Merge tag 'drm-intel-next-2014-10-03-no-ppgtt' of git://anongit.freedesktop.org/drm...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 /* Workaround: we must issue a pipe_control with CS-stall bit
372                  * set before a pipe_control command that has the state cache
373                  * invalidate bit set. */
374                 gen7_render_ring_cs_stall_wa(ring);
375         }
376
377         ret = intel_ring_begin(ring, 4);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382         intel_ring_emit(ring, flags);
383         intel_ring_emit(ring, scratch_addr);
384         intel_ring_emit(ring, 0);
385         intel_ring_advance(ring);
386
387         if (!invalidate_domains && flush_domains)
388                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390         return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395                        u32 flags, u32 scratch_addr)
396 {
397         int ret;
398
399         ret = intel_ring_begin(ring, 6);
400         if (ret)
401                 return ret;
402
403         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404         intel_ring_emit(ring, flags);
405         intel_ring_emit(ring, scratch_addr);
406         intel_ring_emit(ring, 0);
407         intel_ring_emit(ring, 0);
408         intel_ring_emit(ring, 0);
409         intel_ring_advance(ring);
410
411         return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416                        u32 invalidate_domains, u32 flush_domains)
417 {
418         u32 flags = 0;
419         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420         int ret;
421
422         flags |= PIPE_CONTROL_CS_STALL;
423
424         if (flush_domains) {
425                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427         }
428         if (invalidate_domains) {
429                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_QW_WRITE;
436                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439                 ret = gen8_emit_pipe_control(ring,
440                                              PIPE_CONTROL_CS_STALL |
441                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
442                                              0);
443                 if (ret)
444                         return ret;
445         }
446
447         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448         if (ret)
449                 return ret;
450
451         if (!invalidate_domains && flush_domains)
452                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454         return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458                             u32 value)
459 {
460         struct drm_i915_private *dev_priv = ring->dev->dev_private;
461         I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u64 acthd;
468
469         if (INTEL_INFO(ring->dev)->gen >= 8)
470                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471                                          RING_ACTHD_UDW(ring->mmio_base));
472         else if (INTEL_INFO(ring->dev)->gen >= 4)
473                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474         else
475                 acthd = I915_READ(ACTHD);
476
477         return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 addr;
484
485         addr = dev_priv->status_page_dmah->busaddr;
486         if (INTEL_INFO(ring->dev)->gen >= 4)
487                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488         I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493         struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495         if (!IS_GEN2(ring->dev)) {
496                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499                         /* Sometimes we observe that the idle flag is not
500                          * set even though the ring is empty. So double
501                          * check before giving up.
502                          */
503                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504                                 return false;
505                 }
506         }
507
508         I915_WRITE_CTL(ring, 0);
509         I915_WRITE_HEAD(ring, 0);
510         ring->write_tail(ring, 0);
511
512         if (!IS_GEN2(ring->dev)) {
513                 (void)I915_READ_CTL(ring);
514                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515         }
516
517         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522         struct drm_device *dev = ring->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         struct intel_ringbuffer *ringbuf = ring->buffer;
525         struct drm_i915_gem_object *obj = ringbuf->obj;
526         int ret = 0;
527
528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530         if (!stop_ring(ring)) {
531                 /* G45 ring initialization often fails to reset head to zero */
532                 DRM_DEBUG_KMS("%s head not reset to zero "
533                               "ctl %08x head %08x tail %08x start %08x\n",
534                               ring->name,
535                               I915_READ_CTL(ring),
536                               I915_READ_HEAD(ring),
537                               I915_READ_TAIL(ring),
538                               I915_READ_START(ring));
539
540                 if (!stop_ring(ring)) {
541                         DRM_ERROR("failed to set %s head to zero "
542                                   "ctl %08x head %08x tail %08x start %08x\n",
543                                   ring->name,
544                                   I915_READ_CTL(ring),
545                                   I915_READ_HEAD(ring),
546                                   I915_READ_TAIL(ring),
547                                   I915_READ_START(ring));
548                         ret = -EIO;
549                         goto out;
550                 }
551         }
552
553         if (I915_NEED_GFX_HWS(dev))
554                 intel_ring_setup_status_page(ring);
555         else
556                 ring_setup_phys_status_page(ring);
557
558         /* Enforce ordering by reading HEAD register back */
559         I915_READ_HEAD(ring);
560
561         /* Initialize the ring. This must happen _after_ we've cleared the ring
562          * registers with the above sequence (the readback of the HEAD registers
563          * also enforces ordering), otherwise the hw might lose the new ring
564          * register values. */
565         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567         /* WaClearRingBufHeadRegAtInit:ctg,elk */
568         if (I915_READ_HEAD(ring))
569                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570                           ring->name, I915_READ_HEAD(ring));
571         I915_WRITE_HEAD(ring, 0);
572         (void)I915_READ_HEAD(ring);
573
574         I915_WRITE_CTL(ring,
575                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576                         | RING_VALID);
577
578         /* If the head is still not zero, the ring is dead */
579         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582                 DRM_ERROR("%s initialization failed "
583                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584                           ring->name,
585                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588                 ret = -EIO;
589                 goto out;
590         }
591
592         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593                 i915_kernel_lost_context(ring->dev);
594         else {
595                 ringbuf->head = I915_READ_HEAD(ring);
596                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597                 ringbuf->space = intel_ring_space(ringbuf);
598                 ringbuf->last_retired_head = -1;
599         }
600
601         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606         return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612         struct drm_device *dev = ring->dev;
613
614         if (ring->scratch.obj == NULL)
615                 return;
616
617         if (INTEL_INFO(dev)->gen >= 5) {
618                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620         }
621
622         drm_gem_object_unreference(&ring->scratch.obj->base);
623         ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629         int ret;
630
631         if (ring->scratch.obj)
632                 return 0;
633
634         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635         if (ring->scratch.obj == NULL) {
636                 DRM_ERROR("Failed to allocate seqno page\n");
637                 ret = -ENOMEM;
638                 goto err;
639         }
640
641         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642         if (ret)
643                 goto err_unref;
644
645         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646         if (ret)
647                 goto err_unref;
648
649         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651         if (ring->scratch.cpu_page == NULL) {
652                 ret = -ENOMEM;
653                 goto err_unpin;
654         }
655
656         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657                          ring->name, ring->scratch.gtt_offset);
658         return 0;
659
660 err_unpin:
661         i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663         drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665         return ret;
666 }
667
668 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669                                        u32 addr, u32 value)
670 {
671         struct drm_device *dev = ring->dev;
672         struct drm_i915_private *dev_priv = dev->dev_private;
673
674         if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
675                 return;
676
677         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678         intel_ring_emit(ring, addr);
679         intel_ring_emit(ring, value);
680
681         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683         /* value is updated with the status of remaining bits of this
684          * register when it is read from debugfs file
685          */
686         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687         dev_priv->num_wa_regs++;
688
689         return;
690 }
691
692 static int bdw_init_workarounds(struct intel_engine_cs *ring)
693 {
694         int ret;
695         struct drm_device *dev = ring->dev;
696         struct drm_i915_private *dev_priv = dev->dev_private;
697
698         /*
699          * workarounds applied in this fn are part of register state context,
700          * they need to be re-initialized followed by gpu reset, suspend/resume,
701          * module reload.
702          */
703         dev_priv->num_wa_regs = 0;
704         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
705
706         /*
707          * update the number of dwords required based on the
708          * actual number of workarounds applied
709          */
710         ret = intel_ring_begin(ring, 18);
711         if (ret)
712                 return ret;
713
714         /* WaDisablePartialInstShootdown:bdw */
715         /* WaDisableThreadStallDopClockGating:bdw */
716         /* FIXME: Unclear whether we really need this on production bdw. */
717         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719                                              | STALL_DOP_GATING_DISABLE));
720
721         /* WaDisableDopClockGating:bdw May not be needed for production */
722         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
726                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
727
728         /* Use Force Non-Coherent whenever executing a 3D context. This is a
729          * workaround for for a possible hang in the unlikely event a TLB
730          * invalidation occurs during a PSD flush.
731          */
732         /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
733         intel_ring_emit_wa(ring, HDC_CHICKEN0,
734                            _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT |
735                                               (IS_BDW_GT3(dev) ?
736                                                HDC_FENCE_DEST_SLM_DISABLE : 0)
737                                    ));
738
739         /* Wa4x4STCOptimizationDisable:bdw */
740         intel_ring_emit_wa(ring, CACHE_MODE_1,
741                            _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
742
743         /*
744          * BSpec recommends 8x4 when MSAA is used,
745          * however in practice 16x4 seems fastest.
