Merge remote-tracking branches 'asoc/topic/davinci', 'asoc/topic/fsl-card' and 'asoc...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39         int space = head - tail;
40         if (space <= 0)
41                 space += size;
42         return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47         if (ringbuf->last_retired_head != -1) {
48                 ringbuf->head = ringbuf->last_retired_head;
49                 ringbuf->last_retired_head = -1;
50         }
51
52         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53                                             ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58         intel_ring_update_space(ringbuf);
59         return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64         struct drm_i915_private *dev_priv = ring->dev->dev_private;
65         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70         struct intel_ringbuffer *ringbuf = ring->buffer;
71         ringbuf->tail &= ringbuf->size - 1;
72         if (intel_ring_stopped(ring))
73                 return;
74         ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79                        u32      invalidate_domains,
80                        u32      flush_domains)
81 {
82         struct intel_engine_cs *ring = req->ring;
83         u32 cmd;
84         int ret;
85
86         cmd = MI_FLUSH;
87         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88                 cmd |= MI_NO_WRITE_FLUSH;
89
90         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91                 cmd |= MI_READ_FLUSH;
92
93         ret = intel_ring_begin(req, 2);
94         if (ret)
95                 return ret;
96
97         intel_ring_emit(ring, cmd);
98         intel_ring_emit(ring, MI_NOOP);
99         intel_ring_advance(ring);
100
101         return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106                        u32      invalidate_domains,
107                        u32      flush_domains)
108 {
109         struct intel_engine_cs *ring = req->ring;
110         struct drm_device *dev = ring->dev;
111         u32 cmd;
112         int ret;
113
114         /*
115          * read/write caches:
116          *
117          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119          * also flushed at 2d versus 3d pipeline switches.
120          *
121          * read-only caches:
122          *
123          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124          * MI_READ_FLUSH is set, and is always flushed on 965.
125          *
126          * I915_GEM_DOMAIN_COMMAND may not exist?
127          *
128          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129          * invalidated when MI_EXE_FLUSH is set.
130          *
131          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132          * invalidated with every MI_FLUSH.
133          *
134          * TLBs:
135          *
136          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139          * are flushed at any MI_FLUSH.
140          */
141
142         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144                 cmd &= ~MI_NO_WRITE_FLUSH;
145         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146                 cmd |= MI_EXE_FLUSH;
147
148         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149             (IS_G4X(dev) || IS_GEN5(dev)))
150                 cmd |= MI_INVALIDATE_ISP;
151
152         ret = intel_ring_begin(req, 2);
153         if (ret)
154                 return ret;
155
156         intel_ring_emit(ring, cmd);
157         intel_ring_emit(ring, MI_NOOP);
158         intel_ring_advance(ring);
159
160         return 0;
161 }
162
163 /**
164  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165  * implementing two workarounds on gen6.  From section 1.4.7.1
166  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167  *
168  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169  * produced by non-pipelined state commands), software needs to first
170  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171  * 0.
172  *
173  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175  *
176  * And the workaround for these two requires this workaround first:
177  *
178  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179  * BEFORE the pipe-control with a post-sync op and no write-cache
180  * flushes.
181  *
182  * And this last workaround is tricky because of the requirements on
183  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184  * volume 2 part 1:
185  *
186  *     "1 of the following must also be set:
187  *      - Render Target Cache Flush Enable ([12] of DW1)
188  *      - Depth Cache Flush Enable ([0] of DW1)
189  *      - Stall at Pixel Scoreboard ([1] of DW1)
190  *      - Depth Stall ([13] of DW1)
191  *      - Post-Sync Operation ([13] of DW1)
192  *      - Notify Enable ([8] of DW1)"
193  *
194  * The cache flushes require the workaround flush that triggered this
195  * one, so we can't use it.  Depth stall would trigger the same.
196  * Post-sync nonzero is what triggered this second workaround, so we
197  * can't use that one either.  Notify enable is IRQs, which aren't
198  * really our business.  That leaves only stall at scoreboard.
199  */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203         struct intel_engine_cs *ring = req->ring;
204         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205         int ret;
206
207         ret = intel_ring_begin(req, 6);
208         if (ret)
209                 return ret;
210
211         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
214         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215         intel_ring_emit(ring, 0); /* low dword */
216         intel_ring_emit(ring, 0); /* high dword */
217         intel_ring_emit(ring, MI_NOOP);
218         intel_ring_advance(ring);
219
220         ret = intel_ring_begin(req, 6);
221         if (ret)
222                 return ret;
223
224         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227         intel_ring_emit(ring, 0);
228         intel_ring_emit(ring, 0);
229         intel_ring_emit(ring, MI_NOOP);
230         intel_ring_advance(ring);
231
232         return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237                        u32 invalidate_domains, u32 flush_domains)
238 {
239         struct intel_engine_cs *ring = req->ring;
240         u32 flags = 0;
241         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242         int ret;
243
244         /* Force SNB workarounds for PIPE_CONTROL flushes */
245         ret = intel_emit_post_sync_nonzero_flush(req);
246         if (ret)
247                 return ret;
248
249         /* Just flush everything.  Experiments have shown that reducing the
250          * number of bits based on the write domains has little performance
251          * impact.
252          */
253         if (flush_domains) {
254                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256                 /*
257                  * Ensure that any following seqno writes only happen
258                  * when the render cache is indeed flushed.
259                  */
260                 flags |= PIPE_CONTROL_CS_STALL;
261         }
262         if (invalidate_domains) {
263                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269                 /*
270                  * TLB invalidate requires a post-sync write.
271                  */
272                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273         }
274
275         ret = intel_ring_begin(req, 4);
276         if (ret)
277                 return ret;
278
279         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280         intel_ring_emit(ring, flags);
281         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282         intel_ring_emit(ring, 0);
283         intel_ring_advance(ring);
284
285         return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291         struct intel_engine_cs *ring = req->ring;
292         int ret;
293
294         ret = intel_ring_begin(req, 4);
295         if (ret)
296                 return ret;
297
298         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
301         intel_ring_emit(ring, 0);
302         intel_ring_emit(ring, 0);
303         intel_ring_advance(ring);
304
305         return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310                        u32 invalidate_domains, u32 flush_domains)
311 {
312         struct intel_engine_cs *ring = req->ring;
313         u32 flags = 0;
314         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315         int ret;
316
317         /*
318          * Ensure that any following seqno writes only happen when the render
319          * cache is indeed flushed.
320          *
321          * Workaround: 4th PIPE_CONTROL command (except the ones with only
322          * read-cache invalidate bits set) must have the CS_STALL bit set. We
323          * don't try to be clever and just set it unconditionally.
324          */
325         flags |= PIPE_CONTROL_CS_STALL;
326
327         /* Just flush everything.  Experiments have shown that reducing the
328          * number of bits based on the write domains has little performance
329          * impact.
330          */
331         if (flush_domains) {
332                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336         }
337         if (invalidate_domains) {
338                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345                 /*
346                  * TLB invalidate requires a post-sync write.
347                  */
348                 flags |= PIPE_CONTROL_QW_WRITE;
349                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353                 /* Workaround: we must issue a pipe_control with CS-stall bit
354                  * set before a pipe_control command that has the state cache
355                  * invalidate bit set. */
356                 gen7_render_ring_cs_stall_wa(req);
357         }
358
359         ret = intel_ring_begin(req, 4);
360         if (ret)
361                 return ret;
362
363         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364         intel_ring_emit(ring, flags);
365         intel_ring_emit(ring, scratch_addr);
366         intel_ring_emit(ring, 0);
367         intel_ring_advance(ring);
368
369         return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374                        u32 flags, u32 scratch_addr)
375 {
376         struct intel_engine_cs *ring = req->ring;
377         int ret;
378
379         ret = intel_ring_begin(req, 6);
380         if (ret)
381                 return ret;
382
383         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384         intel_ring_emit(ring, flags);
385         intel_ring_emit(ring, scratch_addr);
386         intel_ring_emit(ring, 0);
387         intel_ring_emit(ring, 0);
388         intel_ring_emit(ring, 0);
389         intel_ring_advance(ring);
390
391         return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396                        u32 invalidate_domains, u32 flush_domains)
397 {
398         u32 flags = 0;
399         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400         int ret;
401
402         flags |= PIPE_CONTROL_CS_STALL;
403
404         if (flush_domains) {
405                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409         }
410         if (invalidate_domains) {
411                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417                 flags |= PIPE_CONTROL_QW_WRITE;
418                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421                 ret = gen8_emit_pipe_control(req,
422                                              PIPE_CONTROL_CS_STALL |
423                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
424                                              0);
425                 if (ret)
426                         return ret;
427         }
428
429         return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *ring,
433                             u32 value)
434 {
435         struct drm_i915_private *dev_priv = ring->dev->dev_private;
436         I915_WRITE_TAIL(ring, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441         struct drm_i915_private *dev_priv = ring->dev->dev_private;
442         u64 acthd;
443
444         if (INTEL_INFO(ring->dev)->gen >= 8)
445                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446                                          RING_ACTHD_UDW(ring->mmio_base));
447         else if (INTEL_INFO(ring->dev)->gen >= 4)
448                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449         else
450                 acthd = I915_READ(ACTHD);
451
452         return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457         struct drm_i915_private *dev_priv = ring->dev->dev_private;
458         u32 addr;
459
460         addr = dev_priv->status_page_dmah->busaddr;
461         if (INTEL_INFO(ring->dev)->gen >= 4)
462                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463         I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468         struct drm_device *dev = ring->dev;
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         i915_reg_t mmio;
471
472         /* The ring status page addresses are no longer next to the rest of
473          * the ring registers as of gen7.
474          */
475         if (IS_GEN7(dev)) {
476                 switch (ring->id) {
477                 case RCS:
478                         mmio = RENDER_HWS_PGA_GEN7;
479                         break;
480                 case BCS:
481                         mmio = BLT_HWS_PGA_GEN7;
482                         break;
483                 /*
484                  * VCS2 actually doesn't exist on Gen7. Only shut up
485                  * gcc switch check warning
486                  */
487                 case VCS2:
488                 case VCS:
489                         mmio = BSD_HWS_PGA_GEN7;
490                         break;
491                 case VECS:
492                         mmio = VEBOX_HWS_PGA_GEN7;
493                         break;
494                 }
495         } else if (IS_GEN6(ring->dev)) {
496                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497         } else {
498                 /* XXX: gen8 returns to sanity */
499                 mmio = RING_HWS_PGA(ring->mmio_base);
500         }
501
502         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503         POSTING_READ(mmio);
504
505         /*
506          * Flush the TLB for this page
507          *
508          * FIXME: These two bits have disappeared on gen8, so a question
509          * arises: do we still need this and if so how should we go about
510          * invalidating the TLB?
