Merge tag 'drm-for-v4.9' of git://people.freedesktop.org/~airlied/linux
[cascardo/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder0_type;
87         enum vc4_encoder_type encoder1_type;
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                             unsigned int flags, int *vpos, int *hpos,
156                             ktime_t *stime, ktime_t *etime,
157                             const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161         u32 val;
162         int fifo_lines;
163         int vblank_lines;
164         int ret = 0;
165
166         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168         /* Get optional system timestamp before query. */
169         if (stime)
170                 *stime = ktime_get();
171
172         /*
173          * Read vertical scanline which is currently composed for our
174          * pixelvalve by the HVS, and also the scaler status.
175          */
176         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178         /* Get optional system timestamp after query. */
179         if (etime)
180                 *etime = ktime_get();
181
182         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184         /* Vertical position of hvs composed scanline. */
185         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186         *hpos = 0;
187
188         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189                 *vpos /= 2;
190
191                 /* Use hpos to correct for field offset in interlaced mode. */
192                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193                         *hpos += mode->crtc_htotal / 2;
194         }
195
196         /* This is the offset we need for translating hvs -> pv scanout pos. */
197         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199         if (fifo_lines > 0)
200                 ret |= DRM_SCANOUTPOS_VALID;
201
202         /* HVS more than fifo_lines into frame for compositing? */
203         if (*vpos > fifo_lines) {
204                 /*
205                  * We are in active scanout and can get some meaningful results
206                  * from HVS. The actual PV scanout can not trail behind more
207                  * than fifo_lines as that is the fifo's capacity. Assume that
208                  * in active scanout the HVS and PV work in lockstep wrt. HVS
209                  * refilling the fifo and PV consuming from the fifo, ie.
210                  * whenever the PV consumes and frees up a scanline in the
211                  * fifo, the HVS will immediately refill it, therefore
212                  * incrementing vpos. Therefore we choose HVS read position -
213                  * fifo size in scanlines as a estimate of the real scanout
214                  * position of the PV.
215                  */
216                 *vpos -= fifo_lines + 1;
217
218                 ret |= DRM_SCANOUTPOS_ACCURATE;
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         ret |= DRM_SCANOUTPOS_IN_VBLANK;
232         vblank_lines = mode->vtotal - mode->vdisplay;
233
234         if (flags & DRM_CALLED_FROM_VBLIRQ) {
235                 /*
236                  * Assume the irq handler got called close to first
237                  * line of vblank, so PV has about a full vblank
238                  * scanlines to go, and as a base timestamp use the
239                  * one taken at entry into vblank irq handler, so it
240                  * is not affected by random delays due to lock
241                  * contention on event_lock or vblank_time lock in
242                  * the core.
243                  */
244                 *vpos = -vblank_lines;
245
246                 if (stime)
247                         *stime = vc4_crtc->t_vblank;
248                 if (etime)
249                         *etime = vc4_crtc->t_vblank;
250
251                 /*
252                  * If the HVS fifo is not yet full then we know for certain
253                  * we are at the very beginning of vblank, as the hvs just
254                  * started refilling, and the stime and etime timestamps
255                  * truly correspond to start of vblank.
256                  */
257                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258                         ret |= DRM_SCANOUTPOS_ACCURATE;
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273                                   int *max_error, struct timeval *vblank_time,
274                                   unsigned flags)
275 {
276         struct vc4_dev *vc4 = to_vc4_dev(dev);
277         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
278         struct drm_crtc *crtc = &vc4_crtc->base;
279         struct drm_crtc_state *state = crtc->state;
280
281         /* Helper routine in DRM core does all the work: */
282         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
283                                                      vblank_time, flags,
284                                                      &state->adjusted_mode);
285 }
286
287 static void vc4_crtc_destroy(struct drm_crtc *crtc)
288 {
289         drm_crtc_cleanup(crtc);
290 }
291
292 static void
293 vc4_crtc_lut_load(struct drm_crtc *crtc)
294 {
295         struct drm_device *dev = crtc->dev;
296         struct vc4_dev *vc4 = to_vc4_dev(dev);
297         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298         u32 i;
299
300         /* The LUT memory is laid out with each HVS channel in order,
301          * each of which takes 256 writes for R, 256 for G, then 256
302          * for B.
