Merge remote-tracking branch 'asoc/topic/mtk' into asoc-next
[cascardo/linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/pm.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/sysfs.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/events.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
38 #include <linux/regmap.h>
39
40 #include "bmc150-accel.h"
41
42 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
43 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
44
45 #define BMC150_ACCEL_REG_CHIP_ID                0x00
46
47 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
48 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
49 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
52 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
53
54 #define BMC150_ACCEL_REG_PMU_LPW                0x11
55 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
56 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
58 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
59
60 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
61
62 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
63 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
64 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
65 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
66
67 /* Default BW: 125Hz */
68 #define BMC150_ACCEL_REG_PMU_BW         0x10
69 #define BMC150_ACCEL_DEF_BW                     125
70
71 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
72 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
73
74 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
75 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
76 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
77 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
78
79 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
80 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
81 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
82 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
83
84 #define BMC150_ACCEL_REG_INT_EN_0               0x16
85 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
86 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
88
89 #define BMC150_ACCEL_REG_INT_EN_1               0x17
90 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
91 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
92 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
93
94 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
95 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
96
97 #define BMC150_ACCEL_REG_INT_5                  0x27
98 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
99
100 #define BMC150_ACCEL_REG_INT_6                  0x28
101 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
102
103 /* Slope duration in terms of number of samples */
104 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
105 /* in terms of multiples of g's/LSB, based on range */
106 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
107
108 #define BMC150_ACCEL_REG_XOUT_L         0x02
109
110 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
111
112 /* Sleep Duration values */
113 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
114 #define BMC150_ACCEL_SLEEP_1_MS         0x06
115 #define BMC150_ACCEL_SLEEP_2_MS         0x07
116 #define BMC150_ACCEL_SLEEP_4_MS         0x08
117 #define BMC150_ACCEL_SLEEP_6_MS         0x09
118 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
119 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
120 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
121 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
122 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
123 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
124
125 #define BMC150_ACCEL_REG_TEMP                   0x08
126 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
127
128 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
129 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
130
131 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
132 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
133 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
134 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
135 #define BMC150_ACCEL_FIFO_LENGTH                32
136
137 enum bmc150_accel_axis {
138         AXIS_X,
139         AXIS_Y,
140         AXIS_Z,
141 };
142
143 enum bmc150_power_modes {
144         BMC150_ACCEL_SLEEP_MODE_NORMAL,
145         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
146         BMC150_ACCEL_SLEEP_MODE_LPM,
147         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
148 };
149
150 struct bmc150_scale_info {
151         int scale;
152         u8 reg_range;
153 };
154
155 struct bmc150_accel_chip_info {
156         const char *name;
157         u8 chip_id;
158         const struct iio_chan_spec *channels;
159         int num_channels;
160         const struct bmc150_scale_info scale_table[4];
161 };
162
163 struct bmc150_accel_interrupt {
164         const struct bmc150_accel_interrupt_info *info;
165         atomic_t users;
166 };
167
168 struct bmc150_accel_trigger {
169         struct bmc150_accel_data *data;
170         struct iio_trigger *indio_trig;
171         int (*setup)(struct bmc150_accel_trigger *t, bool state);
172         int intr;
173         bool enabled;
174 };
175
176 enum bmc150_accel_interrupt_id {
177         BMC150_ACCEL_INT_DATA_READY,
178         BMC150_ACCEL_INT_ANY_MOTION,
179         BMC150_ACCEL_INT_WATERMARK,
180         BMC150_ACCEL_INTERRUPTS,
181 };
182
183 enum bmc150_accel_trigger_id {
184         BMC150_ACCEL_TRIGGER_DATA_READY,
185         BMC150_ACCEL_TRIGGER_ANY_MOTION,
186         BMC150_ACCEL_TRIGGERS,
187 };
188
189 struct bmc150_accel_data {
190         struct regmap *regmap;
191         struct device *dev;
192         int irq;
193         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
194         atomic_t active_intr;
195         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
196         struct mutex mutex;
197         u8 fifo_mode, watermark;
198         s16 buffer[8];
199         u8 bw_bits;
200         u32 slope_dur;
201         u32 slope_thres;
202         u32 range;
203         int ev_enable_state;
204         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
205         const struct bmc150_accel_chip_info *chip_info;
206 };
207
208 static const struct {
209         int val;
210         int val2;
211         u8 bw_bits;
212 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
213                                      {31, 260000, 0x09},
214                                      {62, 500000, 0x0A},
215                                      {125, 0, 0x0B},
216                                      {250, 0, 0x0C},
217                                      {500, 0, 0x0D},
218                                      {1000, 0, 0x0E},
219                                      {2000, 0, 0x0F} };
220
221 static const struct {
222         int bw_bits;
223         int msec;
224 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
225                                      {0x09, 32},
226                                      {0x0A, 16},
227                                      {0x0B, 8},
228                                      {0x0C, 4},
229                                      {0x0D, 2},
230                                      {0x0E, 1},
231                                      {0x0F, 1} };
232
233 static const struct {
234         int sleep_dur;
235         u8 reg_value;
236 } bmc150_accel_sleep_value_table[] = { {0, 0},
237                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
238                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
239                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
240                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
241                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
242                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
243                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
244                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
