IB/srp: Move code out of a loop
[cascardo/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
137                 const char *opname);
138 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
139
140 static struct scsi_transport_template *ib_srp_transport_template;
141 static struct workqueue_struct *srp_remove_wq;
142
143 static struct ib_client srp_client = {
144         .name   = "srp",
145         .add    = srp_add_one,
146         .remove = srp_remove_one
147 };
148
149 static struct ib_sa_client srp_sa_client;
150
151 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
152 {
153         int tmo = *(int *)kp->arg;
154
155         if (tmo >= 0)
156                 return sprintf(buffer, "%d", tmo);
157         else
158                 return sprintf(buffer, "off");
159 }
160
161 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
162 {
163         int tmo, res;
164
165         res = srp_parse_tmo(&tmo, val);
166         if (res)
167                 goto out;
168
169         if (kp->arg == &srp_reconnect_delay)
170                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
171                                     srp_dev_loss_tmo);
172         else if (kp->arg == &srp_fast_io_fail_tmo)
173                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
174         else
175                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
176                                     tmo);
177         if (res)
178                 goto out;
179         *(int *)kp->arg = tmo;
180
181 out:
182         return res;
183 }
184
185 static const struct kernel_param_ops srp_tmo_ops = {
186         .get = srp_tmo_get,
187         .set = srp_tmo_set,
188 };
189
190 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
191 {
192         return (struct srp_target_port *) host->hostdata;
193 }
194
195 static const char *srp_target_info(struct Scsi_Host *host)
196 {
197         return host_to_target(host)->target_name;
198 }
199
200 static int srp_target_is_topspin(struct srp_target_port *target)
201 {
202         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
203         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
204
205         return topspin_workarounds &&
206                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
207                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
208 }
209
210 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
211                                    gfp_t gfp_mask,
212                                    enum dma_data_direction direction)
213 {
214         struct srp_iu *iu;
215
216         iu = kmalloc(sizeof *iu, gfp_mask);
217         if (!iu)
218                 goto out;
219
220         iu->buf = kzalloc(size, gfp_mask);
221         if (!iu->buf)
222                 goto out_free_iu;
223
224         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
225                                     direction);
226         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
227                 goto out_free_buf;
228
229         iu->size      = size;
230         iu->direction = direction;
231
232         return iu;
233
234 out_free_buf:
235         kfree(iu->buf);
236 out_free_iu:
237         kfree(iu);
238 out:
239         return NULL;
240 }
241
242 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
243 {
244         if (!iu)
245                 return;
246
247         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
248                             iu->direction);
249         kfree(iu->buf);
250         kfree(iu);
251 }
252
253 static void srp_qp_event(struct ib_event *event, void *context)
254 {
255         pr_debug("QP event %s (%d)\n",
256                  ib_event_msg(event->event), event->event);
257 }
258
259 static int srp_init_qp(struct srp_target_port *target,
260                        struct ib_qp *qp)
261 {
262         struct ib_qp_attr *attr;
263         int ret;
264
265         attr = kmalloc(sizeof *attr, GFP_KERNEL);
266         if (!attr)
267                 return -ENOMEM;
268
269         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
270                                   target->srp_host->port,
271                                   be16_to_cpu(target->pkey),
272                                   &attr->pkey_index);
273         if (ret)
274                 goto out;
275
276         attr->qp_state        = IB_QPS_INIT;
277         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
278                                     IB_ACCESS_REMOTE_WRITE);
279         attr->port_num        = target->srp_host->port;
280
281         ret = ib_modify_qp(qp, attr,
282                            IB_QP_STATE          |
283                            IB_QP_PKEY_INDEX     |
284                            IB_QP_ACCESS_FLAGS   |
285                            IB_QP_PORT);
286
287 out:
288         kfree(attr);
