Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 /* Workaround: we must issue a pipe_control with CS-stall bit
372                  * set before a pipe_control command that has the state cache
373                  * invalidate bit set. */
374                 gen7_render_ring_cs_stall_wa(ring);
375         }
376
377         ret = intel_ring_begin(ring, 4);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382         intel_ring_emit(ring, flags);
383         intel_ring_emit(ring, scratch_addr);
384         intel_ring_emit(ring, 0);
385         intel_ring_advance(ring);
386
387         if (!invalidate_domains && flush_domains)
388                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390         return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395                        u32 flags, u32 scratch_addr)
396 {
397         int ret;
398
399         ret = intel_ring_begin(ring, 6);
400         if (ret)
401                 return ret;
402
403         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404         intel_ring_emit(ring, flags);
405         intel_ring_emit(ring, scratch_addr);
406         intel_ring_emit(ring, 0);
407         intel_ring_emit(ring, 0);
408         intel_ring_emit(ring, 0);
409         intel_ring_advance(ring);
410
411         return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416                        u32 invalidate_domains, u32 flush_domains)
417 {
418         u32 flags = 0;
419         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420         int ret;
421
422         flags |= PIPE_CONTROL_CS_STALL;
423
424         if (flush_domains) {
425                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427         }
428         if (invalidate_domains) {
429                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_QW_WRITE;
436                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439                 ret = gen8_emit_pipe_control(ring,
440                                              PIPE_CONTROL_CS_STALL |
441                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
442                                              0);
443                 if (ret)
444                         return ret;
445         }
446
447         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448         if (ret)
449                 return ret;
450
451         if (!invalidate_domains && flush_domains)
452                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454         return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458                             u32 value)
459 {
460         struct drm_i915_private *dev_priv = ring->dev->dev_private;
461         I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u64 acthd;
468
469         if (INTEL_INFO(ring->dev)->gen >= 8)
470                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471                                          RING_ACTHD_UDW(ring->mmio_base));
472         else if (INTEL_INFO(ring->dev)->gen >= 4)
473                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474         else
475                 acthd = I915_READ(ACTHD);
476
477         return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 addr;
484
485         addr = dev_priv->status_page_dmah->busaddr;
486         if (INTEL_INFO(ring->dev)->gen >= 4)
487                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488         I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493         struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495         if (!IS_GEN2(ring->dev)) {
496                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499                         /* Sometimes we observe that the idle flag is not
500                          * set even though the ring is empty. So double
501                          * check before giving up.
502                          */
503                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504                                 return false;
505                 }
506         }
507
508         I915_WRITE_CTL(ring, 0);
509         I915_WRITE_HEAD(ring, 0);
510         ring->write_tail(ring, 0);
511
512         if (!IS_GEN2(ring->dev)) {
513                 (void)I915_READ_CTL(ring);
514                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515         }
516
517         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522         struct drm_device *dev = ring->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         struct intel_ringbuffer *ringbuf = ring->buffer;
525         struct drm_i915_gem_object *obj = ringbuf->obj;
526         int ret = 0;
527
528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530         if (!stop_ring(ring)) {
531                 /* G45 ring initialization often fails to reset head to zero */
532                 DRM_DEBUG_KMS("%s head not reset to zero "
533                               "ctl %08x head %08x tail %08x start %08x\n",
534                               ring->name,
535                               I915_READ_CTL(ring),
536                               I915_READ_HEAD(ring),
537                               I915_READ_TAIL(ring),
538                               I915_READ_START(ring));
539
540                 if (!stop_ring(ring)) {
541                         DRM_ERROR("failed to set %s head to zero "
542                                   "ctl %08x head %08x tail %08x start %08x\n",
543                                   ring->name,
544                                   I915_READ_CTL(ring),
545                                   I915_READ_HEAD(ring),
546                                   I915_READ_TAIL(ring),
547                                   I915_READ_START(ring));
548                         ret = -EIO;
549                         goto out;
550                 }
551         }
552
553         if (I915_NEED_GFX_HWS(dev))
554                 intel_ring_setup_status_page(ring);
555         else
556                 ring_setup_phys_status_page(ring);
557
558         /* Enforce ordering by reading HEAD register back */
559         I915_READ_HEAD(ring);
560
561         /* Initialize the ring. This must happen _after_ we've cleared the ring
562          * registers with the above sequence (the readback of the HEAD registers
563          * also enforces ordering), otherwise the hw might lose the new ring
564          * register values. */
565         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567         /* WaClearRingBufHeadRegAtInit:ctg,elk */
568         if (I915_READ_HEAD(ring))
569                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570                           ring->name, I915_READ_HEAD(ring));
571         I915_WRITE_HEAD(ring, 0);
572         (void)I915_READ_HEAD(ring);
573
574         I915_WRITE_CTL(ring,
575                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576                         | RING_VALID);
577
578         /* If the head is still not zero, the ring is dead */
579         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582                 DRM_ERROR("%s initialization failed "
583                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584                           ring->name,
585                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588                 ret = -EIO;
589                 goto out;
590         }
591
592         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593                 i915_kernel_lost_context(ring->dev);
594         else {
595                 ringbuf->head = I915_READ_HEAD(ring);
596                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597                 ringbuf->space = intel_ring_space(ringbuf);
598                 ringbuf->last_retired_head = -1;
599         }
600
601         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603 out:
604         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606         return ret;
607 }
608
609 void
610 intel_fini_pipe_control(struct intel_engine_cs *ring)
611 {
612         struct drm_device *dev = ring->dev;
613
614         if (ring->scratch.obj == NULL)
615                 return;
616
617         if (INTEL_INFO(dev)->gen >= 5) {
618                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620         }
621
622         drm_gem_object_unreference(&ring->scratch.obj->base);
623         ring->scratch.obj = NULL;
624 }
625
626 int
627 intel_init_pipe_control(struct intel_engine_cs *ring)
628 {
629         int ret;
630
631         if (ring->scratch.obj)
632                 return 0;
633
634         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635         if (ring->scratch.obj == NULL) {
636                 DRM_ERROR("Failed to allocate seqno page\n");
637                 ret = -ENOMEM;
638                 goto err;
639         }
640
641         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642         if (ret)
643                 goto err_unref;
644
645         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646         if (ret)
647                 goto err_unref;
648
649         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651         if (ring->scratch.cpu_page == NULL) {
652                 ret = -ENOMEM;
653                 goto err_unpin;
654         }
655
656         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657                          ring->name, ring->scratch.gtt_offset);
658         return 0;
659
660 err_unpin:
661         i915_gem_object_ggtt_unpin(ring->scratch.obj);
662 err_unref:
663         drm_gem_object_unreference(&ring->scratch.obj->base);
664 err:
665         return ret;
666 }
667
668 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669                                        u32 addr, u32 value)
670 {
671         struct drm_device *dev = ring->dev;
672         struct drm_i915_private *dev_priv = dev->dev_private;
673
674         if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
675                 return;
676
677         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678         intel_ring_emit(ring, addr);
679         intel_ring_emit(ring, value);
680
681         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683         /* value is updated with the status of remaining bits of this
684          * register when it is read from debugfs file
685          */
686         dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687         dev_priv->num_wa_regs++;
688
689         return;
690 }
691
692 static int bdw_init_workarounds(struct intel_engine_cs *ring)
693 {
694         int ret;
695         struct drm_device *dev = ring->dev;
696         struct drm_i915_private *dev_priv = dev->dev_private;
697
698         /*
699          * workarounds applied in this fn are part of register state context,
700          * they need to be re-initialized followed by gpu reset, suspend/resume,
701          * module reload.
702          */
703         dev_priv->num_wa_regs = 0;
704         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
705
706         /*
707          * update the number of dwords required based on the
708          * actual number of workarounds applied
709          */
710         ret = intel_ring_begin(ring, 18);
711         if (ret)
712                 return ret;
713
714         /* WaDisablePartialInstShootdown:bdw */
715         /* WaDisableThreadStallDopClockGating:bdw */
716         /* FIXME: Unclear whether we really need this on production bdw. */
717         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719                                              | STALL_DOP_GATING_DISABLE));
720
721         /* WaDisableDopClockGating:bdw May not be needed for production */
722         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
726                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
727
728         /* Use Force Non-Coherent whenever executing a 3D context. This is a
729          * workaround for for a possible hang in the unlikely event a TLB
730          * invalidation occurs during a PSD flush.