245                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
246                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
247                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
248
249 static const struct regmap_config bmc150_i2c_regmap_conf = {
250         .reg_bits = 8,
251         .val_bits = 8,
252         .max_register = 0x3f,
253 };
254
255 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
256                                  enum bmc150_power_modes mode,
257                                  int dur_us)
258 {
259         int i;
260         int ret;
261         u8 lpw_bits;
262         int dur_val = -1;
263
264         if (dur_us > 0) {
265                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
266                                                                          ++i) {
267                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
268                                                                         dur_us)
269                                 dur_val =
270                                 bmc150_accel_sleep_value_table[i].reg_value;
271                 }
272         } else {
273                 dur_val = 0;
274         }
275
276         if (dur_val < 0)
277                 return -EINVAL;
278
279         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
280         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
281
282         dev_dbg(data->dev, "Set Mode bits %x\n", lpw_bits);
283
284         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
285         if (ret < 0) {
286                 dev_err(data->dev, "Error writing reg_pmu_lpw\n");
287                 return ret;
288         }
289
290         return 0;
291 }
292
293 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
294                                int val2)
295 {
296         int i;
297         int ret;
298
299         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
300                 if (bmc150_accel_samp_freq_table[i].val == val &&
301                     bmc150_accel_samp_freq_table[i].val2 == val2) {
302                         ret = regmap_write(data->regmap,
303                                 BMC150_ACCEL_REG_PMU_BW,
304                                 bmc150_accel_samp_freq_table[i].bw_bits);
305                         if (ret < 0)
306                                 return ret;
307
308                         data->bw_bits =
309                                 bmc150_accel_samp_freq_table[i].bw_bits;
310                         return 0;
311                 }
312         }
313
314         return -EINVAL;
315 }
316
317 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
318 {
319         int ret;
320
321         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
322                                         data->slope_thres);
323         if (ret < 0) {
324                 dev_err(data->dev, "Error writing reg_int_6\n");
325                 return ret;
326         }
327
328         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
329                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
330         if (ret < 0) {
331                 dev_err(data->dev, "Error updating reg_int_5\n");
332                 return ret;
333         }
334
335         dev_dbg(data->dev, "%s: %x %x\n", __func__, data->slope_thres,
336                 data->slope_dur);
337
338         return ret;
339 }
340
341 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
342                                          bool state)
343 {
344         if (state)
345                 return bmc150_accel_update_slope(t->data);
346
347         return 0;
348 }
349
350 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
351                                int *val2)
352 {
353         int i;
354
355         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
356                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
357                         *val = bmc150_accel_samp_freq_table[i].val;
358                         *val2 = bmc150_accel_samp_freq_table[i].val2;
359                         return IIO_VAL_INT_PLUS_MICRO;
360                 }
361         }
362
363         return -EINVAL;
364 }
365
366 #ifdef CONFIG_PM
367 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
368 {
369         int i;
370
371         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
372                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
373                         return bmc150_accel_sample_upd_time[i].msec;
374         }
375
376         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
377 }
378
379 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
380 {
381         int ret;
382
383         if (on) {
384                 ret = pm_runtime_get_sync(data->dev);
385         } else {
386                 pm_runtime_mark_last_busy(data->dev);
387                 ret = pm_runtime_put_autosuspend(data->dev);
388         }
389
390         if (ret < 0) {
391                 dev_err(data->dev,
392                         "Failed: bmc150_accel_set_power_state for %d\n", on);
393                 if (on)
394                         pm_runtime_put_noidle(data->dev);
395
396                 return ret;
397         }
398
399         return 0;
400 }
401 #else
402 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
403 {
404         return 0;
405 }
406 #endif
407
408 static const struct bmc150_accel_interrupt_info {
409         u8 map_reg;
410         u8 map_bitmask;
411         u8 en_reg;
412         u8 en_bitmask;
413 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
414         { /* data ready interrupt */
415                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
416                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
417                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
418                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
419         },
420         {  /* motion interrupt */
421                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
422                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
423                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
424                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
425                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
426                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
427         },
428         { /* fifo watermark interrupt */
429                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
430                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
431                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
432                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
433         },
434 };
435
436 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
437                                           struct bmc150_accel_data *data)
438 {
439         int i;
440
441         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
442                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
443 }
444
445 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
446                                       bool state)
447 {
448         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
449         const struct bmc150_accel_interrupt_info *info = intr->info;
450         int ret;
451
452         if (state) {
453                 if (atomic_inc_return(&intr->users) > 1)
454                         return 0;
455         } else {
456                 if (atomic_dec_return(&intr->users) > 0)
457                         return 0;
458         }
459
460         /*
461          * We will expect the enable and disable to do operation in reverse
462          * order. This will happen here anyway, as our resume operation uses
463          * sync mode runtime pm calls. The suspend operation will be delayed
464          * by autosuspend delay.
465          * So the disable operation will still happen in reverse order of
466          * enable operation. When runtime pm is disabled the mode is always on,
467          * so sequence doesn't matter.
