staging/lustre: Disable InfiniBand support
[cascardo/linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66                    S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73                  "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82                  "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103                  "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107                    uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109                  "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135         struct sdma_txreq *cookie,
136         int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139                     struct send_context *sc,
140                     struct hfi1_pkt_state *ps,
141                     u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155         unsigned long *entries;
156         atomic_t total_count;
157         atomic_t clean_counter;
158         atomic_t clean_entry;
159
160         int threshold;
161         int num_entries;
162         long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169         long llc_size;
170         long llc_bits;
171         long table_size;
172         long table_bits;
173
174         /* check for a valid percent range - default to 80 if none or invalid */
175         if (wss_threshold < 1 || wss_threshold > 100)
176                 wss_threshold = 80;
177         /* reject a wildly large period */
178         if (wss_clean_period > 1000000)
179                 wss_clean_period = 256;
180         /* reject a zero period */
181         if (wss_clean_period == 0)
182                 wss_clean_period = 1;
183
184         /*
185          * Calculate the table size - the next power of 2 larger than the
186          * LLC size.  LLC size is in KiB.
187          */
188         llc_size = wss_llc_size() * 1024;
189         table_size = roundup_pow_of_two(llc_size);
190
191         /* one bit per page in rounded up table */
192         llc_bits = llc_size / PAGE_SIZE;
193         table_bits = table_size / PAGE_SIZE;
194         wss.pages_mask = table_bits - 1;
195         wss.num_entries = table_bits / BITS_PER_LONG;
196
197         wss.threshold = (llc_bits * wss_threshold) / 100;
198         if (wss.threshold == 0)
199                 wss.threshold = 1;
200
201         atomic_set(&wss.clean_counter, wss_clean_period);
202
203         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204                               GFP_KERNEL);
205         if (!wss.entries) {
206                 hfi1_wss_exit();
207                 return -ENOMEM;
208         }
209
210         return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215         /* coded to handle partially initialized and repeat callers */
216         kfree(wss.entries);
217         wss.entries = NULL;
218 }
219
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237         int entry;
238         int weight;
239         unsigned long bits;
240
241         /* become the cleaner if we decrement the counter to zero */
242         if (atomic_dec_and_test(&wss.clean_counter)) {
243                 /*
244                  * Set, not add, the clean period.  This avoids an issue
245                  * where the counter could decrement below the clean period.
246                  * Doing a set can result in lost decrements, slowing the
247                  * clean advance.  Since this a heuristic, this possible
248                  * slowdown is OK.
249                  *
250                  * An alternative is to loop, advancing the counter by a
251                  * clean period until the result is > 0. However, this could
252                  * lead to several threads keeping another in the clean loop.
253                  * This could be mitigated by limiting the number of times
254                  * we stay in the loop.
255                  */
256                 atomic_set(&wss.clean_counter, wss_clean_period);
257
258                 /*
259                  * Uniquely grab the entry to clean and move to next.
260                  * The current entry is always the lower bits of
261                  * wss.clean_entry.  The table size, wss.num_entries,
262                  * is always a power-of-2.
263                  */
264                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265                         & (wss.num_entries - 1);
266
267                 /* clear the entry and count the bits */
268                 bits = xchg(&wss.entries[entry], 0);
269                 weight = hweight64((u64)bits);
270                 /* only adjust the contended total count if needed */
271                 if (weight)
272                         atomic_sub(weight, &wss.total_count);
273         }
274 }
275
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283         u32 nr = page & (BITS_PER_LONG - 1);
284
285         if (!test_and_set_bit(nr, &wss.entries[entry]))
286                 atomic_inc(&wss.total_count);
287
288         wss_advance_clean_counter();
289 }
290
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296         return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305         [IB_WR_SEND] = IB_WC_SEND,
306         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
310         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
311         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
312         [IB_WR_REG_MR] = IB_WC_REG_MR
313 };
314
315 /*
316  * Length of header by opcode, 0 --> not supported
317  */
318 const u8 hdr_len_by_opcode[256] = {
319         /* RC */
320         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
321         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
322         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
323         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
324         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
325         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
326         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
327         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
328         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
329         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
331         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
332         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
333         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
334         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
335         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
336         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
337         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
338         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
339         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
340         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
341         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
342         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
343         /* UC */
344         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
345         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
346         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
347         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
348         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
349         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
350         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
351         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
352         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
353         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
355         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
356         /* UD */
357         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
358         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
359 };
360
361 static const opcode_handler opcode_handler_tbl[256] = {
362         /* RC */
363         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
381         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
382         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
383         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
384         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
385         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
386         /* UC */
387         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
388         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
389         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
394         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
395         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
396         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
398         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399         /* UD */
400         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
401         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
402         /* CNP */
403         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
404 };
405
406 /*
407  * System image GUID.
408  */
409 __be64 ib_hfi1_sys_image_guid;
410
411 /**
412  * hfi1_copy_sge - copy data to SGE memory
413  * @ss: the SGE state
414  * @data: the data to copy
415  * @length: the length of the data
416  * @copy_last: do a separate copy of the last 8 bytes
417  */
418 void hfi1_copy_sge(
419         struct rvt_sge_state *ss,
420         void *data, u32 length,
421         int release,
422         int copy_last)
423 {
424         struct rvt_sge *sge = &ss->sge;
425         int in_last = 0;
426         int i;
427         int cacheless_copy = 0;
428
429         if (sge_copy_mode == COPY_CACHELESS) {
430                 cacheless_copy = length >= PAGE_SIZE;
431         } else if (sge_copy_mode == COPY_ADAPTIVE) {
432                 if (length >= PAGE_SIZE) {
433                         /*
434                          * NOTE: this *assumes*:
435                          * o The first vaddr is the dest.
436                          * o If multiple pages, then vaddr is sequential.
