drm/panel: simple: Use devm_gpiod_get_optional()
[cascardo/linux.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34
35 #define VMW_RES_EVICT_ERR_COUNT 10
36
37 struct vmw_user_dma_buffer {
38         struct ttm_prime_object prime;
39         struct vmw_dma_buffer dma;
40 };
41
42 struct vmw_bo_user_rep {
43         uint32_t handle;
44         uint64_t map_handle;
45 };
46
47 struct vmw_stream {
48         struct vmw_resource res;
49         uint32_t stream_id;
50 };
51
52 struct vmw_user_stream {
53         struct ttm_base_object base;
54         struct vmw_stream stream;
55 };
56
57
58 static uint64_t vmw_user_stream_size;
59
60 static const struct vmw_res_func vmw_stream_func = {
61         .res_type = vmw_res_stream,
62         .needs_backup = false,
63         .may_evict = false,
64         .type_name = "video streams",
65         .backup_placement = NULL,
66         .create = NULL,
67         .destroy = NULL,
68         .bind = NULL,
69         .unbind = NULL
70 };
71
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75         return container_of(bo, struct vmw_dma_buffer, base);
76 }
77
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82         return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87         kref_get(&res->kref);
88         return res;
89 }
90
91 struct vmw_resource *
92 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
93 {
94         return kref_get_unless_zero(&res->kref) ? res : NULL;
95 }
96
97 /**
98  * vmw_resource_release_id - release a resource id to the id manager.
99  *
100  * @res: Pointer to the resource.
101  *
102  * Release the resource id to the resource id manager and set it to -1
103  */
104 void vmw_resource_release_id(struct vmw_resource *res)
105 {
106         struct vmw_private *dev_priv = res->dev_priv;
107         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
108
109         write_lock(&dev_priv->resource_lock);
110         if (res->id != -1)
111                 idr_remove(idr, res->id);
112         res->id = -1;
113         write_unlock(&dev_priv->resource_lock);
114 }
115
116 static void vmw_resource_release(struct kref *kref)
117 {
118         struct vmw_resource *res =
119             container_of(kref, struct vmw_resource, kref);
120         struct vmw_private *dev_priv = res->dev_priv;
121         int id;
122         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
123
124         res->avail = false;
125         list_del_init(&res->lru_head);
126         write_unlock(&dev_priv->resource_lock);
127         if (res->backup) {
128                 struct ttm_buffer_object *bo = &res->backup->base;
129
130                 ttm_bo_reserve(bo, false, false, false, 0);
131                 if (!list_empty(&res->mob_head) &&
132                     res->func->unbind != NULL) {
133                         struct ttm_validate_buffer val_buf;
134
135                         val_buf.bo = bo;
136                         res->func->unbind(res, false, &val_buf);
137                 }
138                 res->backup_dirty = false;
139                 list_del_init(&res->mob_head);
140                 ttm_bo_unreserve(bo);
141                 vmw_dmabuf_unreference(&res->backup);
142         }
143
144         if (likely(res->hw_destroy != NULL)) {
145                 res->hw_destroy(res);
146                 mutex_lock(&dev_priv->binding_mutex);
147                 vmw_context_binding_res_list_kill(&res->binding_head);
148                 mutex_unlock(&dev_priv->binding_mutex);
149         }
150
151         id = res->id;
152         if (res->res_free != NULL)
153                 res->res_free(res);
154         else
155                 kfree(res);
156
157         write_lock(&dev_priv->resource_lock);
158
159         if (id != -1)
160                 idr_remove(idr, id);
161 }
162
163 void vmw_resource_unreference(struct vmw_resource **p_res)
164 {
165         struct vmw_resource *res = *p_res;
166         struct vmw_private *dev_priv = res->dev_priv;
167
168         *p_res = NULL;
169         write_lock(&dev_priv->resource_lock);
170         kref_put(&res->kref, vmw_resource_release);
171         write_unlock(&dev_priv->resource_lock);
172 }
173
174
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185         struct vmw_private *dev_priv = res->dev_priv;
186         int ret;
187         struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189         BUG_ON(res->id != -1);
190
191         idr_preload(GFP_KERNEL);
192         write_lock(&dev_priv->resource_lock);
193
194         ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195         if (ret >= 0)
196                 res->id = ret;
197
198         write_unlock(&dev_priv->resource_lock);
199         idr_preload_end();
200         return ret < 0 ? ret : 0;
201 }
202
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215                       bool delay_id,
216                       void (*res_free) (struct vmw_resource *res),
217                       const struct vmw_res_func *func)
218 {
219         kref_init(&res->kref);
220         res->hw_destroy = NULL;
221         res->res_free = res_free;
222         res->avail = false;
223         res->dev_priv = dev_priv;
224         res->func = func;
225         INIT_LIST_HEAD(&res->lru_head);
226         INIT_LIST_HEAD(&res->mob_head);
227         INIT_LIST_HEAD(&res->binding_head);
228         res->id = -1;
229         res->backup = NULL;
230         res->backup_offset = 0;
231         res->backup_dirty = false;
232         res->res_dirty = false;
233         if (delay_id)
234                 return 0;
235         else
236                 return vmw_resource_alloc_id(res);
237 }
238
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252                            void (*hw_destroy) (struct vmw_resource *))
253 {
254         struct vmw_private *dev_priv = res->dev_priv;
255
256         write_lock(&dev_priv->resource_lock);
257         res->avail = true;
258         res->hw_destroy = hw_destroy;
259         write_unlock(&dev_priv->resource_lock);
260 }
261
262 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263                                          struct idr *idr, int id)
264 {
265         struct vmw_resource *res;
266
267         read_lock(&dev_priv->resource_lock);
268         res = idr_find(idr, id);
269         if (res && res->avail)
270                 kref_get(&res->kref);
271         else
272                 res = NULL;
273         read_unlock(&dev_priv->resource_lock);
274
275         if (unlikely(res == NULL))
276                 return NULL;
277
278         return res;
279 }
280
281 /**
282  * vmw_user_resource_lookup_handle - lookup a struct resource from a
283  * TTM user-space handle and perform basic type checks
284  *
285  * @dev_priv:     Pointer to a device private struct
286  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
287  * @handle:       The TTM user-space handle
288  * @converter:    Pointer to an object describing the resource type
289  * @p_res:        On successful return the location pointed to will contain
290  *                a pointer to a refcounted struct vmw_resource.
