Merge remote-tracking branch 'jk/vfs' into work.misc
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52         if (ringbuf->last_retired_head != -1) {
53                 ringbuf->head = ringbuf->last_retired_head;
54                 ringbuf->last_retired_head = -1;
55         }
56
57         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58                                             ringbuf->tail, ringbuf->size);
59 }
60
61 static void __intel_ring_advance(struct intel_engine_cs *engine)
62 {
63         struct intel_ringbuffer *ringbuf = engine->buffer;
64         ringbuf->tail &= ringbuf->size - 1;
65         engine->write_tail(engine, ringbuf->tail);
66 }
67
68 static int
69 gen2_render_ring_flush(struct drm_i915_gem_request *req,
70                        u32      invalidate_domains,
71                        u32      flush_domains)
72 {
73         struct intel_engine_cs *engine = req->engine;
74         u32 cmd;
75         int ret;
76
77         cmd = MI_FLUSH;
78         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79                 cmd |= MI_NO_WRITE_FLUSH;
80
81         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
82                 cmd |= MI_READ_FLUSH;
83
84         ret = intel_ring_begin(req, 2);
85         if (ret)
86                 return ret;
87
88         intel_ring_emit(engine, cmd);
89         intel_ring_emit(engine, MI_NOOP);
90         intel_ring_advance(engine);
91
92         return 0;
93 }
94
95 static int
96 gen4_render_ring_flush(struct drm_i915_gem_request *req,
97                        u32      invalidate_domains,
98                        u32      flush_domains)
99 {
100         struct intel_engine_cs *engine = req->engine;
101         u32 cmd;
102         int ret;
103
104         /*
105          * read/write caches:
106          *
107          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
108          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
109          * also flushed at 2d versus 3d pipeline switches.
110          *
111          * read-only caches:
112          *
113          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
114          * MI_READ_FLUSH is set, and is always flushed on 965.
115          *
116          * I915_GEM_DOMAIN_COMMAND may not exist?
117          *
118          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
119          * invalidated when MI_EXE_FLUSH is set.
120          *
121          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
122          * invalidated with every MI_FLUSH.
123          *
124          * TLBs:
125          *
126          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
127          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
128          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
129          * are flushed at any MI_FLUSH.
130          */
131
132         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134                 cmd &= ~MI_NO_WRITE_FLUSH;
135         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
136                 cmd |= MI_EXE_FLUSH;
137
138         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139             (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140                 cmd |= MI_INVALIDATE_ISP;
141
142         ret = intel_ring_begin(req, 2);
143         if (ret)
144                 return ret;
145
146         intel_ring_emit(engine, cmd);
147         intel_ring_emit(engine, MI_NOOP);
148         intel_ring_advance(engine);
149
150         return 0;
151 }
152
153 /**
154  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
155  * implementing two workarounds on gen6.  From section 1.4.7.1
156  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
157  *
158  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
159  * produced by non-pipelined state commands), software needs to first
160  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161  * 0.
162  *
163  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
164  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
165  *
166  * And the workaround for these two requires this workaround first:
167  *
168  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
169  * BEFORE the pipe-control with a post-sync op and no write-cache
170  * flushes.
171  *
172  * And this last workaround is tricky because of the requirements on
173  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174  * volume 2 part 1:
175  *
176  *     "1 of the following must also be set:
177  *      - Render Target Cache Flush Enable ([12] of DW1)
178  *      - Depth Cache Flush Enable ([0] of DW1)
179  *      - Stall at Pixel Scoreboard ([1] of DW1)
180  *      - Depth Stall ([13] of DW1)
181  *      - Post-Sync Operation ([13] of DW1)
182  *      - Notify Enable ([8] of DW1)"
183  *
184  * The cache flushes require the workaround flush that triggered this
185  * one, so we can't use it.  Depth stall would trigger the same.
186  * Post-sync nonzero is what triggered this second workaround, so we
187  * can't use that one either.  Notify enable is IRQs, which aren't
188  * really our business.  That leaves only stall at scoreboard.
189  */
190 static int
191 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192 {
193         struct intel_engine_cs *engine = req->engine;
194         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195         int ret;
196
197         ret = intel_ring_begin(req, 6);
198         if (ret)
199                 return ret;
200
201         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
202         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
204         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
205         intel_ring_emit(engine, 0); /* low dword */
206         intel_ring_emit(engine, 0); /* high dword */
207         intel_ring_emit(engine, MI_NOOP);
208         intel_ring_advance(engine);
209
210         ret = intel_ring_begin(req, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
216         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
217         intel_ring_emit(engine, 0);
218         intel_ring_emit(engine, 0);
219         intel_ring_emit(engine, MI_NOOP);
220         intel_ring_advance(engine);
221
222         return 0;
223 }
224
225 static int
226 gen6_render_ring_flush(struct drm_i915_gem_request *req,
227                        u32 invalidate_domains, u32 flush_domains)
228 {
229         struct intel_engine_cs *engine = req->engine;
230         u32 flags = 0;
231         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232         int ret;
233
234         /* Force SNB workarounds for PIPE_CONTROL flushes */
235         ret = intel_emit_post_sync_nonzero_flush(req);
236         if (ret)
237                 return ret;
238
239         /* Just flush everything.  Experiments have shown that reducing the
240          * number of bits based on the write domains has little performance
241          * impact.
242          */
243         if (flush_domains) {
244                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246                 /*
247                  * Ensure that any following seqno writes only happen
248                  * when the render cache is indeed flushed.
249                  */
250                 flags |= PIPE_CONTROL_CS_STALL;
251         }
252         if (invalidate_domains) {
253                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
254                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259                 /*
260                  * TLB invalidate requires a post-sync write.
261                  */
262                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263         }
264
265         ret = intel_ring_begin(req, 4);
266         if (ret)
267                 return ret;
268
269         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
270         intel_ring_emit(engine, flags);
271         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
272         intel_ring_emit(engine, 0);
273         intel_ring_advance(engine);
274
275         return 0;
276 }
277
278 static int
279 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280 {
281         struct intel_engine_cs *engine = req->engine;
282         int ret;
283
284         ret = intel_ring_begin(req, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(engine, 0);
292         intel_ring_emit(engine, 0);
293         intel_ring_advance(engine);
294
295         return 0;
296 }
297
298 static int
299 gen7_render_ring_flush(struct drm_i915_gem_request *req,
300                        u32 invalidate_domains, u32 flush_domains)
301 {
302         struct intel_engine_cs *engine = req->engine;
303         u32 flags = 0;
304         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305         int ret;
306
307         /*
308          * Ensure that any following seqno writes only happen when the render
309          * cache is indeed flushed.
310          *
311          * Workaround: 4th PIPE_CONTROL command (except the ones with only
312          * read-cache invalidate bits set) must have the CS_STALL bit set. We
313          * don't try to be clever and just set it unconditionally.
314          */
315         flags |= PIPE_CONTROL_CS_STALL;
316
317         /* Just flush everything.  Experiments have shown that reducing the
318          * number of bits based on the write domains has little performance
319          * impact.
320          */
321         if (flush_domains) {
322                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
323                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
326         }
327         if (invalidate_domains) {
328                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
329                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
330                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
331                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
332                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335                 /*
336                  * TLB invalidate requires a post-sync write.
337                  */
338                 flags |= PIPE_CONTROL_QW_WRITE;
339                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340
341                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(req);
347         }
348
349         ret = intel_ring_begin(req, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(engine, flags);
355         intel_ring_emit(engine, scratch_addr);
356         intel_ring_emit(engine, 0);
357         intel_ring_advance(engine);
358
359         return 0;
360 }
361
362 static int
363 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364                        u32 flags, u32 scratch_addr)
365 {
366         struct intel_engine_cs *engine = req->engine;
367         int ret;
368
369         ret = intel_ring_begin(req, 6);
370         if (ret)
371                 return ret;
372
373         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
374         intel_ring_emit(engine, flags);
375         intel_ring_emit(engine, scratch_addr);
376         intel_ring_emit(engine, 0);
377         intel_ring_emit(engine, 0);
378         intel_ring_emit(engine, 0);
379         intel_ring_advance(engine);
380
381         return 0;
382 }
383
384 static int
385 gen8_render_ring_flush(struct drm_i915_gem_request *req,
386                        u32 invalidate_domains, u32 flush_domains)
387 {
388         u32 flags = 0;
389         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390         int ret;
391
392         flags |= PIPE_CONTROL_CS_STALL;
393
394         if (flush_domains) {
395                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
396                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
399         }
400         if (invalidate_domains) {
401                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
402                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
403                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
404                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
405                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
406                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
407                 flags |= PIPE_CONTROL_QW_WRITE;
408                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409
410                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411                 ret = gen8_emit_pipe_control(req,
412                                              PIPE_CONTROL_CS_STALL |
413                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
414                                              0);
415                 if (ret)
416                         return ret;
417         }
418
419         return gen8_emit_pipe_control(req, flags, scratch_addr);
420 }
421
422 static void ring_write_tail(struct intel_engine_cs *engine,
423                             u32 value)
424 {
425         struct drm_i915_private *dev_priv = engine->i915;
426         I915_WRITE_TAIL(engine, value);
427 }
428
429 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430 {
431         struct drm_i915_private *dev_priv = engine->i915;
432         u64 acthd;
433
434         if (INTEL_GEN(dev_priv) >= 8)
435                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
436                                          RING_ACTHD_UDW(engine->mmio_base));
437         else if (INTEL_GEN(dev_priv) >= 4)
438                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439         else
440                 acthd = I915_READ(ACTHD);
441
442         return acthd;
443 }
444
445 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446 {
447         struct drm_i915_private *dev_priv = engine->i915;
448         u32 addr;
449
450         addr = dev_priv->status_page_dmah->busaddr;
451         if (INTEL_GEN(dev_priv) >= 4)
452                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453         I915_WRITE(HWS_PGA, addr);
454 }
455
456 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457 {
458         struct drm_i915_private *dev_priv = engine->i915;
459         i915_reg_t mmio;
460
461         /* The ring status page addresses are no longer next to the rest of
462          * the ring registers as of gen7.
463          */
464         if (IS_GEN7(dev_priv)) {
465                 switch (engine->id) {
466                 case RCS:
467                         mmio = RENDER_HWS_PGA_GEN7;
468                         break;
469                 case BCS:
470                         mmio = BLT_HWS_PGA_GEN7;
471                         break;
472                 /*
473                  * VCS2 actually doesn't exist on Gen7. Only shut up
474                  * gcc switch check warning
475                  */
476                 case VCS2:
477                 case VCS:
478                         mmio = BSD_HWS_PGA_GEN7;
479                         break;
480                 case VECS:
481                         mmio = VEBOX_HWS_PGA_GEN7;
482                         break;
483                 }
484         } else if (IS_GEN6(dev_priv)) {
485                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486         } else {
487                 /* XXX: gen8 returns to sanity */
488                 mmio = RING_HWS_PGA(engine->mmio_base);
489         }
490
491         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492         POSTING_READ(mmio);
493
494         /*
495          * Flush the TLB for this page
496          *
497          * FIXME: These two bits have disappeared on gen8, so a question
498          * arises: do we still need this and if so how should we go about
499          * invalidating the TLB?
