Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - (tail + I915_RING_FREE_SPACE);
56         if (space < 0)
57                 space += size;
58         return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63         return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64                                   ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69         struct drm_i915_private *dev_priv = ring->dev->dev_private;
70         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75         struct intel_ringbuffer *ringbuf = ring->buffer;
76         ringbuf->tail &= ringbuf->size - 1;
77         if (intel_ring_stopped(ring))
78                 return;
79         ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84                        u32      invalidate_domains,
85                        u32      flush_domains)
86 {
87         u32 cmd;
88         int ret;
89
90         cmd = MI_FLUSH;
91         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92                 cmd |= MI_NO_WRITE_FLUSH;
93
94         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95                 cmd |= MI_READ_FLUSH;
96
97         ret = intel_ring_begin(ring, 2);
98         if (ret)
99                 return ret;
100
101         intel_ring_emit(ring, cmd);
102         intel_ring_emit(ring, MI_NOOP);
103         intel_ring_advance(ring);
104
105         return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110                        u32      invalidate_domains,
111                        u32      flush_domains)
112 {
113         struct drm_device *dev = ring->dev;
114         u32 cmd;
115         int ret;
116
117         /*
118          * read/write caches:
119          *
120          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122          * also flushed at 2d versus 3d pipeline switches.
123          *
124          * read-only caches:
125          *
126          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127          * MI_READ_FLUSH is set, and is always flushed on 965.
128          *
129          * I915_GEM_DOMAIN_COMMAND may not exist?
130          *
131          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132          * invalidated when MI_EXE_FLUSH is set.
133          *
134          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135          * invalidated with every MI_FLUSH.
136          *
137          * TLBs:
138          *
139          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142          * are flushed at any MI_FLUSH.
143          */
144
145         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147                 cmd &= ~MI_NO_WRITE_FLUSH;
148         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149                 cmd |= MI_EXE_FLUSH;
150
151         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152             (IS_G4X(dev) || IS_GEN5(dev)))
153                 cmd |= MI_INVALIDATE_ISP;
154
155         ret = intel_ring_begin(ring, 2);
156         if (ret)
157                 return ret;
158
159         intel_ring_emit(ring, cmd);
160         intel_ring_emit(ring, MI_NOOP);
161         intel_ring_advance(ring);
162
163         return 0;
164 }
165
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207         int ret;
208
209
210         ret = intel_ring_begin(ring, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
217         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218         intel_ring_emit(ring, 0); /* low dword */
219         intel_ring_emit(ring, 0); /* high dword */
220         intel_ring_emit(ring, MI_NOOP);
221         intel_ring_advance(ring);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230         intel_ring_emit(ring, 0);
231         intel_ring_emit(ring, 0);
232         intel_ring_emit(ring, MI_NOOP);
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242         u32 flags = 0;
243         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = intel_emit_post_sync_nonzero_flush(ring);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (flush_domains) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (invalidate_domains) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         ret = intel_ring_begin(ring, 4);
278         if (ret)
279                 return ret;
280
281         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282         intel_ring_emit(ring, flags);
283         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284         intel_ring_emit(ring, 0);
285         intel_ring_advance(ring);
286
287         return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293         int ret;
294
295         ret = intel_ring_begin(ring, 4);
296         if (ret)
297                 return ret;
298
299         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
302         intel_ring_emit(ring, 0);
303         intel_ring_emit(ring, 0);
304         intel_ring_advance(ring);
305
306         return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311         int ret;
312
313         if (!ring->fbc_dirty)
314                 return 0;
315
316         ret = intel_ring_begin(ring, 6);
317         if (ret)
318                 return ret;
319         /* WaFbcNukeOn3DBlt:ivb/hsw */
320         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321         intel_ring_emit(ring, MSG_FBC_REND_STATE);
322         intel_ring_emit(ring, value);
323         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324         intel_ring_emit(ring, MSG_FBC_REND_STATE);
325         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326         intel_ring_advance(ring);
327
328         ring->fbc_dirty = false;
329         return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334                        u32 invalidate_domains, u32 flush_domains)
335 {
336         u32 flags = 0;
337         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338         int ret;
339
340         /*
341          * Ensure that any following seqno writes only happen when the render
342          * cache is indeed flushed.
343          *
344          * Workaround: 4th PIPE_CONTROL command (except the ones with only
345          * read-cache invalidate bits set) must have the CS_STALL bit set. We
346          * don't try to be clever and just set it unconditionally.
347          */
348         flags |= PIPE_CONTROL_CS_STALL;
349
350         /* Just flush everything.  Experiments have shown that reducing the
351          * number of bits based on the write domains has little performance
352          * impact.
353          */
354         if (flush_domains) {
355                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357         }
358         if (invalidate_domains) {
359                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365                 /*
366                  * TLB invalidate requires a post-sync write.
367                  */
368                 flags |= PIPE_CONTROL_QW_WRITE;
369                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371                 /* Workaround: we must issue a pipe_control with CS-stall bit
372                  * set before a pipe_control command that has the state cache
373                  * invalidate bit set. */
374                 gen7_render_ring_cs_stall_wa(ring);
375         }
376
377         ret = intel_ring_begin(ring, 4);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382         intel_ring_emit(ring, flags);
383         intel_ring_emit(ring, scratch_addr);
384         intel_ring_emit(ring, 0);
385         intel_ring_advance(ring);
386
387         if (!invalidate_domains && flush_domains)
388                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390         return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395                        u32 flags, u32 scratch_addr)
396 {
397         int ret;
398
399         ret = intel_ring_begin(ring, 6);
400         if (ret)
401                 return ret;
402
403         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404         intel_ring_emit(ring, flags);
405         intel_ring_emit(ring, scratch_addr);
406         intel_ring_emit(ring, 0);
407         intel_ring_emit(ring, 0);
408         intel_ring_emit(ring, 0);
409         intel_ring_advance(ring);
410
411         return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416                        u32 invalidate_domains, u32 flush_domains)
417 {
418         u32 flags = 0;
419         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420         int ret;
421
422         flags |= PIPE_CONTROL_CS_STALL;
423
424         if (flush_domains) {
425                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427         }
428         if (invalidate_domains) {
429                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435                 flags |= PIPE_CONTROL_QW_WRITE;
436                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439                 ret = gen8_emit_pipe_control(ring,
440                                              PIPE_CONTROL_CS_STALL |
441                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
442                                              0);
443                 if (ret)
444                         return ret;
445         }
446
447         ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448         if (ret)
449                 return ret;
450
451         if (!invalidate_domains && flush_domains)
452                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454         return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458                             u32 value)
459 {
460         struct drm_i915_private *dev_priv = ring->dev->dev_private;
461         I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u64 acthd;
468
469         if (INTEL_INFO(ring->dev)->gen >= 8)
470                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471                                          RING_ACTHD_UDW(ring->mmio_base));
472         else if (INTEL_INFO(ring->dev)->gen >= 4)
473                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474         else
475                 acthd = I915_READ(ACTHD);
476
477         return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_i915_private *dev_priv = ring->dev->dev_private;
483         u32 addr;
484
485         addr = dev_priv->status_page_dmah->busaddr;
486         if (INTEL_INFO(ring->dev)->gen >= 4)
487                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488         I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493         struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495         if (!IS_GEN2(ring->dev)) {
496                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499                         /* Sometimes we observe that the idle flag is not
500                          * set even though the ring is empty. So double
501                          * check before giving up.
