drm: rcar-du: Output HSYNC instead of CSYNC
[cascardo/linux.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2014 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
29
30 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
31 {
32         struct rcar_du_device *rcdu = rcrtc->group->dev;
33
34         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
35 }
36
37 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
38 {
39         struct rcar_du_device *rcdu = rcrtc->group->dev;
40
41         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
42 }
43
44 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
45 {
46         struct rcar_du_device *rcdu = rcrtc->group->dev;
47
48         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
49                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
50 }
51
52 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
53 {
54         struct rcar_du_device *rcdu = rcrtc->group->dev;
55
56         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
57                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
58 }
59
60 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
61                                  u32 clr, u32 set)
62 {
63         struct rcar_du_device *rcdu = rcrtc->group->dev;
64         u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
65
66         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
67 }
68
69 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
70 {
71         int ret;
72
73         ret = clk_prepare_enable(rcrtc->clock);
74         if (ret < 0)
75                 return ret;
76
77         ret = clk_prepare_enable(rcrtc->extclock);
78         if (ret < 0)
79                 goto error_clock;
80
81         ret = rcar_du_group_get(rcrtc->group);
82         if (ret < 0)
83                 goto error_group;
84
85         return 0;
86
87 error_group:
88         clk_disable_unprepare(rcrtc->extclock);
89 error_clock:
90         clk_disable_unprepare(rcrtc->clock);
91         return ret;
92 }
93
94 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
95 {
96         rcar_du_group_put(rcrtc->group);
97
98         clk_disable_unprepare(rcrtc->extclock);
99         clk_disable_unprepare(rcrtc->clock);
100 }
101
102 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
103 {
104         const struct drm_display_mode *mode = &rcrtc->crtc.mode;
105         unsigned long mode_clock = mode->clock * 1000;
106         unsigned long clk;
107         u32 value;
108         u32 escr;
109         u32 div;
110
111         /* Compute the clock divisor and select the internal or external dot
112          * clock based on the requested frequency.
113          */
114         clk = clk_get_rate(rcrtc->clock);
115         div = DIV_ROUND_CLOSEST(clk, mode_clock);
116         div = clamp(div, 1U, 64U) - 1;
117         escr = div | ESCR_DCLKSEL_CLKS;
118
119         if (rcrtc->extclock) {
120                 unsigned long extclk;
121                 unsigned long extrate;
122                 unsigned long rate;
123                 u32 extdiv;
124
125                 extclk = clk_get_rate(rcrtc->extclock);
126                 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
127                 extdiv = clamp(extdiv, 1U, 64U) - 1;
128
129                 rate = clk / (div + 1);
130                 extrate = extclk / (extdiv + 1);
131
132                 if (abs((long)extrate - (long)mode_clock) <
133                     abs((long)rate - (long)mode_clock)) {
134                         dev_dbg(rcrtc->group->dev->dev,
135                                 "crtc%u: using external clock\n", rcrtc->index);
136                         escr = extdiv | ESCR_DCLKSEL_DCLKIN;
137                 }
138         }
139
140         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
141                             escr);
142         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
143
144         /* Signal polarities */
145         value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
146               | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
147               | DSMR_DIPM_DE | DSMR_CSPM;
148         rcar_du_crtc_write(rcrtc, DSMR, value);
149
150         /* Display timings */
151         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
152         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
153                                         mode->hdisplay - 19);
154         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
155                                         mode->hsync_start - 1);
156         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
157
158         rcar_du_crtc_write(rcrtc, VDSR, mode->vtotal - mode->vsync_end - 2);
159         rcar_du_crtc_write(rcrtc, VDER, mode->vtotal - mode->vsync_end +
160                                         mode->vdisplay - 2);
161         rcar_du_crtc_write(rcrtc, VSPR, mode->vtotal - mode->vsync_end +
162                                         mode->vsync_start - 1);
163         rcar_du_crtc_write(rcrtc, VCR,  mode->vtotal - 1);
164
165         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
166         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
167 }
168
169 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
170                                enum rcar_du_output output)
171 {
172         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
173         struct rcar_du_device *rcdu = rcrtc->group->dev;
174
175         /* Store the route from the CRTC output to the DU output. The DU will be
176          * configured when starting the CRTC.
177          */
178         rcrtc->outputs |= BIT(output);
179
180         /* Store RGB routing to DPAD0, the hardware will be configured when
181          * starting the CRTC.
