mac80211: minstrel_ht: fix a crash in rate sorting
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58         struct drm_i915_private *dev_priv = ring->dev->dev_private;
59         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64         struct intel_ringbuffer *ringbuf = ring->buffer;
65         ringbuf->tail &= ringbuf->size - 1;
66         if (intel_ring_stopped(ring))
67                 return;
68         ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73                        u32      invalidate_domains,
74                        u32      flush_domains)
75 {
76         u32 cmd;
77         int ret;
78
79         cmd = MI_FLUSH;
80         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81                 cmd |= MI_NO_WRITE_FLUSH;
82
83         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84                 cmd |= MI_READ_FLUSH;
85
86         ret = intel_ring_begin(ring, 2);
87         if (ret)
88                 return ret;
89
90         intel_ring_emit(ring, cmd);
91         intel_ring_emit(ring, MI_NOOP);
92         intel_ring_advance(ring);
93
94         return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99                        u32      invalidate_domains,
100                        u32      flush_domains)
101 {
102         struct drm_device *dev = ring->dev;
103         u32 cmd;
104         int ret;
105
106         /*
107          * read/write caches:
108          *
109          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111          * also flushed at 2d versus 3d pipeline switches.
112          *
113          * read-only caches:
114          *
115          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116          * MI_READ_FLUSH is set, and is always flushed on 965.
117          *
118          * I915_GEM_DOMAIN_COMMAND may not exist?
119          *
120          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121          * invalidated when MI_EXE_FLUSH is set.
122          *
123          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124          * invalidated with every MI_FLUSH.
125          *
126          * TLBs:
127          *
128          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131          * are flushed at any MI_FLUSH.
132          */
133
134         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136                 cmd &= ~MI_NO_WRITE_FLUSH;
137         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138                 cmd |= MI_EXE_FLUSH;
139
140         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141             (IS_G4X(dev) || IS_GEN5(dev)))
142                 cmd |= MI_INVALIDATE_ISP;
143
144         ret = intel_ring_begin(ring, 2);
145         if (ret)
146                 return ret;
147
148         intel_ring_emit(ring, cmd);
149         intel_ring_emit(ring, MI_NOOP);
150         intel_ring_advance(ring);
151
152         return 0;
153 }
154
155 /**
156  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157  * implementing two workarounds on gen6.  From section 1.4.7.1
158  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159  *
160  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161  * produced by non-pipelined state commands), software needs to first
162  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163  * 0.
164  *
165  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167  *
168  * And the workaround for these two requires this workaround first:
169  *
170  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171  * BEFORE the pipe-control with a post-sync op and no write-cache
172  * flushes.
173  *
174  * And this last workaround is tricky because of the requirements on
175  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176  * volume 2 part 1:
177  *
178  *     "1 of the following must also be set:
179  *      - Render Target Cache Flush Enable ([12] of DW1)
180  *      - Depth Cache Flush Enable ([0] of DW1)
181  *      - Stall at Pixel Scoreboard ([1] of DW1)
182  *      - Depth Stall ([13] of DW1)
183  *      - Post-Sync Operation ([13] of DW1)
184  *      - Notify Enable ([8] of DW1)"
185  *
186  * The cache flushes require the workaround flush that triggered this
187  * one, so we can't use it.  Depth stall would trigger the same.
188  * Post-sync nonzero is what triggered this second workaround, so we
189  * can't use that one either.  Notify enable is IRQs, which aren't
190  * really our business.  That leaves only stall at scoreboard.
191  */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196         int ret;
197
198
199         ret = intel_ring_begin(ring, 6);
200         if (ret)
201                 return ret;
202
203         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
206         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207         intel_ring_emit(ring, 0); /* low dword */
208         intel_ring_emit(ring, 0); /* high dword */
209         intel_ring_emit(ring, MI_NOOP);
210         intel_ring_advance(ring);
211
212         ret = intel_ring_begin(ring, 6);
213         if (ret)
214                 return ret;
215
216         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219         intel_ring_emit(ring, 0);
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, MI_NOOP);
222         intel_ring_advance(ring);
223
224         return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229                          u32 invalidate_domains, u32 flush_domains)
230 {
231         u32 flags = 0;
232         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233         int ret;
234
235         /* Force SNB workarounds for PIPE_CONTROL flushes */
236         ret = intel_emit_post_sync_nonzero_flush(ring);
237         if (ret)
238                 return ret;
239
240         /* Just flush everything.  Experiments have shown that reducing the
241          * number of bits based on the write domains has little performance
242          * impact.
243          */
244         if (flush_domains) {
245                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247                 /*
248                  * Ensure that any following seqno writes only happen
249                  * when the render cache is indeed flushed.
250                  */
251                 flags |= PIPE_CONTROL_CS_STALL;
252         }
253         if (invalidate_domains) {
254                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260                 /*
261                  * TLB invalidate requires a post-sync write.
262                  */
263                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264         }
265
266         ret = intel_ring_begin(ring, 4);
267         if (ret)
268                 return ret;
269
270         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271         intel_ring_emit(ring, flags);
272         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273         intel_ring_emit(ring, 0);
274         intel_ring_advance(ring);
275
276         return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282         int ret;
283
284         ret = intel_ring_begin(ring, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(ring, 0);
292         intel_ring_emit(ring, 0);
293         intel_ring_advance(ring);
294
295         return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300         int ret;
301
302         if (!ring->fbc_dirty)
303                 return 0;
304
305         ret = intel_ring_begin(ring, 6);
306         if (ret)
307                 return ret;
308         /* WaFbcNukeOn3DBlt:ivb/hsw */
309         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310         intel_ring_emit(ring, MSG_FBC_REND_STATE);
311         intel_ring_emit(ring, value);
312         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313         intel_ring_emit(ring, MSG_FBC_REND_STATE);
314         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315         intel_ring_advance(ring);
316
317         ring->fbc_dirty = false;
318         return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323                        u32 invalidate_domains, u32 flush_domains)
324 {
325         u32 flags = 0;
326         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327         int ret;
328
329         /*
330          * Ensure that any following seqno writes only happen when the render
331          * cache is indeed flushed.
332          *
333          * Workaround: 4th PIPE_CONTROL command (except the ones with only
334          * read-cache invalidate bits set) must have the CS_STALL bit set. We
335          * don't try to be clever and just set it unconditionally.
336          */
337         flags |= PIPE_CONTROL_CS_STALL;
338
339         /* Just flush everything.  Experiments have shown that reducing the
340          * number of bits based on the write domains has little performance
341          * impact.