291  *
292  * If the handle can't be found or is associated with an incorrect resource
293  * type, -EINVAL will be returned.
294  */
295 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
296                                     struct ttm_object_file *tfile,
297                                     uint32_t handle,
298                                     const struct vmw_user_resource_conv
299                                     *converter,
300                                     struct vmw_resource **p_res)
301 {
302         struct ttm_base_object *base;
303         struct vmw_resource *res;
304         int ret = -EINVAL;
305
306         base = ttm_base_object_lookup(tfile, handle);
307         if (unlikely(base == NULL))
308                 return -EINVAL;
309
310         if (unlikely(ttm_base_object_type(base) != converter->object_type))
311                 goto out_bad_resource;
312
313         res = converter->base_obj_to_res(base);
314
315         read_lock(&dev_priv->resource_lock);
316         if (!res->avail || res->res_free != converter->res_free) {
317                 read_unlock(&dev_priv->resource_lock);
318                 goto out_bad_resource;
319         }
320
321         kref_get(&res->kref);
322         read_unlock(&dev_priv->resource_lock);
323
324         *p_res = res;
325         ret = 0;
326
327 out_bad_resource:
328         ttm_base_object_unref(&base);
329
330         return ret;
331 }
332
333 /**
334  * Helper function that looks either a surface or dmabuf.
335  *
336  * The pointer this pointed at by out_surf and out_buf needs to be null.
337  */
338 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
339                            struct ttm_object_file *tfile,
340                            uint32_t handle,
341                            struct vmw_surface **out_surf,
342                            struct vmw_dma_buffer **out_buf)
343 {
344         struct vmw_resource *res;
345         int ret;
346
347         BUG_ON(*out_surf || *out_buf);
348
349         ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
350                                               user_surface_converter,
351                                               &res);
352         if (!ret) {
353                 *out_surf = vmw_res_to_srf(res);
354                 return 0;
355         }
356
357         *out_surf = NULL;
358         ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
359         return ret;
360 }
361
362 /**
363  * Buffer management.
364  */
365
366 /**
367  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
368  *
369  * @dev_priv: Pointer to a struct vmw_private identifying the device.
370  * @size: The requested buffer size.
371  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
372  */
373 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
374                                   bool user)
375 {
376         static size_t struct_size, user_struct_size;
377         size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
378         size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
379
380         if (unlikely(struct_size == 0)) {
381                 size_t backend_size = ttm_round_pot(vmw_tt_size);
382
383                 struct_size = backend_size +
384                         ttm_round_pot(sizeof(struct vmw_dma_buffer));
385                 user_struct_size = backend_size +
386                         ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
387         }
388
389         if (dev_priv->map_mode == vmw_dma_alloc_coherent)
390                 page_array_size +=
391                         ttm_round_pot(num_pages * sizeof(dma_addr_t));
392
393         return ((user) ? user_struct_size : struct_size) +
394                 page_array_size;
395 }
396
397 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
398 {
399         struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
400
401         kfree(vmw_bo);
402 }
403
404 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
405 {
406         struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
407
408         ttm_prime_object_kfree(vmw_user_bo, prime);
409 }
410
411 int vmw_dmabuf_init(struct vmw_private *dev_priv,
412                     struct vmw_dma_buffer *vmw_bo,
413                     size_t size, struct ttm_placement *placement,
414                     bool interruptible,
415                     void (*bo_free) (struct ttm_buffer_object *bo))
416 {
417         struct ttm_bo_device *bdev = &dev_priv->bdev;
418         size_t acc_size;
419         int ret;
420         bool user = (bo_free == &vmw_user_dmabuf_destroy);
421
422         BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
423
424         acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
425         memset(vmw_bo, 0, sizeof(*vmw_bo));
426
427         INIT_LIST_HEAD(&vmw_bo->res_list);
428
429         ret = ttm_bo_init(bdev, &vmw_bo->base, size,
430                           ttm_bo_type_device, placement,
431                           0, interruptible,
432                           NULL, acc_size, NULL, bo_free);
433         return ret;
434 }
435
436 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
437 {
438         struct vmw_user_dma_buffer *vmw_user_bo;
439         struct ttm_base_object *base = *p_base;
440         struct ttm_buffer_object *bo;
441
442         *p_base = NULL;
443
444         if (unlikely(base == NULL))
445                 return;
446
447         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
448                                    prime.base);
449         bo = &vmw_user_bo->dma.base;
450         ttm_bo_unref(&bo);
451 }
452
453 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
454                                             enum ttm_ref_type ref_type)
455 {
456         struct vmw_user_dma_buffer *user_bo;
457         user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
458
459         switch (ref_type) {
460         case TTM_REF_SYNCCPU_WRITE:
461                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
462                 break;
463         default:
464                 BUG();
465         }
466 }
467
468 /**
469  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
470  *
471  * @dev_priv: Pointer to a struct device private.
472  * @tfile: Pointer to a struct ttm_object_file on which to register the user
473  * object.
474  * @size: Size of the dma buffer.
475  * @shareable: Boolean whether the buffer is shareable with other open files.
476  * @handle: Pointer to where the handle value should be assigned.