289         return ret;
290 }
291
292 static int srp_new_cm_id(struct srp_rdma_ch *ch)
293 {
294         struct srp_target_port *target = ch->target;
295         struct ib_cm_id *new_cm_id;
296
297         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
298                                     srp_cm_handler, ch);
299         if (IS_ERR(new_cm_id))
300                 return PTR_ERR(new_cm_id);
301
302         if (ch->cm_id)
303                 ib_destroy_cm_id(ch->cm_id);
304         ch->cm_id = new_cm_id;
305         ch->path.sgid = target->sgid;
306         ch->path.dgid = target->orig_dgid;
307         ch->path.pkey = target->pkey;
308         ch->path.service_id = target->service_id;
309
310         return 0;
311 }
312
313 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
314 {
315         struct srp_device *dev = target->srp_host->srp_dev;
316         struct ib_fmr_pool_param fmr_param;
317
318         memset(&fmr_param, 0, sizeof(fmr_param));
319         fmr_param.pool_size         = target->mr_pool_size;
320         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
321         fmr_param.cache             = 1;
322         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
323         fmr_param.page_shift        = ilog2(dev->mr_page_size);
324         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
325                                        IB_ACCESS_REMOTE_WRITE |
326                                        IB_ACCESS_REMOTE_READ);
327
328         return ib_create_fmr_pool(dev->pd, &fmr_param);
329 }
330
331 /**
332  * srp_destroy_fr_pool() - free the resources owned by a pool
333  * @pool: Fast registration pool to be destroyed.
334  */
335 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
336 {
337         int i;
338         struct srp_fr_desc *d;
339
340         if (!pool)
341                 return;
342
343         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
344                 if (d->mr)
345                         ib_dereg_mr(d->mr);
346         }
347         kfree(pool);
348 }
349
350 /**
351  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
352  * @device:            IB device to allocate fast registration descriptors for.
353  * @pd:                Protection domain associated with the FR descriptors.
354  * @pool_size:         Number of descriptors to allocate.
355  * @max_page_list_len: Maximum fast registration work request page list length.
356  */
357 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
358                                               struct ib_pd *pd, int pool_size,
359                                               int max_page_list_len)
360 {
361         struct srp_fr_pool *pool;
362         struct srp_fr_desc *d;
363         struct ib_mr *mr;
364         int i, ret = -EINVAL;
365
366         if (pool_size <= 0)
367                 goto err;
368         ret = -ENOMEM;
369         pool = kzalloc(sizeof(struct srp_fr_pool) +
370                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
371         if (!pool)
372                 goto err;
373         pool->size = pool_size;
374         pool->max_page_list_len = max_page_list_len;
375         spin_lock_init(&pool->lock);
376         INIT_LIST_HEAD(&pool->free_list);
377
378         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
379                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
380                                  max_page_list_len);
381                 if (IS_ERR(mr)) {
382                         ret = PTR_ERR(mr);
383                         goto destroy_pool;
384                 }
385                 d->mr = mr;
386                 list_add_tail(&d->entry, &pool->free_list);
387         }
388
389 out:
390         return pool;
391
392 destroy_pool:
393         srp_destroy_fr_pool(pool);
394
395 err:
396         pool = ERR_PTR(ret);
397         goto out;
398 }
399
400 /**
401  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
402  * @pool: Pool to obtain descriptor from.
403  */
404 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
405 {
406         struct srp_fr_desc *d = NULL;
407         unsigned long flags;
408
409         spin_lock_irqsave(&pool->lock, flags);
410         if (!list_empty(&pool->free_list)) {
411                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
412                 list_del(&d->entry);
413         }
414         spin_unlock_irqrestore(&pool->lock, flags);
415
416         return d;
417 }
418
419 /**
420  * srp_fr_pool_put() - put an FR descriptor back in the free list
421  * @pool: Pool the descriptor was allocated from.
422  * @desc: Pointer to an array of fast registration descriptor pointers.
423  * @n:    Number of descriptors to put back.
424  *
425  * Note: The caller must already have queued an invalidation request for
426  * desc->mr->rkey before calling this function.