342          */
343         if (flush_domains) {
344                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346         }
347         if (invalidate_domains) {
348                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 /* Workaround: we must issue a pipe_control with CS-stall bit
361                  * set before a pipe_control command that has the state cache
362                  * invalidate bit set. */
363                 gen7_render_ring_cs_stall_wa(ring);
364         }
365
366         ret = intel_ring_begin(ring, 4);
367         if (ret)
368                 return ret;
369
370         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
371         intel_ring_emit(ring, flags);
372         intel_ring_emit(ring, scratch_addr);
373         intel_ring_emit(ring, 0);
374         intel_ring_advance(ring);
375
376         if (!invalidate_domains && flush_domains)
377                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
379         return 0;
380 }
381
382 static int
383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384                        u32 flags, u32 scratch_addr)
385 {
386         int ret;
387
388         ret = intel_ring_begin(ring, 6);
389         if (ret)
390                 return ret;
391
392         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393         intel_ring_emit(ring, flags);
394         intel_ring_emit(ring, scratch_addr);
395         intel_ring_emit(ring, 0);
396         intel_ring_emit(ring, 0);
397         intel_ring_emit(ring, 0);
398         intel_ring_advance(ring);
399
400         return 0;
401 }
402
403 static int
404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405                        u32 invalidate_domains, u32 flush_domains)
406 {
407         u32 flags = 0;
408         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409         int ret;
410
411         flags |= PIPE_CONTROL_CS_STALL;
412
413         if (flush_domains) {
414                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416         }
417         if (invalidate_domains) {
418                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
419                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
420                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
421                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
422                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
423                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
424                 flags |= PIPE_CONTROL_QW_WRITE;
425                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
426
427                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
428                 ret = gen8_emit_pipe_control(ring,
429                                              PIPE_CONTROL_CS_STALL |
430                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
431                                              0);
432                 if (ret)
433                         return ret;
434         }
435
436         return gen8_emit_pipe_control(ring, flags, scratch_addr);
437 }
438
439 static void ring_write_tail(struct intel_engine_cs *ring,
440                             u32 value)
441 {
442         struct drm_i915_private *dev_priv = ring->dev->dev_private;
443         I915_WRITE_TAIL(ring, value);
444 }
445
446 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
447 {
448         struct drm_i915_private *dev_priv = ring->dev->dev_private;
449         u64 acthd;
450
451         if (INTEL_INFO(ring->dev)->gen >= 8)
452                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
453                                          RING_ACTHD_UDW(ring->mmio_base));
454         else if (INTEL_INFO(ring->dev)->gen >= 4)
455                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
456         else
457                 acthd = I915_READ(ACTHD);
458
459         return acthd;
460 }
461
462 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
463 {
464         struct drm_i915_private *dev_priv = ring->dev->dev_private;
465         u32 addr;
466
467         addr = dev_priv->status_page_dmah->busaddr;
468         if (INTEL_INFO(ring->dev)->gen >= 4)
469                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
470         I915_WRITE(HWS_PGA, addr);
471 }
472
473 static bool stop_ring(struct intel_engine_cs *ring)
474 {
475         struct drm_i915_private *dev_priv = to_i915(ring->dev);
476
477         if (!IS_GEN2(ring->dev)) {
478                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
479                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
480                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
481                         return false;
482                 }
483         }
484
485         I915_WRITE_CTL(ring, 0);
486         I915_WRITE_HEAD(ring, 0);
487         ring->write_tail(ring, 0);
488
489         if (!IS_GEN2(ring->dev)) {
490                 (void)I915_READ_CTL(ring);
491                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
492         }
493
494         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
495 }
496
497 static int init_ring_common(struct intel_engine_cs *ring)
498 {
499         struct drm_device *dev = ring->dev;
500         struct drm_i915_private *dev_priv = dev->dev_private;
501         struct intel_ringbuffer *ringbuf = ring->buffer;
502         struct drm_i915_gem_object *obj = ringbuf->obj;
503         int ret = 0;
504
505         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
506
507         if (!stop_ring(ring)) {
508                 /* G45 ring initialization often fails to reset head to zero */
509                 DRM_DEBUG_KMS("%s head not reset to zero "
510                               "ctl %08x head %08x tail %08x start %08x\n",
511                               ring->name,
512                               I915_READ_CTL(ring),
513                               I915_READ_HEAD(ring),
514                               I915_READ_TAIL(ring),
515                               I915_READ_START(ring));
516
517                 if (!stop_ring(ring)) {
518                         DRM_ERROR("failed to set %s head to zero "
519                                   "ctl %08x head %08x tail %08x start %08x\n",
520                                   ring->name,
521                                   I915_READ_CTL(ring),
522                                   I915_READ_HEAD(ring),
523                                   I915_READ_TAIL(ring),
524                                   I915_READ_START(ring));
525                         ret = -EIO;
526                         goto out;
527                 }
528         }
529
530         if (I915_NEED_GFX_HWS(dev))
531                 intel_ring_setup_status_page(ring);
532         else
533                 ring_setup_phys_status_page(ring);
534
535         /* Enforce ordering by reading HEAD register back */
536         I915_READ_HEAD(ring);
537
538         /* Initialize the ring. This must happen _after_ we've cleared the ring
539          * registers with the above sequence (the readback of the HEAD registers
540          * also enforces ordering), otherwise the hw might lose the new ring
541          * register values. */
542         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
543         I915_WRITE_CTL(ring,
544                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
545                         | RING_VALID);
546
547         /* If the head is still not zero, the ring is dead */
548         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
549                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
550                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
551                 DRM_ERROR("%s initialization failed "
552                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
553                           ring->name,
554                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
555                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
556                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
557                 ret = -EIO;
558                 goto out;
559         }
560
561         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
562                 i915_kernel_lost_context(ring->dev);
563         else {
564                 ringbuf->head = I915_READ_HEAD(ring);
565                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
566                 ringbuf->space = ring_space(ringbuf);
567                 ringbuf->last_retired_head = -1;
568         }
569
570         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
571
572 out:
573         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
574
575         return ret;
576 }
577
578 static int
579 init_pipe_control(struct intel_engine_cs *ring)
580 {
581         int ret;
582
583         if (ring->scratch.obj)
584                 return 0;
585
586         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
587         if (ring->scratch.obj == NULL) {
588                 DRM_ERROR("Failed to allocate seqno page\n");
589                 ret = -ENOMEM;
590                 goto err;
591         }
592
593         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
594         if (ret)
595                 goto err_unref;
596
597         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
598         if (ret)
599                 goto err_unref;
600
601         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
602         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
603         if (ring->scratch.cpu_page == NULL) {
604                 ret = -ENOMEM;
605                 goto err_unpin;
606         }
607
608         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
609                          ring->name, ring->scratch.gtt_offset);
610         return 0;
611
612 err_unpin:
613         i915_gem_object_ggtt_unpin(ring->scratch.obj);
614 err_unref:
615         drm_gem_object_unreference(&ring->scratch.obj->base);
616 err:
617         return ret;
618 }
619
620 static int init_render_ring(struct intel_engine_cs *ring)
621 {
622         struct drm_device *dev = ring->dev;
623         struct drm_i915_private *dev_priv = dev->dev_private;
624         int ret = init_ring_common(ring);
625         if (ret)
626                 return ret;
627
628         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
629         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
630                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
631
632         /* We need to disable the AsyncFlip performance optimisations in order
633          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
634          * programmed to '1' on all products.
635          *
636          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
637          */
638         if (INTEL_INFO(dev)->gen >= 6)
639                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
640
641         /* Required for the hardware to program scanline values for waiting */
642         /* WaEnableFlushTlbInvalidationMode:snb */
643         if (INTEL_INFO(dev)->gen == 6)
644                 I915_WRITE(GFX_MODE,
645                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
646
647         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
648         if (IS_GEN7(dev))
649                 I915_WRITE(GFX_MODE_GEN7,
650                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
651                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
652
653         if (INTEL_INFO(dev)->gen >= 5) {
654                 ret = init_pipe_control(ring);
655                 if (ret)
656                         return ret;
657         }
658
659         if (IS_GEN6(dev)) {
660                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
661                  * "If this bit is set, STCunit will have LRA as replacement
662                  *  policy. [...] This bit must be reset.  LRA replacement
663                  *  policy is not supported."
664                  */
665                 I915_WRITE(CACHE_MODE_0,
666                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
667         }
668
669         if (INTEL_INFO(dev)->gen >= 6)
670                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
671
672         if (HAS_L3_DPF(dev))
673                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
674
675         return ret;
676 }
677
678 static void render_ring_cleanup(struct intel_engine_cs *ring)
679 {
680         struct drm_device *dev = ring->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682
683         if (dev_priv->semaphore_obj) {
684                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
685                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
686                 dev_priv->semaphore_obj = NULL;
687         }
688
689         if (ring->scratch.obj == NULL)
690                 return;
691
692         if (INTEL_INFO(dev)->gen >= 5) {
693                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
694                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
695         }
696
697         drm_gem_object_unreference(&ring->scratch.obj->base);
698         ring->scratch.obj = NULL;
699 }
700
701 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
702                            unsigned int num_dwords)
703 {
704 #define MBOX_UPDATE_DWORDS 8
705         struct drm_device *dev = signaller->dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707         struct intel_engine_cs *waiter;
708         int i, ret, num_rings;
709
710         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
711         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
712 #undef MBOX_UPDATE_DWORDS
713
714         ret = intel_ring_begin(signaller, num_dwords);
715         if (ret)
716                 return ret;
717
718         for_each_ring(waiter, dev_priv, i) {
719                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
720                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
721                         continue;
722
723                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
724                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
725                                            PIPE_CONTROL_QW_WRITE |
726                                            PIPE_CONTROL_FLUSH_ENABLE);
727                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
728                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
729                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
730                 intel_ring_emit(signaller, 0);
731                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
732                                            MI_SEMAPHORE_TARGET(waiter->id));
733                 intel_ring_emit(signaller, 0);
734         }
735
736         return 0;
737 }
738
739 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
740                            unsigned int num_dwords)
741 {
742 #define MBOX_UPDATE_DWORDS 6
743         struct drm_device *dev = signaller->dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         struct intel_engine_cs *waiter;
746         int i, ret, num_rings;
747
748         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
749         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
750 #undef MBOX_UPDATE_DWORDS
751
752         ret = intel_ring_begin(signaller, num_dwords);
753         if (ret)
754                 return ret;
755
756         for_each_ring(waiter, dev_priv, i) {
757                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
758                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
759                         continue;
760
761                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
762                                            MI_FLUSH_DW_OP_STOREDW);
763                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
764                                            MI_FLUSH_DW_USE_GTT);
765                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
766                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
767                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
768                                            MI_SEMAPHORE_TARGET(waiter->id));
769                 intel_ring_emit(signaller, 0);
770         }
771
772         return 0;
773 }
774
775 static int gen6_signal(struct intel_engine_cs *signaller,
776                        unsigned int num_dwords)
777 {
778         struct drm_device *dev = signaller->dev;
779         struct drm_i915_private *dev_priv = dev->dev_private;
780         struct intel_engine_cs *useless;
781         int i, ret, num_rings;
782
783 #define MBOX_UPDATE_DWORDS 3
784         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
785         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
786 #undef MBOX_UPDATE_DWORDS
787
788         ret = intel_ring_begin(signaller, num_dwords);
789         if (ret)
790                 return ret;
791
792         for_each_ring(useless, dev_priv, i) {
793                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
794                 if (mbox_reg != GEN6_NOSYNC) {
795                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
796                         intel_ring_emit(signaller, mbox_reg);
797                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
798                 }
799         }
800
801         /* If num_dwords was rounded, make sure the tail pointer is correct */
802         if (num_rings % 2 == 0)
803                 intel_ring_emit(signaller, MI_NOOP);
804
805         return 0;
806 }
807
808 /**
809  * gen6_add_request - Update the semaphore mailbox registers
810  * 
811  * @ring - ring that is adding a request
812  * @seqno - return seqno stuck into the ring
813  *
814  * Update the mailbox registers in the *other* rings with the current seqno.