502                          */
503                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504                                 return false;
505                 }
506         }
507
508         I915_WRITE_CTL(ring, 0);
509         I915_WRITE_HEAD(ring, 0);
510         ring->write_tail(ring, 0);
511
512         if (!IS_GEN2(ring->dev)) {
513                 (void)I915_READ_CTL(ring);
514                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515         }
516
517         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522         struct drm_device *dev = ring->dev;
523         struct drm_i915_private *dev_priv = dev->dev_private;
524         struct intel_ringbuffer *ringbuf = ring->buffer;
525         struct drm_i915_gem_object *obj = ringbuf->obj;
526         int ret = 0;
527
528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530         if (!stop_ring(ring)) {
531                 /* G45 ring initialization often fails to reset head to zero */
532                 DRM_DEBUG_KMS("%s head not reset to zero "
533                               "ctl %08x head %08x tail %08x start %08x\n",
534                               ring->name,
535                               I915_READ_CTL(ring),
536                               I915_READ_HEAD(ring),
537                               I915_READ_TAIL(ring),
538                               I915_READ_START(ring));
539
540                 if (!stop_ring(ring)) {
541                         DRM_ERROR("failed to set %s head to zero "
542                                   "ctl %08x head %08x tail %08x start %08x\n",
543                                   ring->name,
544                                   I915_READ_CTL(ring),
545                                   I915_READ_HEAD(ring),
546                                   I915_READ_TAIL(ring),
547                                   I915_READ_START(ring));
548                         ret = -EIO;
549                         goto out;
550                 }
551         }
552
553         if (I915_NEED_GFX_HWS(dev))
554                 intel_ring_setup_status_page(ring);
555         else
556                 ring_setup_phys_status_page(ring);
557
558         /* Enforce ordering by reading HEAD register back */
559         I915_READ_HEAD(ring);
560
561         /* Initialize the ring. This must happen _after_ we've cleared the ring
562          * registers with the above sequence (the readback of the HEAD registers
563          * also enforces ordering), otherwise the hw might lose the new ring
564          * register values. */
565         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567         /* WaClearRingBufHeadRegAtInit:ctg,elk */
568         if (I915_READ_HEAD(ring))
569                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570                           ring->name, I915_READ_HEAD(ring));
571         I915_WRITE_HEAD(ring, 0);
572         (void)I915_READ_HEAD(ring);
573
574         I915_WRITE_CTL(ring,
575                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576                         | RING_VALID);
577
578         /* If the head is still not zero, the ring is dead */
579         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582                 DRM_ERROR("%s initialization failed "
583                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584                           ring->name,
585                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588                 ret = -EIO;
589                 goto out;
590         }
591
592         ringbuf->head = I915_READ_HEAD(ring);
593         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
594         ringbuf->space = intel_ring_space(ringbuf);
595         ringbuf->last_retired_head = -1;
596
597         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
598
599 out:
600         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
601
602         return ret;
603 }
604
605 void
606 intel_fini_pipe_control(struct intel_engine_cs *ring)
607 {
608         struct drm_device *dev = ring->dev;
609
610         if (ring->scratch.obj == NULL)
611                 return;
612
613         if (INTEL_INFO(dev)->gen >= 5) {
614                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
615                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
616         }
617
618         drm_gem_object_unreference(&ring->scratch.obj->base);
619         ring->scratch.obj = NULL;
620 }
621
622 int
623 intel_init_pipe_control(struct intel_engine_cs *ring)
624 {
625         int ret;
626
627         if (ring->scratch.obj)
628                 return 0;
629
630         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
631         if (ring->scratch.obj == NULL) {
632                 DRM_ERROR("Failed to allocate seqno page\n");
633                 ret = -ENOMEM;
634                 goto err;
635         }
636
637         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
638         if (ret)
639                 goto err_unref;
640
641         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
642         if (ret)
643                 goto err_unref;
644
645         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
646         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
647         if (ring->scratch.cpu_page == NULL) {
648                 ret = -ENOMEM;
649                 goto err_unpin;
650         }
651
652         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
653                          ring->name, ring->scratch.gtt_offset);
654         return 0;
655
656 err_unpin:
657         i915_gem_object_ggtt_unpin(ring->scratch.obj);
658 err_unref:
659         drm_gem_object_unreference(&ring->scratch.obj->base);
660 err:
661         return ret;
662 }
663
664 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
665                                        struct intel_context *ctx)
666 {
667         int ret, i;
668         struct drm_device *dev = ring->dev;
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         struct i915_workarounds *w = &dev_priv->workarounds;
671
672         if (WARN_ON(w->count == 0))
673                 return 0;
674
675         ring->gpu_caches_dirty = true;
676         ret = intel_ring_flush_all_caches(ring);
677         if (ret)
678                 return ret;
679
680         ret = intel_ring_begin(ring, (w->count * 2 + 2));
681         if (ret)
682                 return ret;
683
684         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
685         for (i = 0; i < w->count; i++) {
686                 intel_ring_emit(ring, w->reg[i].addr);
687                 intel_ring_emit(ring, w->reg[i].value);
688         }
689         intel_ring_emit(ring, MI_NOOP);
690
691         intel_ring_advance(ring);
692
693         ring->gpu_caches_dirty = true;
694         ret = intel_ring_flush_all_caches(ring);
695         if (ret)
696                 return ret;
697
698         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
699
700         return 0;
701 }
702
703 static int wa_add(struct drm_i915_private *dev_priv,
704                   const u32 addr, const u32 mask, const u32 val)
705 {
706         const u32 idx = dev_priv->workarounds.count;
707
708         if (WARN_ON(idx >= I915_MAX_WA_REGS))
709                 return -ENOSPC;
710
711         dev_priv->workarounds.reg[idx].addr = addr;
712         dev_priv->workarounds.reg[idx].value = val;
713         dev_priv->workarounds.reg[idx].mask = mask;
714
715         dev_priv->workarounds.count++;
716
717         return 0;
718 }
719
720 #define WA_REG(addr, mask, val) { \
721                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
722                 if (r) \
723                         return r; \
724         }
725
726 #define WA_SET_BIT_MASKED(addr, mask) \
727         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
728
729 #define WA_CLR_BIT_MASKED(addr, mask) \
730         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
731
732 #define WA_SET_FIELD_MASKED(addr, mask, value) \
733         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
734
735 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
736 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
737
738 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
739
740 static int bdw_init_workarounds(struct intel_engine_cs *ring)
741 {
742         struct drm_device *dev = ring->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744
745         /* WaDisablePartialInstShootdown:bdw */
746         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
747         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
748                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
749                           STALL_DOP_GATING_DISABLE);
750
751         /* WaDisableDopClockGating:bdw */
752         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
753                           DOP_CLOCK_GATING_DISABLE);
754
755         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
756                           GEN8_SAMPLER_POWER_BYPASS_DIS);
757
758         /* Use Force Non-Coherent whenever executing a 3D context. This is a
759          * workaround for for a possible hang in the unlikely event a TLB
760          * invalidation occurs during a PSD flush.
761          */
762         /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
763         WA_SET_BIT_MASKED(HDC_CHICKEN0,
764                           HDC_FORCE_NON_COHERENT |
765                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
766
767         /* Wa4x4STCOptimizationDisable:bdw */
768         WA_SET_BIT_MASKED(CACHE_MODE_1,
769                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
770
771         /*
772          * BSpec recommends 8x4 when MSAA is used,
773          * however in practice 16x4 seems fastest.
774          *
775          * Note that PS/WM thread counts depend on the WIZ hashing
776          * disable bit, which we don't touch here, but it's good
777          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
778          */
779         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
780                             GEN6_WIZ_HASHING_MASK,
781                             GEN6_WIZ_HASHING_16x4);
782
783         return 0;
784 }
785
786 static int chv_init_workarounds(struct intel_engine_cs *ring)
787 {
788         struct drm_device *dev = ring->dev;
789         struct drm_i915_private *dev_priv = dev->dev_private;
790
791         /* WaDisablePartialInstShootdown:chv */
792         /* WaDisableThreadStallDopClockGating:chv */
793         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
794                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
795                           STALL_DOP_GATING_DISABLE);
796
797         /* Use Force Non-Coherent whenever executing a 3D context. This is a
798          * workaround for a possible hang in the unlikely event a TLB
799          * invalidation occurs during a PSD flush.
800          */
801         /* WaForceEnableNonCoherent:chv */
802         /* WaHdcDisableFetchWhenMasked:chv */
803         WA_SET_BIT_MASKED(HDC_CHICKEN0,
804                           HDC_FORCE_NON_COHERENT |
805                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
806
807         return 0;
808 }
809
810 int init_workarounds_ring(struct intel_engine_cs *ring)
811 {
812         struct drm_device *dev = ring->dev;
813         struct drm_i915_private *dev_priv = dev->dev_private;
814
815         WARN_ON(ring->id != RCS);
816
817         dev_priv->workarounds.count = 0;
818
819         if (IS_BROADWELL(dev))
820                 return bdw_init_workarounds(ring);
821
822         if (IS_CHERRYVIEW(dev))
823                 return chv_init_workarounds(ring);
824
825         return 0;
826 }
827
828 static int init_render_ring(struct intel_engine_cs *ring)
829 {
830         struct drm_device *dev = ring->dev;
831         struct drm_i915_private *dev_priv = dev->dev_private;
832         int ret = init_ring_common(ring);
833         if (ret)
834                 return ret;
835
836         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
837         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
838                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
839
840         /* We need to disable the AsyncFlip performance optimisations in order
841          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
842          * programmed to '1' on all products.
843          *
844          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
845          */
846         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
847                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
848
849         /* Required for the hardware to program scanline values for waiting */
850         /* WaEnableFlushTlbInvalidationMode:snb */
851         if (INTEL_INFO(dev)->gen == 6)
852                 I915_WRITE(GFX_MODE,
853                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
854
855         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
856         if (IS_GEN7(dev))
857                 I915_WRITE(GFX_MODE_GEN7,
858                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
859                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
860
861         if (INTEL_INFO(dev)->gen >= 5) {
862                 ret = intel_init_pipe_control(ring);
863                 if (ret)
864                         return ret;
865         }
866
867         if (IS_GEN6(dev)) {
868                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
869                  * "If this bit is set, STCunit will have LRA as replacement
870                  *  policy. [...] This bit must be reset.  LRA replacement
871                  *  policy is not supported."
