crypto: rsa-pkcs1pad - Handle leading zero for decryption
[cascardo/linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID                0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW                0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW         0x10
68 #define BMC150_ACCEL_DEF_BW                     125
69
70 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
71 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
72
73 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
74 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
75 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
76 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
77
78 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
79 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
80 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
81 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
82
83 #define BMC150_ACCEL_REG_INT_EN_0               0x16
84 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
85 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
86 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
87
88 #define BMC150_ACCEL_REG_INT_EN_1               0x17
89 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
90 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
91 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
92
93 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
94 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
95
96 #define BMC150_ACCEL_REG_INT_5                  0x27
97 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
98
99 #define BMC150_ACCEL_REG_INT_6                  0x28
100 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
101
102 /* Slope duration in terms of number of samples */
103 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
104 /* in terms of multiples of g's/LSB, based on range */
105 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
106
107 #define BMC150_ACCEL_REG_XOUT_L         0x02
108
109 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
110
111 /* Sleep Duration values */
112 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
113 #define BMC150_ACCEL_SLEEP_1_MS         0x06
114 #define BMC150_ACCEL_SLEEP_2_MS         0x07
115 #define BMC150_ACCEL_SLEEP_4_MS         0x08
116 #define BMC150_ACCEL_SLEEP_6_MS         0x09
117 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
118 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
119 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
120 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
121 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
122 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
123
124 #define BMC150_ACCEL_REG_TEMP                   0x08
125 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
126
127 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
128 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
129
130 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
131 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
132 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
133 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
134 #define BMC150_ACCEL_FIFO_LENGTH                32
135
136 enum bmc150_accel_axis {
137         AXIS_X,
138         AXIS_Y,
139         AXIS_Z,
140         AXIS_MAX,
141 };
142
143 enum bmc150_power_modes {
144         BMC150_ACCEL_SLEEP_MODE_NORMAL,
145         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
146         BMC150_ACCEL_SLEEP_MODE_LPM,
147         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
148 };
149
150 struct bmc150_scale_info {
151         int scale;
152         u8 reg_range;
153 };
154
155 struct bmc150_accel_chip_info {
156         const char *name;
157         u8 chip_id;
158         const struct iio_chan_spec *channels;
159         int num_channels;
160         const struct bmc150_scale_info scale_table[4];
161 };
162
163 struct bmc150_accel_interrupt {
164         const struct bmc150_accel_interrupt_info *info;
165         atomic_t users;
166 };
167
168 struct bmc150_accel_trigger {
169         struct bmc150_accel_data *data;
170         struct iio_trigger *indio_trig;
171         int (*setup)(struct bmc150_accel_trigger *t, bool state);
172         int intr;
173         bool enabled;
174 };
175
176 enum bmc150_accel_interrupt_id {
177         BMC150_ACCEL_INT_DATA_READY,
178         BMC150_ACCEL_INT_ANY_MOTION,
179         BMC150_ACCEL_INT_WATERMARK,
180         BMC150_ACCEL_INTERRUPTS,
181 };
182
183 enum bmc150_accel_trigger_id {
184         BMC150_ACCEL_TRIGGER_DATA_READY,
185         BMC150_ACCEL_TRIGGER_ANY_MOTION,
186         BMC150_ACCEL_TRIGGERS,
187 };
188
189 struct bmc150_accel_data {
190         struct regmap *regmap;
191         int irq;
192         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
193         atomic_t active_intr;
194         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
195         struct mutex mutex;
196         u8 fifo_mode, watermark;
197         s16 buffer[8];
198         u8 bw_bits;
199         u32 slope_dur;
200         u32 slope_thres;
201         u32 range;
202         int ev_enable_state;
203         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
204         const struct bmc150_accel_chip_info *chip_info;
205 };
206
207 static const struct {
208         int val;
209         int val2;
210         u8 bw_bits;
211 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
212                                      {31, 260000, 0x09},
213                                      {62, 500000, 0x0A},
214                                      {125, 0, 0x0B},
215                                      {250, 0, 0x0C},
216                                      {500, 0, 0x0D},
217                                      {1000, 0, 0x0E},
218                                      {2000, 0, 0x0F} };
219
220 static const struct {
221         int bw_bits;
222         int msec;
223 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
224                                      {0x09, 32},
225                                      {0x0A, 16},
226                                      {0x0B, 8},
227                                      {0x0C, 4},
228                                      {0x0D, 2},
229                                      {0x0E, 1},
230                                      {0x0F, 1} };
231
232 static const struct {
233         int sleep_dur;
234         u8 reg_value;
235 } bmc150_accel_sleep_value_table[] = { {0, 0},
236                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
237                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
238                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
239                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
240                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
241                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
242                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
243                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
244                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
245                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
246                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
247
248 const struct regmap_config bmc150_regmap_conf = {
249         .reg_bits = 8,
250         .val_bits = 8,
251         .max_register = 0x3f,
252 };
253 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
254
255 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
256                                  enum bmc150_power_modes mode,
257                                  int dur_us)
258 {