511          */
512         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513                 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515                 /* ring should be idle before issuing a sync flush*/
516                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518                 I915_WRITE(reg,
519                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520                                               INSTPM_SYNC_FLUSH));
521                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522                              1000))
523                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524                                   ring->name);
525         }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530         struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532         if (!IS_GEN2(ring->dev)) {
533                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536                         /* Sometimes we observe that the idle flag is not
537                          * set even though the ring is empty. So double
538                          * check before giving up.
539                          */
540                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541                                 return false;
542                 }
543         }
544
545         I915_WRITE_CTL(ring, 0);
546         I915_WRITE_HEAD(ring, 0);
547         ring->write_tail(ring, 0);
548
549         if (!IS_GEN2(ring->dev)) {
550                 (void)I915_READ_CTL(ring);
551                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552         }
553
554         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559         struct drm_device *dev = ring->dev;
560         struct drm_i915_private *dev_priv = dev->dev_private;
561         struct intel_ringbuffer *ringbuf = ring->buffer;
562         struct drm_i915_gem_object *obj = ringbuf->obj;
563         int ret = 0;
564
565         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567         if (!stop_ring(ring)) {
568                 /* G45 ring initialization often fails to reset head to zero */
569                 DRM_DEBUG_KMS("%s head not reset to zero "
570                               "ctl %08x head %08x tail %08x start %08x\n",
571                               ring->name,
572                               I915_READ_CTL(ring),
573                               I915_READ_HEAD(ring),
574                               I915_READ_TAIL(ring),
575                               I915_READ_START(ring));
576
577                 if (!stop_ring(ring)) {
578                         DRM_ERROR("failed to set %s head to zero "
579                                   "ctl %08x head %08x tail %08x start %08x\n",
580                                   ring->name,
581                                   I915_READ_CTL(ring),
582                                   I915_READ_HEAD(ring),
583                                   I915_READ_TAIL(ring),
584                                   I915_READ_START(ring));
585                         ret = -EIO;
586                         goto out;
587                 }
588         }
589
590         if (I915_NEED_GFX_HWS(dev))
591                 intel_ring_setup_status_page(ring);
592         else
593                 ring_setup_phys_status_page(ring);
594
595         /* Enforce ordering by reading HEAD register back */
596         I915_READ_HEAD(ring);
597
598         /* Initialize the ring. This must happen _after_ we've cleared the ring
599          * registers with the above sequence (the readback of the HEAD registers
600          * also enforces ordering), otherwise the hw might lose the new ring
601          * register values. */
602         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604         /* WaClearRingBufHeadRegAtInit:ctg,elk */
605         if (I915_READ_HEAD(ring))
606                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607                           ring->name, I915_READ_HEAD(ring));
608         I915_WRITE_HEAD(ring, 0);
609         (void)I915_READ_HEAD(ring);
610
611         I915_WRITE_CTL(ring,
612                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613                         | RING_VALID);
614
615         /* If the head is still not zero, the ring is dead */
616         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619                 DRM_ERROR("%s initialization failed "
620                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621                           ring->name,
622                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625                 ret = -EIO;
626                 goto out;
627         }
628
629         ringbuf->last_retired_head = -1;
630         ringbuf->head = I915_READ_HEAD(ring);
631         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632         intel_ring_update_space(ringbuf);
633
634         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636 out:
637         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639         return ret;
640 }
641
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645         struct drm_device *dev = ring->dev;
646
647         if (ring->scratch.obj == NULL)
648                 return;
649
650         if (INTEL_INFO(dev)->gen >= 5) {
651                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653         }
654
655         drm_gem_object_unreference(&ring->scratch.obj->base);
656         ring->scratch.obj = NULL;
657 }
658
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662         int ret;
663
664         WARN_ON(ring->scratch.obj);
665
666         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667         if (ring->scratch.obj == NULL) {
668                 DRM_ERROR("Failed to allocate seqno page\n");
669                 ret = -ENOMEM;
670                 goto err;
671         }
672
673         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674         if (ret)
675                 goto err_unref;
676
677         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678         if (ret)
679                 goto err_unref;
680
681         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683         if (ring->scratch.cpu_page == NULL) {
684                 ret = -ENOMEM;
685                 goto err_unpin;
686         }
687
688         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689                          ring->name, ring->scratch.gtt_offset);
690         return 0;
691
692 err_unpin:
693         i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695         drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697         return ret;
698 }
699
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702         int ret, i;
703         struct intel_engine_cs *ring = req->ring;
704         struct drm_device *dev = ring->dev;
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         struct i915_workarounds *w = &dev_priv->workarounds;
707
708         if (w->count == 0)
709                 return 0;
710
711         ring->gpu_caches_dirty = true;
712         ret = intel_ring_flush_all_caches(req);
713         if (ret)
714                 return ret;
715
716         ret = intel_ring_begin(req, (w->count * 2 + 2));
717         if (ret)
718                 return ret;
719
720         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721         for (i = 0; i < w->count; i++) {
722                 intel_ring_emit_reg(ring, w->reg[i].addr);
723                 intel_ring_emit(ring, w->reg[i].value);
724         }
725         intel_ring_emit(ring, MI_NOOP);
726
727         intel_ring_advance(ring);
728
729         ring->gpu_caches_dirty = true;
730         ret = intel_ring_flush_all_caches(req);
731         if (ret)
732                 return ret;
733
734         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736         return 0;
737 }
738
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741         int ret;
742
743         ret = intel_ring_workarounds_emit(req);
744         if (ret != 0)
745                 return ret;
746
747         ret = i915_gem_render_state_init(req);
748         if (ret)
749                 DRM_ERROR("init render state: %d\n", ret);
750
751         return ret;
752 }
753
754 static int wa_add(struct drm_i915_private *dev_priv,
755                   i915_reg_t addr,
756                   const u32 mask, const u32 val)
757 {
758         const u32 idx = dev_priv->workarounds.count;
759
760         if (WARN_ON(idx >= I915_MAX_WA_REGS))
761                 return -ENOSPC;
762
763         dev_priv->workarounds.reg[idx].addr = addr;
764         dev_priv->workarounds.reg[idx].value = val;
765         dev_priv->workarounds.reg[idx].mask = mask;
766
767         dev_priv->workarounds.count++;
768
769         return 0;
770 }
771
772 #define WA_REG(addr, mask, val) do { \
773                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774                 if (r) \
775                         return r; \
776         } while (0)
777
778 #define WA_SET_BIT_MASKED(addr, mask) \
779         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792 static int gen8_init_workarounds(struct intel_engine_cs *ring)
793 {
794         struct drm_device *dev = ring->dev;
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
798
799         /* WaDisableAsyncFlipPerfMode:bdw,chv */
800         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
801
802         /* WaDisablePartialInstShootdown:bdw,chv */
803         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
804                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
805
806         /* Use Force Non-Coherent whenever executing a 3D context. This is a
807          * workaround for for a possible hang in the unlikely event a TLB
808          * invalidation occurs during a PSD flush.
809          */
810         /* WaForceEnableNonCoherent:bdw,chv */
811         /* WaHdcDisableFetchWhenMasked:bdw,chv */
812         WA_SET_BIT_MASKED(HDC_CHICKEN0,
813                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
814                           HDC_FORCE_NON_COHERENT);
815
816         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
817          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
818          *  polygons in the same 8x4 pixel/sample area to be processed without
819          *  stalling waiting for the earlier ones to write to Hierarchical Z
820          *  buffer."
821          *
822          * This optimization is off by default for BDW and CHV; turn it on.
823          */
824         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
825
826         /* Wa4x4STCOptimizationDisable:bdw,chv */
827         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
828
829         /*
830          * BSpec recommends 8x4 when MSAA is used,
831          * however in practice 16x4 seems fastest.