477  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
478  * should be assigned.
479  */
480 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
481                           struct ttm_object_file *tfile,
482                           uint32_t size,
483                           bool shareable,
484                           uint32_t *handle,
485                           struct vmw_dma_buffer **p_dma_buf)
486 {
487         struct vmw_user_dma_buffer *user_bo;
488         struct ttm_buffer_object *tmp;
489         int ret;
490
491         user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492         if (unlikely(user_bo == NULL)) {
493                 DRM_ERROR("Failed to allocate a buffer.\n");
494                 return -ENOMEM;
495         }
496
497         ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498                               (dev_priv->has_mob) ?
499                               &vmw_sys_placement :
500                               &vmw_vram_sys_placement, true,
501                               &vmw_user_dmabuf_destroy);
502         if (unlikely(ret != 0))
503                 return ret;
504
505         tmp = ttm_bo_reference(&user_bo->dma.base);
506         ret = ttm_prime_object_init(tfile,
507                                     size,
508                                     &user_bo->prime,
509                                     shareable,
510                                     ttm_buffer_type,
511                                     &vmw_user_dmabuf_release,
512                                     &vmw_user_dmabuf_ref_obj_release);
513         if (unlikely(ret != 0)) {
514                 ttm_bo_unref(&tmp);
515                 goto out_no_base_object;
516         }
517
518         *p_dma_buf = &user_bo->dma;
519         *handle = user_bo->prime.base.hash.key;
520
521 out_no_base_object:
522         return ret;
523 }
524
525 /**
526  * vmw_user_dmabuf_verify_access - verify access permissions on this
527  * buffer object.
528  *
529  * @bo: Pointer to the buffer object being accessed
530  * @tfile: Identifying the caller.
531  */
532 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
533                                   struct ttm_object_file *tfile)
534 {
535         struct vmw_user_dma_buffer *vmw_user_bo;
536
537         if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
538                 return -EPERM;
539
540         vmw_user_bo = vmw_user_dma_buffer(bo);
541
542         /* Check that the caller has opened the object. */
543         if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
544                 return 0;
545
546         DRM_ERROR("Could not grant buffer access.\n");
547         return -EPERM;
548 }
549
550 /**
551  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
552  * access, idling previous GPU operations on the buffer and optionally
553  * blocking it for further command submissions.
554  *
555  * @user_bo: Pointer to the buffer object being grabbed for CPU access
556  * @tfile: Identifying the caller.
557  * @flags: Flags indicating how the grab should be performed.
558  *
559  * A blocking grab will be automatically released when @tfile is closed.
560  */
561 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
562                                         struct ttm_object_file *tfile,
563                                         uint32_t flags)
564 {
565         struct ttm_buffer_object *bo = &user_bo->dma.base;
566         bool existed;
567         int ret;
568
569         if (flags & drm_vmw_synccpu_allow_cs) {
570                 struct ttm_bo_device *bdev = bo->bdev;
571
572                 spin_lock(&bdev->fence_lock);
573                 ret = ttm_bo_wait(bo, false, true,
574                                   !!(flags & drm_vmw_synccpu_dontblock));
575                 spin_unlock(&bdev->fence_lock);
576                 return ret;
577         }
578
579         ret = ttm_bo_synccpu_write_grab
580                 (bo, !!(flags & drm_vmw_synccpu_dontblock));
581         if (unlikely(ret != 0))
582                 return ret;
583
584         ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
585                                  TTM_REF_SYNCCPU_WRITE, &existed);
586         if (ret != 0 || existed)
587                 ttm_bo_synccpu_write_release(&user_bo->dma.base);
588
589         return ret;
590 }
591
592 /**
593  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
594  * and unblock command submission on the buffer if blocked.
595  *
596  * @handle: Handle identifying the buffer object.
597  * @tfile: Identifying the caller.
598  * @flags: Flags indicating the type of release.
599  */
600 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
601                                            struct ttm_object_file *tfile,
602                                            uint32_t flags)
603 {
604         if (!(flags & drm_vmw_synccpu_allow_cs))
605                 return ttm_ref_object_base_unref(tfile, handle,
606                                                  TTM_REF_SYNCCPU_WRITE);
607
608         return 0;
609 }
610
611 /**
612  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
613  * functionality.
614  *
615  * @dev: Identifies the drm device.
616  * @data: Pointer to the ioctl argument.
617  * @file_priv: Identifies the caller.
618  *
619  * This function checks the ioctl arguments for validity and calls the
620  * relevant synccpu functions.