500          */
501         if (IS_GEN(dev_priv, 6, 7)) {
502                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503
504                 /* ring should be idle before issuing a sync flush*/
505                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506
507                 I915_WRITE(reg,
508                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
509                                               INSTPM_SYNC_FLUSH));
510                 if (intel_wait_for_register(dev_priv,
511                                             reg, INSTPM_SYNC_FLUSH, 0,
512                                             1000))
513                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514                                   engine->name);
515         }
516 }
517
518 static bool stop_ring(struct intel_engine_cs *engine)
519 {
520         struct drm_i915_private *dev_priv = engine->i915;
521
522         if (!IS_GEN2(dev_priv)) {
523                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524                 if (intel_wait_for_register(dev_priv,
525                                             RING_MI_MODE(engine->mmio_base),
526                                             MODE_IDLE,
527                                             MODE_IDLE,
528                                             1000)) {
529                         DRM_ERROR("%s : timed out trying to stop ring\n",
530                                   engine->name);
531                         /* Sometimes we observe that the idle flag is not
532                          * set even though the ring is empty. So double
533                          * check before giving up.
534                          */
535                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536                                 return false;
537                 }
538         }
539
540         I915_WRITE_CTL(engine, 0);
541         I915_WRITE_HEAD(engine, 0);
542         engine->write_tail(engine, 0);
543
544         if (!IS_GEN2(dev_priv)) {
545                 (void)I915_READ_CTL(engine);
546                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547         }
548
549         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554         memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559         struct drm_i915_private *dev_priv = engine->i915;
560         struct intel_ringbuffer *ringbuf = engine->buffer;
561         struct drm_i915_gem_object *obj = ringbuf->obj;
562         int ret = 0;
563
564         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
565
566         if (!stop_ring(engine)) {
567                 /* G45 ring initialization often fails to reset head to zero */
568                 DRM_DEBUG_KMS("%s head not reset to zero "
569                               "ctl %08x head %08x tail %08x start %08x\n",
570                               engine->name,
571                               I915_READ_CTL(engine),
572                               I915_READ_HEAD(engine),
573                               I915_READ_TAIL(engine),
574                               I915_READ_START(engine));
575
576                 if (!stop_ring(engine)) {
577                         DRM_ERROR("failed to set %s head to zero "
578                                   "ctl %08x head %08x tail %08x start %08x\n",
579                                   engine->name,
580                                   I915_READ_CTL(engine),
581                                   I915_READ_HEAD(engine),
582                                   I915_READ_TAIL(engine),
583                                   I915_READ_START(engine));
584                         ret = -EIO;
585                         goto out;
586                 }
587         }
588
589         if (I915_NEED_GFX_HWS(dev_priv))
590                 intel_ring_setup_status_page(engine);
591         else
592                 ring_setup_phys_status_page(engine);
593
594         /* Enforce ordering by reading HEAD register back */
595         I915_READ_HEAD(engine);
596
597         /* Initialize the ring. This must happen _after_ we've cleared the ring
598          * registers with the above sequence (the readback of the HEAD registers
599          * also enforces ordering), otherwise the hw might lose the new ring
600          * register values. */
601         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
602
603         /* WaClearRingBufHeadRegAtInit:ctg,elk */
604         if (I915_READ_HEAD(engine))
605                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
606                           engine->name, I915_READ_HEAD(engine));
607         I915_WRITE_HEAD(engine, 0);
608         (void)I915_READ_HEAD(engine);
609
610         I915_WRITE_CTL(engine,
611                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
612                         | RING_VALID);
613
614         /* If the head is still not zero, the ring is dead */
615         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
616                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
617                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
618                 DRM_ERROR("%s initialization failed "
619                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
620                           engine->name,
621                           I915_READ_CTL(engine),
622                           I915_READ_CTL(engine) & RING_VALID,
623                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
624                           I915_READ_START(engine),
625                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
626                 ret = -EIO;
627                 goto out;
628         }
629
630         ringbuf->last_retired_head = -1;
631         ringbuf->head = I915_READ_HEAD(engine);
632         ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
633         intel_ring_update_space(ringbuf);
634
635         intel_engine_init_hangcheck(engine);
636
637 out:
638         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
639
640         return ret;
641 }
642
643 void intel_fini_pipe_control(struct intel_engine_cs *engine)
644 {
645         if (engine->scratch.obj == NULL)
646                 return;
647
648         i915_gem_object_ggtt_unpin(engine->scratch.obj);
649         drm_gem_object_unreference(&engine->scratch.obj->base);
650         engine->scratch.obj = NULL;
651 }
652
653 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
654 {
655         struct drm_i915_gem_object *obj;
656         int ret;
657
658         WARN_ON(engine->scratch.obj);
659
660         obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
661         if (!obj)
662                 obj = i915_gem_object_create(&engine->i915->drm, size);
663         if (IS_ERR(obj)) {
664                 DRM_ERROR("Failed to allocate scratch page\n");
665                 ret = PTR_ERR(obj);
666                 goto err;
667         }
668
669         ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
670         if (ret)
671                 goto err_unref;
672
673         engine->scratch.obj = obj;
674         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
675         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
676                          engine->name, engine->scratch.gtt_offset);
677         return 0;
678
679 err_unref:
680         drm_gem_object_unreference(&engine->scratch.obj->base);
681 err:
682         return ret;
683 }
684
685 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
686 {
687         struct intel_engine_cs *engine = req->engine;
688         struct i915_workarounds *w = &req->i915->workarounds;
689         int ret, i;
690
691         if (w->count == 0)
692                 return 0;
693
694         engine->gpu_caches_dirty = true;
695         ret = intel_ring_flush_all_caches(req);
696         if (ret)
697                 return ret;
698
699         ret = intel_ring_begin(req, (w->count * 2 + 2));
700         if (ret)
701                 return ret;
702
703         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
704         for (i = 0; i < w->count; i++) {
705                 intel_ring_emit_reg(engine, w->reg[i].addr);
706                 intel_ring_emit(engine, w->reg[i].value);
707         }
708         intel_ring_emit(engine, MI_NOOP);
709
710         intel_ring_advance(engine);
711
712         engine->gpu_caches_dirty = true;
713         ret = intel_ring_flush_all_caches(req);
714         if (ret)
715                 return ret;
716
717         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
718
719         return 0;
720 }
721
722 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
723 {
724         int ret;
725
726         ret = intel_ring_workarounds_emit(req);
727         if (ret != 0)
728                 return ret;
729
730         ret = i915_gem_render_state_init(req);
731         if (ret)
732                 return ret;
733
734         return 0;
735 }
736
737 static int wa_add(struct drm_i915_private *dev_priv,
738                   i915_reg_t addr,
739                   const u32 mask, const u32 val)
740 {
741         const u32 idx = dev_priv->workarounds.count;
742
743         if (WARN_ON(idx >= I915_MAX_WA_REGS))
744                 return -ENOSPC;
745
746         dev_priv->workarounds.reg[idx].addr = addr;
747         dev_priv->workarounds.reg[idx].value = val;
748         dev_priv->workarounds.reg[idx].mask = mask;
749
750         dev_priv->workarounds.count++;
751
752         return 0;
753 }
754
755 #define WA_REG(addr, mask, val) do { \
756                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
757                 if (r) \
758                         return r; \
759         } while (0)
760
761 #define WA_SET_BIT_MASKED(addr, mask) \
762         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
763
764 #define WA_CLR_BIT_MASKED(addr, mask) \
765         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
766
767 #define WA_SET_FIELD_MASKED(addr, mask, value) \
768         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
769
770 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
771 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
772
773 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
774
775 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
776                                  i915_reg_t reg)
777 {
778         struct drm_i915_private *dev_priv = engine->i915;
779         struct i915_workarounds *wa = &dev_priv->workarounds;
780         const uint32_t index = wa->hw_whitelist_count[engine->id];
781
782         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
783                 return -EINVAL;
784
785         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
786                  i915_mmio_reg_offset(reg));
787         wa->hw_whitelist_count[engine->id]++;
788
789         return 0;
790 }
791
792 static int gen8_init_workarounds(struct intel_engine_cs *engine)
793 {
794         struct drm_i915_private *dev_priv = engine->i915;
795
796         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
797
798         /* WaDisableAsyncFlipPerfMode:bdw,chv */
799         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
800
801         /* WaDisablePartialInstShootdown:bdw,chv */
802         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
803                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
804
805         /* Use Force Non-Coherent whenever executing a 3D context. This is a
806          * workaround for for a possible hang in the unlikely event a TLB
807          * invalidation occurs during a PSD flush.
808          */
809         /* WaForceEnableNonCoherent:bdw,chv */
810         /* WaHdcDisableFetchWhenMasked:bdw,chv */
811         WA_SET_BIT_MASKED(HDC_CHICKEN0,
812                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
813                           HDC_FORCE_NON_COHERENT);
814
815         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
816          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
817          *  polygons in the same 8x4 pixel/sample area to be processed without
818          *  stalling waiting for the earlier ones to write to Hierarchical Z
819          *  buffer."
820          *
821          * This optimization is off by default for BDW and CHV; turn it on.
822          */
823         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
824
825         /* Wa4x4STCOptimizationDisable:bdw,chv */
826         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
827
828         /*
829          * BSpec recommends 8x4 when MSAA is used,
830          * however in practice 16x4 seems fastest.