468          */
469         ret = bmc150_accel_set_power_state(data, state);
470         if (ret < 0)
471                 return ret;
472
473         /* map the interrupt to the appropriate pins */
474         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
475                                  (state ? info->map_bitmask : 0));
476         if (ret < 0) {
477                 dev_err(data->dev, "Error updating reg_int_map\n");
478                 goto out_fix_power_state;
479         }
480
481         /* enable/disable the interrupt */
482         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
483                                  (state ? info->en_bitmask : 0));
484         if (ret < 0) {
485                 dev_err(data->dev, "Error updating reg_int_en\n");
486                 goto out_fix_power_state;
487         }
488
489         if (state)
490                 atomic_inc(&data->active_intr);
491         else
492                 atomic_dec(&data->active_intr);
493
494         return 0;
495
496 out_fix_power_state:
497         bmc150_accel_set_power_state(data, false);
498         return ret;
499 }
500
501 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
502 {
503         int ret, i;
504
505         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
506                 if (data->chip_info->scale_table[i].scale == val) {
507                         ret = regmap_write(data->regmap,
508                                      BMC150_ACCEL_REG_PMU_RANGE,
509                                      data->chip_info->scale_table[i].reg_range);
510                         if (ret < 0) {
511                                 dev_err(data->dev,
512                                         "Error writing pmu_range\n");
513                                 return ret;
514                         }
515
516                         data->range = data->chip_info->scale_table[i].reg_range;
517                         return 0;
518                 }
519         }
520
521         return -EINVAL;
522 }
523
524 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
525 {
526         int ret;
527         unsigned int value;
528
529         mutex_lock(&data->mutex);
530
531         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
532         if (ret < 0) {
533                 dev_err(data->dev, "Error reading reg_temp\n");
534                 mutex_unlock(&data->mutex);
535                 return ret;
536         }
537         *val = sign_extend32(value, 7);
538
539         mutex_unlock(&data->mutex);
540
541         return IIO_VAL_INT;
542 }
543
544 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
545                                  struct iio_chan_spec const *chan,
546                                  int *val)
547 {
548         int ret;
549         int axis = chan->scan_index;
550         __le16 raw_val;
551
552         mutex_lock(&data->mutex);
553         ret = bmc150_accel_set_power_state(data, true);
554         if (ret < 0) {
555                 mutex_unlock(&data->mutex);
556                 return ret;
557         }
558
559         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
560                                &raw_val, sizeof(raw_val));
561         if (ret < 0) {
562                 dev_err(data->dev, "Error reading axis %d\n", axis);
563                 bmc150_accel_set_power_state(data, false);
564                 mutex_unlock(&data->mutex);
565                 return ret;
566         }
567         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
568                              chan->scan_type.realbits - 1);
569         ret = bmc150_accel_set_power_state(data, false);
570         mutex_unlock(&data->mutex);
571         if (ret < 0)
572                 return ret;
573
574         return IIO_VAL_INT;
575 }
576
577 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
578                                  struct iio_chan_spec const *chan,
579                                  int *val, int *val2, long mask)
580 {
581         struct bmc150_accel_data *data = iio_priv(indio_dev);
582         int ret;
583
584         switch (mask) {
585         case IIO_CHAN_INFO_RAW:
586                 switch (chan->type) {
587                 case IIO_TEMP:
588                         return bmc150_accel_get_temp(data, val);
589                 case IIO_ACCEL:
590                         if (iio_buffer_enabled(indio_dev))
591                                 return -EBUSY;
592                         else
593                                 return bmc150_accel_get_axis(data, chan, val);
594                 default:
595                         return -EINVAL;
596                 }
597         case IIO_CHAN_INFO_OFFSET:
598                 if (chan->type == IIO_TEMP) {
599                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
600                         return IIO_VAL_INT;
601                 } else {
602                         return -EINVAL;
603                 }
604         case IIO_CHAN_INFO_SCALE:
605                 *val = 0;
606                 switch (chan->type) {
607                 case IIO_TEMP:
608                         *val2 = 500000;
609                         return IIO_VAL_INT_PLUS_MICRO;
610                 case IIO_ACCEL:
611                 {
612                         int i;
613                         const struct bmc150_scale_info *si;
614                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
615
616                         for (i = 0; i < st_size; ++i) {
617                                 si = &data->chip_info->scale_table[i];
618                                 if (si->reg_range == data->range) {
619                                         *val2 = si->scale;
620                                         return IIO_VAL_INT_PLUS_MICRO;
621                                 }
622                         }
623                         return -EINVAL;
624                 }
625                 default:
626                         return -EINVAL;
627                 }
628         case IIO_CHAN_INFO_SAMP_FREQ:
629                 mutex_lock(&data->mutex);
630                 ret = bmc150_accel_get_bw(data, val, val2);
631                 mutex_unlock(&data->mutex);
632                 return ret;
633         default:
634                 return -EINVAL;
635         }
636 }
637
638 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
639                                   struct iio_chan_spec const *chan,
640                                   int val, int val2, long mask)
641 {
642         struct bmc150_accel_data *data = iio_priv(indio_dev);
643         int ret;
644
645         switch (mask) {
646         case IIO_CHAN_INFO_SAMP_FREQ:
647                 mutex_lock(&data->mutex);
648                 ret = bmc150_accel_set_bw(data, val, val2);
649                 mutex_unlock(&data->mutex);
650                 break;
651         case IIO_CHAN_INFO_SCALE:
652                 if (val)
653                         return -EINVAL;
654
655                 mutex_lock(&data->mutex);
656                 ret = bmc150_accel_set_scale(data, val2);
657                 mutex_unlock(&data->mutex);
658                 return ret;
659         default:
660                 ret = -EINVAL;
661         }
662
663         return ret;
664 }
665
666 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
667                                    const struct iio_chan_spec *chan,
668                                    enum iio_event_type type,
669                                    enum iio_event_direction dir,
670                                    enum iio_event_info info,
671                                    int *val, int *val2)
672 {
673         struct bmc150_accel_data *data = iio_priv(indio_dev);
674
675         *val2 = 0;
676         switch (info) {
677         case IIO_EV_INFO_VALUE:
678                 *val = data->slope_thres;
679                 break;
680         case IIO_EV_INFO_PERIOD:
681                 *val = data->slope_dur;
682                 break;
683         default:
684                 return -EINVAL;
685         }
686
687         return IIO_VAL_INT;
688 }
689
690 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
691                                     const struct iio_chan_spec *chan,
692                                     enum iio_event_type type,
693                                     enum iio_event_direction dir,
694                                     enum iio_event_info info,
695                                     int val, int val2)
696 {
697         struct bmc150_accel_data *data = iio_priv(indio_dev);
698