427  */
428 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
429                             int n)
430 {
431         unsigned long flags;
432         int i;
433
434         spin_lock_irqsave(&pool->lock, flags);
435         for (i = 0; i < n; i++)
436                 list_add(&desc[i]->entry, &pool->free_list);
437         spin_unlock_irqrestore(&pool->lock, flags);
438 }
439
440 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
441 {
442         struct srp_device *dev = target->srp_host->srp_dev;
443
444         return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
445                                   dev->max_pages_per_mr);
446 }
447
448 /**
449  * srp_destroy_qp() - destroy an RDMA queue pair
450  * @ch: SRP RDMA channel.
451  *
452  * Drain the qp before destroying it.  This avoids that the receive
453  * completion handler can access the queue pair while it is
454  * being destroyed.
455  */
456 static void srp_destroy_qp(struct srp_rdma_ch *ch)
457 {
458         ib_drain_rq(ch->qp);
459         ib_destroy_qp(ch->qp);
460 }
461
462 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
463 {
464         struct srp_target_port *target = ch->target;
465         struct srp_device *dev = target->srp_host->srp_dev;
466         struct ib_qp_init_attr *init_attr;
467         struct ib_cq *recv_cq, *send_cq;
468         struct ib_qp *qp;
469         struct ib_fmr_pool *fmr_pool = NULL;
470         struct srp_fr_pool *fr_pool = NULL;
471         const int m = dev->use_fast_reg ? 3 : 1;
472         int ret;
473
474         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
475         if (!init_attr)
476                 return -ENOMEM;
477
478         /* queue_size + 1 for ib_drain_rq() */
479         recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
480                                 ch->comp_vector, IB_POLL_SOFTIRQ);
481         if (IS_ERR(recv_cq)) {
482                 ret = PTR_ERR(recv_cq);
483                 goto err;
484         }
485
486         send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
487                                 ch->comp_vector, IB_POLL_DIRECT);
488         if (IS_ERR(send_cq)) {
489                 ret = PTR_ERR(send_cq);
490                 goto err_recv_cq;
491         }
492
493         init_attr->event_handler       = srp_qp_event;
494         init_attr->cap.max_send_wr     = m * target->queue_size;
495         init_attr->cap.max_recv_wr     = target->queue_size + 1;
496         init_attr->cap.max_recv_sge    = 1;
497         init_attr->cap.max_send_sge    = 1;
498         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
499         init_attr->qp_type             = IB_QPT_RC;
500         init_attr->send_cq             = send_cq;
501         init_attr->recv_cq             = recv_cq;
502
503         qp = ib_create_qp(dev->pd, init_attr);
504         if (IS_ERR(qp)) {
505                 ret = PTR_ERR(qp);
506                 goto err_send_cq;
507         }
508
509         ret = srp_init_qp(target, qp);
510         if (ret)
511                 goto err_qp;
512
513         if (dev->use_fast_reg) {
514                 fr_pool = srp_alloc_fr_pool(target);
515                 if (IS_ERR(fr_pool)) {
516                         ret = PTR_ERR(fr_pool);
517                         shost_printk(KERN_WARNING, target->scsi_host, PFX
518                                      "FR pool allocation failed (%d)\n", ret);
519                         goto err_qp;
520                 }
521         } else if (dev->use_fmr) {
522                 fmr_pool = srp_alloc_fmr_pool(target);
523                 if (IS_ERR(fmr_pool)) {
524                         ret = PTR_ERR(fmr_pool);
525                         shost_printk(KERN_WARNING, target->scsi_host, PFX
526                                      "FMR pool allocation failed (%d)\n", ret);
527                         goto err_qp;
528                 }
529         }
530
531         if (ch->qp)
532                 srp_destroy_qp(ch);
533         if (ch->recv_cq)
534                 ib_free_cq(ch->recv_cq);
535         if (ch->send_cq)
536                 ib_free_cq(ch->send_cq);
537
538         ch->qp = qp;
539         ch->recv_cq = recv_cq;
540         ch->send_cq = send_cq;
541
542         if (dev->use_fast_reg) {
543                 if (ch->fr_pool)
544                         srp_destroy_fr_pool(ch->fr_pool);
545                 ch->fr_pool = fr_pool;
546         } else if (dev->use_fmr) {
547                 if (ch->fmr_pool)
548                         ib_destroy_fmr_pool(ch->fmr_pool);
549                 ch->fmr_pool = fmr_pool;
550         }
551
552         kfree(init_attr);
553         return 0;
554
555 err_qp:
556         srp_destroy_qp(ch);
557
558 err_send_cq:
559         ib_free_cq(send_cq);
560
561 err_recv_cq:
562         ib_free_cq(recv_cq);
563
564 err:
565         kfree(init_attr);
566         return ret;
567 }
568
569 /*
570  * Note: this function may be called without srp_alloc_iu_bufs() having been
571  * invoked. Hence the ch->[rt]x_ring checks.