831          *
832          * Note that PS/WM thread counts depend on the WIZ hashing
833          * disable bit, which we don't touch here, but it's good
834          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
835          */
836         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
837                             GEN6_WIZ_HASHING_MASK,
838                             GEN6_WIZ_HASHING_16x4);
839
840         return 0;
841 }
842
843 static int bdw_init_workarounds(struct intel_engine_cs *engine)
844 {
845         struct drm_i915_private *dev_priv = engine->i915;
846         int ret;
847
848         ret = gen8_init_workarounds(engine);
849         if (ret)
850                 return ret;
851
852         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
853         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
854
855         /* WaDisableDopClockGating:bdw */
856         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
857                           DOP_CLOCK_GATING_DISABLE);
858
859         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
860                           GEN8_SAMPLER_POWER_BYPASS_DIS);
861
862         WA_SET_BIT_MASKED(HDC_CHICKEN0,
863                           /* WaForceContextSaveRestoreNonCoherent:bdw */
864                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
865                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
866                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
867
868         return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *engine)
872 {
873         struct drm_i915_private *dev_priv = engine->i915;
874         int ret;
875
876         ret = gen8_init_workarounds(engine);
877         if (ret)
878                 return ret;
879
880         /* WaDisableThreadStallDopClockGating:chv */
881         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882
883         /* Improve HiZ throughput on CHV. */
884         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
885
886         return 0;
887 }
888
889 static int gen9_init_workarounds(struct intel_engine_cs *engine)
890 {
891         struct drm_i915_private *dev_priv = engine->i915;
892         int ret;
893
894         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
895         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
896
897         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
898         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
899                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
900
901         /* WaDisableKillLogic:bxt,skl,kbl */
902         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
903                    ECOCHK_DIS_TLB);
904
905         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
906         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
907         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908                           FLOW_CONTROL_ENABLE |
909                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
910
911         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
912         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
913                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
914
915         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
916         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
917             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
918                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
919                                   GEN9_DG_MIRROR_FIX_ENABLE);
920
921         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
922         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
923             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
924                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
925                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
926                 /*
927                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
928                  * but we do that in per ctx batchbuffer as there is an issue
929                  * with this register not getting restored on ctx restore
930                  */
931         }
932
933         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
934         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
935         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
936                           GEN9_ENABLE_YV12_BUGFIX |
937                           GEN9_ENABLE_GPGPU_PREEMPTION);
938
939         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
940         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
941         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
942                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
943
944         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
945         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
946                           GEN9_CCS_TLB_PREFETCH_ENABLE);
947
948         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
949         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
950             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
951                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
952                                   PIXEL_MASK_CAMMING_DISABLE);
953
954         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
955         WA_SET_BIT_MASKED(HDC_CHICKEN0,
956                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
957                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
958
959         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
960          * both tied to WaForceContextSaveRestoreNonCoherent
961          * in some hsds for skl. We keep the tie for all gen9. The
962          * documentation is a bit hazy and so we want to get common behaviour,
963          * even though there is no clear evidence we would need both on kbl/bxt.
964          * This area has been source of system hangs so we play it safe
965          * and mimic the skl regardless of what bspec says.
966          *
967          * Use Force Non-Coherent whenever executing a 3D context. This
968          * is a workaround for a possible hang in the unlikely event
969          * a TLB invalidation occurs during a PSD flush.
970          */
971
972         /* WaForceEnableNonCoherent:skl,bxt,kbl */
973         WA_SET_BIT_MASKED(HDC_CHICKEN0,
974                           HDC_FORCE_NON_COHERENT);
975
976         /* WaDisableHDCInvalidation:skl,bxt,kbl */
977         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
978                    BDW_DISABLE_HDC_INVALIDATION);
979
980         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
981         if (IS_SKYLAKE(dev_priv) ||
982             IS_KABYLAKE(dev_priv) ||
983             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
984                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
985                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
986
987         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
988         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
989
990         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
991         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
992                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
993
994         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
995         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
996         if (ret)
997                 return ret;
998
999         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1000         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1001         if (ret)
1002                 return ret;
1003
1004         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1005         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1006         if (ret)
1007                 return ret;
1008
1009         return 0;
1010 }
1011
1012 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1013 {
1014         struct drm_i915_private *dev_priv = engine->i915;
1015         u8 vals[3] = { 0, 0, 0 };
1016         unsigned int i;
1017
1018         for (i = 0; i < 3; i++) {
1019                 u8 ss;
1020
1021                 /*
1022                  * Only consider slices where one, and only one, subslice has 7
1023                  * EUs
1024                  */
1025                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1026                         continue;
1027
1028                 /*
1029                  * subslice_7eu[i] != 0 (because of the check above) and
1030                  * ss_max == 4 (maximum number of subslices possible per slice)
1031                  *
1032                  * ->    0 <= ss <= 3;
1033                  */
1034                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1035                 vals[i] = 3 - ss;
1036         }
1037
1038         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1039                 return 0;
1040
1041         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1042         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1043                             GEN9_IZ_HASHING_MASK(2) |
1044                             GEN9_IZ_HASHING_MASK(1) |
1045                             GEN9_IZ_HASHING_MASK(0),
1046                             GEN9_IZ_HASHING(2, vals[2]) |
1047                             GEN9_IZ_HASHING(1, vals[1]) |
1048                             GEN9_IZ_HASHING(0, vals[0]));
1049
1050         return 0;
1051 }
1052
1053 static int skl_init_workarounds(struct intel_engine_cs *engine)
1054 {
1055         struct drm_i915_private *dev_priv = engine->i915;
1056         int ret;
1057
1058         ret = gen9_init_workarounds(engine);
1059         if (ret)
1060                 return ret;
1061
1062         /*
1063          * Actual WA is to disable percontext preemption granularity control
1064          * until D0 which is the default case so this is equivalent to
1065          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1066          */
1067         if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1068                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1069                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1070         }
1071
1072         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1073                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1074                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1075                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1076         }
1077
1078         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1079          * involving this register should also be added to WA batch as required.
1080          */
1081         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1082                 /* WaDisableLSQCROPERFforOCL:skl */
1083                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1084                            GEN8_LQSC_RO_PERF_DIS);
1085
1086         /* WaEnableGapsTsvCreditFix:skl */
1087         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1088                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1089                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1090         }
1091
1092         /* WaDisablePowerCompilerClockGating:skl */
1093         if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1094                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1095                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1096
1097         /* WaBarrierPerformanceFixDisable:skl */
1098         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1099                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1100                                   HDC_FENCE_DEST_SLM_DISABLE |
1101                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1102
1103         /* WaDisableSbeCacheDispatchPortSharing:skl */
1104         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1105                 WA_SET_BIT_MASKED(
1106                         GEN7_HALF_SLICE_CHICKEN1,
1107                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1108
1109         /* WaDisableGafsUnitClkGating:skl */
1110         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1111
1112         /* WaInPlaceDecompressionHang:skl */
1113         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1114                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1115                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1116
1117         /* WaDisableLSQCROPERFforOCL:skl */
1118         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1119         if (ret)
1120                 return ret;
1121
1122         return skl_tune_iz_hashing(engine);
1123 }
1124
1125 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1126 {
1127         struct drm_i915_private *dev_priv = engine->i915;
1128         int ret;
1129
1130         ret = gen9_init_workarounds(engine);
1131         if (ret)
1132                 return ret;
1133
1134         /* WaStoreMultiplePTEenable:bxt */
1135         /* This is a requirement according to Hardware specification */
1136         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1137                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139         /* WaSetClckGatingDisableMedia:bxt */
1140         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1141                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143         }
1144
1145         /* WaDisableThreadStallDopClockGating:bxt */
1146         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147                           STALL_DOP_GATING_DISABLE);
1148
1149         /* WaDisablePooledEuLoadBalancingFix:bxt */
1150         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1151                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1152                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1153         }
1154
1155         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1156         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1157                 WA_SET_BIT_MASKED(
1158                         GEN7_HALF_SLICE_CHICKEN1,
1159                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1160         }
1161
1162         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1163         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1164         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1165         /* WaDisableLSQCROPERFforOCL:bxt */
1166         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1167                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1168                 if (ret)
1169                         return ret;
1170
1171                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1172                 if (ret)
1173                         return ret;
1174         }
1175
1176         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1177         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1178                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1179                                            L3_HIGH_PRIO_CREDITS(2));
1180
1181         /* WaToEnableHwFixForPushConstHWBug:bxt */
1182         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1183                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1184                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1185
1186         /* WaInPlaceDecompressionHang:bxt */
1187         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1188                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1189                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1190
1191         return 0;
1192 }
1193
1194 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1195 {
1196         struct drm_i915_private *dev_priv = engine->i915;
1197         int ret;
1198
1199         ret = gen9_init_workarounds(engine);
1200         if (ret)
1201                 return ret;
1202
1203         /* WaEnableGapsTsvCreditFix:kbl */
1204         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1205                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1206
1207         /* WaDisableDynamicCreditSharing:kbl */
1208         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1209                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1210                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1211
1212         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1213         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1214                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1215                                   HDC_FENCE_DEST_SLM_DISABLE);
1216
1217         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1218          * involving this register should also be added to WA batch as required.
1219          */
1220         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1221                 /* WaDisableLSQCROPERFforOCL:kbl */
1222                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1223                            GEN8_LQSC_RO_PERF_DIS);
1224
1225         /* WaToEnableHwFixForPushConstHWBug:kbl */
1226         if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1227                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1228                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1229
1230         /* WaDisableGafsUnitClkGating:kbl */
1231         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1232
1233         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1234         WA_SET_BIT_MASKED(
1235                 GEN7_HALF_SLICE_CHICKEN1,
1236                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1237
1238         /* WaInPlaceDecompressionHang:kbl */
1239         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1240                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1241
1242         /* WaDisableLSQCROPERFforOCL:kbl */
1243         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1244         if (ret)
1245                 return ret;
1246
1247         return 0;
1248 }
1249
1250 int init_workarounds_ring(struct intel_engine_cs *engine)
1251 {
1252         struct drm_i915_private *dev_priv = engine->i915;
1253
1254         WARN_ON(engine->id != RCS);
1255
1256         dev_priv->workarounds.count = 0;
1257         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1258
1259         if (IS_BROADWELL(dev_priv))
1260                 return bdw_init_workarounds(engine);
1261
1262         if (IS_CHERRYVIEW(dev_priv))
1263                 return chv_init_workarounds(engine);
1264
1265         if (IS_SKYLAKE(dev_priv))
1266                 return skl_init_workarounds(engine);
1267
1268         if (IS_BROXTON(dev_priv))
1269                 return bxt_init_workarounds(engine);
1270
1271         if (IS_KABYLAKE(dev_priv))
1272                 return kbl_init_workarounds(engine);
1273
1274         return 0;
1275 }
1276
1277 static int init_render_ring(struct intel_engine_cs *engine)
1278 {
1279         struct drm_i915_private *dev_priv = engine->i915;
1280         int ret = init_ring_common(engine);
1281         if (ret)
1282                 return ret;
1283
1284         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1285         if (IS_GEN(dev_priv, 4, 6))
1286                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1287
1288         /* We need to disable the AsyncFlip performance optimisations in order
1289          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1290          * programmed to '1' on all products.
1291          *
1292          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1293          */
1294         if (IS_GEN(dev_priv, 6, 7))
1295                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1296
1297         /* Required for the hardware to program scanline values for waiting */
1298         /* WaEnableFlushTlbInvalidationMode:snb */
1299         if (IS_GEN6(dev_priv))
1300                 I915_WRITE(GFX_MODE,
1301                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1302
1303         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1304         if (IS_GEN7(dev_priv))
1305                 I915_WRITE(GFX_MODE_GEN7,
1306                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1307                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1308
1309         if (IS_GEN6(dev_priv)) {
1310                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1311                  * "If this bit is set, STCunit will have LRA as replacement
1312                  *  policy. [...] This bit must be reset.  LRA replacement
1313                  *  policy is not supported."
