc_clock;
1196         htotal = adjusted_mode->crtc_htotal;
1197         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1198         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1199
1200         /* Use the small buffer method to calculate plane watermark */
1201         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1202         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1203         if (tlb_miss > 0)
1204                 entries += tlb_miss;
1205         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1206         *plane_wm = entries + display->guard_size;
1207         if (*plane_wm > (int)display->max_wm)
1208                 *plane_wm = display->max_wm;
1209
1210         /* Use the large buffer method to calculate cursor watermark */
1211         line_time_us = max(htotal * 1000 / clock, 1);
1212         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1213         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1214         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1215         if (tlb_miss > 0)
1216                 entries += tlb_miss;
1217         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1218         *cursor_wm = entries + cursor->guard_size;
1219         if (*cursor_wm > (int)cursor->max_wm)
1220                 *cursor_wm = (int)cursor->max_wm;
1221
1222         return true;
1223 }
1224
1225 /*
1226  * Check the wm result.
1227  *
1228  * If any calculated watermark values is larger than the maximum value that
1229  * can be programmed into the associated watermark register, that watermark
1230  * must be disabled.
1231  */
1232 static bool g4x_check_srwm(struct drm_device *dev,
1233                            int display_wm, int cursor_wm,
1234                            const struct intel_watermark_params *display,
1235                            const struct intel_watermark_params *cursor)
1236 {
1237         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1238                       display_wm, cursor_wm);
1239
1240         if (display_wm > display->max_wm) {
1241                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1242                               display_wm, display->max_wm);
1243                 return false;
1244         }
1245
1246         if (cursor_wm > cursor->max_wm) {
1247                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1248                               cursor_wm, cursor->max_wm);
1249                 return false;
1250         }
1251
1252         if (!(display_wm || cursor_wm)) {
1253                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1254                 return false;
1255         }
1256
1257         return true;
1258 }
1259
1260 static bool g4x_compute_srwm(struct drm_device *dev,
1261                              int plane,
1262                              int latency_ns,
1263                              const struct intel_watermark_params *display,
1264                              const struct intel_watermark_params *cursor,
1265                              int *display_wm, int *cursor_wm)
1266 {
1267         struct drm_crtc *crtc;
1268         const struct drm_display_mode *adjusted_mode;
1269         int hdisplay, htotal, pixel_size, clock;
1270         unsigned long line_time_us;
1271         int line_count, line_size;
1272         int small, large;
1273         int entries;
1274
1275         if (!latency_ns) {
1276                 *display_wm = *cursor_wm = 0;
1277                 return false;
1278         }
1279
1280         crtc = intel_get_crtc_for_plane(dev, plane);
1281         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1282         clock = adjusted_mode->crtc_clock;
1283         htotal = adjusted_mode->crtc_htotal;
1284         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1285         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1286
1287         line_time_us = max(htotal * 1000 / clock, 1);
1288         line_count = (latency_ns / line_time_us + 1000) / 1000;
1289         line_size = hdisplay * pixel_size;
1290
1291         /* Use the minimum of the small and large buffer method for primary */
1292         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1293         large = line_count * line_size;
1294
1295         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1296         *display_wm = entries + display->guard_size;
1297
1298         /* calculate the self-refresh watermark for display cursor */
1299         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1300         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1301         *cursor_wm = entries + cursor->guard_size;
1302
1303         return g4x_check_srwm(dev,
1304                               *display_wm, *cursor_wm,
1305                               display, cursor);
1306 }
1307
1308 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1309                                       int pixel_size,
1310                                       int *prec_mult,
1311                                       int *drain_latency)
1312 {
1313         int entries;
1314         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1315
1316         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1317                 return false;
1318
1319         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1320                 return false;
1321
1322         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1323         *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1324                                        DRAIN_LATENCY_PRECISION_32;
1325         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1326
1327         if (*drain_latency > DRAIN_LATENCY_MASK)
1328                 *drain_latency = DRAIN_LATENCY_MASK;
1329
1330         return true;
1331 }
1332
1333 /*
1334  * Update drain latency registers of memory arbiter
1335  *
1336  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1337  * to be programmed. Each plane has a drain latency multiplier and a drain
1338  * latency value.
1339  */
1340
1341 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1342 {
1343         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1345         int pixel_size;
1346         int drain_latency;
1347         enum pipe pipe = intel_crtc->pipe;
1348         int plane_prec, prec_mult, plane_dl;
1349
1350         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1351                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1352                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1353
1354         if (!intel_crtc_active(crtc)) {
1355                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1356                 return;
1357         }
1358
1359         /* Primary plane Drain Latency */
1360         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1361         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1362                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1363                                            DDL_PLANE_PRECISION_64 :
1364                                            DDL_PLANE_PRECISION_32;
1365                 plane_dl |= plane_prec | drain_latency;
1366         }
1367
1368         /* Cursor Drain Latency
1369          * BPP is always 4 for cursor
1370          */
1371         pixel_size = 4;
1372
1373         /* Program cursor DL only if it is enabled */
1374         if (intel_crtc->cursor_base &&
1375             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1376                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1377                                            DDL_CURSOR_PRECISION_64 :
1378                                            DDL_CURSOR_PRECISION_32;
1379                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1380         }
1381
1382         I915_WRITE(VLV_DDL(pipe), plane_dl);
1383 }
1384
1385 #define single_plane_enabled(mask) is_power_of_2(mask)
1386
1387 static void valleyview_update_wm(struct drm_crtc *crtc)
1388 {
1389         struct drm_device *dev = crtc->dev;
1390         static const int sr_latency_ns = 12000;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1393         int plane_sr, cursor_sr;
1394         int ignore_plane_sr, ignore_cursor_sr;
1395         unsigned int enabled = 0;
1396         bool cxsr_enabled;
1397
1398         vlv_update_drain_latency(crtc);
1399
1400         if (g4x_compute_wm0(dev, PIPE_A,
1401                             &valleyview_wm_info, pessimal_latency_ns,
1402                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1403                             &planea_wm, &cursora_wm))
1404                 enabled |= 1 << PIPE_A;
1405
1406         if (g4x_compute_wm0(dev, PIPE_B,
1407                             &valleyview_wm_info, pessimal_latency_ns,
1408                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1409                             &planeb_wm, &cursorb_wm))
1410                 enabled |= 1 << PIPE_B;
1411
1412         if (single_plane_enabled(enabled) &&
1413             g4x_compute_srwm(dev, ffs(enabled) - 1,
1414                              sr_latency_ns,
1415                              &valleyview_wm_info,
1416                              &valleyview_cursor_wm_info,
1417                              &plane_sr, &ignore_cursor_sr) &&
1418             g4x_compute_srwm(dev, ffs(enabled) - 1,
1419                              2*sr_latency_ns,
1420                              &valleyview_wm_info,
1421                              &valleyview_cursor_wm_info,
1422                              &ignore_plane_sr, &cursor_sr)) {
1423                 cxsr_enabled = true;
1424         } else {
1425                 cxsr_enabled = false;
1426                 intel_set_memory_cxsr(dev_priv, false);
1427                 plane_sr = cursor_sr = 0;
1428         }
1429
1430         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1431                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1432                       planea_wm, cursora_wm,
1433                       planeb_wm, cursorb_wm,
1434                       plane_sr, cursor_sr);
1435
1436         I915_WRITE(DSPFW1,
1437                    (plane_sr << DSPFW_SR_SHIFT) |
1438                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1439                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1440                    (planea_wm << DSPFW_PLANEA_SHIFT));
1441         I915_WRITE(DSPFW2,
1442                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1443                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1444         I915_WRITE(DSPFW3,
1445                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1446                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1447
1448         if (cxsr_enabled)
1449                 intel_set_memory_cxsr(dev_priv, true);
1450 }
1451
1452 static void cherryview_update_wm(struct drm_crtc *crtc)
1453 {
1454         struct drm_device *dev = crtc->dev;
1455         static const int sr_latency_ns = 12000;
1456         struct drm_i915_private *dev_priv = dev->dev_private;
1457         int planea_wm, planeb_wm, planec_wm;
1458         int cursora_wm, cursorb_wm, cursorc_wm;
1459         int plane_sr, cursor_sr;
1460         int ignore_plane_sr, ignore_cursor_sr;
1461         unsigned int enabled = 0;
1462         bool cxsr_enabled;
1463
1464         vlv_update_drain_latency(crtc);
1465
1466         if (g4x_compute_wm0(dev, PIPE_A,
1467                             &valleyview_wm_info, pessimal_latency_ns,
1468                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1469                             &planea_wm, &cursora_wm))
1470                 enabled |= 1 << PIPE_A;
1471
1472         if (g4x_compute_wm0(dev, PIPE_B,
1473                             &valleyview_wm_info, pessimal_latency_ns,
1474                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1475                             &planeb_wm, &cursorb_wm))
1476                 enabled |= 1 << PIPE_B;
1477
1478         if (g4x_compute_wm0(dev, PIPE_C,
1479                             &valleyview_wm_info, pessimal_latency_ns,
1480                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1481                             &planec_wm, &cursorc_wm))
1482                 enabled |= 1 << PIPE_C;
1483
1484         if (single_plane_enabled(enabled) &&
1485             g4x_compute_srwm(dev, ffs(enabled) - 1,
1486                              sr_latency_ns,
1487                              &valleyview_wm_info,
1488                              &valleyview_cursor_wm_info,
1489                              &plane_sr, &ignore_cursor_sr) &&
1490             g4x_compute_srwm(dev, ffs(enabled) - 1,
1491                              2*sr_latency_ns,
1492                              &valleyview_wm_info,
1493                              &valleyview_cursor_wm_info,
1494                              &ignore_plane_sr, &cursor_sr)) {
1495                 cxsr_enabled = true;
1496         } else {
1497                 cxsr_enabled = false;
1498                 intel_set_memory_cxsr(dev_priv, false);
1499                 plane_sr = cursor_sr = 0;
1500         }
1501
1502         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1503                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1504                       "SR: plane=%d, cursor=%d\n",
1505                       planea_wm, cursora_wm,
1506                       planeb_wm, cursorb_wm,
1507                       planec_wm, cursorc_wm,
1508                       plane_sr, cursor_sr);
1509
1510         I915_WRITE(DSPFW1,
1511                    (plane_sr << DSPFW_SR_SHIFT) |
1512                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1513                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1514                    (planea_wm << DSPFW_PLANEA_SHIFT));
1515         I915_WRITE(DSPFW2,
1516                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1517                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1518         I915_WRITE(DSPFW3,
1519                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1520                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1521         I915_WRITE(DSPFW9_CHV,
1522                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1523                                               DSPFW_CURSORC_MASK)) |
1524                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1525                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1526
1527         if (cxsr_enabled)
1528                 intel_set_memory_cxsr(dev_priv, true);
1529 }
1530
1531 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1532                                         struct drm_crtc *crtc,
1533                                         uint32_t sprite_width,
1534                                         uint32_t sprite_height,
1535                                         int pixel_size,
1536                                         bool enabled, bool scaled)
1537 {
1538         struct drm_device *dev = crtc->dev;
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         int pipe = to_intel_plane(plane)->pipe;
1541         int sprite = to_intel_plane(plane)->plane;
1542         int drain_latency;
1543         int plane_prec;
1544         int sprite_dl;
1545         int prec_mult;
1546
1547         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1548                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1549
1550         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1551                                                  &drain_latency)) {
1552                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1553                                            DDL_SPRITE_PRECISION_64(sprite) :
1554                                            DDL_SPRITE_PRECISION_32(sprite);
1555                 sprite_dl |= plane_prec |
1556                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1557         }
1558
1559         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1560 }
1561
1562 static void g4x_update_wm(struct drm_crtc *crtc)
1563 {
1564         struct drm_device *dev = crtc->dev;
1565         static const int sr_latency_ns = 12000;
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1568         int plane_sr, cursor_sr;
1569         unsigned int enabled = 0;
1570         bool cxsr_enabled;
1571
1572         if (g4x_compute_wm0(dev, PIPE_A,
1573                             &g4x_wm_info, pessimal_latency_ns,
1574                             &g4x_cursor_wm_info, pessimal_latency_ns,
1575                             &planea_wm, &cursora_wm))
1576                 enabled |= 1 << PIPE_A;
1577
1578         if (g4x_compute_wm0(dev, PIPE_B,
1579                             &g4x_wm_info, pessimal_latency_ns,
1580                             &g4x_cursor_wm_info, pessimal_latency_ns,
1581                             &planeb_wm, &cursorb_wm))
1582                 enabled |= 1 << PIPE_B;
1583
1584         if (single_plane_enabled(enabled) &&
1585             g4x_compute_srwm(dev, ffs(enabled) - 1,
1586                              sr_latency_ns,
1587                              &g4x_wm_info,
1588                              &g4x_cursor_wm_info,
1589                              &plane_sr, &cursor_sr)) {
1590                 cxsr_enabled = true;
1591         } else {
1592                 cxsr_enabled = false;
1593                 intel_set_memory_cxsr(dev_priv, false);
1594                 plane_sr = cursor_sr = 0;
1595         }
1596
1597         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1598                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1599                       planea_wm, cursora_wm,
1600                       planeb_wm, cursorb_wm,
1601                       plane_sr, cursor_sr);
1602
1603         I915_WRITE(DSPFW1,
1604                    (plane_sr << DSPFW_SR_SHIFT) |
1605                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1606                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1607                    (planea_wm << DSPFW_PLANEA_SHIFT));
1608         I915_WRITE(DSPFW2,
1609                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1610                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1611         /* HPLL off in SR has some issues on G4x... disable it */
1612         I915_WRITE(DSPFW3,
1613                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1614                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1615
1616         if (cxsr_enabled)
1617                 intel_set_memory_cxsr(dev_priv, true);
1618 }
1619
1620 static void i965_update_wm(struct drm_crtc *unused_crtc)
1621 {
1622         struct drm_device *dev = unused_crtc->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_crtc *crtc;
1625         int srwm = 1;
1626         int cursor_sr = 16;
1627         bool cxsr_enabled;
1628
1629         /* Calc sr entries for one plane configs */
1630         crtc = single_enabled_crtc(dev);
1631         if (crtc) {
1632                 /* self-refresh has much higher latency */
1633                 static const int sr_latency_ns = 12000;
1634                 const struct drm_display_mode *adjusted_mode =
1635                         &to_intel_crtc(crtc)->config.adjusted_mode;
1636                 int clock = adjusted_mode->crtc_clock;
1637                 int htotal = adjusted_mode->crtc_htotal;
1638                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1639                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1640                 unsigned long line_time_us;
1641                 int entries;
1642
1643                 line_time_us = max(htotal * 1000 / clock, 1);
1644
1645                 /* Use ns/us then divide to preserve precision */
1646                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1647                         pixel_size * hdisplay;
1648                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1649                 srwm = I965_FIFO_SIZE - entries;
1650                 if (srwm < 0)
1651                         srwm = 1;
1652                 srwm &= 0x1ff;
1653                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1654                               entries, srwm);
1655
1656                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1657                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1658                 entries = DIV_ROUND_UP(entries,
1659                                           i965_cursor_wm_info.cacheline_size);
1660                 cursor_sr = i965_cursor_wm_info.fifo_size -
1661                         (entries + i965_cursor_wm_info.guard_size);
1662
1663                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1664                         cursor_sr = i965_cursor_wm_info.max_wm;
1665
1666                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1667                               "cursor %d\n", srwm, cursor_sr);
1668
1669                 cxsr_enabled = true;
1670         } else {
1671                 cxsr_enabled = false;
1672                 /* Turn off self refresh if both pipes are enabled */
1673                 intel_set_memory_cxsr(dev_priv, false);
1674         }
1675
1676         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1677                       srwm);
1678
1679         /* 965 has limitations... */
1680         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1681                    (8 << DSPFW_CURSORB_SHIFT) |
1682                    (8 << DSPFW_PLANEB_SHIFT) |
1683                    (8 << DSPFW_PLANEA_SHIFT));
1684         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1685                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1686         /* update cursor SR watermark */
1687         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1688
1689         if (cxsr_enabled)
1690                 intel_set_memory_cxsr(dev_priv, true);
1691 }
1692
1693 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1694 {
1695         struct drm_device *dev = unused_crtc->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697         const struct intel_watermark_params *wm_info;
1698         uint32_t fwater_lo;
1699         uint32_t fwater_hi;
1700         int cwm, srwm = 1;
1701         int fifo_size;
1702         int planea_wm, planeb_wm;
1703         struct drm_crtc *crtc, *enabled = NULL;
1704
1705         if (IS_I945GM(dev))
1706                 wm_info = &i945_wm_info;
1707         else if (!IS_GEN2(dev))
1708                 wm_info = &i915_wm_info;
1709         else
1710                 wm_info = &i830_a_wm_info;
1711
1712         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1713         crtc = intel_get_crtc_for_plane(dev, 0);
1714         if (intel_crtc_active(crtc)) {
1715                 const struct drm_display_mode *adjusted_mode;
1716                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1717                 if (IS_GEN2(dev))
1718                         cpp = 4;
1719
1720                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1721                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1722                                                wm_info, fifo_size, cpp,
1723                                                pessimal_latency_ns);
1724                 enabled = crtc;
1725         } else {
1726                 planea_wm = fifo_size - wm_info->guard_size;
1727                 if (planea_wm > (long)wm_info->max_wm)
1728                         planea_wm = wm_info->max_wm;
1729         }
1730
1731         if (IS_GEN2(dev))
1732                 wm_info = &i830_bc_wm_info;
1733
1734         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1735         crtc = intel_get_crtc_for_plane(dev, 1);
1736         if (intel_crtc_active(crtc)) {
1737                 const struct drm_display_mode *adjusted_mode;
1738                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1739                 if (IS_GEN2(dev))
1740                         cpp = 4;
1741
1742                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1743                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1744                                                wm_info, fifo_size, cpp,
1745                                                pessimal_latency_ns);
1746                 if (enabled == NULL)
1747                         enabled = crtc;
1748                 else
1749                         enabled = NULL;
1750         } else {
1751                 planeb_wm = fifo_size - wm_info->guard_size;
1752                 if (planeb_wm > (long)wm_info->max_wm)
1753                         planeb_wm = wm_info->max_wm;
1754         }
1755
1756         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1757
1758         if (IS_I915GM(dev) && enabled) {
1759                 struct drm_i915_gem_object *obj;
1760
1761                 obj = intel_fb_obj(enabled->primary->fb);
1762
1763                 /* self-refresh seems busted with untiled */
1764                 if (obj->tiling_mode == I915_TILING_NONE)
1765                         enabled = NULL;
1766         }
1767
1768         /*
1769          * Overlay gets an aggressive default since video jitter is bad.
1770          */
1771         cwm = 2;
1772
1773         /* Play safe and disable self-refresh before adjusting watermarks. */
1774         intel_set_memory_cxsr(dev_priv, false);
1775
1776         /* Calc sr entries for one plane configs */
1777         if (HAS_FW_BLC(dev) && enabled) {
1778                 /* self-refresh has much higher latency */
1779                 static const int sr_latency_ns = 6000;
1780                 const struct drm_display_mode *adjusted_mode =
1781                         &to_intel_crtc(enabled)->config.adjusted_mode;
1782                 int clock = adjusted_mode->crtc_clock;
1783                 int htotal = adjusted_mode->crtc_htotal;
1784                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1785                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1786                 unsigned long line_time_us;
1787                 int entries;
1788
1789                 line_time_us = max(htotal * 1000 / clock, 1);
1790
1791                 /* Use ns/us then divide to preserve precision */
1792                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1793                         pixel_size * hdisplay;
1794                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1795                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1796                 srwm = wm_info->fifo_size - entries;
1797                 if (srwm < 0)
1798                         srwm = 1;
1799
1800                 if (IS_I945G(dev) || IS_I945GM(dev))
1801                         I915_WRITE(FW_BLC_SELF,
1802                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1803                 else if (IS_I915GM(dev))
1804                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1805         }
1806
1807         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1808                       planea_wm, planeb_wm, cwm, srwm);
1809
1810         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1811         fwater_hi = (cwm & 0x1f);
1812
1813         /* Set request length to 8 cachelines per fetch */
1814         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1815         fwater_hi = fwater_hi | (1 << 8);
1816
1817         I915_WRITE(FW_BLC, fwater_lo);
1818         I915_WRITE(FW_BLC2, fwater_hi);
1819
1820         if (enabled)
1821                 intel_set_memory_cxsr(dev_priv, true);
1822 }
1823
1824 static void i845_update_wm(struct drm_crtc *unused_crtc)
1825 {
1826         struct drm_device *dev = unused_crtc->dev;
1827         struct drm_i915_private *dev_priv = dev->dev_private;
1828         struct drm_crtc *crtc;
1829         const struct drm_display_mode *adjusted_mode;
1830         uint32_t fwater_lo;
1831         int planea_wm;
1832
1833         crtc = single_enabled_crtc(dev);
1834         if (crtc == NULL)
1835                 return;
1836
1837         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1838         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1839                                        &i845_wm_info,
1840                                        dev_priv->display.get_fifo_size(dev, 0),
1841                                        4, pessimal_latency_ns);
1842         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1843         fwater_lo |= (3<<8) | planea_wm;
1844
1845         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1846
1847         I915_WRITE(FW_BLC, fwater_lo);
1848 }
1849
1850 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1851                                     struct drm_crtc *crtc)
1852 {
1853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1854         uint32_t pixel_rate;
1855
1856         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1857
1858         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1859          * adjust the pixel_rate here. */
1860
1861         if (intel_crtc->config.pch_pfit.enabled) {
1862                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1863                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1864
1865                 pipe_w = intel_crtc->config.pipe_src_w;
1866                 pipe_h = intel_crtc->config.pipe_src_h;
1867                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1868                 pfit_h = pfit_size & 0xFFFF;
1869                 if (pipe_w < pfit_w)
1870                         pipe_w = pfit_w;
1871                 if (pipe_h < pfit_h)
1872                         pipe_h = pfit_h;
1873
1874                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1875                                      pfit_w * pfit_h);
1876         }
1877
1878         return pixel_rate;
1879 }
1880
1881 /* latency must be in 0.1us units. */
1882 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1883                                uint32_t latency)
1884 {
1885         uint64_t ret;
1886
1887         if (WARN(latency == 0, "Latency value missing\n"))
1888                 return UINT_MAX;
1889
1890         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1891         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1892
1893         return ret;
1894 }
1895
1896 /* latency must be in 0.1us units. */
1897 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1898                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1899                                uint32_t latency)
1900 {
1901         uint32_t ret;
1902
1903         if (WARN(latency == 0, "Latency value missing\n"))
1904                 return UINT_MAX;
1905
1906         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1907         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1908         ret = DIV_ROUND_UP(ret, 64) + 2;
1909         return ret;
1910 }
1911
1912 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1913                            uint8_t bytes_per_pixel)
1914 {
1915         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1916 }
1917
1918 struct ilk_pipe_wm_parameters {
1919         bool active;
1920         uint32_t pipe_htotal;
1921         uint32_t pixel_rate;
1922         struct intel_plane_wm_parameters pri;
1923         struct intel_plane_wm_parameters spr;
1924         struct intel_plane_wm_parameters cur;
1925 };
1926
1927 struct ilk_wm_maximums {
1928         uint16_t pri;
1929         uint16_t spr;
1930         uint16_t cur;
1931         uint16_t fbc;
1932 };
1933
1934 /* used in computing the new watermarks state */
1935 struct intel_wm_config {
1936         unsigned int num_pipes_active;
1937         bool sprites_enabled;
1938         bool sprites_scaled;
1939 };
1940
1941 /*
1942  * For both WM_PIPE and WM_LP.