872                  */
873                 I915_WRITE(CACHE_MODE_0,
874                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
875         }
876
877         if (INTEL_INFO(dev)->gen >= 6)
878                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
879
880         if (HAS_L3_DPF(dev))
881                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
882
883         return init_workarounds_ring(ring);
884 }
885
886 static void render_ring_cleanup(struct intel_engine_cs *ring)
887 {
888         struct drm_device *dev = ring->dev;
889         struct drm_i915_private *dev_priv = dev->dev_private;
890
891         if (dev_priv->semaphore_obj) {
892                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
893                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
894                 dev_priv->semaphore_obj = NULL;
895         }
896
897         intel_fini_pipe_control(ring);
898 }
899
900 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
901                            unsigned int num_dwords)
902 {
903 #define MBOX_UPDATE_DWORDS 8
904         struct drm_device *dev = signaller->dev;
905         struct drm_i915_private *dev_priv = dev->dev_private;
906         struct intel_engine_cs *waiter;
907         int i, ret, num_rings;
908
909         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
910         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
911 #undef MBOX_UPDATE_DWORDS
912
913         ret = intel_ring_begin(signaller, num_dwords);
914         if (ret)
915                 return ret;
916
917         for_each_ring(waiter, dev_priv, i) {
918                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
919                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
920                         continue;
921
922                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
923                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
924                                            PIPE_CONTROL_QW_WRITE |
925                                            PIPE_CONTROL_FLUSH_ENABLE);
926                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
927                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
928                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
929                 intel_ring_emit(signaller, 0);
930                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
931                                            MI_SEMAPHORE_TARGET(waiter->id));
932                 intel_ring_emit(signaller, 0);
933         }
934
935         return 0;
936 }
937
938 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
939                            unsigned int num_dwords)
940 {
941 #define MBOX_UPDATE_DWORDS 6
942         struct drm_device *dev = signaller->dev;
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         struct intel_engine_cs *waiter;
945         int i, ret, num_rings;
946
947         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
948         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
949 #undef MBOX_UPDATE_DWORDS
950
951         ret = intel_ring_begin(signaller, num_dwords);
952         if (ret)
953                 return ret;
954
955         for_each_ring(waiter, dev_priv, i) {
956                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
957                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
958                         continue;
959
960                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
961                                            MI_FLUSH_DW_OP_STOREDW);
962                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
963                                            MI_FLUSH_DW_USE_GTT);
964                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
965                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
966                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
967                                            MI_SEMAPHORE_TARGET(waiter->id));
968                 intel_ring_emit(signaller, 0);
969         }
970
971         return 0;
972 }
973
974 static int gen6_signal(struct intel_engine_cs *signaller,
975                        unsigned int num_dwords)
976 {
977         struct drm_device *dev = signaller->dev;
978         struct drm_i915_private *dev_priv = dev->dev_private;
979         struct intel_engine_cs *useless;
980         int i, ret, num_rings;
981
982 #define MBOX_UPDATE_DWORDS 3
983         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
984         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
985 #undef MBOX_UPDATE_DWORDS
986
987         ret = intel_ring_begin(signaller, num_dwords);
988         if (ret)
989                 return ret;
990
991         for_each_ring(useless, dev_priv, i) {
992                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
993                 if (mbox_reg != GEN6_NOSYNC) {
994                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
995                         intel_ring_emit(signaller, mbox_reg);
996                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
997                 }
998         }
999
1000         /* If num_dwords was rounded, make sure the tail pointer is correct */
1001         if (num_rings % 2 == 0)
1002                 intel_ring_emit(signaller, MI_NOOP);
1003
1004         return 0;
1005 }
1006
1007 /**
1008  * gen6_add_request - Update the semaphore mailbox registers
1009  * 
1010  * @ring - ring that is adding a request
1011  * @seqno - return seqno stuck into the ring
1012  *
1013  * Update the mailbox registers in the *other* rings with the current seqno.
1014  * This acts like a signal in the canonical semaphore.
1015  */
1016 static int
1017 gen6_add_request(struct intel_engine_cs *ring)
1018 {
1019         int ret;
1020
1021         if (ring->semaphore.signal)
1022                 ret = ring->semaphore.signal(ring, 4);
1023         else
1024                 ret = intel_ring_begin(ring, 4);
1025
1026         if (ret)
1027                 return ret;
1028
1029         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1030         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1031         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1032         intel_ring_emit(ring, MI_USER_INTERRUPT);
1033         __intel_ring_advance(ring);
1034
1035         return 0;
1036 }
1037
1038 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1039                                               u32 seqno)
1040 {
1041         struct drm_i915_private *dev_priv = dev->dev_private;
1042         return dev_priv->last_seqno < seqno;
1043 }
1044
1045 /**
1046  * intel_ring_sync - sync the waiter to the signaller on seqno
1047  *
1048  * @waiter - ring that is waiting
1049  * @signaller - ring which has, or will signal
1050  * @seqno - seqno which the waiter will block on
1051  */
1052
1053 static int
1054 gen8_ring_sync(struct intel_engine_cs *waiter,
1055                struct intel_engine_cs *signaller,
1056                u32 seqno)
1057 {
1058         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1059         int ret;
1060
1061         ret = intel_ring_begin(waiter, 4);
1062         if (ret)
1063                 return ret;
1064
1065         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1066                                 MI_SEMAPHORE_GLOBAL_GTT |
1067                                 MI_SEMAPHORE_POLL |
1068                                 MI_SEMAPHORE_SAD_GTE_SDD);
1069         intel_ring_emit(waiter, seqno);
1070         intel_ring_emit(waiter,
1071                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1072         intel_ring_emit(waiter,
1073                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1074         intel_ring_advance(waiter);
1075         return 0;
1076 }
1077
1078 static int
1079 gen6_ring_sync(struct intel_engine_cs *waiter,
1080                struct intel_engine_cs *signaller,
1081                u32 seqno)
1082 {
1083         u32 dw1 = MI_SEMAPHORE_MBOX |
1084                   MI_SEMAPHORE_COMPARE |
1085                   MI_SEMAPHORE_REGISTER;
1086         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1087         int ret;
1088
1089         /* Throughout all of the GEM code, seqno passed implies our current
1090          * seqno is >= the last seqno executed. However for hardware the
1091          * comparison is strictly greater than.
1092          */
1093         seqno -= 1;
1094
1095         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1096
1097         ret = intel_ring_begin(waiter, 4);
1098         if (ret)
1099                 return ret;
1100
1101         /* If seqno wrap happened, omit the wait with no-ops */
1102         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1103                 intel_ring_emit(waiter, dw1 | wait_mbox);
1104                 intel_ring_emit(waiter, seqno);
1105                 intel_ring_emit(waiter, 0);
1106                 intel_ring_emit(waiter, MI_NOOP);
1107         } else {
1108                 intel_ring_emit(waiter, MI_NOOP);
1109                 intel_ring_emit(waiter, MI_NOOP);
1110                 intel_ring_emit(waiter, MI_NOOP);
1111                 intel_ring_emit(waiter, MI_NOOP);
1112         }
1113         intel_ring_advance(waiter);
1114
1115         return 0;
1116 }
1117
1118 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1119 do {                                                                    \
1120         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1121                  PIPE_CONTROL_DEPTH_STALL);                             \
1122         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1123         intel_ring_emit(ring__, 0);                                                     \
1124         intel_ring_emit(ring__, 0);                                                     \
1125 } while (0)
1126
1127 static int
1128 pc_render_add_request(struct intel_engine_cs *ring)
1129 {
1130         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1131         int ret;
1132
1133         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1134          * incoherent with writes to memory, i.e. completely fubar,
1135          * so we need to use PIPE_NOTIFY instead.
1136          *
1137          * However, we also need to workaround the qword write
1138          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1139          * memory before requesting an interrupt.