572  */
573 static void srp_free_ch_ib(struct srp_target_port *target,
574                            struct srp_rdma_ch *ch)
575 {
576         struct srp_device *dev = target->srp_host->srp_dev;
577         int i;
578
579         if (!ch->target)
580                 return;
581
582         if (ch->cm_id) {
583                 ib_destroy_cm_id(ch->cm_id);
584                 ch->cm_id = NULL;
585         }
586
587         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
588         if (!ch->qp)
589                 return;
590
591         if (dev->use_fast_reg) {
592                 if (ch->fr_pool)
593                         srp_destroy_fr_pool(ch->fr_pool);
594         } else if (dev->use_fmr) {
595                 if (ch->fmr_pool)
596                         ib_destroy_fmr_pool(ch->fmr_pool);
597         }
598
599         srp_destroy_qp(ch);
600         ib_free_cq(ch->send_cq);
601         ib_free_cq(ch->recv_cq);
602
603         /*
604          * Avoid that the SCSI error handler tries to use this channel after
605          * it has been freed. The SCSI error handler can namely continue
606          * trying to perform recovery actions after scsi_remove_host()
607          * returned.
608          */
609         ch->target = NULL;
610
611         ch->qp = NULL;
612         ch->send_cq = ch->recv_cq = NULL;
613
614         if (ch->rx_ring) {
615                 for (i = 0; i < target->queue_size; ++i)
616                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
617                 kfree(ch->rx_ring);
618                 ch->rx_ring = NULL;
619         }
620         if (ch->tx_ring) {
621                 for (i = 0; i < target->queue_size; ++i)
622                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
623                 kfree(ch->tx_ring);
624                 ch->tx_ring = NULL;
625         }
626 }
627
628 static void srp_path_rec_completion(int status,
629                                     struct ib_sa_path_rec *pathrec,
630                                     void *ch_ptr)
631 {
632         struct srp_rdma_ch *ch = ch_ptr;
633         struct srp_target_port *target = ch->target;
634
635         ch->status = status;
636         if (status)
637                 shost_printk(KERN_ERR, target->scsi_host,
638                              PFX "Got failed path rec status %d\n", status);
639         else
640                 ch->path = *pathrec;
641         complete(&ch->done);
642 }
643
644 static int srp_lookup_path(struct srp_rdma_ch *ch)
645 {
646         struct srp_target_port *target = ch->target;
647         int ret;
648
649         ch->path.numb_path = 1;
650
651         init_completion(&ch->done);
652
653         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
654                                                target->srp_host->srp_dev->dev,
655                                                target->srp_host->port,
656                                                &ch->path,
657                                                IB_SA_PATH_REC_SERVICE_ID |
658                                                IB_SA_PATH_REC_DGID       |
659                                                IB_SA_PATH_REC_SGID       |
660                                                IB_SA_PATH_REC_NUMB_PATH  |
661                                                IB_SA_PATH_REC_PKEY,
662                                                SRP_PATH_REC_TIMEOUT_MS,
663                                                GFP_KERNEL,
664                                                srp_path_rec_completion,
665                                                ch, &ch->path_query);
666         if (ch->path_query_id < 0)
667                 return ch->path_query_id;
668
669         ret = wait_for_completion_interruptible(&ch->done);
670         if (ret < 0)
671                 return ret;
672
673         if (ch->status < 0)
674                 shost_printk(KERN_WARNING, target->scsi_host,
675                              PFX "Path record query failed\n");
676
677         return ch->status;
678 }
679
680 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
681 {
682         struct srp_target_port *target = ch->target;
683         struct {
684                 struct ib_cm_req_param param;
685                 struct srp_login_req   priv;
686         } *req = NULL;
687         int status;
688
689         req = kzalloc(sizeof *req, GFP_KERNEL);
690         if (!req)
691                 return -ENOMEM;
692
693         req->param.primary_path               = &ch->path;
694         req->param.alternate_path             = NULL;
695         req->param.service_id                 = target->service_id;
696         req->param.qp_num                     = ch->qp->qp_num;
697         req->param.qp_type                    = ch->qp->qp_type;
698         req->param.private_data               = &req->priv;
699         req->param.private_data_len           = sizeof req->priv;
700         req->param.flow_control               = 1;
701
702         get_random_bytes(&req->param.starting_psn, 4);
703         req->param.starting_psn              &= 0xffffff;
704
705         /*
706          * Pick some arbitrary defaults here; we could make these
707          * module parameters if anyone cared about setting them.