731          */
732         intel_ring_emit_wa(ring, HDC_CHICKEN0,
733                            _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
734
735         /* Wa4x4STCOptimizationDisable:bdw */
736         intel_ring_emit_wa(ring, CACHE_MODE_1,
737                            _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
738
739         /*
740          * BSpec recommends 8x4 when MSAA is used,
741          * however in practice 16x4 seems fastest.
742          *
743          * Note that PS/WM thread counts depend on the WIZ hashing
744          * disable bit, which we don't touch here, but it's good
745          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
746          */
747         intel_ring_emit_wa(ring, GEN7_GT_MODE,
748                            GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
749
750         intel_ring_advance(ring);
751
752         DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
753                          dev_priv->num_wa_regs);
754
755         return 0;
756 }
757
758 static int chv_init_workarounds(struct intel_engine_cs *ring)
759 {
760         int ret;
761         struct drm_device *dev = ring->dev;
762         struct drm_i915_private *dev_priv = dev->dev_private;
763
764         /*
765          * workarounds applied in this fn are part of register state context,
766          * they need to be re-initialized followed by gpu reset, suspend/resume,
767          * module reload.
768          */
769         dev_priv->num_wa_regs = 0;
770         memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
771
772         ret = intel_ring_begin(ring, 12);
773         if (ret)
774                 return ret;
775
776         /* WaDisablePartialInstShootdown:chv */
777         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
778                            _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
779
780         /* WaDisableThreadStallDopClockGating:chv */
781         intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
782                            _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
783
784         /* WaDisableDopClockGating:chv (pre-production hw) */
785         intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
786                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
787
788         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
789         intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
790                            _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
791
792         intel_ring_advance(ring);
793
794         return 0;
795 }
796
797 static int init_render_ring(struct intel_engine_cs *ring)
798 {
799         struct drm_device *dev = ring->dev;
800         struct drm_i915_private *dev_priv = dev->dev_private;
801         int ret = init_ring_common(ring);
802         if (ret)
803                 return ret;
804
805         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
806         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
807                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
808
809         /* We need to disable the AsyncFlip performance optimisations in order
810          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
811          * programmed to '1' on all products.
812          *
813          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
814          */
815         if (INTEL_INFO(dev)->gen >= 6)
816                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
817
818         /* Required for the hardware to program scanline values for waiting */
819         /* WaEnableFlushTlbInvalidationMode:snb */
820         if (INTEL_INFO(dev)->gen == 6)
821                 I915_WRITE(GFX_MODE,
822                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
823
824         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
825         if (IS_GEN7(dev))
826                 I915_WRITE(GFX_MODE_GEN7,
827                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
828                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
829
830         if (INTEL_INFO(dev)->gen >= 5) {
831                 ret = intel_init_pipe_control(ring);
832                 if (ret)
833                         return ret;
834         }
835
836         if (IS_GEN6(dev)) {
837                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
838                  * "If this bit is set, STCunit will have LRA as replacement
839                  *  policy. [...] This bit must be reset.  LRA replacement
840                  *  policy is not supported."
841                  */
842                 I915_WRITE(CACHE_MODE_0,
843                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
844         }
845
846         if (INTEL_INFO(dev)->gen >= 6)
847                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
848
849         if (HAS_L3_DPF(dev))
850                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
851
852         return ret;
853 }
854
855 static void render_ring_cleanup(struct intel_engine_cs *ring)
856 {
857         struct drm_device *dev = ring->dev;
858         struct drm_i915_private *dev_priv = dev->dev_private;
859
860         if (dev_priv->semaphore_obj) {
861                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
862                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
863                 dev_priv->semaphore_obj = NULL;
864         }
865
866         intel_fini_pipe_control(ring);
867 }
868
869 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
870                            unsigned int num_dwords)
871 {
872 #define MBOX_UPDATE_DWORDS 8
873         struct drm_device *dev = signaller->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         struct intel_engine_cs *waiter;
876         int i, ret, num_rings;
877
878         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
879         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
880 #undef MBOX_UPDATE_DWORDS
881
882         ret = intel_ring_begin(signaller, num_dwords);
883         if (ret)
884                 return ret;
885
886         for_each_ring(waiter, dev_priv, i) {
887                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
888                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
889                         continue;
890
891                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
892                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
893                                            PIPE_CONTROL_QW_WRITE |
894                                            PIPE_CONTROL_FLUSH_ENABLE);
895                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
896                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
897                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
898                 intel_ring_emit(signaller, 0);
899                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
900                                            MI_SEMAPHORE_TARGET(waiter->id));
901                 intel_ring_emit(signaller, 0);
902         }
903
904         return 0;
905 }
906
907 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
908                            unsigned int num_dwords)
909 {
910 #define MBOX_UPDATE_DWORDS 6
911         struct drm_device *dev = signaller->dev;
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         struct intel_engine_cs *waiter;
914         int i, ret, num_rings;
915
916         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
917         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
918 #undef MBOX_UPDATE_DWORDS
919
920         ret = intel_ring_begin(signaller, num_dwords);
921         if (ret)
922                 return ret;
923
924         for_each_ring(waiter, dev_priv, i) {
925                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
926                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
927                         continue;
928
929                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
930                                            MI_FLUSH_DW_OP_STOREDW);
931                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
932                                            MI_FLUSH_DW_USE_GTT);
933                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
934                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
935                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
936                                            MI_SEMAPHORE_TARGET(waiter->id));
937                 intel_ring_emit(signaller, 0);
938         }
939
940         return 0;
941 }
942
943 static int gen6_signal(struct intel_engine_cs *signaller,
944                        unsigned int num_dwords)
945 {
946         struct drm_device *dev = signaller->dev;
947         struct drm_i915_private *dev_priv = dev->dev_private;
948         struct intel_engine_cs *useless;
949         int i, ret, num_rings;
950
951 #define MBOX_UPDATE_DWORDS 3
952         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
953         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
954 #undef MBOX_UPDATE_DWORDS
955
956         ret = intel_ring_begin(signaller, num_dwords);
957         if (ret)
958                 return ret;
959
960         for_each_ring(useless, dev_priv, i) {
961                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
962                 if (mbox_reg != GEN6_NOSYNC) {
963                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
964                         intel_ring_emit(signaller, mbox_reg);
965                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
966                 }
967         }
968
969         /* If num_dwords was rounded, make sure the tail pointer is correct */
970         if (num_rings % 2 == 0)
971                 intel_ring_emit(signaller, MI_NOOP);
972
973         return 0;
974 }
975
976 /**
977  * gen6_add_request - Update the semaphore mailbox registers
978  * 
979  * @ring - ring that is adding a request
980  * @seqno - return seqno stuck into the ring
981  *
982  * Update the mailbox registers in the *other* rings with the current seqno.
983  * This acts like a signal in the canonical semaphore.
984  */
985 static int
986 gen6_add_request(struct intel_engine_cs *ring)
987 {
988         int ret;
989
990         if (ring->semaphore.signal)
991                 ret = ring->semaphore.signal(ring, 4);
992         else
993                 ret = intel_ring_begin(ring, 4);
994
995         if (ret)
996                 return ret;
997
998         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
999         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1000         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1001         intel_ring_emit(ring, MI_USER_INTERRUPT);
1002         __intel_ring_advance(ring);
1003
1004         return 0;
1005 }
1006
1007 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1008                                               u32 seqno)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         return dev_priv->last_seqno < seqno;
1012 }
1013
1014 /**
1015  * intel_ring_sync - sync the waiter to the signaller on seqno
1016  *
1017  * @waiter - ring that is waiting
1018  * @signaller - ring which has, or will signal
1019  * @seqno - seqno which the waiter will block on
1020  */
1021
1022 static int
1023 gen8_ring_sync(struct intel_engine_cs *waiter,
1024                struct intel_engine_cs *signaller,
1025                u32 seqno)
1026 {
1027         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1028         int ret;
1029
1030         ret = intel_ring_begin(waiter, 4);
1031         if (ret)
1032                 return ret;
1033
1034         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1035                                 MI_SEMAPHORE_GLOBAL_GTT |
1036                                 MI_SEMAPHORE_POLL |
1037                                 MI_SEMAPHORE_SAD_GTE_SDD);
1038         intel_ring_emit(waiter, seqno);
1039         intel_ring_emit(waiter,
1040                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1041         intel_ring_emit(waiter,
1042                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1043         intel_ring_advance(waiter);
1044         return 0;
1045 }
1046
1047 static int
1048 gen6_ring_sync(struct intel_engine_cs *waiter,
1049                struct intel_engine_cs *signaller,
1050                u32 seqno)
1051 {
1052         u32 dw1 = MI_SEMAPHORE_MBOX |
1053                   MI_SEMAPHORE_COMPARE |
1054                   MI_SEMAPHORE_REGISTER;
1055         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1056         int ret;
1057
1058         /* Throughout all of the GEM code, seqno passed implies our current
1059          * seqno is >= the last seqno executed. However for hardware the
1060          * comparison is strictly greater than.