832          *
833          * Note that PS/WM thread counts depend on the WIZ hashing
834          * disable bit, which we don't touch here, but it's good
835          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
836          */
837         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
838                             GEN6_WIZ_HASHING_MASK,
839                             GEN6_WIZ_HASHING_16x4);
840
841         return 0;
842 }
843
844 static int bdw_init_workarounds(struct intel_engine_cs *ring)
845 {
846         int ret;
847         struct drm_device *dev = ring->dev;
848         struct drm_i915_private *dev_priv = dev->dev_private;
849
850         ret = gen8_init_workarounds(ring);
851         if (ret)
852                 return ret;
853
854         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
855         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
856
857         /* WaDisableDopClockGating:bdw */
858         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
859                           DOP_CLOCK_GATING_DISABLE);
860
861         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
862                           GEN8_SAMPLER_POWER_BYPASS_DIS);
863
864         WA_SET_BIT_MASKED(HDC_CHICKEN0,
865                           /* WaForceContextSaveRestoreNonCoherent:bdw */
866                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
867                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
868                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
869
870         return 0;
871 }
872
873 static int chv_init_workarounds(struct intel_engine_cs *ring)
874 {
875         int ret;
876         struct drm_device *dev = ring->dev;
877         struct drm_i915_private *dev_priv = dev->dev_private;
878
879         ret = gen8_init_workarounds(ring);
880         if (ret)
881                 return ret;
882
883         /* WaDisableThreadStallDopClockGating:chv */
884         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
885
886         /* Improve HiZ throughput on CHV. */
887         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
888
889         return 0;
890 }
891
892 static int gen9_init_workarounds(struct intel_engine_cs *ring)
893 {
894         struct drm_device *dev = ring->dev;
895         struct drm_i915_private *dev_priv = dev->dev_private;
896         uint32_t tmp;
897
898         /* WaEnableLbsSlaRetryTimerDecrement:skl */
899         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
900                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
901
902         /* WaDisableKillLogic:bxt,skl */
903         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
904                    ECOCHK_DIS_TLB);
905
906         /* WaDisablePartialInstShootdown:skl,bxt */
907         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
909
910         /* Syncing dependencies between camera and graphics:skl,bxt */
911         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
912                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
913
914         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
915         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
916             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
917                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
918                                   GEN9_DG_MIRROR_FIX_ENABLE);
919
920         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
921         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
922             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
923                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
924                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
925                 /*
926                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
927                  * but we do that in per ctx batchbuffer as there is an issue
928                  * with this register not getting restored on ctx restore
929                  */
930         }
931
932         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
933         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
934                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
935                                   GEN9_ENABLE_YV12_BUGFIX);
936
937         /* Wa4x4STCOptimizationDisable:skl,bxt */
938         /* WaDisablePartialResolveInVc:skl,bxt */
939         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
940                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
941
942         /* WaCcsTlbPrefetchDisable:skl,bxt */
943         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
944                           GEN9_CCS_TLB_PREFETCH_ENABLE);
945
946         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
947         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
948             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
949                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
950                                   PIXEL_MASK_CAMMING_DISABLE);
951
952         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
953         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
954         if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
955             IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
956                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
957         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
958
959         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
960         if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
961                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
962                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
963
964         /* WaDisableSTUnitPowerOptimization:skl,bxt */
965         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
966
967         return 0;
968 }
969
970 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
971 {
972         struct drm_device *dev = ring->dev;
973         struct drm_i915_private *dev_priv = dev->dev_private;
974         u8 vals[3] = { 0, 0, 0 };
975         unsigned int i;
976
977         for (i = 0; i < 3; i++) {
978                 u8 ss;
979
980                 /*
981                  * Only consider slices where one, and only one, subslice has 7
982                  * EUs
983                  */
984                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
985                         continue;
986
987                 /*
988                  * subslice_7eu[i] != 0 (because of the check above) and
989                  * ss_max == 4 (maximum number of subslices possible per slice)
990                  *
991                  * ->    0 <= ss <= 3;
992                  */
993                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
994                 vals[i] = 3 - ss;
995         }
996
997         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
998                 return 0;
999
1000         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1001         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1002                             GEN9_IZ_HASHING_MASK(2) |
1003                             GEN9_IZ_HASHING_MASK(1) |
1004                             GEN9_IZ_HASHING_MASK(0),
1005                             GEN9_IZ_HASHING(2, vals[2]) |
1006                             GEN9_IZ_HASHING(1, vals[1]) |
1007                             GEN9_IZ_HASHING(0, vals[0]));
1008
1009         return 0;
1010 }
1011
1012 static int skl_init_workarounds(struct intel_engine_cs *ring)
1013 {
1014         int ret;
1015         struct drm_device *dev = ring->dev;
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017
1018         ret = gen9_init_workarounds(ring);
1019         if (ret)
1020                 return ret;
1021
1022         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1023                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1024                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1025                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1026         }
1027
1028         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1029          * involving this register should also be added to WA batch as required.
1030          */
1031         if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1032                 /* WaDisableLSQCROPERFforOCL:skl */
1033                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1034                            GEN8_LQSC_RO_PERF_DIS);
1035
1036         /* WaEnableGapsTsvCreditFix:skl */
1037         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1038                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1039                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1040         }
1041
1042         /* WaDisablePowerCompilerClockGating:skl */
1043         if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1044                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1045                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1046
1047         if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1048                 /*
1049                  *Use Force Non-Coherent whenever executing a 3D context. This
1050                  * is a workaround for a possible hang in the unlikely event
1051                  * a TLB invalidation occurs during a PSD flush.
1052                  */
1053                 /* WaForceEnableNonCoherent:skl */
1054                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1055                                   HDC_FORCE_NON_COHERENT);
1056
1057                 /* WaDisableHDCInvalidation:skl */
1058                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1059                            BDW_DISABLE_HDC_INVALIDATION);
1060         }
1061
1062         /* WaBarrierPerformanceFixDisable:skl */
1063         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1064                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1065                                   HDC_FENCE_DEST_SLM_DISABLE |
1066                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1067
1068         /* WaDisableSbeCacheDispatchPortSharing:skl */
1069         if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1070                 WA_SET_BIT_MASKED(
1071                         GEN7_HALF_SLICE_CHICKEN1,
1072                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1073
1074         return skl_tune_iz_hashing(ring);
1075 }
1076
1077 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1078 {
1079         int ret;
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082
1083         ret = gen9_init_workarounds(ring);
1084         if (ret)
1085                 return ret;
1086
1087         /* WaStoreMultiplePTEenable:bxt */
1088         /* This is a requirement according to Hardware specification */
1089         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1090                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1091
1092         /* WaSetClckGatingDisableMedia:bxt */
1093         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1094                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1095                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1096         }
1097
1098         /* WaDisableThreadStallDopClockGating:bxt */
1099         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1100                           STALL_DOP_GATING_DISABLE);
1101
1102         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1103         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1104                 WA_SET_BIT_MASKED(
1105                         GEN7_HALF_SLICE_CHICKEN1,
1106                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1107         }
1108
1109         return 0;
1110 }
1111
1112 int init_workarounds_ring(struct intel_engine_cs *ring)
1113 {
1114         struct drm_device *dev = ring->dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116
1117         WARN_ON(ring->id != RCS);
1118
1119         dev_priv->workarounds.count = 0;
1120
1121         if (IS_BROADWELL(dev))
1122                 return bdw_init_workarounds(ring);
1123
1124         if (IS_CHERRYVIEW(dev))
1125                 return chv_init_workarounds(ring);
1126
1127         if (IS_SKYLAKE(dev))
1128                 return skl_init_workarounds(ring);
1129
1130         if (IS_BROXTON(dev))
1131                 return bxt_init_workarounds(ring);
1132
1133         return 0;
1134 }
1135
1136 static int init_render_ring(struct intel_engine_cs *ring)
1137 {
1138         struct drm_device *dev = ring->dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         int ret = init_ring_common(ring);
1141         if (ret)
1142                 return ret;
1143
1144         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1145         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1146                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1147
1148         /* We need to disable the AsyncFlip performance optimisations in order
1149          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1150          * programmed to '1' on all products.
1151          *
1152          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1153          */
1154         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1155                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1156
1157         /* Required for the hardware to program scanline values for waiting */
1158         /* WaEnableFlushTlbInvalidationMode:snb */
1159         if (INTEL_INFO(dev)->gen == 6)
1160                 I915_WRITE(GFX_MODE,
1161                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1162
1163         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1164         if (IS_GEN7(dev))
1165                 I915_WRITE(GFX_MODE_GEN7,
1166                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1167                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1168
1169         if (IS_GEN6(dev)) {
1170                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1171                  * "If this bit is set, STCunit will have LRA as replacement
1172                  *  policy. [...] This bit must be reset.  LRA replacement
1173                  *  policy is not supported."
1174                  */
1175                 I915_WRITE(CACHE_MODE_0,
1176                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1177         }
1178
1179         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1180                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1181
1182         if (HAS_L3_DPF(dev))
1183                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1184
1185         return init_workarounds_ring(ring);
1186 }
1187
1188 static void render_ring_cleanup(struct intel_engine_cs *ring)
1189 {
1190         struct drm_device *dev = ring->dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192
1193         if (dev_priv->semaphore_obj) {
1194                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1195                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1196                 dev_priv->semaphore_obj = NULL;
1197         }
1198
1199         intel_fini_pipe_control(ring);
1200 }
1201
1202 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1203                            unsigned int num_dwords)
1204 {
1205 #define MBOX_UPDATE_DWORDS 8
1206         struct intel_engine_cs *signaller = signaller_req->ring;
1207         struct drm_device *dev = signaller->dev;
1208         struct drm_i915_private *dev_priv = dev->dev_private;
1209         struct intel_engine_cs *waiter;
1210         int i, ret, num_rings;
1211
1212         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1213         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1214 #undef MBOX_UPDATE_DWORDS
1215
1216         ret = intel_ring_begin(signaller_req, num_dwords);
1217         if (ret)
1218                 return ret;
1219
1220         for_each_ring(waiter, dev_priv, i) {
1221                 u32 seqno;
1222                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1223                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1224                         continue;
1225
1226                 seqno = i915_gem_request_get_seqno(signaller_req);
1227                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1228                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1229                                            PIPE_CONTROL_QW_WRITE |
1230                                            PIPE_CONTROL_FLUSH_ENABLE);
1231                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1232                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1233                 intel_ring_emit(signaller, seqno);
1234                 intel_ring_emit(signaller, 0);
1235                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1236                                            MI_SEMAPHORE_TARGET(waiter->id));
1237                 intel_ring_emit(signaller, 0);
1238         }
1239
1240         return 0;
1241 }
1242
1243 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1244                            unsigned int num_dwords)
1245 {
1246 #define MBOX_UPDATE_DWORDS 6
1247         struct intel_engine_cs *signaller = signaller_req->ring;
1248         struct drm_device *dev = signaller->dev;
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         struct intel_engine_cs *waiter;
1251         int i, ret, num_rings;
1252
1253         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1254         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1255 #undef MBOX_UPDATE_DWORDS
1256
1257         ret = intel_ring_begin(signaller_req, num_dwords);
1258         if (ret)
1259                 return ret;
1260
1261         for_each_ring(waiter, dev_priv, i) {
1262                 u32 seqno;
1263                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1264                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1265                         continue;
1266
1267                 seqno = i915_gem_request_get_seqno(signaller_req);
1268                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1269                                            MI_FLUSH_DW_OP_STOREDW);
1270                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1271                                            MI_FLUSH_DW_USE_GTT);
1272                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1273                 intel_ring_emit(signaller, seqno);
1274                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1275                                            MI_SEMAPHORE_TARGET(waiter->id));
1276                 intel_ring_emit(signaller, 0);
1277         }
1278
1279         return 0;
1280 }
1281
1282 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1283                        unsigned int num_dwords)
1284 {
1285         struct intel_engine_cs *signaller = signaller_req->ring;
1286         struct drm_device *dev = signaller->dev;
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288         struct intel_engine_cs *useless;
1289         int i, ret, num_rings;
1290
1291 #define MBOX_UPDATE_DWORDS 3
1292         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1293         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1294 #undef MBOX_UPDATE_DWORDS
1295
1296         ret = intel_ring_begin(signaller_req, num_dwords);
1297         if (ret)
1298                 return ret;
1299
1300         for_each_ring(useless, dev_priv, i) {
1301                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1302
1303                 if (i915_mmio_reg_valid(mbox_reg)) {
1304                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1305
1306                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1307                         intel_ring_emit_reg(signaller, mbox_reg);
1308                         intel_ring_emit(signaller, seqno);
1309                 }
1310         }
1311
1312         /* If num_dwords was rounded, make sure the tail pointer is correct */
1313         if (num_rings % 2 == 0)
1314                 intel_ring_emit(signaller, MI_NOOP);
1315
1316         return 0;
1317 }
1318
1319 /**
1320  * gen6_add_request - Update the semaphore mailbox registers
1321  *
1322  * @request - request to write to the ring
1323  *
1324  * Update the mailbox registers in the *other* rings with the current seqno.