746          *
747          * Note that PS/WM thread counts depend on the WIZ hashing
748          * disable bit, which we don't touch here, but it's good
749          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
750          */
751         intel_ring_emit_wa(ring, GEN7_GT_MODE,
752                            GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
753
754         intel_ring_advance(ring);
755
756         DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
757                          dev_priv->num_wa_regs);
758
759         return 0;
760 }
761
762 static int chv_init_workarounds(struct intel_engine_cs *ring)
763 {
764         int ret;
765         struct drm_device *dev = ring->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767
768         /*
769          * workarounds applied in this fn are part of register state context,
770          * they need to be re-initialized followed by gpu reset, suspend/resume,
771          * module reload.
772          */
773         dev_priv->num_wa_regs = 0;
774         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
775
776         ret = intel_ring_begin(ring, 12);
777         if (ret)
778                 return ret;
779
780         /* WaDisablePartialInstShootdown:chv */
781         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
782                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
783
784         /* WaDisableThreadStallDopClockGating:chv */
785         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
786                            _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
787
788         /* WaDisableDopClockGating:chv (pre-production hw) */
789         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
790                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
791
792         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
793         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
794                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
795
796         intel_ring_advance(ring);
797
798         return 0;
799 }
800
801 static int init_render_ring(struct intel_engine_cs *ring)
802 {
803         struct drm_device *dev = ring->dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         int ret = init_ring_common(ring);
806         if (ret)
807                 return ret;
808
809         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
810         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
811                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
812
813         /* We need to disable the AsyncFlip performance optimisations in order
814          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
815          * programmed to '1' on all products.
816          *
817          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
818          */
819         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
820                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
821
822         /* Required for the hardware to program scanline values for waiting */
823         /* WaEnableFlushTlbInvalidationMode:snb */
824         if (INTEL_INFO(dev)->gen == 6)
825                 I915_WRITE(GFX_MODE,
826                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
827
828         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
829         if (IS_GEN7(dev))
830                 I915_WRITE(GFX_MODE_GEN7,
831                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
832                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
833
834         if (INTEL_INFO(dev)->gen >= 5) {
835                 ret = intel_init_pipe_control(ring);
836                 if (ret)
837                         return ret;
838         }
839
840         if (IS_GEN6(dev)) {
841                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
842                  * "If this bit is set, STCunit will have LRA as replacement
843                  *  policy. [...] This bit must be reset.  LRA replacement
844                  *  policy is not supported."
845                  */
846                 I915_WRITE(CACHE_MODE_0,
847                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
848         }
849
850         if (INTEL_INFO(dev)->gen >= 6)
851                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
852
853         if (HAS_L3_DPF(dev))
854                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
855
856         return ret;
857 }
858
859 static void render_ring_cleanup(struct intel_engine_cs *ring)
860 {
861         struct drm_device *dev = ring->dev;
862         struct drm_i915_private *dev_priv = dev->dev_private;
863
864         if (dev_priv->semaphore_obj) {
865                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
866                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
867                 dev_priv->semaphore_obj = NULL;
868         }
869
870         intel_fini_pipe_control(ring);
871 }
872
873 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
874                            unsigned int num_dwords)
875 {
876 #define MBOX_UPDATE_DWORDS 8
877         struct drm_device *dev = signaller->dev;
878         struct drm_i915_private *dev_priv = dev->dev_private;
879         struct intel_engine_cs *waiter;
880         int i, ret, num_rings;
881
882         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
883         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
884 #undef MBOX_UPDATE_DWORDS
885
886         ret = intel_ring_begin(signaller, num_dwords);
887         if (ret)
888                 return ret;
889
890         for_each_ring(waiter, dev_priv, i) {
891                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
892                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
893                         continue;
894
895                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
896                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
897                                            PIPE_CONTROL_QW_WRITE |
898                                            PIPE_CONTROL_FLUSH_ENABLE);
899                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
900                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
901                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
902                 intel_ring_emit(signaller, 0);
903                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
904                                            MI_SEMAPHORE_TARGET(waiter->id));
905                 intel_ring_emit(signaller, 0);
906         }
907
908         return 0;
909 }
910
911 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
912                            unsigned int num_dwords)
913 {
914 #define MBOX_UPDATE_DWORDS 6
915         struct drm_device *dev = signaller->dev;
916         struct drm_i915_private *dev_priv = dev->dev_private;
917         struct intel_engine_cs *waiter;
918         int i, ret, num_rings;
919
920         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
921         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
922 #undef MBOX_UPDATE_DWORDS
923
924         ret = intel_ring_begin(signaller, num_dwords);
925         if (ret)
926                 return ret;
927
928         for_each_ring(waiter, dev_priv, i) {
929                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
930                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
931                         continue;
932
933                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
934                                            MI_FLUSH_DW_OP_STOREDW);
935                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
936                                            MI_FLUSH_DW_USE_GTT);
937                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
938                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
939                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
940                                            MI_SEMAPHORE_TARGET(waiter->id));
941                 intel_ring_emit(signaller, 0);
942         }
943
944         return 0;
945 }
946
947 static int gen6_signal(struct intel_engine_cs *signaller,
948                        unsigned int num_dwords)
949 {
950         struct drm_device *dev = signaller->dev;
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         struct intel_engine_cs *useless;
953         int i, ret, num_rings;
954
955 #define MBOX_UPDATE_DWORDS 3
956         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
957         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
958 #undef MBOX_UPDATE_DWORDS
959
960         ret = intel_ring_begin(signaller, num_dwords);
961         if (ret)
962                 return ret;
963
964         for_each_ring(useless, dev_priv, i) {
965                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
966                 if (mbox_reg != GEN6_NOSYNC) {
967                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
968                         intel_ring_emit(signaller, mbox_reg);
969                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
970                 }
971         }
972
973         /* If num_dwords was rounded, make sure the tail pointer is correct */
974         if (num_rings % 2 == 0)
975                 intel_ring_emit(signaller, MI_NOOP);
976
977         return 0;
978 }
979
980 /**
981  * gen6_add_request - Update the semaphore mailbox registers
982  * 
983  * @ring - ring that is adding a request
984  * @seqno - return seqno stuck into the ring
985  *
986  * Update the mailbox registers in the *other* rings with the current seqno.
987  * This acts like a signal in the canonical semaphore.
988  */
989 static int
990 gen6_add_request(struct intel_engine_cs *ring)
991 {
992         int ret;
993
994         if (ring->semaphore.signal)
995                 ret = ring->semaphore.signal(ring, 4);
996         else
997                 ret = intel_ring_begin(ring, 4);
998
999         if (ret)
1000                 return ret;
1001
1002         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1003         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1004         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1005         intel_ring_emit(ring, MI_USER_INTERRUPT);
1006         __intel_ring_advance(ring);
1007
1008         return 0;
1009 }
1010
1011 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1012                                               u32 seqno)
1013 {
1014         struct drm_i915_private *dev_priv = dev->dev_private;
1015         return dev_priv->last_seqno < seqno;
1016 }
1017
1018 /**
1019  * intel_ring_sync - sync the waiter to the signaller on seqno
1020  *
1021  * @waiter - ring that is waiting
1022  * @signaller - ring which has, or will signal
1023  * @seqno - seqno which the waiter will block on
1024  */
1025
1026 static int
1027 gen8_ring_sync(struct intel_engine_cs *waiter,
1028                struct intel_engine_cs *signaller,
1029                u32 seqno)
1030 {
1031         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1032         int ret;
1033
1034         ret = intel_ring_begin(waiter, 4);
1035         if (ret)
1036                 return ret;
1037
1038         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1039                                 MI_SEMAPHORE_GLOBAL_GTT |
1040                                 MI_SEMAPHORE_POLL |
1041                                 MI_SEMAPHORE_SAD_GTE_SDD);
1042         intel_ring_emit(waiter, seqno);
1043         intel_ring_emit(waiter,
1044                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1045         intel_ring_emit(waiter,
1046                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1047         intel_ring_advance(waiter);
1048         return 0;
1049 }
1050
1051 static int
1052 gen6_ring_sync(struct intel_engine_cs *waiter,
1053                struct intel_engine_cs *signaller,
1054                u32 seqno)
1055 {
1056         u32 dw1 = MI_SEMAPHORE_MBOX |
1057                   MI_SEMAPHORE_COMPARE |
1058                   MI_SEMAPHORE_REGISTER;
1059         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1060         int ret;
1061
1062         /* Throughout all of the GEM code, seqno passed implies our current
1063          * seqno is >= the last seqno executed. However for hardware the
1064          * comparison is strictly greater than.