437                          */
438                         wss_insert(sge->vaddr);
439                         if (length >= (2 * PAGE_SIZE))
440                                 wss_insert(sge->vaddr + PAGE_SIZE);
441
442                         cacheless_copy = wss_exceeds_threshold();
443                 } else {
444                         wss_advance_clean_counter();
445                 }
446         }
447         if (copy_last) {
448                 if (length > 8) {
449                         length -= 8;
450                 } else {
451                         copy_last = 0;
452                         in_last = 1;
453                 }
454         }
455
456 again:
457         while (length) {
458                 u32 len = sge->length;
459
460                 if (len > length)
461                         len = length;
462                 if (len > sge->sge_length)
463                         len = sge->sge_length;
464                 WARN_ON_ONCE(len == 0);
465                 if (unlikely(in_last)) {
466                         /* enforce byte transfer ordering */
467                         for (i = 0; i < len; i++)
468                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
469                 } else if (cacheless_copy) {
470                         cacheless_memcpy(sge->vaddr, data, len);
471                 } else {
472                         memcpy(sge->vaddr, data, len);
473                 }
474                 sge->vaddr += len;
475                 sge->length -= len;
476                 sge->sge_length -= len;
477                 if (sge->sge_length == 0) {
478                         if (release)
479                                 rvt_put_mr(sge->mr);
480                         if (--ss->num_sge)
481                                 *sge = *ss->sg_list++;
482                 } else if (sge->length == 0 && sge->mr->lkey) {
483                         if (++sge->n >= RVT_SEGSZ) {
484                                 if (++sge->m >= sge->mr->mapsz)
485                                         break;
486                                 sge->n = 0;
487                         }
488                         sge->vaddr =
489                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
490                         sge->length =
491                                 sge->mr->map[sge->m]->segs[sge->n].length;
492                 }
493                 data += len;
494                 length -= len;
495         }
496
497         if (copy_last) {
498                 copy_last = 0;
499                 in_last = 1;
500                 length = 8;
501                 goto again;
502         }
503 }
504
505 /**
506  * hfi1_skip_sge - skip over SGE memory
507  * @ss: the SGE state
508  * @length: the number of bytes to skip
509  */
510 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
511 {
512         struct rvt_sge *sge = &ss->sge;
513
514         while (length) {
515                 u32 len = sge->length;
516
517                 if (len > length)
518                         len = length;
519                 if (len > sge->sge_length)
520                         len = sge->sge_length;
521                 WARN_ON_ONCE(len == 0);
522                 sge->vaddr += len;
523                 sge->length -= len;
524                 sge->sge_length -= len;
525                 if (sge->sge_length == 0) {
526                         if (release)
527                                 rvt_put_mr(sge->mr);
528                         if (--ss->num_sge)
529                                 *sge = *ss->sg_list++;
530                 } else if (sge->length == 0 && sge->mr->lkey) {
531                         if (++sge->n >= RVT_SEGSZ) {
532                                 if (++sge->m >= sge->mr->mapsz)
533                                         break;
534                                 sge->n = 0;
535                         }
536                         sge->vaddr =
537                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
538                         sge->length =
539                                 sge->mr->map[sge->m]->segs[sge->n].length;
540                 }
541                 length -= len;
542         }
543 }
544
545 /*
546  * Make sure the QP is ready and able to accept the given opcode.
547  */
548 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
549 {
550         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
551                 return NULL;
552         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
553             (opcode == IB_OPCODE_CNP))
554                 return opcode_handler_tbl[opcode];
555
556         return NULL;
557 }
558
559 /**
560  * hfi1_ib_rcv - process an incoming packet
561  * @packet: data packet information
562  *
563  * This is called to process an incoming packet at interrupt level.
564  *
565  * Tlen is the length of the header + data + CRC in bytes.
566  */
567 void hfi1_ib_rcv(struct hfi1_packet *packet)
568 {
569         struct hfi1_ctxtdata *rcd = packet->rcd;
570         struct hfi1_ib_header *hdr = packet->hdr;
571         u32 tlen = packet->tlen;
572         struct hfi1_pportdata *ppd = rcd->ppd;
573         struct hfi1_ibport *ibp = &ppd->ibport_data;
574         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
575         opcode_handler packet_handler;
576         unsigned long flags;
577         u32 qp_num;
578         int lnh;
579         u8 opcode;
580         u16 lid;
581
582         /* Check for GRH */
583         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
584         if (lnh == HFI1_LRH_BTH) {
585                 packet->ohdr = &hdr->u.oth;
586         } else if (lnh == HFI1_LRH_GRH) {
587                 u32 vtf;
588
589                 packet->ohdr = &hdr->u.l.oth;
590                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
591                         goto drop;
592                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
593                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
594                         goto drop;
595                 packet->rcv_flags |= HFI1_HAS_GRH;
596         } else {
597                 goto drop;
598         }
599
600         trace_input_ibhdr(rcd->dd, hdr);
601
602         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
603         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
604
605         /* Get the destination QP number. */
606         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
607         lid = be16_to_cpu(hdr->lrh[1]);
608         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
609                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
610                 struct rvt_mcast *mcast;
611                 struct rvt_mcast_qp *p;
612
613                 if (lnh != HFI1_LRH_GRH)
614                         goto drop;
615                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
616                 if (!mcast)
617                         goto drop;
618                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
619                         packet->qp = p->qp;
620                         spin_lock_irqsave(&packet->qp->r_lock, flags);
621                         packet_handler = qp_ok(opcode, packet);
622                         if (likely(packet_handler))
623                                 packet_handler(packet);
624                         else
625                                 ibp->rvp.n_pkt_drops++;
626                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
627                 }
628                 /*
629                  * Notify rvt_multicast_detach() if it is waiting for us
630                  * to finish.