1943  * mem_value must be in 0.1us units.
1944  */
1945 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1946                                    uint32_t mem_value,
1947                                    bool is_lp)
1948 {
1949         uint32_t method1, method2;
1950
1951         if (!params->active || !params->pri.enabled)
1952                 return 0;
1953
1954         method1 = ilk_wm_method1(params->pixel_rate,
1955                                  params->pri.bytes_per_pixel,
1956                                  mem_value);
1957
1958         if (!is_lp)
1959                 return method1;
1960
1961         method2 = ilk_wm_method2(params->pixel_rate,
1962                                  params->pipe_htotal,
1963                                  params->pri.horiz_pixels,
1964                                  params->pri.bytes_per_pixel,
1965                                  mem_value);
1966
1967         return min(method1, method2);
1968 }
1969
1970 /*
1971  * For both WM_PIPE and WM_LP.
1972  * mem_value must be in 0.1us units.
1973  */
1974 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1975                                    uint32_t mem_value)
1976 {
1977         uint32_t method1, method2;
1978
1979         if (!params->active || !params->spr.enabled)
1980                 return 0;
1981
1982         method1 = ilk_wm_method1(params->pixel_rate,
1983                                  params->spr.bytes_per_pixel,
1984                                  mem_value);
1985         method2 = ilk_wm_method2(params->pixel_rate,
1986                                  params->pipe_htotal,
1987                                  params->spr.horiz_pixels,
1988                                  params->spr.bytes_per_pixel,
1989                                  mem_value);
1990         return min(method1, method2);
1991 }
1992
1993 /*
1994  * For both WM_PIPE and WM_LP.
1995  * mem_value must be in 0.1us units.
1996  */
1997 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1998                                    uint32_t mem_value)
1999 {
2000         if (!params->active || !params->cur.enabled)
2001                 return 0;
2002
2003         return ilk_wm_method2(params->pixel_rate,
2004                               params->pipe_htotal,
2005                               params->cur.horiz_pixels,
2006                               params->cur.bytes_per_pixel,
2007                               mem_value);
2008 }
2009
2010 /* Only for WM_LP. */
2011 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2012                                    uint32_t pri_val)
2013 {
2014         if (!params->active || !params->pri.enabled)
2015                 return 0;
2016
2017         return ilk_wm_fbc(pri_val,
2018                           params->pri.horiz_pixels,
2019                           params->pri.bytes_per_pixel);
2020 }
2021
2022 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2023 {
2024         if (INTEL_INFO(dev)->gen >= 8)
2025                 return 3072;
2026         else if (INTEL_INFO(dev)->gen >= 7)
2027                 return 768;
2028         else
2029                 return 512;
2030 }
2031
2032 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2033                                          int level, bool is_sprite)
2034 {
2035         if (INTEL_INFO(dev)->gen >= 8)
2036                 /* BDW primary/sprite plane watermarks */
2037                 return level == 0 ? 255 : 2047;
2038         else if (INTEL_INFO(dev)->gen >= 7)
2039                 /* IVB/HSW primary/sprite plane watermarks */
2040                 return level == 0 ? 127 : 1023;
2041         else if (!is_sprite)
2042                 /* ILK/SNB primary plane watermarks */
2043                 return level == 0 ? 127 : 511;
2044         else
2045                 /* ILK/SNB sprite plane watermarks */
2046                 return level == 0 ? 63 : 255;
2047 }
2048
2049 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2050                                           int level)
2051 {
2052         if (INTEL_INFO(dev)->gen >= 7)
2053                 return level == 0 ? 63 : 255;
2054         else
2055                 return level == 0 ? 31 : 63;
2056 }
2057
2058 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2059 {
2060         if (INTEL_INFO(dev)->gen >= 8)
2061                 return 31;
2062         else
2063                 return 15;
2064 }
2065
2066 /* Calculate the maximum primary/sprite plane watermark */
2067 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2068                                      int level,
2069                                      const struct intel_wm_config *config,
2070                                      enum intel_ddb_partitioning ddb_partitioning,
2071                                      bool is_sprite)
2072 {
2073         unsigned int fifo_size = ilk_display_fifo_size(dev);
2074
2075         /* if sprites aren't enabled, sprites get nothing */
2076         if (is_sprite && !config->sprites_enabled)
2077                 return 0;
2078
2079         /* HSW allows LP1+ watermarks even with multiple pipes */
2080         if (level == 0 || config->num_pipes_active > 1) {
2081                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2082
2083                 /*
2084                  * For some reason the non self refresh
2085                  * FIFO size is only half of the self
2086                  * refresh FIFO size on ILK/SNB.
2087                  */
2088                 if (INTEL_INFO(dev)->gen <= 6)
2089                         fifo_size /= 2;
2090         }
2091
2092         if (config->sprites_enabled) {
2093                 /* level 0 is always calculated with 1:1 split */
2094                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2095                         if (is_sprite)
2096                                 fifo_size *= 5;
2097                         fifo_size /= 6;
2098                 } else {
2099                         fifo_size /= 2;
2100                 }
2101         }
2102
2103         /* clamp to max that the registers can hold */
2104         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2105 }
2106
2107 /* Calculate the maximum cursor plane watermark */
2108 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2109                                       int level,
2110                                       const struct intel_wm_config *config)
2111 {
2112         /* HSW LP1+ watermarks w/ multiple pipes */
2113         if (level > 0 && config->num_pipes_active > 1)
2114                 return 64;
2115
2116         /* otherwise just report max that registers can hold */
2117         return ilk_cursor_wm_reg_max(dev, level);
2118 }
2119
2120 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2121                                     int level,
2122                                     const struct intel_wm_config *config,
2123                                     enum intel_ddb_partitioning ddb_partitioning,
2124                                     struct ilk_wm_maximums *max)
2125 {
2126         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2127         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2128         max->cur = ilk_cursor_wm_max(dev, level, config);
2129         max->fbc = ilk_fbc_wm_reg_max(dev);
2130 }
2131
2132 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2133                                         int level,
2134                                         struct ilk_wm_maximums *max)
2135 {
2136         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2137         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2138         max->cur = ilk_cursor_wm_reg_max(dev, level);
2139         max->fbc = ilk_fbc_wm_reg_max(dev);
2140 }
2141
2142 static bool ilk_validate_wm_level(int level,
2143                                   const struct ilk_wm_maximums *max,
2144                                   struct intel_wm_level *result)
2145 {
2146         bool ret;
2147
2148         /* already determined to be invalid? */
2149         if (!result->enable)
2150                 return false;
2151
2152         result->enable = result->pri_val <= max->pri &&
2153                          result->spr_val <= max->spr &&
2154                          result->cur_val <= max->cur;
2155
2156         ret = result->enable;
2157
2158         /*
2159          * HACK until we can pre-compute everything,
2160          * and thus fail gracefully if LP0 watermarks
2161          * are exceeded...
2162          */
2163         if (level == 0 && !result->enable) {
2164                 if (result->pri_val > max->pri)
2165                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2166                                       level, result->pri_val, max->pri);
2167                 if (result->spr_val > max->spr)
2168                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2169                                       level, result->spr_val, max->spr);
2170                 if (result->cur_val > max->cur)
2171                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2172                                       level, result->cur_val, max->cur);
2173
2174                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2175                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2176                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2177                 result->enable = true;
2178         }
2179
2180         return ret;
2181 }
2182
2183 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2184                                  int level,
2185                                  const struct ilk_pipe_wm_parameters *p,
2186                                  struct intel_wm_level *result)
2187 {
2188         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2189         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2190         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2191
2192         /* WM1+ latency values stored in 0.5us units */
2193         if (level > 0) {
2194                 pri_latency *= 5;
2195                 spr_latency *= 5;
2196                 cur_latency *= 5;
2197         }
2198
2199         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2200         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2201         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2202         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2203         result->enable = true;
2204 }
2205
2206 static uint32_t
2207 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2208 {
2209         struct drm_i915_private *dev_priv = dev->dev_private;
2210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2211         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2212         u32 linetime, ips_linetime;
2213
2214         if (!intel_crtc_active(crtc))
2215                 return 0;
2216
2217         /* The WM are computed with base on how long it takes to fill a single
2218          * row at the given clock rate, multiplied by 8.
2219          * */
2220         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2221                                      mode->crtc_clock);
2222         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2223                                          intel_ddi_get_cdclk_freq(dev_priv));
2224
2225         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2226                PIPE_WM_LINETIME_TIME(linetime);
2227 }
2228
2229 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232
2233         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2234                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2235
2236                 wm[0] = (sskpd >> 56) & 0xFF;
2237                 if (wm[0] == 0)
2238                         wm[0] = sskpd & 0xF;
2239                 wm[1] = (sskpd >> 4) & 0xFF;
2240                 wm[2] = (sskpd >> 12) & 0xFF;
2241                 wm[3] = (sskpd >> 20) & 0x1FF;
2242                 wm[4] = (sskpd >> 32) & 0x1FF;
2243         } else if (INTEL_INFO(dev)->gen >= 6) {
2244                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2245
2246                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2247                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2248                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2249                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2250         } else if (INTEL_INFO(dev)->gen >= 5) {
2251                 uint32_t mltr = I915_READ(MLTR_ILK);
2252
2253                 /* ILK primary LP0 latency is 700 ns */
2254                 wm[0] = 7;
2255                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2256                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2257         }
2258 }
2259
2260 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2261 {
2262         /* ILK sprite LP0 latency is 1300 ns */
2263         if (INTEL_INFO(dev)->gen == 5)
2264                 wm[0] = 13;
2265 }
2266
2267 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2268 {
2269         /* ILK cursor LP0 latency is 1300 ns */
2270         if (INTEL_INFO(dev)->gen == 5)
2271                 wm[0] = 13;
2272
2273         /* WaDoubleCursorLP3Latency:ivb */
2274         if (IS_IVYBRIDGE(dev))
2275                 wm[3] *= 2;
2276 }
2277
2278 int ilk_wm_max_level(const struct drm_device *dev)
2279 {
2280         /* how many WM levels are we expecting */
2281         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2282                 return 4;
2283         else if (INTEL_INFO(dev)->gen >= 6)
2284                 return 3;
2285         else
2286                 return 2;
2287 }
2288
2289 static void intel_print_wm_latency(struct drm_device *dev,
2290                                    const char *name,
2291                                    const uint16_t wm[5])
2292 {
2293         int level, max_level = ilk_wm_max_level(dev);
2294
2295         for (level = 0; level <= max_level; level++) {
2296                 unsigned int latency = wm[level];
2297
2298                 if (latency == 0) {
2299                         DRM_ERROR("%s WM%d latency not provided\n",
2300                                   name, level);
2301                         continue;
2302                 }
2303
2304                 /* WM1+ latency values in 0.5us units */
2305                 if (level > 0)
2306                         latency *= 5;
2307
2308                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2309                               name, level, wm[level],
2310                               latency / 10, latency % 10);
2311         }
2312 }
2313
2314 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2315                                     uint16_t wm[5], uint16_t min)
2316 {
2317         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2318
2319         if (wm[0] >= min)
2320                 return false;
2321
2322         wm[0] = max(wm[0], min);
2323         for (level = 1; level <= max_level; level++)
2324                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2325
2326         return true;
2327 }
2328
2329 static void snb_wm_latency_quirk(struct drm_device *dev)
2330 {
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         bool changed;
2333
2334         /*
2335          * The BIOS provided WM memory latency values are often
2336          * inadequate for high resolution displays. Adjust them.
2337          */
2338         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2339                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2340                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2341
2342         if (!changed)
2343                 return;
2344
2345         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2346         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2347         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2348         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2349 }
2350
2351 static void ilk_setup_wm_latency(struct drm_device *dev)
2352 {
2353         struct drm_i915_private *dev_priv = dev->dev_private;
2354
2355         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2356
2357         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2358                sizeof(dev_priv->wm.pri_latency));
2359         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2360                sizeof(dev_priv->wm.pri_latency));
2361
2362         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2363         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2364
2365         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2366         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2367         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2368
2369         if (IS_GEN6(dev))
2370                 snb_wm_latency_quirk(dev);
2371 }
2372
2373 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2374                                       struct ilk_pipe_wm_parameters *p)
2375 {
2376         struct drm_device *dev = crtc->dev;
2377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2378         enum pipe pipe = intel_crtc->pipe;
2379         struct drm_plane *plane;
2380
2381         if (!intel_crtc_active(crtc))
2382                 return;
2383
2384         p->active = true;
2385         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2386         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2387         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2388         p->cur.bytes_per_pixel = 4;
2389         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2390         p->cur.horiz_pixels = intel_crtc->cursor_width;
2391         /* TODO: for now, assume primary and cursor planes are always enabled. */
2392         p->pri.enabled = true;
2393         p->cur.enabled = true;
2394
2395         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2396                 struct intel_plane *intel_plane = to_intel_plane(plane);
2397
2398                 if (intel_plane->pipe == pipe) {
2399                         p->spr = intel_plane->wm;
2400                         break;
2401                 }
2402         }
2403 }
2404
2405 static void ilk_compute_wm_config(struct drm_device *dev,
2406                                   struct intel_wm_config *config)
2407 {
2408         struct intel_crtc *intel_crtc;
2409
2410         /* Compute the currently _active_ config */
2411         for_each_intel_crtc(dev, intel_crtc) {
2412                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2413
2414                 if (!wm->pipe_enabled)
2415                         continue;
2416
2417                 config->sprites_enabled |= wm->sprites_enabled;
2418                 config->sprites_scaled |= wm->sprites_scaled;
2419                 config->num_pipes_active++;
2420         }
2421 }
2422
2423 /* Compute new watermarks for the pipe */
2424 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2425                                   const struct ilk_pipe_wm_parameters *params,
2426                                   struct intel_pipe_wm *pipe_wm)
2427 {
2428         struct drm_device *dev = crtc->dev;
2429         const struct drm_i915_private *dev_priv = dev->dev_private;
2430         int level, max_level = ilk_wm_max_level(dev);
2431         /* LP0 watermark maximums depend on this pipe alone */
2432         struct intel_wm_config config = {
2433                 .num_pipes_active = 1,
2434                 .sprites_enabled = params->spr.enabled,
2435                 .sprites_scaled = params->spr.scaled,
2436         };
2437         struct ilk_wm_maximums max;
2438
2439         pipe_wm->pipe_enabled = params->active;
2440         pipe_wm->sprites_enabled = params->spr.enabled;
2441         pipe_wm->sprites_scaled = params->spr.scaled;
2442
2443         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2444         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2445                 max_level = 1;
2446
2447         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2448         if (params->spr.scaled)
2449                 max_level = 0;
2450
2451         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2452
2453         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2454                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2455
2456         /* LP0 watermarks always use 1/2 DDB partitioning */
2457         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2458
2459         /* At least LP0 must be valid */
2460         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2461                 return false;
2462
2463         ilk_compute_wm_reg_maximums(dev, 1, &max);
2464
2465         for (level = 1; level <= max_level; level++) {
2466                 struct intel_wm_level wm = {};
2467
2468                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2469
2470                 /*
2471                  * Disable any watermark level that exceeds the
2472                  * register maximums since such watermarks are
2473                  * always invalid.
2474                  */
2475                 if (!ilk_validate_wm_level(level, &max, &wm))
2476                         break;
2477
2478                 pipe_wm->wm[level] = wm;
2479         }
2480
2481         return true;
2482 }
2483
2484 /*
2485  * Merge the watermarks from all active pipes for a specific level.
2486  */
2487 static void ilk_merge_wm_level(struct drm_device *dev,
2488                                int level,
2489                                struct intel_wm_level *ret_wm)
2490 {
2491         const struct intel_crtc *intel_crtc;
2492
2493         ret_wm->enable = true;
2494
2495         for_each_intel_crtc(dev, intel_crtc) {
2496                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2497                 const struct intel_wm_level *wm = &active->wm[level];
2498
2499                 if (!active->pipe_enabled)
2500                         continue;
2501
2502                 /*
2503                  * The watermark values may have been used in the past,
2504                  * so we must maintain them in the registers for some
2505                  * time even if the level is now disabled.
2506                  */
2507                 if (!wm->enable)
2508                         ret_wm->enable = false;
2509
2510                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2511                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2512                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2513                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2514         }
2515 }
2516
2517 /*
2518  * Merge all low power watermarks for all active pipes.
2519  */
2520 static void ilk_wm_merge(struct drm_device *dev,
2521                          const struct intel_wm_config *config,
2522                          const struct ilk_wm_maximums *max,
2523                          struct intel_pipe_wm *merged)
2524 {
2525         int level, max_level = ilk_wm_max_level(dev);
2526         int last_enabled_level = max_level;
2527
2528         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2529         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2530             config->num_pipes_active > 1)
2531                 return;
2532
2533         /* ILK: FBC WM must be disabled always */
2534         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2535
2536         /* merge each WM1+ level */
2537         for (level = 1; level <= max_level; level++) {
2538                 struct intel_wm_level *wm = &merged->wm[level];
2539
2540                 ilk_merge_wm_level(dev, level, wm);
2541
2542                 if (level > last_enabled_level)
2543                         wm->enable = false;
2544                 else if (!ilk_validate_wm_level(level, max, wm))
2545                         /* make sure all following levels get disabled */
2546                         last_enabled_level = level - 1;
2547
2548                 /*
2549                  * The spec says it is preferred to disable
2550                  * FBC WMs instead of disabling a WM level.
2551                  */
2552                 if (wm->fbc_val > max->fbc) {
2553                         if (wm->enable)
2554                                 merged->fbc_wm_enabled = false;
2555                         wm->fbc_val = 0;
2556                 }
2557         }
2558
2559         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2560         /*
2561          * FIXME this is racy. FBC might get enabled later.
2562          * What we should check here is whether FBC can be
2563          * enabled sometime later.
2564          */
2565         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2566                 for (level = 2; level <= max_level; level++) {
2567                         struct intel_wm_level *wm = &merged->wm[level];
2568
2569                         wm->enable = false;
2570                 }
2571         }
2572 }
2573
2574 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2575 {
2576         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2577         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2578 }
2579
2580 /* The value we need to program into the WM_LPx latency field */
2581 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2582 {
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584
2585         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2586                 return 2 * level;
2587         else
2588                 return dev_priv->wm.pri_latency[level];
2589 }
2590
2591 static void ilk_compute_wm_results(struct drm_device *dev,
2592                                    const struct intel_pipe_wm *merged,
2593                                    enum intel_ddb_partitioning partitioning,
2594                                    struct ilk_wm_values *results)
2595 {
2596         struct intel_crtc *intel_crtc;
2597         int level, wm_lp;
2598
2599         results->enable_fbc_wm = merged->fbc_wm_enabled;
2600         results->partitioning = partitioning;
2601
2602         /* LP1+ register values */
2603         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604                 const struct intel_wm_level *r;
2605
2606                 level = ilk_wm_lp_to_level(wm_lp, merged);
2607
2608                 r = &merged->wm[level];
2609
2610                 /*
2611                  * Maintain the watermark values even if the level is
2612                  * disabled. Doing otherwise could cause underruns.
2613                  */
2614                 results->wm_lp[wm_lp - 1] =
2615                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616                         (r->pri_val << WM1_LP_SR_SHIFT) |
2617                         r->cur_val;
2618
2619                 if (r->enable)
2620                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2621
2622                 if (INTEL_INFO(dev)->gen >= 8)
2623                         results->wm_lp[wm_lp - 1] |=
2624                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2625                 else
2626                         results->wm_lp[wm_lp - 1] |=
2627                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2628
2629                 /*
2630                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2631                  * level is disabled. Doing otherwise could cause underruns.
