Merge tag 'localmodconfig-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * DOC: RC6
36  *
37  * RC6 is a special power stage which allows the GPU to enter an very
38  * low-voltage mode when idle, using down to 0V while at this stage.  This
39  * stage is entered automatically when the GPU is idle when RC6 support is
40  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41  *
42  * There are different RC6 modes available in Intel GPU, which differentiate
43  * among each other with the latency required to enter and leave RC6 and
44  * voltage consumed by the GPU in different states.
45  *
46  * The combination of the following flags define which states GPU is allowed
47  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48  * RC6pp is deepest RC6. Their support by hardware varies according to the
49  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50  * which brings the most power savings; deeper states save more power, but
51  * require higher latency to switch to and wake up.
52  */
53 #define INTEL_RC6_ENABLE                        (1<<0)
54 #define INTEL_RC6p_ENABLE                       (1<<1)
55 #define INTEL_RC6pp_ENABLE                      (1<<2)
56
57 static void bxt_init_clock_gating(struct drm_device *dev)
58 {
59         struct drm_i915_private *dev_priv = dev->dev_private;
60
61         /* WaDisableSDEUnitClockGating:bxt */
62         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
63                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
64
65         /*
66          * FIXME:
67          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68          */
69         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71
72         /*
73          * Wa: Backlight PWM may stop in the asserted state, causing backlight
74          * to stay fully on.
75          */
76         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
77                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
78                            PWM1_GATING_DIS | PWM2_GATING_DIS);
79 }
80
81 static void i915_pineview_get_mem_freq(struct drm_device *dev)
82 {
83         struct drm_i915_private *dev_priv = dev->dev_private;
84         u32 tmp;
85
86         tmp = I915_READ(CLKCFG);
87
88         switch (tmp & CLKCFG_FSB_MASK) {
89         case CLKCFG_FSB_533:
90                 dev_priv->fsb_freq = 533; /* 133*4 */
91                 break;
92         case CLKCFG_FSB_800:
93                 dev_priv->fsb_freq = 800; /* 200*4 */
94                 break;
95         case CLKCFG_FSB_667:
96                 dev_priv->fsb_freq =  667; /* 167*4 */
97                 break;
98         case CLKCFG_FSB_400:
99                 dev_priv->fsb_freq = 400; /* 100*4 */
100                 break;
101         }
102
103         switch (tmp & CLKCFG_MEM_MASK) {
104         case CLKCFG_MEM_533:
105                 dev_priv->mem_freq = 533;
106                 break;
107         case CLKCFG_MEM_667:
108                 dev_priv->mem_freq = 667;
109                 break;
110         case CLKCFG_MEM_800:
111                 dev_priv->mem_freq = 800;
112                 break;
113         }
114
115         /* detect pineview DDR3 setting */
116         tmp = I915_READ(CSHRDDR3CTL);
117         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
118 }
119
120 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123         u16 ddrpll, csipll;
124
125         ddrpll = I915_READ16(DDRMPLL1);
126         csipll = I915_READ16(CSIPLL0);
127
128         switch (ddrpll & 0xff) {
129         case 0xc:
130                 dev_priv->mem_freq = 800;
131                 break;
132         case 0x10:
133                 dev_priv->mem_freq = 1066;
134                 break;
135         case 0x14:
136                 dev_priv->mem_freq = 1333;
137                 break;
138         case 0x18:
139                 dev_priv->mem_freq = 1600;
140                 break;
141         default:
142                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
143                                  ddrpll & 0xff);
144                 dev_priv->mem_freq = 0;
145                 break;
146         }
147
148         dev_priv->ips.r_t = dev_priv->mem_freq;
149
150         switch (csipll & 0x3ff) {
151         case 0x00c:
152                 dev_priv->fsb_freq = 3200;
153                 break;
154         case 0x00e:
155                 dev_priv->fsb_freq = 3733;
156                 break;
157         case 0x010:
158                 dev_priv->fsb_freq = 4266;
159                 break;
160         case 0x012:
161                 dev_priv->fsb_freq = 4800;
162                 break;
163         case 0x014:
164                 dev_priv->fsb_freq = 5333;
165                 break;
166         case 0x016:
167                 dev_priv->fsb_freq = 5866;
168                 break;
169         case 0x018:
170                 dev_priv->fsb_freq = 6400;
171                 break;
172         default:
173                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
174                                  csipll & 0x3ff);
175                 dev_priv->fsb_freq = 0;
176                 break;
177         }
178
179         if (dev_priv->fsb_freq == 3200) {
180                 dev_priv->ips.c_m = 0;
181         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182                 dev_priv->ips.c_m = 1;
183         } else {
184                 dev_priv->ips.c_m = 2;
185         }
186 }
187
188 static const struct cxsr_latency cxsr_latency_table[] = {
189         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
190         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
191         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
192         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
193         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
194
195         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
196         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
197         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
198         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
199         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
200
201         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
202         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
203         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
204         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
205         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
206
207         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
208         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
209         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
210         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
211         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
212
213         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
214         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
215         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
216         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
217         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
218
219         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
220         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
221         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
222         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
223         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
224 };
225
226 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227                                                          int is_ddr3,
228                                                          int fsb,
229                                                          int mem)
230 {
231         const struct cxsr_latency *latency;
232         int i;
233
234         if (fsb == 0 || mem == 0)
235                 return NULL;
236
237         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
238                 latency = &cxsr_latency_table[i];
239                 if (is_desktop == latency->is_desktop &&
240                     is_ddr3 == latency->is_ddr3 &&
241                     fsb == latency->fsb_freq && mem == latency->mem_freq)
242                         return latency;
243         }
244
245         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
246
247         return NULL;
248 }
249
250 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
251 {
252         u32 val;
253
254         mutex_lock(&dev_priv->rps.hw_lock);
255
256         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
257         if (enable)
258                 val &= ~FORCE_DDR_HIGH_FREQ;
259         else
260                 val |= FORCE_DDR_HIGH_FREQ;
261         val &= ~FORCE_DDR_LOW_FREQ;
262         val |= FORCE_DDR_FREQ_REQ_ACK;
263         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
264
265         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
266                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
267                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
268
269         mutex_unlock(&dev_priv->rps.hw_lock);
270 }
271
272 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
273 {
274         u32 val;
275
276         mutex_lock(&dev_priv->rps.hw_lock);
277
278         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
279         if (enable)
280                 val |= DSP_MAXFIFO_PM5_ENABLE;
281         else
282                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
283         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
284
285         mutex_unlock(&dev_priv->rps.hw_lock);
286 }
287
288 #define FW_WM(value, plane) \
289         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
290
291 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292 {
293         struct drm_device *dev = dev_priv->dev;
294         u32 val;
295
296         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298                 POSTING_READ(FW_BLC_SELF_VLV);
299                 dev_priv->wm.vlv.cxsr = enable;
300         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
301                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302                 POSTING_READ(FW_BLC_SELF);
303         } else if (IS_PINEVIEW(dev)) {
304                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
305                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
306                 I915_WRITE(DSPFW3, val);
307                 POSTING_READ(DSPFW3);
308         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
309                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
310                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
311                 I915_WRITE(FW_BLC_SELF, val);
312                 POSTING_READ(FW_BLC_SELF);
313         } else if (IS_I915GM(dev)) {
314                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
315                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
316                 I915_WRITE(INSTPM, val);
317                 POSTING_READ(INSTPM);
318         } else {
319                 return;
320         }
321
322         DRM_DEBUG_KMS("memory self-refresh is %s\n",
323                       enable ? "enabled" : "disabled");
324 }
325
326
327 /*
328  * Latency for FIFO fetches is dependent on several factors:
329  *   - memory configuration (speed, channels)
330  *   - chipset
331  *   - current MCH state
332  * It can be fairly high in some situations, so here we assume a fairly
333  * pessimal value.  It's a tradeoff between extra memory fetches (if we
334  * set this value too high, the FIFO will fetch frequently to stay full)
335  * and power consumption (set it too low to save power and we might see
336  * FIFO underruns and display "flicker").
337  *
338  * A value of 5us seems to be a good balance; safe for very low end
339  * platforms but not overly aggressive on lower latency configs.
340  */
341 static const int pessimal_latency_ns = 5000;
342
343 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
344         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
345
346 static int vlv_get_fifo_size(struct drm_device *dev,
347                               enum pipe pipe, int plane)
348 {
349         struct drm_i915_private *dev_priv = dev->dev_private;
350         int sprite0_start, sprite1_start, size;
351
352         switch (pipe) {
353                 uint32_t dsparb, dsparb2, dsparb3;
354         case PIPE_A:
355                 dsparb = I915_READ(DSPARB);
356                 dsparb2 = I915_READ(DSPARB2);
357                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
358                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
359                 break;
360         case PIPE_B:
361                 dsparb = I915_READ(DSPARB);
362                 dsparb2 = I915_READ(DSPARB2);
363                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
364                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
365                 break;
366         case PIPE_C:
367                 dsparb2 = I915_READ(DSPARB2);
368                 dsparb3 = I915_READ(DSPARB3);
369                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
370                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
371                 break;
372         default:
373                 return 0;
374         }
375
376         switch (plane) {
377         case 0:
378                 size = sprite0_start;
379                 break;
380         case 1:
381                 size = sprite1_start - sprite0_start;
382                 break;
383         case 2:
384                 size = 512 - 1 - sprite1_start;
385                 break;
386         default:
387                 return 0;
388         }
389
390         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
391                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
392                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
393                       size);
394
395         return size;
396 }
397
398 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399 {
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t dsparb = I915_READ(DSPARB);
402         int size;
403
404         size = dsparb & 0x7f;
405         if (plane)
406                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
407
408         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
409                       plane ? "B" : "A", size);
410
411         return size;
412 }
413
414 static int i830_get_fifo_size(struct drm_device *dev, int plane)
415 {
416         struct drm_i915_private *dev_priv = dev->dev_private;
417         uint32_t dsparb = I915_READ(DSPARB);
418         int size;
419
420         size = dsparb & 0x1ff;
421         if (plane)
422                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
423         size >>= 1; /* Convert to cachelines */
424
425         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
426                       plane ? "B" : "A", size);
427
428         return size;
429 }
430
431 static int i845_get_fifo_size(struct drm_device *dev, int plane)
432 {
433         struct drm_i915_private *dev_priv = dev->dev_private;
434         uint32_t dsparb = I915_READ(DSPARB);
435         int size;
436
437         size = dsparb & 0x7f;
438         size >>= 2; /* Convert to cachelines */
439
440         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
441                       plane ? "B" : "A",
442                       size);
443
444         return size;
445 }
446
447 /* Pineview has different values for various configs */
448 static const struct intel_watermark_params pineview_display_wm = {
449         .fifo_size = PINEVIEW_DISPLAY_FIFO,
450         .max_wm = PINEVIEW_MAX_WM,
451         .default_wm = PINEVIEW_DFT_WM,
452         .guard_size = PINEVIEW_GUARD_WM,
453         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454 };
455 static const struct intel_watermark_params pineview_display_hplloff_wm = {
456         .fifo_size = PINEVIEW_DISPLAY_FIFO,
457         .max_wm = PINEVIEW_MAX_WM,
458         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
459         .guard_size = PINEVIEW_GUARD_WM,
460         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461 };
462 static const struct intel_watermark_params pineview_cursor_wm = {
463         .fifo_size = PINEVIEW_CURSOR_FIFO,
464         .max_wm = PINEVIEW_CURSOR_MAX_WM,
465         .default_wm = PINEVIEW_CURSOR_DFT_WM,
466         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
467         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 };
469 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470         .fifo_size = PINEVIEW_CURSOR_FIFO,
471         .max_wm = PINEVIEW_CURSOR_MAX_WM,
472         .default_wm = PINEVIEW_CURSOR_DFT_WM,
473         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
474         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 };
476 static const struct intel_watermark_params g4x_wm_info = {
477         .fifo_size = G4X_FIFO_SIZE,
478         .max_wm = G4X_MAX_WM,
479         .default_wm = G4X_MAX_WM,
480         .guard_size = 2,
481         .cacheline_size = G4X_FIFO_LINE_SIZE,
482 };
483 static const struct intel_watermark_params g4x_cursor_wm_info = {
484         .fifo_size = I965_CURSOR_FIFO,
485         .max_wm = I965_CURSOR_MAX_WM,
486         .default_wm = I965_CURSOR_DFT_WM,
487         .guard_size = 2,
488         .cacheline_size = G4X_FIFO_LINE_SIZE,
489 };
490 static const struct intel_watermark_params valleyview_wm_info = {
491         .fifo_size = VALLEYVIEW_FIFO_SIZE,
492         .max_wm = VALLEYVIEW_MAX_WM,
493         .default_wm = VALLEYVIEW_MAX_WM,
494         .guard_size = 2,
495         .cacheline_size = G4X_FIFO_LINE_SIZE,
496 };
497 static const struct intel_watermark_params valleyview_cursor_wm_info = {
498         .fifo_size = I965_CURSOR_FIFO,
499         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
500         .default_wm = I965_CURSOR_DFT_WM,
501         .guard_size = 2,
502         .cacheline_size = G4X_FIFO_LINE_SIZE,
503 };
504 static const struct intel_watermark_params i965_cursor_wm_info = {
505         .fifo_size = I965_CURSOR_FIFO,
506         .max_wm = I965_CURSOR_MAX_WM,
507         .default_wm = I965_CURSOR_DFT_WM,
508         .guard_size = 2,
509         .cacheline_size = I915_FIFO_LINE_SIZE,
510 };
511 static const struct intel_watermark_params i945_wm_info = {
512         .fifo_size = I945_FIFO_SIZE,
513         .max_wm = I915_MAX_WM,
514         .default_wm = 1,
515         .guard_size = 2,
516         .cacheline_size = I915_FIFO_LINE_SIZE,
517 };
518 static const struct intel_watermark_params i915_wm_info = {
519         .fifo_size = I915_FIFO_SIZE,
520         .max_wm = I915_MAX_WM,
521         .default_wm = 1,
522         .guard_size = 2,
523         .cacheline_size = I915_FIFO_LINE_SIZE,
524 };
525 static const struct intel_watermark_params i830_a_wm_info = {
526         .fifo_size = I855GM_FIFO_SIZE,
527         .max_wm = I915_MAX_WM,
528         .default_wm = 1,
529         .guard_size = 2,
530         .cacheline_size = I830_FIFO_LINE_SIZE,
531 };
532 static const struct intel_watermark_params i830_bc_wm_info = {
533         .fifo_size = I855GM_FIFO_SIZE,
534         .max_wm = I915_MAX_WM/2,
535         .default_wm = 1,
536         .guard_size = 2,
537         .cacheline_size = I830_FIFO_LINE_SIZE,
538 };
539 static const struct intel_watermark_params i845_wm_info = {
540         .fifo_size = I830_FIFO_SIZE,
541         .max_wm = I915_MAX_WM,
542         .default_wm = 1,
543         .guard_size = 2,
544         .cacheline_size = I830_FIFO_LINE_SIZE,
545 };
546
547 /**
548  * intel_calculate_wm - calculate watermark level
549  * @clock_in_khz: pixel clock
550  * @wm: chip FIFO params
551  * @cpp: bytes per pixel
552  * @latency_ns: memory latency for the platform
553  *
554  * Calculate the watermark level (the level at which the display plane will
555  * start fetching from memory again).  Each chip has a different display
556  * FIFO size and allocation, so the caller needs to figure that out and pass
557  * in the correct intel_watermark_params structure.
558  *
559  * As the pixel clock runs, the FIFO will be drained at a rate that depends
560  * on the pixel size.  When it reaches the watermark level, it'll start
561  * fetching FIFO line sized based chunks from memory until the FIFO fills
562  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
563  * will occur, and a display engine hang could result.
564  */
565 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
566                                         const struct intel_watermark_params *wm,
567                                         int fifo_size, int cpp,
568                                         unsigned long latency_ns)
569 {
570         long entries_required, wm_size;
571
572         /*
573          * Note: we need to make sure we don't overflow for various clock &
574          * latency values.
575          * clocks go from a few thousand to several hundred thousand.
576          * latency is usually a few thousand
577          */
578         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
579                 1000;
580         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
581
582         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
583
584         wm_size = fifo_size - (entries_required + wm->guard_size);
585
586         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
587
588         /* Don't promote wm_size to unsigned... */
589         if (wm_size > (long)wm->max_wm)
590                 wm_size = wm->max_wm;
591         if (wm_size <= 0)
592                 wm_size = wm->default_wm;
593
594         /*
595          * Bspec seems to indicate that the value shouldn't be lower than
596          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
597          * Lets go for 8 which is the burst size since certain platforms
598          * already use a hardcoded 8 (which is what the spec says should be
599          * done).
600          */
601         if (wm_size <= 8)
602                 wm_size = 8;
603
604         return wm_size;
605 }
606
607 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
608 {
609         struct drm_crtc *crtc, *enabled = NULL;
610
611         for_each_crtc(dev, crtc) {
612                 if (intel_crtc_active(crtc)) {
613                         if (enabled)
614                                 return NULL;
615                         enabled = crtc;
616                 }
617         }
618
619         return enabled;
620 }
621
622 static void pineview_update_wm(struct drm_crtc *unused_crtc)
623 {
624         struct drm_device *dev = unused_crtc->dev;
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         struct drm_crtc *crtc;
627         const struct cxsr_latency *latency;
628         u32 reg;
629         unsigned long wm;
630
631         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
632                                          dev_priv->fsb_freq, dev_priv->mem_freq);
633         if (!latency) {
634                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
635                 intel_set_memory_cxsr(dev_priv, false);
636                 return;
637         }
638
639         crtc = single_enabled_crtc(dev);
640         if (crtc) {
641                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
642                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
643                 int clock = adjusted_mode->crtc_clock;
644
645                 /* Display SR */
646                 wm = intel_calculate_wm(clock, &pineview_display_wm,
647                                         pineview_display_wm.fifo_size,
648                                         cpp, latency->display_sr);
649                 reg = I915_READ(DSPFW1);
650                 reg &= ~DSPFW_SR_MASK;
651                 reg |= FW_WM(wm, SR);
652                 I915_WRITE(DSPFW1, reg);
653                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
654
655                 /* cursor SR */
656                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
657                                         pineview_display_wm.fifo_size,
658                                         cpp, latency->cursor_sr);
659                 reg = I915_READ(DSPFW3);
660                 reg &= ~DSPFW_CURSOR_SR_MASK;
661                 reg |= FW_WM(wm, CURSOR_SR);
662                 I915_WRITE(DSPFW3, reg);
663
664                 /* Display HPLL off SR */
665                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
666                                         pineview_display_hplloff_wm.fifo_size,
667                                         cpp, latency->display_hpll_disable);
668                 reg = I915_READ(DSPFW3);
669                 reg &= ~DSPFW_HPLL_SR_MASK;
670                 reg |= FW_WM(wm, HPLL_SR);
671                 I915_WRITE(DSPFW3, reg);
672
673                 /* cursor HPLL off SR */
674                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
675                                         pineview_display_hplloff_wm.fifo_size,
676                                         cpp, latency->cursor_hpll_disable);
677                 reg = I915_READ(DSPFW3);
678                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
679                 reg |= FW_WM(wm, HPLL_CURSOR);
680                 I915_WRITE(DSPFW3, reg);
681                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
682
683                 intel_set_memory_cxsr(dev_priv, true);
684         } else {
685                 intel_set_memory_cxsr(dev_priv, false);
686         }
687 }
688
689 static bool g4x_compute_wm0(struct drm_device *dev,
690                             int plane,
691                             const struct intel_watermark_params *display,
692                             int display_latency_ns,
693                             const struct intel_watermark_params *cursor,
694                             int cursor_latency_ns,
695                             int *plane_wm,
696                             int *cursor_wm)
697 {
698         struct drm_crtc *crtc;
699         const struct drm_display_mode *adjusted_mode;
700         int htotal, hdisplay, clock, cpp;
701         int line_time_us, line_count;
702         int entries, tlb_miss;
703
704         crtc = intel_get_crtc_for_plane(dev, plane);
705         if (!intel_crtc_active(crtc)) {
706                 *cursor_wm = cursor->guard_size;
707                 *plane_wm = display->guard_size;
708                 return false;
709         }
710
711         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
712         clock = adjusted_mode->crtc_clock;
713         htotal = adjusted_mode->crtc_htotal;
714         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
715         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
716
717         /* Use the small buffer method to calculate plane watermark */
718         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
719         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
720         if (tlb_miss > 0)
721                 entries += tlb_miss;
722         entries = DIV_ROUND_UP(entries, display->cacheline_size);
723         *plane_wm = entries + display->guard_size;
724         if (*plane_wm > (int)display->max_wm)
725                 *plane_wm = display->max_wm;
726
727         /* Use the large buffer method to calculate cursor watermark */
728         line_time_us = max(htotal * 1000 / clock, 1);
729         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
730         entries = line_count * crtc->cursor->state->crtc_w * cpp;
731         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
732         if (tlb_miss > 0)
733                 entries += tlb_miss;
734         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735         *cursor_wm = entries + cursor->guard_size;
736         if (*cursor_wm > (int)cursor->max_wm)
737                 *cursor_wm = (int)cursor->max_wm;
738
739         return true;
740 }
741
742 /*
743  * Check the wm result.
744  *
745  * If any calculated watermark values is larger than the maximum value that
746  * can be programmed into the associated watermark register, that watermark
747  * must be disabled.
748  */
749 static bool g4x_check_srwm(struct drm_device *dev,
750                            int display_wm, int cursor_wm,
751                            const struct intel_watermark_params *display,
752                            const struct intel_watermark_params *cursor)
753 {
754         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
755                       display_wm, cursor_wm);
756
757         if (display_wm > display->max_wm) {
758                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
759                               display_wm, display->max_wm);
760                 return false;
761         }
762
763         if (cursor_wm > cursor->max_wm) {
764                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
765                               cursor_wm, cursor->max_wm);
766                 return false;
767         }
768
769         if (!(display_wm || cursor_wm)) {
770                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
771                 return false;
772         }
773
774         return true;
775 }
776
777 static bool g4x_compute_srwm(struct drm_device *dev,
778                              int plane,
779                              int latency_ns,
780                              const struct intel_watermark_params *display,
781                              const struct intel_watermark_params *cursor,
782                              int *display_wm, int *cursor_wm)
783 {
784         struct drm_crtc *crtc;
785         const struct drm_display_mode *adjusted_mode;
786         int hdisplay, htotal, cpp, clock;
787         unsigned long line_time_us;
788         int line_count, line_size;
789         int small, large;
790         int entries;
791
792         if (!latency_ns) {
793                 *display_wm = *cursor_wm = 0;
794                 return false;
795         }
796
797         crtc = intel_get_crtc_for_plane(dev, plane);
798         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
799         clock = adjusted_mode->crtc_clock;
800         htotal = adjusted_mode->crtc_htotal;
801         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
802         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
803
804         line_time_us = max(htotal * 1000 / clock, 1);
805         line_count = (latency_ns / line_time_us + 1000) / 1000;
806         line_size = hdisplay * cpp;
807
808         /* Use the minimum of the small and large buffer method for primary */
809         small = ((clock * cpp / 1000) * latency_ns) / 1000;
810         large = line_count * line_size;
811
812         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
813         *display_wm = entries + display->guard_size;
814
815         /* calculate the self-refresh watermark for display cursor */
816         entries = line_count * cpp * crtc->cursor->state->crtc_w;
817         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
818         *cursor_wm = entries + cursor->guard_size;
819
820         return g4x_check_srwm(dev,
821                               *display_wm, *cursor_wm,
822                               display, cursor);
823 }
824
825 #define FW_WM_VLV(value, plane) \
826         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
827
828 static void vlv_write_wm_values(struct intel_crtc *crtc,
829                                 const struct vlv_wm_values *wm)
830 {
831         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
832         enum pipe pipe = crtc->pipe;
833
834         I915_WRITE(VLV_DDL(pipe),
835                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
836                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
837                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
838                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
839
840         I915_WRITE(DSPFW1,
841                    FW_WM(wm->sr.plane, SR) |
842                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
843                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
844                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
845         I915_WRITE(DSPFW2,
846                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
847                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
848                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
849         I915_WRITE(DSPFW3,
850                    FW_WM(wm->sr.cursor, CURSOR_SR));
851
852         if (IS_CHERRYVIEW(dev_priv)) {
853                 I915_WRITE(DSPFW7_CHV,
854                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
855                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
856                 I915_WRITE(DSPFW8_CHV,
857                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
858                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
859                 I915_WRITE(DSPFW9_CHV,
860                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
861                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
862                 I915_WRITE(DSPHOWM,
863                            FW_WM(wm->sr.plane >> 9, SR_HI) |
864                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
865                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
866                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
867                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
868                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
869                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
870                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
871                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
872                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
873         } else {
874                 I915_WRITE(DSPFW7,
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
876                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
877                 I915_WRITE(DSPHOWM,
878                            FW_WM(wm->sr.plane >> 9, SR_HI) |
879                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
880                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
881                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
882                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
883                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
884                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
885         }
886
887         /* zero (unused) WM1 watermarks */
888         I915_WRITE(DSPFW4, 0);
889         I915_WRITE(DSPFW5, 0);
890         I915_WRITE(DSPFW6, 0);
891         I915_WRITE(DSPHOWM1, 0);
892
893         POSTING_READ(DSPFW1);
894 }
895
896 #undef FW_WM_VLV
897
898 enum vlv_wm_level {
899         VLV_WM_LEVEL_PM2,
900         VLV_WM_LEVEL_PM5,
901         VLV_WM_LEVEL_DDR_DVFS,
902 };
903
904 /* latency must be in 0.1us units. */
905 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
906                                    unsigned int pipe_htotal,
907                                    unsigned int horiz_pixels,
908                                    unsigned int cpp,
909                                    unsigned int latency)
910 {
911         unsigned int ret;
912
913         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
914         ret = (ret + 1) * horiz_pixels * cpp;
915         ret = DIV_ROUND_UP(ret, 64);
916
917         return ret;
918 }
919
920 static void vlv_setup_wm_latency(struct drm_device *dev)
921 {
922         struct drm_i915_private *dev_priv = dev->dev_private;
923
924         /* all latencies in usec */
925         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
926
927         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
928
929         if (IS_CHERRYVIEW(dev_priv)) {
930                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
931                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
932
933                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
934         }
935 }
936
937 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
938                                      struct intel_crtc *crtc,
939                                      const struct intel_plane_state *state,
940                                      int level)
941 {
942         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
943         int clock, htotal, cpp, width, wm;
944
945         if (dev_priv->wm.pri_latency[level] == 0)
946                 return USHRT_MAX;
947
948         if (!state->visible)
949                 return 0;
950
951         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
952         clock = crtc->config->base.adjusted_mode.crtc_clock;
953         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
954         width = crtc->config->pipe_src_w;
955         if (WARN_ON(htotal == 0))
956                 htotal = 1;
957
958         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
959                 /*
960                  * FIXME the formula gives values that are
961                  * too big for the cursor FIFO, and hence we
962                  * would never be able to use cursors. For
963                  * now just hardcode the watermark.