631                  */
632                 if (atomic_dec_return(&mcast->refcount) <= 1)
633                         wake_up(&mcast->wait);
634         } else {
635                 rcu_read_lock();
636                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
637                 if (!packet->qp) {
638                         rcu_read_unlock();
639                         goto drop;
640                 }
641                 spin_lock_irqsave(&packet->qp->r_lock, flags);
642                 packet_handler = qp_ok(opcode, packet);
643                 if (likely(packet_handler))
644                         packet_handler(packet);
645                 else
646                         ibp->rvp.n_pkt_drops++;
647                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
648                 rcu_read_unlock();
649         }
650         return;
651
652 drop:
653         ibp->rvp.n_pkt_drops++;
654 }
655
656 /*
657  * This is called from a timer to check for QPs
658  * which need kernel memory in order to send a packet.
659  */
660 static void mem_timer(unsigned long data)
661 {
662         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
663         struct list_head *list = &dev->memwait;
664         struct rvt_qp *qp = NULL;
665         struct iowait *wait;
666         unsigned long flags;
667         struct hfi1_qp_priv *priv;
668
669         write_seqlock_irqsave(&dev->iowait_lock, flags);
670         if (!list_empty(list)) {
671                 wait = list_first_entry(list, struct iowait, list);
672                 qp = iowait_to_qp(wait);
673                 priv = qp->priv;
674                 list_del_init(&priv->s_iowait.list);
675                 /* refcount held until actual wake up */
676                 if (!list_empty(list))
677                         mod_timer(&dev->mem_timer, jiffies + 1);
678         }
679         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
680
681         if (qp)
682                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
683 }
684
685 void update_sge(struct rvt_sge_state *ss, u32 length)
686 {
687         struct rvt_sge *sge = &ss->sge;
688
689         sge->vaddr += length;
690         sge->length -= length;
691         sge->sge_length -= length;
692         if (sge->sge_length == 0) {
693                 if (--ss->num_sge)
694                         *sge = *ss->sg_list++;
695         } else if (sge->length == 0 && sge->mr->lkey) {
696                 if (++sge->n >= RVT_SEGSZ) {
697                         if (++sge->m >= sge->mr->mapsz)
698                                 return;
699                         sge->n = 0;
700                 }
701                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
702                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
703         }
704 }
705
706 /*
707  * This is called with progress side lock held.
708  */
709 /* New API */
710 static void verbs_sdma_complete(
711         struct sdma_txreq *cookie,
712         int status)
713 {
714         struct verbs_txreq *tx =
715                 container_of(cookie, struct verbs_txreq, txreq);
716         struct rvt_qp *qp = tx->qp;
717
718         spin_lock(&qp->s_lock);
719         if (tx->wqe) {
720                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
721         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
722                 struct hfi1_ib_header *hdr;
723
724                 hdr = &tx->phdr.hdr;
725                 hfi1_rc_send_complete(qp, hdr);
726         }
727         spin_unlock(&qp->s_lock);
728
729         hfi1_put_txreq(tx);
730 }
731
732 static int wait_kmem(struct hfi1_ibdev *dev,
733                      struct rvt_qp *qp,
734                      struct hfi1_pkt_state *ps)
735 {
736         struct hfi1_qp_priv *priv = qp->priv;
737         unsigned long flags;
738         int ret = 0;
739
740         spin_lock_irqsave(&qp->s_lock, flags);
741         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
742                 write_seqlock(&dev->iowait_lock);
743                 list_add_tail(&ps->s_txreq->txreq.list,
744                               &priv->s_iowait.tx_head);
745                 if (list_empty(&priv->s_iowait.list)) {
746                         if (list_empty(&dev->memwait))
747                                 mod_timer(&dev->mem_timer, jiffies + 1);
748                         qp->s_flags |= RVT_S_WAIT_KMEM;
749                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
750                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
751                         atomic_inc(&qp->refcount);
752                 }
753                 write_sequnlock(&dev->iowait_lock);
754                 qp->s_flags &= ~RVT_S_BUSY;
755                 ret = -EBUSY;
756         }
757         spin_unlock_irqrestore(&qp->s_lock, flags);
758
759         return ret;
760 }
761
762 /*
763  * This routine calls txadds for each sg entry.
764  *
765  * Add failures will revert the sge cursor
766  */
767 static noinline int build_verbs_ulp_payload(
768         struct sdma_engine *sde,
769         struct rvt_sge_state *ss,
770         u32 length,
771         struct verbs_txreq *tx)
772 {
773         struct rvt_sge *sg_list = ss->sg_list;
774         struct rvt_sge sge = ss->sge;
775         u8 num_sge = ss->num_sge;
776         u32 len;
777         int ret = 0;
778
779         while (length) {
780                 len = ss->sge.length;
781                 if (len > length)
782                         len = length;
783                 if (len > ss->sge.sge_length)
784                         len = ss->sge.sge_length;
785                 WARN_ON_ONCE(len == 0);
786                 ret = sdma_txadd_kvaddr(
787                         sde->dd,
788                         &tx->txreq,
789                         ss->sge.vaddr,
790                         len);
791                 if (ret)
792                         goto bail_txadd;
793                 update_sge(ss, len);
794                 length -= len;
795         }
796         return ret;
797 bail_txadd:
798         /* unwind cursor */
799         ss->sge = sge;
800         ss->num_sge = num_sge;
801         ss->sg_list = sg_list;
802         return ret;
803 }
804
805 /*
806  * Build the number of DMA descriptors needed to send length bytes of data.
807  *
808  * NOTE: DMA mapping is held in the tx until completed in the ring or
809  *       the tx desc is freed without having been submitted to the ring
810  *
811  * This routine ensures all the helper routine calls succeed.