815  * This acts like a signal in the canonical semaphore.
816  */
817 static int
818 gen6_add_request(struct intel_engine_cs *ring)
819 {
820         int ret;
821
822         if (ring->semaphore.signal)
823                 ret = ring->semaphore.signal(ring, 4);
824         else
825                 ret = intel_ring_begin(ring, 4);
826
827         if (ret)
828                 return ret;
829
830         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
831         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
832         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
833         intel_ring_emit(ring, MI_USER_INTERRUPT);
834         __intel_ring_advance(ring);
835
836         return 0;
837 }
838
839 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
840                                               u32 seqno)
841 {
842         struct drm_i915_private *dev_priv = dev->dev_private;
843         return dev_priv->last_seqno < seqno;
844 }
845
846 /**
847  * intel_ring_sync - sync the waiter to the signaller on seqno
848  *
849  * @waiter - ring that is waiting
850  * @signaller - ring which has, or will signal
851  * @seqno - seqno which the waiter will block on
852  */
853
854 static int
855 gen8_ring_sync(struct intel_engine_cs *waiter,
856                struct intel_engine_cs *signaller,
857                u32 seqno)
858 {
859         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
860         int ret;
861
862         ret = intel_ring_begin(waiter, 4);
863         if (ret)
864                 return ret;
865
866         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
867                                 MI_SEMAPHORE_GLOBAL_GTT |
868                                 MI_SEMAPHORE_POLL |
869                                 MI_SEMAPHORE_SAD_GTE_SDD);
870         intel_ring_emit(waiter, seqno);
871         intel_ring_emit(waiter,
872                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
873         intel_ring_emit(waiter,
874                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
875         intel_ring_advance(waiter);
876         return 0;
877 }
878
879 static int
880 gen6_ring_sync(struct intel_engine_cs *waiter,
881                struct intel_engine_cs *signaller,
882                u32 seqno)
883 {
884         u32 dw1 = MI_SEMAPHORE_MBOX |
885                   MI_SEMAPHORE_COMPARE |
886                   MI_SEMAPHORE_REGISTER;
887         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
888         int ret;
889
890         /* Throughout all of the GEM code, seqno passed implies our current
891          * seqno is >= the last seqno executed. However for hardware the
892          * comparison is strictly greater than.
893          */
894         seqno -= 1;
895
896         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
897
898         ret = intel_ring_begin(waiter, 4);
899         if (ret)
900                 return ret;
901
902         /* If seqno wrap happened, omit the wait with no-ops */
903         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
904                 intel_ring_emit(waiter, dw1 | wait_mbox);
905                 intel_ring_emit(waiter, seqno);
906                 intel_ring_emit(waiter, 0);
907                 intel_ring_emit(waiter, MI_NOOP);
908         } else {
909                 intel_ring_emit(waiter, MI_NOOP);
910                 intel_ring_emit(waiter, MI_NOOP);
911                 intel_ring_emit(waiter, MI_NOOP);
912                 intel_ring_emit(waiter, MI_NOOP);
913         }
914         intel_ring_advance(waiter);
915
916         return 0;
917 }
918
919 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
920 do {                                                                    \
921         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
922                  PIPE_CONTROL_DEPTH_STALL);                             \
923         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
924         intel_ring_emit(ring__, 0);                                                     \
925         intel_ring_emit(ring__, 0);                                                     \
926 } while (0)
927
928 static int
929 pc_render_add_request(struct intel_engine_cs *ring)
930 {
931         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
932         int ret;
933
934         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
935          * incoherent with writes to memory, i.e. completely fubar,
936          * so we need to use PIPE_NOTIFY instead.
937          *
938          * However, we also need to workaround the qword write
939          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
940          * memory before requesting an interrupt.
941          */
942         ret = intel_ring_begin(ring, 32);
943         if (ret)
944                 return ret;
945
946         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
947                         PIPE_CONTROL_WRITE_FLUSH |
948                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
949         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
950         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
951         intel_ring_emit(ring, 0);
952         PIPE_CONTROL_FLUSH(ring, scratch_addr);
953         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
954         PIPE_CONTROL_FLUSH(ring, scratch_addr);
955         scratch_addr += 2 * CACHELINE_BYTES;
956         PIPE_CONTROL_FLUSH(ring, scratch_addr);
957         scratch_addr += 2 * CACHELINE_BYTES;
958         PIPE_CONTROL_FLUSH(ring, scratch_addr);
959         scratch_addr += 2 * CACHELINE_BYTES;
960         PIPE_CONTROL_FLUSH(ring, scratch_addr);
961         scratch_addr += 2 * CACHELINE_BYTES;
962         PIPE_CONTROL_FLUSH(ring, scratch_addr);
963
964         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
965                         PIPE_CONTROL_WRITE_FLUSH |
966                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
967                         PIPE_CONTROL_NOTIFY);
968         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
969         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
970         intel_ring_emit(ring, 0);
971         __intel_ring_advance(ring);
972
973         return 0;
974 }
975
976 static u32
977 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
978 {
979         /* Workaround to force correct ordering between irq and seqno writes on
980          * ivb (and maybe also on snb) by reading from a CS register (like
981          * ACTHD) before reading the status page. */
982         if (!lazy_coherency) {
983                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
984                 POSTING_READ(RING_ACTHD(ring->mmio_base));
985         }
986
987         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
988 }
989
990 static u32
991 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
992 {
993         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
994 }
995
996 static void
997 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
998 {
999         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1000 }
1001
1002 static u32
1003 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1004 {
1005         return ring->scratch.cpu_page[0];
1006 }
1007
1008 static void
1009 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1010 {
1011         ring->scratch.cpu_page[0] = seqno;
1012 }
1013
1014 static bool
1015 gen5_ring_get_irq(struct intel_engine_cs *ring)
1016 {
1017         struct drm_device *dev = ring->dev;
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         unsigned long flags;
1020
1021         if (!dev->irq_enabled)
1022                 return false;
1023
1024         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1025         if (ring->irq_refcount++ == 0)
1026                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1027         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1028
1029         return true;
1030 }
1031
1032 static void
1033 gen5_ring_put_irq(struct intel_engine_cs *ring)
1034 {
1035         struct drm_device *dev = ring->dev;
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         unsigned long flags;
1038
1039         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1040         if (--ring->irq_refcount == 0)
1041                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1042         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1043 }
1044
1045 static bool
1046 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1047 {
1048         struct drm_device *dev = ring->dev;
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050         unsigned long flags;
1051
1052         if (!dev->irq_enabled)
1053                 return false;
1054
1055         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1056         if (ring->irq_refcount++ == 0) {
1057                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1058                 I915_WRITE(IMR, dev_priv->irq_mask);
1059                 POSTING_READ(IMR);
1060         }
1061         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1062
1063         return true;
1064 }
1065
1066 static void
1067 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         unsigned long flags;
1072
1073         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1074         if (--ring->irq_refcount == 0) {
1075                 dev_priv->irq_mask |= ring->irq_enable_mask;
1076                 I915_WRITE(IMR, dev_priv->irq_mask);
1077                 POSTING_READ(IMR);
1078         }
1079         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1080 }
1081
1082 static bool
1083 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1084 {
1085         struct drm_device *dev = ring->dev;
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087         unsigned long flags;
1088
1089         if (!dev->irq_enabled)
1090                 return false;
1091
1092         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1093         if (ring->irq_refcount++ == 0) {
1094                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1095                 I915_WRITE16(IMR, dev_priv->irq_mask);
1096                 POSTING_READ16(IMR);
1097         }
1098         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1099
1100         return true;
1101 }
1102
1103 static void
1104 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1105 {
1106         struct drm_device *dev = ring->dev;
1107         struct drm_i915_private *dev_priv = dev->dev_private;
1108         unsigned long flags;
1109
1110         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1111         if (--ring->irq_refcount == 0) {
1112                 dev_priv->irq_mask |= ring->irq_enable_mask;
1113                 I915_WRITE16(IMR, dev_priv->irq_mask);
1114                 POSTING_READ16(IMR);
1115         }
1116         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1117 }
1118
1119 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1120 {
1121         struct drm_device *dev = ring->dev;
1122         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1123         u32 mmio = 0;
1124
1125         /* The ring status page addresses are no longer next to the rest of
1126          * the ring registers as of gen7.