1061          */
1062         seqno -= 1;
1063
1064         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1065
1066         ret = intel_ring_begin(waiter, 4);
1067         if (ret)
1068                 return ret;
1069
1070         /* If seqno wrap happened, omit the wait with no-ops */
1071         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1072                 intel_ring_emit(waiter, dw1 | wait_mbox);
1073                 intel_ring_emit(waiter, seqno);
1074                 intel_ring_emit(waiter, 0);
1075                 intel_ring_emit(waiter, MI_NOOP);
1076         } else {
1077                 intel_ring_emit(waiter, MI_NOOP);
1078                 intel_ring_emit(waiter, MI_NOOP);
1079                 intel_ring_emit(waiter, MI_NOOP);
1080                 intel_ring_emit(waiter, MI_NOOP);
1081         }
1082         intel_ring_advance(waiter);
1083
1084         return 0;
1085 }
1086
1087 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1088 do {                                                                    \
1089         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1090                  PIPE_CONTROL_DEPTH_STALL);                             \
1091         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1092         intel_ring_emit(ring__, 0);                                                     \
1093         intel_ring_emit(ring__, 0);                                                     \
1094 } while (0)
1095
1096 static int
1097 pc_render_add_request(struct intel_engine_cs *ring)
1098 {
1099         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1100         int ret;
1101
1102         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1103          * incoherent with writes to memory, i.e. completely fubar,
1104          * so we need to use PIPE_NOTIFY instead.
1105          *
1106          * However, we also need to workaround the qword write
1107          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1108          * memory before requesting an interrupt.
1109          */
1110         ret = intel_ring_begin(ring, 32);
1111         if (ret)
1112                 return ret;
1113
1114         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1115                         PIPE_CONTROL_WRITE_FLUSH |
1116                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1117         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1118         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1119         intel_ring_emit(ring, 0);
1120         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1121         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1122         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1123         scratch_addr += 2 * CACHELINE_BYTES;
1124         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125         scratch_addr += 2 * CACHELINE_BYTES;
1126         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127         scratch_addr += 2 * CACHELINE_BYTES;
1128         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129         scratch_addr += 2 * CACHELINE_BYTES;
1130         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131
1132         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1133                         PIPE_CONTROL_WRITE_FLUSH |
1134                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1135                         PIPE_CONTROL_NOTIFY);
1136         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1137         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1138         intel_ring_emit(ring, 0);
1139         __intel_ring_advance(ring);
1140
1141         return 0;
1142 }
1143
1144 static u32
1145 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1146 {
1147         /* Workaround to force correct ordering between irq and seqno writes on
1148          * ivb (and maybe also on snb) by reading from a CS register (like
1149          * ACTHD) before reading the status page. */
1150         if (!lazy_coherency) {
1151                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1152                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1153         }
1154
1155         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1156 }
1157
1158 static u32
1159 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1160 {
1161         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1162 }
1163
1164 static void
1165 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1166 {
1167         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1168 }
1169
1170 static u32
1171 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1172 {
1173         return ring->scratch.cpu_page[0];
1174 }
1175
1176 static void
1177 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1178 {
1179         ring->scratch.cpu_page[0] = seqno;
1180 }
1181
1182 static bool
1183 gen5_ring_get_irq(struct intel_engine_cs *ring)
1184 {
1185         struct drm_device *dev = ring->dev;
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         unsigned long flags;
1188
1189         if (!dev->irq_enabled)
1190                 return false;
1191
1192         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1193         if (ring->irq_refcount++ == 0)
1194                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1195         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1196
1197         return true;
1198 }
1199
1200 static void
1201 gen5_ring_put_irq(struct intel_engine_cs *ring)
1202 {
1203         struct drm_device *dev = ring->dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         unsigned long flags;
1206
1207         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1208         if (--ring->irq_refcount == 0)
1209                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1210         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1211 }
1212
1213 static bool
1214 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         unsigned long flags;
1219
1220         if (!dev->irq_enabled)
1221                 return false;
1222
1223         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1224         if (ring->irq_refcount++ == 0) {
1225                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1226                 I915_WRITE(IMR, dev_priv->irq_mask);
1227                 POSTING_READ(IMR);
1228         }
1229         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1230
1231         return true;
1232 }
1233
1234 static void
1235 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1236 {
1237         struct drm_device *dev = ring->dev;
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239         unsigned long flags;
1240
1241         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1242         if (--ring->irq_refcount == 0) {
1243                 dev_priv->irq_mask |= ring->irq_enable_mask;
1244                 I915_WRITE(IMR, dev_priv->irq_mask);
1245                 POSTING_READ(IMR);
1246         }
1247         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1248 }
1249
1250 static bool
1251 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1252 {
1253         struct drm_device *dev = ring->dev;
1254         struct drm_i915_private *dev_priv = dev->dev_private;
1255         unsigned long flags;
1256
1257         if (!dev->irq_enabled)
1258                 return false;
1259
1260         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1261         if (ring->irq_refcount++ == 0) {
1262                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1263                 I915_WRITE16(IMR, dev_priv->irq_mask);
1264                 POSTING_READ16(IMR);
1265         }
1266         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1267
1268         return true;
1269 }
1270
1271 static void
1272 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1273 {
1274         struct drm_device *dev = ring->dev;
1275         struct drm_i915_private *dev_priv = dev->dev_private;
1276         unsigned long flags;
1277
1278         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1279         if (--ring->irq_refcount == 0) {
1280                 dev_priv->irq_mask |= ring->irq_enable_mask;
1281                 I915_WRITE16(IMR, dev_priv->irq_mask);
1282                 POSTING_READ16(IMR);
1283         }
1284         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1285 }
1286
1287 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1288 {
1289         struct drm_device *dev = ring->dev;
1290         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1291         u32 mmio = 0;
1292
1293         /* The ring status page addresses are no longer next to the rest of
1294          * the ring registers as of gen7.
1295          */
1296         if (IS_GEN7(dev)) {
1297                 switch (ring->id) {
1298                 case RCS:
1299                         mmio = RENDER_HWS_PGA_GEN7;
1300                         break;
1301                 case BCS:
1302                         mmio = BLT_HWS_PGA_GEN7;
1303                         break;
1304                 /*
1305                  * VCS2 actually doesn't exist on Gen7. Only shut up
1306                  * gcc switch check warning
1307                  */
1308                 case VCS2:
1309                 case VCS:
1310                         mmio = BSD_HWS_PGA_GEN7;
1311                         break;
1312                 case VECS:
1313                         mmio = VEBOX_HWS_PGA_GEN7;
1314                         break;
1315                 }
1316         } else if (IS_GEN6(ring->dev)) {
1317                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1318         } else {
1319                 /* XXX: gen8 returns to sanity */
1320                 mmio = RING_HWS_PGA(ring->mmio_base);
1321         }
1322
1323         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1324         POSTING_READ(mmio);
1325
1326         /*
1327          * Flush the TLB for this page
1328          *
1329          * FIXME: These two bits have disappeared on gen8, so a question
1330          * arises: do we still need this and if so how should we go about
1331          * invalidating the TLB?