1065          */
1066         seqno -= 1;
1067
1068         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1069
1070         ret = intel_ring_begin(waiter, 4);
1071         if (ret)
1072                 return ret;
1073
1074         /* If seqno wrap happened, omit the wait with no-ops */
1075         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1076                 intel_ring_emit(waiter, dw1 | wait_mbox);
1077                 intel_ring_emit(waiter, seqno);
1078                 intel_ring_emit(waiter, 0);
1079                 intel_ring_emit(waiter, MI_NOOP);
1080         } else {
1081                 intel_ring_emit(waiter, MI_NOOP);
1082                 intel_ring_emit(waiter, MI_NOOP);
1083                 intel_ring_emit(waiter, MI_NOOP);
1084                 intel_ring_emit(waiter, MI_NOOP);
1085         }
1086         intel_ring_advance(waiter);
1087
1088         return 0;
1089 }
1090
1091 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1092 do {                                                                    \
1093         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1094                  PIPE_CONTROL_DEPTH_STALL);                             \
1095         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1096         intel_ring_emit(ring__, 0);                                                     \
1097         intel_ring_emit(ring__, 0);                                                     \
1098 } while (0)
1099
1100 static int
1101 pc_render_add_request(struct intel_engine_cs *ring)
1102 {
1103         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1104         int ret;
1105
1106         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1107          * incoherent with writes to memory, i.e. completely fubar,
1108          * so we need to use PIPE_NOTIFY instead.
1109          *
1110          * However, we also need to workaround the qword write
1111          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1112          * memory before requesting an interrupt.
1113          */
1114         ret = intel_ring_begin(ring, 32);
1115         if (ret)
1116                 return ret;
1117
1118         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1119                         PIPE_CONTROL_WRITE_FLUSH |
1120                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1121         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1122         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1123         intel_ring_emit(ring, 0);
1124         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1126         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127         scratch_addr += 2 * CACHELINE_BYTES;
1128         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129         scratch_addr += 2 * CACHELINE_BYTES;
1130         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131         scratch_addr += 2 * CACHELINE_BYTES;
1132         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1133         scratch_addr += 2 * CACHELINE_BYTES;
1134         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1135
1136         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1137                         PIPE_CONTROL_WRITE_FLUSH |
1138                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1139                         PIPE_CONTROL_NOTIFY);
1140         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1141         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1142         intel_ring_emit(ring, 0);
1143         __intel_ring_advance(ring);
1144
1145         return 0;
1146 }
1147
1148 static u32
1149 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1150 {
1151         /* Workaround to force correct ordering between irq and seqno writes on
1152          * ivb (and maybe also on snb) by reading from a CS register (like
1153          * ACTHD) before reading the status page. */
1154         if (!lazy_coherency) {
1155                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1156                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1157         }
1158
1159         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1160 }
1161
1162 static u32
1163 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1164 {
1165         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1166 }
1167
1168 static void
1169 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1170 {
1171         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1172 }
1173
1174 static u32
1175 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1176 {
1177         return ring->scratch.cpu_page[0];
1178 }
1179
1180 static void
1181 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1182 {
1183         ring->scratch.cpu_page[0] = seqno;
1184 }
1185
1186 static bool
1187 gen5_ring_get_irq(struct intel_engine_cs *ring)
1188 {
1189         struct drm_device *dev = ring->dev;
1190         struct drm_i915_private *dev_priv = dev->dev_private;
1191         unsigned long flags;
1192
1193         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1194                 return false;
1195
1196         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1197         if (ring->irq_refcount++ == 0)
1198                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1199         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1200
1201         return true;
1202 }
1203
1204 static void
1205 gen5_ring_put_irq(struct intel_engine_cs *ring)
1206 {
1207         struct drm_device *dev = ring->dev;
1208         struct drm_i915_private *dev_priv = dev->dev_private;
1209         unsigned long flags;
1210
1211         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1212         if (--ring->irq_refcount == 0)
1213                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1214         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1215 }
1216
1217 static bool
1218 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1219 {
1220         struct drm_device *dev = ring->dev;
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         unsigned long flags;
1223
1224         if (!intel_irqs_enabled(dev_priv))
1225                 return false;
1226
1227         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1228         if (ring->irq_refcount++ == 0) {
1229                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1230                 I915_WRITE(IMR, dev_priv->irq_mask);
1231                 POSTING_READ(IMR);
1232         }
1233         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1234
1235         return true;
1236 }
1237
1238 static void
1239 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1240 {
1241         struct drm_device *dev = ring->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         unsigned long flags;
1244
1245         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1246         if (--ring->irq_refcount == 0) {
1247                 dev_priv->irq_mask |= ring->irq_enable_mask;
1248                 I915_WRITE(IMR, dev_priv->irq_mask);
1249                 POSTING_READ(IMR);
1250         }
1251         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1252 }
1253
1254 static bool
1255 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1256 {
1257         struct drm_device *dev = ring->dev;
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         unsigned long flags;
1260
1261         if (!intel_irqs_enabled(dev_priv))
1262                 return false;
1263
1264         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1265         if (ring->irq_refcount++ == 0) {
1266                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1267                 I915_WRITE16(IMR, dev_priv->irq_mask);
1268                 POSTING_READ16(IMR);
1269         }
1270         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1271
1272         return true;
1273 }
1274
1275 static void
1276 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1277 {
1278         struct drm_device *dev = ring->dev;
1279         struct drm_i915_private *dev_priv = dev->dev_private;
1280         unsigned long flags;
1281
1282         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1283         if (--ring->irq_refcount == 0) {
1284                 dev_priv->irq_mask |= ring->irq_enable_mask;
1285                 I915_WRITE16(IMR, dev_priv->irq_mask);
1286                 POSTING_READ16(IMR);
1287         }
1288         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1289 }
1290
1291 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1292 {
1293         struct drm_device *dev = ring->dev;
1294         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1295         u32 mmio = 0;
1296
1297         /* The ring status page addresses are no longer next to the rest of
1298          * the ring registers as of gen7.
1299          */
1300         if (IS_GEN7(dev)) {
1301                 switch (ring->id) {
1302                 case RCS:
1303                         mmio = RENDER_HWS_PGA_GEN7;
1304                         break;
1305                 case BCS:
1306                         mmio = BLT_HWS_PGA_GEN7;
1307                         break;
1308                 /*
1309                  * VCS2 actually doesn't exist on Gen7. Only shut up
1310                  * gcc switch check warning
1311                  */
1312                 case VCS2:
1313                 case VCS:
1314                         mmio = BSD_HWS_PGA_GEN7;
1315                         break;
1316                 case VECS:
1317                         mmio = VEBOX_HWS_PGA_GEN7;
1318                         break;
1319                 }
1320         } else if (IS_GEN6(ring->dev)) {
1321                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1322         } else {
1323                 /* XXX: gen8 returns to sanity */
1324                 mmio = RING_HWS_PGA(ring->mmio_base);
1325         }
1326
1327         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1328         POSTING_READ(mmio);
1329
1330         /*
1331          * Flush the TLB for this page
1332          *
1333          * FIXME: These two bits have disappeared on gen8, so a question
1334          * arises: do we still need this and if so how should we go about
1335          * invalidating the TLB?