812  */
813 /* New API */
814 static int build_verbs_tx_desc(
815         struct sdma_engine *sde,
816         struct rvt_sge_state *ss,
817         u32 length,
818         struct verbs_txreq *tx,
819         struct hfi1_ahg_info *ahg_info,
820         u64 pbc)
821 {
822         int ret = 0;
823         struct hfi1_sdma_header *phdr = &tx->phdr;
824         u16 hdrbytes = tx->hdr_dwords << 2;
825
826         if (!ahg_info->ahgcount) {
827                 ret = sdma_txinit_ahg(
828                         &tx->txreq,
829                         ahg_info->tx_flags,
830                         hdrbytes + length,
831                         ahg_info->ahgidx,
832                         0,
833                         NULL,
834                         0,
835                         verbs_sdma_complete);
836                 if (ret)
837                         goto bail_txadd;
838                 phdr->pbc = cpu_to_le64(pbc);
839                 ret = sdma_txadd_kvaddr(
840                         sde->dd,
841                         &tx->txreq,
842                         phdr,
843                         hdrbytes);
844                 if (ret)
845                         goto bail_txadd;
846         } else {
847                 ret = sdma_txinit_ahg(
848                         &tx->txreq,
849                         ahg_info->tx_flags,
850                         length,
851                         ahg_info->ahgidx,
852                         ahg_info->ahgcount,
853                         ahg_info->ahgdesc,
854                         hdrbytes,
855                         verbs_sdma_complete);
856                 if (ret)
857                         goto bail_txadd;
858         }
859
860         /* add the ulp payload - if any.  ss can be NULL for acks */
861         if (ss)
862                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
863 bail_txadd:
864         return ret;
865 }
866
867 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
868                         u64 pbc)
869 {
870         struct hfi1_qp_priv *priv = qp->priv;
871         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
872         u32 hdrwords = qp->s_hdrwords;
873         struct rvt_sge_state *ss = qp->s_cur_sge;
874         u32 len = qp->s_cur_size;
875         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
876         struct hfi1_ibdev *dev = ps->dev;
877         struct hfi1_pportdata *ppd = ps->ppd;
878         struct verbs_txreq *tx;
879         u64 pbc_flags = 0;
880         u8 sc5 = priv->s_sc;
881
882         int ret;
883
884         tx = ps->s_txreq;
885         if (!sdma_txreq_built(&tx->txreq)) {
886                 if (likely(pbc == 0)) {
887                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
888                         /* No vl15 here */
889                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
890                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
891
892                         pbc = create_pbc(ppd,
893                                          pbc_flags,
894                                          qp->srate_mbps,
895                                          vl,
896                                          plen);
897                 }
898                 tx->wqe = qp->s_wqe;
899                 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
900                 if (unlikely(ret))
901                         goto bail_build;
902         }
903         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
904         if (unlikely(ret < 0)) {
905                 if (ret == -ECOMM)
906                         goto bail_ecomm;
907                 return ret;
908         }
909         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
910                                 &ps->s_txreq->phdr.hdr);
911         return ret;
912
913 bail_ecomm:
914         /* The current one got "sent" */
915         return 0;
916 bail_build:
917         ret = wait_kmem(dev, qp, ps);
918         if (!ret) {
919                 /* free txreq - bad state */
920                 hfi1_put_txreq(ps->s_txreq);
921                 ps->s_txreq = NULL;
922         }
923         return ret;
924 }
925
926 /*
927  * If we are now in the error state, return zero to flush the
928  * send work request.
929  */
930 static int pio_wait(struct rvt_qp *qp,
931                     struct send_context *sc,
932                     struct hfi1_pkt_state *ps,
933                     u32 flag)
934 {
935         struct hfi1_qp_priv *priv = qp->priv;
936         struct hfi1_devdata *dd = sc->dd;
937         struct hfi1_ibdev *dev = &dd->verbs_dev;
938         unsigned long flags;
939         int ret = 0;
940
941         /*
942          * Note that as soon as want_buffer() is called and
943          * possibly before it returns, sc_piobufavail()
944          * could be called. Therefore, put QP on the I/O wait list before
945          * enabling the PIO avail interrupt.
946          */
947         spin_lock_irqsave(&qp->s_lock, flags);
948         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
949                 write_seqlock(&dev->iowait_lock);
950                 list_add_tail(&ps->s_txreq->txreq.list,
951                               &priv->s_iowait.tx_head);
952                 if (list_empty(&priv->s_iowait.list)) {
953                         struct hfi1_ibdev *dev = &dd->verbs_dev;
954                         int was_empty;
955
956                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
957                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
958                         qp->s_flags |= flag;
959                         was_empty = list_empty(&sc->piowait);
960                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
961                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
962                         atomic_inc(&qp->refcount);
963                         /* counting: only call wantpiobuf_intr if first user */
964                         if (was_empty)
965                                 hfi1_sc_wantpiobuf_intr(sc, 1);
966                 }
967                 write_sequnlock(&dev->iowait_lock);
968                 qp->s_flags &= ~RVT_S_BUSY;
969                 ret = -EBUSY;
970         }
971         spin_unlock_irqrestore(&qp->s_lock, flags);
972         return ret;
973 }
974
975 static void verbs_pio_complete(void *arg, int code)
976 {
977         struct rvt_qp *qp = (struct rvt_qp *)arg;
978         struct hfi1_qp_priv *priv = qp->priv;
979
980         if (iowait_pio_dec(&priv->s_iowait))
981                 iowait_drain_wakeup(&priv->s_iowait);
982 }
983
984 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
985                         u64 pbc)
986 {
987         struct hfi1_qp_priv *priv = qp->priv;
988         u32 hdrwords = qp->s_hdrwords;
989         struct rvt_sge_state *ss = qp->s_cur_sge;
990         u32 len = qp->s_cur_size;
991         u32 dwords = (len + 3) >> 2;
992         u32 plen = hdrwords + dwords + 2; /* includes pbc */
993         struct hfi1_pportdata *ppd = ps->ppd;
994         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
995         u64 pbc_flags = 0;
996         u8 sc5;
997         unsigned long flags = 0;
998         struct send_context *sc;
999         struct pio_buf *pbuf;
1000         int wc_status = IB_WC_SUCCESS;
1001         int ret = 0;
1002         pio_release_cb cb = NULL;
1003
1004         /* only RC/UC use complete */
1005         switch (qp->ibqp.qp_type) {
1006         case IB_QPT_RC:
1007         case IB_QPT_UC:
1008                 cb = verbs_pio_complete;
1009                 break;
1010         default:
1011                 break;
1012         }
1013
1014         /* vl15 special case taken care of in ud.c */
1015         sc5 = priv->s_sc;
1016         sc = ps->s_txreq->psc;
1017
1018         if (likely(pbc == 0)) {
1019                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1020                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1021                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1022                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1023         }
1024         if (cb)
1025                 iowait_pio_inc(&priv->s_iowait);
1026         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1027         if (unlikely(!pbuf)) {
1028                 if (cb)
1029                         verbs_pio_complete(qp, 0);
1030                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1031                         /*
1032                          * If we have filled the PIO buffers to capacity and are
1033                          * not in an active state this request is not going to
1034                          * go out to so just complete it with an error or else a
1035                          * ULP or the core may be stuck waiting.