1332          */
1333         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1334                 u32 reg = RING_INSTPM(ring->mmio_base);
1335
1336                 /* ring should be idle before issuing a sync flush*/
1337                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1338
1339                 I915_WRITE(reg,
1340                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1341                                               INSTPM_SYNC_FLUSH));
1342                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1343                              1000))
1344                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1345                                   ring->name);
1346         }
1347 }
1348
1349 static int
1350 bsd_ring_flush(struct intel_engine_cs *ring,
1351                u32     invalidate_domains,
1352                u32     flush_domains)
1353 {
1354         int ret;
1355
1356         ret = intel_ring_begin(ring, 2);
1357         if (ret)
1358                 return ret;
1359
1360         intel_ring_emit(ring, MI_FLUSH);
1361         intel_ring_emit(ring, MI_NOOP);
1362         intel_ring_advance(ring);
1363         return 0;
1364 }
1365
1366 static int
1367 i9xx_add_request(struct intel_engine_cs *ring)
1368 {
1369         int ret;
1370
1371         ret = intel_ring_begin(ring, 4);
1372         if (ret)
1373                 return ret;
1374
1375         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1376         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1377         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1378         intel_ring_emit(ring, MI_USER_INTERRUPT);
1379         __intel_ring_advance(ring);
1380
1381         return 0;
1382 }
1383
1384 static bool
1385 gen6_ring_get_irq(struct intel_engine_cs *ring)
1386 {
1387         struct drm_device *dev = ring->dev;
1388         struct drm_i915_private *dev_priv = dev->dev_private;
1389         unsigned long flags;
1390
1391         if (!dev->irq_enabled)
1392                return false;
1393
1394         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1395         if (ring->irq_refcount++ == 0) {
1396                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1397                         I915_WRITE_IMR(ring,
1398                                        ~(ring->irq_enable_mask |
1399                                          GT_PARITY_ERROR(dev)));
1400                 else
1401                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1402                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1403         }
1404         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1405
1406         return true;
1407 }
1408
1409 static void
1410 gen6_ring_put_irq(struct intel_engine_cs *ring)
1411 {
1412         struct drm_device *dev = ring->dev;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         unsigned long flags;
1415
1416         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1417         if (--ring->irq_refcount == 0) {
1418                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1419                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1420                 else
1421                         I915_WRITE_IMR(ring, ~0);
1422                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1423         }
1424         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1425 }
1426
1427 static bool
1428 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1429 {
1430         struct drm_device *dev = ring->dev;
1431         struct drm_i915_private *dev_priv = dev->dev_private;
1432         unsigned long flags;
1433
1434         if (!dev->irq_enabled)
1435                 return false;
1436
1437         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1438         if (ring->irq_refcount++ == 0) {
1439                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1440                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1441         }
1442         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1443
1444         return true;
1445 }
1446
1447 static void
1448 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1449 {
1450         struct drm_device *dev = ring->dev;
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452         unsigned long flags;
1453
1454         if (!dev->irq_enabled)
1455                 return;
1456
1457         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1458         if (--ring->irq_refcount == 0) {
1459                 I915_WRITE_IMR(ring, ~0);
1460                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1461         }
1462         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1463 }
1464
1465 static bool
1466 gen8_ring_get_irq(struct intel_engine_cs *ring)
1467 {
1468         struct drm_device *dev = ring->dev;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         unsigned long flags;
1471
1472         if (!dev->irq_enabled)
1473                 return false;
1474
1475         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1476         if (ring->irq_refcount++ == 0) {
1477                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1478                         I915_WRITE_IMR(ring,
1479                                        ~(ring->irq_enable_mask |
1480                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1481                 } else {
1482                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1483                 }
1484                 POSTING_READ(RING_IMR(ring->mmio_base));
1485         }
1486         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1487
1488         return true;
1489 }
1490
1491 static void
1492 gen8_ring_put_irq(struct intel_engine_cs *ring)
1493 {
1494         struct drm_device *dev = ring->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         unsigned long flags;
1497
1498         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1499         if (--ring->irq_refcount == 0) {
1500                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1501                         I915_WRITE_IMR(ring,
1502                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1503                 } else {
1504                         I915_WRITE_IMR(ring, ~0);
1505                 }
1506                 POSTING_READ(RING_IMR(ring->mmio_base));
1507         }
1508         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1509 }
1510
1511 static int
1512 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1513                          u64 offset, u32 length,
1514                          unsigned flags)
1515 {
1516         int ret;
1517
1518         ret = intel_ring_begin(ring, 2);
1519         if (ret)
1520                 return ret;
1521
1522         intel_ring_emit(ring,
1523                         MI_BATCH_BUFFER_START |
1524                         MI_BATCH_GTT |
1525                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1526         intel_ring_emit(ring, offset);
1527         intel_ring_advance(ring);
1528
1529         return 0;
1530 }
1531
1532 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1533 #define I830_BATCH_LIMIT (256*1024)
1534 #define I830_TLB_ENTRIES (2)
1535 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1536 static int
1537 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1538                                 u64 offset, u32 len,
1539                                 unsigned flags)
1540 {
1541         u32 cs_offset = ring->scratch.gtt_offset;
1542         int ret;
1543
1544         ret = intel_ring_begin(ring, 6);
1545         if (ret)
1546                 return ret;
1547
1548         /* Evict the invalid PTE TLBs */
1549         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1550         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1551         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1552         intel_ring_emit(ring, cs_offset);
1553         intel_ring_emit(ring, 0xdeadbeef);
1554         intel_ring_emit(ring, MI_NOOP);
1555         intel_ring_advance(ring);
1556
1557         if ((flags & I915_DISPATCH_PINNED) == 0) {
1558                 if (len > I830_BATCH_LIMIT)
1559                         return -ENOSPC;
1560
1561                 ret = intel_ring_begin(ring, 6 + 2);
1562                 if (ret)
1563                         return ret;
1564
1565                 /* Blit the batch (which has now all relocs applied) to the
1566                  * stable batch scratch bo area (so that the CS never
1567                  * stumbles over its tlb invalidation bug) ...
1568                  */
1569                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1570                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1571                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1572                 intel_ring_emit(ring, cs_offset);
1573                 intel_ring_emit(ring, 4096);
1574                 intel_ring_emit(ring, offset);
1575
1576                 intel_ring_emit(ring, MI_FLUSH);
1577                 intel_ring_emit(ring, MI_NOOP);
1578                 intel_ring_advance(ring);
1579
1580                 /* ... and execute it. */
1581                 offset = cs_offset;
1582         }
1583
1584         ret = intel_ring_begin(ring, 4);
1585         if (ret)
1586                 return ret;
1587
1588         intel_ring_emit(ring, MI_BATCH_BUFFER);
1589         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1590         intel_ring_emit(ring, offset + len - 8);
1591         intel_ring_emit(ring, MI_NOOP);
1592         intel_ring_advance(ring);
1593
1594         return 0;
1595 }
1596
1597 static int
1598 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1599                          u64 offset, u32 len,
1600                          unsigned flags)
1601 {
1602         int ret;
1603
1604         ret = intel_ring_begin(ring, 2);
1605         if (ret)
1606                 return ret;
1607
1608         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1609         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1610         intel_ring_advance(ring);
1611
1612         return 0;
1613 }
1614
1615 static void cleanup_status_page(struct intel_engine_cs *ring)
1616 {
1617         struct drm_i915_gem_object *obj;
1618
1619         obj = ring->status_page.obj;
1620         if (obj == NULL)
1621                 return;
1622
1623         kunmap(sg_page(obj->pages->sgl));
1624         i915_gem_object_ggtt_unpin(obj);
1625         drm_gem_object_unreference(&obj->base);
1626         ring->status_page.obj = NULL;
1627 }
1628
1629 static int init_status_page(struct intel_engine_cs *ring)
1630 {
1631         struct drm_i915_gem_object *obj;
1632
1633         if ((obj = ring->status_page.obj) == NULL) {
1634                 unsigned flags;
1635                 int ret;
1636
1637                 obj = i915_gem_alloc_object(ring->dev, 4096);
1638                 if (obj == NULL) {
1639                         DRM_ERROR("Failed to allocate status page\n");
1640                         return -ENOMEM;
1641                 }
1642
1643                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1644                 if (ret)
1645                         goto err_unref;
1646
1647                 flags = 0;
1648                 if (!HAS_LLC(ring->dev))
1649                         /* On g33, we cannot place HWS above 256MiB, so
1650                          * restrict its pinning to the low mappable arena.
1651                          * Though this restriction is not documented for
1652                          * gen4, gen5, or byt, they also behave similarly
1653                          * and hang if the HWS is placed at the top of the
1654                          * GTT. To generalise, it appears that all !llc
1655                          * platforms have issues with us placing the HWS
1656                          * above the mappable region (even though we never
1657                          * actualy map it).