1336          */
1337         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1338                 u32 reg = RING_INSTPM(ring->mmio_base);
1339
1340                 /* ring should be idle before issuing a sync flush*/
1341                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1342
1343                 I915_WRITE(reg,
1344                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1345                                               INSTPM_SYNC_FLUSH));
1346                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1347                              1000))
1348                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1349                                   ring->name);
1350         }
1351 }
1352
1353 static int
1354 bsd_ring_flush(struct intel_engine_cs *ring,
1355                u32     invalidate_domains,
1356                u32     flush_domains)
1357 {
1358         int ret;
1359
1360         ret = intel_ring_begin(ring, 2);
1361         if (ret)
1362                 return ret;
1363
1364         intel_ring_emit(ring, MI_FLUSH);
1365         intel_ring_emit(ring, MI_NOOP);
1366         intel_ring_advance(ring);
1367         return 0;
1368 }
1369
1370 static int
1371 i9xx_add_request(struct intel_engine_cs *ring)
1372 {
1373         int ret;
1374
1375         ret = intel_ring_begin(ring, 4);
1376         if (ret)
1377                 return ret;
1378
1379         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1380         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1381         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1382         intel_ring_emit(ring, MI_USER_INTERRUPT);
1383         __intel_ring_advance(ring);
1384
1385         return 0;
1386 }
1387
1388 static bool
1389 gen6_ring_get_irq(struct intel_engine_cs *ring)
1390 {
1391         struct drm_device *dev = ring->dev;
1392         struct drm_i915_private *dev_priv = dev->dev_private;
1393         unsigned long flags;
1394
1395         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1396                 return false;
1397
1398         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1399         if (ring->irq_refcount++ == 0) {
1400                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1401                         I915_WRITE_IMR(ring,
1402                                        ~(ring->irq_enable_mask |
1403                                          GT_PARITY_ERROR(dev)));
1404                 else
1405                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1406                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1407         }
1408         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1409
1410         return true;
1411 }
1412
1413 static void
1414 gen6_ring_put_irq(struct intel_engine_cs *ring)
1415 {
1416         struct drm_device *dev = ring->dev;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         unsigned long flags;
1419
1420         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1421         if (--ring->irq_refcount == 0) {
1422                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1423                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1424                 else
1425                         I915_WRITE_IMR(ring, ~0);
1426                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1427         }
1428         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1429 }
1430
1431 static bool
1432 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1433 {
1434         struct drm_device *dev = ring->dev;
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         unsigned long flags;
1437
1438         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1439                 return false;
1440
1441         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1442         if (ring->irq_refcount++ == 0) {
1443                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1444                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1445         }
1446         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1447
1448         return true;
1449 }
1450
1451 static void
1452 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1453 {
1454         struct drm_device *dev = ring->dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         unsigned long flags;
1457
1458         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1459         if (--ring->irq_refcount == 0) {
1460                 I915_WRITE_IMR(ring, ~0);
1461                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1462         }
1463         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1464 }
1465
1466 static bool
1467 gen8_ring_get_irq(struct intel_engine_cs *ring)
1468 {
1469         struct drm_device *dev = ring->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         unsigned long flags;
1472
1473         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1474                 return false;
1475
1476         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1477         if (ring->irq_refcount++ == 0) {
1478                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1479                         I915_WRITE_IMR(ring,
1480                                        ~(ring->irq_enable_mask |
1481                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1482                 } else {
1483                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1484                 }
1485                 POSTING_READ(RING_IMR(ring->mmio_base));
1486         }
1487         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1488
1489         return true;
1490 }
1491
1492 static void
1493 gen8_ring_put_irq(struct intel_engine_cs *ring)
1494 {
1495         struct drm_device *dev = ring->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         unsigned long flags;
1498
1499         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1500         if (--ring->irq_refcount == 0) {
1501                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1502                         I915_WRITE_IMR(ring,
1503                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1504                 } else {
1505                         I915_WRITE_IMR(ring, ~0);
1506                 }
1507                 POSTING_READ(RING_IMR(ring->mmio_base));
1508         }
1509         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1510 }
1511
1512 static int
1513 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1514                          u64 offset, u32 length,
1515                          unsigned flags)
1516 {
1517         int ret;
1518
1519         ret = intel_ring_begin(ring, 2);
1520         if (ret)
1521                 return ret;
1522
1523         intel_ring_emit(ring,
1524                         MI_BATCH_BUFFER_START |
1525                         MI_BATCH_GTT |
1526                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1527         intel_ring_emit(ring, offset);
1528         intel_ring_advance(ring);
1529
1530         return 0;
1531 }
1532
1533 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1534 #define I830_BATCH_LIMIT (256*1024)
1535 #define I830_TLB_ENTRIES (2)
1536 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1537 static int
1538 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1539                                 u64 offset, u32 len,
1540                                 unsigned flags)
1541 {
1542         u32 cs_offset = ring->scratch.gtt_offset;
1543         int ret;
1544
1545         ret = intel_ring_begin(ring, 6);
1546         if (ret)
1547                 return ret;
1548
1549         /* Evict the invalid PTE TLBs */
1550         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1551         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1552         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1553         intel_ring_emit(ring, cs_offset);
1554         intel_ring_emit(ring, 0xdeadbeef);
1555         intel_ring_emit(ring, MI_NOOP);
1556         intel_ring_advance(ring);
1557
1558         if ((flags & I915_DISPATCH_PINNED) == 0) {
1559                 if (len > I830_BATCH_LIMIT)
1560                         return -ENOSPC;
1561
1562                 ret = intel_ring_begin(ring, 6 + 2);
1563                 if (ret)
1564                         return ret;
1565
1566                 /* Blit the batch (which has now all relocs applied) to the
1567                  * stable batch scratch bo area (so that the CS never
1568                  * stumbles over its tlb invalidation bug) ...
1569                  */
1570                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1571                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1572                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1573                 intel_ring_emit(ring, cs_offset);
1574                 intel_ring_emit(ring, 4096);
1575                 intel_ring_emit(ring, offset);
1576
1577                 intel_ring_emit(ring, MI_FLUSH);
1578                 intel_ring_emit(ring, MI_NOOP);
1579                 intel_ring_advance(ring);
1580
1581                 /* ... and execute it. */
1582                 offset = cs_offset;
1583         }
1584
1585         ret = intel_ring_begin(ring, 4);
1586         if (ret)
1587                 return ret;
1588
1589         intel_ring_emit(ring, MI_BATCH_BUFFER);
1590         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1591         intel_ring_emit(ring, offset + len - 8);
1592         intel_ring_emit(ring, MI_NOOP);
1593         intel_ring_advance(ring);
1594
1595         return 0;
1596 }
1597
1598 static int
1599 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1600                          u64 offset, u32 len,
1601                          unsigned flags)
1602 {
1603         int ret;
1604
1605         ret = intel_ring_begin(ring, 2);
1606         if (ret)
1607                 return ret;
1608
1609         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1610         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1611         intel_ring_advance(ring);
1612
1613         return 0;
1614 }
1615
1616 static void cleanup_status_page(struct intel_engine_cs *ring)
1617 {
1618         struct drm_i915_gem_object *obj;
1619
1620         obj = ring->status_page.obj;
1621         if (obj == NULL)
1622                 return;
1623
1624         kunmap(sg_page(obj->pages->sgl));
1625         i915_gem_object_ggtt_unpin(obj);
1626         drm_gem_object_unreference(&obj->base);
1627         ring->status_page.obj = NULL;
1628 }
1629
1630 static int init_status_page(struct intel_engine_cs *ring)
1631 {
1632         struct drm_i915_gem_object *obj;
1633
1634         if ((obj = ring->status_page.obj) == NULL) {
1635                 unsigned flags;
1636                 int ret;
1637
1638                 obj = i915_gem_alloc_object(ring->dev, 4096);
1639                 if (obj == NULL) {
1640                         DRM_ERROR("Failed to allocate status page\n");
1641                         return -ENOMEM;
1642                 }
1643
1644                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1645                 if (ret)
1646                         goto err_unref;
1647
1648                 flags = 0;
1649                 if (!HAS_LLC(ring->dev))
1650                         /* On g33, we cannot place HWS above 256MiB, so
1651                          * restrict its pinning to the low mappable arena.
1652                          * Though this restriction is not documented for
1653                          * gen4, gen5, or byt, they also behave similarly
1654                          * and hang if the HWS is placed at the top of the
1655                          * GTT. To generalise, it appears that all !llc
1656                          * platforms have issues with us placing the HWS
1657                          * above the mappable region (even though we never
1658                          * actualy map it).