2632                  */
2633                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2634                         WARN_ON(wm_lp != 1);
2635                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2636                 } else
2637                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638         }
2639
2640         /* LP0 register values */
2641         for_each_intel_crtc(dev, intel_crtc) {
2642                 enum pipe pipe = intel_crtc->pipe;
2643                 const struct intel_wm_level *r =
2644                         &intel_crtc->wm.active.wm[0];
2645
2646                 if (WARN_ON(!r->enable))
2647                         continue;
2648
2649                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2650
2651                 results->wm_pipe[pipe] =
2652                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2653                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2654                         r->cur_val;
2655         }
2656 }
2657
2658 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2659  * case both are at the same level. Prefer r1 in case they're the same. */
2660 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661                                                   struct intel_pipe_wm *r1,
2662                                                   struct intel_pipe_wm *r2)
2663 {
2664         int level, max_level = ilk_wm_max_level(dev);
2665         int level1 = 0, level2 = 0;
2666
2667         for (level = 1; level <= max_level; level++) {
2668                 if (r1->wm[level].enable)
2669                         level1 = level;
2670                 if (r2->wm[level].enable)
2671                         level2 = level;
2672         }
2673
2674         if (level1 == level2) {
2675                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676                         return r2;
2677                 else
2678                         return r1;
2679         } else if (level1 > level2) {
2680                 return r1;
2681         } else {
2682                 return r2;
2683         }
2684 }
2685
2686 /* dirty bits used to track which watermarks need changes */
2687 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2688 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2689 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2690 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2691 #define WM_DIRTY_FBC (1 << 24)
2692 #define WM_DIRTY_DDB (1 << 25)
2693
2694 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695                                          const struct ilk_wm_values *old,
2696                                          const struct ilk_wm_values *new)
2697 {
2698         unsigned int dirty = 0;
2699         enum pipe pipe;
2700         int wm_lp;
2701
2702         for_each_pipe(dev_priv, pipe) {
2703                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2704                         dirty |= WM_DIRTY_LINETIME(pipe);
2705                         /* Must disable LP1+ watermarks too */
2706                         dirty |= WM_DIRTY_LP_ALL;
2707                 }
2708
2709                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2710                         dirty |= WM_DIRTY_PIPE(pipe);
2711                         /* Must disable LP1+ watermarks too */
2712                         dirty |= WM_DIRTY_LP_ALL;
2713                 }
2714         }
2715
2716         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2717                 dirty |= WM_DIRTY_FBC;
2718                 /* Must disable LP1+ watermarks too */
2719                 dirty |= WM_DIRTY_LP_ALL;
2720         }
2721
2722         if (old->partitioning != new->partitioning) {
2723                 dirty |= WM_DIRTY_DDB;
2724                 /* Must disable LP1+ watermarks too */
2725                 dirty |= WM_DIRTY_LP_ALL;
2726         }
2727
2728         /* LP1+ watermarks already deemed dirty, no need to continue */
2729         if (dirty & WM_DIRTY_LP_ALL)
2730                 return dirty;
2731
2732         /* Find the lowest numbered LP1+ watermark in need of an update... */
2733         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2734                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2735                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2736                         break;
2737         }
2738
2739         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2740         for (; wm_lp <= 3; wm_lp++)
2741                 dirty |= WM_DIRTY_LP(wm_lp);
2742
2743         return dirty;
2744 }
2745
2746 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2747                                unsigned int dirty)
2748 {
2749         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750         bool changed = false;
2751
2752         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2753                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2754                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755                 changed = true;
2756         }
2757         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2758                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2759                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760                 changed = true;
2761         }
2762         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2763                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2764                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765                 changed = true;
2766         }
2767
2768         /*
2769          * Don't touch WM1S_LP_EN here.
2770          * Doing so could cause underruns.
2771          */
2772
2773         return changed;
2774 }
2775
2776 /*
2777  * The spec says we shouldn't write when we don't need, because every write
2778  * causes WMs to be re-evaluated, expending some power.
2779  */
2780 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2781                                 struct ilk_wm_values *results)
2782 {
2783         struct drm_device *dev = dev_priv->dev;
2784         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785         unsigned int dirty;
2786         uint32_t val;
2787
2788         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789         if (!dirty)
2790                 return;
2791
2792         _ilk_disable_lp_wm(dev_priv, dirty);
2793
2794         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2800
2801         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2807
2808         if (dirty & WM_DIRTY_DDB) {
2809                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2810                         val = I915_READ(WM_MISC);
2811                         if (results->partitioning == INTEL_DDB_PART_1_2)
2812                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2813                         else
2814                                 val |= WM_MISC_DATA_PARTITION_5_6;
2815                         I915_WRITE(WM_MISC, val);
2816                 } else {
2817                         val = I915_READ(DISP_ARB_CTL2);
2818                         if (results->partitioning == INTEL_DDB_PART_1_2)
2819                                 val &= ~DISP_DATA_PARTITION_5_6;
2820                         else
2821                                 val |= DISP_DATA_PARTITION_5_6;
2822                         I915_WRITE(DISP_ARB_CTL2, val);
2823                 }
2824         }
2825
2826         if (dirty & WM_DIRTY_FBC) {
2827                 val = I915_READ(DISP_ARB_CTL);
2828                 if (results->enable_fbc_wm)
2829                         val &= ~DISP_FBC_WM_DIS;
2830                 else
2831                         val |= DISP_FBC_WM_DIS;
2832                 I915_WRITE(DISP_ARB_CTL, val);
2833         }
2834
2835         if (dirty & WM_DIRTY_LP(1) &&
2836             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2837                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2838
2839         if (INTEL_INFO(dev)->gen >= 7) {
2840                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2841                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2842                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2843                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2844         }
2845
2846         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852
2853         dev_priv->wm.hw = *results;
2854 }
2855
2856 static bool ilk_disable_lp_wm(struct drm_device *dev)
2857 {
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2861 }
2862
2863 static void ilk_update_wm(struct drm_crtc *crtc)
2864 {
2865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2866         struct drm_device *dev = crtc->dev;
2867         struct drm_i915_private *dev_priv = dev->dev_private;
2868         struct ilk_wm_maximums max;
2869         struct ilk_pipe_wm_parameters params = {};
2870         struct ilk_wm_values results = {};
2871         enum intel_ddb_partitioning partitioning;
2872         struct intel_pipe_wm pipe_wm = {};
2873         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2874         struct intel_wm_config config = {};
2875
2876         ilk_compute_wm_parameters(crtc, &params);
2877
2878         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2879
2880         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2881                 return;
2882
2883         intel_crtc->wm.active = pipe_wm;
2884
2885         ilk_compute_wm_config(dev, &config);
2886
2887         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2888         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2889
2890         /* 5/6 split only in single pipe config on IVB+ */
2891         if (INTEL_INFO(dev)->gen >= 7 &&
2892             config.num_pipes_active == 1 && config.sprites_enabled) {
2893                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2894                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2895
2896                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2897         } else {
2898                 best_lp_wm = &lp_wm_1_2;
2899         }
2900
2901         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2902                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2903
2904         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2905
2906         ilk_write_wm_values(dev_priv, &results);
2907 }
2908
2909 static void
2910 ilk_update_sprite_wm(struct drm_plane *plane,
2911                      struct drm_crtc *crtc,
2912                      uint32_t sprite_width, uint32_t sprite_height,
2913                      int pixel_size, bool enabled, bool scaled)
2914 {
2915         struct drm_device *dev = plane->dev;
2916         struct intel_plane *intel_plane = to_intel_plane(plane);
2917
2918         intel_plane->wm.enabled = enabled;
2919         intel_plane->wm.scaled = scaled;
2920         intel_plane->wm.horiz_pixels = sprite_width;
2921         intel_plane->wm.vert_pixels = sprite_width;
2922         intel_plane->wm.bytes_per_pixel = pixel_size;
2923
2924         /*
2925          * IVB workaround: must disable low power watermarks for at least
2926          * one frame before enabling scaling.  LP watermarks can be re-enabled
2927          * when scaling is disabled.
2928          *
2929          * WaCxSRDisabledForSpriteScaling:ivb
2930          */
2931         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2932                 intel_wait_for_vblank(dev, intel_plane->pipe);
2933
2934         ilk_update_wm(crtc);
2935 }
2936
2937 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2938 {
2939         struct drm_device *dev = crtc->dev;
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2944         enum pipe pipe = intel_crtc->pipe;
2945         static const unsigned int wm0_pipe_reg[] = {
2946                 [PIPE_A] = WM0_PIPEA_ILK,
2947                 [PIPE_B] = WM0_PIPEB_ILK,
2948                 [PIPE_C] = WM0_PIPEC_IVB,
2949         };
2950
2951         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2952         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2953                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2954
2955         active->pipe_enabled = intel_crtc_active(crtc);
2956
2957         if (active->pipe_enabled) {
2958                 u32 tmp = hw->wm_pipe[pipe];
2959
2960                 /*
2961                  * For active pipes LP0 watermark is marked as
2962                  * enabled, and LP1+ watermaks as disabled since
2963                  * we can't really reverse compute them in case
2964                  * multiple pipes are active.
2965                  */
2966                 active->wm[0].enable = true;
2967                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2968                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2969                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2970                 active->linetime = hw->wm_linetime[pipe];
2971         } else {
2972                 int level, max_level = ilk_wm_max_level(dev);
2973
2974                 /*
2975                  * For inactive pipes, all watermark levels
2976                  * should be marked as enabled but zeroed,
2977                  * which is what we'd compute them to.
2978                  */
2979                 for (level = 0; level <= max_level; level++)
2980                         active->wm[level].enable = true;
2981         }
2982 }
2983
2984 void ilk_wm_get_hw_state(struct drm_device *dev)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2988         struct drm_crtc *crtc;
2989
2990         for_each_crtc(dev, crtc)
2991                 ilk_pipe_wm_get_hw_state(crtc);
2992
2993         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2994         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2995         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2996
2997         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2998         if (INTEL_INFO(dev)->gen >= 7) {
2999                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3000                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3001         }
3002
3003         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3004                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3005                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3006         else if (IS_IVYBRIDGE(dev))
3007                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3008                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3009
3010         hw->enable_fbc_wm =
3011                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3012 }
3013
3014 /**
3015  * intel_update_watermarks - update FIFO watermark values based on current modes
3016  *
3017  * Calculate watermark values for the various WM regs based on current mode
3018  * and plane configuration.
3019  *
3020  * There are several cases to deal with here:
3021  *   - normal (i.e. non-self-refresh)
3022  *   - self-refresh (SR) mode
3023  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3024  *   - lines are small relative to FIFO size (buffer can hold more than 2
3025  *     lines), so need to account for TLB latency
3026  *
3027  *   The normal calculation is:
3028  *     watermark = dotclock * bytes per pixel * latency
3029  *   where latency is platform & configuration dependent (we assume pessimal
3030  *   values here).
3031  *
3032  *   The SR calculation is:
3033  *     watermark = (trunc(latency/line time)+1) * surface width *
3034  *       bytes per pixel
3035  *   where
3036  *     line time = htotal / dotclock
3037  *     surface width = hdisplay for normal plane and 64 for cursor
3038  *   and latency is assumed to be high, as above.
3039  *
3040  * The final value programmed to the register should always be rounded up,
3041  * and include an extra 2 entries to account for clock crossings.
3042  *
3043  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3044  * to set the non-SR watermarks to 8.
3045  */
3046 void intel_update_watermarks(struct drm_crtc *crtc)
3047 {
3048         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3049
3050         if (dev_priv->display.update_wm)
3051                 dev_priv->display.update_wm(crtc);
3052 }
3053
3054 void intel_update_sprite_watermarks(struct drm_plane *plane,
3055                                     struct drm_crtc *crtc,
3056                                     uint32_t sprite_width,
3057                                     uint32_t sprite_height,
3058                                     int pixel_size,
3059                                     bool enabled, bool scaled)
3060 {
3061         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3062
3063         if (dev_priv->display.update_sprite_wm)
3064                 dev_priv->display.update_sprite_wm(plane, crtc,
3065                                                    sprite_width, sprite_height,
3066                                                    pixel_size, enabled, scaled);
3067 }
3068
3069 static struct drm_i915_gem_object *
3070 intel_alloc_context_page(struct drm_device *dev)
3071 {
3072         struct drm_i915_gem_object *ctx;
3073         int ret;
3074
3075         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3076
3077         ctx = i915_gem_alloc_object(dev, 4096);
3078         if (!ctx) {
3079                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3080                 return NULL;
3081         }
3082
3083         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3084         if (ret) {
3085                 DRM_ERROR("failed to pin power context: %d\n", ret);
3086                 goto err_unref;
3087         }
3088
3089         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3090         if (ret) {
3091                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3092                 goto err_unpin;
3093         }
3094
3095         return ctx;
3096
3097 err_unpin:
3098         i915_gem_object_ggtt_unpin(ctx);
3099 err_unref:
3100         drm_gem_object_unreference(&ctx->base);
3101         return NULL;
3102 }
3103
3104 /**
3105  * Lock protecting IPS related data structures
3106  */
3107 DEFINE_SPINLOCK(mchdev_lock);
3108
3109 /* Global for IPS driver to get at the current i915 device. Protected by
3110  * mchdev_lock. */
3111 static struct drm_i915_private *i915_mch_dev;
3112
3113 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3114 {
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         u16 rgvswctl;
3117
3118         assert_spin_locked(&mchdev_lock);
3119
3120         rgvswctl = I915_READ16(MEMSWCTL);
3121         if (rgvswctl & MEMCTL_CMD_STS) {
3122                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3123                 return false; /* still busy with another command */
3124         }
3125
3126         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3127                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3128         I915_WRITE16(MEMSWCTL, rgvswctl);
3129         POSTING_READ16(MEMSWCTL);
3130
3131         rgvswctl |= MEMCTL_CMD_STS;
3132         I915_WRITE16(MEMSWCTL, rgvswctl);
3133
3134         return true;
3135 }
3136
3137 static void ironlake_enable_drps(struct drm_device *dev)
3138 {
3139         struct drm_i915_private *dev_priv = dev->dev_private;
3140         u32 rgvmodectl = I915_READ(MEMMODECTL);
3141         u8 fmax, fmin, fstart, vstart;
3142
3143         spin_lock_irq(&mchdev_lock);
3144
3145         /* Enable temp reporting */
3146         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3147         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3148
3149         /* 100ms RC evaluation intervals */
3150         I915_WRITE(RCUPEI, 100000);
3151         I915_WRITE(RCDNEI, 100000);
3152
3153         /* Set max/min thresholds to 90ms and 80ms respectively */
3154         I915_WRITE(RCBMAXAVG, 90000);
3155         I915_WRITE(RCBMINAVG, 80000);
3156
3157         I915_WRITE(MEMIHYST, 1);
3158
3159         /* Set up min, max, and cur for interrupt handling */
3160         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3161         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3162         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3163                 MEMMODE_FSTART_SHIFT;
3164
3165         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3166                 PXVFREQ_PX_SHIFT;
3167
3168         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3169         dev_priv->ips.fstart = fstart;
3170
3171         dev_priv->ips.max_delay = fstart;
3172         dev_priv->ips.min_delay = fmin;
3173         dev_priv->ips.cur_delay = fstart;
3174
3175         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3176                          fmax, fmin, fstart);
3177
3178         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3179
3180         /*
3181          * Interrupts will be enabled in ironlake_irq_postinstall
3182          */
3183
3184         I915_WRITE(VIDSTART, vstart);
3185         POSTING_READ(VIDSTART);
3186
3187         rgvmodectl |= MEMMODE_SWMODE_EN;
3188         I915_WRITE(MEMMODECTL, rgvmodectl);
3189
3190         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3191                 DRM_ERROR("stuck trying to change perf mode\n");
3192         mdelay(1);
3193
3194         ironlake_set_drps(dev, fstart);
3195
3196         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3197                 I915_READ(0x112e0);
3198         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3199         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3200         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3201
3202         spin_unlock_irq(&mchdev_lock);
3203 }
3204
3205 static void ironlake_disable_drps(struct drm_device *dev)
3206 {
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         u16 rgvswctl;
3209
3210         spin_lock_irq(&mchdev_lock);
3211
3212         rgvswctl = I915_READ16(MEMSWCTL);
3213
3214         /* Ack interrupts, disable EFC interrupt */
3215         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3216         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3217         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3218         I915_WRITE(DEIIR, DE_PCU_EVENT);
3219         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3220
3221         /* Go back to the starting frequency */
3222         ironlake_set_drps(dev, dev_priv->ips.fstart);
3223         mdelay(1);
3224         rgvswctl |= MEMCTL_CMD_STS;
3225         I915_WRITE(MEMSWCTL, rgvswctl);
3226         mdelay(1);
3227
3228         spin_unlock_irq(&mchdev_lock);
3229 }
3230
3231 /* There's a funny hw issue where the hw returns all 0 when reading from
3232  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3233  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3234  * all limits and the gpu stuck at whatever frequency it is at atm).
3235  */
3236 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3237 {
3238         u32 limits;
3239
3240         /* Only set the down limit when we've reached the lowest level to avoid
3241          * getting more interrupts, otherwise leave this clear. This prevents a
3242          * race in the hw when coming out of rc6: There's a tiny window where
3243          * the hw runs at the minimal clock before selecting the desired
3244          * frequency, if the down threshold expires in that window we will not
3245          * receive a down interrupt. */
3246         limits = dev_priv->rps.max_freq_softlimit << 24;
3247         if (val <= dev_priv->rps.min_freq_softlimit)
3248                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3249
3250         return limits;
3251 }
3252
3253 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3254 {
3255         int new_power;
3256
3257         new_power = dev_priv->rps.power;
3258         switch (dev_priv->rps.power) {
3259         case LOW_POWER:
3260                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3261                         new_power = BETWEEN;
3262                 break;
3263
3264         case BETWEEN:
3265                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3266                         new_power = LOW_POWER;
3267                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3268                         new_power = HIGH_POWER;
3269                 break;
3270
3271         case HIGH_POWER:
3272                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3273                         new_power = BETWEEN;
3274                 break;
3275         }
3276         /* Max/min bins are special */
3277         if (val == dev_priv->rps.min_freq_softlimit)
3278                 new_power = LOW_POWER;
3279         if (val == dev_priv->rps.max_freq_softlimit)
3280                 new_power = HIGH_POWER;
3281         if (new_power == dev_priv->rps.power)
3282                 return;
3283
3284         /* Note the units here are not exactly 1us, but 1280ns. */
3285         switch (new_power) {
3286         case LOW_POWER:
3287                 /* Upclock if more than 95% busy over 16ms */
3288                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3289                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3290
3291                 /* Downclock if less than 85% busy over 32ms */
3292                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3293                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3294
3295                 I915_WRITE(GEN6_RP_CONTROL,
3296                            GEN6_RP_MEDIA_TURBO |
3297                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3298                            GEN6_RP_MEDIA_IS_GFX |
3299                            GEN6_RP_ENABLE |
3300                            GEN6_RP_UP_BUSY_AVG |
3301                            GEN6_RP_DOWN_IDLE_AVG);
3302                 break;
3303
3304         case BETWEEN:
3305                 /* Upclock if more than 90% busy over 13ms */
3306                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3307                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3308
3309                 /* Downclock if less than 75% busy over 32ms */
3310                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3311                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3312
3313                 I915_WRITE(GEN6_RP_CONTROL,
3314                            GEN6_RP_MEDIA_TURBO |
3315                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3316                            GEN6_RP_MEDIA_IS_GFX |
3317                            GEN6_RP_ENABLE |
3318                            GEN6_RP_UP_BUSY_AVG |
3319                            GEN6_RP_DOWN_IDLE_AVG);
3320                 break;
3321
3322         case HIGH_POWER:
3323                 /* Upclock if more than 85% busy over 10ms */
3324                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3325                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3326
3327                 /* Downclock if less than 60% busy over 32ms */
3328                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3329                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3330
3331                 I915_WRITE(GEN6_RP_CONTROL,
3332                            GEN6_RP_MEDIA_TURBO |
3333                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3334                            GEN6_RP_MEDIA_IS_GFX |
3335                            GEN6_RP_ENABLE |
3336                            GEN6_RP_UP_BUSY_AVG |
3337                            GEN6_RP_DOWN_IDLE_AVG);
3338                 break;
3339         }
3340
3341         dev_priv->rps.power = new_power;
3342         dev_priv->rps.last_adj = 0;
3343 }
3344
3345 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3346 {
3347         u32 mask = 0;
3348
3349         if (val > dev_priv->rps.min_freq_softlimit)
3350                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3351         if (val < dev_priv->rps.max_freq_softlimit)
3352                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3353
3354         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3355         mask &= dev_priv->pm_rps_events;
3356
3357         /* IVB and SNB hard hangs on looping batchbuffer
3358          * if GEN6_PM_UP_EI_EXPIRED is masked.
3359          */
3360         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3361                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3362
3363         if (IS_GEN8(dev_priv->dev))
3364                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3365
3366         return ~mask;
3367 }
3368
3369 /* gen6_set_rps is called to update the frequency request, but should also be
3370  * called when the range (min_delay and max_delay) is modified so that we can
3371  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3372 void gen6_set_rps(struct drm_device *dev, u8 val)
3373 {
3374         struct drm_i915_private *dev_priv = dev->dev_private;
3375
3376         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3377         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3378         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3379
3380         /* min/max delay may still have been modified so be sure to
3381          * write the limits value.
3382          */
3383         if (val != dev_priv->rps.cur_freq) {
3384                 gen6_set_rps_thresholds(dev_priv, val);
3385
3386                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3387                         I915_WRITE(GEN6_RPNSWREQ,
3388                                    HSW_FREQUENCY(val));
3389                 else
3390                         I915_WRITE(GEN6_RPNSWREQ,
3391                                    GEN6_FREQUENCY(val) |
3392                                    GEN6_OFFSET(0) |
3393                                    GEN6_AGGRESSIVE_TURBO);
3394         }
3395
3396         /* Make sure we continue to get interrupts
3397          * until we hit the minimum or maximum frequencies.
3398          */
3399         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3400         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3401
3402         POSTING_READ(GEN6_RPNSWREQ);
3403
3404         dev_priv->rps.cur_freq = val;
3405         trace_intel_gpu_freq_change(val * 50);
3406 }
3407
3408 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3409  *
3410  * * If Gfx is Idle, then
3411  * 1. Mask Turbo interrupts
3412  * 2. Bring up Gfx clock
3413  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3414  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3415  * 5. Unmask Turbo interrupts
3416 */
3417 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3418 {
3419         struct drm_device *dev = dev_priv->dev;
3420
3421         /* Latest VLV doesn't need to force the gfx clock */
3422         if (dev->pdev->revision >= 0xd) {
3423                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3424                 return;
3425         }
3426
3427         /*
3428          * When we are idle.  Drop to min voltage state.