699         if (data->ev_enable_state)
700                 return -EBUSY;
701
702         switch (info) {
703         case IIO_EV_INFO_VALUE:
704                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
705                 break;
706         case IIO_EV_INFO_PERIOD:
707                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
708                 break;
709         default:
710                 return -EINVAL;
711         }
712
713         return 0;
714 }
715
716 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
717                                           const struct iio_chan_spec *chan,
718                                           enum iio_event_type type,
719                                           enum iio_event_direction dir)
720 {
721         struct bmc150_accel_data *data = iio_priv(indio_dev);
722
723         return data->ev_enable_state;
724 }
725
726 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
727                                            const struct iio_chan_spec *chan,
728                                            enum iio_event_type type,
729                                            enum iio_event_direction dir,
730                                            int state)
731 {
732         struct bmc150_accel_data *data = iio_priv(indio_dev);
733         int ret;
734
735         if (state == data->ev_enable_state)
736                 return 0;
737
738         mutex_lock(&data->mutex);
739
740         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
741                                          state);
742         if (ret < 0) {
743                 mutex_unlock(&data->mutex);
744                 return ret;
745         }
746
747         data->ev_enable_state = state;
748         mutex_unlock(&data->mutex);
749
750         return 0;
751 }
752
753 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
754                                          struct iio_trigger *trig)
755 {
756         struct bmc150_accel_data *data = iio_priv(indio_dev);
757         int i;
758
759         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
760                 if (data->triggers[i].indio_trig == trig)
761                         return 0;
762         }
763
764         return -EINVAL;
765 }
766
767 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
768                                                struct device_attribute *attr,
769                                                char *buf)
770 {
771         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
772         struct bmc150_accel_data *data = iio_priv(indio_dev);
773         int wm;
774
775         mutex_lock(&data->mutex);
776         wm = data->watermark;
777         mutex_unlock(&data->mutex);
778
779         return sprintf(buf, "%d\n", wm);
780 }
781
782 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
783                                            struct device_attribute *attr,
784                                            char *buf)
785 {
786         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
787         struct bmc150_accel_data *data = iio_priv(indio_dev);
788         bool state;
789
790         mutex_lock(&data->mutex);
791         state = data->fifo_mode;
792         mutex_unlock(&data->mutex);
793
794         return sprintf(buf, "%d\n", state);
795 }
796
797 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
798 static IIO_CONST_ATTR(hwfifo_watermark_max,
799                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
800 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
801                        bmc150_accel_get_fifo_state, NULL, 0);
802 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
803                        bmc150_accel_get_fifo_watermark, NULL, 0);
804
805 static const struct attribute *bmc150_accel_fifo_attributes[] = {
806         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
807         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
808         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
809         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
810         NULL,
811 };
812
813 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
814 {
815         struct bmc150_accel_data *data = iio_priv(indio_dev);
816
817         if (val > BMC150_ACCEL_FIFO_LENGTH)
818                 val = BMC150_ACCEL_FIFO_LENGTH;
819
820         mutex_lock(&data->mutex);
821         data->watermark = val;
822         mutex_unlock(&data->mutex);
823
824         return 0;
825 }
826
827 /*
828  * We must read at least one full frame in one burst, otherwise the rest of the
829  * frame data is discarded.
830  */
831 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
832                                       char *buffer, int samples)
833 {
834         int sample_length = 3 * 2;
835         int ret;
836         int total_length = samples * sample_length;
837         int i;
838         size_t step = regmap_get_raw_read_max(data->regmap);
839
840         if (!step || step > total_length)
841                 step = total_length;
842         else if (step < total_length)
843                 step = sample_length;
844
845         /*
846          * Seems we have a bus with size limitation so we have to execute
847          * multiple reads
848          */
849         for (i = 0; i < total_length; i += step) {
850                 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
851                                       &buffer[i], step);
852                 if (ret)
853                         break;
854         }
855
856         if (ret)
857                 dev_err(data->dev, "Error transferring data from fifo in single steps of %zu\n",
858                         step);
859
860         return ret;
861 }
862
863 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
864                                      unsigned samples, bool irq)
865 {
866         struct bmc150_accel_data *data = iio_priv(indio_dev);
867         int ret, i;
868         u8 count;
869         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
870         int64_t tstamp;
871         uint64_t sample_period;
872         unsigned int val;
873
874         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
875         if (ret < 0) {
876                 dev_err(data->dev, "Error reading reg_fifo_status\n");
877                 return ret;
878         }
879
880         count = val & 0x7F;
881
882         if (!count)
883                 return 0;
884
885         /*
886          * If we getting called from IRQ handler we know the stored timestamp is
887          * fairly accurate for the last stored sample. Otherwise, if we are
888          * called as a result of a read operation from userspace and hence
889          * before the watermark interrupt was triggered, take a timestamp
890          * now. We can fall anywhere in between two samples so the error in this
891          * case is at most one sample period.
892          */
893         if (!irq) {
894                 data->old_timestamp = data->timestamp;
895                 data->timestamp = iio_get_time_ns();
896         }
897
898         /*
899          * Approximate timestamps for each of the sample based on the sampling
900          * frequency, timestamp for last sample and number of samples.
901          *
902          * Note that we can't use the current bandwidth settings to compute the
903          * sample period because the sample rate varies with the device
904          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
905          * small variation adds when we store a large number of samples and
906          * creates significant jitter between the last and first samples in
907          * different batches (e.g. 32ms vs 21ms).
908          *
909          * To avoid this issue we compute the actual sample period ourselves
910          * based on the timestamp delta between the last two flush operations.
911          */
912         sample_period = (data->timestamp - data->old_timestamp);
913         do_div(sample_period, count);
914         tstamp = data->timestamp - (count - 1) * sample_period;
915
916         if (samples && count > samples)
917                 count = samples;
918
919         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
920         if (ret)
921                 return ret;
922
923         /*
924          * Ideally we want the IIO core to handle the demux when running in fifo
925          * mode but not when running in triggered buffer mode. Unfortunately
926          * this does not seem to be possible, so stick with driver demux for
927          * now.