182          */
183         if (output == RCAR_DU_OUTPUT_DPAD0)
184                 rcdu->dpad0_source = rcrtc->index;
185 }
186
187 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
188 {
189         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
190         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
191         unsigned int num_planes = 0;
192         unsigned int prio = 0;
193         unsigned int i;
194         u32 dptsr = 0;
195         u32 dspr = 0;
196
197         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
198                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
199                 unsigned int j;
200
201                 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
202                         continue;
203
204                 /* Insert the plane in the sorted planes array. */
205                 for (j = num_planes++; j > 0; --j) {
206                         if (planes[j-1]->zpos <= plane->zpos)
207                                 break;
208                         planes[j] = planes[j-1];
209                 }
210
211                 planes[j] = plane;
212                 prio += plane->format->planes * 4;
213         }
214
215         for (i = 0; i < num_planes; ++i) {
216                 struct rcar_du_plane *plane = planes[i];
217                 unsigned int index = plane->hwindex;
218
219                 prio -= 4;
220                 dspr |= (index + 1) << prio;
221                 dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
222
223                 if (plane->format->planes == 2) {
224                         index = (index + 1) % 8;
225
226                         prio -= 4;
227                         dspr |= (index + 1) << prio;
228                         dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
229                 }
230         }
231
232         /* Select display timing and dot clock generator 2 for planes associated
233          * with superposition controller 2.
234          */
235         if (rcrtc->index % 2) {
236                 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
237
238                 /* The DPTSR register is updated when the display controller is
239                  * stopped. We thus need to restart the DU. Once again, sorry
240                  * for the flicker. One way to mitigate the issue would be to
241                  * pre-associate planes with CRTCs (either with a fixed 4/4
242                  * split, or through a module parameter). Flicker would then
243                  * occur only if we need to break the pre-association.
244                  */
245                 if (value != dptsr) {
246                         rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
247                         if (rcrtc->group->used_crtcs)
248                                 rcar_du_group_restart(rcrtc->group);
249                 }
250         }
251
252         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
253                             dspr);
254 }
255
256 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
257 {
258         struct drm_crtc *crtc = &rcrtc->crtc;
259         unsigned int i;
260
261         if (rcrtc->started)
262                 return;
263
264         if (WARN_ON(rcrtc->plane->format == NULL))
265                 return;
266
267         /* Set display off and background to black */
268         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
269         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
270
271         /* Configure display timings and output routing */
272         rcar_du_crtc_set_display_timing(rcrtc);
273         rcar_du_group_set_routing(rcrtc->group);
274
275         mutex_lock(&rcrtc->group->planes.lock);
276         rcrtc->plane->enabled = true;
277         rcar_du_crtc_update_planes(crtc);
278         mutex_unlock(&rcrtc->group->planes.lock);
279
280         /* Setup planes. */
281         for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
282                 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
283
284                 if (plane->crtc != crtc || !plane->enabled)
285                         continue;
286
287                 rcar_du_plane_setup(plane);
288         }
289
290         /* Select master sync mode. This enables display operation in master
291          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
292          * actively driven).
293          */
294         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_MASTER);
295
296         rcar_du_group_start_stop(rcrtc->group, true);
297
298         rcrtc->started = true;
299 }
300
301 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
302 {
303         struct drm_crtc *crtc = &rcrtc->crtc;
304
305         if (!rcrtc->started)
306                 return;
307
308         mutex_lock(&rcrtc->group->planes.lock);
309         rcrtc->plane->enabled = false;
310         rcar_du_crtc_update_planes(crtc);
311         mutex_unlock(&rcrtc->group->planes.lock);
312
313         /* Select switch sync mode. This stops display operation and configures
314          * the HSYNC and VSYNC signals as inputs.
315          */
316         rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
317
318         rcar_du_group_start_stop(rcrtc->group, false);
319
320         rcrtc->started = false;
321 }
322
323 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
324 {
325         rcar_du_crtc_stop(rcrtc);
326         rcar_du_crtc_put(rcrtc);
327 }
328
329 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
330 {
331         if (rcrtc->dpms != DRM_MODE_DPMS_ON)
332                 return;
333
334         rcar_du_crtc_get(rcrtc);
335         rcar_du_crtc_start(rcrtc);
336 }
337
338 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
339 {
340         struct drm_crtc *crtc = &rcrtc->crtc;
341
342         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
343         rcar_du_plane_update_base(rcrtc->plane);
344 }
345
346 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
347 {
348         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
349
350         if (rcrtc->dpms == mode)
351                 return;
352
353         if (mode == DRM_MODE_DPMS_ON) {
354                 rcar_du_crtc_get(rcrtc);
355                 rcar_du_crtc_start(rcrtc);
356         } else {
357                 rcar_du_crtc_stop(rcrtc);
358                 rcar_du_crtc_put(rcrtc);
359         }
360
361         rcrtc->dpms = mode;
362 }
363
364 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
365                                     const struct drm_display_mode *mode,
366                                     struct drm_display_mode *adjusted_mode)
367 {
368         /* TODO Fixup modes */
369         return true;
370 }
371
372 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
373 {
374         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
375
376         /* We need to access the hardware during mode set, acquire a reference
377          * to the CRTC.