1127          */
1128         if (IS_GEN7(dev)) {
1129                 switch (ring->id) {
1130                 case RCS:
1131                         mmio = RENDER_HWS_PGA_GEN7;
1132                         break;
1133                 case BCS:
1134                         mmio = BLT_HWS_PGA_GEN7;
1135                         break;
1136                 /*
1137                  * VCS2 actually doesn't exist on Gen7. Only shut up
1138                  * gcc switch check warning
1139                  */
1140                 case VCS2:
1141                 case VCS:
1142                         mmio = BSD_HWS_PGA_GEN7;
1143                         break;
1144                 case VECS:
1145                         mmio = VEBOX_HWS_PGA_GEN7;
1146                         break;
1147                 }
1148         } else if (IS_GEN6(ring->dev)) {
1149                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1150         } else {
1151                 /* XXX: gen8 returns to sanity */
1152                 mmio = RING_HWS_PGA(ring->mmio_base);
1153         }
1154
1155         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1156         POSTING_READ(mmio);
1157
1158         /*
1159          * Flush the TLB for this page
1160          *
1161          * FIXME: These two bits have disappeared on gen8, so a question
1162          * arises: do we still need this and if so how should we go about
1163          * invalidating the TLB?
1164          */
1165         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1166                 u32 reg = RING_INSTPM(ring->mmio_base);
1167
1168                 /* ring should be idle before issuing a sync flush*/
1169                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1170
1171                 I915_WRITE(reg,
1172                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1173                                               INSTPM_SYNC_FLUSH));
1174                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1175                              1000))
1176                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1177                                   ring->name);
1178         }
1179 }
1180
1181 static int
1182 bsd_ring_flush(struct intel_engine_cs *ring,
1183                u32     invalidate_domains,
1184                u32     flush_domains)
1185 {
1186         int ret;
1187
1188         ret = intel_ring_begin(ring, 2);
1189         if (ret)
1190                 return ret;
1191
1192         intel_ring_emit(ring, MI_FLUSH);
1193         intel_ring_emit(ring, MI_NOOP);
1194         intel_ring_advance(ring);
1195         return 0;
1196 }
1197
1198 static int
1199 i9xx_add_request(struct intel_engine_cs *ring)
1200 {
1201         int ret;
1202
1203         ret = intel_ring_begin(ring, 4);
1204         if (ret)
1205                 return ret;
1206
1207         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1208         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1209         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1210         intel_ring_emit(ring, MI_USER_INTERRUPT);
1211         __intel_ring_advance(ring);
1212
1213         return 0;
1214 }
1215
1216 static bool
1217 gen6_ring_get_irq(struct intel_engine_cs *ring)
1218 {
1219         struct drm_device *dev = ring->dev;
1220         struct drm_i915_private *dev_priv = dev->dev_private;
1221         unsigned long flags;
1222
1223         if (!dev->irq_enabled)
1224                return false;
1225
1226         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1227         if (ring->irq_refcount++ == 0) {
1228                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1229                         I915_WRITE_IMR(ring,
1230                                        ~(ring->irq_enable_mask |
1231                                          GT_PARITY_ERROR(dev)));
1232                 else
1233                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1234                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1235         }
1236         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1237
1238         return true;
1239 }
1240
1241 static void
1242 gen6_ring_put_irq(struct intel_engine_cs *ring)
1243 {
1244         struct drm_device *dev = ring->dev;
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246         unsigned long flags;
1247
1248         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1249         if (--ring->irq_refcount == 0) {
1250                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1251                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1252                 else
1253                         I915_WRITE_IMR(ring, ~0);
1254                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1255         }
1256         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1257 }
1258
1259 static bool
1260 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1261 {
1262         struct drm_device *dev = ring->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         unsigned long flags;
1265
1266         if (!dev->irq_enabled)
1267                 return false;
1268
1269         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1270         if (ring->irq_refcount++ == 0) {
1271                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1272                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1273         }
1274         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1275
1276         return true;
1277 }
1278
1279 static void
1280 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1281 {
1282         struct drm_device *dev = ring->dev;
1283         struct drm_i915_private *dev_priv = dev->dev_private;
1284         unsigned long flags;
1285
1286         if (!dev->irq_enabled)
1287                 return;
1288
1289         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1290         if (--ring->irq_refcount == 0) {
1291                 I915_WRITE_IMR(ring, ~0);
1292                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1293         }
1294         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1295 }
1296
1297 static bool
1298 gen8_ring_get_irq(struct intel_engine_cs *ring)
1299 {
1300         struct drm_device *dev = ring->dev;
1301         struct drm_i915_private *dev_priv = dev->dev_private;
1302         unsigned long flags;
1303
1304         if (!dev->irq_enabled)
1305                 return false;
1306
1307         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1308         if (ring->irq_refcount++ == 0) {
1309                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1310                         I915_WRITE_IMR(ring,
1311                                        ~(ring->irq_enable_mask |
1312                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1313                 } else {
1314                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1315                 }
1316                 POSTING_READ(RING_IMR(ring->mmio_base));
1317         }
1318         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1319
1320         return true;
1321 }
1322
1323 static void
1324 gen8_ring_put_irq(struct intel_engine_cs *ring)
1325 {
1326         struct drm_device *dev = ring->dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         unsigned long flags;
1329
1330         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1331         if (--ring->irq_refcount == 0) {
1332                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1333                         I915_WRITE_IMR(ring,
1334                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1335                 } else {
1336                         I915_WRITE_IMR(ring, ~0);
1337                 }
1338                 POSTING_READ(RING_IMR(ring->mmio_base));
1339         }
1340         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1341 }
1342
1343 static int
1344 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1345                          u64 offset, u32 length,
1346                          unsigned flags)
1347 {
1348         int ret;
1349
1350         ret = intel_ring_begin(ring, 2);
1351         if (ret)
1352                 return ret;
1353
1354         intel_ring_emit(ring,
1355                         MI_BATCH_BUFFER_START |
1356                         MI_BATCH_GTT |
1357                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1358         intel_ring_emit(ring, offset);
1359         intel_ring_advance(ring);
1360
1361         return 0;
1362 }
1363
1364 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1365 #define I830_BATCH_LIMIT (256*1024)
1366 #define I830_TLB_ENTRIES (2)
1367 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1368 static int
1369 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1370                                 u64 offset, u32 len,
1371                                 unsigned flags)
1372 {
1373         u32 cs_offset = ring->scratch.gtt_offset;
1374         int ret;
1375
1376         ret = intel_ring_begin(ring, 6);
1377         if (ret)
1378                 return ret;
1379
1380         /* Evict the invalid PTE TLBs */
1381         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1382         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1383         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1384         intel_ring_emit(ring, cs_offset);
1385         intel_ring_emit(ring, 0xdeadbeef);
1386         intel_ring_emit(ring, MI_NOOP);
1387         intel_ring_advance(ring);
1388
1389         if ((flags & I915_DISPATCH_PINNED) == 0) {
1390                 if (len > I830_BATCH_LIMIT)
1391                         return -ENOSPC;
1392
1393                 ret = intel_ring_begin(ring, 6 + 2);
1394                 if (ret)
1395                         return ret;
1396
1397                 /* Blit the batch (which has now all relocs applied) to the
1398                  * stable batch scratch bo area (so that the CS never
1399                  * stumbles over its tlb invalidation bug) ...