928          */
929         for (i = 0; i < count; i++) {
930                 u16 sample[8];
931                 int j, bit;
932
933                 j = 0;
934                 for_each_set_bit(bit, indio_dev->active_scan_mask,
935                                  indio_dev->masklength)
936                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
937
938                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
939
940                 tstamp += sample_period;
941         }
942
943         return count;
944 }
945
946 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
947 {
948         struct bmc150_accel_data *data = iio_priv(indio_dev);
949         int ret;
950
951         mutex_lock(&data->mutex);
952         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
953         mutex_unlock(&data->mutex);
954
955         return ret;
956 }
957
958 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
959                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
960
961 static struct attribute *bmc150_accel_attributes[] = {
962         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
963         NULL,
964 };
965
966 static const struct attribute_group bmc150_accel_attrs_group = {
967         .attrs = bmc150_accel_attributes,
968 };
969
970 static const struct iio_event_spec bmc150_accel_event = {
971                 .type = IIO_EV_TYPE_ROC,
972                 .dir = IIO_EV_DIR_EITHER,
973                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
974                                  BIT(IIO_EV_INFO_ENABLE) |
975                                  BIT(IIO_EV_INFO_PERIOD)
976 };
977
978 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
979         .type = IIO_ACCEL,                                              \
980         .modified = 1,                                                  \
981         .channel2 = IIO_MOD_##_axis,                                    \
982         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
983         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
984                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
985         .scan_index = AXIS_##_axis,                                     \
986         .scan_type = {                                                  \
987                 .sign = 's',                                            \
988                 .realbits = (bits),                                     \
989                 .storagebits = 16,                                      \
990                 .shift = 16 - (bits),                                   \
991                 .endianness = IIO_LE,                                   \
992         },                                                              \
993         .event_spec = &bmc150_accel_event,                              \
994         .num_event_specs = 1                                            \
995 }
996
997 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
998         {                                                               \
999                 .type = IIO_TEMP,                                       \
1000                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1001                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1002                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1003                 .scan_index = -1,                                       \
1004         },                                                              \
1005         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1006         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1007         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1008         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1009 }
1010
1011 static const struct iio_chan_spec bma222e_accel_channels[] =
1012         BMC150_ACCEL_CHANNELS(8);
1013 static const struct iio_chan_spec bma250e_accel_channels[] =
1014         BMC150_ACCEL_CHANNELS(10);
1015 static const struct iio_chan_spec bmc150_accel_channels[] =
1016         BMC150_ACCEL_CHANNELS(12);
1017 static const struct iio_chan_spec bma280_accel_channels[] =
1018         BMC150_ACCEL_CHANNELS(14);
1019
1020 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1021         [bmc150] = {
1022                 .name = "BMC150A",
1023                 .chip_id = 0xFA,
1024                 .channels = bmc150_accel_channels,
1025                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1026                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1027                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1028                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1029                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1030         },
1031         [bmi055] = {
1032                 .name = "BMI055A",
1033                 .chip_id = 0xFA,
1034                 .channels = bmc150_accel_channels,
1035                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1036                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1037                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1038                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1039                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1040         },
1041         [bma255] = {
1042                 .name = "BMA0255",
1043                 .chip_id = 0xFA,
1044                 .channels = bmc150_accel_channels,
1045                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1046                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1047                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1048                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1049                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1050         },
1051         [bma250e] = {
1052                 .name = "BMA250E",
1053                 .chip_id = 0xF9,
1054                 .channels = bma250e_accel_channels,
1055                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1056                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1057                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1058                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1059                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1060         },
1061         [bma222e] = {
1062                 .name = "BMA222E",
1063                 .chip_id = 0xF8,
1064                 .channels = bma222e_accel_channels,
1065                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1066                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1067                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1068                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1069                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1070         },
1071         [bma280] = {
1072                 .name = "BMA0280",
1073                 .chip_id = 0xFB,
1074                 .channels = bma280_accel_channels,
1075                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1076                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1077                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1078                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1079                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1080         },
1081 };
1082
1083 static const struct iio_info bmc150_accel_info = {
1084         .attrs                  = &bmc150_accel_attrs_group,
1085         .read_raw               = bmc150_accel_read_raw,
1086         .write_raw              = bmc150_accel_write_raw,
1087         .read_event_value       = bmc150_accel_read_event,
1088         .write_event_value      = bmc150_accel_write_event,
1089         .write_event_config     = bmc150_accel_write_event_config,
1090         .read_event_config      = bmc150_accel_read_event_config,
1091         .driver_module          = THIS_MODULE,
1092 };
1093
1094 static const struct iio_info bmc150_accel_info_fifo = {
1095         .attrs                  = &bmc150_accel_attrs_group,
1096         .read_raw               = bmc150_accel_read_raw,
1097         .write_raw              = bmc150_accel_write_raw,
1098         .read_event_value       = bmc150_accel_read_event,
1099         .write_event_value      = bmc150_accel_write_event,
1100         .write_event_config     = bmc150_accel_write_event_config,
1101         .read_event_config      = bmc150_accel_read_event_config,
1102         .validate_trigger       = bmc150_accel_validate_trigger,
1103         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1104         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1105         .driver_module          = THIS_MODULE,
1106 };
1107
1108 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1109 {