378          */
379         rcar_du_crtc_get(rcrtc);
380
381         /* Stop the CRTC and release the plane. Force the DPMS mode to off as a
382          * result.
383          */
384         rcar_du_crtc_stop(rcrtc);
385         rcar_du_plane_release(rcrtc->plane);
386
387         rcrtc->dpms = DRM_MODE_DPMS_OFF;
388 }
389
390 static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
391                                  struct drm_display_mode *mode,
392                                  struct drm_display_mode *adjusted_mode,
393                                  int x, int y,
394                                  struct drm_framebuffer *old_fb)
395 {
396         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
397         struct rcar_du_device *rcdu = rcrtc->group->dev;
398         const struct rcar_du_format_info *format;
399         int ret;
400
401         format = rcar_du_format_info(crtc->primary->fb->pixel_format);
402         if (format == NULL) {
403                 dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
404                         crtc->primary->fb->pixel_format);
405                 ret = -EINVAL;
406                 goto error;
407         }
408
409         ret = rcar_du_plane_reserve(rcrtc->plane, format);
410         if (ret < 0)
411                 goto error;
412
413         rcrtc->plane->format = format;
414
415         rcrtc->plane->src_x = x;
416         rcrtc->plane->src_y = y;
417         rcrtc->plane->width = mode->hdisplay;
418         rcrtc->plane->height = mode->vdisplay;
419
420         rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
421
422         rcrtc->outputs = 0;
423
424         return 0;
425
426 error:
427         /* There's no rollback/abort operation to clean up in case of error. We
428          * thus need to release the reference to the CRTC acquired in prepare()
429          * here.
430          */
431         rcar_du_crtc_put(rcrtc);
432         return ret;
433 }
434
435 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
436 {
437         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
438
439         /* We're done, restart the CRTC and set the DPMS mode to on. The
440          * reference to the DU acquired at prepare() time will thus be released
441          * by the DPMS handler (possibly called by the disable() handler).
442          */
443         rcar_du_crtc_start(rcrtc);
444         rcrtc->dpms = DRM_MODE_DPMS_ON;
445 }
446
447 static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
448                                       struct drm_framebuffer *old_fb)
449 {
450         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
451
452         rcrtc->plane->src_x = x;
453         rcrtc->plane->src_y = y;
454
455         rcar_du_crtc_update_base(rcrtc);
456
457         return 0;
458 }
459
460 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
461 {
462         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
463
464         rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
465         rcar_du_plane_release(rcrtc->plane);
466 }
467
468 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
469         .dpms = rcar_du_crtc_dpms,
470         .mode_fixup = rcar_du_crtc_mode_fixup,
471         .prepare = rcar_du_crtc_mode_prepare,
472         .commit = rcar_du_crtc_mode_commit,
473         .mode_set = rcar_du_crtc_mode_set,
474         .mode_set_base = rcar_du_crtc_mode_set_base,
475         .disable = rcar_du_crtc_disable,
476 };
477
478 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
479                                    struct drm_file *file)
480 {
481         struct drm_pending_vblank_event *event;
482         struct drm_device *dev = rcrtc->crtc.dev;
483         unsigned long flags;
484
485         /* Destroy the pending vertical blanking event associated with the
486          * pending page flip, if any, and disable vertical blanking interrupts.