303          */
304         HVS_WRITE(SCALER_GAMADDR,
305                   SCALER_GAMADDR_AUTOINC |
306                   (vc4_crtc->channel * 3 * crtc->gamma_size));
307
308         for (i = 0; i < crtc->gamma_size; i++)
309                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
310         for (i = 0; i < crtc->gamma_size; i++)
311                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
312         for (i = 0; i < crtc->gamma_size; i++)
313                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314 }
315
316 static int
317 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
318                    uint32_t size)
319 {
320         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321         u32 i;
322
323         for (i = 0; i < size; i++) {
324                 vc4_crtc->lut_r[i] = r[i] >> 8;
325                 vc4_crtc->lut_g[i] = g[i] >> 8;
326                 vc4_crtc->lut_b[i] = b[i] >> 8;
327         }
328
329         vc4_crtc_lut_load(crtc);
330
331         return 0;
332 }
333
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336         static const u32 fifo_len_bytes = 64;
337         static const u32 hvs_latency_pix = 6;
338
339         switch (format) {
340         case PV_CONTROL_FORMAT_DSIV_16:
341         case PV_CONTROL_FORMAT_DSIC_16:
342                 return fifo_len_bytes - 2 * hvs_latency_pix;
343         case PV_CONTROL_FORMAT_DSIV_18:
344                 return fifo_len_bytes - 14;
345         case PV_CONTROL_FORMAT_24:
346         case PV_CONTROL_FORMAT_DSIV_24:
347         default:
348                 return fifo_len_bytes - 3 * hvs_latency_pix;
349         }
350 }
351
352 /*
353  * Returns the clock select bit for the connector attached to the
354  * CRTC.
355  */
356 static int vc4_get_clock_select(struct drm_crtc *crtc)
357 {
358         struct drm_connector *connector;
359
360         drm_for_each_connector(connector, crtc->dev) {
361                 if (connector->state->crtc == crtc) {
362                         struct drm_encoder *encoder = connector->encoder;
363                         struct vc4_encoder *vc4_encoder =
364                                 to_vc4_encoder(encoder);
365
366                         return vc4_encoder->clock_select;
367                 }
368         }
369
370         return -1;
371 }
372
373 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
374 {
375         struct drm_device *dev = crtc->dev;
376         struct vc4_dev *vc4 = to_vc4_dev(dev);
377         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378         struct drm_crtc_state *state = crtc->state;
379         struct drm_display_mode *mode = &state->adjusted_mode;
380         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
382         u32 format = PV_CONTROL_FORMAT_24;
383         bool debug_dump_regs = false;
384         int clock_select = vc4_get_clock_select(crtc);
385
386         if (debug_dump_regs) {
387                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388                 vc4_crtc_dump_regs(vc4_crtc);
389         }
390
391         /* Reset the PV fifo. */
392         CRTC_WRITE(PV_CONTROL, 0);
393         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394         CRTC_WRITE(PV_CONTROL, 0);
395
396         CRTC_WRITE(PV_HORZA,
397                    VC4_SET_FIELD((mode->htotal -
398                                   mode->hsync_end) * pixel_rep,
399                                  PV_HORZA_HBP) |
400                    VC4_SET_FIELD((mode->hsync_end -
401                                   mode->hsync_start) * pixel_rep,
402                                  PV_HORZA_HSYNC));
403         CRTC_WRITE(PV_HORZB,
404                    VC4_SET_FIELD((mode->hsync_start -
405                                   mode->hdisplay) * pixel_rep,
406                                  PV_HORZB_HFP) |
407                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
408
409         CRTC_WRITE(PV_VERTA,
410                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
411                                  PV_VERTA_VBP) |
412                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
413                                  PV_VERTA_VSYNC));
414         CRTC_WRITE(PV_VERTB,
415                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
416                                  PV_VERTB_VFP) |
417                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
418
419         if (interlace) {
420                 CRTC_WRITE(PV_VERTA_EVEN,
421                            VC4_SET_FIELD(mode->crtc_vtotal -
422                                          mode->crtc_vsync_end - 1,
423                                          PV_VERTA_VBP) |
424                            VC4_SET_FIELD(mode->crtc_vsync_end -
425                                          mode->crtc_vsync_start,