1400                  */
1401                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1402                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1403                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1404                 intel_ring_emit(ring, cs_offset);
1405                 intel_ring_emit(ring, 4096);
1406                 intel_ring_emit(ring, offset);
1407
1408                 intel_ring_emit(ring, MI_FLUSH);
1409                 intel_ring_emit(ring, MI_NOOP);
1410                 intel_ring_advance(ring);
1411
1412                 /* ... and execute it. */
1413                 offset = cs_offset;
1414         }
1415
1416         ret = intel_ring_begin(ring, 4);
1417         if (ret)
1418                 return ret;
1419
1420         intel_ring_emit(ring, MI_BATCH_BUFFER);
1421         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1422         intel_ring_emit(ring, offset + len - 8);
1423         intel_ring_emit(ring, MI_NOOP);
1424         intel_ring_advance(ring);
1425
1426         return 0;
1427 }
1428
1429 static int
1430 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1431                          u64 offset, u32 len,
1432                          unsigned flags)
1433 {
1434         int ret;
1435
1436         ret = intel_ring_begin(ring, 2);
1437         if (ret)
1438                 return ret;
1439
1440         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1441         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1442         intel_ring_advance(ring);
1443
1444         return 0;
1445 }
1446
1447 static void cleanup_status_page(struct intel_engine_cs *ring)
1448 {
1449         struct drm_i915_gem_object *obj;
1450
1451         obj = ring->status_page.obj;
1452         if (obj == NULL)
1453                 return;
1454
1455         kunmap(sg_page(obj->pages->sgl));
1456         i915_gem_object_ggtt_unpin(obj);
1457         drm_gem_object_unreference(&obj->base);
1458         ring->status_page.obj = NULL;
1459 }
1460
1461 static int init_status_page(struct intel_engine_cs *ring)
1462 {
1463         struct drm_i915_gem_object *obj;
1464
1465         if ((obj = ring->status_page.obj) == NULL) {
1466                 unsigned flags;
1467                 int ret;
1468
1469                 obj = i915_gem_alloc_object(ring->dev, 4096);
1470                 if (obj == NULL) {
1471                         DRM_ERROR("Failed to allocate status page\n");
1472                         return -ENOMEM;
1473                 }
1474
1475                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1476                 if (ret)
1477                         goto err_unref;
1478
1479                 flags = 0;
1480                 if (!HAS_LLC(ring->dev))
1481                         /* On g33, we cannot place HWS above 256MiB, so
1482                          * restrict its pinning to the low mappable arena.
1483                          * Though this restriction is not documented for
1484                          * gen4, gen5, or byt, they also behave similarly
1485                          * and hang if the HWS is placed at the top of the
1486                          * GTT. To generalise, it appears that all !llc
1487                          * platforms have issues with us placing the HWS
1488                          * above the mappable region (even though we never
1489                          * actualy map it).
1490                          */
1491                         flags |= PIN_MAPPABLE;
1492                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1493                 if (ret) {
1494 err_unref:
1495                         drm_gem_object_unreference(&obj->base);
1496                         return ret;
1497                 }
1498
1499                 ring->status_page.obj = obj;
1500         }
1501
1502         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1503         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1504         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1505
1506         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1507                         ring->name, ring->status_page.gfx_addr);
1508
1509         return 0;
1510 }
1511
1512 static int init_phys_status_page(struct intel_engine_cs *ring)
1513 {
1514         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1515
1516         if (!dev_priv->status_page_dmah) {
1517                 dev_priv->status_page_dmah =
1518                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1519                 if (!dev_priv->status_page_dmah)
1520                         return -ENOMEM;
1521         }
1522
1523         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1524         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1525
1526         return 0;
1527 }
1528
1529 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1530 {
1531         if (!ringbuf->obj)
1532                 return;
1533
1534         iounmap(ringbuf->virtual_start);
1535         i915_gem_object_ggtt_unpin(ringbuf->obj);
1536         drm_gem_object_unreference(&ringbuf->obj->base);
1537         ringbuf->obj = NULL;
1538 }
1539
1540 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1541                                       struct intel_ringbuffer *ringbuf)
1542 {
1543         struct drm_i915_private *dev_priv = to_i915(dev);
1544         struct drm_i915_gem_object *obj;
1545         int ret;
1546
1547         if (ringbuf->obj)
1548                 return 0;
1549
1550         obj = NULL;
1551         if (!HAS_LLC(dev))
1552                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1553         if (obj == NULL)
1554                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1555         if (obj == NULL)
1556                 return -ENOMEM;
1557
1558         /* mark ring buffers as read-only from GPU side by default */
1559         obj->gt_ro = 1;
1560
1561         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1562         if (ret)
1563                 goto err_unref;
1564
1565         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1566         if (ret)
1567                 goto err_unpin;
1568
1569         ringbuf->virtual_start =
1570                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1571                                 ringbuf->size);
1572         if (ringbuf->virtual_start == NULL) {
1573                 ret = -EINVAL;
1574                 goto err_unpin;
1575         }
1576
1577         ringbuf->obj = obj;
1578         return 0;
1579
1580 err_unpin:
1581         i915_gem_object_ggtt_unpin(obj);
1582 err_unref:
1583         drm_gem_object_unreference(&obj->base);
1584         return ret;
1585 }
1586
1587 static int intel_init_ring_buffer(struct drm_device *dev,
1588                                   struct intel_engine_cs *ring)
1589 {
1590         struct intel_ringbuffer *ringbuf = ring->buffer;
1591         int ret;
1592
1593         if (ringbuf == NULL) {
1594                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1595                 if (!ringbuf)
1596                         return -ENOMEM;
1597                 ring->buffer = ringbuf;
1598         }
1599
1600         ring->dev = dev;
1601         INIT_LIST_HEAD(&ring->active_list);
1602         INIT_LIST_HEAD(&ring->request_list);
1603         ringbuf->size = 32 * PAGE_SIZE;
1604         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1605
1606         init_waitqueue_head(&ring->irq_queue);
1607
1608         if (I915_NEED_GFX_HWS(dev)) {
1609                 ret = init_status_page(ring);
1610                 if (ret)
1611                         goto error;
1612         } else {
1613                 BUG_ON(ring->id != RCS);
1614                 ret = init_phys_status_page(ring);
1615                 if (ret)
1616                         goto error;
1617         }
1618
1619         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1620         if (ret) {
1621                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1622                 goto error;
1623         }
1624
1625         /* Workaround an erratum on the i830 which causes a hang if
1626          * the TAIL pointer points to within the last 2 cachelines
1627          * of the buffer.
1628          */
1629         ringbuf->effective_size = ringbuf->size;
1630         if (IS_I830(dev) || IS_845G(dev))
1631                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1632
1633         ret = i915_cmd_parser_init_ring(ring);
1634         if (ret)
1635                 goto error;
1636
1637         ret = ring->init(ring);
1638         if (ret)
1639                 goto error;
1640
1641         return 0;
1642
1643 error:
1644         kfree(ringbuf);
1645         ring->buffer = NULL;
1646         return ret;
1647 }
1648
1649 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1650 {
1651         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1652         struct intel_ringbuffer *ringbuf = ring->buffer;
1653
1654         if (!intel_ring_initialized(ring))
1655                 return;
1656
1657         intel_stop_ring_buffer(ring);
1658         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1659
1660         intel_destroy_ringbuffer_obj(ringbuf);
1661         ring->preallocated_lazy_request = NULL;
1662         ring->outstanding_lazy_seqno = 0;
1663
1664         if (ring->cleanup)
1665                 ring->cleanup(ring);
1666
1667         cleanup_status_page(ring);
1668
1669         i915_cmd_parser_fini_ring(ring);
1670
1671         kfree(ringbuf);
1672         ring->buffer = NULL;
1673 }
1674
1675 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1676 {
1677         struct intel_ringbuffer *ringbuf = ring->buffer;
1678         struct drm_i915_gem_request *request;
1679         u32 seqno = 0;
1680         int ret;
1681
1682         if (ringbuf->last_retired_head != -1) {
1683                 ringbuf->head = ringbuf->last_retired_head;
1684                 ringbuf->last_retired_head = -1;
1685
1686                 ringbuf->space = ring_space(ringbuf);
1687                 if (ringbuf->space >= n)
1688                         return 0;
1689         }
1690
1691         list_for_each_entry(request, &ring->request_list, list) {
1692                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1693                         seqno = request->seqno;
1694                         break;
1695                 }
1696         }
1697
1698         if (seqno == 0)
1699                 return -ENOSPC;
1700
1701         ret = i915_wait_seqno(ring, seqno);
1702         if (ret)
1703                 return ret;
1704
1705         i915_gem_retire_requests_ring(ring);
1706         ringbuf->head = ringbuf->last_retired_head;
1707         ringbuf->last_retired_head = -1;
1708
1709         ringbuf->space = ring_space(ringbuf);
1710         return 0;
1711 }
1712
1713 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1714 {
1715         struct drm_device *dev = ring->dev;
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         struct intel_ringbuffer *ringbuf = ring->buffer;
1718         unsigned long end;
1719         int ret;
1720
1721         ret = intel_ring_wait_request(ring, n);
1722         if (ret != -ENOSPC)
1723                 return ret;
1724
1725         /* force the tail write in case we have been skipping them */
1726         __intel_ring_advance(ring);
1727
1728         /* With GEM the hangcheck timer should kick us out of the loop,
1729          * leaving it early runs the risk of corrupting GEM state (due
1730          * to running on almost untested codepaths). But on resume
1731          * timers don't work yet, so prevent a complete hang in that
1732          * case by choosing an insanely large timeout. */
1733         end = jiffies + 60 * HZ;
1734
1735         trace_i915_ring_wait_begin(ring);
1736         do {
1737                 ringbuf->head = I915_READ_HEAD(ring);