1140          */
1141         ret = intel_ring_begin(ring, 32);
1142         if (ret)
1143                 return ret;
1144
1145         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1146                         PIPE_CONTROL_WRITE_FLUSH |
1147                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1148         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1149         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1150         intel_ring_emit(ring, 0);
1151         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1152         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1153         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1154         scratch_addr += 2 * CACHELINE_BYTES;
1155         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1156         scratch_addr += 2 * CACHELINE_BYTES;
1157         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1158         scratch_addr += 2 * CACHELINE_BYTES;
1159         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1160         scratch_addr += 2 * CACHELINE_BYTES;
1161         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1162
1163         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1164                         PIPE_CONTROL_WRITE_FLUSH |
1165                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1166                         PIPE_CONTROL_NOTIFY);
1167         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1168         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1169         intel_ring_emit(ring, 0);
1170         __intel_ring_advance(ring);
1171
1172         return 0;
1173 }
1174
1175 static u32
1176 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1177 {
1178         /* Workaround to force correct ordering between irq and seqno writes on
1179          * ivb (and maybe also on snb) by reading from a CS register (like
1180          * ACTHD) before reading the status page. */
1181         if (!lazy_coherency) {
1182                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1183                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1184         }
1185
1186         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1187 }
1188
1189 static u32
1190 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1191 {
1192         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1193 }
1194
1195 static void
1196 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1197 {
1198         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1199 }
1200
1201 static u32
1202 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1203 {
1204         return ring->scratch.cpu_page[0];
1205 }
1206
1207 static void
1208 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1209 {
1210         ring->scratch.cpu_page[0] = seqno;
1211 }
1212
1213 static bool
1214 gen5_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         unsigned long flags;
1219
1220         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1221                 return false;
1222
1223         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1224         if (ring->irq_refcount++ == 0)
1225                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1226         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1227
1228         return true;
1229 }
1230
1231 static void
1232 gen5_ring_put_irq(struct intel_engine_cs *ring)
1233 {
1234         struct drm_device *dev = ring->dev;
1235         struct drm_i915_private *dev_priv = dev->dev_private;
1236         unsigned long flags;
1237
1238         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1239         if (--ring->irq_refcount == 0)
1240                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1241         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1242 }
1243
1244 static bool
1245 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1246 {
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         unsigned long flags;
1250
1251         if (!intel_irqs_enabled(dev_priv))
1252                 return false;
1253
1254         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1255         if (ring->irq_refcount++ == 0) {
1256                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1257                 I915_WRITE(IMR, dev_priv->irq_mask);
1258                 POSTING_READ(IMR);
1259         }
1260         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1261
1262         return true;
1263 }
1264
1265 static void
1266 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1267 {
1268         struct drm_device *dev = ring->dev;
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         unsigned long flags;
1271
1272         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1273         if (--ring->irq_refcount == 0) {
1274                 dev_priv->irq_mask |= ring->irq_enable_mask;
1275                 I915_WRITE(IMR, dev_priv->irq_mask);
1276                 POSTING_READ(IMR);
1277         }
1278         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1279 }
1280
1281 static bool
1282 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1283 {
1284         struct drm_device *dev = ring->dev;
1285         struct drm_i915_private *dev_priv = dev->dev_private;
1286         unsigned long flags;
1287
1288         if (!intel_irqs_enabled(dev_priv))
1289                 return false;
1290
1291         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1292         if (ring->irq_refcount++ == 0) {
1293                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1294                 I915_WRITE16(IMR, dev_priv->irq_mask);
1295                 POSTING_READ16(IMR);
1296         }
1297         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1298
1299         return true;
1300 }
1301
1302 static void
1303 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1304 {
1305         struct drm_device *dev = ring->dev;
1306         struct drm_i915_private *dev_priv = dev->dev_private;
1307         unsigned long flags;
1308
1309         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1310         if (--ring->irq_refcount == 0) {
1311                 dev_priv->irq_mask |= ring->irq_enable_mask;
1312                 I915_WRITE16(IMR, dev_priv->irq_mask);
1313                 POSTING_READ16(IMR);
1314         }
1315         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1316 }
1317
1318 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1319 {
1320         struct drm_device *dev = ring->dev;
1321         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1322         u32 mmio = 0;
1323
1324         /* The ring status page addresses are no longer next to the rest of
1325          * the ring registers as of gen7.
1326          */
1327         if (IS_GEN7(dev)) {
1328                 switch (ring->id) {
1329                 case RCS:
1330                         mmio = RENDER_HWS_PGA_GEN7;
1331                         break;
1332                 case BCS:
1333                         mmio = BLT_HWS_PGA_GEN7;
1334                         break;
1335                 /*
1336                  * VCS2 actually doesn't exist on Gen7. Only shut up
1337                  * gcc switch check warning
1338                  */
1339                 case VCS2:
1340                 case VCS:
1341                         mmio = BSD_HWS_PGA_GEN7;
1342                         break;
1343                 case VECS:
1344                         mmio = VEBOX_HWS_PGA_GEN7;
1345                         break;
1346                 }
1347         } else if (IS_GEN6(ring->dev)) {
1348                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1349         } else {
1350                 /* XXX: gen8 returns to sanity */
1351                 mmio = RING_HWS_PGA(ring->mmio_base);
1352         }
1353
1354         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1355         POSTING_READ(mmio);
1356
1357         /*
1358          * Flush the TLB for this page
1359          *
1360          * FIXME: These two bits have disappeared on gen8, so a question
1361          * arises: do we still need this and if so how should we go about
1362          * invalidating the TLB?
1363          */
1364         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1365                 u32 reg = RING_INSTPM(ring->mmio_base);
1366
1367                 /* ring should be idle before issuing a sync flush*/
1368                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1369
1370                 I915_WRITE(reg,
1371                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1372                                               INSTPM_SYNC_FLUSH));
1373                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1374                              1000))
1375                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1376                                   ring->name);
1377         }
1378 }
1379
1380 static int
1381 bsd_ring_flush(struct intel_engine_cs *ring,
1382                u32     invalidate_domains,
1383                u32     flush_domains)
1384 {
1385         int ret;
1386
1387         ret = intel_ring_begin(ring, 2);
1388         if (ret)
1389                 return ret;
1390
1391         intel_ring_emit(ring, MI_FLUSH);
1392         intel_ring_emit(ring, MI_NOOP);
1393         intel_ring_advance(ring);
1394         return 0;
1395 }
1396
1397 static int
1398 i9xx_add_request(struct intel_engine_cs *ring)
1399 {
1400         int ret;
1401
1402         ret = intel_ring_begin(ring, 4);
1403         if (ret)
1404                 return ret;
1405
1406         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1407         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1408         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1409         intel_ring_emit(ring, MI_USER_INTERRUPT);
1410         __intel_ring_advance(ring);
1411
1412         return 0;
1413 }
1414
1415 static bool
1416 gen6_ring_get_irq(struct intel_engine_cs *ring)
1417 {
1418         struct drm_device *dev = ring->dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         unsigned long flags;
1421
1422         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1423                 return false;
1424
1425         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1426         if (ring->irq_refcount++ == 0) {
1427                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1428                         I915_WRITE_IMR(ring,
1429                                        ~(ring->irq_enable_mask |
1430                                          GT_PARITY_ERROR(dev)));
1431                 else
1432                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1433                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1434         }
1435         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1436
1437         return true;
1438 }
1439
1440 static void
1441 gen6_ring_put_irq(struct intel_engine_cs *ring)
1442 {
1443         struct drm_device *dev = ring->dev;
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         unsigned long flags;
1446
1447         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1448         if (--ring->irq_refcount == 0) {
1449                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1450                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1451                 else
1452                         I915_WRITE_IMR(ring, ~0);
1453                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1454         }
1455         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1456 }
1457
1458 static bool
1459 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1460 {
1461         struct drm_device *dev = ring->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         unsigned long flags;
1464
1465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1466                 return false;
1467
1468         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469         if (ring->irq_refcount++ == 0) {
1470                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1471                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1472         }
1473         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1474
1475         return true;
1476 }
1477
1478 static void
1479 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1480 {
1481         struct drm_device *dev = ring->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         unsigned long flags;
1484
1485         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1486         if (--ring->irq_refcount == 0) {
1487                 I915_WRITE_IMR(ring, ~0);
1488                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1489         }
1490         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1491 }
1492
1493 static bool
1494 gen8_ring_get_irq(struct intel_engine_cs *ring)
1495 {
1496         struct drm_device *dev = ring->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         unsigned long flags;
1499
1500         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1501                 return false;
1502
1503         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1504         if (ring->irq_refcount++ == 0) {
1505                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1506                         I915_WRITE_IMR(ring,
1507                                        ~(ring->irq_enable_mask |
1508                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1509                 } else {
1510                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1511                 }
1512                 POSTING_READ(RING_IMR(ring->mmio_base));
1513         }
1514         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1515
1516         return true;
1517 }
1518
1519 static void
1520 gen8_ring_put_irq(struct intel_engine_cs *ring)
1521 {
1522         struct drm_device *dev = ring->dev;
1523         struct drm_i915_private *dev_priv = dev->dev_private;
1524         unsigned long flags;
1525
1526         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1527         if (--ring->irq_refcount == 0) {
1528                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1529                         I915_WRITE_IMR(ring,
1530                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1531                 } else {
1532                         I915_WRITE_IMR(ring, ~0);
1533                 }
1534                 POSTING_READ(RING_IMR(ring->mmio_base));
1535         }
1536         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1537 }
1538
1539 static int
1540 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1541                          u64 offset, u32 length,
1542                          unsigned flags)
1543 {
1544         int ret;
1545
1546         ret = intel_ring_begin(ring, 2);
1547         if (ret)
1548                 return ret;
1549
1550         intel_ring_emit(ring,
1551                         MI_BATCH_BUFFER_START |
1552                         MI_BATCH_GTT |
1553                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1554         intel_ring_emit(ring, offset);
1555         intel_ring_advance(ring);
1556
1557         return 0;
1558 }
1559
1560 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1561 #define I830_BATCH_LIMIT (256*1024)
1562 #define I830_TLB_ENTRIES (2)
1563 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1564 static int
1565 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1566                                 u64 offset, u32 len,
1567                                 unsigned flags)
1568 {
1569         u32 cs_offset = ring->scratch.gtt_offset;
1570         int ret;
1571
1572         ret = intel_ring_begin(ring, 6);
1573         if (ret)
1574                 return ret;
1575
1576         /* Evict the invalid PTE TLBs */
1577         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1578         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1579         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1580         intel_ring_emit(ring, cs_offset);
1581         intel_ring_emit(ring, 0xdeadbeef);
1582         intel_ring_emit(ring, MI_NOOP);
1583         intel_ring_advance(ring);
1584
1585         if ((flags & I915_DISPATCH_PINNED) == 0) {
1586                 if (len > I830_BATCH_LIMIT)
1587                         return -ENOSPC;
1588
1589                 ret = intel_ring_begin(ring, 6 + 2);
1590                 if (ret)
1591                         return ret;
1592
1593                 /* Blit the batch (which has now all relocs applied) to the
1594                  * stable batch scratch bo area (so that the CS never
1595                  * stumbles over its tlb invalidation bug) ...