3429          */
3430
3431         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3432                 return;
3433
3434         /* Mask turbo interrupt so that they will not come in between */
3435         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3436
3437         vlv_force_gfx_clock(dev_priv, true);
3438
3439         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3440
3441         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3442                                         dev_priv->rps.min_freq_softlimit);
3443
3444         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3445                                 & GENFREQSTATUS) == 0, 5))
3446                 DRM_ERROR("timed out waiting for Punit\n");
3447
3448         vlv_force_gfx_clock(dev_priv, false);
3449
3450         I915_WRITE(GEN6_PMINTRMSK,
3451                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3452 }
3453
3454 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3455 {
3456         struct drm_device *dev = dev_priv->dev;
3457
3458         mutex_lock(&dev_priv->rps.hw_lock);
3459         if (dev_priv->rps.enabled) {
3460                 if (IS_CHERRYVIEW(dev))
3461                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3462                 else if (IS_VALLEYVIEW(dev))
3463                         vlv_set_rps_idle(dev_priv);
3464                 else
3465                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3466                 dev_priv->rps.last_adj = 0;
3467         }
3468         mutex_unlock(&dev_priv->rps.hw_lock);
3469 }
3470
3471 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3472 {
3473         struct drm_device *dev = dev_priv->dev;
3474
3475         mutex_lock(&dev_priv->rps.hw_lock);
3476         if (dev_priv->rps.enabled) {
3477                 if (IS_VALLEYVIEW(dev))
3478                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3479                 else
3480                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3481                 dev_priv->rps.last_adj = 0;
3482         }
3483         mutex_unlock(&dev_priv->rps.hw_lock);
3484 }
3485
3486 void valleyview_set_rps(struct drm_device *dev, u8 val)
3487 {
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3491         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3492         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3493
3494         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3495                       "Odd GPU freq value\n"))
3496                 val &= ~1;
3497
3498         if (val != dev_priv->rps.cur_freq) {
3499                 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3500                                  vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3501                                  dev_priv->rps.cur_freq,
3502                                  vlv_gpu_freq(dev_priv, val), val);
3503
3504                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3505         }
3506
3507         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3508
3509         dev_priv->rps.cur_freq = val;
3510         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3511 }
3512
3513 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3514 {
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516
3517         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3518         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3519                                    ~dev_priv->pm_rps_events);
3520         /* Complete PM interrupt masking here doesn't race with the rps work
3521          * item again unmasking PM interrupts because that is using a different
3522          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3523          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3524          * gen8_enable_rps will clean up. */
3525
3526         spin_lock_irq(&dev_priv->irq_lock);
3527         dev_priv->rps.pm_iir = 0;
3528         spin_unlock_irq(&dev_priv->irq_lock);
3529
3530         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3531 }
3532
3533 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3534 {
3535         struct drm_i915_private *dev_priv = dev->dev_private;
3536
3537         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3538         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3539                                 ~dev_priv->pm_rps_events);
3540         /* Complete PM interrupt masking here doesn't race with the rps work
3541          * item again unmasking PM interrupts because that is using a different
3542          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3543          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3544
3545         spin_lock_irq(&dev_priv->irq_lock);
3546         dev_priv->rps.pm_iir = 0;
3547         spin_unlock_irq(&dev_priv->irq_lock);
3548
3549         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3550 }
3551
3552 static void gen6_disable_rps(struct drm_device *dev)
3553 {
3554         struct drm_i915_private *dev_priv = dev->dev_private;
3555
3556         I915_WRITE(GEN6_RC_CONTROL, 0);
3557         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3558
3559         if (IS_BROADWELL(dev))
3560                 gen8_disable_rps_interrupts(dev);
3561         else
3562                 gen6_disable_rps_interrupts(dev);
3563 }
3564
3565 static void cherryview_disable_rps(struct drm_device *dev)
3566 {
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568
3569         I915_WRITE(GEN6_RC_CONTROL, 0);
3570
3571         gen8_disable_rps_interrupts(dev);
3572 }
3573
3574 static void valleyview_disable_rps(struct drm_device *dev)
3575 {
3576         struct drm_i915_private *dev_priv = dev->dev_private;
3577
3578         /* we're doing forcewake before Disabling RC6,
3579          * This what the BIOS expects when going into suspend */
3580         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3581
3582         I915_WRITE(GEN6_RC_CONTROL, 0);
3583
3584         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3585
3586         gen6_disable_rps_interrupts(dev);
3587 }
3588
3589 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3590 {
3591         if (IS_VALLEYVIEW(dev)) {
3592                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3593                         mode = GEN6_RC_CTL_RC6_ENABLE;
3594                 else
3595                         mode = 0;
3596         }
3597         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3598                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3599                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3600                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3601 }
3602
3603 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3604 {
3605         /* No RC6 before Ironlake */
3606         if (INTEL_INFO(dev)->gen < 5)
3607                 return 0;
3608
3609         /* RC6 is only on Ironlake mobile not on desktop */
3610         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3611                 return 0;
3612
3613         /* Respect the kernel parameter if it is set */
3614         if (enable_rc6 >= 0) {
3615                 int mask;
3616
3617                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3618                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3619                                INTEL_RC6pp_ENABLE;
3620                 else
3621                         mask = INTEL_RC6_ENABLE;
3622
3623                 if ((enable_rc6 & mask) != enable_rc6)
3624                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3625                                       enable_rc6 & mask, enable_rc6, mask);
3626
3627                 return enable_rc6 & mask;
3628         }
3629
3630         /* Disable RC6 on Ironlake */
3631         if (INTEL_INFO(dev)->gen == 5)
3632                 return 0;
3633
3634         if (IS_IVYBRIDGE(dev))
3635                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3636
3637         return INTEL_RC6_ENABLE;
3638 }
3639
3640 int intel_enable_rc6(const struct drm_device *dev)
3641 {
3642         return i915.enable_rc6;
3643 }
3644
3645 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3646 {
3647         struct drm_i915_private *dev_priv = dev->dev_private;
3648
3649         spin_lock_irq(&dev_priv->irq_lock);
3650         WARN_ON(dev_priv->rps.pm_iir);
3651         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3652         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3653         spin_unlock_irq(&dev_priv->irq_lock);
3654 }
3655
3656 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659
3660         spin_lock_irq(&dev_priv->irq_lock);
3661         WARN_ON(dev_priv->rps.pm_iir);
3662         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3663         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3664         spin_unlock_irq(&dev_priv->irq_lock);
3665 }
3666
3667 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3668 {
3669         /* All of these values are in units of 50MHz */
3670         dev_priv->rps.cur_freq          = 0;
3671         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3672         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3673         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3674         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3675         /* XXX: only BYT has a special efficient freq */
3676         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3677         /* hw_max = RP0 until we check for overclocking */
3678         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3679
3680         /* Preserve min/max settings in case of re-init */
3681         if (dev_priv->rps.max_freq_softlimit == 0)
3682                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3683
3684         if (dev_priv->rps.min_freq_softlimit == 0)
3685                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3686 }
3687
3688 static void gen8_enable_rps(struct drm_device *dev)
3689 {
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct intel_engine_cs *ring;
3692         uint32_t rc6_mask = 0, rp_state_cap;
3693         int unused;
3694
3695         /* 1a: Software RC state - RC0 */
3696         I915_WRITE(GEN6_RC_STATE, 0);
3697
3698         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3699          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3700         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3701
3702         /* 2a: Disable RC states. */
3703         I915_WRITE(GEN6_RC_CONTROL, 0);
3704
3705         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3706         parse_rp_state_cap(dev_priv, rp_state_cap);
3707
3708         /* 2b: Program RC6 thresholds.*/
3709         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3710         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3711         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3712         for_each_ring(ring, dev_priv, unused)
3713                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3714         I915_WRITE(GEN6_RC_SLEEP, 0);
3715         if (IS_BROADWELL(dev))
3716                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3717         else
3718                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3719
3720         /* 3: Enable RC6 */
3721         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3722                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3723         intel_print_rc6_info(dev, rc6_mask);
3724         if (IS_BROADWELL(dev))
3725                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3726                                 GEN7_RC_CTL_TO_MODE |
3727                                 rc6_mask);
3728         else
3729                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3730                                 GEN6_RC_CTL_EI_MODE(1) |
3731                                 rc6_mask);
3732
3733         /* 4 Program defaults and thresholds for RPS*/
3734         I915_WRITE(GEN6_RPNSWREQ,
3735                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3736         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3737                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3738         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3739         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3740
3741         /* Docs recommend 900MHz, and 300 MHz respectively */
3742         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3743                    dev_priv->rps.max_freq_softlimit << 24 |
3744                    dev_priv->rps.min_freq_softlimit << 16);
3745
3746         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3747         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3748         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3749         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3750
3751         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3752
3753         /* 5: Enable RPS */
3754         I915_WRITE(GEN6_RP_CONTROL,
3755                    GEN6_RP_MEDIA_TURBO |
3756                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3757                    GEN6_RP_MEDIA_IS_GFX |
3758                    GEN6_RP_ENABLE |
3759                    GEN6_RP_UP_BUSY_AVG |
3760                    GEN6_RP_DOWN_IDLE_AVG);
3761
3762         /* 6: Ring frequency + overclocking (our driver does this later */
3763
3764         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3765
3766         gen8_enable_rps_interrupts(dev);
3767
3768         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3769 }
3770
3771 static void gen6_enable_rps(struct drm_device *dev)
3772 {
3773         struct drm_i915_private *dev_priv = dev->dev_private;
3774         struct intel_engine_cs *ring;
3775         u32 rp_state_cap;
3776         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3777         u32 gtfifodbg;
3778         int rc6_mode;
3779         int i, ret;
3780
3781         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3782
3783         /* Here begins a magic sequence of register writes to enable
3784          * auto-downclocking.
3785          *
3786          * Perhaps there might be some value in exposing these to
3787          * userspace...
3788          */
3789         I915_WRITE(GEN6_RC_STATE, 0);
3790
3791         /* Clear the DBG now so we don't confuse earlier errors */
3792         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3793                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3794                 I915_WRITE(GTFIFODBG, gtfifodbg);
3795         }
3796
3797         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3798
3799         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3800
3801         parse_rp_state_cap(dev_priv, rp_state_cap);
3802
3803         /* disable the counters and set deterministic thresholds */
3804         I915_WRITE(GEN6_RC_CONTROL, 0);
3805
3806         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3807         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3808         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3809         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3810         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3811
3812         for_each_ring(ring, dev_priv, i)
3813                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3814
3815         I915_WRITE(GEN6_RC_SLEEP, 0);
3816         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3817         if (IS_IVYBRIDGE(dev))
3818                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3819         else
3820                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3821         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3822         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3823
3824         /* Check if we are enabling RC6 */
3825         rc6_mode = intel_enable_rc6(dev_priv->dev);
3826         if (rc6_mode & INTEL_RC6_ENABLE)
3827                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3828
3829         /* We don't use those on Haswell */
3830         if (!IS_HASWELL(dev)) {
3831                 if (rc6_mode & INTEL_RC6p_ENABLE)
3832                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3833
3834                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3835                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3836         }
3837
3838         intel_print_rc6_info(dev, rc6_mask);
3839
3840         I915_WRITE(GEN6_RC_CONTROL,
3841                    rc6_mask |
3842                    GEN6_RC_CTL_EI_MODE(1) |
3843                    GEN6_RC_CTL_HW_ENABLE);
3844
3845         /* Power down if completely idle for over 50ms */
3846         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3847         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3848
3849         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3850         if (ret)
3851                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3852
3853         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3854         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3855                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3856                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3857                                  (pcu_mbox & 0xff) * 50);
3858                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3859         }
3860
3861         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3862         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3863
3864         gen6_enable_rps_interrupts(dev);
3865
3866         rc6vids = 0;
3867         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3868         if (IS_GEN6(dev) && ret) {
3869                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3870         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3871                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3872                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3873                 rc6vids &= 0xffff00;
3874                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3875                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3876                 if (ret)
3877                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3878         }
3879
3880         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3881 }
3882
3883 static void __gen6_update_ring_freq(struct drm_device *dev)
3884 {
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886         int min_freq = 15;
3887         unsigned int gpu_freq;
3888         unsigned int max_ia_freq, min_ring_freq;
3889         int scaling_factor = 180;
3890         struct cpufreq_policy *policy;
3891
3892         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3893
3894         policy = cpufreq_cpu_get(0);
3895         if (policy) {
3896                 max_ia_freq = policy->cpuinfo.max_freq;
3897                 cpufreq_cpu_put(policy);
3898         } else {
3899                 /*
3900                  * Default to measured freq if none found, PCU will ensure we
3901                  * don't go over
3902                  */
3903                 max_ia_freq = tsc_khz;
3904         }
3905
3906         /* Convert from kHz to MHz */
3907         max_ia_freq /= 1000;
3908
3909         min_ring_freq = I915_READ(DCLK) & 0xf;
3910         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3911         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3912
3913         /*
3914          * For each potential GPU frequency, load a ring frequency we'd like
3915          * to use for memory access.  We do this by specifying the IA frequency
3916          * the PCU should use as a reference to determine the ring frequency.
3917          */
3918         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3919              gpu_freq--) {
3920                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3921                 unsigned int ia_freq = 0, ring_freq = 0;
3922
3923                 if (INTEL_INFO(dev)->gen >= 8) {
3924                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3925                         ring_freq = max(min_ring_freq, gpu_freq);
3926                 } else if (IS_HASWELL(dev)) {
3927                         ring_freq = mult_frac(gpu_freq, 5, 4);
3928                         ring_freq = max(min_ring_freq, ring_freq);
3929                         /* leave ia_freq as the default, chosen by cpufreq */
3930                 } else {
3931                         /* On older processors, there is no separate ring
3932                          * clock domain, so in order to boost the bandwidth
3933                          * of the ring, we need to upclock the CPU (ia_freq).
3934                          *
3935                          * For GPU frequencies less than 750MHz,
3936                          * just use the lowest ring freq.
3937                          */
3938                         if (gpu_freq < min_freq)
3939                                 ia_freq = 800;
3940                         else
3941                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3942                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3943                 }
3944
3945                 sandybridge_pcode_write(dev_priv,
3946                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3947                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3948                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3949                                         gpu_freq);
3950         }
3951 }
3952
3953 void gen6_update_ring_freq(struct drm_device *dev)
3954 {
3955         struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3958                 return;
3959
3960         mutex_lock(&dev_priv->rps.hw_lock);
3961         __gen6_update_ring_freq(dev);
3962         mutex_unlock(&dev_priv->rps.hw_lock);
3963 }
3964
3965 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3966 {
3967         u32 val, rp0;
3968
3969         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3970         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3971
3972         return rp0;
3973 }
3974
3975 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3976 {
3977         u32 val, rpe;
3978
3979         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3980         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3981
3982         return rpe;
3983 }
3984
3985 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3986 {
3987         u32 val, rp1;
3988
3989         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3990         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3991
3992         return rp1;
3993 }
3994
3995 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3996 {
3997         u32 val, rpn;
3998
3999         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4000         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4001         return rpn;
4002 }
4003
4004 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4005 {
4006         u32 val, rp1;
4007
4008         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4009
4010         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4011
4012         return rp1;
4013 }
4014
4015 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4016 {
4017         u32 val, rp0;
4018
4019         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4020
4021         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4022         /* Clamp to max */
4023         rp0 = min_t(u32, rp0, 0xea);
4024
4025         return rp0;
4026 }
4027
4028 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4029 {
4030         u32 val, rpe;
4031
4032         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4033         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4034         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4035         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4036
4037         return rpe;
4038 }
4039
4040 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4041 {
4042         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4043 }
4044
4045 /* Check that the pctx buffer wasn't move under us. */
4046 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4047 {
4048         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4049
4050         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4051                              dev_priv->vlv_pctx->stolen->start);
4052 }
4053
4054
4055 /* Check that the pcbr address is not empty. */
4056 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4057 {
4058         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4059
4060         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4061 }
4062
4063 static void cherryview_setup_pctx(struct drm_device *dev)
4064 {
4065         struct drm_i915_private *dev_priv = dev->dev_private;
4066         unsigned long pctx_paddr, paddr;
4067         struct i915_gtt *gtt = &dev_priv->gtt;
4068         u32 pcbr;
4069         int pctx_size = 32*1024;
4070
4071         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4072
4073         pcbr = I915_READ(VLV_PCBR);
4074         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4075                 paddr = (dev_priv->mm.stolen_base +
4076                          (gtt->stolen_size - pctx_size));
4077
4078                 pctx_paddr = (paddr & (~4095));
4079                 I915_WRITE(VLV_PCBR, pctx_paddr);
4080         }
4081 }
4082
4083 static void valleyview_setup_pctx(struct drm_device *dev)
4084 {
4085         struct drm_i915_private *dev_priv = dev->dev_private;
4086         struct drm_i915_gem_object *pctx;
4087         unsigned long pctx_paddr;
4088         u32 pcbr;
4089         int pctx_size = 24*1024;
4090
4091         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4092
4093         pcbr = I915_READ(VLV_PCBR);
4094         if (pcbr) {
4095                 /* BIOS set it up already, grab the pre-alloc'd space */
4096                 int pcbr_offset;
4097
4098                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4099                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4100                                                                       pcbr_offset,
4101                                                                       I915_GTT_OFFSET_NONE,
4102                                                                       pctx_size);
4103                 goto out;
4104         }
4105
4106         /*
4107          * From the Gunit register HAS:
4108          * The Gfx driver is expected to program this register and ensure
4109          * proper allocation within Gfx stolen memory.  For example, this
4110          * register should be programmed such than the PCBR range does not
4111          * overlap with other ranges, such as the frame buffer, protected
4112          * memory, or any other relevant ranges.
4113          */
4114         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4115         if (!pctx) {
4116                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4117                 return;
4118         }
4119
4120         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4121         I915_WRITE(VLV_PCBR, pctx_paddr);
4122
4123 out:
4124         dev_priv->vlv_pctx = pctx;
4125 }
4126
4127 static void valleyview_cleanup_pctx(struct drm_device *dev)
4128 {
4129         struct drm_i915_private *dev_priv = dev->dev_private;
4130
4131         if (WARN_ON(!dev_priv->vlv_pctx))
4132                 return;
4133
4134         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4135         dev_priv->vlv_pctx = NULL;
4136 }
4137
4138 static void valleyview_init_gt_powersave(struct drm_device *dev)
4139 {
4140         struct drm_i915_private *dev_priv = dev->dev_private;
4141         u32 val;
4142
4143         valleyview_setup_pctx(dev);
4144
4145         mutex_lock(&dev_priv->rps.hw_lock);
4146
4147         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4148         switch ((val >> 6) & 3) {
4149         case 0:
4150         case 1:
4151                 dev_priv->mem_freq = 800;
4152                 break;
4153         case 2:
4154                 dev_priv->mem_freq = 1066;
4155                 break;
4156         case 3:
4157                 dev_priv->mem_freq = 1333;
4158                 break;
4159         }
4160         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4161
4162         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4163         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4164         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4165                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4166                          dev_priv->rps.max_freq);
4167
4168         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4169         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4170                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4171                          dev_priv->rps.efficient_freq);
4172
4173         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4174         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4175                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4176                          dev_priv->rps.rp1_freq);
4177
4178         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4179         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4180                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4181                          dev_priv->rps.min_freq);
4182
4183         /* Preserve min/max settings in case of re-init */
4184         if (dev_priv->rps.max_freq_softlimit == 0)
4185                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4186
4187         if (dev_priv->rps.min_freq_softlimit == 0)
4188                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4189
4190         mutex_unlock(&dev_priv->rps.hw_lock);
4191 }
4192
4193 static void cherryview_init_gt_powersave(struct drm_device *dev)
4194 {
4195         struct drm_i915_private *dev_priv = dev->dev_private;
4196         u32 val;
4197
4198         cherryview_setup_pctx(dev);
4199
4200         mutex_lock(&dev_priv->rps.hw_lock);
4201
4202         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4203         switch ((val >> 2) & 0x7) {
4204         case 0:
4205         case 1:
4206                 dev_priv->rps.cz_freq = 200;
4207                 dev_priv->mem_freq = 1600;
4208                 break;
4209         case 2:
4210                 dev_priv->rps.cz_freq = 267;
4211                 dev_priv->mem_freq = 1600;
4212                 break;
4213         case 3:
4214                 dev_priv->rps.cz_freq = 333;
4215                 dev_priv->mem_freq = 2000;
4216                 break;
4217         case 4:
4218                 dev_priv->rps.cz_freq = 320;
4219                 dev_priv->mem_freq = 1600;
4220                 break;
4221         case 5:
4222                 dev_priv->rps.cz_freq = 400;
4223                 dev_priv->mem_freq = 1600;
4224                 break;
4225         }
4226         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4227
4228         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4229         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4230         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4231                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4232                          dev_priv->rps.max_freq);
4233
4234         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4235         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4236                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4237                          dev_priv->rps.efficient_freq);
4238
4239         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4240         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4241                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4242                          dev_priv->rps.rp1_freq);
4243
4244         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4245         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4246                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4247                          dev_priv->rps.min_freq);
4248
4249         WARN_ONCE((dev_priv->rps.max_freq |
4250                    dev_priv->rps.efficient_freq |
4251                    dev_priv->rps.rp1_freq |
4252                    dev_priv->rps.min_freq) & 1,
4253                   "Odd GPU freq values\n");
4254
4255         /* Preserve min/max settings in case of re-init */
4256         if (dev_priv->rps.max_freq_softlimit == 0)
4257                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4258
4259         if (dev_priv->rps.min_freq_softlimit == 0)
4260                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4261
4262         mutex_unlock(&dev_priv->rps.hw_lock);
4263 }
4264
4265 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4266 {
4267         valleyview_cleanup_pctx(dev);
4268 }
4269
4270 static void cherryview_enable_rps(struct drm_device *dev)
4271 {
4272         struct drm_i915_private *dev_priv = dev->dev_private;
4273         struct intel_engine_cs *ring;
4274         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4275         int i;
4276
4277         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4278
4279         gtfifodbg = I915_READ(GTFIFODBG);
4280         if (gtfifodbg) {
4281                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4282                                  gtfifodbg);
4283                 I915_WRITE(GTFIFODBG, gtfifodbg);
4284         }
4285
4286         cherryview_check_pctx(dev_priv);
4287
4288         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4289          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4290         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4291
4292         /* 2a: Program RC6 thresholds.*/
4293         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4294         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4295         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4296
4297         for_each_ring(ring, dev_priv, i)
4298                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4299         I915_WRITE(GEN6_RC_SLEEP, 0);
4300
4301         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4302
4303         /* allows RC6 residency counter to work */
4304         I915_WRITE(VLV_COUNTER_CONTROL,
4305                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4306                                       VLV_MEDIA_RC6_COUNT_EN |
4307                                       VLV_RENDER_RC6_COUNT_EN));
4308
4309         /* For now we assume BIOS is allocating and populating the PCBR  */
4310         pcbr = I915_READ(VLV_PCBR);
4311
4312         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4313
4314         /* 3: Enable RC6 */
4315         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4316                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4317                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4318
4319         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4320
4321         /* 4 Program defaults and thresholds for RPS*/
4322         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4323         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4324         I915_WRITE(GEN6_RP_UP_EI, 66000);
4325         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4326
4327         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4328
4329         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4330         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4331         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4332
4333         /* 5: Enable RPS */
4334         I915_WRITE(GEN6_RP_CONTROL,
4335                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4336                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4337                    GEN6_RP_ENABLE |
4338                    GEN6_RP_UP_BUSY_AVG |
4339                    GEN6_RP_DOWN_IDLE_AVG);
4340
4341         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4342
4343         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4344         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4345
4346         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4347         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4348                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4349                          dev_priv->rps.cur_freq);
4350
4351         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4352                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4353                          dev_priv->rps.efficient_freq);
4354
4355         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4356
4357         gen8_enable_rps_interrupts(dev);
4358
4359         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4360 }
4361
4362 static void valleyview_enable_rps(struct drm_device *dev)
4363 {
4364         struct drm_i915_private *dev_priv = dev->dev_private;
4365         struct intel_engine_cs *ring;
4366         u32 gtfifodbg, val, rc6_mode = 0;
4367         int i;
4368
4369         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4370
4371         valleyview_check_pctx(dev_priv);
4372
4373         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4374                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4375                                  gtfifodbg);
4376                 I915_WRITE(GTFIFODBG, gtfifodbg);
4377         }
4378
4379         /* If VLV, Forcewake all wells, else re-direct to regular path */
4380         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4381
4382         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4383         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4384         I915_WRITE(GEN6_RP_UP_EI, 66000);
4385         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4386
4387         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4388         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4389
4390         I915_WRITE(GEN6_RP_CONTROL,
4391                    GEN6_RP_MEDIA_TURBO |
4392                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4393                    GEN6_RP_MEDIA_IS_GFX |
4394                    GEN6_RP_ENABLE |
4395                    GEN6_RP_UP_BUSY_AVG |
4396                    GEN6_RP_DOWN_IDLE_CONT);
4397
4398         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4399         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4400         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4401
4402         for_each_ring(ring, dev_priv, i)
4403                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4404
4405         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4406
4407         /* allows RC6 residency counter to work */
4408         I915_WRITE(VLV_COUNTER_CONTROL,
4409                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4410                                       VLV_RENDER_RC0_COUNT_EN |
4411                                       VLV_MEDIA_RC6_COUNT_EN |
4412                                       VLV_RENDER_RC6_COUNT_EN));
4413
4414         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4415                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4416
4417         intel_print_rc6_info(dev, rc6_mode);
4418
4419         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4420
4421         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4422
4423         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4424         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4425
4426         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4427         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4428                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4429                          dev_priv->rps.cur_freq);
4430
4431         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4432                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4433                          dev_priv->rps.efficient_freq);
4434
4435         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4436
4437         gen6_enable_rps_interrupts(dev);
4438
4439         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4440 }
4441
4442 void ironlake_teardown_rc6(struct drm_device *dev)
4443 {
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446         if (dev_priv->ips.renderctx) {
4447                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4448                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4449                 dev_priv->ips.renderctx = NULL;
4450         }
4451
4452         if (dev_priv->ips.pwrctx) {
4453                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4454                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4455                 dev_priv->ips.pwrctx = NULL;
4456         }
4457 }
4458
4459 static void ironlake_disable_rc6(struct drm_device *dev)
4460 {
4461         struct drm_i915_private *dev_priv = dev->dev_private;
4462
4463         if (I915_READ(PWRCTXA)) {
4464                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4465                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4466                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4467                          50);
4468
4469                 I915_WRITE(PWRCTXA, 0);
4470                 POSTING_READ(PWRCTXA);
4471
4472                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4473                 POSTING_READ(RSTDBYCTL);
4474         }
4475 }
4476
4477 static int ironlake_setup_rc6(struct drm_device *dev)
4478 {
4479         struct drm_i915_private *dev_priv = dev->dev_private;
4480
4481         if (dev_priv->ips.renderctx == NULL)
4482                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4483         if (!dev_priv->ips.renderctx)
4484                 return -ENOMEM;
4485
4486         if (dev_priv->ips.pwrctx == NULL)
4487                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4488         if (!dev_priv->ips.pwrctx) {
4489                 ironlake_teardown_rc6(dev);
4490                 return -ENOMEM;
4491         }
4492
4493         return 0;
4494 }
4495
4496 static void ironlake_enable_rc6(struct drm_device *dev)
4497 {
4498         struct drm_i915_private *dev_priv = dev->dev_private;
4499         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4500         bool was_interruptible;
4501         int ret;
4502
4503         /* rc6 disabled by default due to repeated reports of hanging during
4504          * boot and resume.