1036                          */
1037                         hfi1_cdbg(
1038                                 PIO,
1039                                 "alloc failed. state not active, completing");
1040                         wc_status = IB_WC_GENERAL_ERR;
1041                         goto pio_bail;
1042                 } else {
1043                         /*
1044                          * This is a normal occurrence. The PIO buffs are full
1045                          * up but we are still happily sending, well we could be
1046                          * so lets continue to queue the request.
1047                          */
1048                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1049                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1050                         if (!ret)
1051                                 /* txreq not queued - free */
1052                                 goto bail;
1053                         /* tx consumed in wait */
1054                         return ret;
1055                 }
1056         }
1057
1058         if (len == 0) {
1059                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1060         } else {
1061                 if (ss) {
1062                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1063                         while (len) {
1064                                 void *addr = ss->sge.vaddr;
1065                                 u32 slen = ss->sge.length;
1066
1067                                 if (slen > len)
1068                                         slen = len;
1069                                 update_sge(ss, slen);
1070                                 seg_pio_copy_mid(pbuf, addr, slen);
1071                                 len -= slen;
1072                         }
1073                         seg_pio_copy_end(pbuf);
1074                 }
1075         }
1076
1077         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1078                                &ps->s_txreq->phdr.hdr);
1079
1080 pio_bail:
1081         if (qp->s_wqe) {
1082                 spin_lock_irqsave(&qp->s_lock, flags);
1083                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1084                 spin_unlock_irqrestore(&qp->s_lock, flags);
1085         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1086                 spin_lock_irqsave(&qp->s_lock, flags);
1087                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1088                 spin_unlock_irqrestore(&qp->s_lock, flags);
1089         }
1090
1091         ret = 0;
1092
1093 bail:
1094         hfi1_put_txreq(ps->s_txreq);
1095         return ret;
1096 }
1097
1098 /*
1099  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1100  * being an entry from the partition key table), return 0
1101  * otherwise. Use the matching criteria for egress partition keys
1102  * specified in the OPAv1 spec., section 9.1l.7.
1103  */
1104 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1105 {
1106         u16 mkey = pkey & PKEY_LOW_15_MASK;
1107         u16 mentry = ent & PKEY_LOW_15_MASK;
1108
1109         if (mkey == mentry) {
1110                 /*
1111                  * If pkey[15] is set (full partition member),
1112                  * is bit 15 in the corresponding table element
1113                  * clear (limited member)?
1114                  */
1115                 if (pkey & PKEY_MEMBER_MASK)
1116                         return !!(ent & PKEY_MEMBER_MASK);
1117                 return 1;
1118         }
1119         return 0;
1120 }
1121
1122 /**
1123  * egress_pkey_check - check P_KEY of a packet
1124  * @ppd:    Physical IB port data
1125  * @lrh: Local route header
1126  * @bth: Base transport header
1127  * @sc5:    SC for packet
1128  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1129  * only. If it is negative value, then it means user contexts is calling this
1130  * function.
1131  *
1132  * It checks if hdr's pkey is valid.
1133  *
1134  * Return: 0 on success, otherwise, 1
1135  */
1136 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1137                       u8 sc5, int8_t s_pkey_index)
1138 {
1139         struct hfi1_devdata *dd;
1140         int i;
1141         u16 pkey;
1142         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1143
1144         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1145                 return 0;
1146
1147         pkey = (u16)be32_to_cpu(bth[0]);
1148
1149         /* If SC15, pkey[0:14] must be 0x7fff */
1150         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1151                 goto bad;
1152
1153         /* Is the pkey = 0x0, or 0x8000? */
1154         if ((pkey & PKEY_LOW_15_MASK) == 0)
1155                 goto bad;
1156
1157         /*
1158          * For the kernel contexts only, if a qp is passed into the function,
1159          * the most likely matching pkey has index qp->s_pkey_index
1160          */
1161         if (!is_user_ctxt_mechanism &&
1162             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1163                 return 0;
1164         }
1165
1166         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1167                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1168                         return 0;
1169         }
1170 bad:
1171         /*
1172          * For the user-context mechanism, the P_KEY check would only happen
1173          * once per SDMA request, not once per packet.  Therefore, there's no
1174          * need to increment the counter for the user-context mechanism.