1738                 ringbuf->space = ring_space(ringbuf);
1739                 if (ringbuf->space >= n) {
1740                         ret = 0;
1741                         break;
1742                 }
1743
1744                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1745                     dev->primary->master) {
1746                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1747                         if (master_priv->sarea_priv)
1748                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1749                 }
1750
1751                 msleep(1);
1752
1753                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1754                         ret = -ERESTARTSYS;
1755                         break;
1756                 }
1757
1758                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1759                                            dev_priv->mm.interruptible);
1760                 if (ret)
1761                         break;
1762
1763                 if (time_after(jiffies, end)) {
1764                         ret = -EBUSY;
1765                         break;
1766                 }
1767         } while (1);
1768         trace_i915_ring_wait_end(ring);
1769         return ret;
1770 }
1771
1772 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1773 {
1774         uint32_t __iomem *virt;
1775         struct intel_ringbuffer *ringbuf = ring->buffer;
1776         int rem = ringbuf->size - ringbuf->tail;
1777
1778         if (ringbuf->space < rem) {
1779                 int ret = ring_wait_for_space(ring, rem);
1780                 if (ret)
1781                         return ret;
1782         }
1783
1784         virt = ringbuf->virtual_start + ringbuf->tail;
1785         rem /= 4;
1786         while (rem--)
1787                 iowrite32(MI_NOOP, virt++);
1788
1789         ringbuf->tail = 0;
1790         ringbuf->space = ring_space(ringbuf);
1791
1792         return 0;
1793 }
1794
1795 int intel_ring_idle(struct intel_engine_cs *ring)
1796 {
1797         u32 seqno;
1798         int ret;
1799
1800         /* We need to add any requests required to flush the objects and ring */
1801         if (ring->outstanding_lazy_seqno) {
1802                 ret = i915_add_request(ring, NULL);
1803                 if (ret)
1804                         return ret;
1805         }
1806
1807         /* Wait upon the last request to be completed */
1808         if (list_empty(&ring->request_list))
1809                 return 0;
1810
1811         seqno = list_entry(ring->request_list.prev,
1812                            struct drm_i915_gem_request,
1813                            list)->seqno;
1814
1815         return i915_wait_seqno(ring, seqno);
1816 }
1817
1818 static int
1819 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1820 {
1821         if (ring->outstanding_lazy_seqno)
1822                 return 0;
1823
1824         if (ring->preallocated_lazy_request == NULL) {
1825                 struct drm_i915_gem_request *request;
1826
1827                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1828                 if (request == NULL)
1829                         return -ENOMEM;
1830
1831                 ring->preallocated_lazy_request = request;
1832         }
1833
1834         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1835 }
1836
1837 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1838                                 int bytes)
1839 {
1840         struct intel_ringbuffer *ringbuf = ring->buffer;
1841         int ret;
1842
1843         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1844                 ret = intel_wrap_ring_buffer(ring);
1845                 if (unlikely(ret))
1846                         return ret;
1847         }
1848
1849         if (unlikely(ringbuf->space < bytes)) {
1850                 ret = ring_wait_for_space(ring, bytes);
1851                 if (unlikely(ret))
1852                         return ret;
1853         }
1854
1855         return 0;
1856 }
1857
1858 int intel_ring_begin(struct intel_engine_cs *ring,
1859                      int num_dwords)
1860 {
1861         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1862         int ret;
1863
1864         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1865                                    dev_priv->mm.interruptible);
1866         if (ret)
1867                 return ret;
1868
1869         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1870         if (ret)
1871                 return ret;
1872
1873         /* Preallocate the olr before touching the ring */
1874         ret = intel_ring_alloc_seqno(ring);
1875         if (ret)
1876                 return ret;
1877
1878         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1879         return 0;
1880 }
1881
1882 /* Align the ring tail to a cacheline boundary */
1883 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1884 {
1885         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1886         int ret;
1887
1888         if (num_dwords == 0)
1889                 return 0;
1890
1891         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1892         ret = intel_ring_begin(ring, num_dwords);
1893         if (ret)
1894                 return ret;
1895
1896         while (num_dwords--)
1897                 intel_ring_emit(ring, MI_NOOP);
1898
1899         intel_ring_advance(ring);
1900
1901         return 0;
1902 }
1903
1904 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1905 {
1906         struct drm_device *dev = ring->dev;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909         BUG_ON(ring->outstanding_lazy_seqno);
1910
1911         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1912                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1913                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1914                 if (HAS_VEBOX(dev))
1915                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1916         }
1917
1918         ring->set_seqno(ring, seqno);
1919         ring->hangcheck.seqno = seqno;
1920 }
1921
1922 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1923                                      u32 value)
1924 {
1925         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1926
1927        /* Every tail move must follow the sequence below */
1928
1929         /* Disable notification that the ring is IDLE. The GT
1930          * will then assume that it is busy and bring it out of rc6.
1931          */
1932         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1933                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1934
1935         /* Clear the context id. Here be magic! */
1936         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1937
1938         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1939         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1940                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1941                      50))
1942                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1943
1944         /* Now that the ring is fully powered up, update the tail */
1945         I915_WRITE_TAIL(ring, value);
1946         POSTING_READ(RING_TAIL(ring->mmio_base));
1947
1948         /* Let the ring send IDLE messages to the GT again,
1949          * and so let it sleep to conserve power when idle.
1950          */
1951         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1952                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1953 }
1954
1955 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1956                                u32 invalidate, u32 flush)
1957 {
1958         uint32_t cmd;
1959         int ret;
1960
1961         ret = intel_ring_begin(ring, 4);
1962         if (ret)
1963                 return ret;
1964
1965         cmd = MI_FLUSH_DW;
1966         if (INTEL_INFO(ring->dev)->gen >= 8)
1967                 cmd += 1;
1968         /*
1969          * Bspec vol 1c.5 - video engine command streamer:
1970          * "If ENABLED, all TLBs will be invalidated once the flush
1971          * operation is complete. This bit is only valid when the
1972          * Post-Sync Operation field is a value of 1h or 3h."
1973          */
1974         if (invalidate & I915_GEM_GPU_DOMAINS)
1975                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1976                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1977         intel_ring_emit(ring, cmd);
1978         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1979         if (INTEL_INFO(ring->dev)->gen >= 8) {
1980                 intel_ring_emit(ring, 0); /* upper addr */
1981                 intel_ring_emit(ring, 0); /* value */
1982         } else  {
1983                 intel_ring_emit(ring, 0);
1984                 intel_ring_emit(ring, MI_NOOP);
1985         }
1986         intel_ring_advance(ring);
1987         return 0;
1988 }
1989
1990 static int
1991 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1992                               u64 offset, u32 len,
1993                               unsigned flags)
1994 {
1995         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1996         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1997                 !(flags & I915_DISPATCH_SECURE);
1998         int ret;
1999
2000         ret = intel_ring_begin(ring, 4);
2001         if (ret)
2002                 return ret;
2003
2004         /* FIXME(BDW): Address space and security selectors. */
2005         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2006         intel_ring_emit(ring, lower_32_bits(offset));
2007         intel_ring_emit(ring, upper_32_bits(offset));
2008         intel_ring_emit(ring, MI_NOOP);
2009         intel_ring_advance(ring);
2010
2011         return 0;
2012 }
2013
2014 static int
2015 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2016                               u64 offset, u32 len,
2017                               unsigned flags)
2018 {
2019         int ret;
2020
2021         ret = intel_ring_begin(ring, 2);
2022         if (ret)
2023                 return ret;
2024
2025         intel_ring_emit(ring,
2026                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2027                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2028         /* bit0-7 is the length on GEN6+ */
2029         intel_ring_emit(ring, offset);
2030         intel_ring_advance(ring);
2031
2032         return 0;
2033 }
2034
2035 static int
2036 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2037                               u64 offset, u32 len,
2038                               unsigned flags)
2039 {
2040         int ret;
2041
2042         ret = intel_ring_begin(ring, 2);
2043         if (ret)
2044                 return ret;
2045
2046         intel_ring_emit(ring,
2047                         MI_BATCH_BUFFER_START |
2048                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2049         /* bit0-7 is the length on GEN6+ */
2050         intel_ring_emit(ring, offset);
2051         intel_ring_advance(ring);
2052
2053         return 0;
2054 }
2055
2056 /* Blitter support (SandyBridge+) */
2057
2058 static int gen6_ring_flush(struct intel_engine_cs *ring,
2059                            u32 invalidate, u32 flush)
2060 {
2061         struct drm_device *dev = ring->dev;
2062         uint32_t cmd;
2063         int ret;
2064
2065         ret = intel_ring_begin(ring, 4);
2066         if (ret)
2067                 return ret;
2068
2069         cmd = MI_FLUSH_DW;
2070         if (INTEL_INFO(ring->dev)->gen >= 8)
2071                 cmd += 1;
2072         /*
2073          * Bspec vol 1c.3 - blitter engine command streamer:
2074          * "If ENABLED, all TLBs will be invalidated once the flush
2075          * operation is complete. This bit is only valid when the
2076          * Post-Sync Operation field is a value of 1h or 3h."