1314                  */
1315                 I915_WRITE(CACHE_MODE_0,
1316                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1317         }
1318
1319         if (IS_GEN(dev_priv, 6, 7))
1320                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1321
1322         if (INTEL_INFO(dev_priv)->gen >= 6)
1323                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1324
1325         return init_workarounds_ring(engine);
1326 }
1327
1328 static void render_ring_cleanup(struct intel_engine_cs *engine)
1329 {
1330         struct drm_i915_private *dev_priv = engine->i915;
1331
1332         if (dev_priv->semaphore_obj) {
1333                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1334                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1335                 dev_priv->semaphore_obj = NULL;
1336         }
1337
1338         intel_fini_pipe_control(engine);
1339 }
1340
1341 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1342                            unsigned int num_dwords)
1343 {
1344 #define MBOX_UPDATE_DWORDS 8
1345         struct intel_engine_cs *signaller = signaller_req->engine;
1346         struct drm_i915_private *dev_priv = signaller_req->i915;
1347         struct intel_engine_cs *waiter;
1348         enum intel_engine_id id;
1349         int ret, num_rings;
1350
1351         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1352         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1353 #undef MBOX_UPDATE_DWORDS
1354
1355         ret = intel_ring_begin(signaller_req, num_dwords);
1356         if (ret)
1357                 return ret;
1358
1359         for_each_engine_id(waiter, dev_priv, id) {
1360                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1361                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1362                         continue;
1363
1364                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1365                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1366                                            PIPE_CONTROL_QW_WRITE |
1367                                            PIPE_CONTROL_CS_STALL);
1368                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1369                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1370                 intel_ring_emit(signaller, signaller_req->seqno);
1371                 intel_ring_emit(signaller, 0);
1372                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1373                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1374                 intel_ring_emit(signaller, 0);
1375         }
1376
1377         return 0;
1378 }
1379
1380 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1381                            unsigned int num_dwords)
1382 {
1383 #define MBOX_UPDATE_DWORDS 6
1384         struct intel_engine_cs *signaller = signaller_req->engine;
1385         struct drm_i915_private *dev_priv = signaller_req->i915;
1386         struct intel_engine_cs *waiter;
1387         enum intel_engine_id id;
1388         int ret, num_rings;
1389
1390         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1391         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1392 #undef MBOX_UPDATE_DWORDS
1393
1394         ret = intel_ring_begin(signaller_req, num_dwords);
1395         if (ret)
1396                 return ret;
1397
1398         for_each_engine_id(waiter, dev_priv, id) {
1399                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1400                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1401                         continue;
1402
1403                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1404                                            MI_FLUSH_DW_OP_STOREDW);
1405                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1406                                            MI_FLUSH_DW_USE_GTT);
1407                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1408                 intel_ring_emit(signaller, signaller_req->seqno);
1409                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1410                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1411                 intel_ring_emit(signaller, 0);
1412         }
1413
1414         return 0;
1415 }
1416
1417 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1418                        unsigned int num_dwords)
1419 {
1420         struct intel_engine_cs *signaller = signaller_req->engine;
1421         struct drm_i915_private *dev_priv = signaller_req->i915;
1422         struct intel_engine_cs *useless;
1423         enum intel_engine_id id;
1424         int ret, num_rings;
1425
1426 #define MBOX_UPDATE_DWORDS 3
1427         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1428         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1429 #undef MBOX_UPDATE_DWORDS
1430
1431         ret = intel_ring_begin(signaller_req, num_dwords);
1432         if (ret)
1433                 return ret;
1434
1435         for_each_engine_id(useless, dev_priv, id) {
1436                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1437
1438                 if (i915_mmio_reg_valid(mbox_reg)) {
1439                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1440                         intel_ring_emit_reg(signaller, mbox_reg);
1441                         intel_ring_emit(signaller, signaller_req->seqno);
1442                 }
1443         }
1444
1445         /* If num_dwords was rounded, make sure the tail pointer is correct */
1446         if (num_rings % 2 == 0)
1447                 intel_ring_emit(signaller, MI_NOOP);
1448
1449         return 0;
1450 }
1451
1452 /**
1453  * gen6_add_request - Update the semaphore mailbox registers
1454  *
1455  * @request - request to write to the ring
1456  *
1457  * Update the mailbox registers in the *other* rings with the current seqno.
1458  * This acts like a signal in the canonical semaphore.
1459  */
1460 static int
1461 gen6_add_request(struct drm_i915_gem_request *req)
1462 {
1463         struct intel_engine_cs *engine = req->engine;
1464         int ret;
1465
1466         if (engine->semaphore.signal)
1467                 ret = engine->semaphore.signal(req, 4);
1468         else
1469                 ret = intel_ring_begin(req, 4);
1470
1471         if (ret)
1472                 return ret;
1473
1474         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1475         intel_ring_emit(engine,
1476                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1477         intel_ring_emit(engine, req->seqno);
1478         intel_ring_emit(engine, MI_USER_INTERRUPT);
1479         __intel_ring_advance(engine);
1480
1481         return 0;
1482 }
1483
1484 static int
1485 gen8_render_add_request(struct drm_i915_gem_request *req)
1486 {
1487         struct intel_engine_cs *engine = req->engine;
1488         int ret;
1489
1490         if (engine->semaphore.signal)
1491                 ret = engine->semaphore.signal(req, 8);
1492         else
1493                 ret = intel_ring_begin(req, 8);
1494         if (ret)
1495                 return ret;
1496
1497         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1498         intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1499                                  PIPE_CONTROL_CS_STALL |
1500                                  PIPE_CONTROL_QW_WRITE));
1501         intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1502         intel_ring_emit(engine, 0);
1503         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1504         /* We're thrashing one dword of HWS. */
1505         intel_ring_emit(engine, 0);
1506         intel_ring_emit(engine, MI_USER_INTERRUPT);
1507         intel_ring_emit(engine, MI_NOOP);
1508         __intel_ring_advance(engine);
1509
1510         return 0;
1511 }
1512
1513 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1514                                               u32 seqno)
1515 {
1516         return dev_priv->last_seqno < seqno;
1517 }
1518
1519 /**
1520  * intel_ring_sync - sync the waiter to the signaller on seqno
1521  *
1522  * @waiter - ring that is waiting
1523  * @signaller - ring which has, or will signal
1524  * @seqno - seqno which the waiter will block on
1525  */
1526
1527 static int
1528 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1529                struct intel_engine_cs *signaller,
1530                u32 seqno)
1531 {
1532         struct intel_engine_cs *waiter = waiter_req->engine;
1533         struct drm_i915_private *dev_priv = waiter_req->i915;
1534         u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1535         struct i915_hw_ppgtt *ppgtt;
1536         int ret;
1537
1538         ret = intel_ring_begin(waiter_req, 4);
1539         if (ret)
1540                 return ret;
1541
1542         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1543                                 MI_SEMAPHORE_GLOBAL_GTT |
1544                                 MI_SEMAPHORE_SAD_GTE_SDD);
1545         intel_ring_emit(waiter, seqno);
1546         intel_ring_emit(waiter, lower_32_bits(offset));
1547         intel_ring_emit(waiter, upper_32_bits(offset));
1548         intel_ring_advance(waiter);
1549
1550         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1551          * pagetables and we must reload them before executing the batch.
1552          * We do this on the i915_switch_context() following the wait and
1553          * before the dispatch.
1554          */
1555         ppgtt = waiter_req->ctx->ppgtt;
1556         if (ppgtt && waiter_req->engine->id != RCS)
1557                 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1558         return 0;
1559 }
1560
1561 static int
1562 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1563                struct intel_engine_cs *signaller,
1564                u32 seqno)
1565 {
1566         struct intel_engine_cs *waiter = waiter_req->engine;
1567         u32 dw1 = MI_SEMAPHORE_MBOX |
1568                   MI_SEMAPHORE_COMPARE |
1569                   MI_SEMAPHORE_REGISTER;
1570         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1571         int ret;
1572
1573         /* Throughout all of the GEM code, seqno passed implies our current
1574          * seqno is >= the last seqno executed. However for hardware the
1575          * comparison is strictly greater than.
1576          */
1577         seqno -= 1;
1578
1579         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1580
1581         ret = intel_ring_begin(waiter_req, 4);
1582         if (ret)
1583                 return ret;
1584
1585         /* If seqno wrap happened, omit the wait with no-ops */
1586         if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1587                 intel_ring_emit(waiter, dw1 | wait_mbox);
1588                 intel_ring_emit(waiter, seqno);
1589                 intel_ring_emit(waiter, 0);
1590                 intel_ring_emit(waiter, MI_NOOP);
1591         } else {
1592                 intel_ring_emit(waiter, MI_NOOP);
1593                 intel_ring_emit(waiter, MI_NOOP);
1594                 intel_ring_emit(waiter, MI_NOOP);
1595                 intel_ring_emit(waiter, MI_NOOP);
1596         }
1597         intel_ring_advance(waiter);
1598
1599         return 0;
1600 }
1601
1602 static void
1603 gen5_seqno_barrier(struct intel_engine_cs *ring)
1604 {
1605         /* MI_STORE are internally buffered by the GPU and not flushed
1606          * either by MI_FLUSH or SyncFlush or any other combination of
1607          * MI commands.
1608          *
1609          * "Only the submission of the store operation is guaranteed.
1610          * The write result will be complete (coherent) some time later
1611          * (this is practically a finite period but there is no guaranteed
1612          * latency)."
1613          *
1614          * Empirically, we observe that we need a delay of at least 75us to
1615          * be sure that the seqno write is visible by the CPU.
1616          */
1617         usleep_range(125, 250);
1618 }
1619
1620 static void
1621 gen6_seqno_barrier(struct intel_engine_cs *engine)
1622 {
1623         struct drm_i915_private *dev_priv = engine->i915;
1624
1625         /* Workaround to force correct ordering between irq and seqno writes on
1626          * ivb (and maybe also on snb) by reading from a CS register (like
1627          * ACTHD) before reading the status page.
1628          *
1629          * Note that this effectively stalls the read by the time it takes to
1630          * do a memory transaction, which more or less ensures that the write
1631          * from the GPU has sufficient time to invalidate the CPU cacheline.
1632          * Alternatively we could delay the interrupt from the CS ring to give
1633          * the write time to land, but that would incur a delay after every
1634          * batch i.e. much more frequent than a delay when waiting for the
1635          * interrupt (with the same net latency).
1636          *
1637          * Also note that to prevent whole machine hangs on gen7, we have to
1638          * take the spinlock to guard against concurrent cacheline access.