426                                          PV_VERTA_VSYNC));
427                 CRTC_WRITE(PV_VERTB_EVEN,
428                            VC4_SET_FIELD(mode->crtc_vsync_start -
429                                          mode->crtc_vdisplay,
430                                          PV_VERTB_VFP) |
431                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432
433                 /* We set up first field even mode for HDMI.  VEC's
434                  * NTSC mode would want first field odd instead, once
435                  * we support it (to do so, set ODD_FIRST and put the
436                  * delay in VSYNCD_EVEN instead).
437                  */
438                 CRTC_WRITE(PV_V_CONTROL,
439                            PV_VCONTROL_CONTINUOUS |
440                            PV_VCONTROL_INTERLACE |
441                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
442                                          PV_VCONTROL_ODD_DELAY));
443                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
444         } else {
445                 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
446         }
447
448         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
449
450
451         CRTC_WRITE(PV_CONTROL,
452                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
453                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
454                                  PV_CONTROL_FIFO_LEVEL) |
455                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
456                    PV_CONTROL_CLR_AT_START |
457                    PV_CONTROL_TRIGGER_UNDERFLOW |
458                    PV_CONTROL_WAIT_HSTART |
459                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
460                    PV_CONTROL_FIFO_CLR |
461                    PV_CONTROL_EN);
462
463         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
464                   SCALER_DISPBKGND_AUTOHS |
465                   SCALER_DISPBKGND_GAMMA |
466                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
467
468         /* Reload the LUT, since the SRAMs would have been disabled if
469          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
470          */
471         vc4_crtc_lut_load(crtc);
472
473         if (debug_dump_regs) {
474                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
475                 vc4_crtc_dump_regs(vc4_crtc);
476         }
477 }
478
479 static void require_hvs_enabled(struct drm_device *dev)
480 {
481         struct vc4_dev *vc4 = to_vc4_dev(dev);
482
483         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
484                      SCALER_DISPCTRL_ENABLE);
485 }
486
487 static void vc4_crtc_disable(struct drm_crtc *crtc)
488 {
489         struct drm_device *dev = crtc->dev;
490         struct vc4_dev *vc4 = to_vc4_dev(dev);
491         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492         u32 chan = vc4_crtc->channel;
493         int ret;
494         require_hvs_enabled(dev);
495
496         /* Disable vblank irq handling before crtc is disabled. */
497         drm_crtc_vblank_off(crtc);
498
499         CRTC_WRITE(PV_V_CONTROL,
500                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
501         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
502         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
503
504         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
505             SCALER_DISPCTRLX_ENABLE) {
506                 HVS_WRITE(SCALER_DISPCTRLX(chan),
507                           SCALER_DISPCTRLX_RESET);
508
509                 /* While the docs say that reset is self-clearing, it
510                  * seems it doesn't actually.
511                  */
512                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
513         }
514
515         /* Once we leave, the scaler should be disabled and its fifo empty. */
516
517         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
518
519         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
520                                    SCALER_DISPSTATX_MODE) !=
521                      SCALER_DISPSTATX_MODE_DISABLED);
522
523         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
524                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
525                      SCALER_DISPSTATX_EMPTY);
526 }
527
528 static void vc4_crtc_enable(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct vc4_dev *vc4 = to_vc4_dev(dev);
532         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
533         struct drm_crtc_state *state = crtc->state;
534         struct drm_display_mode *mode = &state->adjusted_mode;
535
536         require_hvs_enabled(dev);
537
538         /* Turn on the scaler, which will wait for vstart to start
539          * compositing.