487          */
488         spin_lock_irqsave(&dev->event_lock, flags);
489         event = rcrtc->event;
490         if (event && event->base.file_priv == file) {
491                 rcrtc->event = NULL;
492                 event->base.destroy(&event->base);
493                 drm_vblank_put(dev, rcrtc->index);
494         }
495         spin_unlock_irqrestore(&dev->event_lock, flags);
496 }
497
498 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
499 {
500         struct drm_pending_vblank_event *event;
501         struct drm_device *dev = rcrtc->crtc.dev;
502         unsigned long flags;
503
504         spin_lock_irqsave(&dev->event_lock, flags);
505         event = rcrtc->event;
506         rcrtc->event = NULL;
507         spin_unlock_irqrestore(&dev->event_lock, flags);
508
509         if (event == NULL)
510                 return;
511
512         spin_lock_irqsave(&dev->event_lock, flags);
513         drm_send_vblank_event(dev, rcrtc->index, event);
514         spin_unlock_irqrestore(&dev->event_lock, flags);
515
516         drm_vblank_put(dev, rcrtc->index);
517 }
518
519 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
520 {
521         struct rcar_du_crtc *rcrtc = arg;
522         irqreturn_t ret = IRQ_NONE;
523         u32 status;
524
525         status = rcar_du_crtc_read(rcrtc, DSSR);
526         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
527
528         if (status & DSSR_VBK) {
529                 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
530                 rcar_du_crtc_finish_page_flip(rcrtc);
531                 ret = IRQ_HANDLED;
532         }
533
534         return ret;
535 }
536
537 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
538                                   struct drm_framebuffer *fb,
539                                   struct drm_pending_vblank_event *event,
540                                   uint32_t page_flip_flags)
541 {
542         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
543         struct drm_device *dev = rcrtc->crtc.dev;
544         unsigned long flags;
545
546         spin_lock_irqsave(&dev->event_lock, flags);
547         if (rcrtc->event != NULL) {
548                 spin_unlock_irqrestore(&dev->event_lock, flags);
549                 return -EBUSY;
550         }
551         spin_unlock_irqrestore(&dev->event_lock, flags);
552
553         crtc->primary->fb = fb;
554         rcar_du_crtc_update_base(rcrtc);
555
556         if (event) {
557                 event->pipe = rcrtc->index;
558                 drm_vblank_get(dev, rcrtc->index);
559                 spin_lock_irqsave(&dev->event_lock, flags);
560                 rcrtc->event = event;
561                 spin_unlock_irqrestore(&dev->event_lock, flags);
562         }
563
564         return 0;
565 }
566
567 static const struct drm_crtc_funcs crtc_funcs = {
568         .destroy = drm_crtc_cleanup,
569         .set_config = drm_crtc_helper_set_config,
570         .page_flip = rcar_du_crtc_page_flip,
571 };
572
573 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
574 {
575         static const unsigned int mmio_offsets[] = {
576                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
577         };
578
579         struct rcar_du_device *rcdu = rgrp->dev;
580         struct platform_device *pdev = to_platform_device(rcdu->dev);
581         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
582         struct drm_crtc *crtc = &rcrtc->crtc;
583         unsigned int irqflags;
584         struct clk *clk;
585         char clk_name[9];
586         char *name;
587         int irq;
588         int ret;
589
590         /* Get the CRTC clock and the optional external clock. */
591         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
592                 sprintf(clk_name, "du.%u", index);
593                 name = clk_name;
594         } else {
595                 name = NULL;
596         }
597
598         rcrtc->clock = devm_clk_get(rcdu->dev, name);
599         if (IS_ERR(rcrtc->clock)) {
600                 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
601                 return PTR_ERR(rcrtc->clock);
602         }
603
604         sprintf(clk_name, "dclkin.%u", index);
605         clk = devm_clk_get(rcdu->dev, clk_name);
606         if (!IS_ERR(clk)) {
607                 rcrtc->extclock = clk;
608         } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
609                 dev_info(rcdu->dev, "can't get external clock %u\n", index);
610                 return -EPROBE_DEFER;
611         }
612
613         rcrtc->group = rgrp;
614         rcrtc->mmio_offset = mmio_offsets[index];
615         rcrtc->index = index;
616         rcrtc->dpms = DRM_MODE_DPMS_OFF;
617         rcrtc->plane = &rgrp->planes.planes[index % 2];
618
619         rcrtc->plane->crtc = crtc;
620
621         ret = drm_crtc_init(rcdu->ddev, crtc, &crtc_funcs);
622         if (ret < 0)
623                 return ret;
624
625         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
626
627         /* Register the interrupt handler. */
628         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
629                 irq = platform_get_irq(pdev, index);
630                 irqflags = 0;
631         } else {
632                 irq = platform_get_irq(pdev, 0);
633                 irqflags = IRQF_SHARED;
634         }
635
636         if (irq < 0) {
637                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
638                 return irq;
639         }
640
641         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
642                                dev_name(rcdu->dev), rcrtc);
643         if (ret < 0) {
644                 dev_err(rcdu->dev,
645                         "failed to register IRQ for CRTC %u\n", index);
646                 return ret;
647         }
648
649         return 0;
650 }
651
652 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
653 {
654         if (enable) {
655                 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
656                 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
657         } else {
658                 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
659         }
660 }