1659                          */
1660                         flags |= PIN_MAPPABLE;
1661                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1662                 if (ret) {
1663 err_unref:
1664                         drm_gem_object_unreference(&obj->base);
1665                         return ret;
1666                 }
1667
1668                 ring->status_page.obj = obj;
1669         }
1670
1671         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1672         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1673         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1674
1675         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1676                         ring->name, ring->status_page.gfx_addr);
1677
1678         return 0;
1679 }
1680
1681 static int init_phys_status_page(struct intel_engine_cs *ring)
1682 {
1683         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1684
1685         if (!dev_priv->status_page_dmah) {
1686                 dev_priv->status_page_dmah =
1687                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1688                 if (!dev_priv->status_page_dmah)
1689                         return -ENOMEM;
1690         }
1691
1692         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1693         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1694
1695         return 0;
1696 }
1697
1698 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1699 {
1700         if (!ringbuf->obj)
1701                 return;
1702
1703         iounmap(ringbuf->virtual_start);
1704         i915_gem_object_ggtt_unpin(ringbuf->obj);
1705         drm_gem_object_unreference(&ringbuf->obj->base);
1706         ringbuf->obj = NULL;
1707 }
1708
1709 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1710                                struct intel_ringbuffer *ringbuf)
1711 {
1712         struct drm_i915_private *dev_priv = to_i915(dev);
1713         struct drm_i915_gem_object *obj;
1714         int ret;
1715
1716         if (ringbuf->obj)
1717                 return 0;
1718
1719         obj = NULL;
1720         if (!HAS_LLC(dev))
1721                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1722         if (obj == NULL)
1723                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1724         if (obj == NULL)
1725                 return -ENOMEM;
1726
1727         /* mark ring buffers as read-only from GPU side by default */
1728         obj->gt_ro = 1;
1729
1730         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1731         if (ret)
1732                 goto err_unref;
1733
1734         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1735         if (ret)
1736                 goto err_unpin;
1737
1738         ringbuf->virtual_start =
1739                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1740                                 ringbuf->size);
1741         if (ringbuf->virtual_start == NULL) {
1742                 ret = -EINVAL;
1743                 goto err_unpin;
1744         }
1745
1746         ringbuf->obj = obj;
1747         return 0;
1748
1749 err_unpin:
1750         i915_gem_object_ggtt_unpin(obj);
1751 err_unref:
1752         drm_gem_object_unreference(&obj->base);
1753         return ret;
1754 }
1755
1756 static int intel_init_ring_buffer(struct drm_device *dev,
1757                                   struct intel_engine_cs *ring)
1758 {
1759         struct intel_ringbuffer *ringbuf = ring->buffer;
1760         int ret;
1761
1762         if (ringbuf == NULL) {
1763                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1764                 if (!ringbuf)
1765                         return -ENOMEM;
1766                 ring->buffer = ringbuf;
1767         }
1768
1769         ring->dev = dev;
1770         INIT_LIST_HEAD(&ring->active_list);
1771         INIT_LIST_HEAD(&ring->request_list);
1772         INIT_LIST_HEAD(&ring->execlist_queue);
1773         ringbuf->size = 32 * PAGE_SIZE;
1774         ringbuf->ring = ring;
1775         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1776
1777         init_waitqueue_head(&ring->irq_queue);
1778
1779         if (I915_NEED_GFX_HWS(dev)) {
1780                 ret = init_status_page(ring);
1781                 if (ret)
1782                         goto error;
1783         } else {
1784                 BUG_ON(ring->id != RCS);
1785                 ret = init_phys_status_page(ring);
1786                 if (ret)
1787                         goto error;
1788         }
1789
1790         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1791         if (ret) {
1792                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1793                 goto error;
1794         }
1795
1796         /* Workaround an erratum on the i830 which causes a hang if
1797          * the TAIL pointer points to within the last 2 cachelines
1798          * of the buffer.
1799          */
1800         ringbuf->effective_size = ringbuf->size;
1801         if (IS_I830(dev) || IS_845G(dev))
1802                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1803
1804         ret = i915_cmd_parser_init_ring(ring);
1805         if (ret)
1806                 goto error;
1807
1808         ret = ring->init(ring);
1809         if (ret)
1810                 goto error;
1811
1812         return 0;
1813
1814 error:
1815         kfree(ringbuf);
1816         ring->buffer = NULL;
1817         return ret;
1818 }
1819
1820 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1821 {
1822         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1823         struct intel_ringbuffer *ringbuf = ring->buffer;
1824
1825         if (!intel_ring_initialized(ring))
1826                 return;
1827
1828         intel_stop_ring_buffer(ring);
1829         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1830
1831         intel_destroy_ringbuffer_obj(ringbuf);
1832         ring->preallocated_lazy_request = NULL;
1833         ring->outstanding_lazy_seqno = 0;
1834
1835         if (ring->cleanup)
1836                 ring->cleanup(ring);
1837
1838         cleanup_status_page(ring);
1839
1840         i915_cmd_parser_fini_ring(ring);
1841
1842         kfree(ringbuf);
1843         ring->buffer = NULL;
1844 }
1845
1846 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1847 {
1848         struct intel_ringbuffer *ringbuf = ring->buffer;
1849         struct drm_i915_gem_request *request;
1850         u32 seqno = 0;
1851         int ret;
1852
1853         if (ringbuf->last_retired_head != -1) {
1854                 ringbuf->head = ringbuf->last_retired_head;
1855                 ringbuf->last_retired_head = -1;
1856
1857                 ringbuf->space = intel_ring_space(ringbuf);
1858                 if (ringbuf->space >= n)
1859                         return 0;
1860         }
1861
1862         list_for_each_entry(request, &ring->request_list, list) {
1863                 if (__intel_ring_space(request->tail, ringbuf->tail,
1864                                        ringbuf->size) >= n) {
1865                         seqno = request->seqno;
1866                         break;
1867                 }
1868         }
1869
1870         if (seqno == 0)
1871                 return -ENOSPC;
1872
1873         ret = i915_wait_seqno(ring, seqno);
1874         if (ret)
1875                 return ret;
1876
1877         i915_gem_retire_requests_ring(ring);
1878         ringbuf->head = ringbuf->last_retired_head;
1879         ringbuf->last_retired_head = -1;
1880
1881         ringbuf->space = intel_ring_space(ringbuf);
1882         return 0;
1883 }
1884
1885 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1886 {
1887         struct drm_device *dev = ring->dev;
1888         struct drm_i915_private *dev_priv = dev->dev_private;
1889         struct intel_ringbuffer *ringbuf = ring->buffer;
1890         unsigned long end;
1891         int ret;
1892
1893         ret = intel_ring_wait_request(ring, n);
1894         if (ret != -ENOSPC)
1895                 return ret;
1896
1897         /* force the tail write in case we have been skipping them */
1898         __intel_ring_advance(ring);
1899
1900         /* With GEM the hangcheck timer should kick us out of the loop,
1901          * leaving it early runs the risk of corrupting GEM state (due
1902          * to running on almost untested codepaths). But on resume
1903          * timers don't work yet, so prevent a complete hang in that
1904          * case by choosing an insanely large timeout. */
1905         end = jiffies + 60 * HZ;
1906
1907         trace_i915_ring_wait_begin(ring);
1908         do {
1909                 ringbuf->head = I915_READ_HEAD(ring);
1910                 ringbuf->space = intel_ring_space(ringbuf);
1911                 if (ringbuf->space >= n) {
1912                         ret = 0;
1913                         break;
1914                 }
1915
1916                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1917                     dev->primary->master) {
1918                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1919                         if (master_priv->sarea_priv)
1920                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1921                 }
1922
1923                 msleep(1);
1924
1925                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1926                         ret = -ERESTARTSYS;
1927                         break;
1928                 }
1929
1930                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1931                                            dev_priv->mm.interruptible);
1932                 if (ret)
1933                         break;
1934
1935                 if (time_after(jiffies, end)) {
1936                         ret = -EBUSY;
1937                         break;
1938                 }
1939         } while (1);
1940         trace_i915_ring_wait_end(ring);
1941         return ret;
1942 }
1943
1944 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1945 {
1946         uint32_t __iomem *virt;
1947         struct intel_ringbuffer *ringbuf = ring->buffer;
1948         int rem = ringbuf->size - ringbuf->tail;
1949
1950         if (ringbuf->space < rem) {
1951                 int ret = ring_wait_for_space(ring, rem);
1952                 if (ret)
1953                         return ret;