1325  * This acts like a signal in the canonical semaphore.
1326  */
1327 static int
1328 gen6_add_request(struct drm_i915_gem_request *req)
1329 {
1330         struct intel_engine_cs *ring = req->ring;
1331         int ret;
1332
1333         if (ring->semaphore.signal)
1334                 ret = ring->semaphore.signal(req, 4);
1335         else
1336                 ret = intel_ring_begin(req, 4);
1337
1338         if (ret)
1339                 return ret;
1340
1341         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1342         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1343         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1344         intel_ring_emit(ring, MI_USER_INTERRUPT);
1345         __intel_ring_advance(ring);
1346
1347         return 0;
1348 }
1349
1350 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1351                                               u32 seqno)
1352 {
1353         struct drm_i915_private *dev_priv = dev->dev_private;
1354         return dev_priv->last_seqno < seqno;
1355 }
1356
1357 /**
1358  * intel_ring_sync - sync the waiter to the signaller on seqno
1359  *
1360  * @waiter - ring that is waiting
1361  * @signaller - ring which has, or will signal
1362  * @seqno - seqno which the waiter will block on
1363  */
1364
1365 static int
1366 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1367                struct intel_engine_cs *signaller,
1368                u32 seqno)
1369 {
1370         struct intel_engine_cs *waiter = waiter_req->ring;
1371         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1372         int ret;
1373
1374         ret = intel_ring_begin(waiter_req, 4);
1375         if (ret)
1376                 return ret;
1377
1378         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1379                                 MI_SEMAPHORE_GLOBAL_GTT |
1380                                 MI_SEMAPHORE_POLL |
1381                                 MI_SEMAPHORE_SAD_GTE_SDD);
1382         intel_ring_emit(waiter, seqno);
1383         intel_ring_emit(waiter,
1384                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1385         intel_ring_emit(waiter,
1386                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1387         intel_ring_advance(waiter);
1388         return 0;
1389 }
1390
1391 static int
1392 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1393                struct intel_engine_cs *signaller,
1394                u32 seqno)
1395 {
1396         struct intel_engine_cs *waiter = waiter_req->ring;
1397         u32 dw1 = MI_SEMAPHORE_MBOX |
1398                   MI_SEMAPHORE_COMPARE |
1399                   MI_SEMAPHORE_REGISTER;
1400         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1401         int ret;
1402
1403         /* Throughout all of the GEM code, seqno passed implies our current
1404          * seqno is >= the last seqno executed. However for hardware the
1405          * comparison is strictly greater than.
1406          */
1407         seqno -= 1;
1408
1409         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1410
1411         ret = intel_ring_begin(waiter_req, 4);
1412         if (ret)
1413                 return ret;
1414
1415         /* If seqno wrap happened, omit the wait with no-ops */
1416         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1417                 intel_ring_emit(waiter, dw1 | wait_mbox);
1418                 intel_ring_emit(waiter, seqno);
1419                 intel_ring_emit(waiter, 0);
1420                 intel_ring_emit(waiter, MI_NOOP);
1421         } else {
1422                 intel_ring_emit(waiter, MI_NOOP);
1423                 intel_ring_emit(waiter, MI_NOOP);
1424                 intel_ring_emit(waiter, MI_NOOP);
1425                 intel_ring_emit(waiter, MI_NOOP);
1426         }
1427         intel_ring_advance(waiter);
1428
1429         return 0;
1430 }
1431
1432 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1433 do {                                                                    \
1434         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1435                  PIPE_CONTROL_DEPTH_STALL);                             \
1436         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1437         intel_ring_emit(ring__, 0);                                                     \
1438         intel_ring_emit(ring__, 0);                                                     \
1439 } while (0)
1440
1441 static int
1442 pc_render_add_request(struct drm_i915_gem_request *req)
1443 {
1444         struct intel_engine_cs *ring = req->ring;
1445         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1446         int ret;
1447
1448         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1449          * incoherent with writes to memory, i.e. completely fubar,
1450          * so we need to use PIPE_NOTIFY instead.
1451          *
1452          * However, we also need to workaround the qword write
1453          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1454          * memory before requesting an interrupt.
1455          */
1456         ret = intel_ring_begin(req, 32);
1457         if (ret)
1458                 return ret;
1459
1460         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1461                         PIPE_CONTROL_WRITE_FLUSH |
1462                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1463         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465         intel_ring_emit(ring, 0);
1466         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1467         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1468         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1469         scratch_addr += 2 * CACHELINE_BYTES;
1470         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1471         scratch_addr += 2 * CACHELINE_BYTES;
1472         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1473         scratch_addr += 2 * CACHELINE_BYTES;
1474         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1475         scratch_addr += 2 * CACHELINE_BYTES;
1476         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1477
1478         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1479                         PIPE_CONTROL_WRITE_FLUSH |
1480                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1481                         PIPE_CONTROL_NOTIFY);
1482         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484         intel_ring_emit(ring, 0);
1485         __intel_ring_advance(ring);
1486
1487         return 0;
1488 }
1489
1490 static u32
1491 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1492 {
1493         /* Workaround to force correct ordering between irq and seqno writes on
1494          * ivb (and maybe also on snb) by reading from a CS register (like
1495          * ACTHD) before reading the status page. */
1496         if (!lazy_coherency) {
1497                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1498                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1499         }
1500
1501         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1502 }
1503
1504 static u32
1505 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1506 {
1507         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1508 }
1509
1510 static void
1511 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1512 {
1513         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1514 }
1515
1516 static u32
1517 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1518 {
1519         return ring->scratch.cpu_page[0];
1520 }
1521
1522 static void
1523 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1524 {
1525         ring->scratch.cpu_page[0] = seqno;
1526 }
1527
1528 static bool
1529 gen5_ring_get_irq(struct intel_engine_cs *ring)
1530 {
1531         struct drm_device *dev = ring->dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         unsigned long flags;
1534
1535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1536                 return false;
1537
1538         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539         if (ring->irq_refcount++ == 0)
1540                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1541         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1542
1543         return true;
1544 }
1545
1546 static void
1547 gen5_ring_put_irq(struct intel_engine_cs *ring)
1548 {
1549         struct drm_device *dev = ring->dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         unsigned long flags;
1552
1553         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1554         if (--ring->irq_refcount == 0)
1555                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1556         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557 }
1558
1559 static bool
1560 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1561 {
1562         struct drm_device *dev = ring->dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         unsigned long flags;
1565
1566         if (!intel_irqs_enabled(dev_priv))
1567                 return false;
1568
1569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1570         if (ring->irq_refcount++ == 0) {
1571                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1572                 I915_WRITE(IMR, dev_priv->irq_mask);
1573                 POSTING_READ(IMR);
1574         }
1575         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576
1577         return true;
1578 }
1579
1580 static void
1581 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1582 {
1583         struct drm_device *dev = ring->dev;
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         unsigned long flags;
1586
1587         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588         if (--ring->irq_refcount == 0) {
1589                 dev_priv->irq_mask |= ring->irq_enable_mask;
1590                 I915_WRITE(IMR, dev_priv->irq_mask);
1591                 POSTING_READ(IMR);
1592         }
1593         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594 }
1595
1596 static bool
1597 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1598 {
1599         struct drm_device *dev = ring->dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         unsigned long flags;
1602
1603         if (!intel_irqs_enabled(dev_priv))
1604                 return false;
1605
1606         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607         if (ring->irq_refcount++ == 0) {
1608                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1609                 I915_WRITE16(IMR, dev_priv->irq_mask);
1610                 POSTING_READ16(IMR);
1611         }
1612         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613
1614         return true;
1615 }
1616
1617 static void
1618 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1619 {
1620         struct drm_device *dev = ring->dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         unsigned long flags;
1623
1624         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625         if (--ring->irq_refcount == 0) {
1626                 dev_priv->irq_mask |= ring->irq_enable_mask;
1627                 I915_WRITE16(IMR, dev_priv->irq_mask);
1628                 POSTING_READ16(IMR);
1629         }
1630         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1631 }
1632
1633 static int
1634 bsd_ring_flush(struct drm_i915_gem_request *req,
1635                u32     invalidate_domains,
1636                u32     flush_domains)
1637 {
1638         struct intel_engine_cs *ring = req->ring;
1639         int ret;
1640
1641         ret = intel_ring_begin(req, 2);
1642         if (ret)
1643                 return ret;
1644
1645         intel_ring_emit(ring, MI_FLUSH);
1646         intel_ring_emit(ring, MI_NOOP);
1647         intel_ring_advance(ring);
1648         return 0;
1649 }
1650
1651 static int
1652 i9xx_add_request(struct drm_i915_gem_request *req)
1653 {
1654         struct intel_engine_cs *ring = req->ring;
1655         int ret;
1656
1657         ret = intel_ring_begin(req, 4);
1658         if (ret)
1659                 return ret;
1660
1661         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1662         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1663         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1664         intel_ring_emit(ring, MI_USER_INTERRUPT);
1665         __intel_ring_advance(ring);
1666
1667         return 0;
1668 }
1669
1670 static bool
1671 gen6_ring_get_irq(struct intel_engine_cs *ring)
1672 {
1673         struct drm_device *dev = ring->dev;
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         unsigned long flags;
1676
1677         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1678                 return false;
1679
1680         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1681         if (ring->irq_refcount++ == 0) {
1682                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1683                         I915_WRITE_IMR(ring,
1684                                        ~(ring->irq_enable_mask |
1685                                          GT_PARITY_ERROR(dev)));
1686                 else
1687                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1688                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1689         }
1690         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1691
1692         return true;
1693 }
1694
1695 static void
1696 gen6_ring_put_irq(struct intel_engine_cs *ring)
1697 {
1698         struct drm_device *dev = ring->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         unsigned long flags;
1701
1702         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703         if (--ring->irq_refcount == 0) {
1704                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1705                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1706                 else
1707                         I915_WRITE_IMR(ring, ~0);
1708                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1709         }
1710         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1711 }
1712
1713 static bool
1714 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1715 {
1716         struct drm_device *dev = ring->dev;
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         unsigned long flags;
1719
1720         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1721                 return false;
1722
1723         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724         if (ring->irq_refcount++ == 0) {
1725                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1726                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1727         }
1728         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1729
1730         return true;
1731 }
1732
1733 static void
1734 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1735 {
1736         struct drm_device *dev = ring->dev;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         unsigned long flags;
1739
1740         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741         if (--ring->irq_refcount == 0) {
1742                 I915_WRITE_IMR(ring, ~0);
1743                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1744         }
1745         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746 }
1747
1748 static bool
1749 gen8_ring_get_irq(struct intel_engine_cs *ring)
1750 {
1751         struct drm_device *dev = ring->dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         unsigned long flags;
1754
1755         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1756                 return false;
1757
1758         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1759         if (ring->irq_refcount++ == 0) {
1760                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1761                         I915_WRITE_IMR(ring,
1762                                        ~(ring->irq_enable_mask |
1763                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1764                 } else {
1765                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1766                 }
1767                 POSTING_READ(RING_IMR(ring->mmio_base));
1768         }
1769         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770
1771         return true;
1772 }
1773
1774 static void
1775 gen8_ring_put_irq(struct intel_engine_cs *ring)
1776 {
1777         struct drm_device *dev = ring->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         unsigned long flags;
1780
1781         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1782         if (--ring->irq_refcount == 0) {
1783                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1784                         I915_WRITE_IMR(ring,
1785                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1786                 } else {
1787                         I915_WRITE_IMR(ring, ~0);
1788                 }
1789                 POSTING_READ(RING_IMR(ring->mmio_base));
1790         }
1791         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1792 }
1793
1794 static int
1795 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1796                          u64 offset, u32 length,
1797                          unsigned dispatch_flags)
1798 {
1799         struct intel_engine_cs *ring = req->ring;
1800         int ret;
1801
1802         ret = intel_ring_begin(req, 2);
1803         if (ret)
1804                 return ret;
1805
1806         intel_ring_emit(ring,
1807                         MI_BATCH_BUFFER_START |
1808                         MI_BATCH_GTT |
1809                         (dispatch_flags & I915_DISPATCH_SECURE ?