1658                          */
1659                         flags |= PIN_MAPPABLE;
1660                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1661                 if (ret) {
1662 err_unref:
1663                         drm_gem_object_unreference(&obj->base);
1664                         return ret;
1665                 }
1666
1667                 ring->status_page.obj = obj;
1668         }
1669
1670         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1671         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1672         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1673
1674         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1675                         ring->name, ring->status_page.gfx_addr);
1676
1677         return 0;
1678 }
1679
1680 static int init_phys_status_page(struct intel_engine_cs *ring)
1681 {
1682         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1683
1684         if (!dev_priv->status_page_dmah) {
1685                 dev_priv->status_page_dmah =
1686                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1687                 if (!dev_priv->status_page_dmah)
1688                         return -ENOMEM;
1689         }
1690
1691         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1692         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1693
1694         return 0;
1695 }
1696
1697 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1698 {
1699         if (!ringbuf->obj)
1700                 return;
1701
1702         iounmap(ringbuf->virtual_start);
1703         i915_gem_object_ggtt_unpin(ringbuf->obj);
1704         drm_gem_object_unreference(&ringbuf->obj->base);
1705         ringbuf->obj = NULL;
1706 }
1707
1708 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1709                                struct intel_ringbuffer *ringbuf)
1710 {
1711         struct drm_i915_private *dev_priv = to_i915(dev);
1712         struct drm_i915_gem_object *obj;
1713         int ret;
1714
1715         if (ringbuf->obj)
1716                 return 0;
1717
1718         obj = NULL;
1719         if (!HAS_LLC(dev))
1720                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1721         if (obj == NULL)
1722                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1723         if (obj == NULL)
1724                 return -ENOMEM;
1725
1726         /* mark ring buffers as read-only from GPU side by default */
1727         obj->gt_ro = 1;
1728
1729         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1730         if (ret)
1731                 goto err_unref;
1732
1733         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1734         if (ret)
1735                 goto err_unpin;
1736
1737         ringbuf->virtual_start =
1738                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1739                                 ringbuf->size);
1740         if (ringbuf->virtual_start == NULL) {
1741                 ret = -EINVAL;
1742                 goto err_unpin;
1743         }
1744
1745         ringbuf->obj = obj;
1746         return 0;
1747
1748 err_unpin:
1749         i915_gem_object_ggtt_unpin(obj);
1750 err_unref:
1751         drm_gem_object_unreference(&obj->base);
1752         return ret;
1753 }
1754
1755 static int intel_init_ring_buffer(struct drm_device *dev,
1756                                   struct intel_engine_cs *ring)
1757 {
1758         struct intel_ringbuffer *ringbuf = ring->buffer;
1759         int ret;
1760
1761         if (ringbuf == NULL) {
1762                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1763                 if (!ringbuf)
1764                         return -ENOMEM;
1765                 ring->buffer = ringbuf;
1766         }
1767
1768         ring->dev = dev;
1769         INIT_LIST_HEAD(&ring->active_list);
1770         INIT_LIST_HEAD(&ring->request_list);
1771         INIT_LIST_HEAD(&ring->execlist_queue);
1772         ringbuf->size = 32 * PAGE_SIZE;
1773         ringbuf->ring = ring;
1774         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1775
1776         init_waitqueue_head(&ring->irq_queue);
1777
1778         if (I915_NEED_GFX_HWS(dev)) {
1779                 ret = init_status_page(ring);
1780                 if (ret)
1781                         goto error;
1782         } else {
1783                 BUG_ON(ring->id != RCS);
1784                 ret = init_phys_status_page(ring);
1785                 if (ret)
1786                         goto error;
1787         }
1788
1789         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1790         if (ret) {
1791                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1792                 goto error;
1793         }
1794
1795         /* Workaround an erratum on the i830 which causes a hang if
1796          * the TAIL pointer points to within the last 2 cachelines
1797          * of the buffer.
1798          */
1799         ringbuf->effective_size = ringbuf->size;
1800         if (IS_I830(dev) || IS_845G(dev))
1801                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1802
1803         ret = i915_cmd_parser_init_ring(ring);
1804         if (ret)
1805                 goto error;
1806
1807         ret = ring->init(ring);
1808         if (ret)
1809                 goto error;
1810
1811         return 0;
1812
1813 error:
1814         kfree(ringbuf);
1815         ring->buffer = NULL;
1816         return ret;
1817 }
1818
1819 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1820 {
1821         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1822         struct intel_ringbuffer *ringbuf = ring->buffer;
1823
1824         if (!intel_ring_initialized(ring))
1825                 return;
1826
1827         intel_stop_ring_buffer(ring);
1828         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1829
1830         intel_destroy_ringbuffer_obj(ringbuf);
1831         ring->preallocated_lazy_request = NULL;
1832         ring->outstanding_lazy_seqno = 0;
1833
1834         if (ring->cleanup)
1835                 ring->cleanup(ring);
1836
1837         cleanup_status_page(ring);
1838
1839         i915_cmd_parser_fini_ring(ring);
1840
1841         kfree(ringbuf);
1842         ring->buffer = NULL;
1843 }
1844
1845 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1846 {
1847         struct intel_ringbuffer *ringbuf = ring->buffer;
1848         struct drm_i915_gem_request *request;
1849         u32 seqno = 0;
1850         int ret;
1851
1852         if (ringbuf->last_retired_head != -1) {
1853                 ringbuf->head = ringbuf->last_retired_head;
1854                 ringbuf->last_retired_head = -1;
1855
1856                 ringbuf->space = intel_ring_space(ringbuf);
1857                 if (ringbuf->space >= n)
1858                         return 0;
1859         }
1860
1861         list_for_each_entry(request, &ring->request_list, list) {
1862                 if (__intel_ring_space(request->tail, ringbuf->tail,
1863                                        ringbuf->size) >= n) {
1864                         seqno = request->seqno;
1865                         break;
1866                 }
1867         }
1868
1869         if (seqno == 0)
1870                 return -ENOSPC;
1871
1872         ret = i915_wait_seqno(ring, seqno);
1873         if (ret)
1874                 return ret;
1875
1876         i915_gem_retire_requests_ring(ring);
1877         ringbuf->head = ringbuf->last_retired_head;
1878         ringbuf->last_retired_head = -1;
1879
1880         ringbuf->space = intel_ring_space(ringbuf);
1881         return 0;
1882 }
1883
1884 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1885 {
1886         struct drm_device *dev = ring->dev;
1887         struct drm_i915_private *dev_priv = dev->dev_private;
1888         struct intel_ringbuffer *ringbuf = ring->buffer;
1889         unsigned long end;
1890         int ret;
1891
1892         ret = intel_ring_wait_request(ring, n);
1893         if (ret != -ENOSPC)
1894                 return ret;
1895
1896         /* force the tail write in case we have been skipping them */
1897         __intel_ring_advance(ring);
1898
1899         /* With GEM the hangcheck timer should kick us out of the loop,
1900          * leaving it early runs the risk of corrupting GEM state (due
1901          * to running on almost untested codepaths). But on resume
1902          * timers don't work yet, so prevent a complete hang in that
1903          * case by choosing an insanely large timeout. */
1904         end = jiffies + 60 * HZ;
1905
1906         trace_i915_ring_wait_begin(ring);
1907         do {
1908                 ringbuf->head = I915_READ_HEAD(ring);
1909                 ringbuf->space = intel_ring_space(ringbuf);
1910                 if (ringbuf->space >= n) {
1911                         ret = 0;
1912                         break;
1913                 }
1914
1915                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1916                     dev->primary->master) {
1917                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1918                         if (master_priv->sarea_priv)
1919                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1920                 }
1921
1922                 msleep(1);
1923
1924                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1925                         ret = -ERESTARTSYS;
1926                         break;
1927                 }
1928
1929                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1930                                            dev_priv->mm.interruptible);
1931                 if (ret)
1932                         break;
1933
1934                 if (time_after(jiffies, end)) {
1935                         ret = -EBUSY;
1936                         break;
1937                 }
1938         } while (1);
1939         trace_i915_ring_wait_end(ring);
1940         return ret;
1941 }
1942
1943 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1944 {
1945         uint32_t __iomem *virt;
1946         struct intel_ringbuffer *ringbuf = ring->buffer;
1947         int rem = ringbuf->size - ringbuf->tail;
1948
1949         if (ringbuf->space < rem) {
1950                 int ret = ring_wait_for_space(ring, rem);
1951                 if (ret)