4505          */
4506         if (!intel_enable_rc6(dev))
4507                 return;
4508
4509         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4510
4511         ret = ironlake_setup_rc6(dev);
4512         if (ret)
4513                 return;
4514
4515         was_interruptible = dev_priv->mm.interruptible;
4516         dev_priv->mm.interruptible = false;
4517
4518         /*
4519          * GPU can automatically power down the render unit if given a page
4520          * to save state.
4521          */
4522         ret = intel_ring_begin(ring, 6);
4523         if (ret) {
4524                 ironlake_teardown_rc6(dev);
4525                 dev_priv->mm.interruptible = was_interruptible;
4526                 return;
4527         }
4528
4529         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4530         intel_ring_emit(ring, MI_SET_CONTEXT);
4531         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4532                         MI_MM_SPACE_GTT |
4533                         MI_SAVE_EXT_STATE_EN |
4534                         MI_RESTORE_EXT_STATE_EN |
4535                         MI_RESTORE_INHIBIT);
4536         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4537         intel_ring_emit(ring, MI_NOOP);
4538         intel_ring_emit(ring, MI_FLUSH);
4539         intel_ring_advance(ring);
4540
4541         /*
4542          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4543          * does an implicit flush, combined with MI_FLUSH above, it should be
4544          * safe to assume that renderctx is valid
4545          */
4546         ret = intel_ring_idle(ring);
4547         dev_priv->mm.interruptible = was_interruptible;
4548         if (ret) {
4549                 DRM_ERROR("failed to enable ironlake power savings\n");
4550                 ironlake_teardown_rc6(dev);
4551                 return;
4552         }
4553
4554         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4555         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4556
4557         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4558 }
4559
4560 static unsigned long intel_pxfreq(u32 vidfreq)
4561 {
4562         unsigned long freq;
4563         int div = (vidfreq & 0x3f0000) >> 16;
4564         int post = (vidfreq & 0x3000) >> 12;
4565         int pre = (vidfreq & 0x7);
4566
4567         if (!pre)
4568                 return 0;
4569
4570         freq = ((div * 133333) / ((1<<post) * pre));
4571
4572         return freq;
4573 }
4574
4575 static const struct cparams {
4576         u16 i;
4577         u16 t;
4578         u16 m;
4579         u16 c;
4580 } cparams[] = {
4581         { 1, 1333, 301, 28664 },
4582         { 1, 1066, 294, 24460 },
4583         { 1, 800, 294, 25192 },
4584         { 0, 1333, 276, 27605 },
4585         { 0, 1066, 276, 27605 },
4586         { 0, 800, 231, 23784 },
4587 };
4588
4589 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4590 {
4591         u64 total_count, diff, ret;
4592         u32 count1, count2, count3, m = 0, c = 0;
4593         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4594         int i;
4595
4596         assert_spin_locked(&mchdev_lock);
4597
4598         diff1 = now - dev_priv->ips.last_time1;
4599
4600         /* Prevent division-by-zero if we are asking too fast.
4601          * Also, we don't get interesting results if we are polling
4602          * faster than once in 10ms, so just return the saved value
4603          * in such cases.
4604          */
4605         if (diff1 <= 10)
4606                 return dev_priv->ips.chipset_power;
4607
4608         count1 = I915_READ(DMIEC);
4609         count2 = I915_READ(DDREC);
4610         count3 = I915_READ(CSIEC);
4611
4612         total_count = count1 + count2 + count3;
4613
4614         /* FIXME: handle per-counter overflow */
4615         if (total_count < dev_priv->ips.last_count1) {
4616                 diff = ~0UL - dev_priv->ips.last_count1;
4617                 diff += total_count;
4618         } else {
4619                 diff = total_count - dev_priv->ips.last_count1;
4620         }
4621
4622         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4623                 if (cparams[i].i == dev_priv->ips.c_m &&
4624                     cparams[i].t == dev_priv->ips.r_t) {
4625                         m = cparams[i].m;
4626                         c = cparams[i].c;
4627                         break;
4628                 }
4629         }
4630
4631         diff = div_u64(diff, diff1);
4632         ret = ((m * diff) + c);
4633         ret = div_u64(ret, 10);
4634
4635         dev_priv->ips.last_count1 = total_count;
4636         dev_priv->ips.last_time1 = now;
4637
4638         dev_priv->ips.chipset_power = ret;
4639
4640         return ret;
4641 }
4642
4643 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4644 {
4645         struct drm_device *dev = dev_priv->dev;
4646         unsigned long val;
4647
4648         if (INTEL_INFO(dev)->gen != 5)
4649                 return 0;
4650
4651         spin_lock_irq(&mchdev_lock);
4652
4653         val = __i915_chipset_val(dev_priv);
4654
4655         spin_unlock_irq(&mchdev_lock);
4656
4657         return val;
4658 }
4659
4660 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4661 {
4662         unsigned long m, x, b;
4663         u32 tsfs;
4664
4665         tsfs = I915_READ(TSFS);
4666
4667         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4668         x = I915_READ8(TR1);
4669
4670         b = tsfs & TSFS_INTR_MASK;
4671
4672         return ((m * x) / 127) - b;
4673 }
4674
4675 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4676 {
4677         struct drm_device *dev = dev_priv->dev;
4678         static const struct v_table {
4679                 u16 vd; /* in .1 mil */
4680                 u16 vm; /* in .1 mil */
4681         } v_table[] = {
4682                 { 0, 0, },
4683                 { 375, 0, },
4684                 { 500, 0, },
4685                 { 625, 0, },
4686                 { 750, 0, },
4687                 { 875, 0, },
4688                 { 1000, 0, },
4689                 { 1125, 0, },
4690                 { 4125, 3000, },
4691                 { 4125, 3000, },
4692                 { 4125, 3000, },
4693                 { 4125, 3000, },
4694                 { 4125, 3000, },
4695                 { 4125, 3000, },
4696                 { 4125, 3000, },
4697                 { 4125, 3000, },
4698                 { 4125, 3000, },
4699                 { 4125, 3000, },
4700                 { 4125, 3000, },
4701                 { 4125, 3000, },
4702                 { 4125, 3000, },
4703                 { 4125, 3000, },
4704                 { 4125, 3000, },
4705                 { 4125, 3000, },
4706                 { 4125, 3000, },
4707                 { 4125, 3000, },
4708                 { 4125, 3000, },
4709                 { 4125, 3000, },
4710                 { 4125, 3000, },
4711                 { 4125, 3000, },
4712                 { 4125, 3000, },
4713                 { 4125, 3000, },
4714                 { 4250, 3125, },
4715                 { 4375, 3250, },
4716                 { 4500, 3375, },
4717                 { 4625, 3500, },
4718                 { 4750, 3625, },
4719                 { 4875, 3750, },
4720                 { 5000, 3875, },
4721                 { 5125, 4000, },
4722                 { 5250, 4125, },
4723                 { 5375, 4250, },
4724                 { 5500, 4375, },
4725                 { 5625, 4500, },
4726                 { 5750, 4625, },
4727                 { 5875, 4750, },
4728                 { 6000, 4875, },
4729                 { 6125, 5000, },
4730                 { 6250, 5125, },
4731                 { 6375, 5250, },
4732                 { 6500, 5375, },
4733                 { 6625, 5500, },
4734                 { 6750, 5625, },
4735                 { 6875, 5750, },
4736                 { 7000, 5875, },
4737                 { 7125, 6000, },
4738                 { 7250, 6125, },
4739                 { 7375, 6250, },
4740                 { 7500, 6375, },
4741                 { 7625, 6500, },
4742                 { 7750, 6625, },
4743                 { 7875, 6750, },
4744                 { 8000, 6875, },
4745                 { 8125, 7000, },
4746                 { 8250, 7125, },
4747                 { 8375, 7250, },
4748                 { 8500, 7375, },
4749                 { 8625, 7500, },
4750                 { 8750, 7625, },
4751                 { 8875, 7750, },
4752                 { 9000, 7875, },
4753                 { 9125, 8000, },
4754                 { 9250, 8125, },
4755                 { 9375, 8250, },
4756                 { 9500, 8375, },
4757                 { 9625, 8500, },
4758                 { 9750, 8625, },
4759                 { 9875, 8750, },
4760                 { 10000, 8875, },
4761                 { 10125, 9000, },
4762                 { 10250, 9125, },
4763                 { 10375, 9250, },
4764                 { 10500, 9375, },
4765                 { 10625, 9500, },
4766                 { 10750, 9625, },
4767                 { 10875, 9750, },
4768                 { 11000, 9875, },
4769                 { 11125, 10000, },
4770                 { 11250, 10125, },
4771                 { 11375, 10250, },
4772                 { 11500, 10375, },
4773                 { 11625, 10500, },
4774                 { 11750, 10625, },
4775                 { 11875, 10750, },
4776                 { 12000, 10875, },
4777                 { 12125, 11000, },
4778                 { 12250, 11125, },
4779                 { 12375, 11250, },
4780                 { 12500, 11375, },
4781                 { 12625, 11500, },
4782                 { 12750, 11625, },
4783                 { 12875, 11750, },
4784                 { 13000, 11875, },
4785                 { 13125, 12000, },
4786                 { 13250, 12125, },
4787                 { 13375, 12250, },
4788                 { 13500, 12375, },
4789                 { 13625, 12500, },
4790                 { 13750, 12625, },
4791                 { 13875, 12750, },
4792                 { 14000, 12875, },
4793                 { 14125, 13000, },
4794                 { 14250, 13125, },
4795                 { 14375, 13250, },
4796                 { 14500, 13375, },
4797                 { 14625, 13500, },
4798                 { 14750, 13625, },
4799                 { 14875, 13750, },
4800                 { 15000, 13875, },
4801                 { 15125, 14000, },
4802                 { 15250, 14125, },
4803                 { 15375, 14250, },
4804                 { 15500, 14375, },
4805                 { 15625, 14500, },
4806                 { 15750, 14625, },
4807                 { 15875, 14750, },
4808                 { 16000, 14875, },
4809                 { 16125, 15000, },
4810         };
4811         if (INTEL_INFO(dev)->is_mobile)
4812                 return v_table[pxvid].vm;
4813         else
4814                 return v_table[pxvid].vd;
4815 }
4816
4817 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4818 {
4819         u64 now, diff, diffms;
4820         u32 count;
4821
4822         assert_spin_locked(&mchdev_lock);
4823
4824         now = ktime_get_raw_ns();
4825         diffms = now - dev_priv->ips.last_time2;
4826         do_div(diffms, NSEC_PER_MSEC);
4827
4828         /* Don't divide by 0 */
4829         if (!diffms)
4830                 return;
4831
4832         count = I915_READ(GFXEC);
4833
4834         if (count < dev_priv->ips.last_count2) {
4835                 diff = ~0UL - dev_priv->ips.last_count2;
4836                 diff += count;
4837         } else {
4838                 diff = count - dev_priv->ips.last_count2;
4839         }
4840
4841         dev_priv->ips.last_count2 = count;
4842         dev_priv->ips.last_time2 = now;
4843
4844         /* More magic constants... */
4845         diff = diff * 1181;
4846         diff = div_u64(diff, diffms * 10);
4847         dev_priv->ips.gfx_power = diff;
4848 }
4849
4850 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4851 {
4852         struct drm_device *dev = dev_priv->dev;
4853
4854         if (INTEL_INFO(dev)->gen != 5)
4855                 return;
4856
4857         spin_lock_irq(&mchdev_lock);
4858
4859         __i915_update_gfx_val(dev_priv);
4860
4861         spin_unlock_irq(&mchdev_lock);
4862 }
4863
4864 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4865 {
4866         unsigned long t, corr, state1, corr2, state2;
4867         u32 pxvid, ext_v;
4868
4869         assert_spin_locked(&mchdev_lock);
4870
4871         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4872         pxvid = (pxvid >> 24) & 0x7f;
4873         ext_v = pvid_to_extvid(dev_priv, pxvid);
4874
4875         state1 = ext_v;
4876
4877         t = i915_mch_val(dev_priv);
4878
4879         /* Revel in the empirically derived constants */
4880
4881         /* Correction factor in 1/100000 units */
4882         if (t > 80)
4883                 corr = ((t * 2349) + 135940);
4884         else if (t >= 50)
4885                 corr = ((t * 964) + 29317);
4886         else /* < 50 */
4887                 corr = ((t * 301) + 1004);
4888
4889         corr = corr * ((150142 * state1) / 10000 - 78642);
4890         corr /= 100000;
4891         corr2 = (corr * dev_priv->ips.corr);
4892
4893         state2 = (corr2 * state1) / 10000;
4894         state2 /= 100; /* convert to mW */
4895
4896         __i915_update_gfx_val(dev_priv);
4897
4898         return dev_priv->ips.gfx_power + state2;
4899 }
4900
4901 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4902 {
4903         struct drm_device *dev = dev_priv->dev;
4904         unsigned long val;
4905
4906         if (INTEL_INFO(dev)->gen != 5)
4907                 return 0;
4908
4909         spin_lock_irq(&mchdev_lock);
4910
4911         val = __i915_gfx_val(dev_priv);
4912
4913         spin_unlock_irq(&mchdev_lock);
4914
4915         return val;
4916 }
4917
4918 /**
4919  * i915_read_mch_val - return value for IPS use
4920  *
4921  * Calculate and return a value for the IPS driver to use when deciding whether
4922  * we have thermal and power headroom to increase CPU or GPU power budget.
4923  */
4924 unsigned long i915_read_mch_val(void)
4925 {
4926         struct drm_i915_private *dev_priv;
4927         unsigned long chipset_val, graphics_val, ret = 0;
4928
4929         spin_lock_irq(&mchdev_lock);
4930         if (!i915_mch_dev)
4931                 goto out_unlock;
4932         dev_priv = i915_mch_dev;
4933
4934         chipset_val = __i915_chipset_val(dev_priv);
4935         graphics_val = __i915_gfx_val(dev_priv);
4936
4937         ret = chipset_val + graphics_val;
4938
4939 out_unlock:
4940         spin_unlock_irq(&mchdev_lock);
4941
4942         return ret;
4943 }
4944 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4945
4946 /**
4947  * i915_gpu_raise - raise GPU frequency limit
4948  *
4949  * Raise the limit; IPS indicates we have thermal headroom.
4950  */
4951 bool i915_gpu_raise(void)
4952 {
4953         struct drm_i915_private *dev_priv;
4954         bool ret = true;
4955
4956         spin_lock_irq(&mchdev_lock);
4957         if (!i915_mch_dev) {
4958                 ret = false;
4959                 goto out_unlock;
4960         }
4961         dev_priv = i915_mch_dev;
4962
4963         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4964                 dev_priv->ips.max_delay--;
4965
4966 out_unlock:
4967         spin_unlock_irq(&mchdev_lock);
4968
4969         return ret;
4970 }
4971 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4972
4973 /**
4974  * i915_gpu_lower - lower GPU frequency limit
4975  *
4976  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4977  * frequency maximum.
4978  */
4979 bool i915_gpu_lower(void)
4980 {
4981         struct drm_i915_private *dev_priv;
4982         bool ret = true;
4983
4984         spin_lock_irq(&mchdev_lock);
4985         if (!i915_mch_dev) {
4986                 ret = false;
4987                 goto out_unlock;
4988         }
4989         dev_priv = i915_mch_dev;
4990
4991         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4992                 dev_priv->ips.max_delay++;
4993
4994 out_unlock:
4995         spin_unlock_irq(&mchdev_lock);
4996
4997         return ret;
4998 }
4999 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5000
5001 /**
5002  * i915_gpu_busy - indicate GPU business to IPS
5003  *
5004  * Tell the IPS driver whether or not the GPU is busy.
5005  */
5006 bool i915_gpu_busy(void)
5007 {
5008         struct drm_i915_private *dev_priv;
5009         struct intel_engine_cs *ring;
5010         bool ret = false;
5011         int i;
5012
5013         spin_lock_irq(&mchdev_lock);
5014         if (!i915_mch_dev)
5015                 goto out_unlock;
5016         dev_priv = i915_mch_dev;
5017
5018         for_each_ring(ring, dev_priv, i)
5019                 ret |= !list_empty(&ring->request_list);
5020
5021 out_unlock:
5022         spin_unlock_irq(&mchdev_lock);
5023
5024         return ret;
5025 }
5026 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5027
5028 /**
5029  * i915_gpu_turbo_disable - disable graphics turbo
5030  *
5031  * Disable graphics turbo by resetting the max frequency and setting the
5032  * current frequency to the default.
5033  */
5034 bool i915_gpu_turbo_disable(void)
5035 {
5036         struct drm_i915_private *dev_priv;
5037         bool ret = true;
5038
5039         spin_lock_irq(&mchdev_lock);
5040         if (!i915_mch_dev) {
5041                 ret = false;
5042                 goto out_unlock;
5043         }
5044         dev_priv = i915_mch_dev;
5045
5046         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5047
5048         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5049                 ret = false;
5050
5051 out_unlock:
5052         spin_unlock_irq(&mchdev_lock);
5053
5054         return ret;
5055 }
5056 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5057
5058 /**
5059  * Tells the intel_ips driver that the i915 driver is now loaded, if
5060  * IPS got loaded first.
5061  *
5062  * This awkward dance is so that neither module has to depend on the
5063  * other in order for IPS to do the appropriate communication of
5064  * GPU turbo limits to i915.