1110         struct iio_poll_func *pf = p;
1111         struct iio_dev *indio_dev = pf->indio_dev;
1112         struct bmc150_accel_data *data = iio_priv(indio_dev);
1113         int bit, ret, i = 0;
1114         unsigned int raw_val;
1115
1116         mutex_lock(&data->mutex);
1117         for_each_set_bit(bit, indio_dev->active_scan_mask,
1118                          indio_dev->masklength) {
1119                 ret = regmap_bulk_read(data->regmap,
1120                                        BMC150_ACCEL_AXIS_TO_REG(bit), &raw_val,
1121                                        2);
1122                 if (ret < 0) {
1123                         mutex_unlock(&data->mutex);
1124                         goto err_read;
1125                 }
1126                 data->buffer[i++] = raw_val;
1127         }
1128         mutex_unlock(&data->mutex);
1129
1130         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1131                                            pf->timestamp);
1132 err_read:
1133         iio_trigger_notify_done(indio_dev->trig);
1134
1135         return IRQ_HANDLED;
1136 }
1137
1138 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1139 {
1140         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1141         struct bmc150_accel_data *data = t->data;
1142         int ret;
1143
1144         /* new data interrupts don't need ack */
1145         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1146                 return 0;
1147
1148         mutex_lock(&data->mutex);
1149         /* clear any latched interrupt */
1150         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1152                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153         mutex_unlock(&data->mutex);
1154         if (ret < 0) {
1155                 dev_err(data->dev,
1156                         "Error writing reg_int_rst_latch\n");
1157                 return ret;
1158         }
1159
1160         return 0;
1161 }
1162
1163 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1164                                           bool state)
1165 {
1166         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1167         struct bmc150_accel_data *data = t->data;
1168         int ret;
1169
1170         mutex_lock(&data->mutex);
1171
1172         if (t->enabled == state) {
1173                 mutex_unlock(&data->mutex);
1174                 return 0;
1175         }
1176
1177         if (t->setup) {
1178                 ret = t->setup(t, state);
1179                 if (ret < 0) {
1180                         mutex_unlock(&data->mutex);
1181                         return ret;
1182                 }
1183         }
1184
1185         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1186         if (ret < 0) {
1187                 mutex_unlock(&data->mutex);
1188                 return ret;
1189         }
1190
1191         t->enabled = state;
1192
1193         mutex_unlock(&data->mutex);
1194
1195         return ret;
1196 }
1197
1198 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1199         .set_trigger_state = bmc150_accel_trigger_set_state,
1200         .try_reenable = bmc150_accel_trig_try_reen,
1201         .owner = THIS_MODULE,
1202 };
1203
1204 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1205 {
1206         struct bmc150_accel_data *data = iio_priv(indio_dev);
1207         int dir;
1208         int ret;
1209         unsigned int val;
1210
1211         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1212         if (ret < 0) {
1213                 dev_err(data->dev, "Error reading reg_int_status_2\n");
1214                 return ret;
1215         }
1216
1217         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1218                 dir = IIO_EV_DIR_FALLING;
1219         else
1220                 dir = IIO_EV_DIR_RISING;
1221
1222         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1223                 iio_push_event(indio_dev,
1224                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225                                                   0,
1226                                                   IIO_MOD_X,
1227                                                   IIO_EV_TYPE_ROC,
1228                                                   dir),
1229                                data->timestamp);
1230
1231         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1232                 iio_push_event(indio_dev,
1233                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234                                                   0,
1235                                                   IIO_MOD_Y,
1236                                                   IIO_EV_TYPE_ROC,
1237                                                   dir),
1238                                data->timestamp);
1239
1240         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1241                 iio_push_event(indio_dev,
1242                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243                                                   0,
1244                                                   IIO_MOD_Z,
1245                                                   IIO_EV_TYPE_ROC,
1246                                                   dir),
1247                                data->timestamp);
1248
1249         return ret;
1250 }
1251
1252 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1253 {
1254         struct iio_dev *indio_dev = private;
1255         struct bmc150_accel_data *data = iio_priv(indio_dev);
1256         bool ack = false;
1257         int ret;
1258
1259         mutex_lock(&data->mutex);
1260
1261         if (data->fifo_mode) {
1262                 ret = __bmc150_accel_fifo_flush(indio_dev,
1263                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1264                 if (ret > 0)
1265                         ack = true;
1266         }
1267
1268         if (data->ev_enable_state) {
1269                 ret = bmc150_accel_handle_roc_event(indio_dev);
1270                 if (ret > 0)
1271                         ack = true;
1272         }
1273
1274         if (ack) {
1275                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1277                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1278                 if (ret)
1279                         dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1280
1281                 ret = IRQ_HANDLED;
1282         } else {
1283                 ret = IRQ_NONE;
1284         }
1285
1286         mutex_unlock(&data->mutex);
1287
1288         return ret;
1289 }
1290
1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1292 {
1293         struct iio_dev *indio_dev = private;
1294         struct bmc150_accel_data *data = iio_priv(indio_dev);
1295         bool ack = false;
1296         int i;
1297
1298         data->old_timestamp = data->timestamp;
1299         data->timestamp = iio_get_time_ns();
1300
1301         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302                 if (data->triggers[i].enabled) {
1303                         iio_trigger_poll(data->triggers[i].indio_trig);
1304                         ack = true;
1305                         break;
1306                 }
1307         }
1308
1309         if (data->ev_enable_state || data->fifo_mode)
1310                 return IRQ_WAKE_THREAD;
1311
1312         if (ack)
1313                 return IRQ_HANDLED;
1314
1315         return IRQ_NONE;
1316 }
1317
1318 static const struct {
1319         int intr;
1320         const char *name;
1321         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1323         {
1324                 .intr = 0,
1325                 .name = "%s-dev%d",
1326         },
1327         {
1328                 .intr = 1,
1329                 .name = "%s-any-motion-dev%d",
1330                 .setup = bmc150_accel_any_motion_setup,
1331         },
1332 };
1333
1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1335                                              int from)
1336 {
1337         int i;
1338
1339         for (i = from; i >= 0; i--) {
1340                 if (data->triggers[i].indio_trig) {
1341                         iio_trigger_unregister(data->triggers[i].indio_trig);
1342                         data->triggers[i].indio_trig = NULL;
1343                 }
1344         }
1345 }
1346
1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348                                        struct bmc150_accel_data *data)
1349 {
1350         int i, ret;
1351
1352         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1353                 struct bmc150_accel_trigger *t = &data->triggers[i];
1354
1355                 t->indio_trig = devm_iio_trigger_alloc(data->dev,
1356                                                bmc150_accel_triggers[i].name,
1357                                                        indio_dev->name,
1358                                                        indio_dev->id);