1952                         return ret;
1953         }
1954
1955         virt = ringbuf->virtual_start + ringbuf->tail;
1956         rem /= 4;
1957         while (rem--)
1958                 iowrite32(MI_NOOP, virt++);
1959
1960         ringbuf->tail = 0;
1961         ringbuf->space = intel_ring_space(ringbuf);
1962
1963         return 0;
1964 }
1965
1966 int intel_ring_idle(struct intel_engine_cs *ring)
1967 {
1968         u32 seqno;
1969         int ret;
1970
1971         /* We need to add any requests required to flush the objects and ring */
1972         if (ring->outstanding_lazy_seqno) {
1973                 ret = i915_add_request(ring, NULL);
1974                 if (ret)
1975                         return ret;
1976         }
1977
1978         /* Wait upon the last request to be completed */
1979         if (list_empty(&ring->request_list))
1980                 return 0;
1981
1982         seqno = list_entry(ring->request_list.prev,
1983                            struct drm_i915_gem_request,
1984                            list)->seqno;
1985
1986         return i915_wait_seqno(ring, seqno);
1987 }
1988
1989 static int
1990 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1991 {
1992         if (ring->outstanding_lazy_seqno)
1993                 return 0;
1994
1995         if (ring->preallocated_lazy_request == NULL) {
1996                 struct drm_i915_gem_request *request;
1997
1998                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1999                 if (request == NULL)
2000                         return -ENOMEM;
2001
2002                 ring->preallocated_lazy_request = request;
2003         }
2004
2005         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2006 }
2007
2008 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2009                                 int bytes)
2010 {
2011         struct intel_ringbuffer *ringbuf = ring->buffer;
2012         int ret;
2013
2014         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2015                 ret = intel_wrap_ring_buffer(ring);
2016                 if (unlikely(ret))
2017                         return ret;
2018         }
2019
2020         if (unlikely(ringbuf->space < bytes)) {
2021                 ret = ring_wait_for_space(ring, bytes);
2022                 if (unlikely(ret))
2023                         return ret;
2024         }
2025
2026         return 0;
2027 }
2028
2029 int intel_ring_begin(struct intel_engine_cs *ring,
2030                      int num_dwords)
2031 {
2032         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2033         int ret;
2034
2035         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2036                                    dev_priv->mm.interruptible);
2037         if (ret)
2038                 return ret;
2039
2040         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2041         if (ret)
2042                 return ret;
2043
2044         /* Preallocate the olr before touching the ring */
2045         ret = intel_ring_alloc_seqno(ring);
2046         if (ret)
2047                 return ret;
2048
2049         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2050         return 0;
2051 }
2052
2053 /* Align the ring tail to a cacheline boundary */
2054 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2055 {
2056         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2057         int ret;
2058
2059         if (num_dwords == 0)
2060                 return 0;
2061
2062         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2063         ret = intel_ring_begin(ring, num_dwords);
2064         if (ret)
2065                 return ret;
2066
2067         while (num_dwords--)
2068                 intel_ring_emit(ring, MI_NOOP);
2069
2070         intel_ring_advance(ring);
2071
2072         return 0;
2073 }
2074
2075 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2076 {
2077         struct drm_device *dev = ring->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079
2080         BUG_ON(ring->outstanding_lazy_seqno);
2081
2082         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2083                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2084                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2085                 if (HAS_VEBOX(dev))
2086                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2087         }
2088
2089         ring->set_seqno(ring, seqno);
2090         ring->hangcheck.seqno = seqno;
2091 }
2092
2093 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2094                                      u32 value)
2095 {
2096         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2097
2098        /* Every tail move must follow the sequence below */
2099
2100         /* Disable notification that the ring is IDLE. The GT
2101          * will then assume that it is busy and bring it out of rc6.
2102          */
2103         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2104                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2105
2106         /* Clear the context id. Here be magic! */
2107         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2108
2109         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2110         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2111                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2112                      50))
2113                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2114
2115         /* Now that the ring is fully powered up, update the tail */
2116         I915_WRITE_TAIL(ring, value);
2117         POSTING_READ(RING_TAIL(ring->mmio_base));
2118
2119         /* Let the ring send IDLE messages to the GT again,
2120          * and so let it sleep to conserve power when idle.
2121          */
2122         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2123                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2124 }
2125
2126 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2127                                u32 invalidate, u32 flush)
2128 {
2129         uint32_t cmd;
2130         int ret;
2131
2132         ret = intel_ring_begin(ring, 4);
2133         if (ret)
2134                 return ret;
2135
2136         cmd = MI_FLUSH_DW;
2137         if (INTEL_INFO(ring->dev)->gen >= 8)
2138                 cmd += 1;
2139         /*
2140          * Bspec vol 1c.5 - video engine command streamer:
2141          * "If ENABLED, all TLBs will be invalidated once the flush
2142          * operation is complete. This bit is only valid when the
2143          * Post-Sync Operation field is a value of 1h or 3h."
2144          */
2145         if (invalidate & I915_GEM_GPU_DOMAINS)
2146                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2147                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2148         intel_ring_emit(ring, cmd);
2149         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2150         if (INTEL_INFO(ring->dev)->gen >= 8) {
2151                 intel_ring_emit(ring, 0); /* upper addr */
2152                 intel_ring_emit(ring, 0); /* value */
2153         } else  {
2154                 intel_ring_emit(ring, 0);
2155                 intel_ring_emit(ring, MI_NOOP);
2156         }
2157         intel_ring_advance(ring);
2158         return 0;
2159 }
2160
2161 static int
2162 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2163                               u64 offset, u32 len,
2164                               unsigned flags)
2165 {
2166         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2167         int ret;
2168
2169         ret = intel_ring_begin(ring, 4);
2170         if (ret)
2171                 return ret;
2172
2173         /* FIXME(BDW): Address space and security selectors. */
2174         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2175         intel_ring_emit(ring, lower_32_bits(offset));
2176         intel_ring_emit(ring, upper_32_bits(offset));
2177         intel_ring_emit(ring, MI_NOOP);
2178         intel_ring_advance(ring);
2179
2180         return 0;
2181 }
2182
2183 static int
2184 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2185                               u64 offset, u32 len,
2186                               unsigned flags)
2187 {
2188         int ret;
2189
2190         ret = intel_ring_begin(ring, 2);
2191         if (ret)
2192                 return ret;
2193
2194         intel_ring_emit(ring,
2195                         MI_BATCH_BUFFER_START |
2196                         (flags & I915_DISPATCH_SECURE ?
2197                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2198         /* bit0-7 is the length on GEN6+ */
2199         intel_ring_emit(ring, offset);
2200         intel_ring_advance(ring);
2201
2202         return 0;
2203 }
2204
2205 static int
2206 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2207                               u64 offset, u32 len,
2208                               unsigned flags)
2209 {
2210         int ret;
2211
2212         ret = intel_ring_begin(ring, 2);
2213         if (ret)
2214                 return ret;
2215
2216         intel_ring_emit(ring,
2217                         MI_BATCH_BUFFER_START |
2218                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2219         /* bit0-7 is the length on GEN6+ */
2220         intel_ring_emit(ring, offset);
2221         intel_ring_advance(ring);
2222
2223         return 0;
2224 }
2225
2226 /* Blitter support (SandyBridge+) */
2227
2228 static int gen6_ring_flush(struct intel_engine_cs *ring,
2229                            u32 invalidate, u32 flush)
2230 {
2231         struct drm_device *dev = ring->dev;
2232         uint32_t cmd;
2233         int ret;
2234
2235         ret = intel_ring_begin(ring, 4);
2236         if (ret)
2237                 return ret;
2238
2239         cmd = MI_FLUSH_DW;
2240         if (INTEL_INFO(ring->dev)->gen >= 8)
2241                 cmd += 1;
2242         /*
2243          * Bspec vol 1c.3 - blitter engine command streamer:
2244          * "If ENABLED, all TLBs will be invalidated once the flush
2245          * operation is complete. This bit is only valid when the
2246          * Post-Sync Operation field is a value of 1h or 3h."