259         struct device *dev = regmap_get_device(data->regmap);
260         int i;
261         int ret;
262         u8 lpw_bits;
263         int dur_val = -1;
264
265         if (dur_us > 0) {
266                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
267                                                                          ++i) {
268                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
269                                                                         dur_us)
270                                 dur_val =
271                                 bmc150_accel_sleep_value_table[i].reg_value;
272                 }
273         } else {
274                 dur_val = 0;
275         }
276
277         if (dur_val < 0)
278                 return -EINVAL;
279
280         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
281         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
282
283         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
284
285         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
286         if (ret < 0) {
287                 dev_err(dev, "Error writing reg_pmu_lpw\n");
288                 return ret;
289         }
290
291         return 0;
292 }
293
294 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
295                                int val2)
296 {
297         int i;
298         int ret;
299
300         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
301                 if (bmc150_accel_samp_freq_table[i].val == val &&
302                     bmc150_accel_samp_freq_table[i].val2 == val2) {
303                         ret = regmap_write(data->regmap,
304                                 BMC150_ACCEL_REG_PMU_BW,
305                                 bmc150_accel_samp_freq_table[i].bw_bits);
306                         if (ret < 0)
307                                 return ret;
308
309                         data->bw_bits =
310                                 bmc150_accel_samp_freq_table[i].bw_bits;
311                         return 0;
312                 }
313         }
314
315         return -EINVAL;
316 }
317
318 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
319 {
320         struct device *dev = regmap_get_device(data->regmap);
321         int ret;
322
323         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
324                                         data->slope_thres);
325         if (ret < 0) {
326                 dev_err(dev, "Error writing reg_int_6\n");
327                 return ret;
328         }
329
330         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
331                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
332         if (ret < 0) {
333                 dev_err(dev, "Error updating reg_int_5\n");
334                 return ret;
335         }
336
337         dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
338                 data->slope_dur);
339
340         return ret;
341 }
342
343 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
344                                          bool state)
345 {
346         if (state)
347                 return bmc150_accel_update_slope(t->data);
348
349         return 0;
350 }
351
352 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
353                                int *val2)
354 {
355         int i;
356
357         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
358                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
359                         *val = bmc150_accel_samp_freq_table[i].val;
360                         *val2 = bmc150_accel_samp_freq_table[i].val2;
361                         return IIO_VAL_INT_PLUS_MICRO;
362                 }
363         }
364
365         return -EINVAL;
366 }
367
368 #ifdef CONFIG_PM
369 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
374                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
375                         return bmc150_accel_sample_upd_time[i].msec;
376         }
377
378         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
379 }
380
381 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
382 {
383         struct device *dev = regmap_get_device(data->regmap);
384         int ret;
385
386         if (on) {
387                 ret = pm_runtime_get_sync(dev);
388         } else {
389                 pm_runtime_mark_last_busy(dev);
390                 ret = pm_runtime_put_autosuspend(dev);
391         }
392
393         if (ret < 0) {
394                 dev_err(dev,
395                         "Failed: bmc150_accel_set_power_state for %d\n", on);
396                 if (on)
397                         pm_runtime_put_noidle(dev);
398
399                 return ret;
400         }
401
402         return 0;
403 }
404 #else
405 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
406 {
407         return 0;
408 }
409 #endif
410
411 static const struct bmc150_accel_interrupt_info {
412         u8 map_reg;
413         u8 map_bitmask;
414         u8 en_reg;
415         u8 en_bitmask;
416 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
417         { /* data ready interrupt */
418                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
419                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
420                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
421                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
422         },
423         {  /* motion interrupt */
424                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
425                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
426                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
427                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
428                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
429                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
430         },
431         { /* fifo watermark interrupt */
432                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
433                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
434                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
435                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
436         },
437 };
438
439 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
440                                           struct bmc150_accel_data *data)
441 {
442         int i;
443
444         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
445                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
446 }
447
448 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
449                                       bool state)
450 {
451         struct device *dev = regmap_get_device(data->regmap);
452         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
453         const struct bmc150_accel_interrupt_info *info = intr->info;
454         int ret;
455
456         if (state) {
457                 if (atomic_inc_return(&intr->users) > 1)
458                         return 0;
459         } else {
460                 if (atomic_dec_return(&intr->users) > 0)
461                         return 0;
462         }
463
464         /*
465          * We will expect the enable and disable to do operation in reverse
466          * order. This will happen here anyway, as our resume operation uses
467          * sync mode runtime pm calls. The suspend operation will be delayed
468          * by autosuspend delay.
469          * So the disable operation will still happen in reverse order of
470          * enable operation. When runtime pm is disabled the mode is always on,
471          * so sequence doesn't matter.
