Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / drivers / gpu / drm / radeon / radeon_kfd.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <drm/drmP.h>
27 #include "radeon.h"
28 #include "cikd.h"
29 #include "cik_reg.h"
30 #include "radeon_kfd.h"
31 #include "radeon_ucode.h"
32 #include <linux/firmware.h>
33
34 #define CIK_PIPE_PER_MEC        (4)
35
36 struct kgd_mem {
37         struct radeon_sa_bo *sa_bo;
38         uint64_t gpu_addr;
39         void *ptr;
40 };
41
42 static int init_sa_manager(struct kgd_dev *kgd, unsigned int size);
43 static void fini_sa_manager(struct kgd_dev *kgd);
44
45 static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
46                 enum kgd_memory_pool pool, struct kgd_mem **mem);
47
48 static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem);
49
50 static uint64_t get_vmem_size(struct kgd_dev *kgd);
51 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
52
53 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
54 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
55
56 /*
57  * Register access functions
58  */
59
60 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
61                 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
62                 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
63
64 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
65                                         unsigned int vmid);
66
67 static int kgd_init_memory(struct kgd_dev *kgd);
68
69 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
70                                 uint32_t hpd_size, uint64_t hpd_gpu_addr);
71
72 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
73                         uint32_t queue_id, uint32_t __user *wptr);
74
75 static bool kgd_hqd_is_occupies(struct kgd_dev *kgd, uint64_t queue_address,
76                                 uint32_t pipe_id, uint32_t queue_id);
77
78 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
79                                 unsigned int timeout, uint32_t pipe_id,
80                                 uint32_t queue_id);
81
82 static const struct kfd2kgd_calls kfd2kgd = {
83         .init_sa_manager = init_sa_manager,
84         .fini_sa_manager = fini_sa_manager,
85         .allocate_mem = allocate_mem,
86         .free_mem = free_mem,
87         .get_vmem_size = get_vmem_size,
88         .get_gpu_clock_counter = get_gpu_clock_counter,
89         .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
90         .program_sh_mem_settings = kgd_program_sh_mem_settings,
91         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
92         .init_memory = kgd_init_memory,
93         .init_pipeline = kgd_init_pipeline,
94         .hqd_load = kgd_hqd_load,
95         .hqd_is_occupies = kgd_hqd_is_occupies,
96         .hqd_destroy = kgd_hqd_destroy,
97         .get_fw_version = get_fw_version
98 };
99
100 static const struct kgd2kfd_calls *kgd2kfd;
101
102 bool radeon_kfd_init(void)
103 {
104         bool (*kgd2kfd_init_p)(unsigned, const struct kfd2kgd_calls*,
105                                 const struct kgd2kfd_calls**);
106
107         kgd2kfd_init_p = symbol_request(kgd2kfd_init);
108
109         if (kgd2kfd_init_p == NULL)
110                 return false;
111
112         if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kfd2kgd, &kgd2kfd)) {
113                 symbol_put(kgd2kfd_init);
114                 kgd2kfd = NULL;
115
116                 return false;
117         }
118
119         return true;
120 }
121
122 void radeon_kfd_fini(void)
123 {
124         if (kgd2kfd) {
125                 kgd2kfd->exit();
126                 symbol_put(kgd2kfd_init);
127         }
128 }
129
130 void radeon_kfd_device_probe(struct radeon_device *rdev)
131 {
132         if (kgd2kfd)
133                 rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev, rdev->pdev);
134 }
135
136 void radeon_kfd_device_init(struct radeon_device *rdev)
137 {
138         if (rdev->kfd) {
139                 struct kgd2kfd_shared_resources gpu_resources = {
140                         .compute_vmid_bitmap = 0xFF00,
141
142                         .first_compute_pipe = 1,
143                         .compute_pipe_count = 8 - 1,
144                 };
145
146                 radeon_doorbell_get_kfd_info(rdev,
147                                 &gpu_resources.doorbell_physical_address,
148                                 &gpu_resources.doorbell_aperture_size,
149                                 &gpu_resources.doorbell_start_offset);
150
151                 kgd2kfd->device_init(rdev->kfd, &gpu_resources);
152         }
153 }
154
155 void radeon_kfd_device_fini(struct radeon_device *rdev)
156 {
157         if (rdev->kfd) {
158                 kgd2kfd->device_exit(rdev->kfd);
159                 rdev->kfd = NULL;
160         }
161 }
162
163 void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
164 {
165         if (rdev->kfd)
166                 kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
167 }
168
169 void radeon_kfd_suspend(struct radeon_device *rdev)
170 {
171         if (rdev->kfd)
172                 kgd2kfd->suspend(rdev->kfd);
173 }
174
175 int radeon_kfd_resume(struct radeon_device *rdev)
176 {
177         int r = 0;