964                  */
965                 wm = 63;
966         } else {
967                 wm = vlv_wm_method2(clock, htotal, width, cpp,
968                                     dev_priv->wm.pri_latency[level] * 10);
969         }
970
971         return min_t(int, wm, USHRT_MAX);
972 }
973
974 static void vlv_compute_fifo(struct intel_crtc *crtc)
975 {
976         struct drm_device *dev = crtc->base.dev;
977         struct vlv_wm_state *wm_state = &crtc->wm_state;
978         struct intel_plane *plane;
979         unsigned int total_rate = 0;
980         const int fifo_size = 512 - 1;
981         int fifo_extra, fifo_left = fifo_size;
982
983         for_each_intel_plane_on_crtc(dev, crtc, plane) {
984                 struct intel_plane_state *state =
985                         to_intel_plane_state(plane->base.state);
986
987                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
988                         continue;
989
990                 if (state->visible) {
991                         wm_state->num_active_planes++;
992                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
993                 }
994         }
995
996         for_each_intel_plane_on_crtc(dev, crtc, plane) {
997                 struct intel_plane_state *state =
998                         to_intel_plane_state(plane->base.state);
999                 unsigned int rate;
1000
1001                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002                         plane->wm.fifo_size = 63;
1003                         continue;
1004                 }
1005
1006                 if (!state->visible) {
1007                         plane->wm.fifo_size = 0;
1008                         continue;
1009                 }
1010
1011                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1013                 fifo_left -= plane->wm.fifo_size;
1014         }
1015
1016         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018         /* spread the remainder evenly */
1019         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020                 int plane_extra;
1021
1022                 if (fifo_left == 0)
1023                         break;
1024
1025                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026                         continue;
1027
1028                 /* give it all to the first plane if none are active */
1029                 if (plane->wm.fifo_size == 0 &&
1030                     wm_state->num_active_planes)
1031                         continue;
1032
1033                 plane_extra = min(fifo_extra, fifo_left);
1034                 plane->wm.fifo_size += plane_extra;
1035                 fifo_left -= plane_extra;
1036         }
1037
1038         WARN_ON(fifo_left != 0);
1039 }
1040
1041 static void vlv_invert_wms(struct intel_crtc *crtc)
1042 {
1043         struct vlv_wm_state *wm_state = &crtc->wm_state;
1044         int level;
1045
1046         for (level = 0; level < wm_state->num_levels; level++) {
1047                 struct drm_device *dev = crtc->base.dev;
1048                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049                 struct intel_plane *plane;
1050
1051                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055                         switch (plane->base.type) {
1056                                 int sprite;
1057                         case DRM_PLANE_TYPE_CURSOR:
1058                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1059                                         wm_state->wm[level].cursor;
1060                                 break;
1061                         case DRM_PLANE_TYPE_PRIMARY:
1062                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1063                                         wm_state->wm[level].primary;
1064                                 break;
1065                         case DRM_PLANE_TYPE_OVERLAY:
1066                                 sprite = plane->plane;
1067                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068                                         wm_state->wm[level].sprite[sprite];
1069                                 break;
1070                         }
1071                 }
1072         }
1073 }
1074
1075 static void vlv_compute_wm(struct intel_crtc *crtc)
1076 {
1077         struct drm_device *dev = crtc->base.dev;
1078         struct vlv_wm_state *wm_state = &crtc->wm_state;
1079         struct intel_plane *plane;
1080         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081         int level;
1082
1083         memset(wm_state, 0, sizeof(*wm_state));
1084
1085         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088         wm_state->num_active_planes = 0;
1089
1090         vlv_compute_fifo(crtc);
1091
1092         if (wm_state->num_active_planes != 1)
1093                 wm_state->cxsr = false;
1094
1095         if (wm_state->cxsr) {
1096                 for (level = 0; level < wm_state->num_levels; level++) {
1097                         wm_state->sr[level].plane = sr_fifo_size;
1098                         wm_state->sr[level].cursor = 63;
1099                 }
1100         }
1101
1102         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103                 struct intel_plane_state *state =
1104                         to_intel_plane_state(plane->base.state);
1105
1106                 if (!state->visible)
1107                         continue;
1108
1109                 /* normal watermarks */
1110                 for (level = 0; level < wm_state->num_levels; level++) {
1111                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114                         /* hack */
1115                         if (WARN_ON(level == 0 && wm > max_wm))
1116                                 wm = max_wm;
1117
1118                         if (wm > plane->wm.fifo_size)
1119                                 break;
1120
1121                         switch (plane->base.type) {
1122                                 int sprite;
1123                         case DRM_PLANE_TYPE_CURSOR:
1124                                 wm_state->wm[level].cursor = wm;
1125                                 break;
1126                         case DRM_PLANE_TYPE_PRIMARY:
1127                                 wm_state->wm[level].primary = wm;
1128                                 break;
1129                         case DRM_PLANE_TYPE_OVERLAY:
1130                                 sprite = plane->plane;
1131                                 wm_state->wm[level].sprite[sprite] = wm;
1132                                 break;
1133                         }
1134                 }
1135
1136                 wm_state->num_levels = level;
1137
1138                 if (!wm_state->cxsr)
1139                         continue;
1140
1141                 /* maxfifo watermarks */
1142                 switch (plane->base.type) {
1143                         int sprite, level;
1144                 case DRM_PLANE_TYPE_CURSOR:
1145                         for (level = 0; level < wm_state->num_levels; level++)
1146                                 wm_state->sr[level].cursor =
1147                                         wm_state->wm[level].cursor;
1148                         break;
1149                 case DRM_PLANE_TYPE_PRIMARY:
1150                         for (level = 0; level < wm_state->num_levels; level++)
1151                                 wm_state->sr[level].plane =
1152                                         min(wm_state->sr[level].plane,
1153                                             wm_state->wm[level].primary);
1154                         break;
1155                 case DRM_PLANE_TYPE_OVERLAY:
1156                         sprite = plane->plane;
1157                         for (level = 0; level < wm_state->num_levels; level++)
1158                                 wm_state->sr[level].plane =
1159                                         min(wm_state->sr[level].plane,
1160                                             wm_state->wm[level].sprite[sprite]);
1161                         break;
1162                 }
1163         }
1164
1165         /* clear any (partially) filled invalid levels */
1166         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169         }
1170
1171         vlv_invert_wms(crtc);
1172 }
1173
1174 #define VLV_FIFO(plane, value) \
1175         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178 {
1179         struct drm_device *dev = crtc->base.dev;
1180         struct drm_i915_private *dev_priv = to_i915(dev);
1181         struct intel_plane *plane;
1182         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186                         WARN_ON(plane->wm.fifo_size != 63);
1187                         continue;
1188                 }
1189
1190                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191                         sprite0_start = plane->wm.fifo_size;
1192                 else if (plane->plane == 0)
1193                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1194                 else
1195                         fifo_size = sprite1_start + plane->wm.fifo_size;
1196         }
1197
1198         WARN_ON(fifo_size != 512 - 1);
1199
1200         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201                       pipe_name(crtc->pipe), sprite0_start,
1202                       sprite1_start, fifo_size);
1203
1204         switch (crtc->pipe) {
1205                 uint32_t dsparb, dsparb2, dsparb3;
1206         case PIPE_A:
1207                 dsparb = I915_READ(DSPARB);
1208                 dsparb2 = I915_READ(DSPARB2);
1209
1210                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211                             VLV_FIFO(SPRITEB, 0xff));
1212                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213                            VLV_FIFO(SPRITEB, sprite1_start));
1214
1215                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216                              VLV_FIFO(SPRITEB_HI, 0x1));
1217                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220                 I915_WRITE(DSPARB, dsparb);
1221                 I915_WRITE(DSPARB2, dsparb2);
1222                 break;
1223         case PIPE_B:
1224                 dsparb = I915_READ(DSPARB);
1225                 dsparb2 = I915_READ(DSPARB2);
1226
1227                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228                             VLV_FIFO(SPRITED, 0xff));
1229                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230                            VLV_FIFO(SPRITED, sprite1_start));
1231
1232                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233                              VLV_FIFO(SPRITED_HI, 0xff));
1234                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237                 I915_WRITE(DSPARB, dsparb);
1238                 I915_WRITE(DSPARB2, dsparb2);
1239                 break;
1240         case PIPE_C:
1241                 dsparb3 = I915_READ(DSPARB3);
1242                 dsparb2 = I915_READ(DSPARB2);
1243
1244                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245                              VLV_FIFO(SPRITEF, 0xff));
1246                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247                             VLV_FIFO(SPRITEF, sprite1_start));
1248
1249                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250                              VLV_FIFO(SPRITEF_HI, 0xff));
1251                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254                 I915_WRITE(DSPARB3, dsparb3);
1255                 I915_WRITE(DSPARB2, dsparb2);
1256                 break;
1257         default:
1258                 break;
1259         }
1260 }
1261
1262 #undef VLV_FIFO
1263
1264 static void vlv_merge_wm(struct drm_device *dev,
1265                          struct vlv_wm_values *wm)
1266 {
1267         struct intel_crtc *crtc;
1268         int num_active_crtcs = 0;
1269
1270         wm->level = to_i915(dev)->wm.max_level;
1271         wm->cxsr = true;
1272
1273         for_each_intel_crtc(dev, crtc) {
1274                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276                 if (!crtc->active)
1277                         continue;
1278
1279                 if (!wm_state->cxsr)
1280                         wm->cxsr = false;
1281
1282                 num_active_crtcs++;
1283                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284         }
1285
1286         if (num_active_crtcs != 1)
1287                 wm->cxsr = false;
1288
1289         if (num_active_crtcs > 1)
1290                 wm->level = VLV_WM_LEVEL_PM2;
1291
1292         for_each_intel_crtc(dev, crtc) {
1293                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1294                 enum pipe pipe = crtc->pipe;
1295
1296                 if (!crtc->active)
1297                         continue;
1298
1299                 wm->pipe[pipe] = wm_state->wm[wm->level];
1300                 if (wm->cxsr)
1301                         wm->sr = wm_state->sr[wm->level];
1302
1303                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307         }
1308 }
1309
1310 static void vlv_update_wm(struct drm_crtc *crtc)
1311 {
1312         struct drm_device *dev = crtc->dev;
1313         struct drm_i915_private *dev_priv = dev->dev_private;
1314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315         enum pipe pipe = intel_crtc->pipe;
1316         struct vlv_wm_values wm = {};
1317
1318         vlv_compute_wm(intel_crtc);
1319         vlv_merge_wm(dev, &wm);
1320
1321         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322                 /* FIXME should be part of crtc atomic commit */
1323                 vlv_pipe_set_fifo_size(intel_crtc);
1324                 return;
1325         }
1326
1327         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329                 chv_set_memory_dvfs(dev_priv, false);
1330
1331         if (wm.level < VLV_WM_LEVEL_PM5 &&
1332             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333                 chv_set_memory_pm5(dev_priv, false);
1334
1335         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336                 intel_set_memory_cxsr(dev_priv, false);
1337
1338         /* FIXME should be part of crtc atomic commit */
1339         vlv_pipe_set_fifo_size(intel_crtc);
1340
1341         vlv_write_wm_values(intel_crtc, &wm);
1342
1343         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350                 intel_set_memory_cxsr(dev_priv, true);
1351
1352         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354                 chv_set_memory_pm5(dev_priv, true);
1355
1356         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358                 chv_set_memory_dvfs(dev_priv, true);
1359
1360         dev_priv->wm.vlv = wm;
1361 }
1362
1363 #define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365 static void g4x_update_wm(struct drm_crtc *crtc)
1366 {
1367         struct drm_device *dev = crtc->dev;
1368         static const int sr_latency_ns = 12000;
1369         struct drm_i915_private *dev_priv = dev->dev_private;
1370         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371         int plane_sr, cursor_sr;
1372         unsigned int enabled = 0;
1373         bool cxsr_enabled;
1374
1375         if (g4x_compute_wm0(dev, PIPE_A,
1376                             &g4x_wm_info, pessimal_latency_ns,
1377                             &g4x_cursor_wm_info, pessimal_latency_ns,
1378                             &planea_wm, &cursora_wm))
1379                 enabled |= 1 << PIPE_A;
1380
1381         if (g4x_compute_wm0(dev, PIPE_B,
1382                             &g4x_wm_info, pessimal_latency_ns,
1383                             &g4x_cursor_wm_info, pessimal_latency_ns,
1384                             &planeb_wm, &cursorb_wm))
1385                 enabled |= 1 << PIPE_B;
1386
1387         if (single_plane_enabled(enabled) &&
1388             g4x_compute_srwm(dev, ffs(enabled) - 1,
1389                              sr_latency_ns,
1390                              &g4x_wm_info,
1391                              &g4x_cursor_wm_info,
1392                              &plane_sr, &cursor_sr)) {
1393                 cxsr_enabled = true;
1394         } else {
1395                 cxsr_enabled = false;
1396                 intel_set_memory_cxsr(dev_priv, false);
1397                 plane_sr = cursor_sr = 0;
1398         }
1399
1400         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402                       planea_wm, cursora_wm,
1403                       planeb_wm, cursorb_wm,
1404                       plane_sr, cursor_sr);
1405
1406         I915_WRITE(DSPFW1,
1407                    FW_WM(plane_sr, SR) |
1408                    FW_WM(cursorb_wm, CURSORB) |
1409                    FW_WM(planeb_wm, PLANEB) |
1410                    FW_WM(planea_wm, PLANEA));
1411         I915_WRITE(DSPFW2,
1412                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413                    FW_WM(cursora_wm, CURSORA));
1414         /* HPLL off in SR has some issues on G4x... disable it */
1415         I915_WRITE(DSPFW3,
1416                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417                    FW_WM(cursor_sr, CURSOR_SR));
1418
1419         if (cxsr_enabled)
1420                 intel_set_memory_cxsr(dev_priv, true);
1421 }
1422
1423 static void i965_update_wm(struct drm_crtc *unused_crtc)
1424 {
1425         struct drm_device *dev = unused_crtc->dev;
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         struct drm_crtc *crtc;
1428         int srwm = 1;
1429         int cursor_sr = 16;
1430         bool cxsr_enabled;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438                 int clock = adjusted_mode->crtc_clock;
1439                 int htotal = adjusted_mode->crtc_htotal;
1440                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442                 unsigned long line_time_us;
1443                 int entries;
1444
1445                 line_time_us = max(htotal * 1000 / clock, 1);
1446
1447                 /* Use ns/us then divide to preserve precision */
1448                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                         cpp * hdisplay;
1450                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451                 srwm = I965_FIFO_SIZE - entries;
1452                 if (srwm < 0)
1453                         srwm = 1;
1454                 srwm &= 0x1ff;
1455                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456                               entries, srwm);
1457
1458                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459                         cpp * crtc->cursor->state->crtc_w;
1460                 entries = DIV_ROUND_UP(entries,
1461                                           i965_cursor_wm_info.cacheline_size);
1462                 cursor_sr = i965_cursor_wm_info.fifo_size -
1463                         (entries + i965_cursor_wm_info.guard_size);
1464
1465                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1466                         cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469                               "cursor %d\n", srwm, cursor_sr);
1470
1471                 cxsr_enabled = true;
1472         } else {
1473                 cxsr_enabled = false;
1474                 /* Turn off self refresh if both pipes are enabled */
1475                 intel_set_memory_cxsr(dev_priv, false);
1476         }
1477
1478         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479                       srwm);
1480
1481         /* 965 has limitations... */
1482         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483                    FW_WM(8, CURSORB) |
1484                    FW_WM(8, PLANEB) |
1485                    FW_WM(8, PLANEA));
1486         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487                    FW_WM(8, PLANEC_OLD));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491         if (cxsr_enabled)
1492                 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 #undef FW_WM
1496
1497 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498 {
1499         struct drm_device *dev = unused_crtc->dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         const struct intel_watermark_params *wm_info;
1502         uint32_t fwater_lo;
1503         uint32_t fwater_hi;
1504         int cwm, srwm = 1;
1505         int fifo_size;
1506         int planea_wm, planeb_wm;
1507         struct drm_crtc *crtc, *enabled = NULL;
1508
1509         if (IS_I945GM(dev))
1510                 wm_info = &i945_wm_info;
1511         else if (!IS_GEN2(dev))
1512                 wm_info = &i915_wm_info;
1513         else
1514                 wm_info = &i830_a_wm_info;
1515
1516         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517         crtc = intel_get_crtc_for_plane(dev, 0);
1518         if (intel_crtc_active(crtc)) {
1519                 const struct drm_display_mode *adjusted_mode;
1520                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521                 if (IS_GEN2(dev))
1522                         cpp = 4;
1523
1524                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526                                                wm_info, fifo_size, cpp,
1527                                                pessimal_latency_ns);
1528                 enabled = crtc;
1529         } else {
1530                 planea_wm = fifo_size - wm_info->guard_size;
1531                 if (planea_wm > (long)wm_info->max_wm)
1532                         planea_wm = wm_info->max_wm;
1533         }
1534
1535         if (IS_GEN2(dev))
1536                 wm_info = &i830_bc_wm_info;
1537
1538         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539         crtc = intel_get_crtc_for_plane(dev, 1);
1540         if (intel_crtc_active(crtc)) {
1541                 const struct drm_display_mode *adjusted_mode;
1542                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543                 if (IS_GEN2(dev))
1544                         cpp = 4;
1545
1546                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548                                                wm_info, fifo_size, cpp,
1549                                                pessimal_latency_ns);
1550                 if (enabled == NULL)
1551                         enabled = crtc;
1552                 else
1553                         enabled = NULL;
1554         } else {
1555                 planeb_wm = fifo_size - wm_info->guard_size;
1556                 if (planeb_wm > (long)wm_info->max_wm)
1557                         planeb_wm = wm_info->max_wm;
1558         }
1559
1560         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562         if (IS_I915GM(dev) && enabled) {
1563                 struct drm_i915_gem_object *obj;
1564
1565                 obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567                 /* self-refresh seems busted with untiled */
1568                 if (obj->tiling_mode == I915_TILING_NONE)
1569                         enabled = NULL;
1570         }
1571
1572         /*
1573          * Overlay gets an aggressive default since video jitter is bad.
1574          */
1575         cwm = 2;
1576
1577         /* Play safe and disable self-refresh before adjusting watermarks. */
1578         intel_set_memory_cxsr(dev_priv, false);
1579
1580         /* Calc sr entries for one plane configs */
1581         if (HAS_FW_BLC(dev) && enabled) {
1582                 /* self-refresh has much higher latency */
1583                 static const int sr_latency_ns = 6000;
1584                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585                 int clock = adjusted_mode->crtc_clock;
1586                 int htotal = adjusted_mode->crtc_htotal;
1587                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589                 unsigned long line_time_us;
1590                 int entries;
1591
1592                 line_time_us = max(htotal * 1000 / clock, 1);
1593
1594                 /* Use ns/us then divide to preserve precision */
1595                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596                         cpp * hdisplay;
1597                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599                 srwm = wm_info->fifo_size - entries;
1600                 if (srwm < 0)
1601                         srwm = 1;
1602
1603                 if (IS_I945G(dev) || IS_I945GM(dev))
1604                         I915_WRITE(FW_BLC_SELF,
1605                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606                 else if (IS_I915GM(dev))
1607                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608         }
1609
1610         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611                       planea_wm, planeb_wm, cwm, srwm);
1612
1613         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614         fwater_hi = (cwm & 0x1f);
1615
1616         /* Set request length to 8 cachelines per fetch */
1617         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618         fwater_hi = fwater_hi | (1 << 8);
1619
1620         I915_WRITE(FW_BLC, fwater_lo);
1621         I915_WRITE(FW_BLC2, fwater_hi);
1622
1623         if (enabled)
1624                 intel_set_memory_cxsr(dev_priv, true);
1625 }
1626
1627 static void i845_update_wm(struct drm_crtc *unused_crtc)
1628 {
1629         struct drm_device *dev = unused_crtc->dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         struct drm_crtc *crtc;
1632         const struct drm_display_mode *adjusted_mode;
1633         uint32_t fwater_lo;
1634         int planea_wm;
1635
1636         crtc = single_enabled_crtc(dev);
1637         if (crtc == NULL)
1638                 return;
1639
1640         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642                                        &i845_wm_info,
1643                                        dev_priv->display.get_fifo_size(dev, 0),
1644                                        4, pessimal_latency_ns);
1645         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646         fwater_lo |= (3<<8) | planea_wm;
1647
1648         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650         I915_WRITE(FW_BLC, fwater_lo);
1651 }
1652
1653 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654 {
1655         uint32_t pixel_rate;
1656
1657         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660          * adjust the pixel_rate here. */
1661
1662         if (pipe_config->pch_pfit.enabled) {
1663                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666                 pipe_w = pipe_config->pipe_src_w;
1667                 pipe_h = pipe_config->pipe_src_h;
1668
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 if (WARN_ON(!pfit_w || !pfit_h))
1677                         return pixel_rate;
1678
1679                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680                                      pfit_w * pfit_h);
1681         }
1682
1683         return pixel_rate;
1684 }
1685
1686 /* latency must be in 0.1us units. */
1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688 {
1689         uint64_t ret;
1690
1691         if (WARN(latency == 0, "Latency value missing\n"))
1692                 return UINT_MAX;
1693
1694         ret = (uint64_t) pixel_rate * cpp * latency;
1695         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697         return ret;
1698 }
1699
1700 /* latency must be in 0.1us units. */
1701 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702                                uint32_t horiz_pixels, uint8_t cpp,
1703                                uint32_t latency)
1704 {
1705         uint32_t ret;
1706
1707         if (WARN(latency == 0, "Latency value missing\n"))
1708                 return UINT_MAX;
1709         if (WARN_ON(!pipe_htotal))
1710                 return UINT_MAX;
1711
1712         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713         ret = (ret + 1) * horiz_pixels * cpp;
1714         ret = DIV_ROUND_UP(ret, 64) + 2;
1715         return ret;
1716 }
1717
1718 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719                            uint8_t cpp)
1720 {
1721         /*
1722          * Neither of these should be possible since this function shouldn't be
1723          * called if the CRTC is off or the plane is invisible.  But let's be
1724          * extra paranoid to avoid a potential divide-by-zero if we screw up
1725          * elsewhere in the driver.
1726          */
1727         if (WARN_ON(!cpp))
1728                 return 0;
1729         if (WARN_ON(!horiz_pixels))
1730                 return 0;
1731
1732         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733 }
1734
1735 struct ilk_wm_maximums {
1736         uint16_t pri;
1737         uint16_t spr;
1738         uint16_t cur;
1739         uint16_t fbc;
1740 };
1741
1742 /*
1743  * For both WM_PIPE and WM_LP.