540          */
541         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
542                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
543                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
544                   SCALER_DISPCTRLX_ENABLE);
545
546         /* Turn on the pixel valve, which will emit the vstart signal. */
547         CRTC_WRITE(PV_V_CONTROL,
548                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
549
550         /* Enable vblank irq handling after crtc is started. */
551         drm_crtc_vblank_on(crtc);
552 }
553
554 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
555                                 const struct drm_display_mode *mode,
556                                 struct drm_display_mode *adjusted_mode)
557 {
558         /* Do not allow doublescan modes from user space */
559         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
560                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
561                               crtc->base.id);
562                 return false;
563         }
564
565         return true;
566 }
567
568 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
569                                  struct drm_crtc_state *state)
570 {
571         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
572         struct drm_device *dev = crtc->dev;
573         struct vc4_dev *vc4 = to_vc4_dev(dev);
574         struct drm_plane *plane;
575         unsigned long flags;
576         const struct drm_plane_state *plane_state;
577         u32 dlist_count = 0;
578         int ret;
579
580         /* The pixelvalve can only feed one encoder (and encoders are
581          * 1:1 with connectors.)
582          */
583         if (hweight32(state->connector_mask) > 1)
584                 return -EINVAL;
585
586         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
587                 dlist_count += vc4_plane_dlist_size(plane_state);
588
589         dlist_count++; /* Account for SCALER_CTL0_END. */
590
591         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
592         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
593                                  dlist_count, 1, 0);
594         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
595         if (ret)
596                 return ret;
597
598         return 0;
599 }
600
601 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
602                                   struct drm_crtc_state *old_state)
603 {
604         struct drm_device *dev = crtc->dev;
605         struct vc4_dev *vc4 = to_vc4_dev(dev);
606         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
607         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
608         struct drm_plane *plane;
609         bool debug_dump_regs = false;
610         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
611         u32 __iomem *dlist_next = dlist_start;
612
613         if (debug_dump_regs) {
614                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
615                 vc4_hvs_dump_state(dev);
616         }
617
618         /* Copy all the active planes' dlist contents to the hardware dlist. */
619         drm_atomic_crtc_for_each_plane(plane, crtc) {
620                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
621         }
622
623         writel(SCALER_CTL0_END, dlist_next);
624         dlist_next++;
625
626         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
627
628         if (crtc->state->event) {
629                 unsigned long flags;
630
631                 crtc->state->event->pipe = drm_crtc_index(crtc);
632
633                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
634
635                 spin_lock_irqsave(&dev->event_lock, flags);
636                 vc4_crtc->event = crtc->state->event;
637                 crtc->state->event = NULL;
638
639                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
640                           vc4_state->mm.start);
641
642                 spin_unlock_irqrestore(&dev->event_lock, flags);
643         } else {
644                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645                           vc4_state->mm.start);
646         }
647
648         if (debug_dump_regs) {
649                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
650                 vc4_hvs_dump_state(dev);
651         }
652 }
653
654 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
655 {
656         struct vc4_dev *vc4 = to_vc4_dev(dev);
657         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
658
659         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