1175          */
1176         if (!is_user_ctxt_mechanism) {
1177                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1178                 dd = ppd->dd;
1179                 if (!(dd->err_info_xmit_constraint.status &
1180                       OPA_EI_STATUS_SMASK)) {
1181                         u16 slid = be16_to_cpu(lrh[3]);
1182
1183                         dd->err_info_xmit_constraint.status |=
1184                                 OPA_EI_STATUS_SMASK;
1185                         dd->err_info_xmit_constraint.slid = slid;
1186                         dd->err_info_xmit_constraint.pkey = pkey;
1187                 }
1188         }
1189         return 1;
1190 }
1191
1192 /**
1193  * get_send_routine - choose an egress routine
1194  *
1195  * Choose an egress routine based on QP type
1196  * and size
1197  */
1198 static inline send_routine get_send_routine(struct rvt_qp *qp,
1199                                             struct verbs_txreq *tx)
1200 {
1201         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1202         struct hfi1_qp_priv *priv = qp->priv;
1203         struct hfi1_ib_header *h = &tx->phdr.hdr;
1204
1205         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1206                 return dd->process_pio_send;
1207         switch (qp->ibqp.qp_type) {
1208         case IB_QPT_SMI:
1209                 return dd->process_pio_send;
1210         case IB_QPT_GSI:
1211         case IB_QPT_UD:
1212                 break;
1213         case IB_QPT_RC:
1214                 if (piothreshold &&
1215                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1216                     (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1217                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1218                     !sdma_txreq_built(&tx->txreq))
1219                         return dd->process_pio_send;
1220                 break;
1221         case IB_QPT_UC:
1222                 if (piothreshold &&
1223                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1224                     (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1225                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1226                     !sdma_txreq_built(&tx->txreq))
1227                         return dd->process_pio_send;
1228                 break;
1229         default:
1230                 break;
1231         }
1232         return dd->process_dma_send;
1233 }
1234
1235 /**
1236  * hfi1_verbs_send - send a packet
1237  * @qp: the QP to send on
1238  * @ps: the state of the packet to send
1239  *
1240  * Return zero if packet is sent or queued OK.
1241  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1242  */
1243 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1244 {
1245         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1246         struct hfi1_qp_priv *priv = qp->priv;
1247         struct hfi1_other_headers *ohdr;
1248         struct hfi1_ib_header *hdr;
1249         send_routine sr;
1250         int ret;
1251         u8 lnh;
1252
1253         hdr = &ps->s_txreq->phdr.hdr;
1254         /* locate the pkey within the headers */
1255         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1256         if (lnh == HFI1_LRH_GRH)
1257                 ohdr = &hdr->u.l.oth;
1258         else
1259                 ohdr = &hdr->u.oth;
1260
1261         sr = get_send_routine(qp, ps->s_txreq);
1262         ret = egress_pkey_check(dd->pport,
1263                                 hdr->lrh,
1264                                 ohdr->bth,
1265                                 priv->s_sc,
1266                                 qp->s_pkey_index);
1267         if (unlikely(ret)) {
1268                 /*
1269                  * The value we are returning here does not get propagated to
1270                  * the verbs caller. Thus we need to complete the request with
1271                  * error otherwise the caller could be sitting waiting on the
1272                  * completion event. Only do this for PIO. SDMA has its own
1273                  * mechanism for handling the errors. So for SDMA we can just
1274                  * return.
1275                  */
1276                 if (sr == dd->process_pio_send) {
1277                         unsigned long flags;
1278
1279                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1280                                   __func__);
1281                         spin_lock_irqsave(&qp->s_lock, flags);
1282                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1283                         spin_unlock_irqrestore(&qp->s_lock, flags);
1284                 }
1285                 return -EINVAL;
1286         }
1287         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1288                 return pio_wait(qp,
1289                                 ps->s_txreq->psc,
1290                                 ps,
1291                                 RVT_S_WAIT_PIO_DRAIN);
1292         return sr(qp, ps, 0);
1293 }
1294
1295 /**
1296  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1297  * @dd: the device data structure
1298  */
1299 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1300 {
1301         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1302         u16 ver = dd->dc8051_ver;
1303
1304         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1305
1306         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1307                                     (u64)dc8051_ver_min(ver);
1308         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1309                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1310                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1311                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1312                         IB_DEVICE_MEM_MGT_EXTENSIONS;
1313         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1314         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1315         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1316         rdi->dparms.props.hw_ver = dd->minrev;
1317         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1318         rdi->dparms.props.max_mr_size = U64_MAX;
1319         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1320         rdi->dparms.props.max_qp = hfi1_max_qps;
1321         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1322         rdi->dparms.props.max_sge = hfi1_max_sges;
1323         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1324         rdi->dparms.props.max_cq = hfi1_max_cqs;
1325         rdi->dparms.props.max_ah = hfi1_max_ahs;
1326         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1327         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1328         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1329         rdi->dparms.props.max_map_per_fmr = 32767;
1330         rdi->dparms.props.max_pd = hfi1_max_pds;
1331         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1332         rdi->dparms.props.max_qp_init_rd_atom = 255;
1333         rdi->dparms.props.max_srq = hfi1_max_srqs;
1334         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1335         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1336         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1337         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1338         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1339         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1340         rdi->dparms.props.max_total_mcast_qp_attach =
1341                                         rdi->dparms.props.max_mcast_qp_attach *
1342                                         rdi->dparms.props.max_mcast_grp;
1343 }
1344
1345 static inline u16 opa_speed_to_ib(u16 in)
1346 {
1347         u16 out = 0;
1348
1349         if (in & OPA_LINK_SPEED_25G)
1350                 out |= IB_SPEED_EDR;
1351         if (in & OPA_LINK_SPEED_12_5G)
1352                 out |= IB_SPEED_FDR;
1353
1354         return out;
1355 }
1356
1357 /*
1358  * Convert a single OPA link width (no multiple flags) to an IB value.
1359  * A zero OPA link width means link down, which means the IB width value
1360  * is a don't care.