1744  * mem_value must be in 0.1us units.
1745  */
1746 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747                                    const struct intel_plane_state *pstate,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         int cpp = pstate->base.fb ?
1752                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753         uint32_t method1, method2;
1754
1755         if (!cstate->base.active || !pstate->visible)
1756                 return 0;
1757
1758         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764                                  cstate->base.adjusted_mode.crtc_htotal,
1765                                  drm_rect_width(&pstate->dst),
1766                                  cpp, mem_value);
1767
1768         return min(method1, method2);
1769 }
1770
1771 /*
1772  * For both WM_PIPE and WM_LP.
1773  * mem_value must be in 0.1us units.
1774  */
1775 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776                                    const struct intel_plane_state *pstate,
1777                                    uint32_t mem_value)
1778 {
1779         int cpp = pstate->base.fb ?
1780                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781         uint32_t method1, method2;
1782
1783         if (!cstate->base.active || !pstate->visible)
1784                 return 0;
1785
1786         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788                                  cstate->base.adjusted_mode.crtc_htotal,
1789                                  drm_rect_width(&pstate->dst),
1790                                  cpp, mem_value);
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799                                    const struct intel_plane_state *pstate,
1800                                    uint32_t mem_value)
1801 {
1802         /*
1803          * We treat the cursor plane as always-on for the purposes of watermark
1804          * calculation.  Until we have two-stage watermark programming merged,
1805          * this is necessary to avoid flickering.
1806          */
1807         int cpp = 4;
1808         int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810         if (!cstate->base.active)
1811                 return 0;
1812
1813         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814                               cstate->base.adjusted_mode.crtc_htotal,
1815                               width, cpp, mem_value);
1816 }
1817
1818 /* Only for WM_LP. */
1819 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820                                    const struct intel_plane_state *pstate,
1821                                    uint32_t pri_val)
1822 {
1823         int cpp = pstate->base.fb ?
1824                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826         if (!cstate->base.active || !pstate->visible)
1827                 return 0;
1828
1829         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830 }
1831
1832 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833 {
1834         if (INTEL_INFO(dev)->gen >= 8)
1835                 return 3072;
1836         else if (INTEL_INFO(dev)->gen >= 7)
1837                 return 768;
1838         else
1839                 return 512;
1840 }
1841
1842 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843                                          int level, bool is_sprite)
1844 {
1845         if (INTEL_INFO(dev)->gen >= 8)
1846                 /* BDW primary/sprite plane watermarks */
1847                 return level == 0 ? 255 : 2047;
1848         else if (INTEL_INFO(dev)->gen >= 7)
1849                 /* IVB/HSW primary/sprite plane watermarks */
1850                 return level == 0 ? 127 : 1023;
1851         else if (!is_sprite)
1852                 /* ILK/SNB primary plane watermarks */
1853                 return level == 0 ? 127 : 511;
1854         else
1855                 /* ILK/SNB sprite plane watermarks */
1856                 return level == 0 ? 63 : 255;
1857 }
1858
1859 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860                                           int level)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 7)
1863                 return level == 0 ? 63 : 255;
1864         else
1865                 return level == 0 ? 31 : 63;
1866 }
1867
1868 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869 {
1870         if (INTEL_INFO(dev)->gen >= 8)
1871                 return 31;
1872         else
1873                 return 15;
1874 }
1875
1876 /* Calculate the maximum primary/sprite plane watermark */
1877 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878                                      int level,
1879                                      const struct intel_wm_config *config,
1880                                      enum intel_ddb_partitioning ddb_partitioning,
1881                                      bool is_sprite)
1882 {
1883         unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885         /* if sprites aren't enabled, sprites get nothing */
1886         if (is_sprite && !config->sprites_enabled)
1887                 return 0;
1888
1889         /* HSW allows LP1+ watermarks even with multiple pipes */
1890         if (level == 0 || config->num_pipes_active > 1) {
1891                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893                 /*
1894                  * For some reason the non self refresh
1895                  * FIFO size is only half of the self
1896                  * refresh FIFO size on ILK/SNB.
1897                  */
1898                 if (INTEL_INFO(dev)->gen <= 6)
1899                         fifo_size /= 2;
1900         }
1901
1902         if (config->sprites_enabled) {
1903                 /* level 0 is always calculated with 1:1 split */
1904                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905                         if (is_sprite)
1906                                 fifo_size *= 5;
1907                         fifo_size /= 6;
1908                 } else {
1909                         fifo_size /= 2;
1910                 }
1911         }
1912
1913         /* clamp to max that the registers can hold */
1914         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915 }
1916
1917 /* Calculate the maximum cursor plane watermark */
1918 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919                                       int level,
1920                                       const struct intel_wm_config *config)
1921 {
1922         /* HSW LP1+ watermarks w/ multiple pipes */
1923         if (level > 0 && config->num_pipes_active > 1)
1924                 return 64;
1925
1926         /* otherwise just report max that registers can hold */
1927         return ilk_cursor_wm_reg_max(dev, level);
1928 }
1929
1930 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931                                     int level,
1932                                     const struct intel_wm_config *config,
1933                                     enum intel_ddb_partitioning ddb_partitioning,
1934                                     struct ilk_wm_maximums *max)
1935 {
1936         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938         max->cur = ilk_cursor_wm_max(dev, level, config);
1939         max->fbc = ilk_fbc_wm_reg_max(dev);
1940 }
1941
1942 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943                                         int level,
1944                                         struct ilk_wm_maximums *max)
1945 {
1946         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948         max->cur = ilk_cursor_wm_reg_max(dev, level);
1949         max->fbc = ilk_fbc_wm_reg_max(dev);
1950 }
1951
1952 static bool ilk_validate_wm_level(int level,
1953                                   const struct ilk_wm_maximums *max,
1954                                   struct intel_wm_level *result)
1955 {
1956         bool ret;
1957
1958         /* already determined to be invalid? */
1959         if (!result->enable)
1960                 return false;
1961
1962         result->enable = result->pri_val <= max->pri &&
1963                          result->spr_val <= max->spr &&
1964                          result->cur_val <= max->cur;
1965
1966         ret = result->enable;
1967
1968         /*
1969          * HACK until we can pre-compute everything,
1970          * and thus fail gracefully if LP0 watermarks
1971          * are exceeded...
1972          */
1973         if (level == 0 && !result->enable) {
1974                 if (result->pri_val > max->pri)
1975                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976                                       level, result->pri_val, max->pri);
1977                 if (result->spr_val > max->spr)
1978                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979                                       level, result->spr_val, max->spr);
1980                 if (result->cur_val > max->cur)
1981                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982                                       level, result->cur_val, max->cur);
1983
1984                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987                 result->enable = true;
1988         }
1989
1990         return ret;
1991 }
1992
1993 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994                                  const struct intel_crtc *intel_crtc,
1995                                  int level,
1996                                  struct intel_crtc_state *cstate,
1997                                  struct intel_plane_state *pristate,
1998                                  struct intel_plane_state *sprstate,
1999                                  struct intel_plane_state *curstate,
2000                                  struct intel_wm_level *result)
2001 {
2002         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006         /* WM1+ latency values stored in 0.5us units */
2007         if (level > 0) {
2008                 pri_latency *= 5;
2009                 spr_latency *= 5;
2010                 cur_latency *= 5;
2011         }
2012
2013         result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014                                              pri_latency, level);
2015         result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016         result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017         result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018         result->enable = true;
2019 }
2020
2021 static uint32_t
2022 hsw_compute_linetime_wm(struct drm_device *dev,
2023                         struct intel_crtc_state *cstate)
2024 {
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026         const struct drm_display_mode *adjusted_mode =
2027                 &cstate->base.adjusted_mode;
2028         u32 linetime, ips_linetime;
2029
2030         if (!cstate->base.active)
2031                 return 0;
2032         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033                 return 0;
2034         if (WARN_ON(dev_priv->cdclk_freq == 0))
2035                 return 0;
2036
2037         /* The WM are computed with base on how long it takes to fill a single
2038          * row at the given clock rate, multiplied by 8.
2039          * */
2040         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041                                      adjusted_mode->crtc_clock);
2042         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043                                          dev_priv->cdclk_freq);
2044
2045         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046                PIPE_WM_LINETIME_TIME(linetime);
2047 }
2048
2049 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050 {
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053         if (IS_GEN9(dev)) {
2054                 uint32_t val;
2055                 int ret, i;
2056                 int level, max_level = ilk_wm_max_level(dev);
2057
2058                 /* read the first set of memory latencies[0:3] */
2059                 val = 0; /* data0 to be programmed to 0 for first set */
2060                 mutex_lock(&dev_priv->rps.hw_lock);
2061                 ret = sandybridge_pcode_read(dev_priv,
2062                                              GEN9_PCODE_READ_MEM_LATENCY,
2063                                              &val);
2064                 mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066                 if (ret) {
2067                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068                         return;
2069                 }
2070
2071                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2074                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2076                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079                 /* read the second set of memory latencies[4:7] */
2080                 val = 1; /* data0 to be programmed to 1 for second set */
2081                 mutex_lock(&dev_priv->rps.hw_lock);
2082                 ret = sandybridge_pcode_read(dev_priv,
2083                                              GEN9_PCODE_READ_MEM_LATENCY,
2084                                              &val);
2085                 mutex_unlock(&dev_priv->rps.hw_lock);
2086                 if (ret) {
2087                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088                         return;
2089                 }
2090
2091                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099                 /*
2100                  * WaWmMemoryReadLatency:skl
2101                  *
2102                  * punit doesn't take into account the read latency so we need
2103                  * to add 2us to the various latency levels we retrieve from
2104                  * the punit.
2105                  *   - W0 is a bit special in that it's the only level that
2106                  *   can't be disabled if we want to have display working, so
2107                  *   we always add 2us there.
2108                  *   - For levels >=1, punit returns 0us latency when they are
2109                  *   disabled, so we respect that and don't add 2us then
2110                  *
2111                  * Additionally, if a level n (n > 1) has a 0us latency, all
2112                  * levels m (m >= n) need to be disabled. We make sure to
2113                  * sanitize the values out of the punit to satisfy this
2114                  * requirement.
2115                  */
2116                 wm[0] += 2;
2117                 for (level = 1; level <= max_level; level++)
2118                         if (wm[level] != 0)
2119                                 wm[level] += 2;
2120                         else {
2121                                 for (i = level + 1; i <= max_level; i++)
2122                                         wm[i] = 0;
2123
2124                                 break;
2125                         }
2126         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129                 wm[0] = (sskpd >> 56) & 0xFF;
2130                 if (wm[0] == 0)
2131                         wm[0] = sskpd & 0xF;
2132                 wm[1] = (sskpd >> 4) & 0xFF;
2133                 wm[2] = (sskpd >> 12) & 0xFF;
2134                 wm[3] = (sskpd >> 20) & 0x1FF;
2135                 wm[4] = (sskpd >> 32) & 0x1FF;
2136         } else if (INTEL_INFO(dev)->gen >= 6) {
2137                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143         } else if (INTEL_INFO(dev)->gen >= 5) {
2144                 uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146                 /* ILK primary LP0 latency is 700 ns */
2147                 wm[0] = 7;
2148                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150         }
2151 }
2152
2153 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2154 {
2155         /* ILK sprite LP0 latency is 1300 ns */
2156         if (INTEL_INFO(dev)->gen == 5)
2157                 wm[0] = 13;
2158 }
2159
2160 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161 {
2162         /* ILK cursor LP0 latency is 1300 ns */
2163         if (INTEL_INFO(dev)->gen == 5)
2164                 wm[0] = 13;
2165
2166         /* WaDoubleCursorLP3Latency:ivb */
2167         if (IS_IVYBRIDGE(dev))
2168                 wm[3] *= 2;
2169 }
2170
2171 int ilk_wm_max_level(const struct drm_device *dev)
2172 {
2173         /* how many WM levels are we expecting */
2174         if (INTEL_INFO(dev)->gen >= 9)
2175                 return 7;
2176         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177                 return 4;
2178         else if (INTEL_INFO(dev)->gen >= 6)
2179                 return 3;
2180         else
2181                 return 2;
2182 }
2183
2184 static void intel_print_wm_latency(struct drm_device *dev,
2185                                    const char *name,
2186                                    const uint16_t wm[8])
2187 {
2188         int level, max_level = ilk_wm_max_level(dev);
2189
2190         for (level = 0; level <= max_level; level++) {
2191                 unsigned int latency = wm[level];
2192
2193                 if (latency == 0) {
2194                         DRM_ERROR("%s WM%d latency not provided\n",
2195                                   name, level);
2196                         continue;
2197                 }
2198
2199                 /*
2200                  * - latencies are in us on gen9.
2201                  * - before then, WM1+ latency values are in 0.5us units
2202                  */
2203                 if (IS_GEN9(dev))
2204                         latency *= 10;
2205                 else if (level > 0)
2206                         latency *= 5;
2207
2208                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209                               name, level, wm[level],
2210                               latency / 10, latency % 10);
2211         }
2212 }
2213
2214 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215                                     uint16_t wm[5], uint16_t min)
2216 {
2217         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219         if (wm[0] >= min)
2220                 return false;
2221
2222         wm[0] = max(wm[0], min);
2223         for (level = 1; level <= max_level; level++)
2224                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226         return true;
2227 }
2228
2229 static void snb_wm_latency_quirk(struct drm_device *dev)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         bool changed;
2233
2234         /*
2235          * The BIOS provided WM memory latency values are often
2236          * inadequate for high resolution displays. Adjust them.
2237          */
2238         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242         if (!changed)
2243                 return;
2244
2245         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249 }
2250
2251 static void ilk_setup_wm_latency(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258                sizeof(dev_priv->wm.pri_latency));
2259         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260                sizeof(dev_priv->wm.pri_latency));
2261
2262         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269         if (IS_GEN6(dev))
2270                 snb_wm_latency_quirk(dev);
2271 }
2272
2273 static void skl_setup_wm_latency(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2279 }
2280
2281 /* Compute new watermarks for the pipe */
2282 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283                                struct drm_atomic_state *state)
2284 {
2285         struct intel_pipe_wm *pipe_wm;
2286         struct drm_device *dev = intel_crtc->base.dev;
2287         const struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct intel_crtc_state *cstate = NULL;
2289         struct intel_plane *intel_plane;
2290         struct drm_plane_state *ps;
2291         struct intel_plane_state *pristate = NULL;
2292         struct intel_plane_state *sprstate = NULL;
2293         struct intel_plane_state *curstate = NULL;
2294         int level, max_level = ilk_wm_max_level(dev);
2295         /* LP0 watermark maximums depend on this pipe alone */
2296         struct intel_wm_config config = {
2297                 .num_pipes_active = 1,
2298         };
2299         struct ilk_wm_maximums max;
2300
2301         cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302         if (IS_ERR(cstate))
2303                 return PTR_ERR(cstate);
2304
2305         pipe_wm = &cstate->wm.optimal.ilk;
2306         memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309                 ps = drm_atomic_get_plane_state(state,
2310                                                 &intel_plane->base);
2311                 if (IS_ERR(ps))
2312                         return PTR_ERR(ps);
2313
2314                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315                         pristate = to_intel_plane_state(ps);
2316                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317                         sprstate = to_intel_plane_state(ps);
2318                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319                         curstate = to_intel_plane_state(ps);
2320         }
2321
2322         config.sprites_enabled = sprstate->visible;
2323         config.sprites_scaled = sprstate->visible &&
2324                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327         pipe_wm->pipe_enabled = cstate->base.active;
2328         pipe_wm->sprites_enabled = config.sprites_enabled;
2329         pipe_wm->sprites_scaled = config.sprites_scaled;
2330
2331         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2332         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333                 max_level = 1;
2334
2335         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336         if (config.sprites_scaled)
2337                 max_level = 0;
2338
2339         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345         /* LP0 watermarks always use 1/2 DDB partitioning */
2346         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348         /* At least LP0 must be valid */
2349         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350                 return -EINVAL;
2351
2352         ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354         for (level = 1; level <= max_level; level++) {
2355                 struct intel_wm_level wm = {};
2356
2357                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358                                      pristate, sprstate, curstate, &wm);
2359
2360                 /*
2361                  * Disable any watermark level that exceeds the
2362                  * register maximums since such watermarks are
2363                  * always invalid.
2364                  */
2365                 if (!ilk_validate_wm_level(level, &max, &wm))
2366                         break;
2367
2368                 pipe_wm->wm[level] = wm;
2369         }
2370
2371         return 0;
2372 }
2373
2374 /*
2375  * Merge the watermarks from all active pipes for a specific level.
2376  */
2377 static void ilk_merge_wm_level(struct drm_device *dev,
2378                                int level,
2379                                struct intel_wm_level *ret_wm)
2380 {
2381         const struct intel_crtc *intel_crtc;
2382
2383         ret_wm->enable = true;
2384
2385         for_each_intel_crtc(dev, intel_crtc) {
2386                 const struct intel_crtc_state *cstate =
2387                         to_intel_crtc_state(intel_crtc->base.state);
2388                 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389                 const struct intel_wm_level *wm = &active->wm[level];
2390
2391                 if (!active->pipe_enabled)
2392                         continue;
2393
2394                 /*
2395                  * The watermark values may have been used in the past,
2396                  * so we must maintain them in the registers for some
2397                  * time even if the level is now disabled.
2398                  */
2399                 if (!wm->enable)
2400                         ret_wm->enable = false;
2401
2402                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406         }
2407 }
2408
2409 /*
2410  * Merge all low power watermarks for all active pipes.
2411  */
2412 static void ilk_wm_merge(struct drm_device *dev,
2413                          const struct intel_wm_config *config,
2414                          const struct ilk_wm_maximums *max,
2415                          struct intel_pipe_wm *merged)
2416 {
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         int level, max_level = ilk_wm_max_level(dev);
2419         int last_enabled_level = max_level;
2420
2421         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423             config->num_pipes_active > 1)
2424                 return;
2425
2426         /* ILK: FBC WM must be disabled always */
2427         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429         /* merge each WM1+ level */
2430         for (level = 1; level <= max_level; level++) {
2431                 struct intel_wm_level *wm = &merged->wm[level];
2432
2433                 ilk_merge_wm_level(dev, level, wm);
2434
2435                 if (level > last_enabled_level)
2436                         wm->enable = false;
2437                 else if (!ilk_validate_wm_level(level, max, wm))
2438                         /* make sure all following levels get disabled */
2439                         last_enabled_level = level - 1;
2440
2441                 /*
2442                  * The spec says it is preferred to disable
2443                  * FBC WMs instead of disabling a WM level.
2444                  */
2445                 if (wm->fbc_val > max->fbc) {
2446                         if (wm->enable)
2447                                 merged->fbc_wm_enabled = false;
2448                         wm->fbc_val = 0;
2449                 }
2450         }
2451
2452         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453         /*
2454          * FIXME this is racy. FBC might get enabled later.
2455          * What we should check here is whether FBC can be
2456          * enabled sometime later.
2457          */
2458         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459             intel_fbc_is_active(dev_priv)) {
2460                 for (level = 2; level <= max_level; level++) {
2461                         struct intel_wm_level *wm = &merged->wm[level];
2462
2463                         wm->enable = false;
2464                 }
2465         }
2466 }
2467
2468 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469 {
2470         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472 }
2473
2474 /* The value we need to program into the WM_LPx latency field */
2475 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476 {
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480                 return 2 * level;
2481         else
2482                 return dev_priv->wm.pri_latency[level];
2483 }
2484
2485 static void ilk_compute_wm_results(struct drm_device *dev,
2486                                    const struct intel_pipe_wm *merged,
2487                                    enum intel_ddb_partitioning partitioning,
2488                                    struct ilk_wm_values *results)
2489 {
2490         struct intel_crtc *intel_crtc;
2491         int level, wm_lp;
2492
2493         results->enable_fbc_wm = merged->fbc_wm_enabled;
2494         results->partitioning = partitioning;
2495
2496         /* LP1+ register values */
2497         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498                 const struct intel_wm_level *r;
2499
2500                 level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502                 r = &merged->wm[level];
2503
2504                 /*
2505                  * Maintain the watermark values even if the level is
2506                  * disabled. Doing otherwise could cause underruns.
2507                  */
2508                 results->wm_lp[wm_lp - 1] =
2509                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510                         (r->pri_val << WM1_LP_SR_SHIFT) |
2511                         r->cur_val;
2512
2513                 if (r->enable)
2514                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516                 if (INTEL_INFO(dev)->gen >= 8)
2517                         results->wm_lp[wm_lp - 1] |=
2518                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519                 else
2520                         results->wm_lp[wm_lp - 1] |=
2521                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523                 /*
2524                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2525                  * level is disabled. Doing otherwise could cause underruns.
2526                  */
2527                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528                         WARN_ON(wm_lp != 1);
2529                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530                 } else
2531                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532         }
2533
2534         /* LP0 register values */
2535         for_each_intel_crtc(dev, intel_crtc) {
2536                 const struct intel_crtc_state *cstate =
2537                         to_intel_crtc_state(intel_crtc->base.state);
2538                 enum pipe pipe = intel_crtc->pipe;
2539                 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2540
2541                 if (WARN_ON(!r->enable))
2542                         continue;
2543
2544                 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546                 results->wm_pipe[pipe] =
2547                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549                         r->cur_val;
2550         }
2551 }
2552
2553 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554  * case both are at the same level. Prefer r1 in case they're the same. */
2555 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556                                                   struct intel_pipe_wm *r1,
2557                                                   struct intel_pipe_wm *r2)
2558 {
2559         int level, max_level = ilk_wm_max_level(dev);
2560         int level1 = 0, level2 = 0;
2561
2562         for (level = 1; level <= max_level; level++) {
2563                 if (r1->wm[level].enable)
2564                         level1 = level;
2565                 if (r2->wm[level].enable)
2566                         level2 = level;
2567         }
2568
2569         if (level1 == level2) {
2570                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571                         return r2;
2572                 else
2573                         return r1;
2574         } else if (level1 > level2) {
2575                 return r1;
2576         } else {
2577                 return r2;
2578         }
2579 }
2580
2581 /* dirty bits used to track which watermarks need changes */
2582 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586 #define WM_DIRTY_FBC (1 << 24)
2587 #define WM_DIRTY_DDB (1 << 25)
2588
2589 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590                                          const struct ilk_wm_values *old,
2591                                          const struct ilk_wm_values *new)
2592 {
2593         unsigned int dirty = 0;
2594         enum pipe pipe;
2595         int wm_lp;
2596
2597         for_each_pipe(dev_priv, pipe) {
2598                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599                         dirty |= WM_DIRTY_LINETIME(pipe);
2600                         /* Must disable LP1+ watermarks too */
2601                         dirty |= WM_DIRTY_LP_ALL;
2602                 }
2603
2604                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605                         dirty |= WM_DIRTY_PIPE(pipe);
2606                         /* Must disable LP1+ watermarks too */
2607                         dirty |= WM_DIRTY_LP_ALL;
2608                 }
2609         }
2610
2611         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612                 dirty |= WM_DIRTY_FBC;
2613                 /* Must disable LP1+ watermarks too */
2614                 dirty |= WM_DIRTY_LP_ALL;
2615         }
2616
2617         if (old->partitioning != new->partitioning) {
2618                 dirty |= WM_DIRTY_DDB;
2619                 /* Must disable LP1+ watermarks too */
2620                 dirty |= WM_DIRTY_LP_ALL;
2621         }
2622
2623         /* LP1+ watermarks already deemed dirty, no need to continue */
2624         if (dirty & WM_DIRTY_LP_ALL)
2625                 return dirty;
2626
2627         /* Find the lowest numbered LP1+ watermark in need of an update... */
2628         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631                         break;
2632         }
2633
2634         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635         for (; wm_lp <= 3; wm_lp++)
2636                 dirty |= WM_DIRTY_LP(wm_lp);
2637
2638         return dirty;
2639 }
2640
2641 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642                                unsigned int dirty)
2643 {
2644         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645         bool changed = false;
2646
2647         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650                 changed = true;
2651         }
2652         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655                 changed = true;
2656         }
2657         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660                 changed = true;
2661         }
2662
2663         /*
2664          * Don't touch WM1S_LP_EN here.
2665          * Doing so could cause underruns.
2666          */
2667
2668         return changed;
2669 }
2670
2671 /*
2672  * The spec says we shouldn't write when we don't need, because every write
2673  * causes WMs to be re-evaluated, expending some power.