660
661         return 0;
662 }
663
664 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
665 {
666         struct vc4_dev *vc4 = to_vc4_dev(dev);
667         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
668
669         CRTC_WRITE(PV_INTEN, 0);
670 }
671
672 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
673 {
674         struct drm_crtc *crtc = &vc4_crtc->base;
675         struct drm_device *dev = crtc->dev;
676         struct vc4_dev *vc4 = to_vc4_dev(dev);
677         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
678         u32 chan = vc4_crtc->channel;
679         unsigned long flags;
680
681         spin_lock_irqsave(&dev->event_lock, flags);
682         if (vc4_crtc->event &&
683             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
684                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
685                 vc4_crtc->event = NULL;
686                 drm_crtc_vblank_put(crtc);
687         }
688         spin_unlock_irqrestore(&dev->event_lock, flags);
689 }
690
691 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
692 {
693         struct vc4_crtc *vc4_crtc = data;
694         u32 stat = CRTC_READ(PV_INTSTAT);
695         irqreturn_t ret = IRQ_NONE;
696
697         if (stat & PV_INT_VFP_START) {
698                 vc4_crtc->t_vblank = ktime_get();
699                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
700                 drm_crtc_handle_vblank(&vc4_crtc->base);
701                 vc4_crtc_handle_page_flip(vc4_crtc);
702                 ret = IRQ_HANDLED;
703         }
704
705         return ret;
706 }
707
708 struct vc4_async_flip_state {
709         struct drm_crtc *crtc;
710         struct drm_framebuffer *fb;
711         struct drm_pending_vblank_event *event;
712
713         struct vc4_seqno_cb cb;
714 };
715
716 /* Called when the V3D execution for the BO being flipped to is done, so that
717  * we can actually update the plane's address to point to it.
718  */
719 static void
720 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
721 {
722         struct vc4_async_flip_state *flip_state =
723                 container_of(cb, struct vc4_async_flip_state, cb);
724         struct drm_crtc *crtc = flip_state->crtc;
725         struct drm_device *dev = crtc->dev;
726         struct vc4_dev *vc4 = to_vc4_dev(dev);
727         struct drm_plane *plane = crtc->primary;
728
729         vc4_plane_async_set_fb(plane, flip_state->fb);
730         if (flip_state->event) {
731                 unsigned long flags;
732
733                 spin_lock_irqsave(&dev->event_lock, flags);
734                 drm_crtc_send_vblank_event(crtc, flip_state->event);
735                 spin_unlock_irqrestore(&dev->event_lock, flags);
736         }
737
738         drm_crtc_vblank_put(crtc);
739         drm_framebuffer_unreference(flip_state->fb);
740         kfree(flip_state);
741
742         up(&vc4->async_modeset);
743 }
744
745 /* Implements async (non-vblank-synced) page flips.
746  *
747  * The page flip ioctl needs to return immediately, so we grab the
748  * modeset semaphore on the pipe, and queue the address update for
749  * when V3D is done with the BO being flipped to.
750  */
751 static int vc4_async_page_flip(struct drm_crtc *crtc,
752                                struct drm_framebuffer *fb,
753                                struct drm_pending_vblank_event *event,
754                                uint32_t flags)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct vc4_dev *vc4 = to_vc4_dev(dev);
758         struct drm_plane *plane = crtc->primary;
759         int ret = 0;
760         struct vc4_async_flip_state *flip_state;
761         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
762         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
763
764         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
765         if (!flip_state)
766                 return -ENOMEM;
767
768         drm_framebuffer_reference(fb);
769         flip_state->fb = fb;
770         flip_state->crtc = crtc;
771         flip_state->event = event;
772
773         /* Make sure all other async modesetes have landed. */
774         ret = down_interruptible(&vc4->async_modeset);
775         if (ret) {
776                 drm_framebuffer_unreference(fb);
777                 kfree(flip_state);
778                 return ret;
779         }
780
781         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
782
783         /* Immediately update the plane's legacy fb pointer, so that later
784          * modeset prep sees the state that will be present when the semaphore
785          * is released.