1810                          0 : MI_BATCH_NON_SECURE_I965));
1811         intel_ring_emit(ring, offset);
1812         intel_ring_advance(ring);
1813
1814         return 0;
1815 }
1816
1817 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1818 #define I830_BATCH_LIMIT (256*1024)
1819 #define I830_TLB_ENTRIES (2)
1820 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1821 static int
1822 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1823                          u64 offset, u32 len,
1824                          unsigned dispatch_flags)
1825 {
1826         struct intel_engine_cs *ring = req->ring;
1827         u32 cs_offset = ring->scratch.gtt_offset;
1828         int ret;
1829
1830         ret = intel_ring_begin(req, 6);
1831         if (ret)
1832                 return ret;
1833
1834         /* Evict the invalid PTE TLBs */
1835         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1836         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1837         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1838         intel_ring_emit(ring, cs_offset);
1839         intel_ring_emit(ring, 0xdeadbeef);
1840         intel_ring_emit(ring, MI_NOOP);
1841         intel_ring_advance(ring);
1842
1843         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1844                 if (len > I830_BATCH_LIMIT)
1845                         return -ENOSPC;
1846
1847                 ret = intel_ring_begin(req, 6 + 2);
1848                 if (ret)
1849                         return ret;
1850
1851                 /* Blit the batch (which has now all relocs applied) to the
1852                  * stable batch scratch bo area (so that the CS never
1853                  * stumbles over its tlb invalidation bug) ...
1854                  */
1855                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1856                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1857                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1858                 intel_ring_emit(ring, cs_offset);
1859                 intel_ring_emit(ring, 4096);
1860                 intel_ring_emit(ring, offset);
1861
1862                 intel_ring_emit(ring, MI_FLUSH);
1863                 intel_ring_emit(ring, MI_NOOP);
1864                 intel_ring_advance(ring);
1865
1866                 /* ... and execute it. */
1867                 offset = cs_offset;
1868         }
1869
1870         ret = intel_ring_begin(req, 4);
1871         if (ret)
1872                 return ret;
1873
1874         intel_ring_emit(ring, MI_BATCH_BUFFER);
1875         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1876                                         0 : MI_BATCH_NON_SECURE));
1877         intel_ring_emit(ring, offset + len - 8);
1878         intel_ring_emit(ring, MI_NOOP);
1879         intel_ring_advance(ring);
1880
1881         return 0;
1882 }
1883
1884 static int
1885 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1886                          u64 offset, u32 len,
1887                          unsigned dispatch_flags)
1888 {
1889         struct intel_engine_cs *ring = req->ring;
1890         int ret;
1891
1892         ret = intel_ring_begin(req, 2);
1893         if (ret)
1894                 return ret;
1895
1896         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1897         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1898                                         0 : MI_BATCH_NON_SECURE));
1899         intel_ring_advance(ring);
1900
1901         return 0;
1902 }
1903
1904 static void cleanup_status_page(struct intel_engine_cs *ring)
1905 {
1906         struct drm_i915_gem_object *obj;
1907
1908         obj = ring->status_page.obj;
1909         if (obj == NULL)
1910                 return;
1911
1912         kunmap(sg_page(obj->pages->sgl));
1913         i915_gem_object_ggtt_unpin(obj);
1914         drm_gem_object_unreference(&obj->base);
1915         ring->status_page.obj = NULL;
1916 }
1917
1918 static int init_status_page(struct intel_engine_cs *ring)
1919 {
1920         struct drm_i915_gem_object *obj;
1921
1922         if ((obj = ring->status_page.obj) == NULL) {
1923                 unsigned flags;
1924                 int ret;
1925
1926                 obj = i915_gem_alloc_object(ring->dev, 4096);
1927                 if (obj == NULL) {
1928                         DRM_ERROR("Failed to allocate status page\n");
1929                         return -ENOMEM;
1930                 }
1931
1932                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1933                 if (ret)
1934                         goto err_unref;
1935
1936                 flags = 0;
1937                 if (!HAS_LLC(ring->dev))
1938                         /* On g33, we cannot place HWS above 256MiB, so
1939                          * restrict its pinning to the low mappable arena.
1940                          * Though this restriction is not documented for
1941                          * gen4, gen5, or byt, they also behave similarly
1942                          * and hang if the HWS is placed at the top of the
1943                          * GTT. To generalise, it appears that all !llc
1944                          * platforms have issues with us placing the HWS
1945                          * above the mappable region (even though we never
1946                          * actualy map it).
1947                          */
1948                         flags |= PIN_MAPPABLE;
1949                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1950                 if (ret) {
1951 err_unref:
1952                         drm_gem_object_unreference(&obj->base);
1953                         return ret;
1954                 }
1955
1956                 ring->status_page.obj = obj;
1957         }
1958
1959         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1960         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1961         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1962
1963         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1964                         ring->name, ring->status_page.gfx_addr);
1965
1966         return 0;
1967 }
1968
1969 static int init_phys_status_page(struct intel_engine_cs *ring)
1970 {
1971         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1972
1973         if (!dev_priv->status_page_dmah) {
1974                 dev_priv->status_page_dmah =
1975                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1976                 if (!dev_priv->status_page_dmah)
1977                         return -ENOMEM;
1978         }
1979
1980         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1981         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1982
1983         return 0;
1984 }
1985
1986 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1987 {
1988         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1989                 vunmap(ringbuf->virtual_start);
1990         else
1991                 iounmap(ringbuf->virtual_start);
1992         ringbuf->virtual_start = NULL;
1993         i915_gem_object_ggtt_unpin(ringbuf->obj);
1994 }
1995
1996 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
1997 {
1998         struct sg_page_iter sg_iter;
1999         struct page **pages;
2000         void *addr;
2001         int i;
2002
2003         pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2004         if (pages == NULL)
2005                 return NULL;
2006
2007         i = 0;
2008         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2009                 pages[i++] = sg_page_iter_page(&sg_iter);
2010
2011         addr = vmap(pages, i, 0, PAGE_KERNEL);
2012         drm_free_large(pages);
2013
2014         return addr;
2015 }
2016
2017 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2018                                      struct intel_ringbuffer *ringbuf)
2019 {
2020         struct drm_i915_private *dev_priv = to_i915(dev);
2021         struct drm_i915_gem_object *obj = ringbuf->obj;
2022         int ret;
2023
2024         if (HAS_LLC(dev_priv) && !obj->stolen) {
2025                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2026                 if (ret)
2027                         return ret;
2028
2029                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2030                 if (ret) {
2031                         i915_gem_object_ggtt_unpin(obj);
2032                         return ret;
2033                 }
2034
2035                 ringbuf->virtual_start = vmap_obj(obj);
2036                 if (ringbuf->virtual_start == NULL) {
2037                         i915_gem_object_ggtt_unpin(obj);
2038                         return -ENOMEM;
2039                 }
2040         } else {
2041                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2042                 if (ret)
2043                         return ret;
2044
2045                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2046                 if (ret) {
2047                         i915_gem_object_ggtt_unpin(obj);
2048                         return ret;
2049                 }
2050
2051                 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2052                                                     i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2053                 if (ringbuf->virtual_start == NULL) {
2054                         i915_gem_object_ggtt_unpin(obj);
2055                         return -EINVAL;
2056                 }
2057         }
2058
2059         return 0;
2060 }
2061
2062 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2063 {
2064         drm_gem_object_unreference(&ringbuf->obj->base);
2065         ringbuf->obj = NULL;
2066 }
2067
2068 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2069                                       struct intel_ringbuffer *ringbuf)
2070 {
2071         struct drm_i915_gem_object *obj;
2072
2073         obj = NULL;
2074         if (!HAS_LLC(dev))
2075                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2076         if (obj == NULL)
2077                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2078         if (obj == NULL)
2079                 return -ENOMEM;
2080
2081         /* mark ring buffers as read-only from GPU side by default */
2082         obj->gt_ro = 1;
2083
2084         ringbuf->obj = obj;
2085
2086         return 0;
2087 }
2088
2089 struct intel_ringbuffer *
2090 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2091 {
2092         struct intel_ringbuffer *ring;
2093         int ret;
2094
2095         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2096         if (ring == NULL) {
2097                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2098                                  engine->name);
2099                 return ERR_PTR(-ENOMEM);
2100         }
2101
2102         ring->ring = engine;
2103         list_add(&ring->link, &engine->buffers);
2104
2105         ring->size = size;
2106         /* Workaround an erratum on the i830 which causes a hang if
2107          * the TAIL pointer points to within the last 2 cachelines
2108          * of the buffer.