1596                  */
1597                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1598                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1599                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1600                 intel_ring_emit(ring, cs_offset);
1601                 intel_ring_emit(ring, 4096);
1602                 intel_ring_emit(ring, offset);
1603
1604                 intel_ring_emit(ring, MI_FLUSH);
1605                 intel_ring_emit(ring, MI_NOOP);
1606                 intel_ring_advance(ring);
1607
1608                 /* ... and execute it. */
1609                 offset = cs_offset;
1610         }
1611
1612         ret = intel_ring_begin(ring, 4);
1613         if (ret)
1614                 return ret;
1615
1616         intel_ring_emit(ring, MI_BATCH_BUFFER);
1617         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1618         intel_ring_emit(ring, offset + len - 8);
1619         intel_ring_emit(ring, MI_NOOP);
1620         intel_ring_advance(ring);
1621
1622         return 0;
1623 }
1624
1625 static int
1626 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1627                          u64 offset, u32 len,
1628                          unsigned flags)
1629 {
1630         int ret;
1631
1632         ret = intel_ring_begin(ring, 2);
1633         if (ret)
1634                 return ret;
1635
1636         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1637         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1638         intel_ring_advance(ring);
1639
1640         return 0;
1641 }
1642
1643 static void cleanup_status_page(struct intel_engine_cs *ring)
1644 {
1645         struct drm_i915_gem_object *obj;
1646
1647         obj = ring->status_page.obj;
1648         if (obj == NULL)
1649                 return;
1650
1651         kunmap(sg_page(obj->pages->sgl));
1652         i915_gem_object_ggtt_unpin(obj);
1653         drm_gem_object_unreference(&obj->base);
1654         ring->status_page.obj = NULL;
1655 }
1656
1657 static int init_status_page(struct intel_engine_cs *ring)
1658 {
1659         struct drm_i915_gem_object *obj;
1660
1661         if ((obj = ring->status_page.obj) == NULL) {
1662                 unsigned flags;
1663                 int ret;
1664
1665                 obj = i915_gem_alloc_object(ring->dev, 4096);
1666                 if (obj == NULL) {
1667                         DRM_ERROR("Failed to allocate status page\n");
1668                         return -ENOMEM;
1669                 }
1670
1671                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1672                 if (ret)
1673                         goto err_unref;
1674
1675                 flags = 0;
1676                 if (!HAS_LLC(ring->dev))
1677                         /* On g33, we cannot place HWS above 256MiB, so
1678                          * restrict its pinning to the low mappable arena.
1679                          * Though this restriction is not documented for
1680                          * gen4, gen5, or byt, they also behave similarly
1681                          * and hang if the HWS is placed at the top of the
1682                          * GTT. To generalise, it appears that all !llc
1683                          * platforms have issues with us placing the HWS
1684                          * above the mappable region (even though we never
1685                          * actualy map it).
1686                          */
1687                         flags |= PIN_MAPPABLE;
1688                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1689                 if (ret) {
1690 err_unref:
1691                         drm_gem_object_unreference(&obj->base);
1692                         return ret;
1693                 }
1694
1695                 ring->status_page.obj = obj;
1696         }
1697
1698         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1699         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1700         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1701
1702         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1703                         ring->name, ring->status_page.gfx_addr);
1704
1705         return 0;
1706 }
1707
1708 static int init_phys_status_page(struct intel_engine_cs *ring)
1709 {
1710         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1711
1712         if (!dev_priv->status_page_dmah) {
1713                 dev_priv->status_page_dmah =
1714                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1715                 if (!dev_priv->status_page_dmah)
1716                         return -ENOMEM;
1717         }
1718
1719         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1720         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1721
1722         return 0;
1723 }
1724
1725 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1726 {
1727         iounmap(ringbuf->virtual_start);
1728         ringbuf->virtual_start = NULL;
1729         i915_gem_object_ggtt_unpin(ringbuf->obj);
1730 }
1731
1732 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1733                                      struct intel_ringbuffer *ringbuf)
1734 {
1735         struct drm_i915_private *dev_priv = to_i915(dev);
1736         struct drm_i915_gem_object *obj = ringbuf->obj;
1737         int ret;
1738
1739         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1740         if (ret)
1741                 return ret;
1742
1743         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1744         if (ret) {
1745                 i915_gem_object_ggtt_unpin(obj);
1746                 return ret;
1747         }
1748
1749         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1750                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1751         if (ringbuf->virtual_start == NULL) {
1752                 i915_gem_object_ggtt_unpin(obj);
1753                 return -EINVAL;
1754         }
1755
1756         return 0;
1757 }
1758
1759 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1760 {
1761         drm_gem_object_unreference(&ringbuf->obj->base);
1762         ringbuf->obj = NULL;
1763 }
1764
1765 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1766                                struct intel_ringbuffer *ringbuf)
1767 {
1768         struct drm_i915_gem_object *obj;
1769
1770         obj = NULL;
1771         if (!HAS_LLC(dev))
1772                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1773         if (obj == NULL)
1774                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1775         if (obj == NULL)
1776                 return -ENOMEM;
1777
1778         /* mark ring buffers as read-only from GPU side by default */
1779         obj->gt_ro = 1;
1780
1781         ringbuf->obj = obj;
1782
1783         return 0;
1784 }
1785
1786 static int intel_init_ring_buffer(struct drm_device *dev,
1787                                   struct intel_engine_cs *ring)
1788 {
1789         struct intel_ringbuffer *ringbuf = ring->buffer;
1790         int ret;
1791
1792         if (ringbuf == NULL) {
1793                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1794                 if (!ringbuf)
1795                         return -ENOMEM;
1796                 ring->buffer = ringbuf;
1797         }
1798
1799         ring->dev = dev;
1800         INIT_LIST_HEAD(&ring->active_list);
1801         INIT_LIST_HEAD(&ring->request_list);
1802         INIT_LIST_HEAD(&ring->execlist_queue);
1803         ringbuf->size = 32 * PAGE_SIZE;
1804         ringbuf->ring = ring;
1805         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1806
1807         init_waitqueue_head(&ring->irq_queue);
1808
1809         if (I915_NEED_GFX_HWS(dev)) {
1810                 ret = init_status_page(ring);
1811                 if (ret)
1812                         goto error;
1813         } else {
1814                 BUG_ON(ring->id != RCS);
1815                 ret = init_phys_status_page(ring);
1816                 if (ret)
1817                         goto error;
1818         }
1819
1820         if (ringbuf->obj == NULL) {
1821                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1822                 if (ret) {
1823                         DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1824                                         ring->name, ret);
1825                         goto error;
1826                 }
1827
1828                 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1829                 if (ret) {
1830                         DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1831                                         ring->name, ret);
1832                         intel_destroy_ringbuffer_obj(ringbuf);
1833                         goto error;
1834                 }
1835         }
1836
1837         /* Workaround an erratum on the i830 which causes a hang if
1838          * the TAIL pointer points to within the last 2 cachelines
1839          * of the buffer.