2247          */
2248         if (invalidate & I915_GEM_DOMAIN_RENDER)
2249                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2250                         MI_FLUSH_DW_OP_STOREDW;
2251         intel_ring_emit(ring, cmd);
2252         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2253         if (INTEL_INFO(ring->dev)->gen >= 8) {
2254                 intel_ring_emit(ring, 0); /* upper addr */
2255                 intel_ring_emit(ring, 0); /* value */
2256         } else  {
2257                 intel_ring_emit(ring, 0);
2258                 intel_ring_emit(ring, MI_NOOP);
2259         }
2260         intel_ring_advance(ring);
2261
2262         if (IS_GEN7(dev) && !invalidate && flush)
2263                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2264
2265         return 0;
2266 }
2267
2268 int intel_init_render_ring_buffer(struct drm_device *dev)
2269 {
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2272         struct drm_i915_gem_object *obj;
2273         int ret;
2274
2275         ring->name = "render ring";
2276         ring->id = RCS;
2277         ring->mmio_base = RENDER_RING_BASE;
2278
2279         if (INTEL_INFO(dev)->gen >= 8) {
2280                 if (i915_semaphore_is_enabled(dev)) {
2281                         obj = i915_gem_alloc_object(dev, 4096);
2282                         if (obj == NULL) {
2283                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2284                                 i915.semaphores = 0;
2285                         } else {
2286                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2287                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2288                                 if (ret != 0) {
2289                                         drm_gem_object_unreference(&obj->base);
2290                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2291                                         i915.semaphores = 0;
2292                                 } else
2293                                         dev_priv->semaphore_obj = obj;
2294                         }
2295                 }
2296                 if (IS_CHERRYVIEW(dev))
2297                         ring->init_context = chv_init_workarounds;
2298                 else
2299                         ring->init_context = bdw_init_workarounds;
2300                 ring->add_request = gen6_add_request;
2301                 ring->flush = gen8_render_ring_flush;
2302                 ring->irq_get = gen8_ring_get_irq;
2303                 ring->irq_put = gen8_ring_put_irq;
2304                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2305                 ring->get_seqno = gen6_ring_get_seqno;
2306                 ring->set_seqno = ring_set_seqno;
2307                 if (i915_semaphore_is_enabled(dev)) {
2308                         WARN_ON(!dev_priv->semaphore_obj);
2309                         ring->semaphore.sync_to = gen8_ring_sync;
2310                         ring->semaphore.signal = gen8_rcs_signal;
2311                         GEN8_RING_SEMAPHORE_INIT;
2312                 }
2313         } else if (INTEL_INFO(dev)->gen >= 6) {
2314                 ring->add_request = gen6_add_request;
2315                 ring->flush = gen7_render_ring_flush;
2316                 if (INTEL_INFO(dev)->gen == 6)
2317                         ring->flush = gen6_render_ring_flush;
2318                 ring->irq_get = gen6_ring_get_irq;
2319                 ring->irq_put = gen6_ring_put_irq;
2320                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2321                 ring->get_seqno = gen6_ring_get_seqno;
2322                 ring->set_seqno = ring_set_seqno;
2323                 if (i915_semaphore_is_enabled(dev)) {
2324                         ring->semaphore.sync_to = gen6_ring_sync;
2325                         ring->semaphore.signal = gen6_signal;
2326                         /*
2327                          * The current semaphore is only applied on pre-gen8
2328                          * platform.  And there is no VCS2 ring on the pre-gen8
2329                          * platform. So the semaphore between RCS and VCS2 is
2330                          * initialized as INVALID.  Gen8 will initialize the
2331                          * sema between VCS2 and RCS later.
2332                          */
2333                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2334                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2335                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2336                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2337                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2338                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2339                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2340                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2341                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2342                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2343                 }
2344         } else if (IS_GEN5(dev)) {
2345                 ring->add_request = pc_render_add_request;
2346                 ring->flush = gen4_render_ring_flush;
2347                 ring->get_seqno = pc_render_get_seqno;
2348                 ring->set_seqno = pc_render_set_seqno;
2349                 ring->irq_get = gen5_ring_get_irq;
2350                 ring->irq_put = gen5_ring_put_irq;
2351                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2352                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2353         } else {
2354                 ring->add_request = i9xx_add_request;
2355                 if (INTEL_INFO(dev)->gen < 4)
2356                         ring->flush = gen2_render_ring_flush;
2357                 else
2358                         ring->flush = gen4_render_ring_flush;
2359                 ring->get_seqno = ring_get_seqno;
2360                 ring->set_seqno = ring_set_seqno;
2361                 if (IS_GEN2(dev)) {
2362                         ring->irq_get = i8xx_ring_get_irq;
2363                         ring->irq_put = i8xx_ring_put_irq;
2364                 } else {
2365                         ring->irq_get = i9xx_ring_get_irq;
2366                         ring->irq_put = i9xx_ring_put_irq;
2367                 }
2368                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2369         }
2370         ring->write_tail = ring_write_tail;
2371
2372         if (IS_HASWELL(dev))
2373                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2374         else if (IS_GEN8(dev))
2375                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2376         else if (INTEL_INFO(dev)->gen >= 6)
2377                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2378         else if (INTEL_INFO(dev)->gen >= 4)
2379                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2380         else if (IS_I830(dev) || IS_845G(dev))
2381                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2382         else
2383                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2384         ring->init = init_render_ring;
2385         ring->cleanup = render_ring_cleanup;
2386
2387         /* Workaround batchbuffer to combat CS tlb bug. */
2388         if (HAS_BROKEN_CS_TLB(dev)) {
2389                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2390                 if (obj == NULL) {
2391                         DRM_ERROR("Failed to allocate batch bo\n");
2392                         return -ENOMEM;
2393                 }
2394
2395                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2396                 if (ret != 0) {
2397                         drm_gem_object_unreference(&obj->base);
2398                         DRM_ERROR("Failed to ping batch bo\n");
2399                         return ret;
2400                 }
2401
2402                 ring->scratch.obj = obj;
2403                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2404         }
2405
2406         return intel_init_ring_buffer(dev, ring);
2407 }
2408
2409 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2413         struct intel_ringbuffer *ringbuf = ring->buffer;
2414         int ret;
2415
2416         if (ringbuf == NULL) {
2417                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2418                 if (!ringbuf)
2419                         return -ENOMEM;
2420                 ring->buffer = ringbuf;
2421         }
2422
2423         ring->name = "render ring";
2424         ring->id = RCS;
2425         ring->mmio_base = RENDER_RING_BASE;
2426
2427         if (INTEL_INFO(dev)->gen >= 6) {
2428                 /* non-kms not supported on gen6+ */
2429                 ret = -ENODEV;
2430                 goto err_ringbuf;
2431         }
2432
2433         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2434          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2435          * the special gen5 functions. */
2436         ring->add_request = i9xx_add_request;
2437         if (INTEL_INFO(dev)->gen < 4)
2438                 ring->flush = gen2_render_ring_flush;
2439         else
2440                 ring->flush = gen4_render_ring_flush;
2441         ring->get_seqno = ring_get_seqno;
2442         ring->set_seqno = ring_set_seqno;
2443         if (IS_GEN2(dev)) {
2444                 ring->irq_get = i8xx_ring_get_irq;
2445                 ring->irq_put = i8xx_ring_put_irq;
2446         } else {
2447                 ring->irq_get = i9xx_ring_get_irq;
2448                 ring->irq_put = i9xx_ring_put_irq;
2449         }
2450         ring->irq_enable_mask = I915_USER_INTERRUPT;
2451         ring->write_tail = ring_write_tail;
2452         if (INTEL_INFO(dev)->gen >= 4)
2453                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2454         else if (IS_I830(dev) || IS_845G(dev))
2455                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2456         else
2457                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2458         ring->init = init_render_ring;
2459         ring->cleanup = render_ring_cleanup;
2460
2461         ring->dev = dev;
2462         INIT_LIST_HEAD(&ring->active_list);
2463         INIT_LIST_HEAD(&ring->request_list);
2464
2465         ringbuf->size = size;
2466         ringbuf->effective_size = ringbuf->size;
2467         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2468                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2469
2470         ringbuf->virtual_start = ioremap_wc(start, size);
2471         if (ringbuf->virtual_start == NULL) {
2472                 DRM_ERROR("can not ioremap virtual address for"
2473                           " ring buffer\n");
2474                 ret = -ENOMEM;
2475                 goto err_ringbuf;
2476         }
2477
2478         if (!I915_NEED_GFX_HWS(dev)) {
2479                 ret = init_phys_status_page(ring);
2480                 if (ret)
2481                         goto err_vstart;
2482         }
2483
2484         return 0;
2485
2486 err_vstart:
2487         iounmap(ringbuf->virtual_start);
2488 err_ringbuf:
2489         kfree(ringbuf);
2490         ring->buffer = NULL;
2491         return ret;
2492 }
2493
2494 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2495 {
2496         struct drm_i915_private *dev_priv = dev->dev_private;
2497         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2498
2499         ring->name = "bsd ring";
2500         ring->id = VCS;
2501
2502         ring->write_tail = ring_write_tail;
2503         if (INTEL_INFO(dev)->gen >= 6) {
2504                 ring->mmio_base = GEN6_BSD_RING_BASE;
2505                 /* gen6 bsd needs a special wa for tail updates */
2506                 if (IS_GEN6(dev))
2507                         ring->write_tail = gen6_bsd_ring_write_tail;
2508                 ring->flush = gen6_bsd_ring_flush;
2509                 ring->add_request = gen6_add_request;
2510                 ring->get_seqno = gen6_ring_get_seqno;
2511                 ring->set_seqno = ring_set_seqno;
2512                 if (INTEL_INFO(dev)->gen >= 8) {
2513                         ring->irq_enable_mask =
2514                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2515                         ring->irq_get = gen8_ring_get_irq;
2516                         ring->irq_put = gen8_ring_put_irq;
2517                         ring->dispatch_execbuffer =
2518                                 gen8_ring_dispatch_execbuffer;
2519                         if (i915_semaphore_is_enabled(dev)) {
2520                                 ring->semaphore.sync_to = gen8_ring_sync;
2521                                 ring->semaphore.signal = gen8_xcs_signal;
2522                                 GEN8_RING_SEMAPHORE_INIT;
2523                         }
2524                 } else {
2525                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2526                         ring->irq_get = gen6_ring_get_irq;
2527                         ring->irq_put = gen6_ring_put_irq;
2528                         ring->dispatch_execbuffer =
2529                                 gen6_ring_dispatch_execbuffer;
2530                         if (i915_semaphore_is_enabled(dev)) {
2531                                 ring->semaphore.sync_to = gen6_ring_sync;
2532                                 ring->semaphore.signal = gen6_signal;
2533                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2534                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2535                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2536                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2537                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2538                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2539                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2540                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2541                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2542                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2543                         }
2544                 }
2545         } else {
2546                 ring->mmio_base = BSD_RING_BASE;
2547                 ring->flush = bsd_ring_flush;
2548                 ring->add_request = i9xx_add_request;
2549                 ring->get_seqno = ring_get_seqno;
2550                 ring->set_seqno = ring_set_seqno;
2551                 if (IS_GEN5(dev)) {
2552                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2553                         ring->irq_get = gen5_ring_get_irq;
2554                         ring->irq_put = gen5_ring_put_irq;
2555                 } else {
2556                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2557                         ring->irq_get = i9xx_ring_get_irq;
2558                         ring->irq_put = i9xx_ring_put_irq;
2559                 }
2560                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2561         }
2562         ring->init = init_ring_common;
2563
2564         return intel_init_ring_buffer(dev, ring);
2565 }
2566
2567 /**
2568  * Initialize the second BSD ring for Broadwell GT3.