2109          */
2110         ring->effective_size = size;
2111         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2112                 ring->effective_size -= 2 * CACHELINE_BYTES;
2113
2114         ring->last_retired_head = -1;
2115         intel_ring_update_space(ring);
2116
2117         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2118         if (ret) {
2119                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2120                                  engine->name, ret);
2121                 list_del(&ring->link);
2122                 kfree(ring);
2123                 return ERR_PTR(ret);
2124         }
2125
2126         return ring;
2127 }
2128
2129 void
2130 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2131 {
2132         intel_destroy_ringbuffer_obj(ring);
2133         list_del(&ring->link);
2134         kfree(ring);
2135 }
2136
2137 static int intel_init_ring_buffer(struct drm_device *dev,
2138                                   struct intel_engine_cs *ring)
2139 {
2140         struct intel_ringbuffer *ringbuf;
2141         int ret;
2142
2143         WARN_ON(ring->buffer);
2144
2145         ring->dev = dev;
2146         INIT_LIST_HEAD(&ring->active_list);
2147         INIT_LIST_HEAD(&ring->request_list);
2148         INIT_LIST_HEAD(&ring->execlist_queue);
2149         INIT_LIST_HEAD(&ring->buffers);
2150         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2151         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2152
2153         init_waitqueue_head(&ring->irq_queue);
2154
2155         ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2156         if (IS_ERR(ringbuf)) {
2157                 ret = PTR_ERR(ringbuf);
2158                 goto error;
2159         }
2160         ring->buffer = ringbuf;
2161
2162         if (I915_NEED_GFX_HWS(dev)) {
2163                 ret = init_status_page(ring);
2164                 if (ret)
2165                         goto error;
2166         } else {
2167                 BUG_ON(ring->id != RCS);
2168                 ret = init_phys_status_page(ring);
2169                 if (ret)
2170                         goto error;
2171         }
2172
2173         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2174         if (ret) {
2175                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2176                                 ring->name, ret);
2177                 intel_destroy_ringbuffer_obj(ringbuf);
2178                 goto error;
2179         }
2180
2181         ret = i915_cmd_parser_init_ring(ring);
2182         if (ret)
2183                 goto error;
2184
2185         return 0;
2186
2187 error:
2188         intel_cleanup_ring_buffer(ring);
2189         return ret;
2190 }
2191
2192 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2193 {
2194         struct drm_i915_private *dev_priv;
2195
2196         if (!intel_ring_initialized(ring))
2197                 return;
2198
2199         dev_priv = to_i915(ring->dev);
2200
2201         if (ring->buffer) {
2202                 intel_stop_ring_buffer(ring);
2203                 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2204
2205                 intel_unpin_ringbuffer_obj(ring->buffer);
2206                 intel_ringbuffer_free(ring->buffer);
2207                 ring->buffer = NULL;
2208         }
2209
2210         if (ring->cleanup)
2211                 ring->cleanup(ring);
2212
2213         cleanup_status_page(ring);
2214
2215         i915_cmd_parser_fini_ring(ring);
2216         i915_gem_batch_pool_fini(&ring->batch_pool);
2217         ring->dev = NULL;
2218 }
2219
2220 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2221 {
2222         struct intel_ringbuffer *ringbuf = ring->buffer;
2223         struct drm_i915_gem_request *request;
2224         unsigned space;
2225         int ret;
2226
2227         if (intel_ring_space(ringbuf) >= n)
2228                 return 0;
2229
2230         /* The whole point of reserving space is to not wait! */
2231         WARN_ON(ringbuf->reserved_in_use);
2232
2233         list_for_each_entry(request, &ring->request_list, list) {
2234                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2235                                            ringbuf->size);
2236                 if (space >= n)
2237                         break;
2238         }
2239
2240         if (WARN_ON(&request->list == &ring->request_list))
2241                 return -ENOSPC;
2242
2243         ret = i915_wait_request(request);
2244         if (ret)
2245                 return ret;
2246
2247         ringbuf->space = space;
2248         return 0;
2249 }
2250
2251 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2252 {
2253         uint32_t __iomem *virt;
2254         int rem = ringbuf->size - ringbuf->tail;
2255
2256         virt = ringbuf->virtual_start + ringbuf->tail;
2257         rem /= 4;
2258         while (rem--)
2259                 iowrite32(MI_NOOP, virt++);
2260
2261         ringbuf->tail = 0;
2262         intel_ring_update_space(ringbuf);
2263 }
2264
2265 int intel_ring_idle(struct intel_engine_cs *ring)
2266 {
2267         struct drm_i915_gem_request *req;
2268
2269         /* Wait upon the last request to be completed */
2270         if (list_empty(&ring->request_list))
2271                 return 0;
2272
2273         req = list_entry(ring->request_list.prev,
2274                         struct drm_i915_gem_request,
2275                         list);
2276
2277         /* Make sure we do not trigger any retires */
2278         return __i915_wait_request(req,
2279                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2280                                    to_i915(ring->dev)->mm.interruptible,
2281                                    NULL, NULL);
2282 }
2283
2284 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2285 {
2286         request->ringbuf = request->ring->buffer;
2287         return 0;
2288 }
2289
2290 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2291 {
2292         /*
2293          * The first call merely notes the reserve request and is common for
2294          * all back ends. The subsequent localised _begin() call actually
2295          * ensures that the reservation is available. Without the begin, if
2296          * the request creator immediately submitted the request without
2297          * adding any commands to it then there might not actually be
2298          * sufficient room for the submission commands.
2299          */
2300         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2301
2302         return intel_ring_begin(request, 0);
2303 }
2304
2305 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2306 {
2307         WARN_ON(ringbuf->reserved_size);
2308         WARN_ON(ringbuf->reserved_in_use);
2309
2310         ringbuf->reserved_size = size;
2311 }
2312
2313 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2314 {
2315         WARN_ON(ringbuf->reserved_in_use);
2316
2317         ringbuf->reserved_size   = 0;
2318         ringbuf->reserved_in_use = false;
2319 }
2320
2321 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2322 {
2323         WARN_ON(ringbuf->reserved_in_use);
2324
2325         ringbuf->reserved_in_use = true;
2326         ringbuf->reserved_tail   = ringbuf->tail;
2327 }
2328
2329 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2330 {
2331         WARN_ON(!ringbuf->reserved_in_use);
2332         if (ringbuf->tail > ringbuf->reserved_tail) {
2333                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2334                      "request reserved size too small: %d vs %d!\n",
2335                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2336         } else {
2337                 /*
2338                  * The ring was wrapped while the reserved space was in use.
2339                  * That means that some unknown amount of the ring tail was
2340                  * no-op filled and skipped. Thus simply adding the ring size
2341                  * to the tail and doing the above space check will not work.
2342                  * Rather than attempt to track how much tail was skipped,
2343                  * it is much simpler to say that also skipping the sanity
2344                  * check every once in a while is not a big issue.
2345                  */
2346         }
2347
2348         ringbuf->reserved_size   = 0;
2349         ringbuf->reserved_in_use = false;
2350 }
2351
2352 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2353 {
2354         struct intel_ringbuffer *ringbuf = ring->buffer;
2355         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2356         int remain_actual = ringbuf->size - ringbuf->tail;
2357         int ret, total_bytes, wait_bytes = 0;
2358         bool need_wrap = false;
2359
2360         if (ringbuf->reserved_in_use)
2361                 total_bytes = bytes;
2362         else
2363                 total_bytes = bytes + ringbuf->reserved_size;
2364
2365         if (unlikely(bytes > remain_usable)) {
2366                 /*
2367                  * Not enough space for the basic request. So need to flush
2368                  * out the remainder and then wait for base + reserved.
2369                  */
2370                 wait_bytes = remain_actual + total_bytes;
2371                 need_wrap = true;
2372         } else {
2373                 if (unlikely(total_bytes > remain_usable)) {
2374                         /*
2375                          * The base request will fit but the reserved space
2376                          * falls off the end. So only need to to wait for the
2377                          * reserved size after flushing out the remainder.
2378                          */
2379                         wait_bytes = remain_actual + ringbuf->reserved_size;
2380                         need_wrap = true;
2381                 } else if (total_bytes > ringbuf->space) {
2382                         /* No wrapping required, just waiting. */
2383                         wait_bytes = total_bytes;
2384                 }
2385         }
2386
2387         if (wait_bytes) {
2388                 ret = ring_wait_for_space(ring, wait_bytes);
2389                 if (unlikely(ret))
2390                         return ret;
2391
2392                 if (need_wrap)
2393                         __wrap_ring_buffer(ringbuf);
2394         }
2395
2396         return 0;
2397 }
2398
2399 int intel_ring_begin(struct drm_i915_gem_request *req,
2400                      int num_dwords)
2401 {
2402         struct intel_engine_cs *ring;
2403         struct drm_i915_private *dev_priv;
2404         int ret;
2405
2406         WARN_ON(req == NULL);
2407         ring = req->ring;
2408         dev_priv = ring->dev->dev_private;
2409
2410         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2411                                    dev_priv->mm.interruptible);
2412         if (ret)
2413                 return ret;
2414
2415         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2416         if (ret)
2417                 return ret;
2418
2419         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2420         return 0;
2421 }
2422
2423 /* Align the ring tail to a cacheline boundary */
2424 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2425 {
2426         struct intel_engine_cs *ring = req->ring;
2427         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2428         int ret;
2429
2430         if (num_dwords == 0)
2431                 return 0;
2432
2433         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2434         ret = intel_ring_begin(req, num_dwords);
2435         if (ret)
2436                 return ret;
2437
2438         while (num_dwords--)
2439                 intel_ring_emit(ring, MI_NOOP);
2440
2441         intel_ring_advance(ring);
2442
2443         return 0;
2444 }
2445
2446 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2447 {
2448         struct drm_device *dev = ring->dev;
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450
2451         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2452                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2453                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2454                 if (HAS_VEBOX(dev))
2455                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2456         }
2457
2458         ring->set_seqno(ring, seqno);
2459         ring->hangcheck.seqno = seqno;
2460 }
2461
2462 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2463                                      u32 value)
2464 {
2465         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2466
2467        /* Every tail move must follow the sequence below */
2468
2469         /* Disable notification that the ring is IDLE. The GT
2470          * will then assume that it is busy and bring it out of rc6.