5065  */
5066 static void
5067 ips_ping_for_i915_load(void)
5068 {
5069         void (*link)(void);
5070
5071         link = symbol_get(ips_link_to_i915_driver);
5072         if (link) {
5073                 link();
5074                 symbol_put(ips_link_to_i915_driver);
5075         }
5076 }
5077
5078 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5079 {
5080         /* We only register the i915 ips part with intel-ips once everything is
5081          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5082         spin_lock_irq(&mchdev_lock);
5083         i915_mch_dev = dev_priv;
5084         spin_unlock_irq(&mchdev_lock);
5085
5086         ips_ping_for_i915_load();
5087 }
5088
5089 void intel_gpu_ips_teardown(void)
5090 {
5091         spin_lock_irq(&mchdev_lock);
5092         i915_mch_dev = NULL;
5093         spin_unlock_irq(&mchdev_lock);
5094 }
5095
5096 static void intel_init_emon(struct drm_device *dev)
5097 {
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         u32 lcfuse;
5100         u8 pxw[16];
5101         int i;
5102
5103         /* Disable to program */
5104         I915_WRITE(ECR, 0);
5105         POSTING_READ(ECR);
5106
5107         /* Program energy weights for various events */
5108         I915_WRITE(SDEW, 0x15040d00);
5109         I915_WRITE(CSIEW0, 0x007f0000);
5110         I915_WRITE(CSIEW1, 0x1e220004);
5111         I915_WRITE(CSIEW2, 0x04000004);
5112
5113         for (i = 0; i < 5; i++)
5114                 I915_WRITE(PEW + (i * 4), 0);
5115         for (i = 0; i < 3; i++)
5116                 I915_WRITE(DEW + (i * 4), 0);
5117
5118         /* Program P-state weights to account for frequency power adjustment */
5119         for (i = 0; i < 16; i++) {
5120                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5121                 unsigned long freq = intel_pxfreq(pxvidfreq);
5122                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5123                         PXVFREQ_PX_SHIFT;
5124                 unsigned long val;
5125
5126                 val = vid * vid;
5127                 val *= (freq / 1000);
5128                 val *= 255;
5129                 val /= (127*127*900);
5130                 if (val > 0xff)
5131                         DRM_ERROR("bad pxval: %ld\n", val);
5132                 pxw[i] = val;
5133         }
5134         /* Render standby states get 0 weight */
5135         pxw[14] = 0;
5136         pxw[15] = 0;
5137
5138         for (i = 0; i < 4; i++) {
5139                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5140                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5141                 I915_WRITE(PXW + (i * 4), val);
5142         }
5143
5144         /* Adjust magic regs to magic values (more experimental results) */
5145         I915_WRITE(OGW0, 0);
5146         I915_WRITE(OGW1, 0);
5147         I915_WRITE(EG0, 0x00007f00);
5148         I915_WRITE(EG1, 0x0000000e);
5149         I915_WRITE(EG2, 0x000e0000);
5150         I915_WRITE(EG3, 0x68000300);
5151         I915_WRITE(EG4, 0x42000000);
5152         I915_WRITE(EG5, 0x00140031);
5153         I915_WRITE(EG6, 0);
5154         I915_WRITE(EG7, 0);
5155
5156         for (i = 0; i < 8; i++)
5157                 I915_WRITE(PXWL + (i * 4), 0);
5158
5159         /* Enable PMON + select events */
5160         I915_WRITE(ECR, 0x80000019);
5161
5162         lcfuse = I915_READ(LCFUSE02);
5163
5164         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5165 }
5166
5167 void intel_init_gt_powersave(struct drm_device *dev)
5168 {
5169         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5170
5171         if (IS_CHERRYVIEW(dev))
5172                 cherryview_init_gt_powersave(dev);
5173         else if (IS_VALLEYVIEW(dev))
5174                 valleyview_init_gt_powersave(dev);
5175 }
5176
5177 void intel_cleanup_gt_powersave(struct drm_device *dev)
5178 {
5179         if (IS_CHERRYVIEW(dev))
5180                 return;
5181         else if (IS_VALLEYVIEW(dev))
5182                 valleyview_cleanup_gt_powersave(dev);
5183 }
5184
5185 /**
5186  * intel_suspend_gt_powersave - suspend PM work and helper threads
5187  * @dev: drm device
5188  *
5189  * We don't want to disable RC6 or other features here, we just want
5190  * to make sure any work we've queued has finished and won't bother
5191  * us while we're suspended.
5192  */
5193 void intel_suspend_gt_powersave(struct drm_device *dev)
5194 {
5195         struct drm_i915_private *dev_priv = dev->dev_private;
5196
5197         /* Interrupts should be disabled already to avoid re-arming. */
5198         WARN_ON(intel_irqs_enabled(dev_priv));
5199
5200         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5201
5202         cancel_work_sync(&dev_priv->rps.work);
5203
5204         /* Force GPU to min freq during suspend */
5205         gen6_rps_idle(dev_priv);
5206 }
5207
5208 void intel_disable_gt_powersave(struct drm_device *dev)
5209 {
5210         struct drm_i915_private *dev_priv = dev->dev_private;
5211
5212         /* Interrupts should be disabled already to avoid re-arming. */
5213         WARN_ON(intel_irqs_enabled(dev_priv));
5214
5215         if (IS_IRONLAKE_M(dev)) {
5216                 ironlake_disable_drps(dev);
5217                 ironlake_disable_rc6(dev);
5218         } else if (INTEL_INFO(dev)->gen >= 6) {
5219                 intel_suspend_gt_powersave(dev);
5220
5221                 mutex_lock(&dev_priv->rps.hw_lock);
5222                 if (IS_CHERRYVIEW(dev))
5223                         cherryview_disable_rps(dev);
5224                 else if (IS_VALLEYVIEW(dev))
5225                         valleyview_disable_rps(dev);
5226                 else
5227                         gen6_disable_rps(dev);
5228                 dev_priv->rps.enabled = false;
5229                 mutex_unlock(&dev_priv->rps.hw_lock);
5230         }
5231 }
5232
5233 static void intel_gen6_powersave_work(struct work_struct *work)
5234 {
5235         struct drm_i915_private *dev_priv =
5236                 container_of(work, struct drm_i915_private,
5237                              rps.delayed_resume_work.work);
5238         struct drm_device *dev = dev_priv->dev;
5239
5240         mutex_lock(&dev_priv->rps.hw_lock);
5241
5242         if (IS_CHERRYVIEW(dev)) {
5243                 cherryview_enable_rps(dev);
5244         } else if (IS_VALLEYVIEW(dev)) {
5245                 valleyview_enable_rps(dev);
5246         } else if (IS_BROADWELL(dev)) {
5247                 gen8_enable_rps(dev);
5248                 __gen6_update_ring_freq(dev);
5249         } else {
5250                 gen6_enable_rps(dev);
5251                 __gen6_update_ring_freq(dev);
5252         }
5253         dev_priv->rps.enabled = true;
5254         mutex_unlock(&dev_priv->rps.hw_lock);
5255
5256         intel_runtime_pm_put(dev_priv);
5257 }
5258
5259 void intel_enable_gt_powersave(struct drm_device *dev)
5260 {
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263         if (IS_IRONLAKE_M(dev)) {
5264                 mutex_lock(&dev->struct_mutex);
5265                 ironlake_enable_drps(dev);
5266                 ironlake_enable_rc6(dev);
5267                 intel_init_emon(dev);
5268                 mutex_unlock(&dev->struct_mutex);
5269         } else if (INTEL_INFO(dev)->gen >= 6) {
5270                 /*
5271                  * PCU communication is slow and this doesn't need to be
5272                  * done at any specific time, so do this out of our fast path
5273                  * to make resume and init faster.
5274                  *
5275                  * We depend on the HW RC6 power context save/restore
5276                  * mechanism when entering D3 through runtime PM suspend. So
5277                  * disable RPM until RPS/RC6 is properly setup. We can only
5278                  * get here via the driver load/system resume/runtime resume
5279                  * paths, so the _noresume version is enough (and in case of
5280                  * runtime resume it's necessary).
5281                  */
5282                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5283                                            round_jiffies_up_relative(HZ)))
5284                         intel_runtime_pm_get_noresume(dev_priv);
5285         }
5286 }
5287
5288 void intel_reset_gt_powersave(struct drm_device *dev)
5289 {
5290         struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292         dev_priv->rps.enabled = false;
5293         intel_enable_gt_powersave(dev);
5294 }
5295
5296 static void ibx_init_clock_gating(struct drm_device *dev)
5297 {
5298         struct drm_i915_private *dev_priv = dev->dev_private;
5299
5300         /*
5301          * On Ibex Peak and Cougar Point, we need to disable clock
5302          * gating for the panel power sequencer or it will fail to
5303          * start up when no ports are active.
5304          */
5305         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5306 }
5307
5308 static void g4x_disable_trickle_feed(struct drm_device *dev)
5309 {
5310         struct drm_i915_private *dev_priv = dev->dev_private;
5311         int pipe;
5312
5313         for_each_pipe(dev_priv, pipe) {
5314                 I915_WRITE(DSPCNTR(pipe),
5315                            I915_READ(DSPCNTR(pipe)) |
5316                            DISPPLANE_TRICKLE_FEED_DISABLE);
5317                 intel_flush_primary_plane(dev_priv, pipe);
5318         }
5319 }
5320
5321 static void ilk_init_lp_watermarks(struct drm_device *dev)
5322 {
5323         struct drm_i915_private *dev_priv = dev->dev_private;
5324
5325         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5326         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5327         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5328
5329         /*
5330          * Don't touch WM1S_LP_EN here.
5331          * Doing so could cause underruns.
5332          */
5333 }
5334
5335 static void ironlake_init_clock_gating(struct drm_device *dev)
5336 {
5337         struct drm_i915_private *dev_priv = dev->dev_private;
5338         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5339
5340         /*
5341          * Required for FBC
5342          * WaFbcDisableDpfcClockGating:ilk
5343          */
5344         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5345                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5346                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5347
5348         I915_WRITE(PCH_3DCGDIS0,
5349                    MARIUNIT_CLOCK_GATE_DISABLE |
5350                    SVSMUNIT_CLOCK_GATE_DISABLE);
5351         I915_WRITE(PCH_3DCGDIS1,
5352                    VFMUNIT_CLOCK_GATE_DISABLE);
5353
5354         /*
5355          * According to the spec the following bits should be set in
5356          * order to enable memory self-refresh
5357          * The bit 22/21 of 0x42004
5358          * The bit 5 of 0x42020
5359          * The bit 15 of 0x45000
5360          */
5361         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5362                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5363                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5364         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5365         I915_WRITE(DISP_ARB_CTL,
5366                    (I915_READ(DISP_ARB_CTL) |
5367                     DISP_FBC_WM_DIS));
5368
5369         ilk_init_lp_watermarks(dev);
5370
5371         /*
5372          * Based on the document from hardware guys the following bits
5373          * should be set unconditionally in order to enable FBC.
5374          * The bit 22 of 0x42000
5375          * The bit 22 of 0x42004
5376          * The bit 7,8,9 of 0x42020.
5377          */
5378         if (IS_IRONLAKE_M(dev)) {
5379                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5380                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5381                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5382                            ILK_FBCQ_DIS);
5383                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5384                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5385                            ILK_DPARB_GATE);
5386         }
5387
5388         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5389
5390         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5391                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5392                    ILK_ELPIN_409_SELECT);
5393         I915_WRITE(_3D_CHICKEN2,
5394                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5395                    _3D_CHICKEN2_WM_READ_PIPELINED);
5396
5397         /* WaDisableRenderCachePipelinedFlush:ilk */
5398         I915_WRITE(CACHE_MODE_0,
5399                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5400
5401         /* WaDisable_RenderCache_OperationalFlush:ilk */
5402         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5403
5404         g4x_disable_trickle_feed(dev);
5405
5406         ibx_init_clock_gating(dev);
5407 }
5408
5409 static void cpt_init_clock_gating(struct drm_device *dev)
5410 {
5411         struct drm_i915_private *dev_priv = dev->dev_private;
5412         int pipe;
5413         uint32_t val;
5414
5415         /*
5416          * On Ibex Peak and Cougar Point, we need to disable clock
5417          * gating for the panel power sequencer or it will fail to
5418          * start up when no ports are active.
5419          */
5420         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5421                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5422                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5423         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5424                    DPLS_EDP_PPS_FIX_DIS);
5425         /* The below fixes the weird display corruption, a few pixels shifted
5426          * downward, on (only) LVDS of some HP laptops with IVY.
5427          */
5428         for_each_pipe(dev_priv, pipe) {
5429                 val = I915_READ(TRANS_CHICKEN2(pipe));
5430                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5431                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5432                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5433                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5434                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5435                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5436                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5437                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5438         }
5439         /* WADP0ClockGatingDisable */
5440         for_each_pipe(dev_priv, pipe) {
5441                 I915_WRITE(TRANS_CHICKEN1(pipe),
5442                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5443         }
5444 }
5445
5446 static void gen6_check_mch_setup(struct drm_device *dev)
5447 {
5448         struct drm_i915_private *dev_priv = dev->dev_private;
5449         uint32_t tmp;
5450
5451         tmp = I915_READ(MCH_SSKPD);
5452         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5453                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5454                               tmp);
5455 }
5456
5457 static void gen6_init_clock_gating(struct drm_device *dev)
5458 {
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5461
5462         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5463
5464         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5465                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5466                    ILK_ELPIN_409_SELECT);
5467
5468         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5469         I915_WRITE(_3D_CHICKEN,
5470                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5471
5472         /* WaDisable_RenderCache_OperationalFlush:snb */
5473         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5474
5475         /*
5476          * BSpec recoomends 8x4 when MSAA is used,
5477          * however in practice 16x4 seems fastest.
5478          *
5479          * Note that PS/WM thread counts depend on the WIZ hashing
5480          * disable bit, which we don't touch here, but it's good
5481          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5482          */
5483         I915_WRITE(GEN6_GT_MODE,
5484                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5485
5486         ilk_init_lp_watermarks(dev);
5487
5488         I915_WRITE(CACHE_MODE_0,
5489                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5490
5491         I915_WRITE(GEN6_UCGCTL1,
5492                    I915_READ(GEN6_UCGCTL1) |
5493                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5494                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5495
5496         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5497          * gating disable must be set.  Failure to set it results in
5498          * flickering pixels due to Z write ordering failures after
5499          * some amount of runtime in the Mesa "fire" demo, and Unigine
5500          * Sanctuary and Tropics, and apparently anything else with
5501          * alpha test or pixel discard.
5502          *
5503          * According to the spec, bit 11 (RCCUNIT) must also be set,
5504          * but we didn't debug actual testcases to find it out.
5505          *
5506          * WaDisableRCCUnitClockGating:snb
5507          * WaDisableRCPBUnitClockGating:snb
5508          */
5509         I915_WRITE(GEN6_UCGCTL2,
5510                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5511                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5512
5513         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5514         I915_WRITE(_3D_CHICKEN3,
5515                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5516
5517         /*
5518          * Bspec says:
5519          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5520          * 3DSTATE_SF number of SF output attributes is more than 16."
5521          */
5522         I915_WRITE(_3D_CHICKEN3,
5523                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5524
5525         /*
5526          * According to the spec the following bits should be
5527          * set in order to enable memory self-refresh and fbc:
5528          * The bit21 and bit22 of 0x42000
5529          * The bit21 and bit22 of 0x42004
5530          * The bit5 and bit7 of 0x42020
5531          * The bit14 of 0x70180
5532          * The bit14 of 0x71180
5533          *
5534          * WaFbcAsynchFlipDisableFbcQueue:snb
5535          */
5536         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5537                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5538                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5539         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5540                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5541                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5542         I915_WRITE(ILK_DSPCLK_GATE_D,
5543                    I915_READ(ILK_DSPCLK_GATE_D) |
5544                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5545                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5546
5547         g4x_disable_trickle_feed(dev);
5548
5549         cpt_init_clock_gating(dev);
5550
5551         gen6_check_mch_setup(dev);
5552 }
5553
5554 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5555 {
5556         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5557
5558         /*
5559          * WaVSThreadDispatchOverride:ivb,vlv
5560          *
5561          * This actually overrides the dispatch
5562          * mode for all thread types.
5563          */
5564         reg &= ~GEN7_FF_SCHED_MASK;
5565         reg |= GEN7_FF_TS_SCHED_HW;
5566         reg |= GEN7_FF_VS_SCHED_HW;
5567         reg |= GEN7_FF_DS_SCHED_HW;
5568
5569         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5570 }
5571
5572 static void lpt_init_clock_gating(struct drm_device *dev)
5573 {
5574         struct drm_i915_private *dev_priv = dev->dev_private;
5575
5576         /*
5577          * TODO: this bit should only be enabled when really needed, then
5578          * disabled when not needed anymore in order to save power.
5579          */
5580         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5581                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5582                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5583                            PCH_LP_PARTITION_LEVEL_DISABLE);
5584
5585         /* WADPOClockGatingDisable:hsw */
5586         I915_WRITE(_TRANSA_CHICKEN1,
5587                    I915_READ(_TRANSA_CHICKEN1) |
5588                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5589 }
5590
5591 static void lpt_suspend_hw(struct drm_device *dev)
5592 {
5593         struct drm_i915_private *dev_priv = dev->dev_private;
5594
5595         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5596                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5597
5598                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5599                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5600         }
5601 }
5602
5603 static void broadwell_init_clock_gating(struct drm_device *dev)
5604 {
5605         struct drm_i915_private *dev_priv = dev->dev_private;
5606         enum pipe pipe;
5607
5608         I915_WRITE(WM3_LP_ILK, 0);
5609         I915_WRITE(WM2_LP_ILK, 0);
5610         I915_WRITE(WM1_LP_ILK, 0);
5611
5612         /* FIXME(BDW): Check all the w/a, some might only apply to
5613          * pre-production hw. */
5614
5615
5616         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5617
5618         I915_WRITE(_3D_CHICKEN3,
5619                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5620
5621
5622         /* WaSwitchSolVfFArbitrationPriority:bdw */
5623         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5624
5625         /* WaPsrDPAMaskVBlankInSRD:bdw */
5626         I915_WRITE(CHICKEN_PAR1_1,
5627                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5628
5629         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5630         for_each_pipe(dev_priv, pipe) {
5631                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5632                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5633                            BDW_DPRS_MASK_VBLANK_SRD);
5634         }
5635
5636         /* WaVSRefCountFullforceMissDisable:bdw */
5637         /* WaDSRefCountFullforceMissDisable:bdw */
5638         I915_WRITE(GEN7_FF_THREAD_MODE,
5639                    I915_READ(GEN7_FF_THREAD_MODE) &
5640                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5641
5642         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5643                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5644
5645         /* WaDisableSDEUnitClockGating:bdw */
5646         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5647                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5648
5649         lpt_init_clock_gating(dev);
5650 }
5651
5652 static void haswell_init_clock_gating(struct drm_device *dev)
5653 {
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655
5656         ilk_init_lp_watermarks(dev);
5657
5658         /* L3 caching of data atomics doesn't work -- disable it. */
5659         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5660         I915_WRITE(HSW_ROW_CHICKEN3,
5661                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5662
5663         /* This is required by WaCatErrorRejectionIssue:hsw */
5664         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5665                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5666                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5667
5668         /* WaVSRefCountFullforceMissDisable:hsw */
5669         I915_WRITE(GEN7_FF_THREAD_MODE,
5670                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5671
5672         /* WaDisable_RenderCache_OperationalFlush:hsw */
5673         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5674
5675         /* enable HiZ Raw Stall Optimization */
5676         I915_WRITE(CACHE_MODE_0_GEN7,
5677                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5678
5679         /* WaDisable4x2SubspanOptimization:hsw */
5680         I915_WRITE(CACHE_MODE_1,
5681                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5682
5683         /*
5684          * BSpec recommends 8x4 when MSAA is used,
5685          * however in practice 16x4 seems fastest.
5686          *
5687          * Note that PS/WM thread counts depend on the WIZ hashing
5688          * disable bit, which we don't touch here, but it's good
5689          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5690          */
5691         I915_WRITE(GEN7_GT_MODE,
5692                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5693
5694         /* WaSwitchSolVfFArbitrationPriority:hsw */
5695         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5696
5697         /* WaRsPkgCStateDisplayPMReq:hsw */
5698         I915_WRITE(CHICKEN_PAR1_1,
5699                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5700
5701         lpt_init_clock_gating(dev);
5702 }
5703
5704 static void ivybridge_init_clock_gating(struct drm_device *dev)
5705 {
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         uint32_t snpcr;
5708
5709         ilk_init_lp_watermarks(dev);
5710
5711         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5712
5713         /* WaDisableEarlyCull:ivb */
5714         I915_WRITE(_3D_CHICKEN3,
5715                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5716
5717         /* WaDisableBackToBackFlipFix:ivb */
5718         I915_WRITE(IVB_CHICKEN3,
5719                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5720                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5721
5722         /* WaDisablePSDDualDispatchEnable:ivb */
5723         if (IS_IVB_GT1(dev))
5724                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5725                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5726
5727         /* WaDisable_RenderCache_OperationalFlush:ivb */
5728         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5729
5730         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5731         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5732                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5733
5734         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5735         I915_WRITE(GEN7_L3CNTLREG1,
5736                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5737         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5738                    GEN7_WA_L3_CHICKEN_MODE);
5739         if (IS_IVB_GT1(dev))
5740                 I915_WRITE(GEN7_ROW_CHICKEN2,
5741                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5742         else {
5743                 /* must write both registers */
5744                 I915_WRITE(GEN7_ROW_CHICKEN2,
5745                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5746                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5747                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5748         }
5749
5750         /* WaForceL3Serialization:ivb */
5751         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5752                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5753
5754         /*
5755          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5756          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5757          */
5758         I915_WRITE(GEN6_UCGCTL2,
5759                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5760
5761         /* This is required by WaCatErrorRejectionIssue:ivb */
5762         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5763                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5764                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5765
5766         g4x_disable_trickle_feed(dev);
5767
5768         gen7_setup_fixed_func_scheduler(dev_priv);
5769
5770         if (0) { /* causes HiZ corruption on ivb:gt1 */
5771                 /* enable HiZ Raw Stall Optimization */
5772                 I915_WRITE(CACHE_MODE_0_GEN7,
5773                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5774         }
5775
5776         /* WaDisable4x2SubspanOptimization:ivb */
5777         I915_WRITE(CACHE_MODE_1,
5778                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5779
5780         /*
5781          * BSpec recommends 8x4 when MSAA is used,
5782          * however in practice 16x4 seems fastest.