786          */
787         drm_atomic_set_fb_for_plane(plane->state, fb);
788         plane->fb = fb;
789
790         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
791                            vc4_async_page_flip_complete);
792
793         /* Driver takes ownership of state on successful async commit. */
794         return 0;
795 }
796
797 static int vc4_page_flip(struct drm_crtc *crtc,
798                          struct drm_framebuffer *fb,
799                          struct drm_pending_vblank_event *event,
800                          uint32_t flags)
801 {
802         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
803                 return vc4_async_page_flip(crtc, fb, event, flags);
804         else
805                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
806 }
807
808 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
809 {
810         struct vc4_crtc_state *vc4_state;
811
812         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
813         if (!vc4_state)
814                 return NULL;
815
816         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
817         return &vc4_state->base;
818 }
819
820 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
821                                    struct drm_crtc_state *state)
822 {
823         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
824         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
825
826         if (vc4_state->mm.allocated) {
827                 unsigned long flags;
828
829                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
830                 drm_mm_remove_node(&vc4_state->mm);
831                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
832
833         }
834
835         __drm_atomic_helper_crtc_destroy_state(state);
836 }
837
838 static const struct drm_crtc_funcs vc4_crtc_funcs = {
839         .set_config = drm_atomic_helper_set_config,
840         .destroy = vc4_crtc_destroy,
841         .page_flip = vc4_page_flip,
842         .set_property = NULL,
843         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
844         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
845         .reset = drm_atomic_helper_crtc_reset,
846         .atomic_duplicate_state = vc4_crtc_duplicate_state,
847         .atomic_destroy_state = vc4_crtc_destroy_state,
848         .gamma_set = vc4_crtc_gamma_set,
849 };
850
851 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
852         .mode_set_nofb = vc4_crtc_mode_set_nofb,
853         .disable = vc4_crtc_disable,
854         .enable = vc4_crtc_enable,
855         .mode_fixup = vc4_crtc_mode_fixup,
856         .atomic_check = vc4_crtc_atomic_check,
857         .atomic_flush = vc4_crtc_atomic_flush,
858 };
859
860 static const struct vc4_crtc_data pv0_data = {
861         .hvs_channel = 0,
862         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
863         .encoder1_type = VC4_ENCODER_TYPE_DPI,
864 };
865
866 static const struct vc4_crtc_data pv1_data = {
867         .hvs_channel = 2,
868         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
869         .encoder1_type = VC4_ENCODER_TYPE_SMI,
870 };
871
872 static const struct vc4_crtc_data pv2_data = {
873         .hvs_channel = 1,
874         .encoder0_type = VC4_ENCODER_TYPE_VEC,
875         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
876 };
877
878 static const struct of_device_id vc4_crtc_dt_match[] = {
879         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
880         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
881         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
882         {}
883 };
884
885 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
886                                         struct drm_crtc *crtc)
887 {
888         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
889         struct drm_encoder *encoder;
890
891         drm_for_each_encoder(encoder, drm) {
892                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
893
894                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
895                         vc4_encoder->clock_select = 0;
896                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
897                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
898                         vc4_encoder->clock_select = 1;
899                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
900                 }
901         }
902 }
903
904 static void
905 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
906 {
907         struct drm_device *drm = vc4_crtc->base.dev;
908         struct vc4_dev *vc4 = to_vc4_dev(drm);
909         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
910         /* Top/base are supposed to be 4-pixel aligned, but the
911          * Raspberry Pi firmware fills the low bits (which are
912          * presumably ignored).
913          */
914         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
915         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
916
917         vc4_crtc->cob_size = top - base + 4;
918 }
919
920 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
921 {
922         struct platform_device *pdev = to_platform_device(dev);
923         struct drm_device *drm = dev_get_drvdata(master);
924         struct vc4_dev *vc4 = to_vc4_dev(drm);
925         struct vc4_crtc *vc4_crtc;
926         struct drm_crtc *crtc;
927         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
928         const struct of_device_id *match;
929         int ret, i;
930
931         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
932         if (!vc4_crtc)
933                 return -ENOMEM;
934         crtc = &vc4_crtc->base;
935
936         match = of_match_device(vc4_crtc_dt_match, dev);
937         if (!match)
938                 return -ENODEV;
939         vc4_crtc->data = match->data;
940
941         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
942         if (IS_ERR(vc4_crtc->regs))
943                 return PTR_ERR(vc4_crtc->regs);
944
945         /* For now, we create just the primary and the legacy cursor
946          * planes.  We should be able to stack more planes on easily,
947          * but to do that we would need to compute the bandwidth
948          * requirement of the plane configuration, and reject ones
949          * that will take too much.