2471          */
2472         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2473                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2474
2475         /* Clear the context id. Here be magic! */
2476         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2477
2478         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2479         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2480                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2481                      50))
2482                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2483
2484         /* Now that the ring is fully powered up, update the tail */
2485         I915_WRITE_TAIL(ring, value);
2486         POSTING_READ(RING_TAIL(ring->mmio_base));
2487
2488         /* Let the ring send IDLE messages to the GT again,
2489          * and so let it sleep to conserve power when idle.
2490          */
2491         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2492                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2493 }
2494
2495 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2496                                u32 invalidate, u32 flush)
2497 {
2498         struct intel_engine_cs *ring = req->ring;
2499         uint32_t cmd;
2500         int ret;
2501
2502         ret = intel_ring_begin(req, 4);
2503         if (ret)
2504                 return ret;
2505
2506         cmd = MI_FLUSH_DW;
2507         if (INTEL_INFO(ring->dev)->gen >= 8)
2508                 cmd += 1;
2509
2510         /* We always require a command barrier so that subsequent
2511          * commands, such as breadcrumb interrupts, are strictly ordered
2512          * wrt the contents of the write cache being flushed to memory
2513          * (and thus being coherent from the CPU).
2514          */
2515         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2516
2517         /*
2518          * Bspec vol 1c.5 - video engine command streamer:
2519          * "If ENABLED, all TLBs will be invalidated once the flush
2520          * operation is complete. This bit is only valid when the
2521          * Post-Sync Operation field is a value of 1h or 3h."
2522          */
2523         if (invalidate & I915_GEM_GPU_DOMAINS)
2524                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2525
2526         intel_ring_emit(ring, cmd);
2527         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2528         if (INTEL_INFO(ring->dev)->gen >= 8) {
2529                 intel_ring_emit(ring, 0); /* upper addr */
2530                 intel_ring_emit(ring, 0); /* value */
2531         } else  {
2532                 intel_ring_emit(ring, 0);
2533                 intel_ring_emit(ring, MI_NOOP);
2534         }
2535         intel_ring_advance(ring);
2536         return 0;
2537 }
2538
2539 static int
2540 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2541                               u64 offset, u32 len,
2542                               unsigned dispatch_flags)
2543 {
2544         struct intel_engine_cs *ring = req->ring;
2545         bool ppgtt = USES_PPGTT(ring->dev) &&
2546                         !(dispatch_flags & I915_DISPATCH_SECURE);
2547         int ret;
2548
2549         ret = intel_ring_begin(req, 4);
2550         if (ret)
2551                 return ret;
2552
2553         /* FIXME(BDW): Address space and security selectors. */
2554         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2555                         (dispatch_flags & I915_DISPATCH_RS ?
2556                          MI_BATCH_RESOURCE_STREAMER : 0));
2557         intel_ring_emit(ring, lower_32_bits(offset));
2558         intel_ring_emit(ring, upper_32_bits(offset));
2559         intel_ring_emit(ring, MI_NOOP);
2560         intel_ring_advance(ring);
2561
2562         return 0;
2563 }
2564
2565 static int
2566 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2567                              u64 offset, u32 len,
2568                              unsigned dispatch_flags)
2569 {
2570         struct intel_engine_cs *ring = req->ring;
2571         int ret;
2572
2573         ret = intel_ring_begin(req, 2);
2574         if (ret)
2575                 return ret;
2576
2577         intel_ring_emit(ring,
2578                         MI_BATCH_BUFFER_START |
2579                         (dispatch_flags & I915_DISPATCH_SECURE ?
2580                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2581                         (dispatch_flags & I915_DISPATCH_RS ?
2582                          MI_BATCH_RESOURCE_STREAMER : 0));
2583         /* bit0-7 is the length on GEN6+ */
2584         intel_ring_emit(ring, offset);
2585         intel_ring_advance(ring);
2586
2587         return 0;
2588 }
2589
2590 static int
2591 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2592                               u64 offset, u32 len,
2593                               unsigned dispatch_flags)
2594 {
2595         struct intel_engine_cs *ring = req->ring;
2596         int ret;
2597
2598         ret = intel_ring_begin(req, 2);
2599         if (ret)
2600                 return ret;
2601
2602         intel_ring_emit(ring,
2603                         MI_BATCH_BUFFER_START |
2604                         (dispatch_flags & I915_DISPATCH_SECURE ?
2605                          0 : MI_BATCH_NON_SECURE_I965));
2606         /* bit0-7 is the length on GEN6+ */
2607         intel_ring_emit(ring, offset);
2608         intel_ring_advance(ring);
2609
2610         return 0;
2611 }
2612
2613 /* Blitter support (SandyBridge+) */
2614
2615 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2616                            u32 invalidate, u32 flush)
2617 {
2618         struct intel_engine_cs *ring = req->ring;
2619         struct drm_device *dev = ring->dev;
2620         uint32_t cmd;
2621         int ret;
2622
2623         ret = intel_ring_begin(req, 4);
2624         if (ret)
2625                 return ret;
2626
2627         cmd = MI_FLUSH_DW;
2628         if (INTEL_INFO(dev)->gen >= 8)
2629                 cmd += 1;
2630
2631         /* We always require a command barrier so that subsequent
2632          * commands, such as breadcrumb interrupts, are strictly ordered
2633          * wrt the contents of the write cache being flushed to memory
2634          * (and thus being coherent from the CPU).
2635          */
2636         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2637
2638         /*
2639          * Bspec vol 1c.3 - blitter engine command streamer:
2640          * "If ENABLED, all TLBs will be invalidated once the flush
2641          * operation is complete. This bit is only valid when the
2642          * Post-Sync Operation field is a value of 1h or 3h."
2643          */
2644         if (invalidate & I915_GEM_DOMAIN_RENDER)
2645                 cmd |= MI_INVALIDATE_TLB;
2646         intel_ring_emit(ring, cmd);
2647         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2648         if (INTEL_INFO(dev)->gen >= 8) {
2649                 intel_ring_emit(ring, 0); /* upper addr */
2650                 intel_ring_emit(ring, 0); /* value */
2651         } else  {
2652                 intel_ring_emit(ring, 0);
2653                 intel_ring_emit(ring, MI_NOOP);
2654         }
2655         intel_ring_advance(ring);
2656
2657         return 0;
2658 }
2659
2660 int intel_init_render_ring_buffer(struct drm_device *dev)
2661 {
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2664         struct drm_i915_gem_object *obj;
2665         int ret;
2666
2667         ring->name = "render ring";
2668         ring->id = RCS;
2669         ring->mmio_base = RENDER_RING_BASE;
2670
2671         if (INTEL_INFO(dev)->gen >= 8) {
2672                 if (i915_semaphore_is_enabled(dev)) {
2673                         obj = i915_gem_alloc_object(dev, 4096);
2674                         if (obj == NULL) {
2675                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2676                                 i915.semaphores = 0;
2677                         } else {
2678                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2679                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2680                                 if (ret != 0) {
2681                                         drm_gem_object_unreference(&obj->base);
2682                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2683                                         i915.semaphores = 0;
2684                                 } else
2685                                         dev_priv->semaphore_obj = obj;
2686                         }
2687                 }
2688
2689                 ring->init_context = intel_rcs_ctx_init;
2690                 ring->add_request = gen6_add_request;
2691                 ring->flush = gen8_render_ring_flush;
2692                 ring->irq_get = gen8_ring_get_irq;
2693                 ring->irq_put = gen8_ring_put_irq;
2694                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2695                 ring->get_seqno = gen6_ring_get_seqno;
2696                 ring->set_seqno = ring_set_seqno;
2697                 if (i915_semaphore_is_enabled(dev)) {
2698                         WARN_ON(!dev_priv->semaphore_obj);
2699                         ring->semaphore.sync_to = gen8_ring_sync;
2700                         ring->semaphore.signal = gen8_rcs_signal;
2701                         GEN8_RING_SEMAPHORE_INIT;
2702                 }
2703         } else if (INTEL_INFO(dev)->gen >= 6) {
2704                 ring->init_context = intel_rcs_ctx_init;
2705                 ring->add_request = gen6_add_request;
2706                 ring->flush = gen7_render_ring_flush;
2707                 if (INTEL_INFO(dev)->gen == 6)
2708                         ring->flush = gen6_render_ring_flush;
2709                 ring->irq_get = gen6_ring_get_irq;
2710                 ring->irq_put = gen6_ring_put_irq;
2711                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2712                 ring->get_seqno = gen6_ring_get_seqno;
2713                 ring->set_seqno = ring_set_seqno;
2714                 if (i915_semaphore_is_enabled(dev)) {
2715                         ring->semaphore.sync_to = gen6_ring_sync;
2716                         ring->semaphore.signal = gen6_signal;
2717                         /*
2718                          * The current semaphore is only applied on pre-gen8
2719                          * platform.  And there is no VCS2 ring on the pre-gen8
2720                          * platform. So the semaphore between RCS and VCS2 is
2721                          * initialized as INVALID.  Gen8 will initialize the
2722                          * sema between VCS2 and RCS later.