472          */
473         ret = bmc150_accel_set_power_state(data, state);
474         if (ret < 0)
475                 return ret;
476
477         /* map the interrupt to the appropriate pins */
478         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
479                                  (state ? info->map_bitmask : 0));
480         if (ret < 0) {
481                 dev_err(dev, "Error updating reg_int_map\n");
482                 goto out_fix_power_state;
483         }
484
485         /* enable/disable the interrupt */
486         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
487                                  (state ? info->en_bitmask : 0));
488         if (ret < 0) {
489                 dev_err(dev, "Error updating reg_int_en\n");
490                 goto out_fix_power_state;
491         }
492
493         if (state)
494                 atomic_inc(&data->active_intr);
495         else
496                 atomic_dec(&data->active_intr);
497
498         return 0;
499
500 out_fix_power_state:
501         bmc150_accel_set_power_state(data, false);
502         return ret;
503 }
504
505 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
506 {
507         struct device *dev = regmap_get_device(data->regmap);
508         int ret, i;
509
510         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
511                 if (data->chip_info->scale_table[i].scale == val) {
512                         ret = regmap_write(data->regmap,
513                                      BMC150_ACCEL_REG_PMU_RANGE,
514                                      data->chip_info->scale_table[i].reg_range);
515                         if (ret < 0) {
516                                 dev_err(dev, "Error writing pmu_range\n");
517                                 return ret;
518                         }
519
520                         data->range = data->chip_info->scale_table[i].reg_range;
521                         return 0;
522                 }
523         }
524
525         return -EINVAL;
526 }
527
528 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
529 {
530         struct device *dev = regmap_get_device(data->regmap);
531         int ret;
532         unsigned int value;
533
534         mutex_lock(&data->mutex);
535
536         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
537         if (ret < 0) {
538                 dev_err(dev, "Error reading reg_temp\n");
539                 mutex_unlock(&data->mutex);
540                 return ret;
541         }
542         *val = sign_extend32(value, 7);
543
544         mutex_unlock(&data->mutex);
545
546         return IIO_VAL_INT;
547 }
548
549 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
550                                  struct iio_chan_spec const *chan,
551                                  int *val)
552 {
553         struct device *dev = regmap_get_device(data->regmap);
554         int ret;
555         int axis = chan->scan_index;
556         __le16 raw_val;
557
558         mutex_lock(&data->mutex);
559         ret = bmc150_accel_set_power_state(data, true);
560         if (ret < 0) {
561                 mutex_unlock(&data->mutex);
562                 return ret;
563         }
564
565         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
566                                &raw_val, sizeof(raw_val));
567         if (ret < 0) {
568                 dev_err(dev, "Error reading axis %d\n", axis);
569                 bmc150_accel_set_power_state(data, false);
570                 mutex_unlock(&data->mutex);
571                 return ret;
572         }
573         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
574                              chan->scan_type.realbits - 1);
575         ret = bmc150_accel_set_power_state(data, false);
576         mutex_unlock(&data->mutex);
577         if (ret < 0)
578                 return ret;
579
580         return IIO_VAL_INT;
581 }
582
583 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
584                                  struct iio_chan_spec const *chan,
585                                  int *val, int *val2, long mask)
586 {
587         struct bmc150_accel_data *data = iio_priv(indio_dev);
588         int ret;
589
590         switch (mask) {
591         case IIO_CHAN_INFO_RAW:
592                 switch (chan->type) {
593                 case IIO_TEMP:
594                         return bmc150_accel_get_temp(data, val);
595                 case IIO_ACCEL:
596                         if (iio_buffer_enabled(indio_dev))
597                                 return -EBUSY;
598                         else
599                                 return bmc150_accel_get_axis(data, chan, val);
600                 default:
601                         return -EINVAL;
602                 }
603         case IIO_CHAN_INFO_OFFSET:
604                 if (chan->type == IIO_TEMP) {
605                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
606                         return IIO_VAL_INT;
607                 } else {
608                         return -EINVAL;
609                 }
610         case IIO_CHAN_INFO_SCALE:
611                 *val = 0;
612                 switch (chan->type) {
613                 case IIO_TEMP:
614                         *val2 = 500000;
615                         return IIO_VAL_INT_PLUS_MICRO;
616                 case IIO_ACCEL:
617                 {
618                         int i;
619                         const struct bmc150_scale_info *si;
620                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
621
622                         for (i = 0; i < st_size; ++i) {
623                                 si = &data->chip_info->scale_table[i];
624                                 if (si->reg_range == data->range) {
625                                         *val2 = si->scale;
626                                         return IIO_VAL_INT_PLUS_MICRO;
627                                 }
628                         }
629                         return -EINVAL;
630                 }
631                 default:
632                         return -EINVAL;
633                 }
634         case IIO_CHAN_INFO_SAMP_FREQ:
635                 mutex_lock(&data->mutex);
636                 ret = bmc150_accel_get_bw(data, val, val2);
637                 mutex_unlock(&data->mutex);
638                 return ret;
639         default:
640                 return -EINVAL;
641         }
642 }
643
644 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
645                                   struct iio_chan_spec const *chan,
646                                   int val, int val2, long mask)
647 {
648         struct bmc150_accel_data *data = iio_priv(indio_dev);
649         int ret;
650
651         switch (mask) {
652         case IIO_CHAN_INFO_SAMP_FREQ:
653                 mutex_lock(&data->mutex);
654                 ret = bmc150_accel_set_bw(data, val, val2);
655                 mutex_unlock(&data->mutex);
656                 break;
657         case IIO_CHAN_INFO_SCALE:
658                 if (val)
659                         return -EINVAL;
660
661                 mutex_lock(&data->mutex);
662                 ret = bmc150_accel_set_scale(data, val2);
663                 mutex_unlock(&data->mutex);
664                 return ret;
665         default:
666                 ret = -EINVAL;
667         }
668
669         return ret;
670 }
671
672 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
673                                    const struct iio_chan_spec *chan,
674                                    enum iio_event_type type,
675                                    enum iio_event_direction dir,
676                                    enum iio_event_info info,
677                                    int *val, int *val2)
678 {
679         struct bmc150_accel_data *data = iio_priv(indio_dev);
680
681         *val2 = 0;
682         switch (info) {
683         case IIO_EV_INFO_VALUE:
684                 *val = data->slope_thres;
685                 break;
686         case IIO_EV_INFO_PERIOD:
687                 *val = data->slope_dur;
688                 break;
689         default:
690                 return -EINVAL;
691         }
692
693         return IIO_VAL_INT;
694 }
695
696 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
697                                     const struct iio_chan_spec *chan,
698                                     enum iio_event_type type,
699                                     enum iio_event_direction dir,
700                                     enum iio_event_info info,
701                                     int val, int val2)
702 {
703         struct bmc150_accel_data *data = iio_priv(indio_dev);
704
705         if (data->ev_enable_state)