621  */
622 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
623                                   struct drm_file *file_priv)
624 {
625         struct drm_vmw_synccpu_arg *arg =
626                 (struct drm_vmw_synccpu_arg *) data;
627         struct vmw_dma_buffer *dma_buf;
628         struct vmw_user_dma_buffer *user_bo;
629         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
630         int ret;
631
632         if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
633             || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
634                                drm_vmw_synccpu_dontblock |
635                                drm_vmw_synccpu_allow_cs)) != 0) {
636                 DRM_ERROR("Illegal synccpu flags.\n");
637                 return -EINVAL;
638         }
639
640         switch (arg->op) {
641         case drm_vmw_synccpu_grab:
642                 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
643                 if (unlikely(ret != 0))
644                         return ret;
645
646                 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
647                                        dma);
648                 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
649                 vmw_dmabuf_unreference(&dma_buf);
650                 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
651                              ret != -EBUSY)) {
652                         DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
653                                   (unsigned int) arg->handle);
654                         return ret;
655                 }
656                 break;
657         case drm_vmw_synccpu_release:
658                 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
659                                                       arg->flags);
660                 if (unlikely(ret != 0)) {
661                         DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
662                                   (unsigned int) arg->handle);
663                         return ret;
664                 }
665                 break;
666         default:
667                 DRM_ERROR("Invalid synccpu operation.\n");
668                 return -EINVAL;
669         }
670
671         return 0;
672 }
673
674 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
675                            struct drm_file *file_priv)
676 {
677         struct vmw_private *dev_priv = vmw_priv(dev);
678         union drm_vmw_alloc_dmabuf_arg *arg =
679             (union drm_vmw_alloc_dmabuf_arg *)data;
680         struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
681         struct drm_vmw_dmabuf_rep *rep = &arg->rep;
682         struct vmw_dma_buffer *dma_buf;
683         uint32_t handle;
684         int ret;
685
686         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
687         if (unlikely(ret != 0))
688                 return ret;
689
690         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
691                                     req->size, false, &handle, &dma_buf);
692         if (unlikely(ret != 0))
693                 goto out_no_dmabuf;
694
695         rep->handle = handle;
696         rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
697         rep->cur_gmr_id = handle;
698         rep->cur_gmr_offset = 0;
699
700         vmw_dmabuf_unreference(&dma_buf);
701
702 out_no_dmabuf:
703         ttm_read_unlock(&dev_priv->reservation_sem);
704
705         return ret;
706 }
707
708 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
709                            struct drm_file *file_priv)
710 {
711         struct drm_vmw_unref_dmabuf_arg *arg =
712             (struct drm_vmw_unref_dmabuf_arg *)data;
713
714         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
715                                          arg->handle,
716                                          TTM_REF_USAGE);
717 }
718
719 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
720                            uint32_t handle, struct vmw_dma_buffer **out)
721 {
722         struct vmw_user_dma_buffer *vmw_user_bo;
723         struct ttm_base_object *base;
724
725         base = ttm_base_object_lookup(tfile, handle);
726         if (unlikely(base == NULL)) {
727                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
728                        (unsigned long)handle);
729                 return -ESRCH;
730         }
731
732         if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
733                 ttm_base_object_unref(&base);
734                 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
735                        (unsigned long)handle);
736                 return -EINVAL;
737         }
738
739         vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
740                                    prime.base);
741         (void)ttm_bo_reference(&vmw_user_bo->dma.base);
742         ttm_base_object_unref(&base);
743         *out = &vmw_user_bo->dma;
744
745         return 0;
746 }
747
748 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
749                               struct vmw_dma_buffer *dma_buf,
750                               uint32_t *handle)
751 {
752         struct vmw_user_dma_buffer *user_bo;
753
754         if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
755                 return -EINVAL;
756
757         user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
758
759         *handle = user_bo->prime.base.hash.key;
760         return ttm_ref_object_add(tfile, &user_bo->prime.base,
761                                   TTM_REF_USAGE, NULL);
762 }
763
764 /*
765  * Stream management
766  */
767
768 static void vmw_stream_destroy(struct vmw_resource *res)
769 {
770         struct vmw_private *dev_priv = res->dev_priv;
771         struct vmw_stream *stream;
772         int ret;
773
774         DRM_INFO("%s: unref\n", __func__);
775         stream = container_of(res, struct vmw_stream, res);
776
777         ret = vmw_overlay_unref(dev_priv, stream->stream_id);
778         WARN_ON(ret != 0);
779 }
780
781 static int vmw_stream_init(struct vmw_private *dev_priv,
782                            struct vmw_stream *stream,
783                            void (*res_free) (struct vmw_resource *res))
784 {
785         struct vmw_resource *res = &stream->res;
786         int ret;
787
788         ret = vmw_resource_init(dev_priv, res, false, res_free,
789                                 &vmw_stream_func);
790
791         if (unlikely(ret != 0)) {
792                 if (res_free == NULL)
793                         kfree(stream);
794                 else
795                         res_free(&stream->res);
796                 return ret;
797         }
798
799         ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
800         if (ret) {
801                 vmw_resource_unreference(&res);
802                 return ret;
803         }
804
805         DRM_INFO("%s: claimed\n", __func__);
806
807         vmw_resource_activate(&stream->res, vmw_stream_destroy);
808         return 0;
809 }
810
811 static void vmw_user_stream_free(struct vmw_resource *res)
812 {
813         struct vmw_user_stream *stream =
814             container_of(res, struct vmw_user_stream, stream.res);
815         struct vmw_private *dev_priv = res->dev_priv;
816
817         ttm_base_object_kfree(stream, base);
818         ttm_mem_global_free(vmw_mem_glob(dev_priv),
819                             vmw_user_stream_size);
820 }
821
822 /**
823  * This function is called when user space has no more references on the
824  * base object. It releases the base-object's reference on the resource object.
825  */
826
827 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
828 {
829         struct ttm_base_object *base = *p_base;
830         struct vmw_user_stream *stream =
831             container_of(base, struct vmw_user_stream, base);
832         struct vmw_resource *res = &stream->stream.res;
833
834         *p_base = NULL;
835         vmw_resource_unreference(&res);
836 }
837
838 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
839                            struct drm_file *file_priv)
840 {
841         struct vmw_private *dev_priv = vmw_priv(dev);
842         struct vmw_resource *res;
843         struct vmw_user_stream *stream;
844         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
845         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
846         struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
847         int ret = 0;
848
849
850         res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
851         if (unlikely(res == NULL))
852                 return -EINVAL;
853
854         if (res->res_free != &vmw_user_stream_free) {
855                 ret = -EINVAL;
856                 goto out;
857         }
858
859         stream = container_of(res, struct vmw_user_stream, stream.res);
860         if (stream->base.tfile != tfile) {
861                 ret = -EINVAL;
862                 goto out;
863         }
864
865         ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
866 out:
867         vmw_resource_unreference(&res);
868         return ret;
869 }
870
871 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
872                            struct drm_file *file_priv)
873 {
874         struct vmw_private *dev_priv = vmw_priv(dev);
875         struct vmw_user_stream *stream;
876         struct vmw_resource *res;
877         struct vmw_resource *tmp;
878         struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
879         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
880         int ret;
881
882         /*
883          * Approximate idr memory usage with 128 bytes. It will be limited
884          * by maximum number_of streams anyway?