1840          */
1841         ringbuf->effective_size = ringbuf->size;
1842         if (IS_I830(dev) || IS_845G(dev))
1843                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1844
1845         ret = i915_cmd_parser_init_ring(ring);
1846         if (ret)
1847                 goto error;
1848
1849         ret = ring->init(ring);
1850         if (ret)
1851                 goto error;
1852
1853         return 0;
1854
1855 error:
1856         kfree(ringbuf);
1857         ring->buffer = NULL;
1858         return ret;
1859 }
1860
1861 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1862 {
1863         struct drm_i915_private *dev_priv;
1864         struct intel_ringbuffer *ringbuf;
1865
1866         if (!intel_ring_initialized(ring))
1867                 return;
1868
1869         dev_priv = to_i915(ring->dev);
1870         ringbuf = ring->buffer;
1871
1872         intel_stop_ring_buffer(ring);
1873         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1874
1875         intel_unpin_ringbuffer_obj(ringbuf);
1876         intel_destroy_ringbuffer_obj(ringbuf);
1877         ring->preallocated_lazy_request = NULL;
1878         ring->outstanding_lazy_seqno = 0;
1879
1880         if (ring->cleanup)
1881                 ring->cleanup(ring);
1882
1883         cleanup_status_page(ring);
1884
1885         i915_cmd_parser_fini_ring(ring);
1886
1887         kfree(ringbuf);
1888         ring->buffer = NULL;
1889 }
1890
1891 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1892 {
1893         struct intel_ringbuffer *ringbuf = ring->buffer;
1894         struct drm_i915_gem_request *request;
1895         u32 seqno = 0;
1896         int ret;
1897
1898         if (ringbuf->last_retired_head != -1) {
1899                 ringbuf->head = ringbuf->last_retired_head;
1900                 ringbuf->last_retired_head = -1;
1901
1902                 ringbuf->space = intel_ring_space(ringbuf);
1903                 if (ringbuf->space >= n)
1904                         return 0;
1905         }
1906
1907         list_for_each_entry(request, &ring->request_list, list) {
1908                 if (__intel_ring_space(request->tail, ringbuf->tail,
1909                                        ringbuf->size) >= n) {
1910                         seqno = request->seqno;
1911                         break;
1912                 }
1913         }
1914
1915         if (seqno == 0)
1916                 return -ENOSPC;
1917
1918         ret = i915_wait_seqno(ring, seqno);
1919         if (ret)
1920                 return ret;
1921
1922         i915_gem_retire_requests_ring(ring);
1923         ringbuf->head = ringbuf->last_retired_head;
1924         ringbuf->last_retired_head = -1;
1925
1926         ringbuf->space = intel_ring_space(ringbuf);
1927         return 0;
1928 }
1929
1930 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1931 {
1932         struct drm_device *dev = ring->dev;
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         struct intel_ringbuffer *ringbuf = ring->buffer;
1935         unsigned long end;
1936         int ret;
1937
1938         ret = intel_ring_wait_request(ring, n);
1939         if (ret != -ENOSPC)
1940                 return ret;
1941
1942         /* force the tail write in case we have been skipping them */
1943         __intel_ring_advance(ring);
1944
1945         /* With GEM the hangcheck timer should kick us out of the loop,
1946          * leaving it early runs the risk of corrupting GEM state (due
1947          * to running on almost untested codepaths). But on resume
1948          * timers don't work yet, so prevent a complete hang in that
1949          * case by choosing an insanely large timeout. */
1950         end = jiffies + 60 * HZ;
1951
1952         trace_i915_ring_wait_begin(ring);
1953         do {
1954                 ringbuf->head = I915_READ_HEAD(ring);
1955                 ringbuf->space = intel_ring_space(ringbuf);
1956                 if (ringbuf->space >= n) {
1957                         ret = 0;
1958                         break;
1959                 }
1960
1961                 msleep(1);
1962
1963                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1964                         ret = -ERESTARTSYS;
1965                         break;
1966                 }
1967
1968                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1969                                            dev_priv->mm.interruptible);
1970                 if (ret)
1971                         break;
1972
1973                 if (time_after(jiffies, end)) {
1974                         ret = -EBUSY;
1975                         break;
1976                 }
1977         } while (1);
1978         trace_i915_ring_wait_end(ring);
1979         return ret;
1980 }
1981
1982 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1983 {
1984         uint32_t __iomem *virt;
1985         struct intel_ringbuffer *ringbuf = ring->buffer;
1986         int rem = ringbuf->size - ringbuf->tail;
1987
1988         if (ringbuf->space < rem) {
1989                 int ret = ring_wait_for_space(ring, rem);
1990                 if (ret)
1991                         return ret;
1992         }
1993
1994         virt = ringbuf->virtual_start + ringbuf->tail;
1995         rem /= 4;
1996         while (rem--)
1997                 iowrite32(MI_NOOP, virt++);
1998
1999         ringbuf->tail = 0;
2000         ringbuf->space = intel_ring_space(ringbuf);
2001
2002         return 0;
2003 }
2004
2005 int intel_ring_idle(struct intel_engine_cs *ring)
2006 {
2007         u32 seqno;
2008         int ret;
2009
2010         /* We need to add any requests required to flush the objects and ring */
2011         if (ring->outstanding_lazy_seqno) {
2012                 ret = i915_add_request(ring, NULL);
2013                 if (ret)
2014                         return ret;
2015         }
2016
2017         /* Wait upon the last request to be completed */
2018         if (list_empty(&ring->request_list))
2019                 return 0;
2020
2021         seqno = list_entry(ring->request_list.prev,
2022                            struct drm_i915_gem_request,
2023                            list)->seqno;
2024
2025         return i915_wait_seqno(ring, seqno);
2026 }
2027
2028 static int
2029 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
2030 {
2031         if (ring->outstanding_lazy_seqno)
2032                 return 0;
2033
2034         if (ring->preallocated_lazy_request == NULL) {
2035                 struct drm_i915_gem_request *request;
2036
2037                 request = kmalloc(sizeof(*request), GFP_KERNEL);
2038                 if (request == NULL)
2039                         return -ENOMEM;
2040
2041                 ring->preallocated_lazy_request = request;
2042         }
2043
2044         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2045 }
2046
2047 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2048                                 int bytes)
2049 {
2050         struct intel_ringbuffer *ringbuf = ring->buffer;
2051         int ret;
2052
2053         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2054                 ret = intel_wrap_ring_buffer(ring);
2055                 if (unlikely(ret))
2056                         return ret;
2057         }
2058
2059         if (unlikely(ringbuf->space < bytes)) {
2060                 ret = ring_wait_for_space(ring, bytes);
2061                 if (unlikely(ret))
2062                         return ret;
2063         }
2064
2065         return 0;
2066 }
2067
2068 int intel_ring_begin(struct intel_engine_cs *ring,
2069                      int num_dwords)
2070 {
2071         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2072         int ret;
2073
2074         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2075                                    dev_priv->mm.interruptible);
2076         if (ret)
2077                 return ret;
2078
2079         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2080         if (ret)
2081                 return ret;
2082
2083         /* Preallocate the olr before touching the ring */
2084         ret = intel_ring_alloc_seqno(ring);
2085         if (ret)
2086                 return ret;
2087
2088         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2089         return 0;
2090 }
2091
2092 /* Align the ring tail to a cacheline boundary */
2093 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2094 {
2095         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2096         int ret;
2097
2098         if (num_dwords == 0)
2099                 return 0;
2100
2101         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2102         ret = intel_ring_begin(ring, num_dwords);
2103         if (ret)
2104                 return ret;
2105
2106         while (num_dwords--)
2107                 intel_ring_emit(ring, MI_NOOP);
2108
2109         intel_ring_advance(ring);
2110
2111         return 0;
2112 }
2113
2114 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2115 {
2116         struct drm_device *dev = ring->dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119         BUG_ON(ring->outstanding_lazy_seqno);
2120
2121         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2122                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2123                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2124                 if (HAS_VEBOX(dev))
2125                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2126         }
2127
2128         ring->set_seqno(ring, seqno);
2129         ring->hangcheck.seqno = seqno;
2130 }
2131
2132 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2133                                      u32 value)
2134 {
2135         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2136
2137        /* Every tail move must follow the sequence below */
2138
2139         /* Disable notification that the ring is IDLE. The GT
2140          * will then assume that it is busy and bring it out of rc6.
2141          */
2142         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2143                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2144
2145         /* Clear the context id. Here be magic! */
2146         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2147
2148         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2149         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2150                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2151                      50))
2152                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2153
2154         /* Now that the ring is fully powered up, update the tail */
2155         I915_WRITE_TAIL(ring, value);
2156         POSTING_READ(RING_TAIL(ring->mmio_base));
2157
2158         /* Let the ring send IDLE messages to the GT again,
2159          * and so let it sleep to conserve power when idle.
2160          */
2161         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2162                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2163 }
2164
2165 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2166                                u32 invalidate, u32 flush)
2167 {
2168         uint32_t cmd;
2169         int ret;
2170
2171         ret = intel_ring_begin(ring, 4);
2172         if (ret)
2173                 return ret;
2174
2175         cmd = MI_FLUSH_DW;
2176         if (INTEL_INFO(ring->dev)->gen >= 8)
2177                 cmd += 1;
2178         /*
2179          * Bspec vol 1c.5 - video engine command streamer:
2180          * "If ENABLED, all TLBs will be invalidated once the flush
2181          * operation is complete. This bit is only valid when the
2182          * Post-Sync Operation field is a value of 1h or 3h."