1359                 if (!t->indio_trig) {
1360                         ret = -ENOMEM;
1361                         break;
1362                 }
1363
1364                 t->indio_trig->dev.parent = data->dev;
1365                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1366                 t->intr = bmc150_accel_triggers[i].intr;
1367                 t->data = data;
1368                 t->setup = bmc150_accel_triggers[i].setup;
1369                 iio_trigger_set_drvdata(t->indio_trig, t);
1370
1371                 ret = iio_trigger_register(t->indio_trig);
1372                 if (ret)
1373                         break;
1374         }
1375
1376         if (ret)
1377                 bmc150_accel_unregister_triggers(data, i - 1);
1378
1379         return ret;
1380 }
1381
1382 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1383 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1384 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1385
1386 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1387 {
1388         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1389         int ret;
1390
1391         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1392         if (ret < 0) {
1393                 dev_err(data->dev, "Error writing reg_fifo_config1\n");
1394                 return ret;
1395         }
1396
1397         if (!data->fifo_mode)
1398                 return 0;
1399
1400         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1401                            data->watermark);
1402         if (ret < 0)
1403                 dev_err(data->dev, "Error writing reg_fifo_config0\n");
1404
1405         return ret;
1406 }
1407
1408 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1409 {
1410         struct bmc150_accel_data *data = iio_priv(indio_dev);
1411
1412         return bmc150_accel_set_power_state(data, true);
1413 }
1414
1415 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1416 {
1417         struct bmc150_accel_data *data = iio_priv(indio_dev);
1418         int ret = 0;
1419
1420         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1421                 return iio_triggered_buffer_postenable(indio_dev);
1422
1423         mutex_lock(&data->mutex);
1424
1425         if (!data->watermark)
1426                 goto out;
1427
1428         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1429                                          true);
1430         if (ret)
1431                 goto out;
1432
1433         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1434
1435         ret = bmc150_accel_fifo_set_mode(data);
1436         if (ret) {
1437                 data->fifo_mode = 0;
1438                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1439                                            false);
1440         }
1441
1442 out:
1443         mutex_unlock(&data->mutex);
1444
1445         return ret;
1446 }
1447
1448 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1449 {
1450         struct bmc150_accel_data *data = iio_priv(indio_dev);
1451
1452         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1453                 return iio_triggered_buffer_predisable(indio_dev);
1454
1455         mutex_lock(&data->mutex);
1456
1457         if (!data->fifo_mode)
1458                 goto out;
1459
1460         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1461         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1462         data->fifo_mode = 0;
1463         bmc150_accel_fifo_set_mode(data);
1464
1465 out:
1466         mutex_unlock(&data->mutex);
1467
1468         return 0;
1469 }
1470
1471 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1472 {
1473         struct bmc150_accel_data *data = iio_priv(indio_dev);
1474
1475         return bmc150_accel_set_power_state(data, false);
1476 }
1477
1478 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1479         .preenable = bmc150_accel_buffer_preenable,
1480         .postenable = bmc150_accel_buffer_postenable,
1481         .predisable = bmc150_accel_buffer_predisable,
1482         .postdisable = bmc150_accel_buffer_postdisable,
1483 };
1484
1485 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1486 {
1487         int ret, i;
1488         unsigned int val;
1489
1490         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1491         if (ret < 0) {
1492                 dev_err(data->dev,
1493                         "Error: Reading chip id\n");
1494                 return ret;
1495         }
1496
1497         dev_dbg(data->dev, "Chip Id %x\n", val);
1498         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1499                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1500                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1501                         break;
1502                 }
1503         }
1504
1505         if (!data->chip_info) {
1506                 dev_err(data->dev, "Invalid chip %x\n", val);
1507                 return -ENODEV;
1508         }
1509
1510         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1511         if (ret < 0)
1512                 return ret;
1513
1514         /* Set Bandwidth */
1515         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1516         if (ret < 0)
1517                 return ret;
1518
1519         /* Set Default Range */
1520         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1521                            BMC150_ACCEL_DEF_RANGE_4G);
1522         if (ret < 0) {
1523                 dev_err(data->dev,
1524                                         "Error writing reg_pmu_range\n");
1525                 return ret;
1526         }
1527
1528         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1529
1530         /* Set default slope duration and thresholds */
1531         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1532         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1533         ret = bmc150_accel_update_slope(data);
1534         if (ret < 0)
1535                 return ret;
1536
1537         /* Set default as latched interrupts */
1538         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1539                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1540                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541         if (ret < 0) {
1542                 dev_err(data->dev,
1543                         "Error writing reg_int_rst_latch\n");
1544                 return ret;
1545         }
1546
1547         return 0;
1548 }
1549
1550 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1551                             const char *name, bool block_supported)
1552 {
1553         struct bmc150_accel_data *data;
1554         struct iio_dev *indio_dev;
1555         int ret;
1556
1557         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1558         if (!indio_dev)
1559                 return -ENOMEM;
1560
1561         data = iio_priv(indio_dev);
1562         dev_set_drvdata(dev, indio_dev);
1563         data->dev = dev;
1564         data->irq = irq;
1565
1566         data->regmap = regmap;
1567
1568         ret = bmc150_accel_chip_init(data);
1569         if (ret < 0)
1570                 return ret;
1571
1572         mutex_init(&data->mutex);
1573
1574         indio_dev->dev.parent = dev;
1575         indio_dev->channels = data->chip_info->channels;
1576         indio_dev->num_channels = data->chip_info->num_channels;
1577         indio_dev->name = name ? name : data->chip_info->name;
1578         indio_dev->modes = INDIO_DIRECT_MODE;
1579         indio_dev->info = &bmc150_accel_info;
1580
1581         ret = iio_triggered_buffer_setup(indio_dev,
1582                                          &iio_pollfunc_store_time,
1583                                          bmc150_accel_trigger_handler,
1584                                          &bmc150_accel_buffer_ops);
1585         if (ret < 0) {
1586                 dev_err(data->dev, "Failed: iio triggered buffer setup\n");
1587                 return ret;
1588         }
1589
1590         if (data->irq > 0) {
1591                 ret = devm_request_threaded_irq(
1592                                                 data->dev, data->irq,
1593                                                 bmc150_accel_irq_handler,
1594                                                 bmc150_accel_irq_thread_handler,
1595                                                 IRQF_TRIGGER_RISING,
1596                                                 BMC150_ACCEL_IRQ_NAME,
1597                                                 indio_dev);
1598                 if (ret)
1599                         goto err_buffer_cleanup;
1600
1601                 /*
1602                  * Set latched mode interrupt. While certain interrupts are
1603                  * non-latched regardless of this settings (e.g. new data) we
1604                  * want to use latch mode when we can to prevent interrupt
1605                  * flooding.