885          */
886
887         if (unlikely(vmw_user_stream_size == 0))
888                 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
889
890         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
891         if (unlikely(ret != 0))
892                 return ret;
893
894         ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
895                                    vmw_user_stream_size,
896                                    false, true);
897         if (unlikely(ret != 0)) {
898                 if (ret != -ERESTARTSYS)
899                         DRM_ERROR("Out of graphics memory for stream"
900                                   " creation.\n");
901                 goto out_unlock;
902         }
903
904
905         stream = kmalloc(sizeof(*stream), GFP_KERNEL);
906         if (unlikely(stream == NULL)) {
907                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
908                                     vmw_user_stream_size);
909                 ret = -ENOMEM;
910                 goto out_unlock;
911         }
912
913         res = &stream->stream.res;
914         stream->base.shareable = false;
915         stream->base.tfile = NULL;
916
917         /*
918          * From here on, the destructor takes over resource freeing.
919          */
920
921         ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
922         if (unlikely(ret != 0))
923                 goto out_unlock;
924
925         tmp = vmw_resource_reference(res);
926         ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
927                                    &vmw_user_stream_base_release, NULL);
928
929         if (unlikely(ret != 0)) {
930                 vmw_resource_unreference(&tmp);
931                 goto out_err;
932         }
933
934         arg->stream_id = res->id;
935 out_err:
936         vmw_resource_unreference(&res);
937 out_unlock:
938         ttm_read_unlock(&dev_priv->reservation_sem);
939         return ret;
940 }
941
942 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
943                            struct ttm_object_file *tfile,
944                            uint32_t *inout_id, struct vmw_resource **out)
945 {
946         struct vmw_user_stream *stream;
947         struct vmw_resource *res;
948         int ret;
949
950         res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
951                                   *inout_id);
952         if (unlikely(res == NULL))
953                 return -EINVAL;
954
955         if (res->res_free != &vmw_user_stream_free) {
956                 ret = -EINVAL;
957                 goto err_ref;
958         }
959
960         stream = container_of(res, struct vmw_user_stream, stream.res);
961         if (stream->base.tfile != tfile) {
962                 ret = -EPERM;
963                 goto err_ref;
964         }
965
966         *inout_id = stream->stream.stream_id;
967         *out = res;
968         return 0;
969 err_ref:
970         vmw_resource_unreference(&res);
971         return ret;
972 }
973
974
975 /**
976  * vmw_dumb_create - Create a dumb kms buffer
977  *
978  * @file_priv: Pointer to a struct drm_file identifying the caller.
979  * @dev: Pointer to the drm device.
980  * @args: Pointer to a struct drm_mode_create_dumb structure
981  *
982  * This is a driver callback for the core drm create_dumb functionality.
983  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
984  * that the arguments have a different format.
985  */
986 int vmw_dumb_create(struct drm_file *file_priv,
987                     struct drm_device *dev,
988                     struct drm_mode_create_dumb *args)
989 {
990         struct vmw_private *dev_priv = vmw_priv(dev);
991         struct vmw_dma_buffer *dma_buf;
992         int ret;
993
994         args->pitch = args->width * ((args->bpp + 7) / 8);
995         args->size = args->pitch * args->height;
996
997         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
998         if (unlikely(ret != 0))
999                 return ret;
1000
1001         ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1002                                     args->size, false, &args->handle,
1003                                     &dma_buf);
1004         if (unlikely(ret != 0))
1005                 goto out_no_dmabuf;
1006
1007         vmw_dmabuf_unreference(&dma_buf);
1008 out_no_dmabuf:
1009         ttm_read_unlock(&dev_priv->reservation_sem);
1010         return ret;
1011 }
1012
1013 /**
1014  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1015  *
1016  * @file_priv: Pointer to a struct drm_file identifying the caller.
1017  * @dev: Pointer to the drm device.
1018  * @handle: Handle identifying the dumb buffer.
1019  * @offset: The address space offset returned.
1020  *
1021  * This is a driver callback for the core drm dumb_map_offset functionality.
1022  */
1023 int vmw_dumb_map_offset(struct drm_file *file_priv,
1024                         struct drm_device *dev, uint32_t handle,
1025                         uint64_t *offset)
1026 {
1027         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1028         struct vmw_dma_buffer *out_buf;
1029         int ret;
1030
1031         ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1032         if (ret != 0)
1033                 return -EINVAL;
1034
1035         *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1036         vmw_dmabuf_unreference(&out_buf);
1037         return 0;
1038 }
1039
1040 /**
1041  * vmw_dumb_destroy - Destroy a dumb boffer
1042  *
1043  * @file_priv: Pointer to a struct drm_file identifying the caller.
1044  * @dev: Pointer to the drm device.
1045  * @handle: Handle identifying the dumb buffer.
1046  *
1047  * This is a driver callback for the core drm dumb_destroy functionality.
1048  */
1049 int vmw_dumb_destroy(struct drm_file *file_priv,
1050                      struct drm_device *dev,
1051                      uint32_t handle)
1052 {
1053         return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1054                                          handle, TTM_REF_USAGE);
1055 }
1056
1057 /**
1058  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1059  *
1060  * @res:            The resource for which to allocate a backup buffer.
1061  * @interruptible:  Whether any sleeps during allocation should be
1062  *                  performed while interruptible.