2183          */
2184         if (invalidate & I915_GEM_GPU_DOMAINS)
2185                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2186                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2187         intel_ring_emit(ring, cmd);
2188         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2189         if (INTEL_INFO(ring->dev)->gen >= 8) {
2190                 intel_ring_emit(ring, 0); /* upper addr */
2191                 intel_ring_emit(ring, 0); /* value */
2192         } else  {
2193                 intel_ring_emit(ring, 0);
2194                 intel_ring_emit(ring, MI_NOOP);
2195         }
2196         intel_ring_advance(ring);
2197         return 0;
2198 }
2199
2200 static int
2201 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2202                               u64 offset, u32 len,
2203                               unsigned flags)
2204 {
2205         bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2206         int ret;
2207
2208         ret = intel_ring_begin(ring, 4);
2209         if (ret)
2210                 return ret;
2211
2212         /* FIXME(BDW): Address space and security selectors. */
2213         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2214         intel_ring_emit(ring, lower_32_bits(offset));
2215         intel_ring_emit(ring, upper_32_bits(offset));
2216         intel_ring_emit(ring, MI_NOOP);
2217         intel_ring_advance(ring);
2218
2219         return 0;
2220 }
2221
2222 static int
2223 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2224                               u64 offset, u32 len,
2225                               unsigned flags)
2226 {
2227         int ret;
2228
2229         ret = intel_ring_begin(ring, 2);
2230         if (ret)
2231                 return ret;
2232
2233         intel_ring_emit(ring,
2234                         MI_BATCH_BUFFER_START |
2235                         (flags & I915_DISPATCH_SECURE ?
2236                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2237         /* bit0-7 is the length on GEN6+ */
2238         intel_ring_emit(ring, offset);
2239         intel_ring_advance(ring);
2240
2241         return 0;
2242 }
2243
2244 static int
2245 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2246                               u64 offset, u32 len,
2247                               unsigned flags)
2248 {
2249         int ret;
2250
2251         ret = intel_ring_begin(ring, 2);
2252         if (ret)
2253                 return ret;
2254
2255         intel_ring_emit(ring,
2256                         MI_BATCH_BUFFER_START |
2257                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2258         /* bit0-7 is the length on GEN6+ */
2259         intel_ring_emit(ring, offset);
2260         intel_ring_advance(ring);
2261
2262         return 0;
2263 }
2264
2265 /* Blitter support (SandyBridge+) */
2266
2267 static int gen6_ring_flush(struct intel_engine_cs *ring,
2268                            u32 invalidate, u32 flush)
2269 {
2270         struct drm_device *dev = ring->dev;
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         uint32_t cmd;
2273         int ret;
2274
2275         ret = intel_ring_begin(ring, 4);
2276         if (ret)
2277                 return ret;
2278
2279         cmd = MI_FLUSH_DW;
2280         if (INTEL_INFO(ring->dev)->gen >= 8)
2281                 cmd += 1;
2282         /*
2283          * Bspec vol 1c.3 - blitter engine command streamer:
2284          * "If ENABLED, all TLBs will be invalidated once the flush
2285          * operation is complete. This bit is only valid when the
2286          * Post-Sync Operation field is a value of 1h or 3h."
2287          */
2288         if (invalidate & I915_GEM_DOMAIN_RENDER)
2289                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2290                         MI_FLUSH_DW_OP_STOREDW;
2291         intel_ring_emit(ring, cmd);
2292         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2293         if (INTEL_INFO(ring->dev)->gen >= 8) {
2294                 intel_ring_emit(ring, 0); /* upper addr */
2295                 intel_ring_emit(ring, 0); /* value */
2296         } else  {
2297                 intel_ring_emit(ring, 0);
2298                 intel_ring_emit(ring, MI_NOOP);
2299         }
2300         intel_ring_advance(ring);
2301
2302         if (!invalidate && flush) {
2303                 if (IS_GEN7(dev))
2304                         return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2305                 else if (IS_BROADWELL(dev))
2306                         dev_priv->fbc.need_sw_cache_clean = true;
2307         }
2308
2309         return 0;
2310 }
2311
2312 int intel_init_render_ring_buffer(struct drm_device *dev)
2313 {
2314         struct drm_i915_private *dev_priv = dev->dev_private;
2315         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2316         struct drm_i915_gem_object *obj;
2317         int ret;
2318
2319         ring->name = "render ring";
2320         ring->id = RCS;
2321         ring->mmio_base = RENDER_RING_BASE;
2322
2323         if (INTEL_INFO(dev)->gen >= 8) {
2324                 if (i915_semaphore_is_enabled(dev)) {
2325                         obj = i915_gem_alloc_object(dev, 4096);
2326                         if (obj == NULL) {
2327                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2328                                 i915.semaphores = 0;
2329                         } else {
2330                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2331                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2332                                 if (ret != 0) {
2333                                         drm_gem_object_unreference(&obj->base);
2334                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2335                                         i915.semaphores = 0;
2336                                 } else
2337                                         dev_priv->semaphore_obj = obj;
2338                         }
2339                 }
2340
2341                 ring->init_context = intel_ring_workarounds_emit;
2342                 ring->add_request = gen6_add_request;
2343                 ring->flush = gen8_render_ring_flush;
2344                 ring->irq_get = gen8_ring_get_irq;
2345                 ring->irq_put = gen8_ring_put_irq;
2346                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2347                 ring->get_seqno = gen6_ring_get_seqno;
2348                 ring->set_seqno = ring_set_seqno;
2349                 if (i915_semaphore_is_enabled(dev)) {
2350                         WARN_ON(!dev_priv->semaphore_obj);
2351                         ring->semaphore.sync_to = gen8_ring_sync;
2352                         ring->semaphore.signal = gen8_rcs_signal;
2353                         GEN8_RING_SEMAPHORE_INIT;
2354                 }
2355         } else if (INTEL_INFO(dev)->gen >= 6) {
2356                 ring->add_request = gen6_add_request;
2357                 ring->flush = gen7_render_ring_flush;
2358                 if (INTEL_INFO(dev)->gen == 6)
2359                         ring->flush = gen6_render_ring_flush;
2360                 ring->irq_get = gen6_ring_get_irq;
2361                 ring->irq_put = gen6_ring_put_irq;
2362                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2363                 ring->get_seqno = gen6_ring_get_seqno;
2364                 ring->set_seqno = ring_set_seqno;
2365                 if (i915_semaphore_is_enabled(dev)) {
2366                         ring->semaphore.sync_to = gen6_ring_sync;
2367                         ring->semaphore.signal = gen6_signal;
2368                         /*
2369                          * The current semaphore is only applied on pre-gen8
2370                          * platform.  And there is no VCS2 ring on the pre-gen8
2371                          * platform. So the semaphore between RCS and VCS2 is
2372                          * initialized as INVALID.  Gen8 will initialize the
2373                          * sema between VCS2 and RCS later.