2077          */
2078         if (invalidate & I915_GEM_DOMAIN_RENDER)
2079                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2080                         MI_FLUSH_DW_OP_STOREDW;
2081         intel_ring_emit(ring, cmd);
2082         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2083         if (INTEL_INFO(ring->dev)->gen >= 8) {
2084                 intel_ring_emit(ring, 0); /* upper addr */
2085                 intel_ring_emit(ring, 0); /* value */
2086         } else  {
2087                 intel_ring_emit(ring, 0);
2088                 intel_ring_emit(ring, MI_NOOP);
2089         }
2090         intel_ring_advance(ring);
2091
2092         if (IS_GEN7(dev) && !invalidate && flush)
2093                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2094
2095         return 0;
2096 }
2097
2098 int intel_init_render_ring_buffer(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2102         struct drm_i915_gem_object *obj;
2103         int ret;
2104
2105         ring->name = "render ring";
2106         ring->id = RCS;
2107         ring->mmio_base = RENDER_RING_BASE;
2108
2109         if (INTEL_INFO(dev)->gen >= 8) {
2110                 if (i915_semaphore_is_enabled(dev)) {
2111                         obj = i915_gem_alloc_object(dev, 4096);
2112                         if (obj == NULL) {
2113                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2114                                 i915.semaphores = 0;
2115                         } else {
2116                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2117                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2118                                 if (ret != 0) {
2119                                         drm_gem_object_unreference(&obj->base);
2120                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2121                                         i915.semaphores = 0;
2122                                 } else
2123                                         dev_priv->semaphore_obj = obj;
2124                         }
2125                 }
2126                 ring->add_request = gen6_add_request;
2127                 ring->flush = gen8_render_ring_flush;
2128                 ring->irq_get = gen8_ring_get_irq;
2129                 ring->irq_put = gen8_ring_put_irq;
2130                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2131                 ring->get_seqno = gen6_ring_get_seqno;
2132                 ring->set_seqno = ring_set_seqno;
2133                 if (i915_semaphore_is_enabled(dev)) {
2134                         WARN_ON(!dev_priv->semaphore_obj);
2135                         ring->semaphore.sync_to = gen8_ring_sync;
2136                         ring->semaphore.signal = gen8_rcs_signal;
2137                         GEN8_RING_SEMAPHORE_INIT;
2138                 }
2139         } else if (INTEL_INFO(dev)->gen >= 6) {
2140                 ring->add_request = gen6_add_request;
2141                 ring->flush = gen7_render_ring_flush;
2142                 if (INTEL_INFO(dev)->gen == 6)
2143                         ring->flush = gen6_render_ring_flush;
2144                 ring->irq_get = gen6_ring_get_irq;
2145                 ring->irq_put = gen6_ring_put_irq;
2146                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2147                 ring->get_seqno = gen6_ring_get_seqno;
2148                 ring->set_seqno = ring_set_seqno;
2149                 if (i915_semaphore_is_enabled(dev)) {
2150                         ring->semaphore.sync_to = gen6_ring_sync;
2151                         ring->semaphore.signal = gen6_signal;
2152                         /*
2153                          * The current semaphore is only applied on pre-gen8
2154                          * platform.  And there is no VCS2 ring on the pre-gen8
2155                          * platform. So the semaphore between RCS and VCS2 is
2156                          * initialized as INVALID.  Gen8 will initialize the
2157                          * sema between VCS2 and RCS later.
2158                          */
2159                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2160                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2161                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2162                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2163                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2164                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2165                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2166                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2167                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2168                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2169                 }
2170         } else if (IS_GEN5(dev)) {
2171                 ring->add_request = pc_render_add_request;
2172                 ring->flush = gen4_render_ring_flush;
2173                 ring->get_seqno = pc_render_get_seqno;
2174                 ring->set_seqno = pc_render_set_seqno;
2175                 ring->irq_get = gen5_ring_get_irq;
2176                 ring->irq_put = gen5_ring_put_irq;
2177                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2178                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2179         } else {
2180                 ring->add_request = i9xx_add_request;
2181                 if (INTEL_INFO(dev)->gen < 4)
2182                         ring->flush = gen2_render_ring_flush;
2183                 else
2184                         ring->flush = gen4_render_ring_flush;
2185                 ring->get_seqno = ring_get_seqno;
2186                 ring->set_seqno = ring_set_seqno;
2187                 if (IS_GEN2(dev)) {
2188                         ring->irq_get = i8xx_ring_get_irq;
2189                         ring->irq_put = i8xx_ring_put_irq;
2190                 } else {
2191                         ring->irq_get = i9xx_ring_get_irq;
2192                         ring->irq_put = i9xx_ring_put_irq;
2193                 }
2194                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2195         }
2196         ring->write_tail = ring_write_tail;
2197
2198         if (IS_HASWELL(dev))
2199                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2200         else if (IS_GEN8(dev))
2201                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2202         else if (INTEL_INFO(dev)->gen >= 6)
2203                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2204         else if (INTEL_INFO(dev)->gen >= 4)
2205                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2206         else if (IS_I830(dev) || IS_845G(dev))
2207                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2208         else
2209                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2210         ring->init = init_render_ring;
2211         ring->cleanup = render_ring_cleanup;
2212
2213         /* Workaround batchbuffer to combat CS tlb bug. */
2214         if (HAS_BROKEN_CS_TLB(dev)) {
2215                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2216                 if (obj == NULL) {
2217                         DRM_ERROR("Failed to allocate batch bo\n");
2218                         return -ENOMEM;
2219                 }
2220
2221                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2222                 if (ret != 0) {
2223                         drm_gem_object_unreference(&obj->base);
2224                         DRM_ERROR("Failed to ping batch bo\n");
2225                         return ret;
2226                 }
2227
2228                 ring->scratch.obj = obj;
2229                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2230         }
2231
2232         return intel_init_ring_buffer(dev, ring);
2233 }
2234
2235 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2236 {
2237         struct drm_i915_private *dev_priv = dev->dev_private;
2238         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2239         struct intel_ringbuffer *ringbuf = ring->buffer;
2240         int ret;
2241
2242         if (ringbuf == NULL) {
2243                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2244                 if (!ringbuf)
2245                         return -ENOMEM;
2246                 ring->buffer = ringbuf;
2247         }
2248
2249         ring->name = "render ring";
2250         ring->id = RCS;
2251         ring->mmio_base = RENDER_RING_BASE;
2252
2253         if (INTEL_INFO(dev)->gen >= 6) {
2254                 /* non-kms not supported on gen6+ */
2255                 ret = -ENODEV;
2256                 goto err_ringbuf;
2257         }
2258
2259         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2260          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2261          * the special gen5 functions. */
2262         ring->add_request = i9xx_add_request;
2263         if (INTEL_INFO(dev)->gen < 4)
2264                 ring->flush = gen2_render_ring_flush;
2265         else
2266                 ring->flush = gen4_render_ring_flush;
2267         ring->get_seqno = ring_get_seqno;
2268         ring->set_seqno = ring_set_seqno;
2269         if (IS_GEN2(dev)) {
2270                 ring->irq_get = i8xx_ring_get_irq;
2271                 ring->irq_put = i8xx_ring_put_irq;
2272         } else {
2273                 ring->irq_get = i9xx_ring_get_irq;
2274                 ring->irq_put = i9xx_ring_put_irq;
2275         }
2276         ring->irq_enable_mask = I915_USER_INTERRUPT;
2277         ring->write_tail = ring_write_tail;
2278         if (INTEL_INFO(dev)->gen >= 4)
2279                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2280         else if (IS_I830(dev) || IS_845G(dev))
2281                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2282         else
2283                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2284         ring->init = init_render_ring;
2285         ring->cleanup = render_ring_cleanup;
2286
2287         ring->dev = dev;
2288         INIT_LIST_HEAD(&ring->active_list);
2289         INIT_LIST_HEAD(&ring->request_list);
2290
2291         ringbuf->size = size;
2292         ringbuf->effective_size = ringbuf->size;
2293         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2294                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2295
2296         ringbuf->virtual_start = ioremap_wc(start, size);
2297         if (ringbuf->virtual_start == NULL) {
2298                 DRM_ERROR("can not ioremap virtual address for"
2299                           " ring buffer\n");
2300                 ret = -ENOMEM;
2301                 goto err_ringbuf;
2302         }
2303
2304         if (!I915_NEED_GFX_HWS(dev)) {
2305                 ret = init_phys_status_page(ring);
2306                 if (ret)
2307                         goto err_vstart;
2308         }
2309
2310         return 0;
2311
2312 err_vstart:
2313         iounmap(ringbuf->virtual_start);
2314 err_ringbuf:
2315         kfree(ringbuf);
2316         ring->buffer = NULL;
2317         return ret;
2318 }
2319
2320 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2321 {
2322         struct drm_i915_private *dev_priv = dev->dev_private;
2323         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2324
2325         ring->name = "bsd ring";
2326         ring->id = VCS;
2327
2328         ring->write_tail = ring_write_tail;
2329         if (INTEL_INFO(dev)->gen >= 6) {
2330                 ring->mmio_base = GEN6_BSD_RING_BASE;
2331                 /* gen6 bsd needs a special wa for tail updates */
2332                 if (IS_GEN6(dev))