5783          *
5784          * Note that PS/WM thread counts depend on the WIZ hashing
5785          * disable bit, which we don't touch here, but it's good
5786          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5787          */
5788         I915_WRITE(GEN7_GT_MODE,
5789                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5790
5791         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5792         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5793         snpcr |= GEN6_MBC_SNPCR_MED;
5794         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5795
5796         if (!HAS_PCH_NOP(dev))
5797                 cpt_init_clock_gating(dev);
5798
5799         gen6_check_mch_setup(dev);
5800 }
5801
5802 static void valleyview_init_clock_gating(struct drm_device *dev)
5803 {
5804         struct drm_i915_private *dev_priv = dev->dev_private;
5805
5806         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5807
5808         /* WaDisableEarlyCull:vlv */
5809         I915_WRITE(_3D_CHICKEN3,
5810                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5811
5812         /* WaDisableBackToBackFlipFix:vlv */
5813         I915_WRITE(IVB_CHICKEN3,
5814                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5815                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5816
5817         /* WaPsdDispatchEnable:vlv */
5818         /* WaDisablePSDDualDispatchEnable:vlv */
5819         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5820                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5821                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5822
5823         /* WaDisable_RenderCache_OperationalFlush:vlv */
5824         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5825
5826         /* WaForceL3Serialization:vlv */
5827         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5828                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5829
5830         /* WaDisableDopClockGating:vlv */
5831         I915_WRITE(GEN7_ROW_CHICKEN2,
5832                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5833
5834         /* This is required by WaCatErrorRejectionIssue:vlv */
5835         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5836                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5837                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5838
5839         gen7_setup_fixed_func_scheduler(dev_priv);
5840
5841         /*
5842          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5843          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5844          */
5845         I915_WRITE(GEN6_UCGCTL2,
5846                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5847
5848         /* WaDisableL3Bank2xClockGate:vlv
5849          * Disabling L3 clock gating- MMIO 940c[25] = 1
5850          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5851         I915_WRITE(GEN7_UCGCTL4,
5852                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5853
5854         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5855
5856         /*
5857          * BSpec says this must be set, even though
5858          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5859          */
5860         I915_WRITE(CACHE_MODE_1,
5861                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5862
5863         /*
5864          * WaIncreaseL3CreditsForVLVB0:vlv
5865          * This is the hardware default actually.
5866          */
5867         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5868
5869         /*
5870          * WaDisableVLVClockGating_VBIIssue:vlv
5871          * Disable clock gating on th GCFG unit to prevent a delay
5872          * in the reporting of vblank events.
5873          */
5874         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5875 }
5876
5877 static void cherryview_init_clock_gating(struct drm_device *dev)
5878 {
5879         struct drm_i915_private *dev_priv = dev->dev_private;
5880
5881         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5882
5883         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5884
5885         /* WaVSRefCountFullforceMissDisable:chv */
5886         /* WaDSRefCountFullforceMissDisable:chv */
5887         I915_WRITE(GEN7_FF_THREAD_MODE,
5888                    I915_READ(GEN7_FF_THREAD_MODE) &
5889                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5890
5891         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5892         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5893                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5894
5895         /* WaDisableCSUnitClockGating:chv */
5896         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5897                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5898
5899         /* WaDisableSDEUnitClockGating:chv */
5900         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5901                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5902
5903         /* WaDisableGunitClockGating:chv (pre-production hw) */
5904         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5905                    GINT_DIS);
5906
5907         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5908         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5909                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5910
5911         /* WaDisableDopClockGating:chv (pre-production hw) */
5912         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5913                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5914 }
5915
5916 static void g4x_init_clock_gating(struct drm_device *dev)
5917 {
5918         struct drm_i915_private *dev_priv = dev->dev_private;
5919         uint32_t dspclk_gate;
5920
5921         I915_WRITE(RENCLK_GATE_D1, 0);
5922         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5923                    GS_UNIT_CLOCK_GATE_DISABLE |
5924                    CL_UNIT_CLOCK_GATE_DISABLE);
5925         I915_WRITE(RAMCLK_GATE_D, 0);
5926         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5927                 OVRUNIT_CLOCK_GATE_DISABLE |
5928                 OVCUNIT_CLOCK_GATE_DISABLE;
5929         if (IS_GM45(dev))
5930                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5931         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5932
5933         /* WaDisableRenderCachePipelinedFlush */
5934         I915_WRITE(CACHE_MODE_0,
5935                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5936
5937         /* WaDisable_RenderCache_OperationalFlush:g4x */
5938         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5939
5940         g4x_disable_trickle_feed(dev);
5941 }
5942
5943 static void crestline_init_clock_gating(struct drm_device *dev)
5944 {
5945         struct drm_i915_private *dev_priv = dev->dev_private;
5946
5947         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5948         I915_WRITE(RENCLK_GATE_D2, 0);
5949         I915_WRITE(DSPCLK_GATE_D, 0);
5950         I915_WRITE(RAMCLK_GATE_D, 0);
5951         I915_WRITE16(DEUC, 0);
5952         I915_WRITE(MI_ARB_STATE,
5953                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5954
5955         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5956         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5957 }
5958
5959 static void broadwater_init_clock_gating(struct drm_device *dev)
5960 {
5961         struct drm_i915_private *dev_priv = dev->dev_private;
5962
5963         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5964                    I965_RCC_CLOCK_GATE_DISABLE |
5965                    I965_RCPB_CLOCK_GATE_DISABLE |
5966                    I965_ISC_CLOCK_GATE_DISABLE |
5967                    I965_FBC_CLOCK_GATE_DISABLE);
5968         I915_WRITE(RENCLK_GATE_D2, 0);
5969         I915_WRITE(MI_ARB_STATE,
5970                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5971
5972         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5973         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5974 }
5975
5976 static void gen3_init_clock_gating(struct drm_device *dev)
5977 {
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         u32 dstate = I915_READ(D_STATE);
5980
5981         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5982                 DSTATE_DOT_CLOCK_GATING;
5983         I915_WRITE(D_STATE, dstate);
5984
5985         if (IS_PINEVIEW(dev))
5986                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5987
5988         /* IIR "flip pending" means done if this bit is set */
5989         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5990
5991         /* interrupts should cause a wake up from C3 */
5992         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5993
5994         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5995         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5996
5997         I915_WRITE(MI_ARB_STATE,
5998                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5999 }
6000
6001 static void i85x_init_clock_gating(struct drm_device *dev)
6002 {
6003         struct drm_i915_private *dev_priv = dev->dev_private;
6004
6005         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6006
6007         /* interrupts should cause a wake up from C3 */
6008         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6009                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6010
6011         I915_WRITE(MEM_MODE,
6012                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6013 }
6014
6015 static void i830_init_clock_gating(struct drm_device *dev)
6016 {
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018
6019         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6020
6021         I915_WRITE(MEM_MODE,
6022                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6023                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6024 }
6025
6026 void intel_init_clock_gating(struct drm_device *dev)
6027 {
6028         struct drm_i915_private *dev_priv = dev->dev_private;
6029
6030         dev_priv->display.init_clock_gating(dev);
6031 }
6032
6033 void intel_suspend_hw(struct drm_device *dev)
6034 {
6035         if (HAS_PCH_LPT(dev))
6036                 lpt_suspend_hw(dev);
6037 }
6038
6039 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
6040         for (i = 0;                                                     \
6041              i < (power_domains)->power_well_count &&                   \
6042                  ((power_well) = &(power_domains)->power_wells[i]);     \
6043              i++)                                                       \
6044                 if ((power_well)->domains & (domain_mask))
6045
6046 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6047         for (i = (power_domains)->power_well_count - 1;                  \
6048              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6049              i--)                                                        \
6050                 if ((power_well)->domains & (domain_mask))
6051
6052 /**
6053  * We should only use the power well if we explicitly asked the hardware to
6054  * enable it, so check if it's enabled and also check if we've requested it to
6055  * be enabled.
6056  */
6057 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6058                                    struct i915_power_well *power_well)
6059 {
6060         return I915_READ(HSW_PWR_WELL_DRIVER) ==
6061                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6062 }
6063
6064 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6065                                           enum intel_display_power_domain domain)
6066 {
6067         struct i915_power_domains *power_domains;
6068         struct i915_power_well *power_well;
6069         bool is_enabled;
6070         int i;
6071
6072         if (dev_priv->pm.suspended)
6073                 return false;
6074
6075         power_domains = &dev_priv->power_domains;
6076
6077         is_enabled = true;
6078
6079         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6080                 if (power_well->always_on)
6081                         continue;
6082
6083                 if (!power_well->hw_enabled) {
6084                         is_enabled = false;
6085                         break;
6086                 }
6087         }
6088
6089         return is_enabled;
6090 }
6091
6092 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6093                                  enum intel_display_power_domain domain)
6094 {
6095         struct i915_power_domains *power_domains;
6096         bool ret;
6097
6098         power_domains = &dev_priv->power_domains;
6099
6100         mutex_lock(&power_domains->lock);
6101         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6102         mutex_unlock(&power_domains->lock);
6103
6104         return ret;
6105 }
6106
6107 /*
6108  * Starting with Haswell, we have a "Power Down Well" that can be turned off
6109  * when not needed anymore. We have 4 registers that can request the power well
6110  * to be enabled, and it will only be disabled if none of the registers is
6111  * requesting it to be enabled.
6112  */
6113 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6114 {
6115         struct drm_device *dev = dev_priv->dev;
6116
6117         /*
6118          * After we re-enable the power well, if we touch VGA register 0x3d5
6119          * we'll get unclaimed register interrupts. This stops after we write
6120          * anything to the VGA MSR register. The vgacon module uses this
6121          * register all the time, so if we unbind our driver and, as a
6122          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6123          * console_unlock(). So make here we touch the VGA MSR register, making
6124          * sure vgacon can keep working normally without triggering interrupts
6125          * and error messages.
6126          */
6127         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6128         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6129         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6130
6131         if (IS_BROADWELL(dev))
6132                 gen8_irq_power_well_post_enable(dev_priv);
6133 }
6134
6135 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6136                                struct i915_power_well *power_well, bool enable)
6137 {
6138         bool is_enabled, enable_requested;
6139         uint32_t tmp;
6140
6141         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6142         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6143         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6144
6145         if (enable) {
6146                 if (!enable_requested)
6147                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6148                                    HSW_PWR_WELL_ENABLE_REQUEST);
6149
6150                 if (!is_enabled) {
6151                         DRM_DEBUG_KMS("Enabling power well\n");
6152                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6153                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6154                                 DRM_ERROR("Timeout enabling power well\n");
6155                 }
6156
6157                 hsw_power_well_post_enable(dev_priv);
6158         } else {
6159                 if (enable_requested) {
6160                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6161                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6162                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6163                 }
6164         }
6165 }
6166
6167 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6168                                    struct i915_power_well *power_well)
6169 {
6170         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6171
6172         /*
6173          * We're taking over the BIOS, so clear any requests made by it since
6174          * the driver is in charge now.
6175          */
6176         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6177                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6178 }
6179
6180 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6181                                   struct i915_power_well *power_well)
6182 {
6183         hsw_set_power_well(dev_priv, power_well, true);
6184 }
6185
6186 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6187                                    struct i915_power_well *power_well)
6188 {
6189         hsw_set_power_well(dev_priv, power_well, false);
6190 }
6191
6192 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6193                                            struct i915_power_well *power_well)
6194 {
6195 }
6196
6197 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6198                                              struct i915_power_well *power_well)
6199 {
6200         return true;
6201 }
6202
6203 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6204                                struct i915_power_well *power_well, bool enable)
6205 {
6206         enum punit_power_well power_well_id = power_well->data;
6207         u32 mask;
6208         u32 state;
6209         u32 ctrl;
6210
6211         mask = PUNIT_PWRGT_MASK(power_well_id);
6212         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6213                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6214
6215         mutex_lock(&dev_priv->rps.hw_lock);
6216
6217 #define COND \
6218         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6219
6220         if (COND)
6221                 goto out;
6222
6223         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6224         ctrl &= ~mask;
6225         ctrl |= state;
6226         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6227
6228         if (wait_for(COND, 100))
6229                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6230                           state,
6231                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6232
6233 #undef COND
6234
6235 out:
6236         mutex_unlock(&dev_priv->rps.hw_lock);
6237 }
6238
6239 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6240                                    struct i915_power_well *power_well)
6241 {
6242         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6243 }
6244
6245 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6246                                   struct i915_power_well *power_well)
6247 {
6248         vlv_set_power_well(dev_priv, power_well, true);
6249 }
6250
6251 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6252                                    struct i915_power_well *power_well)
6253 {
6254         vlv_set_power_well(dev_priv, power_well, false);
6255 }
6256
6257 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6258                                    struct i915_power_well *power_well)
6259 {
6260         int power_well_id = power_well->data;
6261         bool enabled = false;
6262         u32 mask;
6263         u32 state;
6264         u32 ctrl;
6265
6266         mask = PUNIT_PWRGT_MASK(power_well_id);
6267         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6268
6269         mutex_lock(&dev_priv->rps.hw_lock);
6270
6271         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6272         /*
6273          * We only ever set the power-on and power-gate states, anything
6274          * else is unexpected.
6275          */
6276         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6277                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6278         if (state == ctrl)
6279                 enabled = true;
6280
6281         /*
6282          * A transient state at this point would mean some unexpected party
6283          * is poking at the power controls too.
6284          */
6285         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6286         WARN_ON(ctrl != state);
6287
6288         mutex_unlock(&dev_priv->rps.hw_lock);
6289
6290         return enabled;
6291 }
6292
6293 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6294                                           struct i915_power_well *power_well)
6295 {
6296         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6297
6298         vlv_set_power_well(dev_priv, power_well, true);
6299
6300         spin_lock_irq(&dev_priv->irq_lock);
6301         valleyview_enable_display_irqs(dev_priv);
6302         spin_unlock_irq(&dev_priv->irq_lock);
6303
6304         /*
6305          * During driver initialization/resume we can avoid restoring the
6306          * part of the HW/SW state that will be inited anyway explicitly.
6307          */
6308         if (dev_priv->power_domains.initializing)
6309                 return;
6310
6311         intel_hpd_init(dev_priv->dev);
6312
6313         i915_redisable_vga_power_on(dev_priv->dev);
6314 }
6315
6316 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6317                                            struct i915_power_well *power_well)
6318 {
6319         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6320
6321         spin_lock_irq(&dev_priv->irq_lock);
6322         valleyview_disable_display_irqs(dev_priv);
6323         spin_unlock_irq(&dev_priv->irq_lock);
6324
6325         vlv_set_power_well(dev_priv, power_well, false);
6326
6327         vlv_power_sequencer_reset(dev_priv);
6328 }
6329
6330 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6331                                            struct i915_power_well *power_well)
6332 {
6333         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6334
6335         /*
6336          * Enable the CRI clock source so we can get at the
6337          * display and the reference clock for VGA
6338          * hotplug / manual detection.
6339          */
6340         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6341                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6342         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6343
6344         vlv_set_power_well(dev_priv, power_well, true);
6345
6346         /*
6347          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6348          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6349          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6350          *   b. The other bits such as sfr settings / modesel may all
6351          *      be set to 0.
6352          *
6353          * This should only be done on init and resume from S3 with
6354          * both PLLs disabled, or we risk losing DPIO and PLL
6355          * synchronization.
6356          */
6357         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6358 }
6359
6360 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6361                                             struct i915_power_well *power_well)
6362 {
6363         enum pipe pipe;
6364
6365         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6366
6367         for_each_pipe(dev_priv, pipe)
6368                 assert_pll_disabled(dev_priv, pipe);
6369
6370         /* Assert common reset */
6371         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6372
6373         vlv_set_power_well(dev_priv, power_well, false);
6374 }
6375
6376 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6377                                            struct i915_power_well *power_well)
6378 {
6379         enum dpio_phy phy;
6380
6381         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6382                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6383
6384         /*
6385          * Enable the CRI clock source so we can get at the
6386          * display and the reference clock for VGA
6387          * hotplug / manual detection.
6388          */
6389         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6390                 phy = DPIO_PHY0;
6391                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6392                            DPLL_REFA_CLK_ENABLE_VLV);
6393                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6394                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6395         } else {
6396                 phy = DPIO_PHY1;
6397                 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6398                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6399         }
6400         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6401         vlv_set_power_well(dev_priv, power_well, true);
6402
6403         /* Poll for phypwrgood signal */
6404         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6405                 DRM_ERROR("Display PHY %d is not power up\n", phy);
6406
6407         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6408                    PHY_COM_LANE_RESET_DEASSERT(phy));
6409 }
6410
6411 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6412                                             struct i915_power_well *power_well)
6413 {
6414         enum dpio_phy phy;
6415
6416         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6417                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6418
6419         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6420                 phy = DPIO_PHY0;
6421                 assert_pll_disabled(dev_priv, PIPE_A);
6422                 assert_pll_disabled(dev_priv, PIPE_B);
6423         } else {
6424                 phy = DPIO_PHY1;
6425                 assert_pll_disabled(dev_priv, PIPE_C);
6426         }
6427
6428         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6429                    ~PHY_COM_LANE_RESET_DEASSERT(phy));
6430
6431         vlv_set_power_well(dev_priv, power_well, false);
6432 }
6433
6434 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6435                                         struct i915_power_well *power_well)
6436 {
6437         enum pipe pipe = power_well->data;
6438         bool enabled;
6439         u32 state, ctrl;
6440
6441         mutex_lock(&dev_priv->rps.hw_lock);
6442
6443         state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6444         /*
6445          * We only ever set the power-on and power-gate states, anything
6446          * else is unexpected.
6447          */
6448         WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6449         enabled = state == DP_SSS_PWR_ON(pipe);
6450
6451         /*
6452          * A transient state at this point would mean some unexpected party
6453          * is poking at the power controls too.
6454          */
6455         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6456         WARN_ON(ctrl << 16 != state);
6457
6458         mutex_unlock(&dev_priv->rps.hw_lock);
6459
6460         return enabled;
6461 }
6462
6463 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6464                                     struct i915_power_well *power_well,
6465                                     bool enable)
6466 {
6467         enum pipe pipe = power_well->data;
6468         u32 state;
6469         u32 ctrl;
6470
6471         state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6472
6473         mutex_lock(&dev_priv->rps.hw_lock);
6474
6475 #define COND \
6476         ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6477
6478         if (COND)
6479                 goto out;
6480
6481         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6482         ctrl &= ~DP_SSC_MASK(pipe);
6483         ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6484         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6485
6486         if (wait_for(COND, 100))
6487                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6488                           state,
6489                           vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6490
6491 #undef COND
6492
6493 out:
6494         mutex_unlock(&dev_priv->rps.hw_lock);
6495 }
6496
6497 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6498                                         struct i915_power_well *power_well)
6499 {
6500         chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6501 }
6502
6503 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6504                                        struct i915_power_well *power_well)
6505 {
6506         WARN_ON_ONCE(power_well->data != PIPE_A &&
6507                      power_well->data != PIPE_B &&
6508                      power_well->data != PIPE_C);
6509
6510         chv_set_pipe_power_well(dev_priv, power_well, true);
6511 }
6512
6513 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6514                                         struct i915_power_well *power_well)
6515 {
6516         WARN_ON_ONCE(power_well->data != PIPE_A &&
6517                      power_well->data != PIPE_B &&
6518                      power_well->data != PIPE_C);
6519
6520         chv_set_pipe_power_well(dev_priv, power_well, false);
6521 }
6522
6523 static void check_power_well_state(struct drm_i915_private *dev_priv,
6524                                    struct i915_power_well *power_well)
6525 {
6526         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6527
6528         if (power_well->always_on || !i915.disable_power_well) {
6529                 if (!enabled)
6530                         goto mismatch;
6531
6532                 return;
6533         }
6534
6535         if (enabled != (power_well->count > 0))
6536                 goto mismatch;
6537
6538         return;
6539
6540 mismatch:
6541         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6542                   power_well->name, power_well->always_on, enabled,
6543                   power_well->count, i915.disable_power_well);
6544 }
6545
6546 void intel_display_power_get(struct drm_i915_private *dev_priv,
6547                              enum intel_display_power_domain domain)
6548 {
6549         struct i915_power_domains *power_domains;
6550         struct i915_power_well *power_well;
6551         int i;
6552
6553         intel_runtime_pm_get(dev_priv);
6554
6555         power_domains = &dev_priv->power_domains;
6556
6557         mutex_lock(&power_domains->lock);
6558
6559         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6560                 if (!power_well->count++) {
6561                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6562                         power_well->ops->enable(dev_priv, power_well);
6563                         power_well->hw_enabled = true;
6564                 }
6565
6566                 check_power_well_state(dev_priv, power_well);
6567         }
6568
6569         power_domains->domain_use_count[domain]++;
6570
6571         mutex_unlock(&power_domains->lock);
6572 }
6573
6574 void intel_display_power_put(struct drm_i915_private *dev_priv,
6575                              enum intel_display_power_domain domain)
6576 {
6577         struct i915_power_domains *power_domains;
6578         struct i915_power_well *power_well;
6579         int i;
6580
6581         power_domains = &dev_priv->power_domains;
6582
6583         mutex_lock(&power_domains->lock);
6584
6585         WARN_ON(!power_domains->domain_use_count[domain]);
6586         power_domains->domain_use_count[domain]--;
6587
6588         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6589                 WARN_ON(!power_well->count);
6590
6591                 if (!--power_well->count && i915.disable_power_well) {
6592                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6593                         power_well->hw_enabled = false;
6594                         power_well->ops->disable(dev_priv, power_well);
6595                 }
6596
6597                 check_power_well_state(dev_priv, power_well);
6598         }
6599
6600         mutex_unlock(&power_domains->lock);
6601
6602         intel_runtime_pm_put(dev_priv);
6603 }
6604
6605 static struct i915_power_domains *hsw_pwr;
6606
6607 /* Display audio driver power well request */
6608 int i915_request_power_well(void)
6609 {
6610         struct drm_i915_private *dev_priv;
6611
6612         if (!hsw_pwr)
6613                 return -ENODEV;
6614
6615         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6616                                 power_domains);
6617         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6618         return 0;
6619 }
6620 EXPORT_SYMBOL_GPL(i915_request_power_well);
6621
6622 /* Display audio driver power well release */
6623 int i915_release_power_well(void)
6624 {
6625         struct drm_i915_private *dev_priv;
6626
6627         if (!hsw_pwr)
6628                 return -ENODEV;
6629
6630         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6631                                 power_domains);
6632         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6633         return 0;
6634 }
6635 EXPORT_SYMBOL_GPL(i915_release_power_well);
6636
6637 /*
6638  * Private interface for the audio driver to get CDCLK in kHz.
6639  *
6640  * Caller must request power well using i915_request_power_well() prior to
6641  * making the call.