1639          */
1640         spin_lock_irq(&dev_priv->uncore.lock);
1641         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1642         spin_unlock_irq(&dev_priv->uncore.lock);
1643 }
1644
1645 static void
1646 gen5_irq_enable(struct intel_engine_cs *engine)
1647 {
1648         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1649 }
1650
1651 static void
1652 gen5_irq_disable(struct intel_engine_cs *engine)
1653 {
1654         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1655 }
1656
1657 static void
1658 i9xx_irq_enable(struct intel_engine_cs *engine)
1659 {
1660         struct drm_i915_private *dev_priv = engine->i915;
1661
1662         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1663         I915_WRITE(IMR, dev_priv->irq_mask);
1664         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1665 }
1666
1667 static void
1668 i9xx_irq_disable(struct intel_engine_cs *engine)
1669 {
1670         struct drm_i915_private *dev_priv = engine->i915;
1671
1672         dev_priv->irq_mask |= engine->irq_enable_mask;
1673         I915_WRITE(IMR, dev_priv->irq_mask);
1674 }
1675
1676 static void
1677 i8xx_irq_enable(struct intel_engine_cs *engine)
1678 {
1679         struct drm_i915_private *dev_priv = engine->i915;
1680
1681         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1682         I915_WRITE16(IMR, dev_priv->irq_mask);
1683         POSTING_READ16(RING_IMR(engine->mmio_base));
1684 }
1685
1686 static void
1687 i8xx_irq_disable(struct intel_engine_cs *engine)
1688 {
1689         struct drm_i915_private *dev_priv = engine->i915;
1690
1691         dev_priv->irq_mask |= engine->irq_enable_mask;
1692         I915_WRITE16(IMR, dev_priv->irq_mask);
1693 }
1694
1695 static int
1696 bsd_ring_flush(struct drm_i915_gem_request *req,
1697                u32     invalidate_domains,
1698                u32     flush_domains)
1699 {
1700         struct intel_engine_cs *engine = req->engine;
1701         int ret;
1702
1703         ret = intel_ring_begin(req, 2);
1704         if (ret)
1705                 return ret;
1706
1707         intel_ring_emit(engine, MI_FLUSH);
1708         intel_ring_emit(engine, MI_NOOP);
1709         intel_ring_advance(engine);
1710         return 0;
1711 }
1712
1713 static int
1714 i9xx_add_request(struct drm_i915_gem_request *req)
1715 {
1716         struct intel_engine_cs *engine = req->engine;
1717         int ret;
1718
1719         ret = intel_ring_begin(req, 4);
1720         if (ret)
1721                 return ret;
1722
1723         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1724         intel_ring_emit(engine,
1725                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1726         intel_ring_emit(engine, req->seqno);
1727         intel_ring_emit(engine, MI_USER_INTERRUPT);
1728         __intel_ring_advance(engine);
1729
1730         return 0;
1731 }
1732
1733 static void
1734 gen6_irq_enable(struct intel_engine_cs *engine)
1735 {
1736         struct drm_i915_private *dev_priv = engine->i915;
1737
1738         I915_WRITE_IMR(engine,
1739                        ~(engine->irq_enable_mask |
1740                          engine->irq_keep_mask));
1741         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1742 }
1743
1744 static void
1745 gen6_irq_disable(struct intel_engine_cs *engine)
1746 {
1747         struct drm_i915_private *dev_priv = engine->i915;
1748
1749         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1750         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1751 }
1752
1753 static void
1754 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1755 {
1756         struct drm_i915_private *dev_priv = engine->i915;
1757
1758         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1759         gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1760 }
1761
1762 static void
1763 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1764 {
1765         struct drm_i915_private *dev_priv = engine->i915;
1766
1767         I915_WRITE_IMR(engine, ~0);
1768         gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1769 }
1770
1771 static void
1772 gen8_irq_enable(struct intel_engine_cs *engine)
1773 {
1774         struct drm_i915_private *dev_priv = engine->i915;
1775
1776         I915_WRITE_IMR(engine,
1777                        ~(engine->irq_enable_mask |
1778                          engine->irq_keep_mask));
1779         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1780 }
1781
1782 static void
1783 gen8_irq_disable(struct intel_engine_cs *engine)
1784 {
1785         struct drm_i915_private *dev_priv = engine->i915;
1786
1787         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1788 }
1789
1790 static int
1791 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1792                          u64 offset, u32 length,
1793                          unsigned dispatch_flags)
1794 {
1795         struct intel_engine_cs *engine = req->engine;
1796         int ret;
1797
1798         ret = intel_ring_begin(req, 2);
1799         if (ret)
1800                 return ret;
1801
1802         intel_ring_emit(engine,
1803                         MI_BATCH_BUFFER_START |
1804                         MI_BATCH_GTT |
1805                         (dispatch_flags & I915_DISPATCH_SECURE ?
1806                          0 : MI_BATCH_NON_SECURE_I965));
1807         intel_ring_emit(engine, offset);
1808         intel_ring_advance(engine);
1809
1810         return 0;
1811 }
1812
1813 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1814 #define I830_BATCH_LIMIT (256*1024)
1815 #define I830_TLB_ENTRIES (2)
1816 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1817 static int
1818 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1819                          u64 offset, u32 len,
1820                          unsigned dispatch_flags)
1821 {
1822         struct intel_engine_cs *engine = req->engine;
1823         u32 cs_offset = engine->scratch.gtt_offset;
1824         int ret;
1825
1826         ret = intel_ring_begin(req, 6);
1827         if (ret)
1828                 return ret;
1829
1830         /* Evict the invalid PTE TLBs */
1831         intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1832         intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1833         intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1834         intel_ring_emit(engine, cs_offset);
1835         intel_ring_emit(engine, 0xdeadbeef);
1836         intel_ring_emit(engine, MI_NOOP);
1837         intel_ring_advance(engine);
1838
1839         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1840                 if (len > I830_BATCH_LIMIT)
1841                         return -ENOSPC;
1842
1843                 ret = intel_ring_begin(req, 6 + 2);
1844                 if (ret)
1845                         return ret;
1846
1847                 /* Blit the batch (which has now all relocs applied) to the
1848                  * stable batch scratch bo area (so that the CS never
1849                  * stumbles over its tlb invalidation bug) ...
1850                  */
1851                 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1852                 intel_ring_emit(engine,
1853                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1854                 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1855                 intel_ring_emit(engine, cs_offset);
1856                 intel_ring_emit(engine, 4096);
1857                 intel_ring_emit(engine, offset);
1858
1859                 intel_ring_emit(engine, MI_FLUSH);
1860                 intel_ring_emit(engine, MI_NOOP);
1861                 intel_ring_advance(engine);
1862
1863                 /* ... and execute it. */
1864                 offset = cs_offset;
1865         }
1866
1867         ret = intel_ring_begin(req, 2);
1868         if (ret)
1869                 return ret;
1870
1871         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1872         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1873                                           0 : MI_BATCH_NON_SECURE));
1874         intel_ring_advance(engine);
1875
1876         return 0;
1877 }
1878
1879 static int
1880 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1881                          u64 offset, u32 len,
1882                          unsigned dispatch_flags)
1883 {
1884         struct intel_engine_cs *engine = req->engine;
1885         int ret;
1886
1887         ret = intel_ring_begin(req, 2);
1888         if (ret)
1889                 return ret;
1890
1891         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1892         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1893                                           0 : MI_BATCH_NON_SECURE));
1894         intel_ring_advance(engine);
1895
1896         return 0;
1897 }
1898
1899 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1900 {
1901         struct drm_i915_private *dev_priv = engine->i915;
1902
1903         if (!dev_priv->status_page_dmah)
1904                 return;
1905
1906         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1907         engine->status_page.page_addr = NULL;
1908 }
1909
1910 static void cleanup_status_page(struct intel_engine_cs *engine)
1911 {
1912         struct drm_i915_gem_object *obj;
1913
1914         obj = engine->status_page.obj;
1915         if (obj == NULL)
1916                 return;
1917
1918         kunmap(sg_page(obj->pages->sgl));
1919         i915_gem_object_ggtt_unpin(obj);
1920         drm_gem_object_unreference(&obj->base);
1921         engine->status_page.obj = NULL;
1922 }
1923
1924 static int init_status_page(struct intel_engine_cs *engine)
1925 {
1926         struct drm_i915_gem_object *obj = engine->status_page.obj;
1927
1928         if (obj == NULL) {
1929                 unsigned flags;
1930                 int ret;
1931
1932                 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1933                 if (IS_ERR(obj)) {
1934                         DRM_ERROR("Failed to allocate status page\n");
1935                         return PTR_ERR(obj);
1936                 }
1937
1938                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1939                 if (ret)
1940                         goto err_unref;
1941
1942                 flags = 0;
1943                 if (!HAS_LLC(engine->i915))
1944                         /* On g33, we cannot place HWS above 256MiB, so
1945                          * restrict its pinning to the low mappable arena.
1946                          * Though this restriction is not documented for
1947                          * gen4, gen5, or byt, they also behave similarly
1948                          * and hang if the HWS is placed at the top of the
1949                          * GTT. To generalise, it appears that all !llc
1950                          * platforms have issues with us placing the HWS
1951                          * above the mappable region (even though we never
1952                          * actualy map it).