2674  */
2675 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676                                 struct ilk_wm_values *results)
2677 {
2678         struct drm_device *dev = dev_priv->dev;
2679         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680         unsigned int dirty;
2681         uint32_t val;
2682
2683         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684         if (!dirty)
2685                 return;
2686
2687         _ilk_disable_lp_wm(dev_priv, dirty);
2688
2689         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703         if (dirty & WM_DIRTY_DDB) {
2704                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705                         val = I915_READ(WM_MISC);
2706                         if (results->partitioning == INTEL_DDB_PART_1_2)
2707                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2708                         else
2709                                 val |= WM_MISC_DATA_PARTITION_5_6;
2710                         I915_WRITE(WM_MISC, val);
2711                 } else {
2712                         val = I915_READ(DISP_ARB_CTL2);
2713                         if (results->partitioning == INTEL_DDB_PART_1_2)
2714                                 val &= ~DISP_DATA_PARTITION_5_6;
2715                         else
2716                                 val |= DISP_DATA_PARTITION_5_6;
2717                         I915_WRITE(DISP_ARB_CTL2, val);
2718                 }
2719         }
2720
2721         if (dirty & WM_DIRTY_FBC) {
2722                 val = I915_READ(DISP_ARB_CTL);
2723                 if (results->enable_fbc_wm)
2724                         val &= ~DISP_FBC_WM_DIS;
2725                 else
2726                         val |= DISP_FBC_WM_DIS;
2727                 I915_WRITE(DISP_ARB_CTL, val);
2728         }
2729
2730         if (dirty & WM_DIRTY_LP(1) &&
2731             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734         if (INTEL_INFO(dev)->gen >= 7) {
2735                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739         }
2740
2741         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748         dev_priv->wm.hw = *results;
2749 }
2750
2751 static bool ilk_disable_lp_wm(struct drm_device *dev)
2752 {
2753         struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756 }
2757
2758 /*
2759  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760  * different active planes.
2761  */
2762
2763 #define SKL_DDB_SIZE            896     /* in blocks */
2764 #define BXT_DDB_SIZE            512
2765
2766 /*
2767  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2768  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769  * other universal planes are in indices 1..n.  Note that this may leave unused
2770  * indices between the top "sprite" plane and the cursor.
2771  */
2772 static int
2773 skl_wm_plane_id(const struct intel_plane *plane)
2774 {
2775         switch (plane->base.type) {
2776         case DRM_PLANE_TYPE_PRIMARY:
2777                 return 0;
2778         case DRM_PLANE_TYPE_CURSOR:
2779                 return PLANE_CURSOR;
2780         case DRM_PLANE_TYPE_OVERLAY:
2781                 return plane->plane + 1;
2782         default:
2783                 MISSING_CASE(plane->base.type);
2784                 return plane->plane;
2785         }
2786 }
2787
2788 static void
2789 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790                                    const struct intel_crtc_state *cstate,
2791                                    const struct intel_wm_config *config,
2792                                    struct skl_ddb_entry *alloc /* out */)
2793 {
2794         struct drm_crtc *for_crtc = cstate->base.crtc;
2795         struct drm_crtc *crtc;
2796         unsigned int pipe_size, ddb_size;
2797         int nth_active_pipe;
2798
2799         if (!cstate->base.active) {
2800                 alloc->start = 0;
2801                 alloc->end = 0;
2802                 return;
2803         }
2804
2805         if (IS_BROXTON(dev))
2806                 ddb_size = BXT_DDB_SIZE;
2807         else
2808                 ddb_size = SKL_DDB_SIZE;
2809
2810         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812         nth_active_pipe = 0;
2813         for_each_crtc(dev, crtc) {
2814                 if (!to_intel_crtc(crtc)->active)
2815                         continue;
2816
2817                 if (crtc == for_crtc)
2818                         break;
2819
2820                 nth_active_pipe++;
2821         }
2822
2823         pipe_size = ddb_size / config->num_pipes_active;
2824         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825         alloc->end = alloc->start + pipe_size;
2826 }
2827
2828 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829 {
2830         if (config->num_pipes_active == 1)
2831                 return 32;
2832
2833         return 8;
2834 }
2835
2836 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837 {
2838         entry->start = reg & 0x3ff;
2839         entry->end = (reg >> 16) & 0x3ff;
2840         if (entry->end)
2841                 entry->end += 1;
2842 }
2843
2844 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845                           struct skl_ddb_allocation *ddb /* out */)
2846 {
2847         enum pipe pipe;
2848         int plane;
2849         u32 val;
2850
2851         memset(ddb, 0, sizeof(*ddb));
2852
2853         for_each_pipe(dev_priv, pipe) {
2854                 enum intel_display_power_domain power_domain;
2855
2856                 power_domain = POWER_DOMAIN_PIPE(pipe);
2857                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858                         continue;
2859
2860                 for_each_plane(dev_priv, pipe, plane) {
2861                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863                                                    val);
2864                 }
2865
2866                 val = I915_READ(CUR_BUF_CFG(pipe));
2867                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868                                            val);
2869
2870                 intel_display_power_put(dev_priv, power_domain);
2871         }
2872 }
2873
2874 static unsigned int
2875 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876                              const struct drm_plane_state *pstate,
2877                              int y)
2878 {
2879         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880         struct drm_framebuffer *fb = pstate->fb;
2881         uint32_t width = 0, height = 0;
2882
2883         width = drm_rect_width(&intel_pstate->src) >> 16;
2884         height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886         if (intel_rotation_90_or_270(pstate->rotation))
2887                 swap(width, height);
2888
2889         /* for planar format */
2890         if (fb->pixel_format == DRM_FORMAT_NV12) {
2891                 if (y)  /* y-plane data rate */
2892                         return width * height *
2893                                 drm_format_plane_cpp(fb->pixel_format, 0);
2894                 else    /* uv-plane data rate */
2895                         return (width / 2) * (height / 2) *
2896                                 drm_format_plane_cpp(fb->pixel_format, 1);
2897         }
2898
2899         /* for packed formats */
2900         return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901 }
2902
2903 /*
2904  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905  * a 8192x4096@32bpp framebuffer:
2906  *   3 * 4096 * 8192  * 4 < 2^32
2907  */
2908 static unsigned int
2909 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910 {
2911         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912         struct drm_device *dev = intel_crtc->base.dev;
2913         const struct intel_plane *intel_plane;
2914         unsigned int total_data_rate = 0;
2915
2916         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917                 const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919                 if (pstate->fb == NULL)
2920                         continue;
2921
2922                 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923                         continue;
2924
2925                 /* packed/uv */
2926                 total_data_rate += skl_plane_relative_data_rate(cstate,
2927                                                                 pstate,
2928                                                                 0);
2929
2930                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931                         /* y-plane */
2932                         total_data_rate += skl_plane_relative_data_rate(cstate,
2933                                                                         pstate,
2934                                                                         1);
2935         }
2936
2937         return total_data_rate;
2938 }
2939
2940 static void
2941 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942                       struct skl_ddb_allocation *ddb /* out */)
2943 {
2944         struct drm_crtc *crtc = cstate->base.crtc;
2945         struct drm_device *dev = crtc->dev;
2946         struct drm_i915_private *dev_priv = to_i915(dev);
2947         struct intel_wm_config *config = &dev_priv->wm.config;
2948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949         struct intel_plane *intel_plane;
2950         enum pipe pipe = intel_crtc->pipe;
2951         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952         uint16_t alloc_size, start, cursor_blocks;
2953         uint16_t minimum[I915_MAX_PLANES];
2954         uint16_t y_minimum[I915_MAX_PLANES];
2955         unsigned int total_data_rate;
2956
2957         skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958         alloc_size = skl_ddb_entry_size(alloc);
2959         if (alloc_size == 0) {
2960                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961                 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962                        sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963                 return;
2964         }
2965
2966         cursor_blocks = skl_cursor_allocation(config);
2967         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970         alloc_size -= cursor_blocks;
2971         alloc->end -= cursor_blocks;
2972
2973         /* 1. Allocate the mininum required blocks for each active plane */
2974         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975                 struct drm_plane *plane = &intel_plane->base;
2976                 struct drm_framebuffer *fb = plane->state->fb;
2977                 int id = skl_wm_plane_id(intel_plane);
2978
2979                 if (!to_intel_plane_state(plane->state)->visible)
2980                         continue;
2981
2982                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983                         continue;
2984
2985                 minimum[id] = 8;
2986                 alloc_size -= minimum[id];
2987                 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988                 alloc_size -= y_minimum[id];
2989         }
2990
2991         /*
2992          * 2. Distribute the remaining space in proportion to the amount of
2993          * data each plane needs to fetch from memory.
2994          *
2995          * FIXME: we may not allocate every single block here.
2996          */
2997         total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999         start = alloc->start;
3000         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001                 struct drm_plane *plane = &intel_plane->base;
3002                 struct drm_plane_state *pstate = intel_plane->base.state;
3003                 unsigned int data_rate, y_data_rate;
3004                 uint16_t plane_blocks, y_plane_blocks = 0;
3005                 int id = skl_wm_plane_id(intel_plane);
3006
3007                 if (!to_intel_plane_state(pstate)->visible)
3008                         continue;
3009                 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010                         continue;
3011
3012                 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014                 /*
3015                  * allocation for (packed formats) or (uv-plane part of planar format):
3016                  * promote the expression to 64 bits to avoid overflowing, the
3017                  * result is < available as data_rate / total_data_rate < 1
3018                  */
3019                 plane_blocks = minimum[id];
3020                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021                                         total_data_rate);
3022
3023                 ddb->plane[pipe][id].start = start;
3024                 ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026                 start += plane_blocks;
3027
3028                 /*
3029                  * allocation for y_plane part of planar format:
3030                  */
3031                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032                         y_data_rate = skl_plane_relative_data_rate(cstate,
3033                                                                    pstate,
3034                                                                    1);
3035                         y_plane_blocks = y_minimum[id];
3036                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037                                                 total_data_rate);
3038
3039                         ddb->y_plane[pipe][id].start = start;
3040                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042                         start += y_plane_blocks;
3043                 }
3044
3045         }
3046
3047 }
3048
3049 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050 {
3051         /* TODO: Take into account the scalers once we support them */
3052         return config->base.adjusted_mode.crtc_clock;
3053 }
3054
3055 /*
3056  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057  * for the read latency) and cpp should always be <= 8, so that
3058  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060 */
3061 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062 {
3063         uint32_t wm_intermediate_val, ret;
3064
3065         if (latency == 0)
3066                 return UINT_MAX;
3067
3068         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071         return ret;
3072 }
3073
3074 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075                                uint32_t horiz_pixels, uint8_t cpp,
3076                                uint64_t tiling, uint32_t latency)
3077 {
3078         uint32_t ret;
3079         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080         uint32_t wm_intermediate_val;
3081
3082         if (latency == 0)
3083                 return UINT_MAX;
3084
3085         plane_bytes_per_line = horiz_pixels * cpp;
3086
3087         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088             tiling == I915_FORMAT_MOD_Yf_TILED) {
3089                 plane_bytes_per_line *= 4;
3090                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091                 plane_blocks_per_line /= 4;
3092         } else {
3093                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094         }
3095
3096         wm_intermediate_val = latency * pixel_rate;
3097         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098                                 plane_blocks_per_line;
3099
3100         return ret;
3101 }
3102
3103 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104                                        const struct intel_crtc *intel_crtc)
3105 {
3106         struct drm_device *dev = intel_crtc->base.dev;
3107         struct drm_i915_private *dev_priv = dev->dev_private;
3108         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110         /*
3111          * If ddb allocation of pipes changed, it may require recalculation of
3112          * watermarks
3113          */
3114         if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115                 return true;
3116
3117         return false;
3118 }
3119
3120 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121                                  struct intel_crtc_state *cstate,
3122                                  struct intel_plane *intel_plane,
3123                                  uint16_t ddb_allocation,
3124                                  int level,
3125                                  uint16_t *out_blocks, /* out */
3126                                  uint8_t *out_lines /* out */)
3127 {
3128         struct drm_plane *plane = &intel_plane->base;
3129         struct drm_framebuffer *fb = plane->state->fb;
3130         struct intel_plane_state *intel_pstate =
3131                                         to_intel_plane_state(plane->state);
3132         uint32_t latency = dev_priv->wm.skl_latency[level];
3133         uint32_t method1, method2;
3134         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135         uint32_t res_blocks, res_lines;
3136         uint32_t selected_result;
3137         uint8_t cpp;
3138         uint32_t width = 0, height = 0;
3139
3140         if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141                 return false;
3142
3143         width = drm_rect_width(&intel_pstate->src) >> 16;
3144         height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146         if (intel_rotation_90_or_270(plane->state->rotation))
3147                 swap(width, height);
3148
3149         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151                                  cpp, latency);
3152         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153                                  cstate->base.adjusted_mode.crtc_htotal,
3154                                  width,
3155                                  cpp,
3156                                  fb->modifier[0],
3157                                  latency);
3158
3159         plane_bytes_per_line = width * cpp;
3160         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164                 uint32_t min_scanlines = 4;
3165                 uint32_t y_tile_minimum;
3166                 if (intel_rotation_90_or_270(plane->state->rotation)) {
3167                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3169                                 drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171                         switch (cpp) {
3172                         case 1:
3173                                 min_scanlines = 16;
3174                                 break;
3175                         case 2:
3176                                 min_scanlines = 8;
3177                                 break;
3178                         case 8:
3179                                 WARN(1, "Unsupported pixel depth for rotation");
3180                         }
3181                 }
3182                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183                 selected_result = max(method2, y_tile_minimum);
3184         } else {
3185                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186                         selected_result = min(method1, method2);
3187                 else
3188                         selected_result = method1;
3189         }
3190
3191         res_blocks = selected_result + 1;
3192         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194         if (level >= 1 && level <= 7) {
3195                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197                         res_lines += 4;
3198                 else
3199                         res_blocks++;
3200         }
3201
3202         if (res_blocks >= ddb_allocation || res_lines > 31)
3203                 return false;
3204
3205         *out_blocks = res_blocks;
3206         *out_lines = res_lines;
3207
3208         return true;
3209 }
3210
3211 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212                                  struct skl_ddb_allocation *ddb,
3213                                  struct intel_crtc_state *cstate,
3214                                  int level,
3215                                  struct skl_wm_level *result)
3216 {
3217         struct drm_device *dev = dev_priv->dev;
3218         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219         struct intel_plane *intel_plane;
3220         uint16_t ddb_blocks;
3221         enum pipe pipe = intel_crtc->pipe;
3222
3223         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224                 int i = skl_wm_plane_id(intel_plane);
3225
3226                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3227
3228                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229                                                 cstate,
3230                                                 intel_plane,
3231                                                 ddb_blocks,
3232                                                 level,
3233                                                 &result->plane_res_b[i],
3234                                                 &result->plane_res_l[i]);
3235         }
3236 }
3237
3238 static uint32_t
3239 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240 {
3241         if (!cstate->base.active)
3242                 return 0;
3243
3244         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245                 return 0;
3246
3247         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248                             skl_pipe_pixel_rate(cstate));
3249 }
3250
3251 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252                                       struct skl_wm_level *trans_wm /* out */)
3253 {
3254         struct drm_crtc *crtc = cstate->base.crtc;
3255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256         struct intel_plane *intel_plane;
3257
3258         if (!cstate->base.active)
3259                 return;
3260
3261         /* Until we know more, just disable transition WMs */
3262         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263                 int i = skl_wm_plane_id(intel_plane);
3264
3265                 trans_wm->plane_en[i] = false;
3266         }
3267 }
3268
3269 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270                                 struct skl_ddb_allocation *ddb,
3271                                 struct skl_pipe_wm *pipe_wm)
3272 {
3273         struct drm_device *dev = cstate->base.crtc->dev;
3274         const struct drm_i915_private *dev_priv = dev->dev_private;
3275         int level, max_level = ilk_wm_max_level(dev);
3276
3277         for (level = 0; level <= max_level; level++) {
3278                 skl_compute_wm_level(dev_priv, ddb, cstate,
3279                                      level, &pipe_wm->wm[level]);
3280         }
3281         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284 }
3285
3286 static void skl_compute_wm_results(struct drm_device *dev,
3287                                    struct skl_pipe_wm *p_wm,
3288                                    struct skl_wm_values *r,
3289                                    struct intel_crtc *intel_crtc)
3290 {
3291         int level, max_level = ilk_wm_max_level(dev);
3292         enum pipe pipe = intel_crtc->pipe;
3293         uint32_t temp;
3294         int i;
3295
3296         for (level = 0; level <= max_level; level++) {
3297                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298                         temp = 0;
3299
3300                         temp |= p_wm->wm[level].plane_res_l[i] <<
3301                                         PLANE_WM_LINES_SHIFT;
3302                         temp |= p_wm->wm[level].plane_res_b[i];
3303                         if (p_wm->wm[level].plane_en[i])
3304                                 temp |= PLANE_WM_EN;
3305
3306                         r->plane[pipe][i][level] = temp;
3307                 }
3308
3309                 temp = 0;
3310
3311                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3313
3314                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315                         temp |= PLANE_WM_EN;
3316
3317                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3318
3319         }
3320
3321         /* transition WMs */
3322         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323                 temp = 0;
3324                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325                 temp |= p_wm->trans_wm.plane_res_b[i];
3326                 if (p_wm->trans_wm.plane_en[i])
3327                         temp |= PLANE_WM_EN;
3328
3329                 r->plane_trans[pipe][i] = temp;
3330         }
3331
3332         temp = 0;
3333         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336                 temp |= PLANE_WM_EN;
3337
3338         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3339
3340         r->wm_linetime[pipe] = p_wm->linetime;
3341 }
3342
3343 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344                                 i915_reg_t reg,
3345                                 const struct skl_ddb_entry *entry)
3346 {
3347         if (entry->end)
3348                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349         else
3350                 I915_WRITE(reg, 0);
3351 }
3352
3353 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354                                 const struct skl_wm_values *new)
3355 {
3356         struct drm_device *dev = dev_priv->dev;
3357         struct intel_crtc *crtc;
3358
3359         for_each_intel_crtc(dev, crtc) {
3360                 int i, level, max_level = ilk_wm_max_level(dev);
3361                 enum pipe pipe = crtc->pipe;
3362
3363                 if (!new->dirty[pipe])
3364                         continue;
3365
3366                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368                 for (level = 0; level <= max_level; level++) {
3369                         for (i = 0; i < intel_num_planes(crtc); i++)
3370                                 I915_WRITE(PLANE_WM(pipe, i, level),
3371                                            new->plane[pipe][i][level]);
3372                         I915_WRITE(CUR_WM(pipe, level),
3373                                    new->plane[pipe][PLANE_CURSOR][level]);
3374                 }
3375                 for (i = 0; i < intel_num_planes(crtc); i++)
3376                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377                                    new->plane_trans[pipe][i]);
3378                 I915_WRITE(CUR_WM_TRANS(pipe),
3379                            new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381                 for (i = 0; i < intel_num_planes(crtc); i++) {
3382                         skl_ddb_entry_write(dev_priv,
3383                                             PLANE_BUF_CFG(pipe, i),
3384                                             &new->ddb.plane[pipe][i]);
3385                         skl_ddb_entry_write(dev_priv,
3386                                             PLANE_NV12_BUF_CFG(pipe, i),
3387                                             &new->ddb.y_plane[pipe][i]);
3388                 }
3389
3390                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3392         }
3393 }
3394
3395 /*
3396  * When setting up a new DDB allocation arrangement, we need to correctly
3397  * sequence the times at which the new allocations for the pipes are taken into
3398  * account or we'll have pipes fetching from space previously allocated to
3399  * another pipe.
3400  *
3401  * Roughly the sequence looks like:
3402  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3403  *     overlapping with a previous light-up pipe (another way to put it is:
3404  *     pipes with their new allocation strickly included into their old ones).
3405  *  2. re-allocate the other pipes that get their allocation reduced
3406  *  3. allocate the pipes having their allocation increased
3407  *
3408  * Steps 1. and 2. are here to take care of the following case:
3409  * - Initially DDB looks like this:
3410  *     |   B    |   C    |
3411  * - enable pipe A.
3412  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413  *   allocation
3414  *     |  A  |  B  |  C  |
3415  *
3416  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417  */
3418
3419 static void
3420 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421 {
3422         int plane;
3423
3424         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426         for_each_plane(dev_priv, pipe, plane) {
3427                 I915_WRITE(PLANE_SURF(pipe, plane),
3428                            I915_READ(PLANE_SURF(pipe, plane)));
3429         }
3430         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431 }
3432
3433 static bool
3434 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435                             const struct skl_ddb_allocation *new,
3436                             enum pipe pipe)
3437 {
3438         uint16_t old_size, new_size;
3439
3440         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443         return old_size != new_size &&
3444                new->pipe[pipe].start >= old->pipe[pipe].start &&
3445                new->pipe[pipe].end <= old->pipe[pipe].end;
3446 }
3447
3448 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449                                 struct skl_wm_values *new_values)
3450 {
3451         struct drm_device *dev = dev_priv->dev;
3452         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453         bool reallocated[I915_MAX_PIPES] = {};
3454         struct intel_crtc *crtc;
3455         enum pipe pipe;
3456
3457         new_ddb = &new_values->ddb;
3458         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460         /*
3461          * First pass: flush the pipes with the new allocation contained into
3462          * the old space.
3463          *
3464          * We'll wait for the vblank on those pipes to ensure we can safely
3465          * re-allocate the freed space without this pipe fetching from it.
3466          */
3467         for_each_intel_crtc(dev, crtc) {
3468                 if (!crtc->active)
3469                         continue;
3470
3471                 pipe = crtc->pipe;
3472
3473                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474                         continue;
3475
3476                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3477                 intel_wait_for_vblank(dev, pipe);
3478
3479                 reallocated[pipe] = true;
3480         }
3481
3482
3483         /*
3484          * Second pass: flush the pipes that are having their allocation
3485          * reduced, but overlapping with a previous allocation.
3486          *
3487          * Here as well we need to wait for the vblank to make sure the freed
3488          * space is not used anymore.
3489          */
3490         for_each_intel_crtc(dev, crtc) {
3491                 if (!crtc->active)
3492                         continue;
3493
3494                 pipe = crtc->pipe;
3495
3496                 if (reallocated[pipe])
3497                         continue;
3498
3499                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3502                         intel_wait_for_vblank(dev, pipe);
3503                         reallocated[pipe] = true;
3504                 }
3505         }
3506
3507         /*
3508          * Third pass: flush the pipes that got more space allocated.
3509          *
3510          * We don't need to actively wait for the update here, next vblank
3511          * will just get more DDB space with the correct WM values.
3512          */
3513         for_each_intel_crtc(dev, crtc) {
3514                 if (!crtc->active)
3515                         continue;
3516
3517                 pipe = crtc->pipe;
3518
3519                 /*
3520                  * At this point, only the pipes more space than before are
3521                  * left to re-allocate.
3522                  */
3523                 if (reallocated[pipe])
3524                         continue;
3525
3526                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3527         }
3528 }
3529
3530 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531                                struct skl_ddb_allocation *ddb, /* out */
3532                                struct skl_pipe_wm *pipe_wm /* out */)
3533 {
3534         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3536
3537         skl_allocate_pipe_ddb(cstate, ddb);
3538         skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3539
3540         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541                 return false;
3542
3543         intel_crtc->wm.active.skl = *pipe_wm;
3544
3545         return true;
3546 }
3547
3548 static void skl_update_other_pipe_wm(struct drm_device *dev,
3549                                      struct drm_crtc *crtc,
3550                                      struct skl_wm_values *r)
3551 {
3552         struct intel_crtc *intel_crtc;
3553         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555         /*
3556          * If the WM update hasn't changed the allocation for this_crtc (the
3557          * crtc we are currently computing the new WM values for), other
3558          * enabled crtcs will keep the same allocation and we don't need to
3559          * recompute anything for them.
3560          */
3561         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562                 return;
3563
3564         /*
3565          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566          * other active pipes need new DDB allocation and WM values.
3567          */
3568         for_each_intel_crtc(dev, intel_crtc) {
3569                 struct skl_pipe_wm pipe_wm = {};
3570                 bool wm_changed;
3571
3572                 if (this_crtc->pipe == intel_crtc->pipe)
3573                         continue;
3574
3575                 if (!intel_crtc->active)
3576                         continue;
3577
3578                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579                                                 &r->ddb, &pipe_wm);
3580
3581                 /*
3582                  * If we end up re-computing the other pipe WM values, it's
3583                  * because it was really needed, so we expect the WM values to
3584                  * be different.