178
179         if (rdev->kfd)
180                 r = kgd2kfd->resume(rdev->kfd);
181
182         return r;
183 }
184
185 static u32 pool_to_domain(enum kgd_memory_pool p)
186 {
187         switch (p) {
188         case KGD_POOL_FRAMEBUFFER: return RADEON_GEM_DOMAIN_VRAM;
189         default: return RADEON_GEM_DOMAIN_GTT;
190         }
191 }
192
193 static int init_sa_manager(struct kgd_dev *kgd, unsigned int size)
194 {
195         struct radeon_device *rdev = (struct radeon_device *)kgd;
196         int r;
197
198         BUG_ON(kgd == NULL);
199
200         r = radeon_sa_bo_manager_init(rdev, &rdev->kfd_bo,
201                                       size,
202                                       RADEON_GPU_PAGE_SIZE,
203                                       RADEON_GEM_DOMAIN_GTT,
204                                       RADEON_GEM_GTT_WC);
205
206         if (r)
207                 return r;
208
209         r = radeon_sa_bo_manager_start(rdev, &rdev->kfd_bo);
210         if (r)
211                 radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);
212
213         return r;
214 }
215
216 static void fini_sa_manager(struct kgd_dev *kgd)
217 {
218         struct radeon_device *rdev = (struct radeon_device *)kgd;
219
220         BUG_ON(kgd == NULL);
221
222         radeon_sa_bo_manager_suspend(rdev, &rdev->kfd_bo);
223         radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);
224 }
225
226 static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
227                 enum kgd_memory_pool pool, struct kgd_mem **mem)
228 {
229         struct radeon_device *rdev = (struct radeon_device *)kgd;
230         u32 domain;
231         int r;
232
233         BUG_ON(kgd == NULL);
234
235         domain = pool_to_domain(pool);
236         if (domain != RADEON_GEM_DOMAIN_GTT) {
237                 dev_err(rdev->dev,
238                         "Only allowed to allocate gart memory for kfd\n");
239                 return -EINVAL;
240         }
241
242         *mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
243         if ((*mem) == NULL)
244                 return -ENOMEM;
245
246         r = radeon_sa_bo_new(rdev, &rdev->kfd_bo, &(*mem)->sa_bo, size,
247                                 alignment);
248         if (r) {
249                 dev_err(rdev->dev, "failed to get memory for kfd (%d)\n", r);
250                 return r;
251         }
252
253         (*mem)->ptr = radeon_sa_bo_cpu_addr((*mem)->sa_bo);
254         (*mem)->gpu_addr = radeon_sa_bo_gpu_addr((*mem)->sa_bo);
255
256         return 0;
257 }
258
259 static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem)
260 {
261         struct radeon_device *rdev = (struct radeon_device *)kgd;
262
263         BUG_ON(kgd == NULL);
264
265         radeon_sa_bo_free(rdev, &mem->sa_bo, NULL);
266         kfree(mem);
267 }
268
269 static uint64_t get_vmem_size(struct kgd_dev *kgd)
270 {
271         struct radeon_device *rdev = (struct radeon_device *)kgd;
272
273         BUG_ON(kgd == NULL);
274
275         return rdev->mc.real_vram_size;
276 }
277
278 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
279 {
280         struct radeon_device *rdev = (struct radeon_device *)kgd;
281
282         return rdev->asic->get_gpu_clock_counter(rdev);
283 }
284
285 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
286 {
287         struct radeon_device *rdev = (struct radeon_device *)kgd;
288
289         /* The sclk is in quantas of 10kHz */
290         return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
291 }
292
293 static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
294 {
295         return (struct radeon_device *)kgd;
296 }
297
298 static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
299 {
300         struct radeon_device *rdev = get_radeon_device(kgd);
301
302         writel(value, (void __iomem *)(rdev->rmmio + offset));
303 }
304
305 static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
306 {
307         struct radeon_device *rdev = get_radeon_device(kgd);
308
309         return readl((void __iomem *)(rdev->rmmio + offset));
310 }
311
312 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
313                         uint32_t queue, uint32_t vmid)
314 {
315         struct radeon_device *rdev = get_radeon_device(kgd);
316         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
317
318         mutex_lock(&rdev->srbm_mutex);
319         write_register(kgd, SRBM_GFX_CNTL, value);
320 }
321
322 static void unlock_srbm(struct kgd_dev *kgd)
323 {
324         struct radeon_device *rdev = get_radeon_device(kgd);
325
326         write_register(kgd, SRBM_GFX_CNTL, 0);
327         mutex_unlock(&rdev->srbm_mutex);
328 }
329
330 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
331                                 uint32_t queue_id)
332 {
333         uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
334         uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
335
336         lock_srbm(kgd, mec, pipe, queue_id, 0);
337 }
338
339 static void release_queue(struct kgd_dev *kgd)
340 {
341         unlock_srbm(kgd);
342 }
343
344 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
345                                         uint32_t sh_mem_config,