2333                         ring->write_tail = gen6_bsd_ring_write_tail;
2334                 ring->flush = gen6_bsd_ring_flush;
2335                 ring->add_request = gen6_add_request;
2336                 ring->get_seqno = gen6_ring_get_seqno;
2337                 ring->set_seqno = ring_set_seqno;
2338                 if (INTEL_INFO(dev)->gen >= 8) {
2339                         ring->irq_enable_mask =
2340                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2341                         ring->irq_get = gen8_ring_get_irq;
2342                         ring->irq_put = gen8_ring_put_irq;
2343                         ring->dispatch_execbuffer =
2344                                 gen8_ring_dispatch_execbuffer;
2345                         if (i915_semaphore_is_enabled(dev)) {
2346                                 ring->semaphore.sync_to = gen8_ring_sync;
2347                                 ring->semaphore.signal = gen8_xcs_signal;
2348                                 GEN8_RING_SEMAPHORE_INIT;
2349                         }
2350                 } else {
2351                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2352                         ring->irq_get = gen6_ring_get_irq;
2353                         ring->irq_put = gen6_ring_put_irq;
2354                         ring->dispatch_execbuffer =
2355                                 gen6_ring_dispatch_execbuffer;
2356                         if (i915_semaphore_is_enabled(dev)) {
2357                                 ring->semaphore.sync_to = gen6_ring_sync;
2358                                 ring->semaphore.signal = gen6_signal;
2359                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2360                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2361                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2362                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2363                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2364                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2365                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2366                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2367                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2368                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2369                         }
2370                 }
2371         } else {
2372                 ring->mmio_base = BSD_RING_BASE;
2373                 ring->flush = bsd_ring_flush;
2374                 ring->add_request = i9xx_add_request;
2375                 ring->get_seqno = ring_get_seqno;
2376                 ring->set_seqno = ring_set_seqno;
2377                 if (IS_GEN5(dev)) {
2378                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2379                         ring->irq_get = gen5_ring_get_irq;
2380                         ring->irq_put = gen5_ring_put_irq;
2381                 } else {
2382                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2383                         ring->irq_get = i9xx_ring_get_irq;
2384                         ring->irq_put = i9xx_ring_put_irq;
2385                 }
2386                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2387         }
2388         ring->init = init_ring_common;
2389
2390         return intel_init_ring_buffer(dev, ring);
2391 }
2392
2393 /**
2394  * Initialize the second BSD ring for Broadwell GT3.
2395  * It is noted that this only exists on Broadwell GT3.
2396  */
2397 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2398 {
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2401
2402         if ((INTEL_INFO(dev)->gen != 8)) {
2403                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2404                 return -EINVAL;
2405         }
2406
2407         ring->name = "bsd2 ring";
2408         ring->id = VCS2;
2409
2410         ring->write_tail = ring_write_tail;
2411         ring->mmio_base = GEN8_BSD2_RING_BASE;
2412         ring->flush = gen6_bsd_ring_flush;
2413         ring->add_request = gen6_add_request;
2414         ring->get_seqno = gen6_ring_get_seqno;
2415         ring->set_seqno = ring_set_seqno;
2416         ring->irq_enable_mask =
2417                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2418         ring->irq_get = gen8_ring_get_irq;
2419         ring->irq_put = gen8_ring_put_irq;
2420         ring->dispatch_execbuffer =
2421                         gen8_ring_dispatch_execbuffer;
2422         if (i915_semaphore_is_enabled(dev)) {
2423                 ring->semaphore.sync_to = gen8_ring_sync;
2424                 ring->semaphore.signal = gen8_xcs_signal;
2425                 GEN8_RING_SEMAPHORE_INIT;
2426         }
2427         ring->init = init_ring_common;
2428
2429         return intel_init_ring_buffer(dev, ring);
2430 }
2431
2432 int intel_init_blt_ring_buffer(struct drm_device *dev)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2436
2437         ring->name = "blitter ring";
2438         ring->id = BCS;
2439
2440         ring->mmio_base = BLT_RING_BASE;
2441         ring->write_tail = ring_write_tail;
2442         ring->flush = gen6_ring_flush;
2443         ring->add_request = gen6_add_request;
2444         ring->get_seqno = gen6_ring_get_seqno;
2445         ring->set_seqno = ring_set_seqno;
2446         if (INTEL_INFO(dev)->gen >= 8) {
2447                 ring->irq_enable_mask =
2448                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2449                 ring->irq_get = gen8_ring_get_irq;
2450                 ring->irq_put = gen8_ring_put_irq;
2451                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2452                 if (i915_semaphore_is_enabled(dev)) {
2453                         ring->semaphore.sync_to = gen8_ring_sync;
2454                         ring->semaphore.signal = gen8_xcs_signal;
2455                         GEN8_RING_SEMAPHORE_INIT;
2456                 }
2457         } else {
2458                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2459                 ring->irq_get = gen6_ring_get_irq;
2460                 ring->irq_put = gen6_ring_put_irq;
2461                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2462                 if (i915_semaphore_is_enabled(dev)) {
2463                         ring->semaphore.signal = gen6_signal;
2464                         ring->semaphore.sync_to = gen6_ring_sync;
2465                         /*
2466                          * The current semaphore is only applied on pre-gen8
2467                          * platform.  And there is no VCS2 ring on the pre-gen8
2468                          * platform. So the semaphore between BCS and VCS2 is
2469                          * initialized as INVALID.  Gen8 will initialize the
2470                          * sema between BCS and VCS2 later.
2471                          */
2472                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2473                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2474                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2475                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2476                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2477                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2478                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2479                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2480                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2481                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2482                 }
2483         }
2484         ring->init = init_ring_common;
2485
2486         return intel_init_ring_buffer(dev, ring);
2487 }
2488
2489 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2490 {
2491         struct drm_i915_private *dev_priv = dev->dev_private;
2492         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2493
2494         ring->name = "video enhancement ring";
2495         ring->id = VECS;
2496
2497         ring->mmio_base = VEBOX_RING_BASE;
2498         ring->write_tail = ring_write_tail;
2499         ring->flush = gen6_ring_flush;
2500         ring->add_request = gen6_add_request;
2501         ring->get_seqno = gen6_ring_get_seqno;
2502         ring->set_seqno = ring_set_seqno;
2503
2504         if (INTEL_INFO(dev)->gen >= 8) {
2505                 ring->irq_enable_mask =
2506                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2507                 ring->irq_get = gen8_ring_get_irq;
2508                 ring->irq_put = gen8_ring_put_irq;
2509                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2510                 if (i915_semaphore_is_enabled(dev)) {
2511                         ring->semaphore.sync_to = gen8_ring_sync;
2512                         ring->semaphore.signal = gen8_xcs_signal;
2513                         GEN8_RING_SEMAPHORE_INIT;
2514                 }
2515         } else {
2516                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2517                 ring->irq_get = hsw_vebox_get_irq;
2518                 ring->irq_put = hsw_vebox_put_irq;
2519                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2520                 if (i915_semaphore_is_enabled(dev)) {
2521                         ring->semaphore.sync_to = gen6_ring_sync;
2522                         ring->semaphore.signal = gen6_signal;
2523                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2524                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2525                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2526                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2527                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2528                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2529                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2530                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2531                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2532                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2533                 }
2534         }
2535         ring->init = init_ring_common;
2536
2537         return intel_init_ring_buffer(dev, ring);
2538 }
2539
2540 int
2541 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2542 {
2543         int ret;
2544
2545         if (!ring->gpu_caches_dirty)
2546                 return 0;
2547
2548         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2549         if (ret)
2550                 return ret;
2551
2552         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2553
2554         ring->gpu_caches_dirty = false;
2555         return 0;
2556 }
2557
2558 int
2559 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2560 {
2561         uint32_t flush_domains;
2562         int ret;
2563
2564         flush_domains = 0;
2565         if (ring->gpu_caches_dirty)
2566                 flush_domains = I915_GEM_GPU_DOMAINS;
2567
2568         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2569         if (ret)
2570                 return ret;
2571
2572         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2573
2574         ring->gpu_caches_dirty = false;
2575         return 0;
2576 }
2577
2578 void
2579 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2580 {
2581         int ret;
2582
2583         if (!intel_ring_initialized(ring))
2584                 return;
2585
2586         ret = intel_ring_idle(ring);
2587         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2588                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2589                           ring->name, ret);
2590
2591         stop_ring(ring);
2592 }