3585                  */
3586                 WARN_ON(!wm_changed);
3587
3588                 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589                 r->dirty[intel_crtc->pipe] = true;
3590         }
3591 }
3592
3593 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594 {
3595         watermarks->wm_linetime[pipe] = 0;
3596         memset(watermarks->plane[pipe], 0,
3597                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598         memset(watermarks->plane_trans[pipe],
3599                0, sizeof(uint32_t) * I915_MAX_PLANES);
3600         watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602         /* Clear ddb entries for pipe */
3603         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604         memset(&watermarks->ddb.plane[pipe], 0,
3605                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606         memset(&watermarks->ddb.y_plane[pipe], 0,
3607                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608         memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609                sizeof(struct skl_ddb_entry));
3610
3611 }
3612
3613 static void skl_update_wm(struct drm_crtc *crtc)
3614 {
3615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616         struct drm_device *dev = crtc->dev;
3617         struct drm_i915_private *dev_priv = dev->dev_private;
3618         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620         struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
3622
3623         /* Clear all dirty flags */
3624         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626         skl_clear_wm(results, intel_crtc->pipe);
3627
3628         if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629                 return;
3630
3631         skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632         results->dirty[intel_crtc->pipe] = true;
3633
3634         skl_update_other_pipe_wm(dev, crtc, results);
3635         skl_write_wm_values(dev_priv, results);
3636         skl_flush_wm_values(dev_priv, results);
3637
3638         /* store the new configuration */
3639         dev_priv->wm.skl_hw = *results;
3640 }
3641
3642 static void ilk_compute_wm_config(struct drm_device *dev,
3643                                   struct intel_wm_config *config)
3644 {
3645         struct intel_crtc *crtc;
3646
3647         /* Compute the currently _active_ config */
3648         for_each_intel_crtc(dev, crtc) {
3649                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651                 if (!wm->pipe_enabled)
3652                         continue;
3653
3654                 config->sprites_enabled |= wm->sprites_enabled;
3655                 config->sprites_scaled |= wm->sprites_scaled;
3656                 config->num_pipes_active++;
3657         }
3658 }
3659
3660 static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661 {
3662         struct drm_crtc *crtc = cstate->base.crtc;
3663         struct drm_device *dev = crtc->dev;
3664         struct drm_i915_private *dev_priv = to_i915(dev);
3665         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666         struct ilk_wm_maximums max;
3667         struct intel_wm_config config = {};
3668         struct ilk_wm_values results = {};
3669         enum intel_ddb_partitioning partitioning;
3670
3671         ilk_compute_wm_config(dev, &config);
3672
3673         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676         /* 5/6 split only in single pipe config on IVB+ */
3677         if (INTEL_INFO(dev)->gen >= 7 &&
3678             config.num_pipes_active == 1 && config.sprites_enabled) {
3679                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683         } else {
3684                 best_lp_wm = &lp_wm_1_2;
3685         }
3686
3687         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692         ilk_write_wm_values(dev_priv, &results);
3693 }
3694
3695 static void ilk_update_wm(struct drm_crtc *crtc)
3696 {
3697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700         WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702         /*
3703          * IVB workaround: must disable low power watermarks for at least
3704          * one frame before enabling scaling.  LP watermarks can be re-enabled
3705          * when scaling is disabled.
3706          *
3707          * WaCxSRDisabledForSpriteScaling:ivb
3708          */
3709         if (cstate->disable_lp_wm) {
3710                 ilk_disable_lp_wm(crtc->dev);
3711                 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712         }
3713
3714         intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716         ilk_program_watermarks(cstate);
3717 }
3718
3719 static void skl_pipe_wm_active_state(uint32_t val,
3720                                      struct skl_pipe_wm *active,
3721                                      bool is_transwm,
3722                                      bool is_cursor,
3723                                      int i,
3724                                      int level)
3725 {
3726         bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728         if (!is_transwm) {
3729                 if (!is_cursor) {
3730                         active->wm[level].plane_en[i] = is_enabled;
3731                         active->wm[level].plane_res_b[i] =
3732                                         val & PLANE_WM_BLOCKS_MASK;
3733                         active->wm[level].plane_res_l[i] =
3734                                         (val >> PLANE_WM_LINES_SHIFT) &
3735                                                 PLANE_WM_LINES_MASK;
3736                 } else {
3737                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3739                                         val & PLANE_WM_BLOCKS_MASK;
3740                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3741                                         (val >> PLANE_WM_LINES_SHIFT) &
3742                                                 PLANE_WM_LINES_MASK;
3743                 }
3744         } else {
3745                 if (!is_cursor) {
3746                         active->trans_wm.plane_en[i] = is_enabled;
3747                         active->trans_wm.plane_res_b[i] =
3748                                         val & PLANE_WM_BLOCKS_MASK;
3749                         active->trans_wm.plane_res_l[i] =
3750                                         (val >> PLANE_WM_LINES_SHIFT) &
3751                                                 PLANE_WM_LINES_MASK;
3752                 } else {
3753                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755                                         val & PLANE_WM_BLOCKS_MASK;
3756                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757                                         (val >> PLANE_WM_LINES_SHIFT) &
3758                                                 PLANE_WM_LINES_MASK;
3759                 }
3760         }
3761 }
3762
3763 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770         struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771         enum pipe pipe = intel_crtc->pipe;
3772         int level, i, max_level;
3773         uint32_t temp;
3774
3775         max_level = ilk_wm_max_level(dev);
3776
3777         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779         for (level = 0; level <= max_level; level++) {
3780                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781                         hw->plane[pipe][i][level] =
3782                                         I915_READ(PLANE_WM(pipe, i, level));
3783                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784         }
3785
3786         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790         if (!intel_crtc->active)
3791                 return;
3792
3793         hw->dirty[pipe] = true;
3794
3795         active->linetime = hw->wm_linetime[pipe];
3796
3797         for (level = 0; level <= max_level; level++) {
3798                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799                         temp = hw->plane[pipe][i][level];
3800                         skl_pipe_wm_active_state(temp, active, false,
3801                                                 false, i, level);
3802                 }
3803                 temp = hw->plane[pipe][PLANE_CURSOR][level];
3804                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805         }
3806
3807         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808                 temp = hw->plane_trans[pipe][i];
3809                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3810         }
3811
3812         temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815         intel_crtc->wm.active.skl = *active;
3816 }
3817
3818 void skl_wm_get_hw_state(struct drm_device *dev)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822         struct drm_crtc *crtc;
3823
3824         skl_ddb_get_hw_state(dev_priv, ddb);
3825         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826                 skl_pipe_wm_get_hw_state(crtc);
3827 }
3828
3829 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830 {
3831         struct drm_device *dev = crtc->dev;
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836         struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837         enum pipe pipe = intel_crtc->pipe;
3838         static const i915_reg_t wm0_pipe_reg[] = {
3839                 [PIPE_A] = WM0_PIPEA_ILK,
3840                 [PIPE_B] = WM0_PIPEB_ILK,
3841                 [PIPE_C] = WM0_PIPEC_IVB,
3842         };
3843
3844         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
3848         active->pipe_enabled = intel_crtc->active;
3849
3850         if (active->pipe_enabled) {
3851                 u32 tmp = hw->wm_pipe[pipe];
3852
3853                 /*
3854                  * For active pipes LP0 watermark is marked as
3855                  * enabled, and LP1+ watermaks as disabled since
3856                  * we can't really reverse compute them in case
3857                  * multiple pipes are active.
3858                  */
3859                 active->wm[0].enable = true;
3860                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863                 active->linetime = hw->wm_linetime[pipe];
3864         } else {
3865                 int level, max_level = ilk_wm_max_level(dev);
3866
3867                 /*
3868                  * For inactive pipes, all watermark levels
3869                  * should be marked as enabled but zeroed,
3870                  * which is what we'd compute them to.
3871                  */
3872                 for (level = 0; level <= max_level; level++)
3873                         active->wm[level].enable = true;
3874         }
3875
3876         intel_crtc->wm.active.ilk = *active;
3877 }
3878
3879 #define _FW_WM(value, plane) \
3880         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881 #define _FW_WM_VLV(value, plane) \
3882         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885                                struct vlv_wm_values *wm)
3886 {
3887         enum pipe pipe;
3888         uint32_t tmp;
3889
3890         for_each_pipe(dev_priv, pipe) {
3891                 tmp = I915_READ(VLV_DDL(pipe));
3892
3893                 wm->ddl[pipe].primary =
3894                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895                 wm->ddl[pipe].cursor =
3896                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897                 wm->ddl[pipe].sprite[0] =
3898                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899                 wm->ddl[pipe].sprite[1] =
3900                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901         }
3902
3903         tmp = I915_READ(DSPFW1);
3904         wm->sr.plane = _FW_WM(tmp, SR);
3905         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909         tmp = I915_READ(DSPFW2);
3910         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914         tmp = I915_READ(DSPFW3);
3915         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917         if (IS_CHERRYVIEW(dev_priv)) {
3918                 tmp = I915_READ(DSPFW7_CHV);
3919                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922                 tmp = I915_READ(DSPFW8_CHV);
3923                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926                 tmp = I915_READ(DSPFW9_CHV);
3927                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930                 tmp = I915_READ(DSPHOWM);
3931                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941         } else {
3942                 tmp = I915_READ(DSPFW7);
3943                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946                 tmp = I915_READ(DSPHOWM);
3947                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954         }
3955 }
3956
3957 #undef _FW_WM
3958 #undef _FW_WM_VLV
3959
3960 void vlv_wm_get_hw_state(struct drm_device *dev)
3961 {
3962         struct drm_i915_private *dev_priv = to_i915(dev);
3963         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964         struct intel_plane *plane;
3965         enum pipe pipe;
3966         u32 val;
3967
3968         vlv_read_wm_values(dev_priv, wm);
3969
3970         for_each_intel_plane(dev, plane) {
3971                 switch (plane->base.type) {
3972                         int sprite;
3973                 case DRM_PLANE_TYPE_CURSOR:
3974                         plane->wm.fifo_size = 63;
3975                         break;
3976                 case DRM_PLANE_TYPE_PRIMARY:
3977                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978                         break;
3979                 case DRM_PLANE_TYPE_OVERLAY:
3980                         sprite = plane->plane;
3981                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982                         break;
3983                 }
3984         }
3985
3986         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987         wm->level = VLV_WM_LEVEL_PM2;
3988
3989         if (IS_CHERRYVIEW(dev_priv)) {
3990                 mutex_lock(&dev_priv->rps.hw_lock);
3991
3992                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993                 if (val & DSP_MAXFIFO_PM5_ENABLE)
3994                         wm->level = VLV_WM_LEVEL_PM5;
3995
3996                 /*
3997                  * If DDR DVFS is disabled in the BIOS, Punit
3998                  * will never ack the request. So if that happens
3999                  * assume we don't have to enable/disable DDR DVFS
4000                  * dynamically. To test that just set the REQ_ACK
4001                  * bit to poke the Punit, but don't change the
4002                  * HIGH/LOW bits so that we don't actually change
4003                  * the current state.
4004                  */
4005                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006                 val |= FORCE_DDR_FREQ_REQ_ACK;
4007                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012                                       "assuming DDR DVFS is disabled\n");
4013                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014                 } else {
4015                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018                 }
4019
4020                 mutex_unlock(&dev_priv->rps.hw_lock);
4021         }
4022
4023         for_each_pipe(dev_priv, pipe)
4024                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030 }
4031
4032 void ilk_wm_get_hw_state(struct drm_device *dev)
4033 {
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036         struct drm_crtc *crtc;
4037
4038         for_each_crtc(dev, crtc)
4039                 ilk_pipe_wm_get_hw_state(crtc);
4040
4041         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046         if (INTEL_INFO(dev)->gen >= 7) {
4047                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049         }
4050
4051         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054         else if (IS_IVYBRIDGE(dev))
4055                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058         hw->enable_fbc_wm =
4059                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060 }
4061
4062 /**
4063  * intel_update_watermarks - update FIFO watermark values based on current modes
4064  *
4065  * Calculate watermark values for the various WM regs based on current mode
4066  * and plane configuration.
4067  *
4068  * There are several cases to deal with here:
4069  *   - normal (i.e. non-self-refresh)
4070  *   - self-refresh (SR) mode
4071  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4072  *   - lines are small relative to FIFO size (buffer can hold more than 2
4073  *     lines), so need to account for TLB latency
4074  *
4075  *   The normal calculation is:
4076  *     watermark = dotclock * bytes per pixel * latency
4077  *   where latency is platform & configuration dependent (we assume pessimal
4078  *   values here).
4079  *
4080  *   The SR calculation is:
4081  *     watermark = (trunc(latency/line time)+1) * surface width *
4082  *       bytes per pixel
4083  *   where
4084  *     line time = htotal / dotclock
4085  *     surface width = hdisplay for normal plane and 64 for cursor
4086  *   and latency is assumed to be high, as above.
4087  *
4088  * The final value programmed to the register should always be rounded up,
4089  * and include an extra 2 entries to account for clock crossings.
4090  *
4091  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4092  * to set the non-SR watermarks to 8.
4093  */
4094 void intel_update_watermarks(struct drm_crtc *crtc)
4095 {
4096         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098         if (dev_priv->display.update_wm)
4099                 dev_priv->display.update_wm(crtc);
4100 }
4101
4102 /*
4103  * Lock protecting IPS related data structures
4104  */
4105 DEFINE_SPINLOCK(mchdev_lock);
4106
4107 /* Global for IPS driver to get at the current i915 device. Protected by
4108  * mchdev_lock. */
4109 static struct drm_i915_private *i915_mch_dev;
4110
4111 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112 {
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114         u16 rgvswctl;
4115
4116         assert_spin_locked(&mchdev_lock);
4117
4118         rgvswctl = I915_READ16(MEMSWCTL);
4119         if (rgvswctl & MEMCTL_CMD_STS) {
4120                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4121                 return false; /* still busy with another command */
4122         }
4123
4124         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126         I915_WRITE16(MEMSWCTL, rgvswctl);
4127         POSTING_READ16(MEMSWCTL);
4128
4129         rgvswctl |= MEMCTL_CMD_STS;
4130         I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132         return true;
4133 }
4134
4135 static void ironlake_enable_drps(struct drm_device *dev)
4136 {
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         u32 rgvmodectl;
4139         u8 fmax, fmin, fstart, vstart;
4140
4141         spin_lock_irq(&mchdev_lock);
4142
4143         rgvmodectl = I915_READ(MEMMODECTL);
4144
4145         /* Enable temp reporting */
4146         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149         /* 100ms RC evaluation intervals */
4150         I915_WRITE(RCUPEI, 100000);
4151         I915_WRITE(RCDNEI, 100000);
4152
4153         /* Set max/min thresholds to 90ms and 80ms respectively */
4154         I915_WRITE(RCBMAXAVG, 90000);
4155         I915_WRITE(RCBMINAVG, 80000);
4156
4157         I915_WRITE(MEMIHYST, 1);
4158
4159         /* Set up min, max, and cur for interrupt handling */
4160         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163                 MEMMODE_FSTART_SHIFT;
4164
4165         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166                 PXVFREQ_PX_SHIFT;
4167
4168         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169         dev_priv->ips.fstart = fstart;
4170
4171         dev_priv->ips.max_delay = fstart;
4172         dev_priv->ips.min_delay = fmin;
4173         dev_priv->ips.cur_delay = fstart;
4174
4175         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176                          fmax, fmin, fstart);
4177
4178         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180         /*
4181          * Interrupts will be enabled in ironlake_irq_postinstall
4182          */
4183
4184         I915_WRITE(VIDSTART, vstart);
4185         POSTING_READ(VIDSTART);
4186
4187         rgvmodectl |= MEMMODE_SWMODE_EN;
4188         I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191                 DRM_ERROR("stuck trying to change perf mode\n");
4192         mdelay(1);
4193
4194         ironlake_set_drps(dev, fstart);
4195
4196         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197                 I915_READ(DDREC) + I915_READ(CSIEC);
4198         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202         spin_unlock_irq(&mchdev_lock);
4203 }
4204
4205 static void ironlake_disable_drps(struct drm_device *dev)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         u16 rgvswctl;
4209
4210         spin_lock_irq(&mchdev_lock);
4211
4212         rgvswctl = I915_READ16(MEMSWCTL);
4213
4214         /* Ack interrupts, disable EFC interrupt */
4215         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218         I915_WRITE(DEIIR, DE_PCU_EVENT);
4219         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221         /* Go back to the starting frequency */
4222         ironlake_set_drps(dev, dev_priv->ips.fstart);
4223         mdelay(1);
4224         rgvswctl |= MEMCTL_CMD_STS;
4225         I915_WRITE(MEMSWCTL, rgvswctl);
4226         mdelay(1);
4227
4228         spin_unlock_irq(&mchdev_lock);
4229 }
4230
4231 /* There's a funny hw issue where the hw returns all 0 when reading from
4232  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234  * all limits and the gpu stuck at whatever frequency it is at atm).
4235  */
4236 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237 {
4238         u32 limits;
4239
4240         /* Only set the down limit when we've reached the lowest level to avoid
4241          * getting more interrupts, otherwise leave this clear. This prevents a
4242          * race in the hw when coming out of rc6: There's a tiny window where
4243          * the hw runs at the minimal clock before selecting the desired
4244          * frequency, if the down threshold expires in that window we will not
4245          * receive a down interrupt. */
4246         if (IS_GEN9(dev_priv->dev)) {
4247                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248                 if (val <= dev_priv->rps.min_freq_softlimit)
4249                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250         } else {
4251                 limits = dev_priv->rps.max_freq_softlimit << 24;
4252                 if (val <= dev_priv->rps.min_freq_softlimit)
4253                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4254         }
4255
4256         return limits;
4257 }
4258
4259 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260 {
4261         int new_power;
4262         u32 threshold_up = 0, threshold_down = 0; /* in % */
4263         u32 ei_up = 0, ei_down = 0;
4264
4265         new_power = dev_priv->rps.power;
4266         switch (dev_priv->rps.power) {
4267         case LOW_POWER:
4268                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269                         new_power = BETWEEN;
4270                 break;
4271
4272         case BETWEEN:
4273                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274                         new_power = LOW_POWER;
4275                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276                         new_power = HIGH_POWER;
4277                 break;
4278
4279         case HIGH_POWER:
4280                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281                         new_power = BETWEEN;
4282                 break;
4283         }
4284         /* Max/min bins are special */
4285         if (val <= dev_priv->rps.min_freq_softlimit)
4286                 new_power = LOW_POWER;
4287         if (val >= dev_priv->rps.max_freq_softlimit)
4288                 new_power = HIGH_POWER;
4289         if (new_power == dev_priv->rps.power)
4290                 return;
4291
4292         /* Note the units here are not exactly 1us, but 1280ns. */
4293         switch (new_power) {
4294         case LOW_POWER:
4295                 /* Upclock if more than 95% busy over 16ms */
4296                 ei_up = 16000;
4297                 threshold_up = 95;
4298
4299                 /* Downclock if less than 85% busy over 32ms */
4300                 ei_down = 32000;
4301                 threshold_down = 85;
4302                 break;
4303
4304         case BETWEEN:
4305                 /* Upclock if more than 90% busy over 13ms */
4306                 ei_up = 13000;
4307                 threshold_up = 90;
4308
4309                 /* Downclock if less than 75% busy over 32ms */
4310                 ei_down = 32000;
4311                 threshold_down = 75;
4312                 break;
4313
4314         case HIGH_POWER:
4315                 /* Upclock if more than 85% busy over 10ms */
4316                 ei_up = 10000;
4317                 threshold_up = 85;
4318
4319                 /* Downclock if less than 60% busy over 32ms */
4320                 ei_down = 32000;
4321                 threshold_down = 60;
4322                 break;
4323         }
4324
4325         I915_WRITE(GEN6_RP_UP_EI,
4326                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330         I915_WRITE(GEN6_RP_DOWN_EI,
4331                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335          I915_WRITE(GEN6_RP_CONTROL,
4336                     GEN6_RP_MEDIA_TURBO |
4337                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338                     GEN6_RP_MEDIA_IS_GFX |
4339                     GEN6_RP_ENABLE |
4340                     GEN6_RP_UP_BUSY_AVG |
4341                     GEN6_RP_DOWN_IDLE_AVG);
4342
4343         dev_priv->rps.power = new_power;
4344         dev_priv->rps.up_threshold = threshold_up;
4345         dev_priv->rps.down_threshold = threshold_down;
4346         dev_priv->rps.last_adj = 0;
4347 }
4348
4349 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350 {
4351         u32 mask = 0;
4352
4353         if (val > dev_priv->rps.min_freq_softlimit)
4354                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355         if (val < dev_priv->rps.max_freq_softlimit)
4356                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358         mask &= dev_priv->pm_rps_events;
4359
4360         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361 }
4362
4363 /* gen6_set_rps is called to update the frequency request, but should also be
4364  * called when the range (min_delay and max_delay) is modified so that we can
4365  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366 static void gen6_set_rps(struct drm_device *dev, u8 val)
4367 {
4368         struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372                 return;
4373
4374         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375         WARN_ON(val > dev_priv->rps.max_freq);
4376         WARN_ON(val < dev_priv->rps.min_freq);
4377
4378         /* min/max delay may still have been modified so be sure to
4379          * write the limits value.
4380          */
4381         if (val != dev_priv->rps.cur_freq) {
4382                 gen6_set_rps_thresholds(dev_priv, val);
4383
4384                 if (IS_GEN9(dev))
4385                         I915_WRITE(GEN6_RPNSWREQ,
4386                                    GEN9_FREQUENCY(val));
4387                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388                         I915_WRITE(GEN6_RPNSWREQ,
4389                                    HSW_FREQUENCY(val));
4390                 else
4391                         I915_WRITE(GEN6_RPNSWREQ,
4392                                    GEN6_FREQUENCY(val) |
4393                                    GEN6_OFFSET(0) |
4394                                    GEN6_AGGRESSIVE_TURBO);
4395         }
4396
4397         /* Make sure we continue to get interrupts
4398          * until we hit the minimum or maximum frequencies.
4399          */
4400         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403         POSTING_READ(GEN6_RPNSWREQ);
4404
4405         dev_priv->rps.cur_freq = val;
4406         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407 }
4408
4409 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410 {
4411         struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414         WARN_ON(val > dev_priv->rps.max_freq);
4415         WARN_ON(val < dev_priv->rps.min_freq);
4416
4417         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418                       "Odd GPU freq value\n"))
4419                 val &= ~1;
4420
4421         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422
4423         if (val != dev_priv->rps.cur_freq) {
4424                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425                 if (!IS_CHERRYVIEW(dev_priv))
4426                         gen6_set_rps_thresholds(dev_priv, val);
4427         }
4428
4429         dev_priv->rps.cur_freq = val;
4430         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431 }
4432
4433 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434  *
4435  * * If Gfx is Idle, then
4436  * 1. Forcewake Media well.
4437  * 2. Request idle freq.
4438  * 3. Release Forcewake of Media well.
4439 */
4440 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441 {
4442         u32 val = dev_priv->rps.idle_freq;
4443
4444         if (dev_priv->rps.cur_freq <= val)
4445                 return;
4446
4447         /* Wake up the media well, as that takes a lot less
4448          * power than the Render well. */
4449         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450         valleyview_set_rps(dev_priv->dev, val);
4451         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452 }
4453
4454 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455 {
4456         mutex_lock(&dev_priv->rps.hw_lock);
4457         if (dev_priv->rps.enabled) {
4458                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459                         gen6_rps_reset_ei(dev_priv);
4460                 I915_WRITE(GEN6_PMINTRMSK,
4461                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4462         }
4463         mutex_unlock(&dev_priv->rps.hw_lock);
4464 }
4465
4466 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467 {
4468         struct drm_device *dev = dev_priv->dev;
4469
4470         mutex_lock(&dev_priv->rps.hw_lock);
4471         if (dev_priv->rps.enabled) {
4472                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473                         vlv_set_rps_idle(dev_priv);
4474                 else
4475                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476                 dev_priv->rps.last_adj = 0;
4477                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478         }
4479         mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481         spin_lock(&dev_priv->rps.client_lock);
4482         while (!list_empty(&dev_priv->rps.clients))
4483                 list_del_init(dev_priv->rps.clients.next);
4484         spin_unlock(&dev_priv->rps.client_lock);
4485 }
4486
4487 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488                     struct intel_rps_client *rps,
4489                     unsigned long submitted)
4490 {
4491         /* This is intentionally racy! We peek at the state here, then
4492          * validate inside the RPS worker.
4493          */
4494         if (!(dev_priv->mm.busy &&
4495               dev_priv->rps.enabled &&
4496               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497                 return;
4498
4499         /* Force a RPS boost (and don't count it against the client) if
4500          * the GPU is severely congested.