6642  */
6643 int i915_get_cdclk_freq(void)
6644 {
6645         struct drm_i915_private *dev_priv;
6646
6647         if (!hsw_pwr)
6648                 return -ENODEV;
6649
6650         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6651                                 power_domains);
6652
6653         return intel_ddi_get_cdclk_freq(dev_priv);
6654 }
6655 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6656
6657
6658 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6659
6660 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6661         BIT(POWER_DOMAIN_PIPE_A) |                      \
6662         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6663         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6664         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6665         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6666         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6667         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6668         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6669         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6670         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6671         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6672         BIT(POWER_DOMAIN_PLLS) |                        \
6673         BIT(POWER_DOMAIN_INIT))
6674 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6675         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6676         BIT(POWER_DOMAIN_INIT))
6677
6678 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6679         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6680         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6681 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6682         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6683         BIT(POWER_DOMAIN_INIT))
6684
6685 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6686 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6687
6688 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6689         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6690         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6691         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6692         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6693         BIT(POWER_DOMAIN_PORT_CRT) |            \
6694         BIT(POWER_DOMAIN_INIT))
6695
6696 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6697         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6698         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6699         BIT(POWER_DOMAIN_INIT))
6700
6701 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6702         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6703         BIT(POWER_DOMAIN_INIT))
6704
6705 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6706         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6707         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6708         BIT(POWER_DOMAIN_INIT))
6709
6710 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6711         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6712         BIT(POWER_DOMAIN_INIT))
6713
6714 #define CHV_PIPE_A_POWER_DOMAINS (      \
6715         BIT(POWER_DOMAIN_PIPE_A) |      \
6716         BIT(POWER_DOMAIN_INIT))
6717
6718 #define CHV_PIPE_B_POWER_DOMAINS (      \
6719         BIT(POWER_DOMAIN_PIPE_B) |      \
6720         BIT(POWER_DOMAIN_INIT))
6721
6722 #define CHV_PIPE_C_POWER_DOMAINS (      \
6723         BIT(POWER_DOMAIN_PIPE_C) |      \
6724         BIT(POWER_DOMAIN_INIT))
6725
6726 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (         \
6727         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6728         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6729         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6730         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6731         BIT(POWER_DOMAIN_INIT))
6732
6733 #define CHV_DPIO_CMN_D_POWER_DOMAINS (          \
6734         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6735         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6736         BIT(POWER_DOMAIN_INIT))
6737
6738 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (  \
6739         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6740         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6741         BIT(POWER_DOMAIN_INIT))
6742
6743 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (  \
6744         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6745         BIT(POWER_DOMAIN_INIT))
6746
6747 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6748         .sync_hw = i9xx_always_on_power_well_noop,
6749         .enable = i9xx_always_on_power_well_noop,
6750         .disable = i9xx_always_on_power_well_noop,
6751         .is_enabled = i9xx_always_on_power_well_enabled,
6752 };
6753
6754 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6755         .sync_hw = chv_pipe_power_well_sync_hw,
6756         .enable = chv_pipe_power_well_enable,
6757         .disable = chv_pipe_power_well_disable,
6758         .is_enabled = chv_pipe_power_well_enabled,
6759 };
6760
6761 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6762         .sync_hw = vlv_power_well_sync_hw,
6763         .enable = chv_dpio_cmn_power_well_enable,
6764         .disable = chv_dpio_cmn_power_well_disable,
6765         .is_enabled = vlv_power_well_enabled,
6766 };
6767
6768 static struct i915_power_well i9xx_always_on_power_well[] = {
6769         {
6770                 .name = "always-on",
6771                 .always_on = 1,
6772                 .domains = POWER_DOMAIN_MASK,
6773                 .ops = &i9xx_always_on_power_well_ops,
6774         },
6775 };
6776
6777 static const struct i915_power_well_ops hsw_power_well_ops = {
6778         .sync_hw = hsw_power_well_sync_hw,
6779         .enable = hsw_power_well_enable,
6780         .disable = hsw_power_well_disable,
6781         .is_enabled = hsw_power_well_enabled,
6782 };
6783
6784 static struct i915_power_well hsw_power_wells[] = {
6785         {
6786                 .name = "always-on",
6787                 .always_on = 1,
6788                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6789                 .ops = &i9xx_always_on_power_well_ops,
6790         },
6791         {
6792                 .name = "display",
6793                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6794                 .ops = &hsw_power_well_ops,
6795         },
6796 };
6797
6798 static struct i915_power_well bdw_power_wells[] = {
6799         {
6800                 .name = "always-on",
6801                 .always_on = 1,
6802                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6803                 .ops = &i9xx_always_on_power_well_ops,
6804         },
6805         {
6806                 .name = "display",
6807                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6808                 .ops = &hsw_power_well_ops,
6809         },
6810 };
6811
6812 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6813         .sync_hw = vlv_power_well_sync_hw,
6814         .enable = vlv_display_power_well_enable,
6815         .disable = vlv_display_power_well_disable,
6816         .is_enabled = vlv_power_well_enabled,
6817 };
6818
6819 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6820         .sync_hw = vlv_power_well_sync_hw,
6821         .enable = vlv_dpio_cmn_power_well_enable,
6822         .disable = vlv_dpio_cmn_power_well_disable,
6823         .is_enabled = vlv_power_well_enabled,
6824 };
6825
6826 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6827         .sync_hw = vlv_power_well_sync_hw,
6828         .enable = vlv_power_well_enable,
6829         .disable = vlv_power_well_disable,
6830         .is_enabled = vlv_power_well_enabled,
6831 };
6832
6833 static struct i915_power_well vlv_power_wells[] = {
6834         {
6835                 .name = "always-on",
6836                 .always_on = 1,
6837                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6838                 .ops = &i9xx_always_on_power_well_ops,
6839         },
6840         {
6841                 .name = "display",
6842                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6843                 .data = PUNIT_POWER_WELL_DISP2D,
6844                 .ops = &vlv_display_power_well_ops,
6845         },
6846         {
6847                 .name = "dpio-tx-b-01",
6848                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6849                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6850                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6851                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6852                 .ops = &vlv_dpio_power_well_ops,
6853                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6854         },
6855         {
6856                 .name = "dpio-tx-b-23",
6857                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6858                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6859                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6860                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6861                 .ops = &vlv_dpio_power_well_ops,
6862                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6863         },
6864         {
6865                 .name = "dpio-tx-c-01",
6866                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6867                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6868                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6869                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6870                 .ops = &vlv_dpio_power_well_ops,
6871                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6872         },
6873         {
6874                 .name = "dpio-tx-c-23",
6875                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6876                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6877                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6878                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6879                 .ops = &vlv_dpio_power_well_ops,
6880                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6881         },
6882         {
6883                 .name = "dpio-common",
6884                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6885                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6886                 .ops = &vlv_dpio_cmn_power_well_ops,
6887         },
6888 };
6889
6890 static struct i915_power_well chv_power_wells[] = {
6891         {
6892                 .name = "always-on",
6893                 .always_on = 1,
6894                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6895                 .ops = &i9xx_always_on_power_well_ops,
6896         },
6897 #if 0
6898         {
6899                 .name = "display",
6900                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6901                 .data = PUNIT_POWER_WELL_DISP2D,
6902                 .ops = &vlv_display_power_well_ops,
6903         },
6904         {
6905                 .name = "pipe-a",
6906                 .domains = CHV_PIPE_A_POWER_DOMAINS,
6907                 .data = PIPE_A,
6908                 .ops = &chv_pipe_power_well_ops,
6909         },
6910         {
6911                 .name = "pipe-b",
6912                 .domains = CHV_PIPE_B_POWER_DOMAINS,
6913                 .data = PIPE_B,
6914                 .ops = &chv_pipe_power_well_ops,
6915         },
6916         {
6917                 .name = "pipe-c",
6918                 .domains = CHV_PIPE_C_POWER_DOMAINS,
6919                 .data = PIPE_C,
6920                 .ops = &chv_pipe_power_well_ops,
6921         },
6922 #endif
6923         {
6924                 .name = "dpio-common-bc",
6925                 /*
6926                  * XXX: cmnreset for one PHY seems to disturb the other.
6927                  * As a workaround keep both powered on at the same
6928                  * time for now.
6929                  */
6930                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6931                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6932                 .ops = &chv_dpio_cmn_power_well_ops,
6933         },
6934         {
6935                 .name = "dpio-common-d",
6936                 /*
6937                  * XXX: cmnreset for one PHY seems to disturb the other.
6938                  * As a workaround keep both powered on at the same
6939                  * time for now.
6940                  */
6941                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6942                 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
6943                 .ops = &chv_dpio_cmn_power_well_ops,
6944         },
6945 #if 0
6946         {
6947                 .name = "dpio-tx-b-01",
6948                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6949                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6950                 .ops = &vlv_dpio_power_well_ops,
6951                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6952         },
6953         {
6954                 .name = "dpio-tx-b-23",
6955                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6956                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6957                 .ops = &vlv_dpio_power_well_ops,
6958                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6959         },
6960         {
6961                 .name = "dpio-tx-c-01",
6962                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6963                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6964                 .ops = &vlv_dpio_power_well_ops,
6965                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6966         },
6967         {
6968                 .name = "dpio-tx-c-23",
6969                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6970                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6971                 .ops = &vlv_dpio_power_well_ops,
6972                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6973         },
6974         {
6975                 .name = "dpio-tx-d-01",
6976                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6977                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6978                 .ops = &vlv_dpio_power_well_ops,
6979                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
6980         },
6981         {
6982                 .name = "dpio-tx-d-23",
6983                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6984                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6985                 .ops = &vlv_dpio_power_well_ops,
6986                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
6987         },
6988 #endif
6989 };
6990
6991 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6992                                                  enum punit_power_well power_well_id)
6993 {
6994         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6995         struct i915_power_well *power_well;
6996         int i;
6997
6998         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6999                 if (power_well->data == power_well_id)
7000                         return power_well;
7001         }
7002
7003         return NULL;
7004 }
7005
7006 #define set_power_wells(power_domains, __power_wells) ({                \
7007         (power_domains)->power_wells = (__power_wells);                 \
7008         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
7009 })
7010
7011 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7012 {
7013         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7014
7015         mutex_init(&power_domains->lock);
7016
7017         /*
7018          * The enabling order will be from lower to higher indexed wells,
7019          * the disabling order is reversed.
7020          */
7021         if (IS_HASWELL(dev_priv->dev)) {
7022                 set_power_wells(power_domains, hsw_power_wells);
7023                 hsw_pwr = power_domains;
7024         } else if (IS_BROADWELL(dev_priv->dev)) {
7025                 set_power_wells(power_domains, bdw_power_wells);
7026                 hsw_pwr = power_domains;
7027         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7028                 set_power_wells(power_domains, chv_power_wells);
7029         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7030                 set_power_wells(power_domains, vlv_power_wells);
7031         } else {
7032                 set_power_wells(power_domains, i9xx_always_on_power_well);
7033         }
7034
7035         return 0;
7036 }
7037
7038 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7039 {
7040         hsw_pwr = NULL;
7041 }
7042
7043 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7044 {
7045         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7046         struct i915_power_well *power_well;
7047         int i;
7048
7049         mutex_lock(&power_domains->lock);
7050         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7051                 power_well->ops->sync_hw(dev_priv, power_well);
7052                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7053                                                                      power_well);
7054         }
7055         mutex_unlock(&power_domains->lock);
7056 }
7057
7058 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7059 {
7060         struct i915_power_well *cmn =
7061                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7062         struct i915_power_well *disp2d =
7063                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7064
7065         /* nothing to do if common lane is already off */
7066         if (!cmn->ops->is_enabled(dev_priv, cmn))
7067                 return;
7068
7069         /* If the display might be already active skip this */
7070         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7071             I915_READ(DPIO_CTL) & DPIO_CMNRST)
7072                 return;
7073
7074         DRM_DEBUG_KMS("toggling display PHY side reset\n");
7075
7076         /* cmnlane needs DPLL registers */
7077         disp2d->ops->enable(dev_priv, disp2d);
7078
7079         /*
7080          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7081          * Need to assert and de-assert PHY SB reset by gating the
7082          * common lane power, then un-gating it.
7083          * Simply ungating isn't enough to reset the PHY enough to get
7084          * ports and lanes running.
7085          */
7086         cmn->ops->disable(dev_priv, cmn);
7087 }
7088
7089 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7090 {
7091         struct drm_device *dev = dev_priv->dev;
7092         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7093
7094         power_domains->initializing = true;
7095
7096         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7097                 mutex_lock(&power_domains->lock);
7098                 vlv_cmnlane_wa(dev_priv);
7099                 mutex_unlock(&power_domains->lock);
7100         }
7101
7102         /* For now, we need the power well to be always enabled. */
7103         intel_display_set_init_power(dev_priv, true);
7104         intel_power_domains_resume(dev_priv);
7105         power_domains->initializing = false;
7106 }
7107
7108 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7109 {
7110         intel_runtime_pm_get(dev_priv);
7111 }
7112
7113 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7114 {
7115         intel_runtime_pm_put(dev_priv);
7116 }
7117
7118 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7119 {
7120         struct drm_device *dev = dev_priv->dev;
7121         struct device *device = &dev->pdev->dev;
7122
7123         if (!HAS_RUNTIME_PM(dev))
7124                 return;
7125
7126         pm_runtime_get_sync(device);
7127         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7128 }
7129
7130 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7131 {
7132         struct drm_device *dev = dev_priv->dev;
7133         struct device *device = &dev->pdev->dev;
7134
7135         if (!HAS_RUNTIME_PM(dev))
7136                 return;
7137
7138         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7139         pm_runtime_get_noresume(device);
7140 }
7141
7142 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7143 {
7144         struct drm_device *dev = dev_priv->dev;
7145         struct device *device = &dev->pdev->dev;
7146
7147         if (!HAS_RUNTIME_PM(dev))
7148                 return;
7149
7150         pm_runtime_mark_last_busy(device);
7151         pm_runtime_put_autosuspend(device);
7152 }
7153
7154 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7155 {
7156         struct drm_device *dev = dev_priv->dev;
7157         struct device *device = &dev->pdev->dev;
7158
7159         if (!HAS_RUNTIME_PM(dev))
7160                 return;
7161
7162         pm_runtime_set_active(device);
7163
7164         /*
7165          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7166          * requirement.
7167          */
7168         if (!intel_enable_rc6(dev)) {
7169                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7170                 return;
7171         }
7172
7173         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7174         pm_runtime_mark_last_busy(device);
7175         pm_runtime_use_autosuspend(device);
7176
7177         pm_runtime_put_autosuspend(device);
7178 }
7179
7180 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7181 {
7182         struct drm_device *dev = dev_priv->dev;
7183         struct device *device = &dev->pdev->dev;
7184
7185         if (!HAS_RUNTIME_PM(dev))
7186                 return;
7187
7188         if (!intel_enable_rc6(dev))
7189                 return;
7190
7191         /* Make sure we're not suspended first. */
7192         pm_runtime_get_sync(device);
7193         pm_runtime_disable(device);
7194 }
7195
7196 /* Set up chip specific power management-related functions */
7197 void intel_init_pm(struct drm_device *dev)
7198 {
7199         struct drm_i915_private *dev_priv = dev->dev_private;
7200
7201         if (HAS_FBC(dev)) {
7202                 if (INTEL_INFO(dev)->gen >= 7) {
7203                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7204                         dev_priv->display.enable_fbc = gen7_enable_fbc;
7205                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7206                 } else if (INTEL_INFO(dev)->gen >= 5) {
7207                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7208                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7209                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7210                 } else if (IS_GM45(dev)) {
7211                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7212                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7213                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7214                 } else {
7215                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7216                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7217                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7218
7219                         /* This value was pulled out of someone's hat */
7220                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7221                 }
7222         }
7223
7224         /* For cxsr */
7225         if (IS_PINEVIEW(dev))
7226                 i915_pineview_get_mem_freq(dev);
7227         else if (IS_GEN5(dev))
7228                 i915_ironlake_get_mem_freq(dev);
7229
7230         /* For FIFO watermark updates */
7231         if (HAS_PCH_SPLIT(dev)) {
7232                 ilk_setup_wm_latency(dev);
7233
7234                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7235                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7236                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7237                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7238                         dev_priv->display.update_wm = ilk_update_wm;
7239                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7240                 } else {
7241                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7242                                       "Disable CxSR\n");
7243                 }
7244
7245                 if (IS_GEN5(dev))
7246                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7247                 else if (IS_GEN6(dev))
7248                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7249                 else if (IS_IVYBRIDGE(dev))
7250                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7251                 else if (IS_HASWELL(dev))
7252                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7253                 else if (INTEL_INFO(dev)->gen == 8)
7254                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7255         } else if (IS_CHERRYVIEW(dev)) {
7256                 dev_priv->display.update_wm = cherryview_update_wm;
7257                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7258                 dev_priv->display.init_clock_gating =
7259                         cherryview_init_clock_gating;
7260         } else if (IS_VALLEYVIEW(dev)) {
7261                 dev_priv->display.update_wm = valleyview_update_wm;
7262                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7263                 dev_priv->display.init_clock_gating =
7264                         valleyview_init_clock_gating;
7265         } else if (IS_PINEVIEW(dev)) {
7266                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7267                                             dev_priv->is_ddr3,
7268                                             dev_priv->fsb_freq,
7269                                             dev_priv->mem_freq)) {
7270                         DRM_INFO("failed to find known CxSR latency "
7271                                  "(found ddr%s fsb freq %d, mem freq %d), "
7272                                  "disabling CxSR\n",
7273                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7274                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7275                         /* Disable CxSR and never update its watermark again */
7276                         intel_set_memory_cxsr(dev_priv, false);
7277                         dev_priv->display.update_wm = NULL;
7278                 } else
7279                         dev_priv->display.update_wm = pineview_update_wm;
7280                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7281         } else if (IS_G4X(dev)) {
7282                 dev_priv->display.update_wm = g4x_update_wm;
7283                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7284         } else if (IS_GEN4(dev)) {
7285                 dev_priv->display.update_wm = i965_update_wm;
7286                 if (IS_CRESTLINE(dev))
7287                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7288                 else if (IS_BROADWATER(dev))
7289                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7290         } else if (IS_GEN3(dev)) {
7291                 dev_priv->display.update_wm = i9xx_update_wm;
7292                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7293                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7294         } else if (IS_GEN2(dev)) {
7295                 if (INTEL_INFO(dev)->num_pipes == 1) {
7296                         dev_priv->display.update_wm = i845_update_wm;
7297                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7298                 } else {
7299                         dev_priv->display.update_wm = i9xx_update_wm;
7300                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7301                 }
7302
7303                 if (IS_I85X(dev) || IS_I865G(dev))
7304                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7305                 else
7306                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7307         } else {
7308                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7309         }
7310 }
7311
7312 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7313 {
7314         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7315
7316         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7317                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7318                 return -EAGAIN;
7319         }
7320
7321         I915_WRITE(GEN6_PCODE_DATA, *val);
7322         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7323
7324         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7325                      500)) {
7326                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7327                 return -ETIMEDOUT;
7328         }
7329
7330         *val = I915_READ(GEN6_PCODE_DATA);
7331         I915_WRITE(GEN6_PCODE_DATA, 0);
7332
7333         return 0;
7334 }
7335
7336 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7337 {
7338         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7339
7340         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7341                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7342                 return -EAGAIN;
7343         }
7344
7345         I915_WRITE(GEN6_PCODE_DATA, val);
7346         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7347
7348         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7349                      500)) {
7350                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7351                 return -ETIMEDOUT;
7352         }
7353
7354         I915_WRITE(GEN6_PCODE_DATA, 0);
7355
7356         return 0;
7357 }
7358
7359 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7360 {
7361         int div;
7362
7363         /* 4 x czclk */
7364         switch (dev_priv->mem_freq) {
7365         case 800:
7366                 div = 10;
7367                 break;
7368         case 1066:
7369                 div = 12;
7370                 break;
7371         case 1333:
7372                 div = 16;
7373                 break;
7374         default:
7375                 return -1;
7376         }
7377
7378         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7379 }
7380
7381 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7382 {
7383         int mul;
7384
7385         /* 4 x czclk */
7386         switch (dev_priv->mem_freq) {
7387         case 800:
7388                 mul = 10;
7389                 break;
7390         case 1066:
7391                 mul = 12;
7392                 break;
7393         case 1333:
7394                 mul = 16;
7395                 break;
7396         default:
7397                 return -1;
7398         }
7399
7400         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7401 }
7402
7403 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7404 {
7405         int div, freq;
7406
7407         switch (dev_priv->rps.cz_freq) {
7408         case 200:
7409                 div = 5;
7410                 break;
7411         case 267:
7412                 div = 6;
7413                 break;
7414         case 320:
7415         case 333:
7416         case 400:
7417                 div = 8;
7418                 break;
7419         default:
7420                 return -1;
7421         }
7422
7423         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7424
7425         return freq;
7426 }
7427
7428 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7429 {
7430         int mul, opcode;
7431
7432         switch (dev_priv->rps.cz_freq) {
7433         case 200:
7434                 mul = 5;
7435                 break;
7436         case 267:
7437                 mul = 6;
7438                 break;
7439         case 320:
7440         case 333:
7441         case 400:
7442                 mul = 8;
7443                 break;
7444         default:
7445                 return -1;
7446         }
7447
7448         /* CHV needs even values */
7449         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7450
7451         return opcode;
7452 }
7453
7454 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7455 {
7456         int ret = -1;
7457
7458         if (IS_CHERRYVIEW(dev_priv->dev))
7459                 ret = chv_gpu_freq(dev_priv, val);
7460         else if (IS_VALLEYVIEW(dev_priv->dev))
7461                 ret = byt_gpu_freq(dev_priv, val);
7462
7463         return ret;
7464 }
7465
7466 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7467 {
7468         int ret = -1;
7469
7470         if (IS_CHERRYVIEW(dev_priv->dev))
7471                 ret = chv_freq_opcode(dev_priv, val);
7472         else if (IS_VALLEYVIEW(dev_priv->dev))
7473                 ret = byt_freq_opcode(dev_priv, val);
7474
7475         return ret;
7476 }
7477
7478 void intel_pm_setup(struct drm_device *dev)
7479 {
7480         struct drm_i915_private *dev_priv = dev->dev_private;
7481
7482         mutex_init(&dev_priv->rps.hw_lock);
7483
7484         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7485                           intel_gen6_powersave_work);
7486
7487         dev_priv->pm.suspended = false;
7488         dev_priv->pm._irqs_disabled = false;
7489 }