1953                          */
1954                         flags |= PIN_MAPPABLE;
1955                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1956                 if (ret) {
1957 err_unref:
1958                         drm_gem_object_unreference(&obj->base);
1959                         return ret;
1960                 }
1961
1962                 engine->status_page.obj = obj;
1963         }
1964
1965         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1966         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1967         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1968
1969         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1970                         engine->name, engine->status_page.gfx_addr);
1971
1972         return 0;
1973 }
1974
1975 static int init_phys_status_page(struct intel_engine_cs *engine)
1976 {
1977         struct drm_i915_private *dev_priv = engine->i915;
1978
1979         if (!dev_priv->status_page_dmah) {
1980                 dev_priv->status_page_dmah =
1981                         drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1982                 if (!dev_priv->status_page_dmah)
1983                         return -ENOMEM;
1984         }
1985
1986         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1987         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1988
1989         return 0;
1990 }
1991
1992 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1993 {
1994         GEM_BUG_ON(ringbuf->vma == NULL);
1995         GEM_BUG_ON(ringbuf->virtual_start == NULL);
1996
1997         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1998                 i915_gem_object_unpin_map(ringbuf->obj);
1999         else
2000                 i915_vma_unpin_iomap(ringbuf->vma);
2001         ringbuf->virtual_start = NULL;
2002
2003         i915_gem_object_ggtt_unpin(ringbuf->obj);
2004         ringbuf->vma = NULL;
2005 }
2006
2007 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2008                                      struct intel_ringbuffer *ringbuf)
2009 {
2010         struct drm_i915_gem_object *obj = ringbuf->obj;
2011         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2012         unsigned flags = PIN_OFFSET_BIAS | 4096;
2013         void *addr;
2014         int ret;
2015
2016         if (HAS_LLC(dev_priv) && !obj->stolen) {
2017                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2018                 if (ret)
2019                         return ret;
2020
2021                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2022                 if (ret)
2023                         goto err_unpin;
2024
2025                 addr = i915_gem_object_pin_map(obj);
2026                 if (IS_ERR(addr)) {
2027                         ret = PTR_ERR(addr);
2028                         goto err_unpin;
2029                 }
2030         } else {
2031                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2032                                             flags | PIN_MAPPABLE);
2033                 if (ret)
2034                         return ret;
2035
2036                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037                 if (ret)
2038                         goto err_unpin;
2039
2040                 /* Access through the GTT requires the device to be awake. */
2041                 assert_rpm_wakelock_held(dev_priv);
2042
2043                 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2044                 if (IS_ERR(addr)) {
2045                         ret = PTR_ERR(addr);
2046                         goto err_unpin;
2047                 }
2048         }
2049
2050         ringbuf->virtual_start = addr;
2051         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2052         return 0;
2053
2054 err_unpin:
2055         i915_gem_object_ggtt_unpin(obj);
2056         return ret;
2057 }
2058
2059 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2060 {
2061         drm_gem_object_unreference(&ringbuf->obj->base);
2062         ringbuf->obj = NULL;
2063 }
2064
2065 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2066                                       struct intel_ringbuffer *ringbuf)
2067 {
2068         struct drm_i915_gem_object *obj;
2069
2070         obj = NULL;
2071         if (!HAS_LLC(dev))
2072                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2073         if (obj == NULL)
2074                 obj = i915_gem_object_create(dev, ringbuf->size);
2075         if (IS_ERR(obj))
2076                 return PTR_ERR(obj);
2077
2078         /* mark ring buffers as read-only from GPU side by default */
2079         obj->gt_ro = 1;
2080
2081         ringbuf->obj = obj;
2082
2083         return 0;
2084 }
2085
2086 struct intel_ringbuffer *
2087 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2088 {
2089         struct intel_ringbuffer *ring;
2090         int ret;
2091
2092         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2093         if (ring == NULL) {
2094                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2095                                  engine->name);
2096                 return ERR_PTR(-ENOMEM);
2097         }
2098
2099         ring->engine = engine;
2100         list_add(&ring->link, &engine->buffers);
2101
2102         ring->size = size;
2103         /* Workaround an erratum on the i830 which causes a hang if
2104          * the TAIL pointer points to within the last 2 cachelines
2105          * of the buffer.
2106          */
2107         ring->effective_size = size;
2108         if (IS_I830(engine->i915) || IS_845G(engine->i915))
2109                 ring->effective_size -= 2 * CACHELINE_BYTES;
2110
2111         ring->last_retired_head = -1;
2112         intel_ring_update_space(ring);
2113
2114         ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2115         if (ret) {
2116                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2117                                  engine->name, ret);
2118                 list_del(&ring->link);
2119                 kfree(ring);
2120                 return ERR_PTR(ret);
2121         }
2122
2123         return ring;
2124 }
2125
2126 void
2127 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2128 {
2129         intel_destroy_ringbuffer_obj(ring);
2130         list_del(&ring->link);
2131         kfree(ring);
2132 }
2133
2134 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2135                                   struct intel_engine_cs *engine)
2136 {
2137         struct intel_context *ce = &ctx->engine[engine->id];
2138         int ret;
2139
2140         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2141
2142         if (ce->pin_count++)
2143                 return 0;
2144
2145         if (ce->state) {
2146                 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2147                 if (ret)
2148                         goto error;
2149         }
2150
2151         /* The kernel context is only used as a placeholder for flushing the
2152          * active context. It is never used for submitting user rendering and
2153          * as such never requires the golden render context, and so we can skip
2154          * emitting it when we switch to the kernel context. This is required
2155          * as during eviction we cannot allocate and pin the renderstate in
2156          * order to initialise the context.
2157          */
2158         if (ctx == ctx->i915->kernel_context)
2159                 ce->initialised = true;
2160
2161         i915_gem_context_reference(ctx);
2162         return 0;
2163
2164 error:
2165         ce->pin_count = 0;
2166         return ret;
2167 }
2168
2169 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2170                                      struct intel_engine_cs *engine)
2171 {
2172         struct intel_context *ce = &ctx->engine[engine->id];
2173
2174         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2175
2176         if (--ce->pin_count)
2177                 return;
2178
2179         if (ce->state)
2180                 i915_gem_object_ggtt_unpin(ce->state);
2181
2182         i915_gem_context_unreference(ctx);
2183 }
2184
2185 static int intel_init_ring_buffer(struct drm_device *dev,
2186                                   struct intel_engine_cs *engine)
2187 {
2188         struct drm_i915_private *dev_priv = to_i915(dev);
2189         struct intel_ringbuffer *ringbuf;
2190         int ret;
2191
2192         WARN_ON(engine->buffer);
2193
2194         engine->i915 = dev_priv;
2195         INIT_LIST_HEAD(&engine->active_list);
2196         INIT_LIST_HEAD(&engine->request_list);
2197         INIT_LIST_HEAD(&engine->execlist_queue);
2198         INIT_LIST_HEAD(&engine->buffers);
2199         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2200         memset(engine->semaphore.sync_seqno, 0,
2201                sizeof(engine->semaphore.sync_seqno));
2202
2203         ret = intel_engine_init_breadcrumbs(engine);
2204         if (ret)
2205                 goto error;
2206
2207         /* We may need to do things with the shrinker which
2208          * require us to immediately switch back to the default
2209          * context. This can cause a problem as pinning the
2210          * default context also requires GTT space which may not
2211          * be available. To avoid this we always pin the default
2212          * context.
2213          */
2214         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2215         if (ret)
2216                 goto error;
2217
2218         ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2219         if (IS_ERR(ringbuf)) {
2220                 ret = PTR_ERR(ringbuf);
2221                 goto error;
2222         }
2223         engine->buffer = ringbuf;
2224
2225         if (I915_NEED_GFX_HWS(dev_priv)) {
2226                 ret = init_status_page(engine);
2227                 if (ret)
2228                         goto error;
2229         } else {
2230                 WARN_ON(engine->id != RCS);
2231                 ret = init_phys_status_page(engine);
2232                 if (ret)
2233                         goto error;
2234         }
2235
2236         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2237         if (ret) {
2238                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2239                                 engine->name, ret);
2240                 intel_destroy_ringbuffer_obj(ringbuf);
2241                 goto error;
2242         }
2243
2244         ret = i915_cmd_parser_init_ring(engine);
2245         if (ret)
2246                 goto error;
2247
2248         return 0;
2249
2250 error:
2251         intel_cleanup_engine(engine);
2252         return ret;
2253 }
2254
2255 void intel_cleanup_engine(struct intel_engine_cs *engine)
2256 {
2257         struct drm_i915_private *dev_priv;
2258
2259         if (!intel_engine_initialized(engine))
2260                 return;
2261
2262         dev_priv = engine->i915;
2263
2264         if (engine->buffer) {
2265                 intel_stop_engine(engine);
2266                 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2267
2268                 intel_unpin_ringbuffer_obj(engine->buffer);
2269                 intel_ringbuffer_free(engine->buffer);
2270                 engine->buffer = NULL;
2271         }
2272
2273         if (engine->cleanup)
2274                 engine->cleanup(engine);
2275
2276         if (I915_NEED_GFX_HWS(dev_priv)) {
2277                 cleanup_status_page(engine);
2278         } else {
2279                 WARN_ON(engine->id != RCS);
2280                 cleanup_phys_status_page(engine);
2281         }
2282
2283         i915_cmd_parser_fini_ring(engine);
2284         i915_gem_batch_pool_fini(&engine->batch_pool);
2285         intel_engine_fini_breadcrumbs(engine);
2286
2287         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2288
2289         engine->i915 = NULL;
2290 }
2291
2292 int intel_engine_idle(struct intel_engine_cs *engine)
2293 {
2294         struct drm_i915_gem_request *req;
2295
2296         /* Wait upon the last request to be completed */
2297         if (list_empty(&engine->request_list))
2298                 return 0;
2299
2300         req = list_entry(engine->request_list.prev,
2301                          struct drm_i915_gem_request,
2302                          list);
2303
2304         /* Make sure we do not trigger any retires */
2305         return __i915_wait_request(req,
2306                                    req->i915->mm.interruptible,
2307                                    NULL, NULL);
2308 }
2309
2310 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2311 {
2312         int ret;
2313
2314         /* Flush enough space to reduce the likelihood of waiting after
2315          * we start building the request - in which case we will just
2316          * have to repeat work.
2317          */
2318         request->reserved_space += LEGACY_REQUEST_SIZE;
2319
2320         request->ringbuf = request->engine->buffer;
2321
2322         ret = intel_ring_begin(request, 0);
2323         if (ret)
2324                 return ret;
2325
2326         request->reserved_space -= LEGACY_REQUEST_SIZE;
2327         return 0;
2328 }
2329
2330 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2331 {
2332         struct intel_ringbuffer *ringbuf = req->ringbuf;
2333         struct intel_engine_cs *engine = req->engine;
2334         struct drm_i915_gem_request *target;
2335
2336         intel_ring_update_space(ringbuf);
2337         if (ringbuf->space >= bytes)
2338                 return 0;
2339
2340         /*
2341          * Space is reserved in the ringbuffer for finalising the request,
2342          * as that cannot be allowed to fail. During request finalisation,
2343          * reserved_space is set to 0 to stop the overallocation and the
2344          * assumption is that then we never need to wait (which has the
2345          * risk of failing with EINTR).
2346          *
2347          * See also i915_gem_request_alloc() and i915_add_request().
2348          */
2349         GEM_BUG_ON(!req->reserved_space);
2350
2351         list_for_each_entry(target, &engine->request_list, list) {
2352                 unsigned space;
2353
2354                 /*
2355                  * The request queue is per-engine, so can contain requests
2356                  * from multiple ringbuffers. Here, we must ignore any that
2357                  * aren't from the ringbuffer we're considering.
2358                  */
2359                 if (target->ringbuf != ringbuf)
2360                         continue;
2361
2362                 /* Would completion of this request free enough space? */
2363                 space = __intel_ring_space(target->postfix, ringbuf->tail,
2364                                            ringbuf->size);
2365                 if (space >= bytes)
2366                         break;
2367         }
2368
2369         if (WARN_ON(&target->list == &engine->request_list))
2370                 return -ENOSPC;
2371
2372         return i915_wait_request(target);
2373 }
2374
2375 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2376 {
2377         struct intel_ringbuffer *ringbuf = req->ringbuf;
2378         int remain_actual = ringbuf->size - ringbuf->tail;
2379         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2380         int bytes = num_dwords * sizeof(u32);
2381         int total_bytes, wait_bytes;
2382         bool need_wrap = false;
2383
2384         total_bytes = bytes + req->reserved_space;
2385
2386         if (unlikely(bytes > remain_usable)) {
2387                 /*
2388                  * Not enough space for the basic request. So need to flush
2389                  * out the remainder and then wait for base + reserved.