1361  */
1362 static inline u16 opa_width_to_ib(u16 in)
1363 {
1364         switch (in) {
1365         case OPA_LINK_WIDTH_1X:
1366         /* map 2x and 3x to 1x as they don't exist in IB */
1367         case OPA_LINK_WIDTH_2X:
1368         case OPA_LINK_WIDTH_3X:
1369                 return IB_WIDTH_1X;
1370         default: /* link down or unknown, return our largest width */
1371         case OPA_LINK_WIDTH_4X:
1372                 return IB_WIDTH_4X;
1373         }
1374 }
1375
1376 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1377                       struct ib_port_attr *props)
1378 {
1379         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1380         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1381         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1382         u16 lid = ppd->lid;
1383
1384         props->lid = lid ? lid : 0;
1385         props->lmc = ppd->lmc;
1386         /* OPA logical states match IB logical states */
1387         props->state = driver_lstate(ppd);
1388         props->phys_state = hfi1_ibphys_portstate(ppd);
1389         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1390         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1391         /* see rate_show() in ib core/sysfs.c */
1392         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1393         props->max_vl_num = ppd->vls_supported;
1394
1395         /* Once we are a "first class" citizen and have added the OPA MTUs to
1396          * the core we can advertise the larger MTU enum to the ULPs, for now
1397          * advertise only 4K.
1398          *
1399          * Those applications which are either OPA aware or pass the MTU enum
1400          * from the Path Records to us will get the new 8k MTU.  Those that
1401          * attempt to process the MTU enum may fail in various ways.
1402          */
1403         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1404                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1405         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1406                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1407
1408         return 0;
1409 }
1410
1411 static int modify_device(struct ib_device *device,
1412                          int device_modify_mask,
1413                          struct ib_device_modify *device_modify)
1414 {
1415         struct hfi1_devdata *dd = dd_from_ibdev(device);
1416         unsigned i;
1417         int ret;
1418
1419         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1420                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1421                 ret = -EOPNOTSUPP;
1422                 goto bail;
1423         }
1424
1425         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1426                 memcpy(device->node_desc, device_modify->node_desc,
1427                        IB_DEVICE_NODE_DESC_MAX);
1428                 for (i = 0; i < dd->num_pports; i++) {
1429                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1430
1431                         hfi1_node_desc_chg(ibp);
1432                 }
1433         }
1434
1435         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1436                 ib_hfi1_sys_image_guid =
1437                         cpu_to_be64(device_modify->sys_image_guid);
1438                 for (i = 0; i < dd->num_pports; i++) {
1439                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1440
1441                         hfi1_sys_guid_chg(ibp);
1442                 }
1443         }
1444
1445         ret = 0;
1446
1447 bail:
1448         return ret;
1449 }
1450
1451 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1452 {
1453         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1454         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1455         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1456         int ret;
1457
1458         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1459                              OPA_LINKDOWN_REASON_UNKNOWN);
1460         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1461         return ret;
1462 }
1463
1464 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1465                             int guid_index, __be64 *guid)
1466 {
1467         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1468         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1469
1470         if (guid_index == 0)
1471                 *guid = cpu_to_be64(ppd->guid);
1472         else if (guid_index < HFI1_GUIDS_PER_PORT)
1473                 *guid = ibp->guids[guid_index - 1];
1474         else
1475                 return -EINVAL;
1476
1477         return 0;
1478 }
1479
1480 /*
1481  * convert ah port,sl to sc
1482  */
1483 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1484 {
1485         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1486
1487         return ibp->sl_to_sc[ah->sl];
1488 }
1489
1490 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1491 {
1492         struct hfi1_ibport *ibp;
1493         struct hfi1_pportdata *ppd;
1494         struct hfi1_devdata *dd;
1495         u8 sc5;
1496
1497         /* test the mapping for validity */
1498         ibp = to_iport(ibdev, ah_attr->port_num);
1499         ppd = ppd_from_ibp(ibp);
1500         sc5 = ibp->sl_to_sc[ah_attr->sl];
1501         dd = dd_from_ppd(ppd);
1502         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1503                 return -EINVAL;
1504         return 0;
1505 }
1506
1507 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1508                                struct ib_ah_attr *ah_attr,
1509                                struct rvt_ah *ah)
1510 {
1511         struct hfi1_ibport *ibp;
1512         struct hfi1_pportdata *ppd;
1513         struct hfi1_devdata *dd;
1514         u8 sc5;
1515
1516         /*
1517          * Do not trust reading anything from rvt_ah at this point as it is not
1518          * done being setup. We can however modify things which we need to set.
1519          */
1520
1521         ibp = to_iport(ibdev, ah_attr->port_num);
1522         ppd = ppd_from_ibp(ibp);
1523         sc5 = ibp->sl_to_sc[ah->attr.sl];
1524         dd = dd_from_ppd(ppd);
1525         ah->vl = sc_to_vlt(dd, sc5);
1526         if (ah->vl < num_vls || ah->vl == 15)
1527                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1528 }
1529
1530 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1531 {
1532         struct ib_ah_attr attr;
1533         struct ib_ah *ah = ERR_PTR(-EINVAL);
1534         struct rvt_qp *qp0;
1535
1536         memset(&attr, 0, sizeof(attr));
1537         attr.dlid = dlid;
1538         attr.port_num = ppd_from_ibp(ibp)->port;
1539         rcu_read_lock();
1540         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1541         if (qp0)
1542                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1543         rcu_read_unlock();
1544         return ah;
1545 }
1546
1547 /**
1548  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1549  * @dd: the hfi1_ib device
1550  */
1551 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1552 {
1553         return ARRAY_SIZE(dd->pport[0].pkeys);
1554 }
1555
1556 static void init_ibport(struct hfi1_pportdata *ppd)
1557 {
1558         struct hfi1_ibport *ibp = &ppd->ibport_data;
1559         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1560         int i;
1561
1562         for (i = 0; i < sz; i++) {
1563                 ibp->sl_to_sc[i] = i;
1564                 ibp->sc_to_sl[i] = i;
1565         }
1566
1567         spin_lock_init(&ibp->rvp.lock);
1568         /* Set the prefix to the default value (see ch. 4.1.1) */
1569         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1570         ibp->rvp.sm_lid = 0;
1571         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1572         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1573                 IB_PORT_CAP_MASK_NOTICE_SUP;
1574         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1575         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1576         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1577         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1578         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1579
1580         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1581         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1582 }
1583
1584 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1585                                 size_t str_len)
1586 {
1587         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1588         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1589         u16 ver = dd_from_dev(dev)->dc8051_ver;
1590
1591         snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1592                  dc8051_ver_min(ver));
1593 }
1594
1595 /**
1596  * hfi1_register_ib_device - register our device with the infiniband core
1597  * @dd: the device data structure
1598  * Return 0 if successful, errno if unsuccessful.