706                 return -EBUSY;
707
708         switch (info) {
709         case IIO_EV_INFO_VALUE:
710                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
711                 break;
712         case IIO_EV_INFO_PERIOD:
713                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
714                 break;
715         default:
716                 return -EINVAL;
717         }
718
719         return 0;
720 }
721
722 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
723                                           const struct iio_chan_spec *chan,
724                                           enum iio_event_type type,
725                                           enum iio_event_direction dir)
726 {
727         struct bmc150_accel_data *data = iio_priv(indio_dev);
728
729         return data->ev_enable_state;
730 }
731
732 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
733                                            const struct iio_chan_spec *chan,
734                                            enum iio_event_type type,
735                                            enum iio_event_direction dir,
736                                            int state)
737 {
738         struct bmc150_accel_data *data = iio_priv(indio_dev);
739         int ret;
740
741         if (state == data->ev_enable_state)
742                 return 0;
743
744         mutex_lock(&data->mutex);
745
746         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
747                                          state);
748         if (ret < 0) {
749                 mutex_unlock(&data->mutex);
750                 return ret;
751         }
752
753         data->ev_enable_state = state;
754         mutex_unlock(&data->mutex);
755
756         return 0;
757 }
758
759 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
760                                          struct iio_trigger *trig)
761 {
762         struct bmc150_accel_data *data = iio_priv(indio_dev);
763         int i;
764
765         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
766                 if (data->triggers[i].indio_trig == trig)
767                         return 0;
768         }
769
770         return -EINVAL;
771 }
772
773 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
774                                                struct device_attribute *attr,
775                                                char *buf)
776 {
777         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
778         struct bmc150_accel_data *data = iio_priv(indio_dev);
779         int wm;
780
781         mutex_lock(&data->mutex);
782         wm = data->watermark;
783         mutex_unlock(&data->mutex);
784
785         return sprintf(buf, "%d\n", wm);
786 }
787
788 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
789                                            struct device_attribute *attr,
790                                            char *buf)
791 {
792         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
793         struct bmc150_accel_data *data = iio_priv(indio_dev);
794         bool state;
795
796         mutex_lock(&data->mutex);
797         state = data->fifo_mode;
798         mutex_unlock(&data->mutex);
799
800         return sprintf(buf, "%d\n", state);
801 }
802
803 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
804 static IIO_CONST_ATTR(hwfifo_watermark_max,
805                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
806 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
807                        bmc150_accel_get_fifo_state, NULL, 0);
808 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
809                        bmc150_accel_get_fifo_watermark, NULL, 0);
810
811 static const struct attribute *bmc150_accel_fifo_attributes[] = {
812         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
813         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
814         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
815         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
816         NULL,
817 };
818
819 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
820 {
821         struct bmc150_accel_data *data = iio_priv(indio_dev);
822
823         if (val > BMC150_ACCEL_FIFO_LENGTH)
824                 val = BMC150_ACCEL_FIFO_LENGTH;
825
826         mutex_lock(&data->mutex);
827         data->watermark = val;
828         mutex_unlock(&data->mutex);
829
830         return 0;
831 }
832
833 /*
834  * We must read at least one full frame in one burst, otherwise the rest of the
835  * frame data is discarded.
836  */
837 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
838                                       char *buffer, int samples)
839 {
840         struct device *dev = regmap_get_device(data->regmap);
841         int sample_length = 3 * 2;
842         int ret;
843         int total_length = samples * sample_length;
844         int i;
845         size_t step = regmap_get_raw_read_max(data->regmap);
846
847         if (!step || step > total_length)
848                 step = total_length;
849         else if (step < total_length)
850                 step = sample_length;
851
852         /*
853          * Seems we have a bus with size limitation so we have to execute
854          * multiple reads
855          */
856         for (i = 0; i < total_length; i += step) {
857                 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
858                                       &buffer[i], step);
859                 if (ret)
860                         break;
861         }
862
863         if (ret)
864                 dev_err(dev,
865                         "Error transferring data from fifo in single steps of %zu\n",
866                         step);
867
868         return ret;
869 }
870
871 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
872                                      unsigned samples, bool irq)
873 {
874         struct bmc150_accel_data *data = iio_priv(indio_dev);
875         struct device *dev = regmap_get_device(data->regmap);
876         int ret, i;
877         u8 count;
878         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
879         int64_t tstamp;
880         uint64_t sample_period;
881         unsigned int val;
882
883         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
884         if (ret < 0) {
885                 dev_err(dev, "Error reading reg_fifo_status\n");
886                 return ret;
887         }
888
889         count = val & 0x7F;
890
891         if (!count)
892                 return 0;
893
894         /*
895          * If we getting called from IRQ handler we know the stored timestamp is
896          * fairly accurate for the last stored sample. Otherwise, if we are
897          * called as a result of a read operation from userspace and hence
898          * before the watermark interrupt was triggered, take a timestamp
899          * now. We can fall anywhere in between two samples so the error in this
900          * case is at most one sample period.
901          */
902         if (!irq) {
903                 data->old_timestamp = data->timestamp;
904                 data->timestamp = iio_get_time_ns(indio_dev);
905         }
906
907         /*
908          * Approximate timestamps for each of the sample based on the sampling
909          * frequency, timestamp for last sample and number of samples.
910          *
911          * Note that we can't use the current bandwidth settings to compute the
912          * sample period because the sample rate varies with the device
913          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
914          * small variation adds when we store a large number of samples and
915          * creates significant jitter between the last and first samples in
916          * different batches (e.g. 32ms vs 21ms).
917          *
918          * To avoid this issue we compute the actual sample period ourselves
919          * based on the timestamp delta between the last two flush operations.
920          */
921         sample_period = (data->timestamp - data->old_timestamp);
922         do_div(sample_period, count);
923         tstamp = data->timestamp - (count - 1) * sample_period;
924
925         if (samples && count > samples)
926                 count = samples;
927
928         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
929         if (ret)
930                 return ret;
931
932         /*
933          * Ideally we want the IIO core to handle the demux when running in fifo
934          * mode but not when running in triggered buffer mode. Unfortunately
935          * this does not seem to be possible, so stick with driver demux for
936          * now.