2374                          */
2375                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2376                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2377                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2378                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2379                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2380                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2381                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2382                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2383                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2384                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2385                 }
2386         } else if (IS_GEN5(dev)) {
2387                 ring->add_request = pc_render_add_request;
2388                 ring->flush = gen4_render_ring_flush;
2389                 ring->get_seqno = pc_render_get_seqno;
2390                 ring->set_seqno = pc_render_set_seqno;
2391                 ring->irq_get = gen5_ring_get_irq;
2392                 ring->irq_put = gen5_ring_put_irq;
2393                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2394                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2395         } else {
2396                 ring->add_request = i9xx_add_request;
2397                 if (INTEL_INFO(dev)->gen < 4)
2398                         ring->flush = gen2_render_ring_flush;
2399                 else
2400                         ring->flush = gen4_render_ring_flush;
2401                 ring->get_seqno = ring_get_seqno;
2402                 ring->set_seqno = ring_set_seqno;
2403                 if (IS_GEN2(dev)) {
2404                         ring->irq_get = i8xx_ring_get_irq;
2405                         ring->irq_put = i8xx_ring_put_irq;
2406                 } else {
2407                         ring->irq_get = i9xx_ring_get_irq;
2408                         ring->irq_put = i9xx_ring_put_irq;
2409                 }
2410                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2411         }
2412         ring->write_tail = ring_write_tail;
2413
2414         if (IS_HASWELL(dev))
2415                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2416         else if (IS_GEN8(dev))
2417                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2418         else if (INTEL_INFO(dev)->gen >= 6)
2419                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2420         else if (INTEL_INFO(dev)->gen >= 4)
2421                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2422         else if (IS_I830(dev) || IS_845G(dev))
2423                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2424         else
2425                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2426         ring->init = init_render_ring;
2427         ring->cleanup = render_ring_cleanup;
2428
2429         /* Workaround batchbuffer to combat CS tlb bug. */
2430         if (HAS_BROKEN_CS_TLB(dev)) {
2431                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2432                 if (obj == NULL) {
2433                         DRM_ERROR("Failed to allocate batch bo\n");
2434                         return -ENOMEM;
2435                 }
2436
2437                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2438                 if (ret != 0) {
2439                         drm_gem_object_unreference(&obj->base);
2440                         DRM_ERROR("Failed to ping batch bo\n");
2441                         return ret;
2442                 }
2443
2444                 ring->scratch.obj = obj;
2445                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2446         }
2447
2448         return intel_init_ring_buffer(dev, ring);
2449 }
2450
2451 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2455
2456         ring->name = "bsd ring";
2457         ring->id = VCS;
2458
2459         ring->write_tail = ring_write_tail;
2460         if (INTEL_INFO(dev)->gen >= 6) {
2461                 ring->mmio_base = GEN6_BSD_RING_BASE;
2462                 /* gen6 bsd needs a special wa for tail updates */
2463                 if (IS_GEN6(dev))
2464                         ring->write_tail = gen6_bsd_ring_write_tail;
2465                 ring->flush = gen6_bsd_ring_flush;
2466                 ring->add_request = gen6_add_request;
2467                 ring->get_seqno = gen6_ring_get_seqno;
2468                 ring->set_seqno = ring_set_seqno;
2469                 if (INTEL_INFO(dev)->gen >= 8) {
2470                         ring->irq_enable_mask =
2471                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2472                         ring->irq_get = gen8_ring_get_irq;
2473                         ring->irq_put = gen8_ring_put_irq;
2474                         ring->dispatch_execbuffer =
2475                                 gen8_ring_dispatch_execbuffer;
2476                         if (i915_semaphore_is_enabled(dev)) {
2477                                 ring->semaphore.sync_to = gen8_ring_sync;
2478                                 ring->semaphore.signal = gen8_xcs_signal;
2479                                 GEN8_RING_SEMAPHORE_INIT;
2480                         }
2481                 } else {
2482                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2483                         ring->irq_get = gen6_ring_get_irq;
2484                         ring->irq_put = gen6_ring_put_irq;
2485                         ring->dispatch_execbuffer =
2486                                 gen6_ring_dispatch_execbuffer;
2487                         if (i915_semaphore_is_enabled(dev)) {
2488                                 ring->semaphore.sync_to = gen6_ring_sync;
2489                                 ring->semaphore.signal = gen6_signal;
2490                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2491                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2492                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2493                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2494                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2495                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2496                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2497                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2498                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2499                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2500                         }
2501                 }
2502         } else {
2503                 ring->mmio_base = BSD_RING_BASE;
2504                 ring->flush = bsd_ring_flush;
2505                 ring->add_request = i9xx_add_request;
2506                 ring->get_seqno = ring_get_seqno;
2507                 ring->set_seqno = ring_set_seqno;
2508                 if (IS_GEN5(dev)) {
2509                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2510                         ring->irq_get = gen5_ring_get_irq;
2511                         ring->irq_put = gen5_ring_put_irq;
2512                 } else {
2513                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2514                         ring->irq_get = i9xx_ring_get_irq;
2515                         ring->irq_put = i9xx_ring_put_irq;
2516                 }
2517                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2518         }
2519         ring->init = init_ring_common;
2520
2521         return intel_init_ring_buffer(dev, ring);
2522 }
2523
2524 /**
2525  * Initialize the second BSD ring for Broadwell GT3.
2526  * It is noted that this only exists on Broadwell GT3.
2527  */
2528 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2532
2533         if ((INTEL_INFO(dev)->gen != 8)) {
2534                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2535                 return -EINVAL;
2536         }
2537
2538         ring->name = "bsd2 ring";
2539         ring->id = VCS2;
2540
2541         ring->write_tail = ring_write_tail;
2542         ring->mmio_base = GEN8_BSD2_RING_BASE;
2543         ring->flush = gen6_bsd_ring_flush;
2544         ring->add_request = gen6_add_request;
2545         ring->get_seqno = gen6_ring_get_seqno;
2546         ring->set_seqno = ring_set_seqno;
2547         ring->irq_enable_mask =
2548                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2549         ring->irq_get = gen8_ring_get_irq;
2550         ring->irq_put = gen8_ring_put_irq;
2551         ring->dispatch_execbuffer =
2552                         gen8_ring_dispatch_execbuffer;
2553         if (i915_semaphore_is_enabled(dev)) {
2554                 ring->semaphore.sync_to = gen8_ring_sync;
2555                 ring->semaphore.signal = gen8_xcs_signal;
2556                 GEN8_RING_SEMAPHORE_INIT;
2557         }
2558         ring->init = init_ring_common;
2559
2560         return intel_init_ring_buffer(dev, ring);
2561 }
2562
2563 int intel_init_blt_ring_buffer(struct drm_device *dev)
2564 {
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2567
2568         ring->name = "blitter ring";
2569         ring->id = BCS;
2570
2571         ring->mmio_base = BLT_RING_BASE;
2572         ring->write_tail = ring_write_tail;
2573         ring->flush = gen6_ring_flush;
2574         ring->add_request = gen6_add_request;
2575         ring->get_seqno = gen6_ring_get_seqno;
2576         ring->set_seqno = ring_set_seqno;
2577         if (INTEL_INFO(dev)->gen >= 8) {
2578                 ring->irq_enable_mask =
2579                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2580                 ring->irq_get = gen8_ring_get_irq;
2581                 ring->irq_put = gen8_ring_put_irq;
2582                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2583                 if (i915_semaphore_is_enabled(dev)) {
2584                         ring->semaphore.sync_to = gen8_ring_sync;
2585                         ring->semaphore.signal = gen8_xcs_signal;
2586                         GEN8_RING_SEMAPHORE_INIT;
2587                 }
2588         } else {
2589                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2590                 ring->irq_get = gen6_ring_get_irq;
2591                 ring->irq_put = gen6_ring_put_irq;
2592                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2593                 if (i915_semaphore_is_enabled(dev)) {
2594                         ring->semaphore.signal = gen6_signal;
2595                         ring->semaphore.sync_to = gen6_ring_sync;
2596                         /*
2597                          * The current semaphore is only applied on pre-gen8
2598                          * platform.  And there is no VCS2 ring on the pre-gen8
2599                          * platform. So the semaphore between BCS and VCS2 is
2600                          * initialized as INVALID.  Gen8 will initialize the
2601                          * sema between BCS and VCS2 later.
2602                          */
2603                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2604                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2605                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2606                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2607                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2608                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2609                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2610                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2611                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2612                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2613                 }
2614         }
2615         ring->init = init_ring_common;
2616
2617         return intel_init_ring_buffer(dev, ring);
2618 }
2619
2620 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2621 {
2622         struct drm_i915_private *dev_priv = dev->dev_private;
2623         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2624
2625         ring->name = "video enhancement ring";
2626         ring->id = VECS;
2627
2628         ring->mmio_base = VEBOX_RING_BASE;
2629         ring->write_tail = ring_write_tail;
2630         ring->flush = gen6_ring_flush;
2631         ring->add_request = gen6_add_request;
2632         ring->get_seqno = gen6_ring_get_seqno;
2633         ring->set_seqno = ring_set_seqno;
2634
2635         if (INTEL_INFO(dev)->gen >= 8) {
2636                 ring->irq_enable_mask =
2637                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2638                 ring->irq_get = gen8_ring_get_irq;
2639                 ring->irq_put = gen8_ring_put_irq;
2640                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2641                 if (i915_semaphore_is_enabled(dev)) {
2642                         ring->semaphore.sync_to = gen8_ring_sync;
2643                         ring->semaphore.signal = gen8_xcs_signal;
2644                         GEN8_RING_SEMAPHORE_INIT;
2645                 }
2646         } else {
2647                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2648                 ring->irq_get = hsw_vebox_get_irq;
2649                 ring->irq_put = hsw_vebox_put_irq;
2650                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2651                 if (i915_semaphore_is_enabled(dev)) {
2652                         ring->semaphore.sync_to = gen6_ring_sync;
2653                         ring->semaphore.signal = gen6_signal;
2654                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2655                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2656                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2657                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2658                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2659                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2660                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2661                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2662                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2663                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2664                 }
2665         }
2666         ring->init = init_ring_common;
2667
2668         return intel_init_ring_buffer(dev, ring);
2669 }
2670
2671 int
2672 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2673 {
2674         int ret;
2675
2676         if (!ring->gpu_caches_dirty)
2677                 return 0;
2678
2679         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2680         if (ret)
2681                 return ret;
2682
2683         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2684
2685         ring->gpu_caches_dirty = false;
2686         return 0;
2687 }
2688
2689 int
2690 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2691 {
2692         uint32_t flush_domains;
2693         int ret;
2694
2695         flush_domains = 0;
2696         if (ring->gpu_caches_dirty)
2697                 flush_domains = I915_GEM_GPU_DOMAINS;
2698
2699         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2700         if (ret)
2701                 return ret;
2702
2703         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2704
2705         ring->gpu_caches_dirty = false;
2706         return 0;
2707 }
2708
2709 void
2710 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2711 {
2712         int ret;
2713
2714         if (!intel_ring_initialized(ring))
2715                 return;
2716
2717         ret = intel_ring_idle(ring);
2718         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2719                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2720                           ring->name, ret);
2721
2722         stop_ring(ring);
2723 }