1954         }
1955
1956         virt = ringbuf->virtual_start + ringbuf->tail;
1957         rem /= 4;
1958         while (rem--)
1959                 iowrite32(MI_NOOP, virt++);
1960
1961         ringbuf->tail = 0;
1962         ringbuf->space = intel_ring_space(ringbuf);
1963
1964         return 0;
1965 }
1966
1967 int intel_ring_idle(struct intel_engine_cs *ring)
1968 {
1969         u32 seqno;
1970         int ret;
1971
1972         /* We need to add any requests required to flush the objects and ring */
1973         if (ring->outstanding_lazy_seqno) {
1974                 ret = i915_add_request(ring, NULL);
1975                 if (ret)
1976                         return ret;
1977         }
1978
1979         /* Wait upon the last request to be completed */
1980         if (list_empty(&ring->request_list))
1981                 return 0;
1982
1983         seqno = list_entry(ring->request_list.prev,
1984                            struct drm_i915_gem_request,
1985                            list)->seqno;
1986
1987         return i915_wait_seqno(ring, seqno);
1988 }
1989
1990 static int
1991 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1992 {
1993         if (ring->outstanding_lazy_seqno)
1994                 return 0;
1995
1996         if (ring->preallocated_lazy_request == NULL) {
1997                 struct drm_i915_gem_request *request;
1998
1999                 request = kmalloc(sizeof(*request), GFP_KERNEL);
2000                 if (request == NULL)
2001                         return -ENOMEM;
2002
2003                 ring->preallocated_lazy_request = request;
2004         }
2005
2006         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2007 }
2008
2009 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2010                                 int bytes)
2011 {
2012         struct intel_ringbuffer *ringbuf = ring->buffer;
2013         int ret;
2014
2015         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2016                 ret = intel_wrap_ring_buffer(ring);
2017                 if (unlikely(ret))
2018                         return ret;
2019         }
2020
2021         if (unlikely(ringbuf->space < bytes)) {
2022                 ret = ring_wait_for_space(ring, bytes);
2023                 if (unlikely(ret))
2024                         return ret;
2025         }
2026
2027         return 0;
2028 }
2029
2030 int intel_ring_begin(struct intel_engine_cs *ring,
2031                      int num_dwords)
2032 {
2033         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2034         int ret;
2035
2036         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2037                                    dev_priv->mm.interruptible);
2038         if (ret)
2039                 return ret;
2040
2041         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2042         if (ret)
2043                 return ret;
2044
2045         /* Preallocate the olr before touching the ring */
2046         ret = intel_ring_alloc_seqno(ring);
2047         if (ret)
2048                 return ret;
2049
2050         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2051         return 0;
2052 }
2053
2054 /* Align the ring tail to a cacheline boundary */
2055 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2056 {
2057         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2058         int ret;
2059
2060         if (num_dwords == 0)
2061                 return 0;
2062
2063         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2064         ret = intel_ring_begin(ring, num_dwords);
2065         if (ret)
2066                 return ret;
2067
2068         while (num_dwords--)
2069                 intel_ring_emit(ring, MI_NOOP);
2070
2071         intel_ring_advance(ring);
2072
2073         return 0;
2074 }
2075
2076 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2077 {
2078         struct drm_device *dev = ring->dev;
2079         struct drm_i915_private *dev_priv = dev->dev_private;
2080
2081         BUG_ON(ring->outstanding_lazy_seqno);
2082
2083         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2084                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2085                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2086                 if (HAS_VEBOX(dev))
2087                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2088         }
2089
2090         ring->set_seqno(ring, seqno);
2091         ring->hangcheck.seqno = seqno;
2092 }
2093
2094 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2095                                      u32 value)
2096 {
2097         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2098
2099        /* Every tail move must follow the sequence below */
2100
2101         /* Disable notification that the ring is IDLE. The GT
2102          * will then assume that it is busy and bring it out of rc6.
2103          */
2104         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2105                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2106
2107         /* Clear the context id. Here be magic! */
2108         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2109
2110         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2111         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2112                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2113                      50))
2114                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2115
2116         /* Now that the ring is fully powered up, update the tail */
2117         I915_WRITE_TAIL(ring, value);
2118         POSTING_READ(RING_TAIL(ring->mmio_base));
2119
2120         /* Let the ring send IDLE messages to the GT again,
2121          * and so let it sleep to conserve power when idle.
2122          */
2123         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2124                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2125 }
2126
2127 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2128                                u32 invalidate, u32 flush)
2129 {
2130         uint32_t cmd;
2131         int ret;
2132
2133         ret = intel_ring_begin(ring, 4);
2134         if (ret)
2135                 return ret;
2136
2137         cmd = MI_FLUSH_DW;
2138         if (INTEL_INFO(ring->dev)->gen >= 8)
2139                 cmd += 1;
2140         /*
2141          * Bspec vol 1c.5 - video engine command streamer:
2142          * "If ENABLED, all TLBs will be invalidated once the flush
2143          * operation is complete. This bit is only valid when the
2144          * Post-Sync Operation field is a value of 1h or 3h."
2145          */
2146         if (invalidate & I915_GEM_GPU_DOMAINS)
2147                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2148                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2149         intel_ring_emit(ring, cmd);
2150         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2151         if (INTEL_INFO(ring->dev)->gen >= 8) {
2152                 intel_ring_emit(ring, 0); /* upper addr */
2153                 intel_ring_emit(ring, 0); /* value */
2154         } else  {
2155                 intel_ring_emit(ring, 0);
2156                 intel_ring_emit(ring, MI_NOOP);
2157         }
2158         intel_ring_advance(ring);
2159         return 0;
2160 }
2161
2162 static int
2163 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2164                               u64 offset, u32 len,
2165                               unsigned flags)
2166 {
2167         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2168         int ret;
2169
2170         ret = intel_ring_begin(ring, 4);
2171         if (ret)
2172                 return ret;
2173
2174         /* FIXME(BDW): Address space and security selectors. */
2175         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2176         intel_ring_emit(ring, lower_32_bits(offset));
2177         intel_ring_emit(ring, upper_32_bits(offset));
2178         intel_ring_emit(ring, MI_NOOP);
2179         intel_ring_advance(ring);
2180
2181         return 0;
2182 }
2183
2184 static int
2185 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2186                               u64 offset, u32 len,
2187                               unsigned flags)
2188 {
2189         int ret;
2190
2191         ret = intel_ring_begin(ring, 2);
2192         if (ret)
2193                 return ret;
2194
2195         intel_ring_emit(ring,
2196                         MI_BATCH_BUFFER_START |
2197                         (flags & I915_DISPATCH_SECURE ?
2198                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2199         /* bit0-7 is the length on GEN6+ */
2200         intel_ring_emit(ring, offset);
2201         intel_ring_advance(ring);
2202
2203         return 0;
2204 }
2205
2206 static int
2207 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2208                               u64 offset, u32 len,
2209                               unsigned flags)
2210 {
2211         int ret;
2212
2213         ret = intel_ring_begin(ring, 2);
2214         if (ret)
2215                 return ret;
2216
2217         intel_ring_emit(ring,
2218                         MI_BATCH_BUFFER_START |
2219                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2220         /* bit0-7 is the length on GEN6+ */
2221         intel_ring_emit(ring, offset);
2222         intel_ring_advance(ring);
2223
2224         return 0;
2225 }
2226
2227 /* Blitter support (SandyBridge+) */
2228
2229 static int gen6_ring_flush(struct intel_engine_cs *ring,
2230                            u32 invalidate, u32 flush)
2231 {
2232         struct drm_device *dev = ring->dev;
2233         struct drm_i915_private *dev_priv = dev->dev_private;
2234         uint32_t cmd;
2235         int ret;
2236
2237         ret = intel_ring_begin(ring, 4);
2238         if (ret)
2239                 return ret;
2240
2241         cmd = MI_FLUSH_DW;
2242         if (INTEL_INFO(ring->dev)->gen >= 8)
2243                 cmd += 1;
2244         /*
2245          * Bspec vol 1c.3 - blitter engine command streamer:
2246          * "If ENABLED, all TLBs will be invalidated once the flush
2247          * operation is complete. This bit is only valid when the
2248          * Post-Sync Operation field is a value of 1h or 3h."