937          */
938         for (i = 0; i < count; i++) {
939                 u16 sample[8];
940                 int j, bit;
941
942                 j = 0;
943                 for_each_set_bit(bit, indio_dev->active_scan_mask,
944                                  indio_dev->masklength)
945                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
946
947                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
948
949                 tstamp += sample_period;
950         }
951
952         return count;
953 }
954
955 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
956 {
957         struct bmc150_accel_data *data = iio_priv(indio_dev);
958         int ret;
959
960         mutex_lock(&data->mutex);
961         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
962         mutex_unlock(&data->mutex);
963
964         return ret;
965 }
966
967 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
968                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
969
970 static struct attribute *bmc150_accel_attributes[] = {
971         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
972         NULL,
973 };
974
975 static const struct attribute_group bmc150_accel_attrs_group = {
976         .attrs = bmc150_accel_attributes,
977 };
978
979 static const struct iio_event_spec bmc150_accel_event = {
980                 .type = IIO_EV_TYPE_ROC,
981                 .dir = IIO_EV_DIR_EITHER,
982                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
983                                  BIT(IIO_EV_INFO_ENABLE) |
984                                  BIT(IIO_EV_INFO_PERIOD)
985 };
986
987 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
988         .type = IIO_ACCEL,                                              \
989         .modified = 1,                                                  \
990         .channel2 = IIO_MOD_##_axis,                                    \
991         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
992         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
993                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
994         .scan_index = AXIS_##_axis,                                     \
995         .scan_type = {                                                  \
996                 .sign = 's',                                            \
997                 .realbits = (bits),                                     \
998                 .storagebits = 16,                                      \
999                 .shift = 16 - (bits),                                   \
1000                 .endianness = IIO_LE,                                   \
1001         },                                                              \
1002         .event_spec = &bmc150_accel_event,                              \
1003         .num_event_specs = 1                                            \
1004 }
1005
1006 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
1007         {                                                               \
1008                 .type = IIO_TEMP,                                       \
1009                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1010                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1011                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1012                 .scan_index = -1,                                       \
1013         },                                                              \
1014         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1015         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1016         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1017         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1018 }
1019
1020 static const struct iio_chan_spec bma222e_accel_channels[] =
1021         BMC150_ACCEL_CHANNELS(8);
1022 static const struct iio_chan_spec bma250e_accel_channels[] =
1023         BMC150_ACCEL_CHANNELS(10);
1024 static const struct iio_chan_spec bmc150_accel_channels[] =
1025         BMC150_ACCEL_CHANNELS(12);
1026 static const struct iio_chan_spec bma280_accel_channels[] =
1027         BMC150_ACCEL_CHANNELS(14);
1028
1029 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1030         [bmc150] = {
1031                 .name = "BMC150A",
1032                 .chip_id = 0xFA,
1033                 .channels = bmc150_accel_channels,
1034                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1035                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1036                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1037                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1038                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1039         },
1040         [bmi055] = {
1041                 .name = "BMI055A",
1042                 .chip_id = 0xFA,
1043                 .channels = bmc150_accel_channels,
1044                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1045                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1046                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1047                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1048                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1049         },
1050         [bma255] = {
1051                 .name = "BMA0255",
1052                 .chip_id = 0xFA,
1053                 .channels = bmc150_accel_channels,
1054                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1055                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1056                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1057                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1058                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1059         },
1060         [bma250e] = {
1061                 .name = "BMA250E",
1062                 .chip_id = 0xF9,
1063                 .channels = bma250e_accel_channels,
1064                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1065                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1066                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1067                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1068                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1069         },
1070         [bma222e] = {
1071                 .name = "BMA222E",
1072                 .chip_id = 0xF8,
1073                 .channels = bma222e_accel_channels,
1074                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1075                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1076                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1077                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1078                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1079         },
1080         [bma280] = {
1081                 .name = "BMA0280",
1082                 .chip_id = 0xFB,
1083                 .channels = bma280_accel_channels,
1084                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1085                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1086                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1087                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1088                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1089         },
1090 };
1091
1092 static const struct iio_info bmc150_accel_info = {
1093         .attrs                  = &bmc150_accel_attrs_group,
1094         .read_raw               = bmc150_accel_read_raw,
1095         .write_raw              = bmc150_accel_write_raw,
1096         .read_event_value       = bmc150_accel_read_event,
1097         .write_event_value      = bmc150_accel_write_event,
1098         .write_event_config     = bmc150_accel_write_event_config,
1099         .read_event_config      = bmc150_accel_read_event_config,
1100         .driver_module          = THIS_MODULE,
1101 };
1102
1103 static const struct iio_info bmc150_accel_info_fifo = {
1104         .attrs                  = &bmc150_accel_attrs_group,
1105         .read_raw               = bmc150_accel_read_raw,
1106         .write_raw              = bmc150_accel_write_raw,
1107         .read_event_value       = bmc150_accel_read_event,
1108         .write_event_value      = bmc150_accel_write_event,
1109         .write_event_config     = bmc150_accel_write_event_config,
1110         .read_event_config      = bmc150_accel_read_event_config,
1111         .validate_trigger       = bmc150_accel_validate_trigger,
1112         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1113         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1114         .driver_module          = THIS_MODULE,
1115 };
1116
1117 static const unsigned long bmc150_accel_scan_masks[] = {
1118                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1119                                         0};