1063  */
1064 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1065                                   bool interruptible)
1066 {
1067         unsigned long size =
1068                 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1069         struct vmw_dma_buffer *backup;
1070         int ret;
1071
1072         if (likely(res->backup)) {
1073                 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1074                 return 0;
1075         }
1076
1077         backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1078         if (unlikely(backup == NULL))
1079                 return -ENOMEM;
1080
1081         ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1082                               res->func->backup_placement,
1083                               interruptible,
1084                               &vmw_dmabuf_bo_free);
1085         if (unlikely(ret != 0))
1086                 goto out_no_dmabuf;
1087
1088         res->backup = backup;
1089
1090 out_no_dmabuf:
1091         return ret;
1092 }
1093
1094 /**
1095  * vmw_resource_do_validate - Make a resource up-to-date and visible
1096  *                            to the device.
1097  *
1098  * @res:            The resource to make visible to the device.
1099  * @val_buf:        Information about a buffer possibly
1100  *                  containing backup data if a bind operation is needed.
1101  *
1102  * On hardware resource shortage, this function returns -EBUSY and
1103  * should be retried once resources have been freed up.
1104  */
1105 static int vmw_resource_do_validate(struct vmw_resource *res,
1106                                     struct ttm_validate_buffer *val_buf)
1107 {
1108         int ret = 0;
1109         const struct vmw_res_func *func = res->func;
1110
1111         if (unlikely(res->id == -1)) {
1112                 ret = func->create(res);
1113                 if (unlikely(ret != 0))
1114                         return ret;
1115         }
1116
1117         if (func->bind &&
1118             ((func->needs_backup && list_empty(&res->mob_head) &&
1119               val_buf->bo != NULL) ||
1120              (!func->needs_backup && val_buf->bo != NULL))) {
1121                 ret = func->bind(res, val_buf);
1122                 if (unlikely(ret != 0))
1123                         goto out_bind_failed;
1124                 if (func->needs_backup)
1125                         list_add_tail(&res->mob_head, &res->backup->res_list);
1126         }
1127
1128         /*
1129          * Only do this on write operations, and move to
1130          * vmw_resource_unreserve if it can be called after
1131          * backup buffers have been unreserved. Otherwise
1132          * sort out locking.
1133          */
1134         res->res_dirty = true;
1135
1136         return 0;
1137
1138 out_bind_failed:
1139         func->destroy(res);
1140
1141         return ret;
1142 }
1143
1144 /**
1145  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1146  * command submission.
1147  *
1148  * @res:               Pointer to the struct vmw_resource to unreserve.
1149  * @new_backup:        Pointer to new backup buffer if command submission
1150  *                     switched.
1151  * @new_backup_offset: New backup offset if @new_backup is !NULL.
1152  *
1153  * Currently unreserving a resource means putting it back on the device's
1154  * resource lru list, so that it can be evicted if necessary.
1155  */
1156 void vmw_resource_unreserve(struct vmw_resource *res,
1157                             struct vmw_dma_buffer *new_backup,
1158                             unsigned long new_backup_offset)
1159 {
1160         struct vmw_private *dev_priv = res->dev_priv;
1161
1162         if (!list_empty(&res->lru_head))
1163                 return;
1164
1165         if (new_backup && new_backup != res->backup) {
1166
1167                 if (res->backup) {
1168                         lockdep_assert_held(&res->backup->base.resv->lock.base);
1169                         list_del_init(&res->mob_head);
1170                         vmw_dmabuf_unreference(&res->backup);
1171                 }
1172
1173                 res->backup = vmw_dmabuf_reference(new_backup);
1174                 lockdep_assert_held(&new_backup->base.resv->lock.base);
1175                 list_add_tail(&res->mob_head, &new_backup->res_list);
1176         }
1177         if (new_backup)
1178                 res->backup_offset = new_backup_offset;
1179
1180         if (!res->func->may_evict || res->id == -1)
1181                 return;
1182
1183         write_lock(&dev_priv->resource_lock);
1184         list_add_tail(&res->lru_head,
1185                       &res->dev_priv->res_lru[res->func->res_type]);
1186         write_unlock(&dev_priv->resource_lock);
1187 }
1188
1189 /**
1190  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1191  *                             for a resource and in that case, allocate
1192  *                             one, reserve and validate it.
1193  *
1194  * @res:            The resource for which to allocate a backup buffer.
1195  * @interruptible:  Whether any sleeps during allocation should be
1196  *                  performed while interruptible.
1197  * @val_buf:        On successful return contains data about the
1198  *                  reserved and validated backup buffer.
1199  */
1200 static int
1201 vmw_resource_check_buffer(struct vmw_resource *res,
1202                           bool interruptible,
1203                           struct ttm_validate_buffer *val_buf)
1204 {
1205         struct list_head val_list;
1206         bool backup_dirty = false;
1207         int ret;
1208
1209         if (unlikely(res->backup == NULL)) {
1210                 ret = vmw_resource_buf_alloc(res, interruptible);
1211                 if (unlikely(ret != 0))
1212                         return ret;
1213         }
1214
1215         INIT_LIST_HEAD(&val_list);
1216         val_buf->bo = ttm_bo_reference(&res->backup->base);
1217         list_add_tail(&val_buf->head, &val_list);
1218         ret = ttm_eu_reserve_buffers(NULL, &val_list);
1219         if (unlikely(ret != 0))
1220                 goto out_no_reserve;
1221
1222         if (res->func->needs_backup && list_empty(&res->mob_head))
1223                 return 0;
1224
1225         backup_dirty = res->backup_dirty;
1226         ret = ttm_bo_validate(&res->backup->base,
1227                               res->func->backup_placement,
1228                               true, false);
1229
1230         if (unlikely(ret != 0))
1231                 goto out_no_validate;
1232
1233         return 0;
1234
1235 out_no_validate:
1236         ttm_eu_backoff_reservation(NULL, &val_list);
1237 out_no_reserve:
1238         ttm_bo_unref(&val_buf->bo);
1239         if (backup_dirty)
1240                 vmw_dmabuf_unreference(&res->backup);
1241
1242         return ret;
1243 }
1244
1245 /**
1246  * vmw_resource_reserve - Reserve a resource for command submission
1247  *
1248  * @res:            The resource to reserve.