708          */
709         req->param.responder_resources        = 4;
710         req->param.remote_cm_response_timeout = 20;
711         req->param.local_cm_response_timeout  = 20;
712         req->param.retry_count                = target->tl_retry_count;
713         req->param.rnr_retry_count            = 7;
714         req->param.max_cm_retries             = 15;
715
716         req->priv.opcode        = SRP_LOGIN_REQ;
717         req->priv.tag           = 0;
718         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
719         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
720                                               SRP_BUF_FORMAT_INDIRECT);
721         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
722                                    SRP_MULTICHAN_SINGLE);
723         /*
724          * In the published SRP specification (draft rev. 16a), the
725          * port identifier format is 8 bytes of ID extension followed
726          * by 8 bytes of GUID.  Older drafts put the two halves in the
727          * opposite order, so that the GUID comes first.
728          *
729          * Targets conforming to these obsolete drafts can be
730          * recognized by the I/O Class they report.
731          */
732         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
733                 memcpy(req->priv.initiator_port_id,
734                        &target->sgid.global.interface_id, 8);
735                 memcpy(req->priv.initiator_port_id + 8,
736                        &target->initiator_ext, 8);
737                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
738                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
739         } else {
740                 memcpy(req->priv.initiator_port_id,
741                        &target->initiator_ext, 8);
742                 memcpy(req->priv.initiator_port_id + 8,
743                        &target->sgid.global.interface_id, 8);
744                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
745                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
746         }
747
748         /*
749          * Topspin/Cisco SRP targets will reject our login unless we
750          * zero out the first 8 bytes of our initiator port ID and set
751          * the second 8 bytes to the local node GUID.
752          */
753         if (srp_target_is_topspin(target)) {
754                 shost_printk(KERN_DEBUG, target->scsi_host,
755                              PFX "Topspin/Cisco initiator port ID workaround "
756                              "activated for target GUID %016llx\n",
757                              be64_to_cpu(target->ioc_guid));
758                 memset(req->priv.initiator_port_id, 0, 8);
759                 memcpy(req->priv.initiator_port_id + 8,
760                        &target->srp_host->srp_dev->dev->node_guid, 8);
761         }
762
763         status = ib_send_cm_req(ch->cm_id, &req->param);
764
765         kfree(req);
766
767         return status;
768 }
769
770 static bool srp_queue_remove_work(struct srp_target_port *target)
771 {
772         bool changed = false;
773
774         spin_lock_irq(&target->lock);
775         if (target->state != SRP_TARGET_REMOVED) {
776                 target->state = SRP_TARGET_REMOVED;
777                 changed = true;
778         }
779         spin_unlock_irq(&target->lock);
780
781         if (changed)
782                 queue_work(srp_remove_wq, &target->remove_work);
783
784         return changed;
785 }
786
787 static void srp_disconnect_target(struct srp_target_port *target)
788 {
789         struct srp_rdma_ch *ch;
790         int i;
791
792         /* XXX should send SRP_I_LOGOUT request */
793
794         for (i = 0; i < target->ch_count; i++) {
795                 ch = &target->ch[i];
796                 ch->connected = false;
797                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
798                         shost_printk(KERN_DEBUG, target->scsi_host,
799                                      PFX "Sending CM DREQ failed\n");
800                 }
801         }
802 }
803
804 static void srp_free_req_data(struct srp_target_port *target,
805                               struct srp_rdma_ch *ch)
806 {
807         struct srp_device *dev = target->srp_host->srp_dev;
808         struct ib_device *ibdev = dev->dev;
809         struct srp_request *req;
810         int i;
811
812         if (!ch->req_ring)
813                 return;
814
815         for (i = 0; i < target->req_ring_size; ++i) {
816                 req = &ch->req_ring[i];
817                 if (dev->use_fast_reg) {
818                         kfree(req->fr_list);
819                 } else {