2390                  */
2391                 wait_bytes = remain_actual + total_bytes;
2392                 need_wrap = true;
2393         } else if (unlikely(total_bytes > remain_usable)) {
2394                 /*
2395                  * The base request will fit but the reserved space
2396                  * falls off the end. So we don't need an immediate wrap
2397                  * and only need to effectively wait for the reserved
2398                  * size space from the start of ringbuffer.
2399                  */
2400                 wait_bytes = remain_actual + req->reserved_space;
2401         } else {
2402                 /* No wrapping required, just waiting. */
2403                 wait_bytes = total_bytes;
2404         }
2405
2406         if (wait_bytes > ringbuf->space) {
2407                 int ret = wait_for_space(req, wait_bytes);
2408                 if (unlikely(ret))
2409                         return ret;
2410
2411                 intel_ring_update_space(ringbuf);
2412                 if (unlikely(ringbuf->space < wait_bytes))
2413                         return -EAGAIN;
2414         }
2415
2416         if (unlikely(need_wrap)) {
2417                 GEM_BUG_ON(remain_actual > ringbuf->space);
2418                 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2419
2420                 /* Fill the tail with MI_NOOP */
2421                 memset(ringbuf->virtual_start + ringbuf->tail,
2422                        0, remain_actual);
2423                 ringbuf->tail = 0;
2424                 ringbuf->space -= remain_actual;
2425         }
2426
2427         ringbuf->space -= bytes;
2428         GEM_BUG_ON(ringbuf->space < 0);
2429         return 0;
2430 }
2431
2432 /* Align the ring tail to a cacheline boundary */
2433 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2434 {
2435         struct intel_engine_cs *engine = req->engine;
2436         int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2437         int ret;
2438
2439         if (num_dwords == 0)
2440                 return 0;
2441
2442         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2443         ret = intel_ring_begin(req, num_dwords);
2444         if (ret)
2445                 return ret;
2446
2447         while (num_dwords--)
2448                 intel_ring_emit(engine, MI_NOOP);
2449
2450         intel_ring_advance(engine);
2451
2452         return 0;
2453 }
2454
2455 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2456 {
2457         struct drm_i915_private *dev_priv = engine->i915;
2458
2459         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2460          * so long as the semaphore value in the register/page is greater
2461          * than the sync value), so whenever we reset the seqno,
2462          * so long as we reset the tracking semaphore value to 0, it will
2463          * always be before the next request's seqno. If we don't reset
2464          * the semaphore value, then when the seqno moves backwards all
2465          * future waits will complete instantly (causing rendering corruption).
2466          */
2467         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2468                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2469                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2470                 if (HAS_VEBOX(dev_priv))
2471                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2472         }
2473         if (dev_priv->semaphore_obj) {
2474                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2475                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2476                 void *semaphores = kmap(page);
2477                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2478                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2479                 kunmap(page);
2480         }
2481         memset(engine->semaphore.sync_seqno, 0,
2482                sizeof(engine->semaphore.sync_seqno));
2483
2484         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2485         if (engine->irq_seqno_barrier)
2486                 engine->irq_seqno_barrier(engine);
2487         engine->last_submitted_seqno = seqno;
2488
2489         engine->hangcheck.seqno = seqno;
2490
2491         /* After manually advancing the seqno, fake the interrupt in case
2492          * there are any waiters for that seqno.
2493          */
2494         rcu_read_lock();
2495         intel_engine_wakeup(engine);
2496         rcu_read_unlock();
2497 }
2498
2499 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2500                                      u32 value)
2501 {
2502         struct drm_i915_private *dev_priv = engine->i915;
2503
2504         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2505
2506        /* Every tail move must follow the sequence below */
2507
2508         /* Disable notification that the ring is IDLE. The GT
2509          * will then assume that it is busy and bring it out of rc6.
2510          */
2511         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2512                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2513
2514         /* Clear the context id. Here be magic! */
2515         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2516
2517         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2518         if (intel_wait_for_register_fw(dev_priv,
2519                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2520                                        GEN6_BSD_SLEEP_INDICATOR,
2521                                        0,
2522                                        50))
2523                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2524
2525         /* Now that the ring is fully powered up, update the tail */
2526         I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2527         POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2528
2529         /* Let the ring send IDLE messages to the GT again,
2530          * and so let it sleep to conserve power when idle.
2531          */
2532         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2533                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2534
2535         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2536 }
2537
2538 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2539                                u32 invalidate, u32 flush)
2540 {
2541         struct intel_engine_cs *engine = req->engine;
2542         uint32_t cmd;
2543         int ret;
2544
2545         ret = intel_ring_begin(req, 4);
2546         if (ret)
2547                 return ret;
2548
2549         cmd = MI_FLUSH_DW;
2550         if (INTEL_GEN(req->i915) >= 8)
2551                 cmd += 1;
2552
2553         /* We always require a command barrier so that subsequent
2554          * commands, such as breadcrumb interrupts, are strictly ordered
2555          * wrt the contents of the write cache being flushed to memory
2556          * (and thus being coherent from the CPU).
2557          */
2558         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2559
2560         /*
2561          * Bspec vol 1c.5 - video engine command streamer:
2562          * "If ENABLED, all TLBs will be invalidated once the flush
2563          * operation is complete. This bit is only valid when the
2564          * Post-Sync Operation field is a value of 1h or 3h."
2565          */
2566         if (invalidate & I915_GEM_GPU_DOMAINS)
2567                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2568
2569         intel_ring_emit(engine, cmd);
2570         intel_ring_emit(engine,
2571                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2572         if (INTEL_GEN(req->i915) >= 8) {
2573                 intel_ring_emit(engine, 0); /* upper addr */
2574                 intel_ring_emit(engine, 0); /* value */
2575         } else  {
2576                 intel_ring_emit(engine, 0);
2577                 intel_ring_emit(engine, MI_NOOP);
2578         }
2579         intel_ring_advance(engine);
2580         return 0;
2581 }
2582
2583 static int
2584 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2585                               u64 offset, u32 len,
2586                               unsigned dispatch_flags)
2587 {
2588         struct intel_engine_cs *engine = req->engine;
2589         bool ppgtt = USES_PPGTT(engine->dev) &&
2590                         !(dispatch_flags & I915_DISPATCH_SECURE);
2591         int ret;
2592
2593         ret = intel_ring_begin(req, 4);
2594         if (ret)
2595                 return ret;
2596
2597         /* FIXME(BDW): Address space and security selectors. */
2598         intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2599                         (dispatch_flags & I915_DISPATCH_RS ?
2600                          MI_BATCH_RESOURCE_STREAMER : 0));
2601         intel_ring_emit(engine, lower_32_bits(offset));
2602         intel_ring_emit(engine, upper_32_bits(offset));
2603         intel_ring_emit(engine, MI_NOOP);
2604         intel_ring_advance(engine);
2605
2606         return 0;
2607 }
2608
2609 static int
2610 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2611                              u64 offset, u32 len,
2612                              unsigned dispatch_flags)
2613 {
2614         struct intel_engine_cs *engine = req->engine;
2615         int ret;
2616
2617         ret = intel_ring_begin(req, 2);
2618         if (ret)
2619                 return ret;
2620
2621         intel_ring_emit(engine,
2622                         MI_BATCH_BUFFER_START |
2623                         (dispatch_flags & I915_DISPATCH_SECURE ?
2624                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2625                         (dispatch_flags & I915_DISPATCH_RS ?
2626                          MI_BATCH_RESOURCE_STREAMER : 0));
2627         /* bit0-7 is the length on GEN6+ */
2628         intel_ring_emit(engine, offset);
2629         intel_ring_advance(engine);
2630
2631         return 0;
2632 }
2633
2634 static int
2635 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2636                               u64 offset, u32 len,
2637                               unsigned dispatch_flags)
2638 {
2639         struct intel_engine_cs *engine = req->engine;
2640         int ret;
2641
2642         ret = intel_ring_begin(req, 2);
2643         if (ret)
2644                 return ret;
2645
2646         intel_ring_emit(engine,
2647                         MI_BATCH_BUFFER_START |
2648                         (dispatch_flags & I915_DISPATCH_SECURE ?
2649                          0 : MI_BATCH_NON_SECURE_I965));
2650         /* bit0-7 is the length on GEN6+ */
2651         intel_ring_emit(engine, offset);
2652         intel_ring_advance(engine);
2653
2654         return 0;
2655 }
2656
2657 /* Blitter support (SandyBridge+) */
2658
2659 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2660                            u32 invalidate, u32 flush)
2661 {
2662         struct intel_engine_cs *engine = req->engine;
2663         uint32_t cmd;
2664         int ret;
2665
2666         ret = intel_ring_begin(req, 4);
2667         if (ret)
2668                 return ret;
2669
2670         cmd = MI_FLUSH_DW;
2671         if (INTEL_GEN(req->i915) >= 8)
2672                 cmd += 1;
2673
2674         /* We always require a command barrier so that subsequent
2675          * commands, such as breadcrumb interrupts, are strictly ordered
2676          * wrt the contents of the write cache being flushed to memory
2677          * (and thus being coherent from the CPU).
2678          */
2679         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2680
2681         /*
2682          * Bspec vol 1c.3 - blitter engine command streamer:
2683          * "If ENABLED, all TLBs will be invalidated once the flush
2684          * operation is complete. This bit is only valid when the
2685          * Post-Sync Operation field is a value of 1h or 3h."
2686          */
2687         if (invalidate & I915_GEM_DOMAIN_RENDER)
2688                 cmd |= MI_INVALIDATE_TLB;
2689         intel_ring_emit(engine, cmd);
2690         intel_ring_emit(engine,
2691                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2692         if (INTEL_GEN(req->i915) >= 8) {
2693                 intel_ring_emit(engine, 0); /* upper addr */
2694                 intel_ring_emit(engine, 0); /* value */
2695         } else  {
2696                 intel_ring_emit(engine, 0);
2697                 intel_ring_emit(engine, MI_NOOP);
2698         }
2699         intel_ring_advance(engine);
2700
2701         return 0;
2702 }
2703
2704 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2705                                        struct intel_engine_cs *engine)
2706 {
2707         struct drm_i915_gem_object *obj;
2708         int ret, i;
2709
2710         if (!i915_semaphore_is_enabled(dev_priv))
2711                 return;
2712
2713         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2714                 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2715                 if (IS_ERR(obj)) {
2716                         DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2717                         i915.semaphores = 0;
2718                 } else {
2719                         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2720                         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2721                         if (ret != 0) {
2722                                 drm_gem_object_unreference(&obj->base);
2723                                 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2724                                 i915.semaphores = 0;
2725                         } else {
2726                                 dev_priv->semaphore_obj = obj;
2727                         }
2728                 }
2729         }
2730
2731         if (!i915_semaphore_is_enabled(dev_priv))
2732                 return;
2733
2734         if (INTEL_GEN(dev_priv) >= 8) {
2735                 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2736
2737                 engine->semaphore.sync_to = gen8_ring_sync;
2738                 engine->semaphore.signal = gen8_xcs_signal;
2739
2740                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2741                         u64 ring_offset;
2742
2743                         if (i != engine->id)
2744                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2745                         else
2746                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2747
2748                         engine->semaphore.signal_ggtt[i] = ring_offset;
2749                 }
2750         } else if (INTEL_GEN(dev_priv) >= 6) {
2751                 engine->semaphore.sync_to = gen6_ring_sync;
2752                 engine->semaphore.signal = gen6_signal;
2753
2754                 /*
2755                  * The current semaphore is only applied on pre-gen8
2756                  * platform.  And there is no VCS2 ring on the pre-gen8
2757                  * platform. So the semaphore between RCS and VCS2 is
2758                  * initialized as INVALID.  Gen8 will initialize the
2759                  * sema between VCS2 and RCS later.