2723                          */
2724                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2725                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2726                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2727                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2728                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2729                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2730                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2731                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2732                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2733                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2734                 }
2735         } else if (IS_GEN5(dev)) {
2736                 ring->add_request = pc_render_add_request;
2737                 ring->flush = gen4_render_ring_flush;
2738                 ring->get_seqno = pc_render_get_seqno;
2739                 ring->set_seqno = pc_render_set_seqno;
2740                 ring->irq_get = gen5_ring_get_irq;
2741                 ring->irq_put = gen5_ring_put_irq;
2742                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2743                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2744         } else {
2745                 ring->add_request = i9xx_add_request;
2746                 if (INTEL_INFO(dev)->gen < 4)
2747                         ring->flush = gen2_render_ring_flush;
2748                 else
2749                         ring->flush = gen4_render_ring_flush;
2750                 ring->get_seqno = ring_get_seqno;
2751                 ring->set_seqno = ring_set_seqno;
2752                 if (IS_GEN2(dev)) {
2753                         ring->irq_get = i8xx_ring_get_irq;
2754                         ring->irq_put = i8xx_ring_put_irq;
2755                 } else {
2756                         ring->irq_get = i9xx_ring_get_irq;
2757                         ring->irq_put = i9xx_ring_put_irq;
2758                 }
2759                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2760         }
2761         ring->write_tail = ring_write_tail;
2762
2763         if (IS_HASWELL(dev))
2764                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2765         else if (IS_GEN8(dev))
2766                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2767         else if (INTEL_INFO(dev)->gen >= 6)
2768                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2769         else if (INTEL_INFO(dev)->gen >= 4)
2770                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2771         else if (IS_I830(dev) || IS_845G(dev))
2772                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2773         else
2774                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2775         ring->init_hw = init_render_ring;
2776         ring->cleanup = render_ring_cleanup;
2777
2778         /* Workaround batchbuffer to combat CS tlb bug. */
2779         if (HAS_BROKEN_CS_TLB(dev)) {
2780                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2781                 if (obj == NULL) {
2782                         DRM_ERROR("Failed to allocate batch bo\n");
2783                         return -ENOMEM;
2784                 }
2785
2786                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2787                 if (ret != 0) {
2788                         drm_gem_object_unreference(&obj->base);
2789                         DRM_ERROR("Failed to ping batch bo\n");
2790                         return ret;
2791                 }
2792
2793                 ring->scratch.obj = obj;
2794                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2795         }
2796
2797         ret = intel_init_ring_buffer(dev, ring);
2798         if (ret)
2799                 return ret;
2800
2801         if (INTEL_INFO(dev)->gen >= 5) {
2802                 ret = intel_init_pipe_control(ring);
2803                 if (ret)
2804                         return ret;
2805         }
2806
2807         return 0;
2808 }
2809
2810 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2811 {
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2814
2815         ring->name = "bsd ring";
2816         ring->id = VCS;
2817
2818         ring->write_tail = ring_write_tail;
2819         if (INTEL_INFO(dev)->gen >= 6) {
2820                 ring->mmio_base = GEN6_BSD_RING_BASE;
2821                 /* gen6 bsd needs a special wa for tail updates */
2822                 if (IS_GEN6(dev))
2823                         ring->write_tail = gen6_bsd_ring_write_tail;
2824                 ring->flush = gen6_bsd_ring_flush;
2825                 ring->add_request = gen6_add_request;
2826                 ring->get_seqno = gen6_ring_get_seqno;
2827                 ring->set_seqno = ring_set_seqno;
2828                 if (INTEL_INFO(dev)->gen >= 8) {
2829                         ring->irq_enable_mask =
2830                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2831                         ring->irq_get = gen8_ring_get_irq;
2832                         ring->irq_put = gen8_ring_put_irq;
2833                         ring->dispatch_execbuffer =
2834                                 gen8_ring_dispatch_execbuffer;
2835                         if (i915_semaphore_is_enabled(dev)) {
2836                                 ring->semaphore.sync_to = gen8_ring_sync;
2837                                 ring->semaphore.signal = gen8_xcs_signal;
2838                                 GEN8_RING_SEMAPHORE_INIT;
2839                         }
2840                 } else {
2841                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2842                         ring->irq_get = gen6_ring_get_irq;
2843                         ring->irq_put = gen6_ring_put_irq;
2844                         ring->dispatch_execbuffer =
2845                                 gen6_ring_dispatch_execbuffer;
2846                         if (i915_semaphore_is_enabled(dev)) {
2847                                 ring->semaphore.sync_to = gen6_ring_sync;
2848                                 ring->semaphore.signal = gen6_signal;
2849                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2850                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2851                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2852                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2853                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2854                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2855                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2856                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2857                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2858                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2859                         }
2860                 }
2861         } else {
2862                 ring->mmio_base = BSD_RING_BASE;
2863                 ring->flush = bsd_ring_flush;
2864                 ring->add_request = i9xx_add_request;
2865                 ring->get_seqno = ring_get_seqno;
2866                 ring->set_seqno = ring_set_seqno;
2867                 if (IS_GEN5(dev)) {
2868                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2869                         ring->irq_get = gen5_ring_get_irq;
2870                         ring->irq_put = gen5_ring_put_irq;
2871                 } else {
2872                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2873                         ring->irq_get = i9xx_ring_get_irq;
2874                         ring->irq_put = i9xx_ring_put_irq;
2875                 }
2876                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2877         }
2878         ring->init_hw = init_ring_common;
2879
2880         return intel_init_ring_buffer(dev, ring);
2881 }
2882
2883 /**
2884  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2885  */
2886 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2887 {
2888         struct drm_i915_private *dev_priv = dev->dev_private;
2889         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2890
2891         ring->name = "bsd2 ring";
2892         ring->id = VCS2;
2893
2894         ring->write_tail = ring_write_tail;
2895         ring->mmio_base = GEN8_BSD2_RING_BASE;
2896         ring->flush = gen6_bsd_ring_flush;
2897         ring->add_request = gen6_add_request;
2898         ring->get_seqno = gen6_ring_get_seqno;
2899         ring->set_seqno = ring_set_seqno;
2900         ring->irq_enable_mask =
2901                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2902         ring->irq_get = gen8_ring_get_irq;
2903         ring->irq_put = gen8_ring_put_irq;
2904         ring->dispatch_execbuffer =
2905                         gen8_ring_dispatch_execbuffer;
2906         if (i915_semaphore_is_enabled(dev)) {
2907                 ring->semaphore.sync_to = gen8_ring_sync;
2908                 ring->semaphore.signal = gen8_xcs_signal;
2909                 GEN8_RING_SEMAPHORE_INIT;
2910         }
2911         ring->init_hw = init_ring_common;
2912
2913         return intel_init_ring_buffer(dev, ring);
2914 }
2915
2916 int intel_init_blt_ring_buffer(struct drm_device *dev)
2917 {
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2920
2921         ring->name = "blitter ring";
2922         ring->id = BCS;
2923
2924         ring->mmio_base = BLT_RING_BASE;
2925         ring->write_tail = ring_write_tail;
2926         ring->flush = gen6_ring_flush;
2927         ring->add_request = gen6_add_request;
2928         ring->get_seqno = gen6_ring_get_seqno;
2929         ring->set_seqno = ring_set_seqno;
2930         if (INTEL_INFO(dev)->gen >= 8) {
2931                 ring->irq_enable_mask =
2932                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2933                 ring->irq_get = gen8_ring_get_irq;
2934                 ring->irq_put = gen8_ring_put_irq;
2935                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2936                 if (i915_semaphore_is_enabled(dev)) {
2937                         ring->semaphore.sync_to = gen8_ring_sync;
2938                         ring->semaphore.signal = gen8_xcs_signal;
2939                         GEN8_RING_SEMAPHORE_INIT;
2940                 }
2941         } else {
2942                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2943                 ring->irq_get = gen6_ring_get_irq;
2944                 ring->irq_put = gen6_ring_put_irq;
2945                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2946                 if (i915_semaphore_is_enabled(dev)) {
2947                         ring->semaphore.signal = gen6_signal;
2948                         ring->semaphore.sync_to = gen6_ring_sync;
2949                         /*
2950                          * The current semaphore is only applied on pre-gen8
2951                          * platform.  And there is no VCS2 ring on the pre-gen8
2952                          * platform. So the semaphore between BCS and VCS2 is
2953                          * initialized as INVALID.  Gen8 will initialize the
2954                          * sema between BCS and VCS2 later.
2955                          */
2956                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2957                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2958                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2959                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2960                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2961                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2962                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2963                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2964                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2965                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2966                 }
2967         }
2968         ring->init_hw = init_ring_common;
2969
2970         return intel_init_ring_buffer(dev, ring);
2971 }
2972
2973 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2977
2978         ring->name = "video enhancement ring";
2979         ring->id = VECS;
2980
2981         ring->mmio_base = VEBOX_RING_BASE;
2982         ring->write_tail = ring_write_tail;
2983         ring->flush = gen6_ring_flush;
2984         ring->add_request = gen6_add_request;
2985         ring->get_seqno = gen6_ring_get_seqno;
2986         ring->set_seqno = ring_set_seqno;
2987
2988         if (INTEL_INFO(dev)->gen >= 8) {
2989                 ring->irq_enable_mask =
2990                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2991                 ring->irq_get = gen8_ring_get_irq;
2992                 ring->irq_put = gen8_ring_put_irq;
2993                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2994                 if (i915_semaphore_is_enabled(dev)) {
2995                         ring->semaphore.sync_to = gen8_ring_sync;
2996                         ring->semaphore.signal = gen8_xcs_signal;
2997                         GEN8_RING_SEMAPHORE_INIT;
2998                 }
2999         } else {
3000                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3001                 ring->irq_get = hsw_vebox_get_irq;
3002                 ring->irq_put = hsw_vebox_put_irq;
3003                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3004                 if (i915_semaphore_is_enabled(dev)) {
3005                         ring->semaphore.sync_to = gen6_ring_sync;
3006                         ring->semaphore.signal = gen6_signal;
3007                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3008                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3009                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3010                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3011                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3012                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3013                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3014                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3015                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3016                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3017                 }
3018         }
3019         ring->init_hw = init_ring_common;
3020
3021         return intel_init_ring_buffer(dev, ring);
3022 }
3023
3024 int
3025 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3026 {
3027         struct intel_engine_cs *ring = req->ring;
3028         int ret;
3029
3030         if (!ring->gpu_caches_dirty)
3031                 return 0;
3032
3033         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3034         if (ret)
3035                 return ret;
3036
3037         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3038
3039         ring->gpu_caches_dirty = false;
3040         return 0;
3041 }
3042
3043 int
3044 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3045 {
3046         struct intel_engine_cs *ring = req->ring;
3047         uint32_t flush_domains;
3048         int ret;
3049
3050         flush_domains = 0;
3051         if (ring->gpu_caches_dirty)
3052                 flush_domains = I915_GEM_GPU_DOMAINS;
3053
3054         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3055         if (ret)
3056                 return ret;
3057
3058         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3059
3060         ring->gpu_caches_dirty = false;
3061         return 0;
3062 }
3063
3064 void
3065 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3066 {
3067         int ret;
3068
3069         if (!intel_ring_initialized(ring))
3070                 return;
3071
3072         ret = intel_ring_idle(ring);
3073         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3074                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3075                           ring->name, ret);
3076
3077         stop_ring(ring);
3078 }