346                                         uint32_t sh_mem_ape1_base,
347                                         uint32_t sh_mem_ape1_limit,
348                                         uint32_t sh_mem_bases)
349 {
350         lock_srbm(kgd, 0, 0, 0, vmid);
351
352         write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
353         write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
354         write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
355         write_register(kgd, SH_MEM_BASES, sh_mem_bases);
356
357         unlock_srbm(kgd);
358 }
359
360 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
361                                         unsigned int vmid)
362 {
363         /*
364          * We have to assume that there is no outstanding mapping.
365          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
366          * because a mapping is in progress or because a mapping finished and
367          * the SW cleared it.
368          * So the protocol is to always wait & clear.
369          */
370         uint32_t pasid_mapping = (pasid == 0) ? 0 :
371                                 (uint32_t)pasid | ATC_VMID_PASID_MAPPING_VALID;
372
373         write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
374                         pasid_mapping);
375
376         while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
377                                                                 (1U << vmid)))
378                 cpu_relax();
379         write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
380
381         return 0;
382 }
383
384 static int kgd_init_memory(struct kgd_dev *kgd)
385 {
386         /*
387          * Configure apertures:
388          * LDS:         0x60000000'00000000 - 0x60000001'00000000 (4GB)
389          * Scratch:     0x60000001'00000000 - 0x60000002'00000000 (4GB)
390          * GPUVM:       0x60010000'00000000 - 0x60020000'00000000 (1TB)
391          */
392         int i;
393         uint32_t sh_mem_bases = PRIVATE_BASE(0x6000) | SHARED_BASE(0x6000);
394
395         for (i = 8; i < 16; i++) {
396                 uint32_t sh_mem_config;
397
398                 lock_srbm(kgd, 0, 0, 0, i);
399
400                 sh_mem_config = ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED);
401                 sh_mem_config |= DEFAULT_MTYPE(MTYPE_NONCACHED);
402
403                 write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
404
405                 write_register(kgd, SH_MEM_BASES, sh_mem_bases);
406
407                 /* Scratch aperture is not supported for now. */
408                 write_register(kgd, SH_STATIC_MEM_CONFIG, 0);
409
410                 /* APE1 disabled for now. */
411                 write_register(kgd, SH_MEM_APE1_BASE, 1);
412                 write_register(kgd, SH_MEM_APE1_LIMIT, 0);
413
414                 unlock_srbm(kgd);
415         }
416
417         return 0;
418 }
419
420 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
421                                 uint32_t hpd_size, uint64_t hpd_gpu_addr)
422 {
423         uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
424         uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
425
426         lock_srbm(kgd, mec, pipe, 0, 0);
427         write_register(kgd, CP_HPD_EOP_BASE_ADDR,
428                         lower_32_bits(hpd_gpu_addr >> 8));
429         write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
430                         upper_32_bits(hpd_gpu_addr >> 8));
431         write_register(kgd, CP_HPD_EOP_VMID, 0);
432         write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
433         unlock_srbm(kgd);
434
435         return 0;
436 }
437
438 static inline struct cik_mqd *get_mqd(void *mqd)
439 {
440         return (struct cik_mqd *)mqd;
441 }
442
443 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
444                         uint32_t queue_id, uint32_t __user *wptr)
445 {
446         uint32_t wptr_shadow, is_wptr_shadow_valid;
447         struct cik_mqd *m;
448
449         m = get_mqd(mqd);
450
451         is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
452
453         acquire_queue(kgd, pipe_id, queue_id);
454         write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
455         write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
456         write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
457
458         write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
459         write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
460         write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
461
462         write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
463         write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
464         write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
465
466         write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
467
468         write_register(kgd, CP_HQD_PERSISTENT_STATE,
469                         m->cp_hqd_persistent_state);
470         write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
471         write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
472
473         write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