2249          */
2250         if (invalidate & I915_GEM_DOMAIN_RENDER)
2251                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2252                         MI_FLUSH_DW_OP_STOREDW;
2253         intel_ring_emit(ring, cmd);
2254         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2255         if (INTEL_INFO(ring->dev)->gen >= 8) {
2256                 intel_ring_emit(ring, 0); /* upper addr */
2257                 intel_ring_emit(ring, 0); /* value */
2258         } else  {
2259                 intel_ring_emit(ring, 0);
2260                 intel_ring_emit(ring, MI_NOOP);
2261         }
2262         intel_ring_advance(ring);
2263
2264         if (!invalidate && flush) {
2265                 if (IS_GEN7(dev))
2266                         return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2267                 else if (IS_BROADWELL(dev))
2268                         dev_priv->fbc.need_sw_cache_clean = true;
2269         }
2270
2271         return 0;
2272 }
2273
2274 int intel_init_render_ring_buffer(struct drm_device *dev)
2275 {
2276         struct drm_i915_private *dev_priv = dev->dev_private;
2277         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2278         struct drm_i915_gem_object *obj;
2279         int ret;
2280
2281         ring->name = "render ring";
2282         ring->id = RCS;
2283         ring->mmio_base = RENDER_RING_BASE;
2284
2285         if (INTEL_INFO(dev)->gen >= 8) {
2286                 if (i915_semaphore_is_enabled(dev)) {
2287                         obj = i915_gem_alloc_object(dev, 4096);
2288                         if (obj == NULL) {
2289                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2290                                 i915.semaphores = 0;
2291                         } else {
2292                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2293                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2294                                 if (ret != 0) {
2295                                         drm_gem_object_unreference(&obj->base);
2296                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2297                                         i915.semaphores = 0;
2298                                 } else
2299                                         dev_priv->semaphore_obj = obj;
2300                         }
2301                 }
2302                 if (IS_CHERRYVIEW(dev))
2303                         ring->init_context = chv_init_workarounds;
2304                 else
2305                         ring->init_context = bdw_init_workarounds;
2306                 ring->add_request = gen6_add_request;
2307                 ring->flush = gen8_render_ring_flush;
2308                 ring->irq_get = gen8_ring_get_irq;
2309                 ring->irq_put = gen8_ring_put_irq;
2310                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2311                 ring->get_seqno = gen6_ring_get_seqno;
2312                 ring->set_seqno = ring_set_seqno;
2313                 if (i915_semaphore_is_enabled(dev)) {
2314                         WARN_ON(!dev_priv->semaphore_obj);
2315                         ring->semaphore.sync_to = gen8_ring_sync;
2316                         ring->semaphore.signal = gen8_rcs_signal;
2317                         GEN8_RING_SEMAPHORE_INIT;
2318                 }
2319         } else if (INTEL_INFO(dev)->gen >= 6) {
2320                 ring->add_request = gen6_add_request;
2321                 ring->flush = gen7_render_ring_flush;
2322                 if (INTEL_INFO(dev)->gen == 6)
2323                         ring->flush = gen6_render_ring_flush;
2324                 ring->irq_get = gen6_ring_get_irq;
2325                 ring->irq_put = gen6_ring_put_irq;
2326                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2327                 ring->get_seqno = gen6_ring_get_seqno;
2328                 ring->set_seqno = ring_set_seqno;
2329                 if (i915_semaphore_is_enabled(dev)) {
2330                         ring->semaphore.sync_to = gen6_ring_sync;
2331                         ring->semaphore.signal = gen6_signal;
2332                         /*
2333                          * The current semaphore is only applied on pre-gen8
2334                          * platform.  And there is no VCS2 ring on the pre-gen8
2335                          * platform. So the semaphore between RCS and VCS2 is
2336                          * initialized as INVALID.  Gen8 will initialize the
2337                          * sema between VCS2 and RCS later.
2338                          */
2339                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2340                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2341                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2342                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2343                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2344                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2345                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2346                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2347                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2348                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2349                 }
2350         } else if (IS_GEN5(dev)) {
2351                 ring->add_request = pc_render_add_request;
2352                 ring->flush = gen4_render_ring_flush;
2353                 ring->get_seqno = pc_render_get_seqno;
2354                 ring->set_seqno = pc_render_set_seqno;
2355                 ring->irq_get = gen5_ring_get_irq;
2356                 ring->irq_put = gen5_ring_put_irq;
2357                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2358                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2359         } else {
2360                 ring->add_request = i9xx_add_request;
2361                 if (INTEL_INFO(dev)->gen < 4)
2362                         ring->flush = gen2_render_ring_flush;
2363                 else
2364                         ring->flush = gen4_render_ring_flush;
2365                 ring->get_seqno = ring_get_seqno;
2366                 ring->set_seqno = ring_set_seqno;
2367                 if (IS_GEN2(dev)) {
2368                         ring->irq_get = i8xx_ring_get_irq;
2369                         ring->irq_put = i8xx_ring_put_irq;
2370                 } else {
2371                         ring->irq_get = i9xx_ring_get_irq;
2372                         ring->irq_put = i9xx_ring_put_irq;
2373                 }
2374                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2375         }
2376         ring->write_tail = ring_write_tail;
2377
2378         if (IS_HASWELL(dev))
2379                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2380         else if (IS_GEN8(dev))
2381                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2382         else if (INTEL_INFO(dev)->gen >= 6)
2383                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2384         else if (INTEL_INFO(dev)->gen >= 4)
2385                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2386         else if (IS_I830(dev) || IS_845G(dev))
2387                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2388         else
2389                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2390         ring->init = init_render_ring;
2391         ring->cleanup = render_ring_cleanup;
2392
2393         /* Workaround batchbuffer to combat CS tlb bug. */
2394         if (HAS_BROKEN_CS_TLB(dev)) {
2395                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2396                 if (obj == NULL) {
2397                         DRM_ERROR("Failed to allocate batch bo\n");
2398                         return -ENOMEM;
2399                 }
2400
2401                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2402                 if (ret != 0) {
2403                         drm_gem_object_unreference(&obj->base);
2404                         DRM_ERROR("Failed to ping batch bo\n");
2405                         return ret;
2406                 }
2407
2408                 ring->scratch.obj = obj;
2409                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2410         }
2411
2412         return intel_init_ring_buffer(dev, ring);
2413 }
2414
2415 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2416 {
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2419         struct intel_ringbuffer *ringbuf = ring->buffer;
2420         int ret;
2421
2422         if (ringbuf == NULL) {
2423                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2424                 if (!ringbuf)
2425                         return -ENOMEM;
2426                 ring->buffer = ringbuf;
2427         }
2428
2429         ring->name = "render ring";
2430         ring->id = RCS;
2431         ring->mmio_base = RENDER_RING_BASE;
2432
2433         if (INTEL_INFO(dev)->gen >= 6) {
2434                 /* non-kms not supported on gen6+ */
2435                 ret = -ENODEV;
2436                 goto err_ringbuf;
2437         }
2438
2439         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2440          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2441          * the special gen5 functions. */
2442         ring->add_request = i9xx_add_request;
2443         if (INTEL_INFO(dev)->gen < 4)
2444                 ring->flush = gen2_render_ring_flush;
2445         else
2446                 ring->flush = gen4_render_ring_flush;
2447         ring->get_seqno = ring_get_seqno;
2448         ring->set_seqno = ring_set_seqno;
2449         if (IS_GEN2(dev)) {
2450                 ring->irq_get = i8xx_ring_get_irq;
2451                 ring->irq_put = i8xx_ring_put_irq;
2452         } else {
2453                 ring->irq_get = i9xx_ring_get_irq;
2454                 ring->irq_put = i9xx_ring_put_irq;
2455         }
2456         ring->irq_enable_mask = I915_USER_INTERRUPT;
2457         ring->write_tail = ring_write_tail;
2458         if (INTEL_INFO(dev)->gen >= 4)
2459                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2460         else if (IS_I830(dev) || IS_845G(dev))
2461                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2462         else
2463                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2464         ring->init = init_render_ring;
2465         ring->cleanup = render_ring_cleanup;
2466
2467         ring->dev = dev;
2468         INIT_LIST_HEAD(&ring->active_list);
2469         INIT_LIST_HEAD(&ring->request_list);
2470
2471         ringbuf->size = size;
2472         ringbuf->effective_size = ringbuf->size;
2473         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2474                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2475
2476         ringbuf->virtual_start = ioremap_wc(start, size);
2477         if (ringbuf->virtual_start == NULL) {
2478                 DRM_ERROR("can not ioremap virtual address for"
2479                           " ring buffer\n");
2480                 ret = -ENOMEM;
2481                 goto err_ringbuf;
2482         }
2483
2484         if (!I915_NEED_GFX_HWS(dev)) {
2485                 ret = init_phys_status_page(ring);
2486                 if (ret)
2487                         goto err_vstart;
2488         }
2489
2490         return 0;
2491
2492 err_vstart:
2493         iounmap(ringbuf->virtual_start);
2494 err_ringbuf:
2495         kfree(ringbuf);
2496         ring->buffer = NULL;
2497         return ret;
2498 }
2499
2500 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2501 {
2502         struct drm_i915_private *dev_priv = dev->dev_private;
2503         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2504
2505         ring->name = "bsd ring";
2506         ring->id = VCS;
2507
2508         ring->write_tail = ring_write_tail;
2509         if (INTEL_INFO(dev)->gen >= 6) {
2510                 ring->mmio_base = GEN6_BSD_RING_BASE;
2511                 /* gen6 bsd needs a special wa for tail updates */
2512                 if (IS_GEN6(dev))
2513                         ring->write_tail = gen6_bsd_ring_write_tail;
2514                 ring->flush = gen6_bsd_ring_flush;
2515                 ring->add_request = gen6_add_request;
2516                 ring->get_seqno = gen6_ring_get_seqno;
2517                 ring->set_seqno = ring_set_seqno;
2518                 if (INTEL_INFO(dev)->gen >= 8) {
2519                         ring->irq_enable_mask =
2520                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2521                         ring->irq_get = gen8_ring_get_irq;
2522                         ring->irq_put = gen8_ring_put_irq;
2523                         ring->dispatch_execbuffer =
2524                                 gen8_ring_dispatch_execbuffer;
2525                         if (i915_semaphore_is_enabled(dev)) {
2526                                 ring->semaphore.sync_to = gen8_ring_sync;
2527                                 ring->semaphore.signal = gen8_xcs_signal;
2528                                 GEN8_RING_SEMAPHORE_INIT;
2529                         }
2530                 } else {
2531                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2532                         ring->irq_get = gen6_ring_get_irq;
2533                         ring->irq_put = gen6_ring_put_irq;
2534                         ring->dispatch_execbuffer =
2535                                 gen6_ring_dispatch_execbuffer;
2536                         if (i915_semaphore_is_enabled(dev)) {
2537                                 ring->semaphore.sync_to = gen6_ring_sync;
2538                                 ring->semaphore.signal = gen6_signal;
2539                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2540                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2541                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2542                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2543                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2544                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2545                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2546                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2547                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2548                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2549                         }
2550                 }
2551         } else {
2552                 ring->mmio_base = BSD_RING_BASE;
2553                 ring->flush = bsd_ring_flush;
2554                 ring->add_request = i9xx_add_request;
2555                 ring->get_seqno = ring_get_seqno;
2556                 ring->set_seqno = ring_set_seqno;
2557                 if (IS_GEN5(dev)) {
2558                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2559                         ring->irq_get = gen5_ring_get_irq;
2560                         ring->irq_put = gen5_ring_put_irq;
2561                 } else {
2562                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2563                         ring->irq_get = i9xx_ring_get_irq;
2564                         ring->irq_put = i9xx_ring_put_irq;
2565                 }
2566                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2567         }
2568         ring->init = init_ring_common;
2569
2570         return intel_init_ring_buffer(dev, ring);
2571 }
2572
2573 /**
2574  * Initialize the second BSD ring for Broadwell GT3.