1120
1121 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1122 {
1123         struct iio_poll_func *pf = p;
1124         struct iio_dev *indio_dev = pf->indio_dev;
1125         struct bmc150_accel_data *data = iio_priv(indio_dev);
1126         int ret;
1127
1128         mutex_lock(&data->mutex);
1129         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1130                                data->buffer, AXIS_MAX * 2);
1131         mutex_unlock(&data->mutex);
1132         if (ret < 0)
1133                 goto err_read;
1134
1135         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1136                                            pf->timestamp);
1137 err_read:
1138         iio_trigger_notify_done(indio_dev->trig);
1139
1140         return IRQ_HANDLED;
1141 }
1142
1143 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1144 {
1145         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1146         struct bmc150_accel_data *data = t->data;
1147         struct device *dev = regmap_get_device(data->regmap);
1148         int ret;
1149
1150         /* new data interrupts don't need ack */
1151         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1152                 return 0;
1153
1154         mutex_lock(&data->mutex);
1155         /* clear any latched interrupt */
1156         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1157                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1158                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1159         mutex_unlock(&data->mutex);
1160         if (ret < 0) {
1161                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1162                 return ret;
1163         }
1164
1165         return 0;
1166 }
1167
1168 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1169                                           bool state)
1170 {
1171         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1172         struct bmc150_accel_data *data = t->data;
1173         int ret;
1174
1175         mutex_lock(&data->mutex);
1176
1177         if (t->enabled == state) {
1178                 mutex_unlock(&data->mutex);
1179                 return 0;
1180         }
1181
1182         if (t->setup) {
1183                 ret = t->setup(t, state);
1184                 if (ret < 0) {
1185                         mutex_unlock(&data->mutex);
1186                         return ret;
1187                 }
1188         }
1189
1190         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1191         if (ret < 0) {
1192                 mutex_unlock(&data->mutex);
1193                 return ret;
1194         }
1195
1196         t->enabled = state;
1197
1198         mutex_unlock(&data->mutex);
1199
1200         return ret;
1201 }
1202
1203 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1204         .set_trigger_state = bmc150_accel_trigger_set_state,
1205         .try_reenable = bmc150_accel_trig_try_reen,
1206         .owner = THIS_MODULE,
1207 };
1208
1209 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1210 {
1211         struct bmc150_accel_data *data = iio_priv(indio_dev);
1212         struct device *dev = regmap_get_device(data->regmap);
1213         int dir;
1214         int ret;
1215         unsigned int val;
1216
1217         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1218         if (ret < 0) {
1219                 dev_err(dev, "Error reading reg_int_status_2\n");
1220                 return ret;
1221         }
1222
1223         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1224                 dir = IIO_EV_DIR_FALLING;
1225         else
1226                 dir = IIO_EV_DIR_RISING;
1227
1228         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1229                 iio_push_event(indio_dev,
1230                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1231                                                   0,
1232                                                   IIO_MOD_X,
1233                                                   IIO_EV_TYPE_ROC,
1234                                                   dir),
1235                                data->timestamp);
1236
1237         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1238                 iio_push_event(indio_dev,
1239                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1240                                                   0,
1241                                                   IIO_MOD_Y,
1242                                                   IIO_EV_TYPE_ROC,
1243                                                   dir),
1244                                data->timestamp);
1245
1246         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1247                 iio_push_event(indio_dev,
1248                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1249                                                   0,
1250                                                   IIO_MOD_Z,
1251                                                   IIO_EV_TYPE_ROC,
1252                                                   dir),
1253                                data->timestamp);
1254
1255         return ret;
1256 }
1257
1258 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1259 {
1260         struct iio_dev *indio_dev = private;
1261         struct bmc150_accel_data *data = iio_priv(indio_dev);
1262         struct device *dev = regmap_get_device(data->regmap);
1263         bool ack = false;
1264         int ret;
1265
1266         mutex_lock(&data->mutex);
1267
1268         if (data->fifo_mode) {
1269                 ret = __bmc150_accel_fifo_flush(indio_dev,
1270                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1271                 if (ret > 0)
1272                         ack = true;
1273         }
1274
1275         if (data->ev_enable_state) {
1276                 ret = bmc150_accel_handle_roc_event(indio_dev);
1277                 if (ret > 0)
1278                         ack = true;
1279         }
1280
1281         if (ack) {
1282                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1283                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1284                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1285                 if (ret)
1286                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1287
1288                 ret = IRQ_HANDLED;
1289         } else {
1290                 ret = IRQ_NONE;
1291         }
1292
1293         mutex_unlock(&data->mutex);
1294
1295         return ret;
1296 }
1297
1298 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1299 {
1300         struct iio_dev *indio_dev = private;
1301         struct bmc150_accel_data *data = iio_priv(indio_dev);
1302         bool ack = false;
1303         int i;
1304
1305         data->old_timestamp = data->timestamp;
1306         data->timestamp = iio_get_time_ns(indio_dev);
1307
1308         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1309                 if (data->triggers[i].enabled) {
1310                         iio_trigger_poll(data->triggers[i].indio_trig);
1311                         ack = true;
1312                         break;
1313                 }
1314         }
1315
1316         if (data->ev_enable_state || data->fifo_mode)
1317                 return IRQ_WAKE_THREAD;
1318
1319         if (ack)
1320                 return IRQ_HANDLED;
1321
1322         return IRQ_NONE;
1323 }
1324
1325 static const struct {
1326         int intr;
1327         const char *name;
1328         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1329 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1330         {
1331                 .intr = 0,
1332                 .name = "%s-dev%d",
1333         },
1334         {
1335                 .intr = 1,
1336                 .name = "%s-any-motion-dev%d",
1337                 .setup = bmc150_accel_any_motion_setup,
1338         },
1339 };
1340
1341 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1342                                              int from)
1343 {
1344         int i;
1345
1346         for (i = from; i >= 0; i--) {
1347                 if (data->triggers[i].indio_trig) {
1348                         iio_trigger_unregister(data->triggers[i].indio_trig);
1349                         data->triggers[i].indio_trig = NULL;
1350                 }
1351         }
1352 }
1353
1354 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1355                                        struct bmc150_accel_data *data)
1356 {
1357         struct device *dev = regmap_get_device(data->regmap);
1358         int i, ret;
1359
1360         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1361                 struct bmc150_accel_trigger *t = &data->triggers[i];
1362
1363                 t->indio_trig = devm_iio_trigger_alloc(dev,
1364                                         bmc150_accel_triggers[i].name,
1365                                                        indio_dev->name,