474                         m->cp_hqd_atomic0_preop_lo);
475
476         write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
477                         m->cp_hqd_atomic0_preop_hi);
478
479         write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
480                         m->cp_hqd_atomic1_preop_lo);
481
482         write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
483                         m->cp_hqd_atomic1_preop_hi);
484
485         write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
486                         m->cp_hqd_pq_rptr_report_addr_lo);
487
488         write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
489                         m->cp_hqd_pq_rptr_report_addr_hi);
490
491         write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
492
493         write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
494                         m->cp_hqd_pq_wptr_poll_addr_lo);
495
496         write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
497                         m->cp_hqd_pq_wptr_poll_addr_hi);
498
499         write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
500                         m->cp_hqd_pq_doorbell_control);
501
502         write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
503
504         write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
505
506         write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
507         write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
508
509         write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
510
511         if (is_wptr_shadow_valid)
512                 write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
513
514         write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
515         release_queue(kgd);
516
517         return 0;
518 }
519
520 static bool kgd_hqd_is_occupies(struct kgd_dev *kgd, uint64_t queue_address,
521                                 uint32_t pipe_id, uint32_t queue_id)
522 {
523         uint32_t act;
524         bool retval = false;
525         uint32_t low, high;
526
527         acquire_queue(kgd, pipe_id, queue_id);
528         act = read_register(kgd, CP_HQD_ACTIVE);
529         if (act) {
530                 low = lower_32_bits(queue_address >> 8);
531                 high = upper_32_bits(queue_address >> 8);
532
533                 if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
534                                 high == read_register(kgd, CP_HQD_PQ_BASE_HI))
535                         retval = true;
536         }
537         release_queue(kgd);
538         return retval;
539 }
540
541 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
542                                 unsigned int timeout, uint32_t pipe_id,
543                                 uint32_t queue_id)
544 {
545         uint32_t temp;
546
547         acquire_queue(kgd, pipe_id, queue_id);
548         write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
549
550         write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
551
552         while (true) {
553                 temp = read_register(kgd, CP_HQD_ACTIVE);
554                 if (temp & 0x1)
555                         break;
556                 if (timeout == 0) {
557                         pr_err("kfd: cp queue preemption time out (%dms)\n",
558                                 temp);
559                         return -ETIME;
560                 }
561                 msleep(20);
562                 timeout -= 20;
563         }
564
565         release_queue(kgd);
566         return 0;
567 }
568
569 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
570 {
571         struct radeon_device *rdev = (struct radeon_device *) kgd;
572         const union radeon_firmware_header *hdr;
573
574         BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
575
576         switch (type) {
577         case KGD_ENGINE_PFP:
578                 hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
579                 break;
580
581         case KGD_ENGINE_ME:
582                 hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
583                 break;
584
585         case KGD_ENGINE_CE:
586                 hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
587                 break;
588
589         case KGD_ENGINE_MEC1:
590                 hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
591                 break;
592
593         case KGD_ENGINE_MEC2:
594                 hdr = (const union radeon_firmware_header *)
595                                                         rdev->mec2_fw->data;
596                 break;
597
598         case KGD_ENGINE_RLC:
599                 hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
600                 break;
601
602         case KGD_ENGINE_SDMA:
603                 hdr = (const union radeon_firmware_header *)
604                                                         rdev->sdma_fw->data;
605                 break;
606
607         default:
608                 return 0;
609         }
610
611         if (hdr == NULL)
612                 return 0;
613
614         /* Only 12 bit in use*/
615         return hdr->common.ucode_version;
616 }