820                         kfree(req->fmr_list);
821                         kfree(req->map_page);
822                 }
823                 if (req->indirect_dma_addr) {
824                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
825                                             target->indirect_size,
826                                             DMA_TO_DEVICE);
827                 }
828                 kfree(req->indirect_desc);
829         }
830
831         kfree(ch->req_ring);
832         ch->req_ring = NULL;
833 }
834
835 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
836 {
837         struct srp_target_port *target = ch->target;
838         struct srp_device *srp_dev = target->srp_host->srp_dev;
839         struct ib_device *ibdev = srp_dev->dev;
840         struct srp_request *req;
841         void *mr_list;
842         dma_addr_t dma_addr;
843         int i, ret = -ENOMEM;
844
845         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
846                                GFP_KERNEL);
847         if (!ch->req_ring)
848                 goto out;
849
850         for (i = 0; i < target->req_ring_size; ++i) {
851                 req = &ch->req_ring[i];
852                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
853                                   GFP_KERNEL);
854                 if (!mr_list)
855                         goto out;
856                 if (srp_dev->use_fast_reg) {
857                         req->fr_list = mr_list;
858                 } else {
859                         req->fmr_list = mr_list;
860                         req->map_page = kmalloc(srp_dev->max_pages_per_mr *
861                                                 sizeof(void *), GFP_KERNEL);
862                         if (!req->map_page)
863                                 goto out;
864                 }
865                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
866                 if (!req->indirect_desc)
867                         goto out;
868
869                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
870                                              target->indirect_size,
871                                              DMA_TO_DEVICE);
872                 if (ib_dma_mapping_error(ibdev, dma_addr))
873                         goto out;
874
875                 req->indirect_dma_addr = dma_addr;
876         }
877         ret = 0;
878
879 out:
880         return ret;
881 }
882
883 /**
884  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
885  * @shost: SCSI host whose attributes to remove from sysfs.
886  *
887  * Note: Any attributes defined in the host template and that did not exist
888  * before invocation of this function will be ignored.
889  */
890 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
891 {
892         struct device_attribute **attr;
893
894         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
895                 device_remove_file(&shost->shost_dev, *attr);
896 }
897
898 static void srp_remove_target(struct srp_target_port *target)
899 {
900         struct srp_rdma_ch *ch;
901         int i;
902
903         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
904
905         srp_del_scsi_host_attr(target->scsi_host);
906         srp_rport_get(target->rport);
907         srp_remove_host(target->scsi_host);
908         scsi_remove_host(target->scsi_host);
909         srp_stop_rport_timers(target->rport);
910         srp_disconnect_target(target);
911         for (i = 0; i < target->ch_count; i++) {
912                 ch = &target->ch[i];
913                 srp_free_ch_ib(target, ch);
914         }
915         cancel_work_sync(&target->tl_err_work);
916         srp_rport_put(target->rport);
917         for (i = 0; i < target->ch_count; i++) {
918                 ch = &target->ch[i];
919                 srp_free_req_data(target, ch);
920         }
921         kfree(target->ch);
922         target->ch = NULL;
923
924         spin_lock(&target->srp_host->target_lock);
925         list_del(&target->list);
926         spin_unlock(&target->srp_host->target_lock);
927
928         scsi_host_put(target->scsi_host);
929 }
930
931 static void srp_remove_work(struct work_struct *work)
932 {
933         struct srp_target_port *target =
934                 container_of(work, struct srp_target_port, remove_work);
935
936         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
937
938         srp_remove_target(target);
939 }
940
941 static void srp_rport_delete(struct srp_rport *rport)
942 {
943         struct srp_target_port *target = rport->lld_data;
944
945         srp_queue_remove_work(target);
946 }
947
948 /**
949  * srp_connected_ch() - number of connected channels
950  * @target: SRP target port.