4501          */
4502         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503                 rps = NULL;
4504
4505         spin_lock(&dev_priv->rps.client_lock);
4506         if (rps == NULL || list_empty(&rps->link)) {
4507                 spin_lock_irq(&dev_priv->irq_lock);
4508                 if (dev_priv->rps.interrupts_enabled) {
4509                         dev_priv->rps.client_boost = true;
4510                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4511                 }
4512                 spin_unlock_irq(&dev_priv->irq_lock);
4513
4514                 if (rps != NULL) {
4515                         list_add(&rps->link, &dev_priv->rps.clients);
4516                         rps->boosts++;
4517                 } else
4518                         dev_priv->rps.boosts++;
4519         }
4520         spin_unlock(&dev_priv->rps.client_lock);
4521 }
4522
4523 void intel_set_rps(struct drm_device *dev, u8 val)
4524 {
4525         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526                 valleyview_set_rps(dev, val);
4527         else
4528                 gen6_set_rps(dev, val);
4529 }
4530
4531 static void gen9_disable_rps(struct drm_device *dev)
4532 {
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535         I915_WRITE(GEN6_RC_CONTROL, 0);
4536         I915_WRITE(GEN9_PG_ENABLE, 0);
4537 }
4538
4539 static void gen6_disable_rps(struct drm_device *dev)
4540 {
4541         struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543         I915_WRITE(GEN6_RC_CONTROL, 0);
4544         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545 }
4546
4547 static void cherryview_disable_rps(struct drm_device *dev)
4548 {
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551         I915_WRITE(GEN6_RC_CONTROL, 0);
4552 }
4553
4554 static void valleyview_disable_rps(struct drm_device *dev)
4555 {
4556         struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558         /* we're doing forcewake before Disabling RC6,
4559          * This what the BIOS expects when going into suspend */
4560         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562         I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565 }
4566
4567 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568 {
4569         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571                         mode = GEN6_RC_CTL_RC6_ENABLE;
4572                 else
4573                         mode = 0;
4574         }
4575         if (HAS_RC6p(dev))
4576                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581         else
4582                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584 }
4585
4586 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587 {
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589         bool enable_rc6 = true;
4590         unsigned long rc6_ctx_base;
4591
4592         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594                 enable_rc6 = false;
4595         }
4596
4597         /*
4598          * The exact context size is not known for BXT, so assume a page size
4599          * for this check.
4600          */
4601         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602         if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603               (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604                                         dev_priv->gtt.stolen_reserved_size))) {
4605                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606                 enable_rc6 = false;
4607         }
4608
4609         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614                 enable_rc6 = false;
4615         }
4616
4617         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618                                             GEN6_RC_CTL_HW_ENABLE)) &&
4619             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622                 enable_rc6 = false;
4623         }
4624
4625         return enable_rc6;
4626 }
4627
4628 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629 {
4630         /* No RC6 before Ironlake and code is gone for ilk. */
4631         if (INTEL_INFO(dev)->gen < 6)
4632                 return 0;
4633
4634         if (!enable_rc6)
4635                 return 0;
4636
4637         if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638                 DRM_INFO("RC6 disabled by BIOS\n");
4639                 return 0;
4640         }
4641
4642         /* Respect the kernel parameter if it is set */
4643         if (enable_rc6 >= 0) {
4644                 int mask;
4645
4646                 if (HAS_RC6p(dev))
4647                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648                                INTEL_RC6pp_ENABLE;
4649                 else
4650                         mask = INTEL_RC6_ENABLE;
4651
4652                 if ((enable_rc6 & mask) != enable_rc6)
4653                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654                                       enable_rc6 & mask, enable_rc6, mask);
4655
4656                 return enable_rc6 & mask;
4657         }
4658
4659         if (IS_IVYBRIDGE(dev))
4660                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662         return INTEL_RC6_ENABLE;
4663 }
4664
4665 int intel_enable_rc6(const struct drm_device *dev)
4666 {
4667         return i915.enable_rc6;
4668 }
4669
4670 static void gen6_init_rps_frequencies(struct drm_device *dev)
4671 {
4672         struct drm_i915_private *dev_priv = dev->dev_private;
4673         uint32_t rp_state_cap;
4674         u32 ddcc_status = 0;
4675         int ret;
4676
4677         /* All of these values are in units of 50MHz */
4678         dev_priv->rps.cur_freq          = 0;
4679         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680         if (IS_BROXTON(dev)) {
4681                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4684                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4685         } else {
4686                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4688                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4689                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690         }
4691
4692         /* hw_max = RP0 until we check for overclocking */
4693         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4694
4695         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696         if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697             IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698                 ret = sandybridge_pcode_read(dev_priv,
4699                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700                                         &ddcc_status);
4701                 if (0 == ret)
4702                         dev_priv->rps.efficient_freq =
4703                                 clamp_t(u8,
4704                                         ((ddcc_status >> 8) & 0xff),
4705                                         dev_priv->rps.min_freq,
4706                                         dev_priv->rps.max_freq);
4707         }
4708
4709         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710                 /* Store the frequency values in 16.66 MHZ units, which is
4711                    the natural hardware unit for SKL */
4712                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717         }
4718
4719         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721         /* Preserve min/max settings in case of re-init */
4722         if (dev_priv->rps.max_freq_softlimit == 0)
4723                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725         if (dev_priv->rps.min_freq_softlimit == 0) {
4726                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727                         dev_priv->rps.min_freq_softlimit =
4728                                 max_t(int, dev_priv->rps.efficient_freq,
4729                                       intel_freq_opcode(dev_priv, 450));
4730                 else
4731                         dev_priv->rps.min_freq_softlimit =
4732                                 dev_priv->rps.min_freq;
4733         }
4734 }
4735
4736 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737 static void gen9_enable_rps(struct drm_device *dev)
4738 {
4739         struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743         gen6_init_rps_frequencies(dev);
4744
4745         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748                 return;
4749         }
4750
4751         /* Program defaults and thresholds for RPS*/
4752         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755         /* 1 second timeout*/
4756         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761         /* Leaning on the below call to gen6_set_rps to program/setup the
4762          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768 }
4769
4770 static void gen9_enable_rc6(struct drm_device *dev)
4771 {
4772         struct drm_i915_private *dev_priv = dev->dev_private;
4773         struct intel_engine_cs *ring;
4774         uint32_t rc6_mask = 0;
4775         int unused;
4776
4777         /* 1a: Software RC state - RC0 */
4778         I915_WRITE(GEN6_RC_STATE, 0);
4779
4780         /* 1b: Get forcewake during program sequence. Although the driver
4781          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784         /* 2a: Disable RC states. */
4785         I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787         /* 2b: Program RC6 thresholds.*/
4788
4789         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790         if (IS_SKYLAKE(dev))
4791                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792         else
4793                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796         for_each_ring(ring, dev_priv, unused)
4797                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799         if (HAS_GUC_UCODE(dev))
4800                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802         I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804         /* 2c: Program Coarse Power Gating Policies. */
4805         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808         /* 3a: Enable RC6 */
4809         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812         /* WaRsUseTimeoutMode */
4813         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817                            GEN7_RC_CTL_TO_MODE |
4818                            rc6_mask);
4819         } else {
4820                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822                            GEN6_RC_CTL_EI_MODE(1) |
4823                            rc6_mask);
4824         }
4825
4826         /*
4827          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829          */
4830         if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831                 I915_WRITE(GEN9_PG_ENABLE, 0);
4832         else
4833                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838 }
4839
4840 static void gen8_enable_rps(struct drm_device *dev)
4841 {
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         struct intel_engine_cs *ring;
4844         uint32_t rc6_mask = 0;
4845         int unused;
4846
4847         /* 1a: Software RC state - RC0 */
4848         I915_WRITE(GEN6_RC_STATE, 0);
4849
4850         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4851          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854         /* 2a: Disable RC states. */
4855         I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857         /* Initialize rps frequencies */
4858         gen6_init_rps_frequencies(dev);
4859
4860         /* 2b: Program RC6 thresholds.*/
4861         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864         for_each_ring(ring, dev_priv, unused)
4865                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866         I915_WRITE(GEN6_RC_SLEEP, 0);
4867         if (IS_BROADWELL(dev))
4868                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869         else
4870                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872         /* 3: Enable RC6 */
4873         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875         intel_print_rc6_info(dev, rc6_mask);
4876         if (IS_BROADWELL(dev))
4877                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878                                 GEN7_RC_CTL_TO_MODE |
4879                                 rc6_mask);
4880         else
4881                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882                                 GEN6_RC_CTL_EI_MODE(1) |
4883                                 rc6_mask);
4884
4885         /* 4 Program defaults and thresholds for RPS*/
4886         I915_WRITE(GEN6_RPNSWREQ,
4887                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893         /* Docs recommend 900MHz, and 300 MHz respectively */
4894         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895                    dev_priv->rps.max_freq_softlimit << 24 |
4896                    dev_priv->rps.min_freq_softlimit << 16);
4897
4898         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905         /* 5: Enable RPS */
4906         I915_WRITE(GEN6_RP_CONTROL,
4907                    GEN6_RP_MEDIA_TURBO |
4908                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909                    GEN6_RP_MEDIA_IS_GFX |
4910                    GEN6_RP_ENABLE |
4911                    GEN6_RP_UP_BUSY_AVG |
4912                    GEN6_RP_DOWN_IDLE_AVG);
4913
4914         /* 6: Ring frequency + overclocking (our driver does this later */
4915
4916         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920 }
4921
4922 static void gen6_enable_rps(struct drm_device *dev)
4923 {
4924         struct drm_i915_private *dev_priv = dev->dev_private;
4925         struct intel_engine_cs *ring;
4926         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927         u32 gtfifodbg;
4928         int rc6_mode;
4929         int i, ret;
4930
4931         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933         /* Here begins a magic sequence of register writes to enable
4934          * auto-downclocking.
4935          *
4936          * Perhaps there might be some value in exposing these to
4937          * userspace...
4938          */
4939         I915_WRITE(GEN6_RC_STATE, 0);
4940
4941         /* Clear the DBG now so we don't confuse earlier errors */
4942         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944                 I915_WRITE(GTFIFODBG, gtfifodbg);
4945         }
4946
4947         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949         /* Initialize rps frequencies */
4950         gen6_init_rps_frequencies(dev);
4951
4952         /* disable the counters and set deterministic thresholds */
4953         I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961         for_each_ring(ring, dev_priv, i)
4962                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964         I915_WRITE(GEN6_RC_SLEEP, 0);
4965         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966         if (IS_IVYBRIDGE(dev))
4967                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968         else
4969                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973         /* Check if we are enabling RC6 */
4974         rc6_mode = intel_enable_rc6(dev_priv->dev);
4975         if (rc6_mode & INTEL_RC6_ENABLE)
4976                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978         /* We don't use those on Haswell */
4979         if (!IS_HASWELL(dev)) {
4980                 if (rc6_mode & INTEL_RC6p_ENABLE)
4981                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983                 if (rc6_mode & INTEL_RC6pp_ENABLE)
4984                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985         }
4986
4987         intel_print_rc6_info(dev, rc6_mask);
4988
4989         I915_WRITE(GEN6_RC_CONTROL,
4990                    rc6_mask |
4991                    GEN6_RC_CTL_EI_MODE(1) |
4992                    GEN6_RC_CTL_HW_ENABLE);
4993
4994         /* Power down if completely idle for over 50ms */
4995         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999         if (ret)
5000                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006                                  (pcu_mbox & 0xff) * 50);
5007                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008         }
5009
5010         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013         rc6vids = 0;
5014         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015         if (IS_GEN6(dev) && ret) {
5016                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020                 rc6vids &= 0xffff00;
5021                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023                 if (ret)
5024                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025         }
5026
5027         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028 }
5029
5030 static void __gen6_update_ring_freq(struct drm_device *dev)
5031 {
5032         struct drm_i915_private *dev_priv = dev->dev_private;
5033         int min_freq = 15;
5034         unsigned int gpu_freq;
5035         unsigned int max_ia_freq, min_ring_freq;
5036         unsigned int max_gpu_freq, min_gpu_freq;
5037         int scaling_factor = 180;
5038         struct cpufreq_policy *policy;
5039
5040         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042         policy = cpufreq_cpu_get(0);
5043         if (policy) {
5044                 max_ia_freq = policy->cpuinfo.max_freq;
5045                 cpufreq_cpu_put(policy);
5046         } else {
5047                 /*
5048                  * Default to measured freq if none found, PCU will ensure we
5049                  * don't go over
5050                  */
5051                 max_ia_freq = tsc_khz;
5052         }
5053
5054         /* Convert from kHz to MHz */
5055         max_ia_freq /= 1000;
5056
5057         min_ring_freq = I915_READ(DCLK) & 0xf;
5058         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5059         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062                 /* Convert GT frequency to 50 HZ units */
5063                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065         } else {
5066                 min_gpu_freq = dev_priv->rps.min_freq;
5067                 max_gpu_freq = dev_priv->rps.max_freq;
5068         }
5069
5070         /*
5071          * For each potential GPU frequency, load a ring frequency we'd like
5072          * to use for memory access.  We do this by specifying the IA frequency
5073          * the PCU should use as a reference to determine the ring frequency.
5074          */
5075         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076                 int diff = max_gpu_freq - gpu_freq;
5077                 unsigned int ia_freq = 0, ring_freq = 0;
5078
5079                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080                         /*
5081                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082                          * No floor required for ring frequency on SKL.
5083                          */
5084                         ring_freq = gpu_freq;
5085                 } else if (INTEL_INFO(dev)->gen >= 8) {
5086                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5087                         ring_freq = max(min_ring_freq, gpu_freq);
5088                 } else if (IS_HASWELL(dev)) {
5089                         ring_freq = mult_frac(gpu_freq, 5, 4);
5090                         ring_freq = max(min_ring_freq, ring_freq);
5091                         /* leave ia_freq as the default, chosen by cpufreq */
5092                 } else {
5093                         /* On older processors, there is no separate ring
5094                          * clock domain, so in order to boost the bandwidth
5095                          * of the ring, we need to upclock the CPU (ia_freq).
5096                          *
5097                          * For GPU frequencies less than 750MHz,
5098                          * just use the lowest ring freq.
5099                          */
5100                         if (gpu_freq < min_freq)
5101                                 ia_freq = 800;
5102                         else
5103                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105                 }
5106
5107                 sandybridge_pcode_write(dev_priv,
5108                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111                                         gpu_freq);
5112         }
5113 }
5114
5115 void gen6_update_ring_freq(struct drm_device *dev)
5116 {
5117         struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119         if (!HAS_CORE_RING_FREQ(dev))
5120                 return;
5121
5122         mutex_lock(&dev_priv->rps.hw_lock);
5123         __gen6_update_ring_freq(dev);
5124         mutex_unlock(&dev_priv->rps.hw_lock);
5125 }
5126
5127 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128 {
5129         struct drm_device *dev = dev_priv->dev;
5130         u32 val, rp0;
5131
5132         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134         switch (INTEL_INFO(dev)->eu_total) {
5135         case 8:
5136                 /* (2 * 4) config */
5137                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138                 break;
5139         case 12:
5140                 /* (2 * 6) config */
5141                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142                 break;
5143         case 16:
5144                 /* (2 * 8) config */
5145         default:
5146                 /* Setting (2 * 8) Min RP0 for any other combination */
5147                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148                 break;
5149         }
5150
5151         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153         return rp0;
5154 }
5155
5156 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157 {
5158         u32 val, rpe;
5159
5160         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163         return rpe;
5164 }
5165
5166 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167 {
5168         u32 val, rp1;
5169
5170         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173         return rp1;
5174 }
5175
5176 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177 {
5178         u32 val, rp1;
5179
5180         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184         return rp1;
5185 }
5186
5187 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188 {
5189         u32 val, rp0;
5190
5191         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194         /* Clamp to max */
5195         rp0 = min_t(u32, rp0, 0xea);
5196
5197         return rp0;
5198 }
5199
5200 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201 {
5202         u32 val, rpe;
5203
5204         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209         return rpe;
5210 }
5211
5212 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213 {
5214         u32 val;
5215
5216         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217         /*
5218          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222          * to make sure it matches what Punit accepts.
5223          */
5224         return max_t(u32, val, 0xc0);
5225 }
5226
5227 /* Check that the pctx buffer wasn't move under us. */
5228 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229 {
5230         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233                              dev_priv->vlv_pctx->stolen->start);
5234 }
5235
5236
5237 /* Check that the pcbr address is not empty. */
5238 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239 {
5240         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243 }
5244
5245 static void cherryview_setup_pctx(struct drm_device *dev)
5246 {
5247         struct drm_i915_private *dev_priv = dev->dev_private;
5248         unsigned long pctx_paddr, paddr;
5249         struct i915_gtt *gtt = &dev_priv->gtt;
5250         u32 pcbr;
5251         int pctx_size = 32*1024;
5252
5253         pcbr = I915_READ(VLV_PCBR);
5254         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256                 paddr = (dev_priv->mm.stolen_base +
5257                          (gtt->stolen_size - pctx_size));
5258
5259                 pctx_paddr = (paddr & (~4095));
5260                 I915_WRITE(VLV_PCBR, pctx_paddr);
5261         }
5262
5263         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264 }
5265
5266 static void valleyview_setup_pctx(struct drm_device *dev)
5267 {
5268         struct drm_i915_private *dev_priv = dev->dev_private;
5269         struct drm_i915_gem_object *pctx;
5270         unsigned long pctx_paddr;
5271         u32 pcbr;
5272         int pctx_size = 24*1024;
5273
5274         mutex_lock(&dev->struct_mutex);
5275
5276         pcbr = I915_READ(VLV_PCBR);
5277         if (pcbr) {
5278                 /* BIOS set it up already, grab the pre-alloc'd space */
5279                 int pcbr_offset;
5280
5281                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283                                                                       pcbr_offset,
5284                                                                       I915_GTT_OFFSET_NONE,
5285                                                                       pctx_size);
5286                 goto out;
5287         }
5288
5289         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291         /*
5292          * From the Gunit register HAS:
5293          * The Gfx driver is expected to program this register and ensure
5294          * proper allocation within Gfx stolen memory.  For example, this
5295          * register should be programmed such than the PCBR range does not
5296          * overlap with other ranges, such as the frame buffer, protected
5297          * memory, or any other relevant ranges.
5298          */
5299         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300         if (!pctx) {
5301                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302                 goto out;
5303         }
5304
5305         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306         I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308 out:
5309         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310         dev_priv->vlv_pctx = pctx;
5311         mutex_unlock(&dev->struct_mutex);
5312 }
5313
5314 static void valleyview_cleanup_pctx(struct drm_device *dev)
5315 {
5316         struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318         if (WARN_ON(!dev_priv->vlv_pctx))
5319                 return;
5320
5321         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322         dev_priv->vlv_pctx = NULL;
5323 }
5324
5325 static void valleyview_init_gt_powersave(struct drm_device *dev)
5326 {
5327         struct drm_i915_private *dev_priv = dev->dev_private;
5328         u32 val;
5329
5330         valleyview_setup_pctx(dev);
5331
5332         mutex_lock(&dev_priv->rps.hw_lock);
5333
5334         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335         switch ((val >> 6) & 3) {
5336         case 0:
5337         case 1:
5338                 dev_priv->mem_freq = 800;
5339                 break;
5340         case 2:
5341                 dev_priv->mem_freq = 1066;
5342                 break;
5343         case 3:
5344                 dev_priv->mem_freq = 1333;
5345                 break;
5346         }
5347         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353                          dev_priv->rps.max_freq);
5354
5355         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358                          dev_priv->rps.efficient_freq);
5359
5360         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363                          dev_priv->rps.rp1_freq);
5364
5365         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368                          dev_priv->rps.min_freq);
5369
5370         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372         /* Preserve min/max settings in case of re-init */
5373         if (dev_priv->rps.max_freq_softlimit == 0)
5374                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376         if (dev_priv->rps.min_freq_softlimit == 0)
5377                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379         mutex_unlock(&dev_priv->rps.hw_lock);
5380 }
5381
5382 static void cherryview_init_gt_powersave(struct drm_device *dev)
5383 {
5384         struct drm_i915_private *dev_priv = dev->dev_private;
5385         u32 val;
5386
5387         cherryview_setup_pctx(dev);
5388
5389         mutex_lock(&dev_priv->rps.hw_lock);
5390
5391         mutex_lock(&dev_priv->sb_lock);
5392         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393         mutex_unlock(&dev_priv->sb_lock);
5394
5395         switch ((val >> 2) & 0x7) {
5396         case 3:
5397                 dev_priv->mem_freq = 2000;
5398                 break;
5399         default:
5400                 dev_priv->mem_freq = 1600;
5401                 break;
5402         }
5403         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409                          dev_priv->rps.max_freq);
5410
5411         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414                          dev_priv->rps.efficient_freq);
5415
5416         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419                          dev_priv->rps.rp1_freq);
5420
5421         /* PUnit validated range is only [RPe, RP0] */
5422         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425                          dev_priv->rps.min_freq);
5426
5427         WARN_ONCE((dev_priv->rps.max_freq |
5428                    dev_priv->rps.efficient_freq |
5429                    dev_priv->rps.rp1_freq |
5430                    dev_priv->rps.min_freq) & 1,
5431                   "Odd GPU freq values\n");
5432
5433         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435         /* Preserve min/max settings in case of re-init */
5436         if (dev_priv->rps.max_freq_softlimit == 0)
5437                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439         if (dev_priv->rps.min_freq_softlimit == 0)
5440                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442         mutex_unlock(&dev_priv->rps.hw_lock);
5443 }
5444
5445 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446 {
5447         valleyview_cleanup_pctx(dev);
5448 }
5449
5450 static void cherryview_enable_rps(struct drm_device *dev)
5451 {
5452         struct drm_i915_private *dev_priv = dev->dev_private;
5453         struct intel_engine_cs *ring;
5454         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455         int i;
5456
5457         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459         gtfifodbg = I915_READ(GTFIFODBG);
5460         if (gtfifodbg) {
5461                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462                                  gtfifodbg);
5463                 I915_WRITE(GTFIFODBG, gtfifodbg);
5464         }
5465
5466         cherryview_check_pctx(dev_priv);
5467
5468         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5469          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472         /*  Disable RC states. */
5473         I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475         /* 2a: Program RC6 thresholds.*/
5476         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480         for_each_ring(ring, dev_priv, i)
5481                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482         I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487         /* allows RC6 residency counter to work */
5488         I915_WRITE(VLV_COUNTER_CONTROL,
5489                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490                                       VLV_MEDIA_RC6_COUNT_EN |
5491                                       VLV_RENDER_RC6_COUNT_EN));
5492
5493         /* For now we assume BIOS is allocating and populating the PCBR  */
5494         pcbr = I915_READ(VLV_PCBR);
5495
5496         /* 3: Enable RC6 */
5497         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5499                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503         /* 4 Program defaults and thresholds for RPS*/
5504         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507         I915_WRITE(GEN6_RP_UP_EI, 66000);
5508         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512         /* 5: Enable RPS */
5513         I915_WRITE(GEN6_RP_CONTROL,
5514                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515                    GEN6_RP_MEDIA_IS_GFX |
5516                    GEN6_RP_ENABLE |
5517                    GEN6_RP_UP_BUSY_AVG |
5518                    GEN6_RP_DOWN_IDLE_AVG);
5519
5520         /* Setting Fixed Bias */
5521         val = VLV_OVERRIDE_EN |
5522                   VLV_SOC_TDP_EN |
5523                   CHV_BIAS_CPU_50_SOC_50;
5524         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528         /* RPS code assumes GPLL is used */
5529         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537                          dev_priv->rps.cur_freq);
5538
5539         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541                          dev_priv->rps.efficient_freq);
5542
5543         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546 }
5547
5548 static void valleyview_enable_rps(struct drm_device *dev)
5549 {
5550         struct drm_i915_private *dev_priv = dev->dev_private;
5551         struct intel_engine_cs *ring;
5552         u32 gtfifodbg, val, rc6_mode = 0;
5553         int i;
5554
5555         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557         valleyview_check_pctx(dev_priv);
5558
5559         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561                                  gtfifodbg);
5562                 I915_WRITE(GTFIFODBG, gtfifodbg);
5563         }
5564
5565         /* If VLV, Forcewake all wells, else re-direct to regular path */
5566         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568         /*  Disable RC states. */
5569         I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574         I915_WRITE(GEN6_RP_UP_EI, 66000);
5575         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579         I915_WRITE(GEN6_RP_CONTROL,
5580                    GEN6_RP_MEDIA_TURBO |
5581                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582                    GEN6_RP_MEDIA_IS_GFX |
5583                    GEN6_RP_ENABLE |
5584                    GEN6_RP_UP_BUSY_AVG |
5585                    GEN6_RP_DOWN_IDLE_CONT);
5586
5587         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591         for_each_ring(ring, dev_priv, i)
5592                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596         /* allows RC6 residency counter to work */
5597         I915_WRITE(VLV_COUNTER_CONTROL,
5598                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599                                       VLV_RENDER_RC0_COUNT_EN |
5600                                       VLV_MEDIA_RC6_COUNT_EN |
5601                                       VLV_RENDER_RC6_COUNT_EN));
5602
5603         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606         intel_print_rc6_info(dev, rc6_mode);
5607
5608         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610         /* Setting Fixed Bias */
5611         val = VLV_OVERRIDE_EN |
5612                   VLV_SOC_TDP_EN |
5613                   VLV_BIAS_CPU_125_SOC_875;
5614         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618         /* RPS code assumes GPLL is used */
5619         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627                          dev_priv->rps.cur_freq);
5628
5629         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631                          dev_priv->rps.efficient_freq);
5632
5633         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5636 }
5637
5638 static unsigned long intel_pxfreq(u32 vidfreq)
5639 {
5640         unsigned long freq;
5641         int div = (vidfreq & 0x3f0000) >> 16;
5642         int post = (vidfreq & 0x3000) >> 12;
5643         int pre = (vidfreq & 0x7);
5644
5645         if (!pre)
5646                 return 0;
5647
5648         freq = ((div * 133333) / ((1<<post) * pre));
5649
5650         return freq;
5651 }
5652
5653 static const struct cparams {
5654         u16 i;
5655         u16 t;
5656         u16 m;
5657         u16 c;
5658 } cparams[] = {
5659         { 1, 1333, 301, 28664 },
5660         { 1, 1066, 294, 24460 },
5661         { 1, 800, 294, 25192 },
5662         { 0, 1333, 276, 27605 },
5663         { 0, 1066, 276, 27605 },
5664         { 0, 800, 231, 23784 },
5665 };
5666
5667 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668 {
5669         u64 total_count, diff, ret;
5670         u32 count1, count2, count3, m = 0, c = 0;
5671         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672         int i;
5673
5674         assert_spin_locked(&mchdev_lock);
5675
5676         diff1 = now - dev_priv->ips.last_time1;
5677
5678         /* Prevent division-by-zero if we are asking too fast.