2575  * It is noted that this only exists on Broadwell GT3.
2576  */
2577 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2578 {
2579         struct drm_i915_private *dev_priv = dev->dev_private;
2580         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2581
2582         if ((INTEL_INFO(dev)->gen != 8)) {
2583                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2584                 return -EINVAL;
2585         }
2586
2587         ring->name = "bsd2 ring";
2588         ring->id = VCS2;
2589
2590         ring->write_tail = ring_write_tail;
2591         ring->mmio_base = GEN8_BSD2_RING_BASE;
2592         ring->flush = gen6_bsd_ring_flush;
2593         ring->add_request = gen6_add_request;
2594         ring->get_seqno = gen6_ring_get_seqno;
2595         ring->set_seqno = ring_set_seqno;
2596         ring->irq_enable_mask =
2597                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2598         ring->irq_get = gen8_ring_get_irq;
2599         ring->irq_put = gen8_ring_put_irq;
2600         ring->dispatch_execbuffer =
2601                         gen8_ring_dispatch_execbuffer;
2602         if (i915_semaphore_is_enabled(dev)) {
2603                 ring->semaphore.sync_to = gen8_ring_sync;
2604                 ring->semaphore.signal = gen8_xcs_signal;
2605                 GEN8_RING_SEMAPHORE_INIT;
2606         }
2607         ring->init = init_ring_common;
2608
2609         return intel_init_ring_buffer(dev, ring);
2610 }
2611
2612 int intel_init_blt_ring_buffer(struct drm_device *dev)
2613 {
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2616
2617         ring->name = "blitter ring";
2618         ring->id = BCS;
2619
2620         ring->mmio_base = BLT_RING_BASE;
2621         ring->write_tail = ring_write_tail;
2622         ring->flush = gen6_ring_flush;
2623         ring->add_request = gen6_add_request;
2624         ring->get_seqno = gen6_ring_get_seqno;
2625         ring->set_seqno = ring_set_seqno;
2626         if (INTEL_INFO(dev)->gen >= 8) {
2627                 ring->irq_enable_mask =
2628                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2629                 ring->irq_get = gen8_ring_get_irq;
2630                 ring->irq_put = gen8_ring_put_irq;
2631                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2632                 if (i915_semaphore_is_enabled(dev)) {
2633                         ring->semaphore.sync_to = gen8_ring_sync;
2634                         ring->semaphore.signal = gen8_xcs_signal;
2635                         GEN8_RING_SEMAPHORE_INIT;
2636                 }
2637         } else {
2638                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2639                 ring->irq_get = gen6_ring_get_irq;
2640                 ring->irq_put = gen6_ring_put_irq;
2641                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2642                 if (i915_semaphore_is_enabled(dev)) {
2643                         ring->semaphore.signal = gen6_signal;
2644                         ring->semaphore.sync_to = gen6_ring_sync;
2645                         /*
2646                          * The current semaphore is only applied on pre-gen8
2647                          * platform.  And there is no VCS2 ring on the pre-gen8
2648                          * platform. So the semaphore between BCS and VCS2 is
2649                          * initialized as INVALID.  Gen8 will initialize the
2650                          * sema between BCS and VCS2 later.
2651                          */
2652                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2653                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2654                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2655                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2656                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2657                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2658                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2659                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2660                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2661                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2662                 }
2663         }
2664         ring->init = init_ring_common;
2665
2666         return intel_init_ring_buffer(dev, ring);
2667 }
2668
2669 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2670 {
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2673
2674         ring->name = "video enhancement ring";
2675         ring->id = VECS;
2676
2677         ring->mmio_base = VEBOX_RING_BASE;
2678         ring->write_tail = ring_write_tail;
2679         ring->flush = gen6_ring_flush;
2680         ring->add_request = gen6_add_request;
2681         ring->get_seqno = gen6_ring_get_seqno;
2682         ring->set_seqno = ring_set_seqno;
2683
2684         if (INTEL_INFO(dev)->gen >= 8) {
2685                 ring->irq_enable_mask =
2686                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2687                 ring->irq_get = gen8_ring_get_irq;
2688                 ring->irq_put = gen8_ring_put_irq;
2689                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2690                 if (i915_semaphore_is_enabled(dev)) {
2691                         ring->semaphore.sync_to = gen8_ring_sync;
2692                         ring->semaphore.signal = gen8_xcs_signal;
2693                         GEN8_RING_SEMAPHORE_INIT;
2694                 }
2695         } else {
2696                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2697                 ring->irq_get = hsw_vebox_get_irq;
2698                 ring->irq_put = hsw_vebox_put_irq;
2699                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2700                 if (i915_semaphore_is_enabled(dev)) {
2701                         ring->semaphore.sync_to = gen6_ring_sync;
2702                         ring->semaphore.signal = gen6_signal;
2703                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2704                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2705                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2706                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2707                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2708                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2709                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2710                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2711                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2712                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2713                 }
2714         }
2715         ring->init = init_ring_common;
2716
2717         return intel_init_ring_buffer(dev, ring);
2718 }
2719
2720 int
2721 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2722 {
2723         int ret;
2724
2725         if (!ring->gpu_caches_dirty)
2726                 return 0;
2727
2728         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2729         if (ret)
2730                 return ret;
2731
2732         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2733
2734         ring->gpu_caches_dirty = false;
2735         return 0;
2736 }
2737
2738 int
2739 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2740 {
2741         uint32_t flush_domains;
2742         int ret;
2743
2744         flush_domains = 0;
2745         if (ring->gpu_caches_dirty)
2746                 flush_domains = I915_GEM_GPU_DOMAINS;
2747
2748         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2749         if (ret)
2750                 return ret;
2751
2752         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2753
2754         ring->gpu_caches_dirty = false;
2755         return 0;
2756 }
2757
2758 void
2759 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2760 {
2761         int ret;
2762
2763         if (!intel_ring_initialized(ring))
2764                 return;
2765
2766         ret = intel_ring_idle(ring);
2767         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2768                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2769                           ring->name, ret);
2770
2771         stop_ring(ring);
2772 }