951  */
952 static int srp_connected_ch(struct srp_target_port *target)
953 {
954         int i, c = 0;
955
956         for (i = 0; i < target->ch_count; i++)
957                 c += target->ch[i].connected;
958
959         return c;
960 }
961
962 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
963 {
964         struct srp_target_port *target = ch->target;
965         int ret;
966
967         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
968
969         ret = srp_lookup_path(ch);
970         if (ret)
971                 goto out;
972
973         while (1) {
974                 init_completion(&ch->done);
975                 ret = srp_send_req(ch, multich);
976                 if (ret)
977                         goto out;
978                 ret = wait_for_completion_interruptible(&ch->done);
979                 if (ret < 0)
980                         goto out;
981
982                 /*
983                  * The CM event handling code will set status to
984                  * SRP_PORT_REDIRECT if we get a port redirect REJ
985                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
986                  * redirect REJ back.
987                  */
988                 ret = ch->status;
989                 switch (ret) {
990                 case 0:
991                         ch->connected = true;
992                         goto out;
993
994                 case SRP_PORT_REDIRECT:
995                         ret = srp_lookup_path(ch);
996                         if (ret)
997                                 goto out;
998                         break;
999
1000                 case SRP_DLID_REDIRECT:
1001                         break;
1002
1003                 case SRP_STALE_CONN:
1004                         shost_printk(KERN_ERR, target->scsi_host, PFX
1005                                      "giving up on stale connection\n");
1006                         ret = -ECONNRESET;
1007                         goto out;
1008
1009                 default:
1010                         goto out;
1011                 }
1012         }
1013
1014 out:
1015         return ret <= 0 ? ret : -ENODEV;
1016 }
1017
1018 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1019 {
1020         srp_handle_qp_err(cq, wc, "INV RKEY");
1021 }
1022
1023 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1024                 u32 rkey)
1025 {
1026         struct ib_send_wr *bad_wr;
1027         struct ib_send_wr wr = {
1028                 .opcode             = IB_WR_LOCAL_INV,
1029                 .next               = NULL,
1030                 .num_sge            = 0,
1031                 .send_flags         = 0,
1032                 .ex.invalidate_rkey = rkey,
1033         };
1034
1035         wr.wr_cqe = &req->reg_cqe;
1036         req->reg_cqe.done = srp_inv_rkey_err_done;
1037         return ib_post_send(ch->qp, &wr, &bad_wr);
1038 }
1039
1040 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1041                            struct srp_rdma_ch *ch,
1042                            struct srp_request *req)
1043 {
1044         struct srp_target_port *target = ch->target;
1045         struct srp_device *dev = target->srp_host->srp_dev;
1046         struct ib_device *ibdev = dev->dev;
1047         int i, res;
1048
1049         if (!scsi_sglist(scmnd) ||
1050             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1051              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1052                 return;
1053
1054         if (dev->use_fast_reg) {
1055                 struct srp_fr_desc **pfr;
1056
1057                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1058                         res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1059                         if (res < 0) {
1060                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1061                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1062                                   (*pfr)->mr->rkey, res);
1063                                 queue_work(system_long_wq,
1064                                            &target->tl_err_work);
1065                         }
1066                 }
1067                 if (req->nmdesc)
1068                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1069                                         req->nmdesc);
1070         } else if (dev->use_fmr) {
1071                 struct ib_pool_fmr **pfmr;
1072
1073                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1074                         ib_fmr_pool_unmap(*pfmr);
1075         }
1076
1077         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1078                         scmnd->sc_data_direction);
1079 }
1080
1081 /**
1082  * srp_claim_req - Take ownership of the scmnd associated with a request.