5679          * Also, we don't get interesting results if we are polling
5680          * faster than once in 10ms, so just return the saved value
5681          * in such cases.
5682          */
5683         if (diff1 <= 10)
5684                 return dev_priv->ips.chipset_power;
5685
5686         count1 = I915_READ(DMIEC);
5687         count2 = I915_READ(DDREC);
5688         count3 = I915_READ(CSIEC);
5689
5690         total_count = count1 + count2 + count3;
5691
5692         /* FIXME: handle per-counter overflow */
5693         if (total_count < dev_priv->ips.last_count1) {
5694                 diff = ~0UL - dev_priv->ips.last_count1;
5695                 diff += total_count;
5696         } else {
5697                 diff = total_count - dev_priv->ips.last_count1;
5698         }
5699
5700         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701                 if (cparams[i].i == dev_priv->ips.c_m &&
5702                     cparams[i].t == dev_priv->ips.r_t) {
5703                         m = cparams[i].m;
5704                         c = cparams[i].c;
5705                         break;
5706                 }
5707         }
5708
5709         diff = div_u64(diff, diff1);
5710         ret = ((m * diff) + c);
5711         ret = div_u64(ret, 10);
5712
5713         dev_priv->ips.last_count1 = total_count;
5714         dev_priv->ips.last_time1 = now;
5715
5716         dev_priv->ips.chipset_power = ret;
5717
5718         return ret;
5719 }
5720
5721 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722 {
5723         struct drm_device *dev = dev_priv->dev;
5724         unsigned long val;
5725
5726         if (INTEL_INFO(dev)->gen != 5)
5727                 return 0;
5728
5729         spin_lock_irq(&mchdev_lock);
5730
5731         val = __i915_chipset_val(dev_priv);
5732
5733         spin_unlock_irq(&mchdev_lock);
5734
5735         return val;
5736 }
5737
5738 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739 {
5740         unsigned long m, x, b;
5741         u32 tsfs;
5742
5743         tsfs = I915_READ(TSFS);
5744
5745         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746         x = I915_READ8(TR1);
5747
5748         b = tsfs & TSFS_INTR_MASK;
5749
5750         return ((m * x) / 127) - b;
5751 }
5752
5753 static int _pxvid_to_vd(u8 pxvid)
5754 {
5755         if (pxvid == 0)
5756                 return 0;
5757
5758         if (pxvid >= 8 && pxvid < 31)
5759                 pxvid = 31;
5760
5761         return (pxvid + 2) * 125;
5762 }
5763
5764 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765 {
5766         struct drm_device *dev = dev_priv->dev;
5767         const int vd = _pxvid_to_vd(pxvid);
5768         const int vm = vd - 1125;
5769
5770         if (INTEL_INFO(dev)->is_mobile)
5771                 return vm > 0 ? vm : 0;
5772
5773         return vd;
5774 }
5775
5776 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777 {
5778         u64 now, diff, diffms;
5779         u32 count;
5780
5781         assert_spin_locked(&mchdev_lock);
5782
5783         now = ktime_get_raw_ns();
5784         diffms = now - dev_priv->ips.last_time2;
5785         do_div(diffms, NSEC_PER_MSEC);
5786
5787         /* Don't divide by 0 */
5788         if (!diffms)
5789                 return;
5790
5791         count = I915_READ(GFXEC);
5792
5793         if (count < dev_priv->ips.last_count2) {
5794                 diff = ~0UL - dev_priv->ips.last_count2;
5795                 diff += count;
5796         } else {
5797                 diff = count - dev_priv->ips.last_count2;
5798         }
5799
5800         dev_priv->ips.last_count2 = count;
5801         dev_priv->ips.last_time2 = now;
5802
5803         /* More magic constants... */
5804         diff = diff * 1181;
5805         diff = div_u64(diff, diffms * 10);
5806         dev_priv->ips.gfx_power = diff;
5807 }
5808
5809 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810 {
5811         struct drm_device *dev = dev_priv->dev;
5812
5813         if (INTEL_INFO(dev)->gen != 5)
5814                 return;
5815
5816         spin_lock_irq(&mchdev_lock);
5817
5818         __i915_update_gfx_val(dev_priv);
5819
5820         spin_unlock_irq(&mchdev_lock);
5821 }
5822
5823 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824 {
5825         unsigned long t, corr, state1, corr2, state2;
5826         u32 pxvid, ext_v;
5827
5828         assert_spin_locked(&mchdev_lock);
5829
5830         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831         pxvid = (pxvid >> 24) & 0x7f;
5832         ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834         state1 = ext_v;
5835
5836         t = i915_mch_val(dev_priv);
5837
5838         /* Revel in the empirically derived constants */
5839
5840         /* Correction factor in 1/100000 units */
5841         if (t > 80)
5842                 corr = ((t * 2349) + 135940);
5843         else if (t >= 50)
5844                 corr = ((t * 964) + 29317);
5845         else /* < 50 */
5846                 corr = ((t * 301) + 1004);
5847
5848         corr = corr * ((150142 * state1) / 10000 - 78642);
5849         corr /= 100000;
5850         corr2 = (corr * dev_priv->ips.corr);
5851
5852         state2 = (corr2 * state1) / 10000;
5853         state2 /= 100; /* convert to mW */
5854
5855         __i915_update_gfx_val(dev_priv);
5856
5857         return dev_priv->ips.gfx_power + state2;
5858 }
5859
5860 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861 {
5862         struct drm_device *dev = dev_priv->dev;
5863         unsigned long val;
5864
5865         if (INTEL_INFO(dev)->gen != 5)
5866                 return 0;
5867
5868         spin_lock_irq(&mchdev_lock);
5869
5870         val = __i915_gfx_val(dev_priv);
5871
5872         spin_unlock_irq(&mchdev_lock);
5873
5874         return val;
5875 }
5876
5877 /**
5878  * i915_read_mch_val - return value for IPS use
5879  *
5880  * Calculate and return a value for the IPS driver to use when deciding whether
5881  * we have thermal and power headroom to increase CPU or GPU power budget.
5882  */
5883 unsigned long i915_read_mch_val(void)
5884 {
5885         struct drm_i915_private *dev_priv;
5886         unsigned long chipset_val, graphics_val, ret = 0;
5887
5888         spin_lock_irq(&mchdev_lock);
5889         if (!i915_mch_dev)
5890                 goto out_unlock;
5891         dev_priv = i915_mch_dev;
5892
5893         chipset_val = __i915_chipset_val(dev_priv);
5894         graphics_val = __i915_gfx_val(dev_priv);
5895
5896         ret = chipset_val + graphics_val;
5897
5898 out_unlock:
5899         spin_unlock_irq(&mchdev_lock);
5900
5901         return ret;
5902 }
5903 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905 /**
5906  * i915_gpu_raise - raise GPU frequency limit
5907  *
5908  * Raise the limit; IPS indicates we have thermal headroom.
5909  */
5910 bool i915_gpu_raise(void)
5911 {
5912         struct drm_i915_private *dev_priv;
5913         bool ret = true;
5914
5915         spin_lock_irq(&mchdev_lock);
5916         if (!i915_mch_dev) {
5917                 ret = false;
5918                 goto out_unlock;
5919         }
5920         dev_priv = i915_mch_dev;
5921
5922         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923                 dev_priv->ips.max_delay--;
5924
5925 out_unlock:
5926         spin_unlock_irq(&mchdev_lock);
5927
5928         return ret;
5929 }
5930 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932 /**
5933  * i915_gpu_lower - lower GPU frequency limit
5934  *
5935  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936  * frequency maximum.
5937  */
5938 bool i915_gpu_lower(void)
5939 {
5940         struct drm_i915_private *dev_priv;
5941         bool ret = true;
5942
5943         spin_lock_irq(&mchdev_lock);
5944         if (!i915_mch_dev) {
5945                 ret = false;
5946                 goto out_unlock;
5947         }
5948         dev_priv = i915_mch_dev;
5949
5950         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951                 dev_priv->ips.max_delay++;
5952
5953 out_unlock:
5954         spin_unlock_irq(&mchdev_lock);
5955
5956         return ret;
5957 }
5958 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960 /**
5961  * i915_gpu_busy - indicate GPU business to IPS
5962  *
5963  * Tell the IPS driver whether or not the GPU is busy.
5964  */
5965 bool i915_gpu_busy(void)
5966 {
5967         struct drm_i915_private *dev_priv;
5968         struct intel_engine_cs *ring;
5969         bool ret = false;
5970         int i;
5971
5972         spin_lock_irq(&mchdev_lock);
5973         if (!i915_mch_dev)
5974                 goto out_unlock;
5975         dev_priv = i915_mch_dev;
5976
5977         for_each_ring(ring, dev_priv, i)
5978                 ret |= !list_empty(&ring->request_list);
5979
5980 out_unlock:
5981         spin_unlock_irq(&mchdev_lock);
5982
5983         return ret;
5984 }
5985 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987 /**
5988  * i915_gpu_turbo_disable - disable graphics turbo
5989  *
5990  * Disable graphics turbo by resetting the max frequency and setting the
5991  * current frequency to the default.
5992  */
5993 bool i915_gpu_turbo_disable(void)
5994 {
5995         struct drm_i915_private *dev_priv;
5996         bool ret = true;
5997
5998         spin_lock_irq(&mchdev_lock);
5999         if (!i915_mch_dev) {
6000                 ret = false;
6001                 goto out_unlock;
6002         }
6003         dev_priv = i915_mch_dev;
6004
6005         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008                 ret = false;
6009
6010 out_unlock:
6011         spin_unlock_irq(&mchdev_lock);
6012
6013         return ret;
6014 }
6015 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017 /**
6018  * Tells the intel_ips driver that the i915 driver is now loaded, if
6019  * IPS got loaded first.
6020  *
6021  * This awkward dance is so that neither module has to depend on the
6022  * other in order for IPS to do the appropriate communication of
6023  * GPU turbo limits to i915.
6024  */
6025 static void
6026 ips_ping_for_i915_load(void)
6027 {
6028         void (*link)(void);
6029
6030         link = symbol_get(ips_link_to_i915_driver);
6031         if (link) {
6032                 link();
6033                 symbol_put(ips_link_to_i915_driver);
6034         }
6035 }
6036
6037 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038 {
6039         /* We only register the i915 ips part with intel-ips once everything is
6040          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041         spin_lock_irq(&mchdev_lock);
6042         i915_mch_dev = dev_priv;
6043         spin_unlock_irq(&mchdev_lock);
6044
6045         ips_ping_for_i915_load();
6046 }
6047
6048 void intel_gpu_ips_teardown(void)
6049 {
6050         spin_lock_irq(&mchdev_lock);
6051         i915_mch_dev = NULL;
6052         spin_unlock_irq(&mchdev_lock);
6053 }
6054
6055 static void intel_init_emon(struct drm_device *dev)
6056 {
6057         struct drm_i915_private *dev_priv = dev->dev_private;
6058         u32 lcfuse;
6059         u8 pxw[16];
6060         int i;
6061
6062         /* Disable to program */
6063         I915_WRITE(ECR, 0);
6064         POSTING_READ(ECR);
6065
6066         /* Program energy weights for various events */
6067         I915_WRITE(SDEW, 0x15040d00);
6068         I915_WRITE(CSIEW0, 0x007f0000);
6069         I915_WRITE(CSIEW1, 0x1e220004);
6070         I915_WRITE(CSIEW2, 0x04000004);
6071
6072         for (i = 0; i < 5; i++)
6073                 I915_WRITE(PEW(i), 0);
6074         for (i = 0; i < 3; i++)
6075                 I915_WRITE(DEW(i), 0);
6076
6077         /* Program P-state weights to account for frequency power adjustment */
6078         for (i = 0; i < 16; i++) {
6079                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080                 unsigned long freq = intel_pxfreq(pxvidfreq);
6081                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082                         PXVFREQ_PX_SHIFT;
6083                 unsigned long val;
6084
6085                 val = vid * vid;
6086                 val *= (freq / 1000);
6087                 val *= 255;
6088                 val /= (127*127*900);
6089                 if (val > 0xff)
6090                         DRM_ERROR("bad pxval: %ld\n", val);
6091                 pxw[i] = val;
6092         }
6093         /* Render standby states get 0 weight */
6094         pxw[14] = 0;
6095         pxw[15] = 0;
6096
6097         for (i = 0; i < 4; i++) {
6098                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100                 I915_WRITE(PXW(i), val);
6101         }
6102
6103         /* Adjust magic regs to magic values (more experimental results) */
6104         I915_WRITE(OGW0, 0);
6105         I915_WRITE(OGW1, 0);
6106         I915_WRITE(EG0, 0x00007f00);
6107         I915_WRITE(EG1, 0x0000000e);
6108         I915_WRITE(EG2, 0x000e0000);
6109         I915_WRITE(EG3, 0x68000300);
6110         I915_WRITE(EG4, 0x42000000);
6111         I915_WRITE(EG5, 0x00140031);
6112         I915_WRITE(EG6, 0);
6113         I915_WRITE(EG7, 0);
6114
6115         for (i = 0; i < 8; i++)
6116                 I915_WRITE(PXWL(i), 0);
6117
6118         /* Enable PMON + select events */
6119         I915_WRITE(ECR, 0x80000019);
6120
6121         lcfuse = I915_READ(LCFUSE02);
6122
6123         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124 }
6125
6126 void intel_init_gt_powersave(struct drm_device *dev)
6127 {
6128         struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130         /*
6131          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132          * requirement.
6133          */
6134         if (!i915.enable_rc6) {
6135                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136                 intel_runtime_pm_get(dev_priv);
6137         }
6138
6139         if (IS_CHERRYVIEW(dev))
6140                 cherryview_init_gt_powersave(dev);
6141         else if (IS_VALLEYVIEW(dev))
6142                 valleyview_init_gt_powersave(dev);
6143 }
6144
6145 void intel_cleanup_gt_powersave(struct drm_device *dev)
6146 {
6147         struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149         if (IS_CHERRYVIEW(dev))
6150                 return;
6151         else if (IS_VALLEYVIEW(dev))
6152                 valleyview_cleanup_gt_powersave(dev);
6153
6154         if (!i915.enable_rc6)
6155                 intel_runtime_pm_put(dev_priv);
6156 }
6157
6158 static void gen6_suspend_rps(struct drm_device *dev)
6159 {
6160         struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164         gen6_disable_rps_interrupts(dev);
6165 }
6166
6167 /**
6168  * intel_suspend_gt_powersave - suspend PM work and helper threads
6169  * @dev: drm device
6170  *
6171  * We don't want to disable RC6 or other features here, we just want
6172  * to make sure any work we've queued has finished and won't bother
6173  * us while we're suspended.
6174  */
6175 void intel_suspend_gt_powersave(struct drm_device *dev)
6176 {
6177         struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179         if (INTEL_INFO(dev)->gen < 6)
6180                 return;
6181
6182         gen6_suspend_rps(dev);
6183
6184         /* Force GPU to min freq during suspend */
6185         gen6_rps_idle(dev_priv);
6186 }
6187
6188 void intel_disable_gt_powersave(struct drm_device *dev)
6189 {
6190         struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192         if (IS_IRONLAKE_M(dev)) {
6193                 ironlake_disable_drps(dev);
6194         } else if (INTEL_INFO(dev)->gen >= 6) {
6195                 intel_suspend_gt_powersave(dev);
6196
6197                 mutex_lock(&dev_priv->rps.hw_lock);
6198                 if (INTEL_INFO(dev)->gen >= 9)
6199                         gen9_disable_rps(dev);
6200                 else if (IS_CHERRYVIEW(dev))
6201                         cherryview_disable_rps(dev);
6202                 else if (IS_VALLEYVIEW(dev))
6203                         valleyview_disable_rps(dev);
6204                 else
6205                         gen6_disable_rps(dev);
6206
6207                 dev_priv->rps.enabled = false;
6208                 mutex_unlock(&dev_priv->rps.hw_lock);
6209         }
6210 }
6211
6212 static void intel_gen6_powersave_work(struct work_struct *work)
6213 {
6214         struct drm_i915_private *dev_priv =
6215                 container_of(work, struct drm_i915_private,
6216                              rps.delayed_resume_work.work);
6217         struct drm_device *dev = dev_priv->dev;
6218
6219         mutex_lock(&dev_priv->rps.hw_lock);
6220
6221         gen6_reset_rps_interrupts(dev);
6222
6223         if (IS_CHERRYVIEW(dev)) {
6224                 cherryview_enable_rps(dev);
6225         } else if (IS_VALLEYVIEW(dev)) {
6226                 valleyview_enable_rps(dev);
6227         } else if (INTEL_INFO(dev)->gen >= 9) {
6228                 gen9_enable_rc6(dev);
6229                 gen9_enable_rps(dev);
6230                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231                         __gen6_update_ring_freq(dev);
6232         } else if (IS_BROADWELL(dev)) {
6233                 gen8_enable_rps(dev);
6234                 __gen6_update_ring_freq(dev);
6235         } else {
6236                 gen6_enable_rps(dev);
6237                 __gen6_update_ring_freq(dev);
6238         }
6239
6240         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246         dev_priv->rps.enabled = true;
6247
6248         gen6_enable_rps_interrupts(dev);
6249
6250         mutex_unlock(&dev_priv->rps.hw_lock);
6251
6252         intel_runtime_pm_put(dev_priv);
6253 }
6254
6255 void intel_enable_gt_powersave(struct drm_device *dev)
6256 {
6257         struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259         /* Powersaving is controlled by the host when inside a VM */
6260         if (intel_vgpu_active(dev))
6261                 return;
6262
6263         if (IS_IRONLAKE_M(dev)) {
6264                 ironlake_enable_drps(dev);
6265                 mutex_lock(&dev->struct_mutex);
6266                 intel_init_emon(dev);
6267                 mutex_unlock(&dev->struct_mutex);
6268         } else if (INTEL_INFO(dev)->gen >= 6) {
6269                 /*
6270                  * PCU communication is slow and this doesn't need to be
6271                  * done at any specific time, so do this out of our fast path
6272                  * to make resume and init faster.
6273                  *
6274                  * We depend on the HW RC6 power context save/restore
6275                  * mechanism when entering D3 through runtime PM suspend. So
6276                  * disable RPM until RPS/RC6 is properly setup. We can only
6277                  * get here via the driver load/system resume/runtime resume
6278                  * paths, so the _noresume version is enough (and in case of
6279                  * runtime resume it's necessary).
6280                  */
6281                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282                                            round_jiffies_up_relative(HZ)))
6283                         intel_runtime_pm_get_noresume(dev_priv);
6284         }
6285 }
6286
6287 void intel_reset_gt_powersave(struct drm_device *dev)
6288 {
6289         struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291         if (INTEL_INFO(dev)->gen < 6)
6292                 return;
6293
6294         gen6_suspend_rps(dev);
6295         dev_priv->rps.enabled = false;
6296 }
6297
6298 static void ibx_init_clock_gating(struct drm_device *dev)
6299 {
6300         struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302         /*
6303          * On Ibex Peak and Cougar Point, we need to disable clock
6304          * gating for the panel power sequencer or it will fail to
6305          * start up when no ports are active.
6306          */
6307         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308 }
6309
6310 static void g4x_disable_trickle_feed(struct drm_device *dev)
6311 {
6312         struct drm_i915_private *dev_priv = dev->dev_private;
6313         enum pipe pipe;
6314
6315         for_each_pipe(dev_priv, pipe) {
6316                 I915_WRITE(DSPCNTR(pipe),
6317                            I915_READ(DSPCNTR(pipe)) |
6318                            DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321                 POSTING_READ(DSPSURF(pipe));
6322         }
6323 }
6324
6325 static void ilk_init_lp_watermarks(struct drm_device *dev)
6326 {
6327         struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333         /*
6334          * Don't touch WM1S_LP_EN here.
6335          * Doing so could cause underruns.
6336          */
6337 }
6338
6339 static void ironlake_init_clock_gating(struct drm_device *dev)
6340 {
6341         struct drm_i915_private *dev_priv = dev->dev_private;
6342         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344         /*
6345          * Required for FBC
6346          * WaFbcDisableDpfcClockGating:ilk
6347          */
6348         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352         I915_WRITE(PCH_3DCGDIS0,
6353                    MARIUNIT_CLOCK_GATE_DISABLE |
6354                    SVSMUNIT_CLOCK_GATE_DISABLE);
6355         I915_WRITE(PCH_3DCGDIS1,
6356                    VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358         /*
6359          * According to the spec the following bits should be set in
6360          * order to enable memory self-refresh
6361          * The bit 22/21 of 0x42004
6362          * The bit 5 of 0x42020
6363          * The bit 15 of 0x45000
6364          */
6365         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369         I915_WRITE(DISP_ARB_CTL,
6370                    (I915_READ(DISP_ARB_CTL) |
6371                     DISP_FBC_WM_DIS));
6372
6373         ilk_init_lp_watermarks(dev);
6374
6375         /*
6376          * Based on the document from hardware guys the following bits
6377          * should be set unconditionally in order to enable FBC.
6378          * The bit 22 of 0x42000
6379          * The bit 22 of 0x42004
6380          * The bit 7,8,9 of 0x42020.
6381          */
6382         if (IS_IRONLAKE_M(dev)) {
6383                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6386                            ILK_FBCQ_DIS);
6387                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6389                            ILK_DPARB_GATE);
6390         }
6391
6392         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6396                    ILK_ELPIN_409_SELECT);
6397         I915_WRITE(_3D_CHICKEN2,
6398                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399                    _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401         /* WaDisableRenderCachePipelinedFlush:ilk */
6402         I915_WRITE(CACHE_MODE_0,
6403                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405         /* WaDisable_RenderCache_OperationalFlush:ilk */
6406         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408         g4x_disable_trickle_feed(dev);
6409
6410         ibx_init_clock_gating(dev);
6411 }
6412
6413 static void cpt_init_clock_gating(struct drm_device *dev)
6414 {
6415         struct drm_i915_private *dev_priv = dev->dev_private;
6416         int pipe;
6417         uint32_t val;
6418
6419         /*
6420          * On Ibex Peak and Cougar Point, we need to disable clock
6421          * gating for the panel power sequencer or it will fail to
6422          * start up when no ports are active.
6423          */
6424         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428                    DPLS_EDP_PPS_FIX_DIS);
6429         /* The below fixes the weird display corruption, a few pixels shifted
6430          * downward, on (only) LVDS of some HP laptops with IVY.
6431          */
6432         for_each_pipe(dev_priv, pipe) {
6433                 val = I915_READ(TRANS_CHICKEN2(pipe));
6434                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442         }
6443         /* WADP0ClockGatingDisable */
6444         for_each_pipe(dev_priv, pipe) {
6445                 I915_WRITE(TRANS_CHICKEN1(pipe),
6446                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447         }
6448 }
6449
6450 static void gen6_check_mch_setup(struct drm_device *dev)
6451 {
6452         struct drm_i915_private *dev_priv = dev->dev_private;
6453         uint32_t tmp;
6454
6455         tmp = I915_READ(MCH_SSKPD);
6456         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458                               tmp);
6459 }
6460
6461 static void gen6_init_clock_gating(struct drm_device *dev)
6462 {
6463         struct drm_i915_private *dev_priv = dev->dev_private;
6464         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6470                    ILK_ELPIN_409_SELECT);
6471
6472         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473         I915_WRITE(_3D_CHICKEN,
6474                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476         /* WaDisable_RenderCache_OperationalFlush:snb */
6477         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479         /*
6480          * BSpec recoomends 8x4 when MSAA is used,
6481          * however in practice 16x4 seems fastest.