1606                  */
1607                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1608                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1609                 if (ret < 0) {
1610                         dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1611                         goto err_buffer_cleanup;
1612                 }
1613
1614                 bmc150_accel_interrupts_setup(indio_dev, data);
1615
1616                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1617                 if (ret)
1618                         goto err_buffer_cleanup;
1619
1620                 if (block_supported) {
1621                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1622                         indio_dev->info = &bmc150_accel_info_fifo;
1623                         indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1624                 }
1625         }
1626
1627         ret = pm_runtime_set_active(dev);
1628         if (ret)
1629                 goto err_trigger_unregister;
1630
1631         pm_runtime_enable(dev);
1632         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1633         pm_runtime_use_autosuspend(dev);
1634
1635         ret = iio_device_register(indio_dev);
1636         if (ret < 0) {
1637                 dev_err(dev, "Unable to register iio device\n");
1638                 goto err_trigger_unregister;
1639         }
1640
1641         return 0;
1642
1643 err_trigger_unregister:
1644         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1645 err_buffer_cleanup:
1646         iio_triggered_buffer_cleanup(indio_dev);
1647
1648         return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1651
1652 int bmc150_accel_core_remove(struct device *dev)
1653 {
1654         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1655         struct bmc150_accel_data *data = iio_priv(indio_dev);
1656
1657         iio_device_unregister(indio_dev);
1658
1659         pm_runtime_disable(data->dev);
1660         pm_runtime_set_suspended(data->dev);
1661         pm_runtime_put_noidle(data->dev);
1662
1663         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1664
1665         iio_triggered_buffer_cleanup(indio_dev);
1666
1667         mutex_lock(&data->mutex);
1668         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1669         mutex_unlock(&data->mutex);
1670
1671         return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1674
1675 #ifdef CONFIG_PM_SLEEP
1676 static int bmc150_accel_suspend(struct device *dev)
1677 {
1678         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1679         struct bmc150_accel_data *data = iio_priv(indio_dev);
1680
1681         mutex_lock(&data->mutex);
1682         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1683         mutex_unlock(&data->mutex);
1684
1685         return 0;
1686 }
1687
1688 static int bmc150_accel_resume(struct device *dev)
1689 {
1690         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1691         struct bmc150_accel_data *data = iio_priv(indio_dev);
1692
1693         mutex_lock(&data->mutex);
1694         if (atomic_read(&data->active_intr))
1695                 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1696         bmc150_accel_fifo_set_mode(data);
1697         mutex_unlock(&data->mutex);
1698
1699         return 0;
1700 }
1701 #endif
1702
1703 #ifdef CONFIG_PM
1704 static int bmc150_accel_runtime_suspend(struct device *dev)
1705 {
1706         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707         struct bmc150_accel_data *data = iio_priv(indio_dev);
1708         int ret;
1709
1710         dev_dbg(data->dev,  __func__);
1711         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1712         if (ret < 0)
1713                 return -EAGAIN;
1714
1715         return 0;
1716 }
1717
1718 static int bmc150_accel_runtime_resume(struct device *dev)
1719 {
1720         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1721         struct bmc150_accel_data *data = iio_priv(indio_dev);
1722         int ret;
1723         int sleep_val;
1724
1725         dev_dbg(data->dev,  __func__);
1726
1727         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1728         if (ret < 0)
1729                 return ret;
1730         ret = bmc150_accel_fifo_set_mode(data);
1731         if (ret < 0)
1732                 return ret;
1733
1734         sleep_val = bmc150_accel_get_startup_times(data);
1735         if (sleep_val < 20)
1736                 usleep_range(sleep_val * 1000, 20000);
1737         else
1738                 msleep_interruptible(sleep_val);
1739
1740         return 0;
1741 }
1742 #endif
1743
1744 const struct dev_pm_ops bmc150_accel_pm_ops = {
1745         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1746         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1747                            bmc150_accel_runtime_resume, NULL)
1748 };
1749 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1750
1751 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1752 MODULE_LICENSE("GPL v2");
1753 MODULE_DESCRIPTION("BMC150 accelerometer driver");