1599  */
1600 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1601 {
1602         struct hfi1_ibdev *dev = &dd->verbs_dev;
1603         struct ib_device *ibdev = &dev->rdi.ibdev;
1604         struct hfi1_pportdata *ppd = dd->pport;
1605         unsigned i;
1606         int ret;
1607         size_t lcpysz = IB_DEVICE_NAME_MAX;
1608
1609         for (i = 0; i < dd->num_pports; i++)
1610                 init_ibport(ppd + i);
1611
1612         /* Only need to initialize non-zero fields. */
1613
1614         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1615
1616         seqlock_init(&dev->iowait_lock);
1617         INIT_LIST_HEAD(&dev->txwait);
1618         INIT_LIST_HEAD(&dev->memwait);
1619
1620         ret = verbs_txreq_init(dev);
1621         if (ret)
1622                 goto err_verbs_txreq;
1623
1624         /*
1625          * The system image GUID is supposed to be the same for all
1626          * HFIs in a single system but since there can be other
1627          * device types in the system, we can't be sure this is unique.
1628          */
1629         if (!ib_hfi1_sys_image_guid)
1630                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1631         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1632         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1633         ibdev->owner = THIS_MODULE;
1634         ibdev->node_guid = cpu_to_be64(ppd->guid);
1635         ibdev->phys_port_cnt = dd->num_pports;
1636         ibdev->dma_device = &dd->pcidev->dev;
1637         ibdev->modify_device = modify_device;
1638
1639         /* keep process mad in the driver */
1640         ibdev->process_mad = hfi1_process_mad;
1641         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1642
1643         strncpy(ibdev->node_desc, init_utsname()->nodename,
1644                 sizeof(ibdev->node_desc));
1645
1646         /*
1647          * Fill in rvt info object.
1648          */
1649         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1650         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1651         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1652         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1653         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1654         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1655         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1656         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1657         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1658         /*
1659          * Fill in rvt info device attributes.
1660          */
1661         hfi1_fill_device_attr(dd);
1662
1663         /* queue pair */
1664         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1665         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1666         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1667         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1668         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1669         dd->verbs_dev.rdi.dparms.qpn_res_end =
1670         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1671         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1672         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1673         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1674         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1675         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1676         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1677
1678         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1679         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1680         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1681         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1682         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1683         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1684         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1685         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1686         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1687         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1688         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1689         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1690         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1691         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1692         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1693         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1694         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1695         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1696
1697         /* completeion queue */
1698         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1699                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1700                  "hfi1_cq%d", dd->unit);
1701         dd->verbs_dev.rdi.dparms.node = dd->node;
1702
1703         /* misc settings */
1704         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1705         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1706         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1707         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1708
1709         /* post send table */
1710         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1711
1712         ppd = dd->pport;
1713         for (i = 0; i < dd->num_pports; i++, ppd++)
1714                 rvt_init_port(&dd->verbs_dev.rdi,
1715                               &ppd->ibport_data.rvp,
1716                               i,
1717                               ppd->pkeys);
1718
1719         ret = rvt_register_device(&dd->verbs_dev.rdi);
1720         if (ret)
1721                 goto err_verbs_txreq;
1722
1723         ret = hfi1_verbs_register_sysfs(dd);
1724         if (ret)
1725                 goto err_class;
1726
1727         return ret;
1728
1729 err_class:
1730         rvt_unregister_device(&dd->verbs_dev.rdi);
1731 err_verbs_txreq:
1732         verbs_txreq_exit(dev);
1733         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1734         return ret;
1735 }
1736
1737 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1738 {
1739         struct hfi1_ibdev *dev = &dd->verbs_dev;
1740
1741         hfi1_verbs_unregister_sysfs(dd);
1742
1743         rvt_unregister_device(&dd->verbs_dev.rdi);
1744
1745         if (!list_empty(&dev->txwait))
1746                 dd_dev_err(dd, "txwait list not empty!\n");
1747         if (!list_empty(&dev->memwait))
1748                 dd_dev_err(dd, "memwait list not empty!\n");
1749
1750         del_timer_sync(&dev->mem_timer);
1751         verbs_txreq_exit(dev);
1752 }
1753
1754 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1755 {
1756         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1757         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1758         struct hfi1_ib_header *hdr = packet->hdr;
1759         struct rvt_qp *qp = packet->qp;
1760         u32 lqpn, rqpn = 0;
1761         u16 rlid = 0;
1762         u8 sl, sc5, svc_type;
1763
1764         switch (packet->qp->ibqp.qp_type) {
1765         case IB_QPT_UC:
1766                 rlid = qp->remote_ah_attr.dlid;
1767                 rqpn = qp->remote_qpn;
1768                 svc_type = IB_CC_SVCTYPE_UC;
1769                 break;
1770         case IB_QPT_RC:
1771                 rlid = qp->remote_ah_attr.dlid;
1772                 rqpn = qp->remote_qpn;
1773                 svc_type = IB_CC_SVCTYPE_RC;
1774                 break;
1775         case IB_QPT_SMI:
1776         case IB_QPT_GSI:
1777         case IB_QPT_UD:
1778                 svc_type = IB_CC_SVCTYPE_UD;
1779                 break;
1780         default:
1781                 ibp->rvp.n_pkt_drops++;
1782                 return;
1783         }
1784
1785         sc5 = hdr2sc((struct hfi1_message_header *)hdr, packet->rhf);
1786         sl = ibp->sc_to_sl[sc5];
1787         lqpn = qp->ibqp.qp_num;
1788
1789         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1790 }