1366                                                        indio_dev->id);
1367                 if (!t->indio_trig) {
1368                         ret = -ENOMEM;
1369                         break;
1370                 }
1371
1372                 t->indio_trig->dev.parent = dev;
1373                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1374                 t->intr = bmc150_accel_triggers[i].intr;
1375                 t->data = data;
1376                 t->setup = bmc150_accel_triggers[i].setup;
1377                 iio_trigger_set_drvdata(t->indio_trig, t);
1378
1379                 ret = iio_trigger_register(t->indio_trig);
1380                 if (ret)
1381                         break;
1382         }
1383
1384         if (ret)
1385                 bmc150_accel_unregister_triggers(data, i - 1);
1386
1387         return ret;
1388 }
1389
1390 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1391 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1392 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1393
1394 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1395 {
1396         struct device *dev = regmap_get_device(data->regmap);
1397         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1398         int ret;
1399
1400         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1401         if (ret < 0) {
1402                 dev_err(dev, "Error writing reg_fifo_config1\n");
1403                 return ret;
1404         }
1405
1406         if (!data->fifo_mode)
1407                 return 0;
1408
1409         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1410                            data->watermark);
1411         if (ret < 0)
1412                 dev_err(dev, "Error writing reg_fifo_config0\n");
1413
1414         return ret;
1415 }
1416
1417 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1418 {
1419         struct bmc150_accel_data *data = iio_priv(indio_dev);
1420
1421         return bmc150_accel_set_power_state(data, true);
1422 }
1423
1424 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1425 {
1426         struct bmc150_accel_data *data = iio_priv(indio_dev);
1427         int ret = 0;
1428
1429         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1430                 return iio_triggered_buffer_postenable(indio_dev);
1431
1432         mutex_lock(&data->mutex);
1433
1434         if (!data->watermark)
1435                 goto out;
1436
1437         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1438                                          true);
1439         if (ret)
1440                 goto out;
1441
1442         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1443
1444         ret = bmc150_accel_fifo_set_mode(data);
1445         if (ret) {
1446                 data->fifo_mode = 0;
1447                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1448                                            false);
1449         }
1450
1451 out:
1452         mutex_unlock(&data->mutex);
1453
1454         return ret;
1455 }
1456
1457 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1458 {
1459         struct bmc150_accel_data *data = iio_priv(indio_dev);
1460
1461         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1462                 return iio_triggered_buffer_predisable(indio_dev);
1463
1464         mutex_lock(&data->mutex);
1465
1466         if (!data->fifo_mode)
1467                 goto out;
1468
1469         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1470         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1471         data->fifo_mode = 0;
1472         bmc150_accel_fifo_set_mode(data);
1473
1474 out:
1475         mutex_unlock(&data->mutex);
1476
1477         return 0;
1478 }
1479
1480 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1481 {
1482         struct bmc150_accel_data *data = iio_priv(indio_dev);
1483
1484         return bmc150_accel_set_power_state(data, false);
1485 }
1486
1487 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1488         .preenable = bmc150_accel_buffer_preenable,
1489         .postenable = bmc150_accel_buffer_postenable,
1490         .predisable = bmc150_accel_buffer_predisable,
1491         .postdisable = bmc150_accel_buffer_postdisable,
1492 };
1493
1494 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1495 {
1496         struct device *dev = regmap_get_device(data->regmap);
1497         int ret, i;
1498         unsigned int val;
1499
1500         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1501         if (ret < 0) {
1502                 dev_err(dev, "Error: Reading chip id\n");
1503                 return ret;
1504         }
1505
1506         dev_dbg(dev, "Chip Id %x\n", val);
1507         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1508                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1509                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1510                         break;
1511                 }
1512         }
1513
1514         if (!data->chip_info) {
1515                 dev_err(dev, "Invalid chip %x\n", val);
1516                 return -ENODEV;
1517         }
1518
1519         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1520         if (ret < 0)
1521                 return ret;
1522
1523         /* Set Bandwidth */
1524         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1525         if (ret < 0)
1526                 return ret;
1527
1528         /* Set Default Range */
1529         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1530                            BMC150_ACCEL_DEF_RANGE_4G);
1531         if (ret < 0) {
1532                 dev_err(dev, "Error writing reg_pmu_range\n");
1533                 return ret;
1534         }
1535
1536         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1537
1538         /* Set default slope duration and thresholds */
1539         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1540         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1541         ret = bmc150_accel_update_slope(data);
1542         if (ret < 0)
1543                 return ret;
1544
1545         /* Set default as latched interrupts */
1546         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1547                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1548                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1549         if (ret < 0) {
1550                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1551                 return ret;
1552         }
1553
1554         return 0;
1555 }
1556
1557 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1558                             const char *name, bool block_supported)
1559 {
1560         struct bmc150_accel_data *data;
1561         struct iio_dev *indio_dev;
1562         int ret;
1563
1564         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1565         if (!indio_dev)
1566                 return -ENOMEM;
1567
1568         data = iio_priv(indio_dev);
1569         dev_set_drvdata(dev, indio_dev);
1570         data->irq = irq;
1571
1572         data->regmap = regmap;
1573
1574         ret = bmc150_accel_chip_init(data);
1575         if (ret < 0)
1576                 return ret;
1577
1578         mutex_init(&data->mutex);
1579
1580         indio_dev->dev.parent = dev;
1581         indio_dev->channels = data->chip_info->channels;
1582         indio_dev->num_channels = data->chip_info->num_channels;
1583         indio_dev->name = name ? name : data->chip_info->name;
1584         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1585         indio_dev->modes = INDIO_DIRECT_MODE;
1586         indio_dev->info = &bmc150_accel_info;
1587
1588         ret = iio_triggered_buffer_setup(indio_dev,
1589                                          &iio_pollfunc_store_time,
1590                                          bmc150_accel_trigger_handler,
1591                                          &bmc150_accel_buffer_ops);
1592         if (ret < 0) {
1593                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1594                 return ret;
1595         }
1596
1597         if (data->irq > 0) {
1598                 ret = devm_request_threaded_irq(
1599                                                 dev, data->irq,
1600                                                 bmc150_accel_irq_handler,
1601                                                 bmc150_accel_irq_thread_handler,
1602                                                 IRQF_TRIGGER_RISING,
1603                                                 BMC150_ACCEL_IRQ_NAME,
1604                                                 indio_dev);
1605                 if (ret)
1606                         goto err_buffer_cleanup;
1607
1608                 /*
1609                  * Set latched mode interrupt. While certain interrupts are
1610                  * non-latched regardless of this settings (e.g. new data) we
1611                  * want to use latch mode when we can to prevent interrupt
1612                  * flooding.