2569  * It is noted that this only exists on Broadwell GT3.
2570  */
2571 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2572 {
2573         struct drm_i915_private *dev_priv = dev->dev_private;
2574         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2575
2576         if ((INTEL_INFO(dev)->gen != 8)) {
2577                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2578                 return -EINVAL;
2579         }
2580
2581         ring->name = "bsd2 ring";
2582         ring->id = VCS2;
2583
2584         ring->write_tail = ring_write_tail;
2585         ring->mmio_base = GEN8_BSD2_RING_BASE;
2586         ring->flush = gen6_bsd_ring_flush;
2587         ring->add_request = gen6_add_request;
2588         ring->get_seqno = gen6_ring_get_seqno;
2589         ring->set_seqno = ring_set_seqno;
2590         ring->irq_enable_mask =
2591                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2592         ring->irq_get = gen8_ring_get_irq;
2593         ring->irq_put = gen8_ring_put_irq;
2594         ring->dispatch_execbuffer =
2595                         gen8_ring_dispatch_execbuffer;
2596         if (i915_semaphore_is_enabled(dev)) {
2597                 ring->semaphore.sync_to = gen8_ring_sync;
2598                 ring->semaphore.signal = gen8_xcs_signal;
2599                 GEN8_RING_SEMAPHORE_INIT;
2600         }
2601         ring->init = init_ring_common;
2602
2603         return intel_init_ring_buffer(dev, ring);
2604 }
2605
2606 int intel_init_blt_ring_buffer(struct drm_device *dev)
2607 {
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2610
2611         ring->name = "blitter ring";
2612         ring->id = BCS;
2613
2614         ring->mmio_base = BLT_RING_BASE;
2615         ring->write_tail = ring_write_tail;
2616         ring->flush = gen6_ring_flush;
2617         ring->add_request = gen6_add_request;
2618         ring->get_seqno = gen6_ring_get_seqno;
2619         ring->set_seqno = ring_set_seqno;
2620         if (INTEL_INFO(dev)->gen >= 8) {
2621                 ring->irq_enable_mask =
2622                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2623                 ring->irq_get = gen8_ring_get_irq;
2624                 ring->irq_put = gen8_ring_put_irq;
2625                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2626                 if (i915_semaphore_is_enabled(dev)) {
2627                         ring->semaphore.sync_to = gen8_ring_sync;
2628                         ring->semaphore.signal = gen8_xcs_signal;
2629                         GEN8_RING_SEMAPHORE_INIT;
2630                 }
2631         } else {
2632                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2633                 ring->irq_get = gen6_ring_get_irq;
2634                 ring->irq_put = gen6_ring_put_irq;
2635                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2636                 if (i915_semaphore_is_enabled(dev)) {
2637                         ring->semaphore.signal = gen6_signal;
2638                         ring->semaphore.sync_to = gen6_ring_sync;
2639                         /*
2640                          * The current semaphore is only applied on pre-gen8
2641                          * platform.  And there is no VCS2 ring on the pre-gen8
2642                          * platform. So the semaphore between BCS and VCS2 is
2643                          * initialized as INVALID.  Gen8 will initialize the
2644                          * sema between BCS and VCS2 later.
2645                          */
2646                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2647                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2648                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2649                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2650                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2651                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2652                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2653                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2654                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2655                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2656                 }
2657         }
2658         ring->init = init_ring_common;
2659
2660         return intel_init_ring_buffer(dev, ring);
2661 }
2662
2663 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2664 {
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2667
2668         ring->name = "video enhancement ring";
2669         ring->id = VECS;
2670
2671         ring->mmio_base = VEBOX_RING_BASE;
2672         ring->write_tail = ring_write_tail;
2673         ring->flush = gen6_ring_flush;
2674         ring->add_request = gen6_add_request;
2675         ring->get_seqno = gen6_ring_get_seqno;
2676         ring->set_seqno = ring_set_seqno;
2677
2678         if (INTEL_INFO(dev)->gen >= 8) {
2679                 ring->irq_enable_mask =
2680                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2681                 ring->irq_get = gen8_ring_get_irq;
2682                 ring->irq_put = gen8_ring_put_irq;
2683                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2684                 if (i915_semaphore_is_enabled(dev)) {
2685                         ring->semaphore.sync_to = gen8_ring_sync;
2686                         ring->semaphore.signal = gen8_xcs_signal;
2687                         GEN8_RING_SEMAPHORE_INIT;
2688                 }
2689         } else {
2690                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2691                 ring->irq_get = hsw_vebox_get_irq;
2692                 ring->irq_put = hsw_vebox_put_irq;
2693                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2694                 if (i915_semaphore_is_enabled(dev)) {
2695                         ring->semaphore.sync_to = gen6_ring_sync;
2696                         ring->semaphore.signal = gen6_signal;
2697                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2698                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2699                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2700                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2701                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2702                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2703                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2704                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2705                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2706                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2707                 }
2708         }
2709         ring->init = init_ring_common;
2710
2711         return intel_init_ring_buffer(dev, ring);
2712 }
2713
2714 int
2715 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2716 {
2717         int ret;
2718
2719         if (!ring->gpu_caches_dirty)
2720                 return 0;
2721
2722         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2723         if (ret)
2724                 return ret;
2725
2726         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2727
2728         ring->gpu_caches_dirty = false;
2729         return 0;
2730 }
2731
2732 int
2733 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2734 {
2735         uint32_t flush_domains;
2736         int ret;
2737
2738         flush_domains = 0;
2739         if (ring->gpu_caches_dirty)
2740                 flush_domains = I915_GEM_GPU_DOMAINS;
2741
2742         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2743         if (ret)
2744                 return ret;
2745
2746         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2747
2748         ring->gpu_caches_dirty = false;
2749         return 0;
2750 }
2751
2752 void
2753 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2754 {
2755         int ret;
2756
2757         if (!intel_ring_initialized(ring))
2758                 return;
2759
2760         ret = intel_ring_idle(ring);
2761         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2762                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2763                           ring->name, ret);
2764
2765         stop_ring(ring);
2766 }