6482          *
6483          * Note that PS/WM thread counts depend on the WIZ hashing
6484          * disable bit, which we don't touch here, but it's good
6485          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486          */
6487         I915_WRITE(GEN6_GT_MODE,
6488                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490         ilk_init_lp_watermarks(dev);
6491
6492         I915_WRITE(CACHE_MODE_0,
6493                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495         I915_WRITE(GEN6_UCGCTL1,
6496                    I915_READ(GEN6_UCGCTL1) |
6497                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501          * gating disable must be set.  Failure to set it results in
6502          * flickering pixels due to Z write ordering failures after
6503          * some amount of runtime in the Mesa "fire" demo, and Unigine
6504          * Sanctuary and Tropics, and apparently anything else with
6505          * alpha test or pixel discard.
6506          *
6507          * According to the spec, bit 11 (RCCUNIT) must also be set,
6508          * but we didn't debug actual testcases to find it out.
6509          *
6510          * WaDisableRCCUnitClockGating:snb
6511          * WaDisableRCPBUnitClockGating:snb
6512          */
6513         I915_WRITE(GEN6_UCGCTL2,
6514                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6518         I915_WRITE(_3D_CHICKEN3,
6519                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521         /*
6522          * Bspec says:
6523          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524          * 3DSTATE_SF number of SF output attributes is more than 16."
6525          */
6526         I915_WRITE(_3D_CHICKEN3,
6527                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529         /*
6530          * According to the spec the following bits should be
6531          * set in order to enable memory self-refresh and fbc:
6532          * The bit21 and bit22 of 0x42000
6533          * The bit21 and bit22 of 0x42004
6534          * The bit5 and bit7 of 0x42020
6535          * The bit14 of 0x70180
6536          * The bit14 of 0x71180
6537          *
6538          * WaFbcAsynchFlipDisableFbcQueue:snb
6539          */
6540         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6542                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6545                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546         I915_WRITE(ILK_DSPCLK_GATE_D,
6547                    I915_READ(ILK_DSPCLK_GATE_D) |
6548                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6549                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551         g4x_disable_trickle_feed(dev);
6552
6553         cpt_init_clock_gating(dev);
6554
6555         gen6_check_mch_setup(dev);
6556 }
6557
6558 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559 {
6560         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562         /*
6563          * WaVSThreadDispatchOverride:ivb,vlv
6564          *
6565          * This actually overrides the dispatch
6566          * mode for all thread types.
6567          */
6568         reg &= ~GEN7_FF_SCHED_MASK;
6569         reg |= GEN7_FF_TS_SCHED_HW;
6570         reg |= GEN7_FF_VS_SCHED_HW;
6571         reg |= GEN7_FF_DS_SCHED_HW;
6572
6573         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574 }
6575
6576 static void lpt_init_clock_gating(struct drm_device *dev)
6577 {
6578         struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580         /*
6581          * TODO: this bit should only be enabled when really needed, then
6582          * disabled when not needed anymore in order to save power.
6583          */
6584         if (HAS_PCH_LPT_LP(dev))
6585                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6587                            PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589         /* WADPOClockGatingDisable:hsw */
6590         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593 }
6594
6595 static void lpt_suspend_hw(struct drm_device *dev)
6596 {
6597         struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599         if (HAS_PCH_LPT_LP(dev)) {
6600                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604         }
6605 }
6606
6607 static void broadwell_init_clock_gating(struct drm_device *dev)
6608 {
6609         struct drm_i915_private *dev_priv = dev->dev_private;
6610         enum pipe pipe;
6611         uint32_t misccpctl;
6612
6613         ilk_init_lp_watermarks(dev);
6614
6615         /* WaSwitchSolVfFArbitrationPriority:bdw */
6616         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618         /* WaPsrDPAMaskVBlankInSRD:bdw */
6619         I915_WRITE(CHICKEN_PAR1_1,
6620                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623         for_each_pipe(dev_priv, pipe) {
6624                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626                            BDW_DPRS_MASK_VBLANK_SRD);
6627         }
6628
6629         /* WaVSRefCountFullforceMissDisable:bdw */
6630         /* WaDSRefCountFullforceMissDisable:bdw */
6631         I915_WRITE(GEN7_FF_THREAD_MODE,
6632                    I915_READ(GEN7_FF_THREAD_MODE) &
6633                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638         /* WaDisableSDEUnitClockGating:bdw */
6639         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642         /*
6643          * WaProgramL3SqcReg1Default:bdw
6644          * WaTempDisableDOPClkGating:bdw
6645          */
6646         misccpctl = I915_READ(GEN7_MISCCPCTL);
6647         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649         /*
6650          * Wait at least 100 clocks before re-enabling clock gating. See
6651          * the definition of L3SQCREG1 in BSpec.
6652          */
6653         POSTING_READ(GEN8_L3SQCREG1);
6654         udelay(1);
6655         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6656
6657         /*
6658          * WaGttCachingOffByDefault:bdw
6659          * GTT cache may not work with big pages, so if those
6660          * are ever enabled GTT cache may need to be disabled.
6661          */
6662         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6663
6664         lpt_init_clock_gating(dev);
6665 }
6666
6667 static void haswell_init_clock_gating(struct drm_device *dev)
6668 {
6669         struct drm_i915_private *dev_priv = dev->dev_private;
6670
6671         ilk_init_lp_watermarks(dev);
6672
6673         /* L3 caching of data atomics doesn't work -- disable it. */
6674         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6675         I915_WRITE(HSW_ROW_CHICKEN3,
6676                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6677
6678         /* This is required by WaCatErrorRejectionIssue:hsw */
6679         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6680                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6681                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6682
6683         /* WaVSRefCountFullforceMissDisable:hsw */
6684         I915_WRITE(GEN7_FF_THREAD_MODE,
6685                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6686
6687         /* WaDisable_RenderCache_OperationalFlush:hsw */
6688         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690         /* enable HiZ Raw Stall Optimization */
6691         I915_WRITE(CACHE_MODE_0_GEN7,
6692                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6693
6694         /* WaDisable4x2SubspanOptimization:hsw */
6695         I915_WRITE(CACHE_MODE_1,
6696                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6697
6698         /*
6699          * BSpec recommends 8x4 when MSAA is used,
6700          * however in practice 16x4 seems fastest.
6701          *
6702          * Note that PS/WM thread counts depend on the WIZ hashing
6703          * disable bit, which we don't touch here, but it's good
6704          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6705          */
6706         I915_WRITE(GEN7_GT_MODE,
6707                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6708
6709         /* WaSampleCChickenBitEnable:hsw */
6710         I915_WRITE(HALF_SLICE_CHICKEN3,
6711                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6712
6713         /* WaSwitchSolVfFArbitrationPriority:hsw */
6714         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6715
6716         /* WaRsPkgCStateDisplayPMReq:hsw */
6717         I915_WRITE(CHICKEN_PAR1_1,
6718                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6719
6720         lpt_init_clock_gating(dev);
6721 }
6722
6723 static void ivybridge_init_clock_gating(struct drm_device *dev)
6724 {
6725         struct drm_i915_private *dev_priv = dev->dev_private;
6726         uint32_t snpcr;
6727
6728         ilk_init_lp_watermarks(dev);
6729
6730         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6731
6732         /* WaDisableEarlyCull:ivb */
6733         I915_WRITE(_3D_CHICKEN3,
6734                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6735
6736         /* WaDisableBackToBackFlipFix:ivb */
6737         I915_WRITE(IVB_CHICKEN3,
6738                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6739                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6740
6741         /* WaDisablePSDDualDispatchEnable:ivb */
6742         if (IS_IVB_GT1(dev))
6743                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6744                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6745
6746         /* WaDisable_RenderCache_OperationalFlush:ivb */
6747         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6748
6749         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6750         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6751                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6752
6753         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6754         I915_WRITE(GEN7_L3CNTLREG1,
6755                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6756         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6757                    GEN7_WA_L3_CHICKEN_MODE);
6758         if (IS_IVB_GT1(dev))
6759                 I915_WRITE(GEN7_ROW_CHICKEN2,
6760                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761         else {
6762                 /* must write both registers */
6763                 I915_WRITE(GEN7_ROW_CHICKEN2,
6764                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6765                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6766                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6767         }
6768
6769         /* WaForceL3Serialization:ivb */
6770         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6771                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6772
6773         /*
6774          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6775          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6776          */
6777         I915_WRITE(GEN6_UCGCTL2,
6778                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6779
6780         /* This is required by WaCatErrorRejectionIssue:ivb */
6781         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6782                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6783                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6784
6785         g4x_disable_trickle_feed(dev);
6786
6787         gen7_setup_fixed_func_scheduler(dev_priv);
6788
6789         if (0) { /* causes HiZ corruption on ivb:gt1 */
6790                 /* enable HiZ Raw Stall Optimization */
6791                 I915_WRITE(CACHE_MODE_0_GEN7,
6792                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6793         }
6794
6795         /* WaDisable4x2SubspanOptimization:ivb */
6796         I915_WRITE(CACHE_MODE_1,
6797                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6798
6799         /*
6800          * BSpec recommends 8x4 when MSAA is used,
6801          * however in practice 16x4 seems fastest.
6802          *
6803          * Note that PS/WM thread counts depend on the WIZ hashing
6804          * disable bit, which we don't touch here, but it's good
6805          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6806          */
6807         I915_WRITE(GEN7_GT_MODE,
6808                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6809
6810         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6811         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6812         snpcr |= GEN6_MBC_SNPCR_MED;
6813         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6814
6815         if (!HAS_PCH_NOP(dev))
6816                 cpt_init_clock_gating(dev);
6817
6818         gen6_check_mch_setup(dev);
6819 }
6820
6821 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6822 {
6823         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6824
6825         /*
6826          * Disable trickle feed and enable pnd deadline calculation
6827          */
6828         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6829         I915_WRITE(CBR1_VLV, 0);
6830 }
6831
6832 static void valleyview_init_clock_gating(struct drm_device *dev)
6833 {
6834         struct drm_i915_private *dev_priv = dev->dev_private;
6835
6836         vlv_init_display_clock_gating(dev_priv);
6837
6838         /* WaDisableEarlyCull:vlv */
6839         I915_WRITE(_3D_CHICKEN3,
6840                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6841
6842         /* WaDisableBackToBackFlipFix:vlv */
6843         I915_WRITE(IVB_CHICKEN3,
6844                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6845                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6846
6847         /* WaPsdDispatchEnable:vlv */
6848         /* WaDisablePSDDualDispatchEnable:vlv */
6849         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6850                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6851                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6852
6853         /* WaDisable_RenderCache_OperationalFlush:vlv */
6854         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6855
6856         /* WaForceL3Serialization:vlv */
6857         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6858                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6859
6860         /* WaDisableDopClockGating:vlv */
6861         I915_WRITE(GEN7_ROW_CHICKEN2,
6862                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6863
6864         /* This is required by WaCatErrorRejectionIssue:vlv */
6865         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6866                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6867                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6868
6869         gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871         /*
6872          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6873          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6874          */
6875         I915_WRITE(GEN6_UCGCTL2,
6876                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6877
6878         /* WaDisableL3Bank2xClockGate:vlv
6879          * Disabling L3 clock gating- MMIO 940c[25] = 1
6880          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6881         I915_WRITE(GEN7_UCGCTL4,
6882                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6883
6884         /*
6885          * BSpec says this must be set, even though
6886          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6887          */
6888         I915_WRITE(CACHE_MODE_1,
6889                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6890
6891         /*
6892          * BSpec recommends 8x4 when MSAA is used,
6893          * however in practice 16x4 seems fastest.
6894          *
6895          * Note that PS/WM thread counts depend on the WIZ hashing
6896          * disable bit, which we don't touch here, but it's good
6897          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6898          */
6899         I915_WRITE(GEN7_GT_MODE,
6900                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6901
6902         /*
6903          * WaIncreaseL3CreditsForVLVB0:vlv
6904          * This is the hardware default actually.
6905          */
6906         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6907
6908         /*
6909          * WaDisableVLVClockGating_VBIIssue:vlv
6910          * Disable clock gating on th GCFG unit to prevent a delay
6911          * in the reporting of vblank events.
6912          */
6913         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6914 }
6915
6916 static void cherryview_init_clock_gating(struct drm_device *dev)
6917 {
6918         struct drm_i915_private *dev_priv = dev->dev_private;
6919
6920         vlv_init_display_clock_gating(dev_priv);
6921
6922         /* WaVSRefCountFullforceMissDisable:chv */
6923         /* WaDSRefCountFullforceMissDisable:chv */
6924         I915_WRITE(GEN7_FF_THREAD_MODE,
6925                    I915_READ(GEN7_FF_THREAD_MODE) &
6926                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6927
6928         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6929         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6930                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6931
6932         /* WaDisableCSUnitClockGating:chv */
6933         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6934                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6935
6936         /* WaDisableSDEUnitClockGating:chv */
6937         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6938                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6939
6940         /*
6941          * GTT cache may not work with big pages, so if those
6942          * are ever enabled GTT cache may need to be disabled.
6943          */
6944         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6945 }
6946
6947 static void g4x_init_clock_gating(struct drm_device *dev)
6948 {
6949         struct drm_i915_private *dev_priv = dev->dev_private;
6950         uint32_t dspclk_gate;
6951
6952         I915_WRITE(RENCLK_GATE_D1, 0);
6953         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6954                    GS_UNIT_CLOCK_GATE_DISABLE |
6955                    CL_UNIT_CLOCK_GATE_DISABLE);
6956         I915_WRITE(RAMCLK_GATE_D, 0);
6957         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6958                 OVRUNIT_CLOCK_GATE_DISABLE |
6959                 OVCUNIT_CLOCK_GATE_DISABLE;
6960         if (IS_GM45(dev))
6961                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6962         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6963
6964         /* WaDisableRenderCachePipelinedFlush */
6965         I915_WRITE(CACHE_MODE_0,
6966                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6967
6968         /* WaDisable_RenderCache_OperationalFlush:g4x */
6969         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6970
6971         g4x_disable_trickle_feed(dev);
6972 }
6973
6974 static void crestline_init_clock_gating(struct drm_device *dev)
6975 {
6976         struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6979         I915_WRITE(RENCLK_GATE_D2, 0);
6980         I915_WRITE(DSPCLK_GATE_D, 0);
6981         I915_WRITE(RAMCLK_GATE_D, 0);
6982         I915_WRITE16(DEUC, 0);
6983         I915_WRITE(MI_ARB_STATE,
6984                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985
6986         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6987         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988 }
6989
6990 static void broadwater_init_clock_gating(struct drm_device *dev)
6991 {
6992         struct drm_i915_private *dev_priv = dev->dev_private;
6993
6994         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6995                    I965_RCC_CLOCK_GATE_DISABLE |
6996                    I965_RCPB_CLOCK_GATE_DISABLE |
6997                    I965_ISC_CLOCK_GATE_DISABLE |
6998                    I965_FBC_CLOCK_GATE_DISABLE);
6999         I915_WRITE(RENCLK_GATE_D2, 0);
7000         I915_WRITE(MI_ARB_STATE,
7001                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7002
7003         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7004         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7005 }
7006
7007 static void gen3_init_clock_gating(struct drm_device *dev)
7008 {
7009         struct drm_i915_private *dev_priv = dev->dev_private;
7010         u32 dstate = I915_READ(D_STATE);
7011
7012         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7013                 DSTATE_DOT_CLOCK_GATING;
7014         I915_WRITE(D_STATE, dstate);
7015
7016         if (IS_PINEVIEW(dev))
7017                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7018
7019         /* IIR "flip pending" means done if this bit is set */
7020         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7021
7022         /* interrupts should cause a wake up from C3 */
7023         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7024
7025         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7026         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7027
7028         I915_WRITE(MI_ARB_STATE,
7029                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7030 }
7031
7032 static void i85x_init_clock_gating(struct drm_device *dev)
7033 {
7034         struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7037
7038         /* interrupts should cause a wake up from C3 */
7039         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7040                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7041
7042         I915_WRITE(MEM_MODE,
7043                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7044 }
7045
7046 static void i830_init_clock_gating(struct drm_device *dev)
7047 {
7048         struct drm_i915_private *dev_priv = dev->dev_private;
7049
7050         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7051
7052         I915_WRITE(MEM_MODE,
7053                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7054                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7055 }
7056
7057 void intel_init_clock_gating(struct drm_device *dev)
7058 {
7059         struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061         if (dev_priv->display.init_clock_gating)
7062                 dev_priv->display.init_clock_gating(dev);
7063 }
7064
7065 void intel_suspend_hw(struct drm_device *dev)
7066 {
7067         if (HAS_PCH_LPT(dev))
7068                 lpt_suspend_hw(dev);
7069 }
7070
7071 /* Set up chip specific power management-related functions */
7072 void intel_init_pm(struct drm_device *dev)
7073 {
7074         struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076         intel_fbc_init(dev_priv);
7077
7078         /* For cxsr */
7079         if (IS_PINEVIEW(dev))
7080                 i915_pineview_get_mem_freq(dev);
7081         else if (IS_GEN5(dev))
7082                 i915_ironlake_get_mem_freq(dev);
7083
7084         /* For FIFO watermark updates */
7085         if (INTEL_INFO(dev)->gen >= 9) {
7086                 skl_setup_wm_latency(dev);
7087
7088                 if (IS_BROXTON(dev))
7089                         dev_priv->display.init_clock_gating =
7090                                 bxt_init_clock_gating;
7091                 dev_priv->display.update_wm = skl_update_wm;
7092         } else if (HAS_PCH_SPLIT(dev)) {
7093                 ilk_setup_wm_latency(dev);
7094
7095                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7096                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7097                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7098                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7099                         dev_priv->display.update_wm = ilk_update_wm;
7100                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7101                         dev_priv->display.program_watermarks = ilk_program_watermarks;
7102                 } else {
7103                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7104                                       "Disable CxSR\n");
7105                 }
7106
7107                 if (IS_GEN5(dev))
7108                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7109                 else if (IS_GEN6(dev))
7110                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7111                 else if (IS_IVYBRIDGE(dev))
7112                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7113                 else if (IS_HASWELL(dev))
7114                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7115                 else if (INTEL_INFO(dev)->gen == 8)
7116                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7117         } else if (IS_CHERRYVIEW(dev)) {
7118                 vlv_setup_wm_latency(dev);
7119
7120                 dev_priv->display.update_wm = vlv_update_wm;
7121                 dev_priv->display.init_clock_gating =
7122                         cherryview_init_clock_gating;
7123         } else if (IS_VALLEYVIEW(dev)) {
7124                 vlv_setup_wm_latency(dev);
7125
7126                 dev_priv->display.update_wm = vlv_update_wm;
7127                 dev_priv->display.init_clock_gating =
7128                         valleyview_init_clock_gating;
7129         } else if (IS_PINEVIEW(dev)) {
7130                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7131                                             dev_priv->is_ddr3,
7132                                             dev_priv->fsb_freq,
7133                                             dev_priv->mem_freq)) {
7134                         DRM_INFO("failed to find known CxSR latency "
7135                                  "(found ddr%s fsb freq %d, mem freq %d), "
7136                                  "disabling CxSR\n",
7137                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7138                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7139                         /* Disable CxSR and never update its watermark again */
7140                         intel_set_memory_cxsr(dev_priv, false);
7141                         dev_priv->display.update_wm = NULL;
7142                 } else
7143                         dev_priv->display.update_wm = pineview_update_wm;
7144                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145         } else if (IS_G4X(dev)) {
7146                 dev_priv->display.update_wm = g4x_update_wm;
7147                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7148         } else if (IS_GEN4(dev)) {
7149                 dev_priv->display.update_wm = i965_update_wm;
7150                 if (IS_CRESTLINE(dev))
7151                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7152                 else if (IS_BROADWATER(dev))
7153                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7154         } else if (IS_GEN3(dev)) {
7155                 dev_priv->display.update_wm = i9xx_update_wm;
7156                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7157                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7158         } else if (IS_GEN2(dev)) {
7159                 if (INTEL_INFO(dev)->num_pipes == 1) {
7160                         dev_priv->display.update_wm = i845_update_wm;
7161                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7162                 } else {
7163                         dev_priv->display.update_wm = i9xx_update_wm;
7164                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7165                 }
7166
7167                 if (IS_I85X(dev) || IS_I865G(dev))
7168                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7169                 else
7170                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7171         } else {
7172                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7173         }
7174 }
7175
7176 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7177 {
7178         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7179
7180         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7181                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7182                 return -EAGAIN;
7183         }
7184
7185         I915_WRITE(GEN6_PCODE_DATA, *val);
7186         I915_WRITE(GEN6_PCODE_DATA1, 0);
7187         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7188
7189         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7190                      500)) {
7191                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7192                 return -ETIMEDOUT;
7193         }
7194
7195         *val = I915_READ(GEN6_PCODE_DATA);
7196         I915_WRITE(GEN6_PCODE_DATA, 0);
7197
7198         return 0;
7199 }
7200
7201 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7202 {
7203         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7204
7205         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7206                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7207                 return -EAGAIN;
7208         }
7209
7210         I915_WRITE(GEN6_PCODE_DATA, val);
7211         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7212
7213         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7214                      500)) {
7215                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7216                 return -ETIMEDOUT;
7217         }
7218
7219         I915_WRITE(GEN6_PCODE_DATA, 0);
7220
7221         return 0;
7222 }
7223
7224 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7225 {
7226         switch (czclk_freq) {
7227         case 200:
7228                 return 10;
7229         case 267:
7230                 return 12;
7231         case 320:
7232         case 333:
7233                 return 16;
7234         case 400:
7235                 return 20;
7236         default:
7237                 return -1;
7238         }
7239 }
7240
7241 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7242 {
7243         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7244
7245         div = vlv_gpu_freq_div(czclk_freq);
7246         if (div < 0)
7247                 return div;
7248
7249         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7250 }
7251
7252 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7253 {
7254         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7255
7256         mul = vlv_gpu_freq_div(czclk_freq);
7257         if (mul < 0)
7258                 return mul;
7259
7260         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7261 }
7262
7263 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7264 {
7265         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7266
7267         div = vlv_gpu_freq_div(czclk_freq);
7268         if (div < 0)
7269                 return div;
7270         div /= 2;
7271
7272         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7273 }
7274
7275 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7276 {
7277         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7278
7279         mul = vlv_gpu_freq_div(czclk_freq);
7280         if (mul < 0)
7281                 return mul;
7282         mul /= 2;
7283
7284         /* CHV needs even values */
7285         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7286 }
7287
7288 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7289 {
7290         if (IS_GEN9(dev_priv->dev))
7291                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292                                          GEN9_FREQ_SCALER);
7293         else if (IS_CHERRYVIEW(dev_priv->dev))
7294                 return chv_gpu_freq(dev_priv, val);
7295         else if (IS_VALLEYVIEW(dev_priv->dev))
7296                 return byt_gpu_freq(dev_priv, val);
7297         else
7298                 return val * GT_FREQUENCY_MULTIPLIER;
7299 }
7300
7301 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302 {
7303         if (IS_GEN9(dev_priv->dev))
7304                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305                                          GT_FREQUENCY_MULTIPLIER);
7306         else if (IS_CHERRYVIEW(dev_priv->dev))
7307                 return chv_freq_opcode(dev_priv, val);
7308         else if (IS_VALLEYVIEW(dev_priv->dev))
7309                 return byt_freq_opcode(dev_priv, val);
7310         else
7311                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312 }
7313
7314 struct request_boost {
7315         struct work_struct work;
7316         struct drm_i915_gem_request *req;
7317 };
7318
7319 static void __intel_rps_boost_work(struct work_struct *work)
7320 {
7321         struct request_boost *boost = container_of(work, struct request_boost, work);
7322         struct drm_i915_gem_request *req = boost->req;
7323
7324         if (!i915_gem_request_completed(req, true))
7325                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326                                req->emitted_jiffies);
7327
7328         i915_gem_request_unreference__unlocked(req);
7329         kfree(boost);
7330 }
7331
7332 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333                                        struct drm_i915_gem_request *req)
7334 {
7335         struct request_boost *boost;
7336
7337         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338                 return;
7339
7340         if (i915_gem_request_completed(req, true))
7341                 return;
7342
7343         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344         if (boost == NULL)
7345                 return;
7346
7347         i915_gem_request_reference(req);
7348         boost->req = req;
7349
7350         INIT_WORK(&boost->work, __intel_rps_boost_work);
7351         queue_work(to_i915(dev)->wq, &boost->work);
7352 }
7353
7354 void intel_pm_setup(struct drm_device *dev)
7355 {
7356         struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358         mutex_init(&dev_priv->rps.hw_lock);
7359         spin_lock_init(&dev_priv->rps.client_lock);
7360
7361         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362                           intel_gen6_powersave_work);
7363         INIT_LIST_HEAD(&dev_priv->rps.clients);
7364         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7366
7367         dev_priv->pm.suspended = false;
7368         atomic_set(&dev_priv->pm.wakeref_count, 0);
7369         atomic_set(&dev_priv->pm.atomic_seq, 0);
7370 }