1613                  */
1614                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1615                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1616                 if (ret < 0) {
1617                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1618                         goto err_buffer_cleanup;
1619                 }
1620
1621                 bmc150_accel_interrupts_setup(indio_dev, data);
1622
1623                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1624                 if (ret)
1625                         goto err_buffer_cleanup;
1626
1627                 if (block_supported) {
1628                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1629                         indio_dev->info = &bmc150_accel_info_fifo;
1630                         indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1631                 }
1632         }
1633
1634         ret = pm_runtime_set_active(dev);
1635         if (ret)
1636                 goto err_trigger_unregister;
1637
1638         pm_runtime_enable(dev);
1639         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1640         pm_runtime_use_autosuspend(dev);
1641
1642         ret = iio_device_register(indio_dev);
1643         if (ret < 0) {
1644                 dev_err(dev, "Unable to register iio device\n");
1645                 goto err_trigger_unregister;
1646         }
1647
1648         return 0;
1649
1650 err_trigger_unregister:
1651         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1652 err_buffer_cleanup:
1653         iio_triggered_buffer_cleanup(indio_dev);
1654
1655         return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1658
1659 int bmc150_accel_core_remove(struct device *dev)
1660 {
1661         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1662         struct bmc150_accel_data *data = iio_priv(indio_dev);
1663
1664         iio_device_unregister(indio_dev);
1665
1666         pm_runtime_disable(dev);
1667         pm_runtime_set_suspended(dev);
1668         pm_runtime_put_noidle(dev);
1669
1670         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1671
1672         iio_triggered_buffer_cleanup(indio_dev);
1673
1674         mutex_lock(&data->mutex);
1675         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1676         mutex_unlock(&data->mutex);
1677
1678         return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1681
1682 #ifdef CONFIG_PM_SLEEP
1683 static int bmc150_accel_suspend(struct device *dev)
1684 {
1685         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1686         struct bmc150_accel_data *data = iio_priv(indio_dev);
1687
1688         mutex_lock(&data->mutex);
1689         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1690         mutex_unlock(&data->mutex);
1691
1692         return 0;
1693 }
1694
1695 static int bmc150_accel_resume(struct device *dev)
1696 {
1697         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698         struct bmc150_accel_data *data = iio_priv(indio_dev);
1699
1700         mutex_lock(&data->mutex);
1701         if (atomic_read(&data->active_intr))
1702                 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1703         bmc150_accel_fifo_set_mode(data);
1704         mutex_unlock(&data->mutex);
1705
1706         return 0;
1707 }
1708 #endif
1709
1710 #ifdef CONFIG_PM
1711 static int bmc150_accel_runtime_suspend(struct device *dev)
1712 {
1713         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1714         struct bmc150_accel_data *data = iio_priv(indio_dev);
1715         int ret;
1716
1717         dev_dbg(dev,  __func__);
1718         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1719         if (ret < 0)
1720                 return -EAGAIN;
1721
1722         return 0;
1723 }
1724
1725 static int bmc150_accel_runtime_resume(struct device *dev)
1726 {
1727         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1728         struct bmc150_accel_data *data = iio_priv(indio_dev);
1729         int ret;
1730         int sleep_val;
1731
1732         dev_dbg(dev,  __func__);
1733
1734         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1735         if (ret < 0)
1736                 return ret;
1737         ret = bmc150_accel_fifo_set_mode(data);
1738         if (ret < 0)
1739                 return ret;
1740
1741         sleep_val = bmc150_accel_get_startup_times(data);
1742         if (sleep_val < 20)
1743                 usleep_range(sleep_val * 1000, 20000);
1744         else
1745                 msleep_interruptible(sleep_val);
1746
1747         return 0;
1748 }
1749 #endif
1750
1751 const struct dev_pm_ops bmc150_accel_pm_ops = {
1752         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1753         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1754                            bmc150_accel_runtime_resume, NULL)
1755 };
1756 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1757
1758 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1759 MODULE_LICENSE("GPL v2");
1760 MODULE_DESCRIPTION("BMC150 accelerometer driver");