1249  *
1250  * This function takes the resource off the LRU list and make sure
1251  * a backup buffer is present for guest-backed resources. However,
1252  * the buffer may not be bound to the resource at this point.
1253  *
1254  */
1255 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1256 {
1257         struct vmw_private *dev_priv = res->dev_priv;
1258         int ret;
1259
1260         write_lock(&dev_priv->resource_lock);
1261         list_del_init(&res->lru_head);
1262         write_unlock(&dev_priv->resource_lock);
1263
1264         if (res->func->needs_backup && res->backup == NULL &&
1265             !no_backup) {
1266                 ret = vmw_resource_buf_alloc(res, true);
1267                 if (unlikely(ret != 0))
1268                         return ret;
1269         }
1270
1271         return 0;
1272 }
1273
1274 /**
1275  * vmw_resource_backoff_reservation - Unreserve and unreference a
1276  *                                    backup buffer
1277  *.
1278  * @val_buf:        Backup buffer information.
1279  */
1280 static void
1281 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1282 {
1283         struct list_head val_list;
1284
1285         if (likely(val_buf->bo == NULL))
1286                 return;
1287
1288         INIT_LIST_HEAD(&val_list);
1289         list_add_tail(&val_buf->head, &val_list);
1290         ttm_eu_backoff_reservation(NULL, &val_list);
1291         ttm_bo_unref(&val_buf->bo);
1292 }
1293
1294 /**
1295  * vmw_resource_do_evict - Evict a resource, and transfer its data
1296  *                         to a backup buffer.
1297  *
1298  * @res:            The resource to evict.
1299  * @interruptible:  Whether to wait interruptible.
1300  */
1301 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1302 {
1303         struct ttm_validate_buffer val_buf;
1304         const struct vmw_res_func *func = res->func;
1305         int ret;
1306
1307         BUG_ON(!func->may_evict);
1308
1309         val_buf.bo = NULL;
1310         ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1311         if (unlikely(ret != 0))
1312                 return ret;
1313
1314         if (unlikely(func->unbind != NULL &&
1315                      (!func->needs_backup || !list_empty(&res->mob_head)))) {
1316                 ret = func->unbind(res, res->res_dirty, &val_buf);
1317                 if (unlikely(ret != 0))
1318                         goto out_no_unbind;
1319                 list_del_init(&res->mob_head);
1320         }
1321         ret = func->destroy(res);
1322         res->backup_dirty = true;
1323         res->res_dirty = false;
1324 out_no_unbind:
1325         vmw_resource_backoff_reservation(&val_buf);
1326
1327         return ret;
1328 }
1329
1330
1331 /**
1332  * vmw_resource_validate - Make a resource up-to-date and visible
1333  *                         to the device.
1334  *
1335  * @res:            The resource to make visible to the device.
1336  *
1337  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1338  * be reserved and validated.
1339  * On hardware resource shortage, this function will repeatedly evict
1340  * resources of the same type until the validation succeeds.
1341  */
1342 int vmw_resource_validate(struct vmw_resource *res)
1343 {
1344         int ret;
1345         struct vmw_resource *evict_res;
1346         struct vmw_private *dev_priv = res->dev_priv;
1347         struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1348         struct ttm_validate_buffer val_buf;
1349         unsigned err_count = 0;
1350
1351         if (likely(!res->func->may_evict))
1352                 return 0;
1353
1354         val_buf.bo = NULL;
1355         if (res->backup)
1356                 val_buf.bo = &res->backup->base;
1357         do {
1358                 ret = vmw_resource_do_validate(res, &val_buf);
1359                 if (likely(ret != -EBUSY))
1360                         break;
1361
1362                 write_lock(&dev_priv->resource_lock);
1363                 if (list_empty(lru_list) || !res->func->may_evict) {
1364                         DRM_ERROR("Out of device device resources "
1365                                   "for %s.\n", res->func->type_name);
1366                         ret = -EBUSY;
1367                         write_unlock(&dev_priv->resource_lock);
1368                         break;
1369                 }
1370
1371                 evict_res = vmw_resource_reference
1372                         (list_first_entry(lru_list, struct vmw_resource,
1373                                           lru_head));
1374                 list_del_init(&evict_res->lru_head);
1375
1376                 write_unlock(&dev_priv->resource_lock);
1377
1378                 ret = vmw_resource_do_evict(evict_res, true);
1379                 if (unlikely(ret != 0)) {
1380                         write_lock(&dev_priv->resource_lock);
1381                         list_add_tail(&evict_res->lru_head, lru_list);
1382                         write_unlock(&dev_priv->resource_lock);
1383                         if (ret == -ERESTARTSYS ||
1384                             ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1385                                 vmw_resource_unreference(&evict_res);
1386                                 goto out_no_validate;
1387                         }
1388                 }
1389
1390                 vmw_resource_unreference(&evict_res);
1391         } while (1);
1392
1393         if (unlikely(ret != 0))
1394                 goto out_no_validate;
1395         else if (!res->func->needs_backup && res->backup) {
1396                 list_del_init(&res->mob_head);
1397                 vmw_dmabuf_unreference(&res->backup);
1398         }
1399
1400         return 0;
1401
1402 out_no_validate:
1403         return ret;
1404 }
1405
1406 /**
1407  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1408  *                       object without unreserving it.
1409  *
1410  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1411  * @fence:          Pointer to the fence. If NULL, this function will
1412  *                  insert a fence into the command stream..