950          */
951         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
952         if (IS_ERR(primary_plane)) {
953                 dev_err(dev, "failed to construct primary plane\n");
954                 ret = PTR_ERR(primary_plane);
955                 goto err;
956         }
957
958         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
959                                   &vc4_crtc_funcs, NULL);
960         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
961         primary_plane->crtc = crtc;
962         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
963         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
964         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
965
966         /* Set up some arbitrary number of planes.  We're not limited
967          * by a set number of physical registers, just the space in
968          * the HVS (16k) and how small an plane can be (28 bytes).
969          * However, each plane we set up takes up some memory, and
970          * increases the cost of looping over planes, which atomic
971          * modesetting does quite a bit.  As a result, we pick a
972          * modest number of planes to expose, that should hopefully
973          * still cover any sane usecase.
974          */
975         for (i = 0; i < 8; i++) {
976                 struct drm_plane *plane =
977                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
978
979                 if (IS_ERR(plane))
980                         continue;
981
982                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
983         }
984
985         /* Set up the legacy cursor after overlay initialization,
986          * since we overlay planes on the CRTC in the order they were
987          * initialized.
988          */
989         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
990         if (!IS_ERR(cursor_plane)) {
991                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
992                 cursor_plane->crtc = crtc;
993                 crtc->cursor = cursor_plane;
994         }
995
996         vc4_crtc_get_cob_allocation(vc4_crtc);
997
998         CRTC_WRITE(PV_INTEN, 0);
999         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1000         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1001                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1002         if (ret)
1003                 goto err_destroy_planes;
1004
1005         vc4_set_crtc_possible_masks(drm, crtc);
1006
1007         for (i = 0; i < crtc->gamma_size; i++) {
1008                 vc4_crtc->lut_r[i] = i;
1009                 vc4_crtc->lut_g[i] = i;
1010                 vc4_crtc->lut_b[i] = i;
1011         }
1012
1013         platform_set_drvdata(pdev, vc4_crtc);
1014
1015         return 0;
1016
1017 err_destroy_planes:
1018         list_for_each_entry_safe(destroy_plane, temp,
1019                                  &drm->mode_config.plane_list, head) {
1020                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1021                     destroy_plane->funcs->destroy(destroy_plane);
1022         }
1023 err:
1024         return ret;
1025 }
1026
1027 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1028                             void *data)
1029 {
1030         struct platform_device *pdev = to_platform_device(dev);
1031         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1032
1033         vc4_crtc_destroy(&vc4_crtc->base);
1034
1035         CRTC_WRITE(PV_INTEN, 0);
1036
1037         platform_set_drvdata(pdev, NULL);
1038 }
1039
1040 static const struct component_ops vc4_crtc_ops = {
1041         .bind   = vc4_crtc_bind,
1042         .unbind = vc4_crtc_unbind,
1043 };
1044
1045 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1046 {
1047         return component_add(&pdev->dev, &vc4_crtc_ops);
1048 }
1049
1050 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1051 {
1052         component_del(&pdev->dev, &vc4_crtc_ops);
1053         return 0;
1054 }
1055
1056 struct platform_driver vc4_crtc_driver = {
1057         .probe = vc4_crtc_dev_probe,
1058         .remove = vc4_crtc_dev_remove,
1059         .driver = {
1060                 .name = "vc4_crtc",
1061                 .of_match_table = vc4_crtc_dt_match,
1062         },
1063 };