2760                  */
2761                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2762                         static const struct {
2763                                 u32 wait_mbox;
2764                                 i915_reg_t mbox_reg;
2765                         } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2766                                 [RCS] = {
2767                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2768                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2769                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2770                                 },
2771                                 [VCS] = {
2772                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2773                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2774                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2775                                 },
2776                                 [BCS] = {
2777                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2778                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2779                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2780                                 },
2781                                 [VECS] = {
2782                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2783                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2784                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2785                                 },
2786                         };
2787                         u32 wait_mbox;
2788                         i915_reg_t mbox_reg;
2789
2790                         if (i == engine->id || i == VCS2) {
2791                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2792                                 mbox_reg = GEN6_NOSYNC;
2793                         } else {
2794                                 wait_mbox = sem_data[engine->id][i].wait_mbox;
2795                                 mbox_reg = sem_data[engine->id][i].mbox_reg;
2796                         }
2797
2798                         engine->semaphore.mbox.wait[i] = wait_mbox;
2799                         engine->semaphore.mbox.signal[i] = mbox_reg;
2800                 }
2801         }
2802 }
2803
2804 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2805                                 struct intel_engine_cs *engine)
2806 {
2807         if (INTEL_GEN(dev_priv) >= 8) {
2808                 engine->irq_enable = gen8_irq_enable;
2809                 engine->irq_disable = gen8_irq_disable;
2810                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2811         } else if (INTEL_GEN(dev_priv) >= 6) {
2812                 engine->irq_enable = gen6_irq_enable;
2813                 engine->irq_disable = gen6_irq_disable;
2814                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2815         } else if (INTEL_GEN(dev_priv) >= 5) {
2816                 engine->irq_enable = gen5_irq_enable;
2817                 engine->irq_disable = gen5_irq_disable;
2818                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2819         } else if (INTEL_GEN(dev_priv) >= 3) {
2820                 engine->irq_enable = i9xx_irq_enable;
2821                 engine->irq_disable = i9xx_irq_disable;
2822         } else {
2823                 engine->irq_enable = i8xx_irq_enable;
2824                 engine->irq_disable = i8xx_irq_disable;
2825         }
2826 }
2827
2828 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2829                                       struct intel_engine_cs *engine)
2830 {
2831         engine->init_hw = init_ring_common;
2832         engine->write_tail = ring_write_tail;
2833
2834         engine->add_request = i9xx_add_request;
2835         if (INTEL_GEN(dev_priv) >= 6)
2836                 engine->add_request = gen6_add_request;
2837
2838         if (INTEL_GEN(dev_priv) >= 8)
2839                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2840         else if (INTEL_GEN(dev_priv) >= 6)
2841                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2842         else if (INTEL_GEN(dev_priv) >= 4)
2843                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2844         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2845                 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2846         else
2847                 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2848
2849         intel_ring_init_irq(dev_priv, engine);
2850         intel_ring_init_semaphores(dev_priv, engine);
2851 }
2852
2853 int intel_init_render_ring_buffer(struct drm_device *dev)
2854 {
2855         struct drm_i915_private *dev_priv = to_i915(dev);
2856         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2857         int ret;
2858
2859         engine->name = "render ring";
2860         engine->id = RCS;
2861         engine->exec_id = I915_EXEC_RENDER;
2862         engine->hw_id = 0;
2863         engine->mmio_base = RENDER_RING_BASE;
2864
2865         intel_ring_default_vfuncs(dev_priv, engine);
2866
2867         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2868         if (HAS_L3_DPF(dev_priv))
2869                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2870
2871         if (INTEL_GEN(dev_priv) >= 8) {
2872                 engine->init_context = intel_rcs_ctx_init;
2873                 engine->add_request = gen8_render_add_request;
2874                 engine->flush = gen8_render_ring_flush;
2875                 if (i915_semaphore_is_enabled(dev_priv))
2876                         engine->semaphore.signal = gen8_rcs_signal;
2877         } else if (INTEL_GEN(dev_priv) >= 6) {
2878                 engine->init_context = intel_rcs_ctx_init;
2879                 engine->flush = gen7_render_ring_flush;
2880                 if (IS_GEN6(dev_priv))
2881                         engine->flush = gen6_render_ring_flush;
2882         } else if (IS_GEN5(dev_priv)) {
2883                 engine->flush = gen4_render_ring_flush;
2884         } else {
2885                 if (INTEL_GEN(dev_priv) < 4)
2886                         engine->flush = gen2_render_ring_flush;
2887                 else
2888                         engine->flush = gen4_render_ring_flush;
2889                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2890         }
2891
2892         if (IS_HASWELL(dev_priv))
2893                 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2894
2895         engine->init_hw = init_render_ring;
2896         engine->cleanup = render_ring_cleanup;
2897
2898         ret = intel_init_ring_buffer(dev, engine);
2899         if (ret)
2900                 return ret;
2901
2902         if (INTEL_GEN(dev_priv) >= 6) {
2903                 ret = intel_init_pipe_control(engine, 4096);
2904                 if (ret)
2905                         return ret;
2906         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2907                 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2908                 if (ret)
2909                         return ret;
2910         }
2911
2912         return 0;
2913 }
2914
2915 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2916 {
2917         struct drm_i915_private *dev_priv = to_i915(dev);
2918         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2919
2920         engine->name = "bsd ring";
2921         engine->id = VCS;
2922         engine->exec_id = I915_EXEC_BSD;
2923         engine->hw_id = 1;
2924
2925         intel_ring_default_vfuncs(dev_priv, engine);
2926
2927         if (INTEL_GEN(dev_priv) >= 6) {
2928                 engine->mmio_base = GEN6_BSD_RING_BASE;
2929                 /* gen6 bsd needs a special wa for tail updates */
2930                 if (IS_GEN6(dev_priv))
2931                         engine->write_tail = gen6_bsd_ring_write_tail;
2932                 engine->flush = gen6_bsd_ring_flush;
2933                 if (INTEL_GEN(dev_priv) >= 8)
2934                         engine->irq_enable_mask =
2935                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2936                 else
2937                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2938         } else {
2939                 engine->mmio_base = BSD_RING_BASE;
2940                 engine->flush = bsd_ring_flush;
2941                 if (IS_GEN5(dev_priv))
2942                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2943                 else
2944                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2945         }
2946
2947         return intel_init_ring_buffer(dev, engine);
2948 }
2949
2950 /**
2951  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2952  */
2953 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2954 {
2955         struct drm_i915_private *dev_priv = to_i915(dev);
2956         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2957
2958         engine->name = "bsd2 ring";
2959         engine->id = VCS2;
2960         engine->exec_id = I915_EXEC_BSD;
2961         engine->hw_id = 4;
2962         engine->mmio_base = GEN8_BSD2_RING_BASE;
2963
2964         intel_ring_default_vfuncs(dev_priv, engine);
2965
2966         engine->flush = gen6_bsd_ring_flush;
2967         engine->irq_enable_mask =
2968                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2969
2970         return intel_init_ring_buffer(dev, engine);
2971 }
2972
2973 int intel_init_blt_ring_buffer(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = to_i915(dev);
2976         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2977
2978         engine->name = "blitter ring";
2979         engine->id = BCS;
2980         engine->exec_id = I915_EXEC_BLT;
2981         engine->hw_id = 2;
2982         engine->mmio_base = BLT_RING_BASE;
2983
2984         intel_ring_default_vfuncs(dev_priv, engine);
2985
2986         engine->flush = gen6_ring_flush;
2987         if (INTEL_GEN(dev_priv) >= 8)
2988                 engine->irq_enable_mask =
2989                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2990         else
2991                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2992
2993         return intel_init_ring_buffer(dev, engine);
2994 }
2995
2996 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2997 {
2998         struct drm_i915_private *dev_priv = to_i915(dev);
2999         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3000
3001         engine->name = "video enhancement ring";
3002         engine->id = VECS;
3003         engine->exec_id = I915_EXEC_VEBOX;
3004         engine->hw_id = 3;
3005         engine->mmio_base = VEBOX_RING_BASE;
3006
3007         intel_ring_default_vfuncs(dev_priv, engine);
3008
3009         engine->flush = gen6_ring_flush;
3010
3011         if (INTEL_GEN(dev_priv) >= 8) {
3012                 engine->irq_enable_mask =
3013                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3014         } else {
3015                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3016                 engine->irq_enable = hsw_vebox_irq_enable;
3017                 engine->irq_disable = hsw_vebox_irq_disable;
3018         }
3019
3020         return intel_init_ring_buffer(dev, engine);
3021 }
3022
3023 int
3024 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3025 {
3026         struct intel_engine_cs *engine = req->engine;
3027         int ret;
3028
3029         if (!engine->gpu_caches_dirty)
3030                 return 0;
3031
3032         ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3033         if (ret)
3034                 return ret;
3035
3036         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3037
3038         engine->gpu_caches_dirty = false;
3039         return 0;
3040 }
3041
3042 int
3043 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3044 {
3045         struct intel_engine_cs *engine = req->engine;
3046         uint32_t flush_domains;
3047         int ret;
3048
3049         flush_domains = 0;
3050         if (engine->gpu_caches_dirty)
3051                 flush_domains = I915_GEM_GPU_DOMAINS;
3052
3053         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3054         if (ret)
3055                 return ret;
3056
3057         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3058
3059         engine->gpu_caches_dirty = false;
3060         return 0;
3061 }
3062
3063 void
3064 intel_stop_engine(struct intel_engine_cs *engine)
3065 {
3066         int ret;
3067
3068         if (!intel_engine_initialized(engine))
3069                 return;
3070
3071         ret = intel_engine_idle(engine);
3072         if (ret)
3073                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3074                           engine->name, ret);
3075
3076         stop_ring(engine);
3077 }