1413  *
1414  * Contrary to the ttm_eu version of this function, it takes only
1415  * a single buffer object instead of a list, and it also doesn't
1416  * unreserve the buffer object, which needs to be done separately.
1417  */
1418 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1419                          struct vmw_fence_obj *fence)
1420 {
1421         struct ttm_bo_device *bdev = bo->bdev;
1422         struct ttm_bo_driver *driver = bdev->driver;
1423         struct vmw_fence_obj *old_fence_obj;
1424         struct vmw_private *dev_priv =
1425                 container_of(bdev, struct vmw_private, bdev);
1426
1427         if (fence == NULL)
1428                 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1429         else
1430                 driver->sync_obj_ref(fence);
1431
1432         spin_lock(&bdev->fence_lock);
1433
1434         old_fence_obj = bo->sync_obj;
1435         bo->sync_obj = fence;
1436
1437         spin_unlock(&bdev->fence_lock);
1438
1439         if (old_fence_obj)
1440                 vmw_fence_obj_unreference(&old_fence_obj);
1441 }
1442
1443 /**
1444  * vmw_resource_move_notify - TTM move_notify_callback
1445  *
1446  * @bo:             The TTM buffer object about to move.
1447  * @mem:            The truct ttm_mem_reg indicating to what memory
1448  *                  region the move is taking place.
1449  *
1450  * Evicts the Guest Backed hardware resource if the backup
1451  * buffer is being moved out of MOB memory.
1452  * Note that this function should not race with the resource
1453  * validation code as long as it accesses only members of struct
1454  * resource that remain static while bo::res is !NULL and
1455  * while we have @bo reserved. struct resource::backup is *not* a
1456  * static member. The resource validation code will take care
1457  * to set @bo::res to NULL, while having @bo reserved when the
1458  * buffer is no longer bound to the resource, so @bo:res can be
1459  * used to determine whether there is a need to unbind and whether
1460  * it is safe to unbind.
1461  */
1462 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1463                               struct ttm_mem_reg *mem)
1464 {
1465         struct vmw_dma_buffer *dma_buf;
1466
1467         if (mem == NULL)
1468                 return;
1469
1470         if (bo->destroy != vmw_dmabuf_bo_free &&
1471             bo->destroy != vmw_user_dmabuf_destroy)
1472                 return;
1473
1474         dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1475
1476         if (mem->mem_type != VMW_PL_MOB) {
1477                 struct vmw_resource *res, *n;
1478                 struct ttm_bo_device *bdev = bo->bdev;
1479                 struct ttm_validate_buffer val_buf;
1480
1481                 val_buf.bo = bo;
1482
1483                 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1484
1485                         if (unlikely(res->func->unbind == NULL))
1486                                 continue;
1487
1488                         (void) res->func->unbind(res, true, &val_buf);
1489                         res->backup_dirty = true;
1490                         res->res_dirty = false;
1491                         list_del_init(&res->mob_head);
1492                 }
1493
1494                 spin_lock(&bdev->fence_lock);
1495                 (void) ttm_bo_wait(bo, false, false, false);
1496                 spin_unlock(&bdev->fence_lock);
1497         }
1498 }
1499
1500 /**
1501  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1502  *
1503  * @res:            The resource being queried.
1504  */
1505 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1506 {
1507         return res->func->needs_backup;
1508 }
1509
1510 /**
1511  * vmw_resource_evict_type - Evict all resources of a specific type
1512  *
1513  * @dev_priv:       Pointer to a device private struct
1514  * @type:           The resource type to evict
1515  *
1516  * To avoid thrashing starvation or as part of the hibernation sequence,
1517  * try to evict all evictable resources of a specific type.
1518  */
1519 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1520                                     enum vmw_res_type type)
1521 {
1522         struct list_head *lru_list = &dev_priv->res_lru[type];
1523         struct vmw_resource *evict_res;
1524         unsigned err_count = 0;
1525         int ret;
1526
1527         do {
1528                 write_lock(&dev_priv->resource_lock);
1529
1530                 if (list_empty(lru_list))
1531                         goto out_unlock;
1532
1533                 evict_res = vmw_resource_reference(
1534                         list_first_entry(lru_list, struct vmw_resource,
1535                                          lru_head));
1536                 list_del_init(&evict_res->lru_head);
1537                 write_unlock(&dev_priv->resource_lock);
1538
1539                 ret = vmw_resource_do_evict(evict_res, false);
1540                 if (unlikely(ret != 0)) {
1541                         write_lock(&dev_priv->resource_lock);
1542                         list_add_tail(&evict_res->lru_head, lru_list);
1543                         write_unlock(&dev_priv->resource_lock);
1544                         if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1545                                 vmw_resource_unreference(&evict_res);
1546                                 return;
1547                         }
1548                 }
1549
1550                 vmw_resource_unreference(&evict_res);
1551         } while (1);
1552
1553 out_unlock:
1554         write_unlock(&dev_priv->resource_lock);
1555 }
1556
1557 /**
1558  * vmw_resource_evict_all - Evict all evictable resources
1559  *
1560  * @dev_priv:       Pointer to a device private struct
1561  *
1562  * To avoid thrashing starvation or as part of the hibernation sequence,
1563  * evict all evictable resources. In particular this means that all
1564  * guest-backed resources that are registered with the device are
1565  * evicted and the OTable becomes clean.
1566  */
1567 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1568 {
1569         enum vmw_res_type type;
1570
1571         mutex_lock(&dev_priv->cmdbuf_mutex);
1572
1573         for (type = 0; type < vmw_res_max; ++type)
1574                 vmw_resource_evict_type(dev_priv, type);
1575
1576         mutex_unlock(&dev_priv->cmdbuf_mutex);
1577 }