1083  * @ch: SRP RDMA channel.
1084  * @req: SRP request.
1085  * @sdev: If not NULL, only take ownership for this SCSI device.
1086  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1087  *         ownership of @req->scmnd if it equals @scmnd.
1088  *
1089  * Return value:
1090  * Either NULL or a pointer to the SCSI command the caller became owner of.
1091  */
1092 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1093                                        struct srp_request *req,
1094                                        struct scsi_device *sdev,
1095                                        struct scsi_cmnd *scmnd)
1096 {
1097         unsigned long flags;
1098
1099         spin_lock_irqsave(&ch->lock, flags);
1100         if (req->scmnd &&
1101             (!sdev || req->scmnd->device == sdev) &&
1102             (!scmnd || req->scmnd == scmnd)) {
1103                 scmnd = req->scmnd;
1104                 req->scmnd = NULL;
1105         } else {
1106                 scmnd = NULL;
1107         }
1108         spin_unlock_irqrestore(&ch->lock, flags);
1109
1110         return scmnd;
1111 }
1112
1113 /**
1114  * srp_free_req() - Unmap data and adjust ch->req_lim.
1115  * @ch:     SRP RDMA channel.
1116  * @req:    Request to be freed.
1117  * @scmnd:  SCSI command associated with @req.
1118  * @req_lim_delta: Amount to be added to @target->req_lim.
1119  */
1120 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1121                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1122 {
1123         unsigned long flags;
1124
1125         srp_unmap_data(scmnd, ch, req);
1126
1127         spin_lock_irqsave(&ch->lock, flags);
1128         ch->req_lim += req_lim_delta;
1129         spin_unlock_irqrestore(&ch->lock, flags);
1130 }
1131
1132 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1133                            struct scsi_device *sdev, int result)
1134 {
1135         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1136
1137         if (scmnd) {
1138                 srp_free_req(ch, req, scmnd, 0);
1139                 scmnd->result = result;
1140                 scmnd->scsi_done(scmnd);
1141         }
1142 }
1143
1144 static void srp_terminate_io(struct srp_rport *rport)
1145 {
1146         struct srp_target_port *target = rport->lld_data;
1147         struct srp_rdma_ch *ch;
1148         struct Scsi_Host *shost = target->scsi_host;
1149         struct scsi_device *sdev;
1150         int i, j;
1151
1152         /*
1153          * Invoking srp_terminate_io() while srp_queuecommand() is running
1154          * is not safe. Hence the warning statement below.
1155          */
1156         shost_for_each_device(sdev, shost)
1157                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1158
1159         for (i = 0; i < target->ch_count; i++) {
1160                 ch = &target->ch[i];
1161
1162                 for (j = 0; j < target->req_ring_size; ++j) {
1163                         struct srp_request *req = &ch->req_ring[j];
1164
1165                         srp_finish_req(ch, req, NULL,
1166                                        DID_TRANSPORT_FAILFAST << 16);
1167                 }
1168         }
1169 }
1170
1171 /*
1172  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1173  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1174  * srp_reset_device() or srp_reset_host() calls will occur while this function
1175  * is in progress. One way to realize that is not to call this function
1176  * directly but to call srp_reconnect_rport() instead since that last function
1177  * serializes calls of this function via rport->mutex and also blocks
1178  * srp_queuecommand() calls before invoking this function.
1179  */
1180 static int srp_rport_reconnect(struct srp_rport *rport)
1181 {
1182         struct srp_target_port *target = rport->lld_data;
1183         struct srp_rdma_ch *ch;
1184         int i, j, ret = 0;
1185         bool multich = false;
1186
1187         srp_disconnect_target(target);
1188
1189         if (target->state == SRP_TARGET_SCANNING)
1190                 return -ENODEV;
1191
1192         /*
1193          * Now get a new local CM ID so that we avoid confusing the target in
1194          * case things are really fouled up. Doing so also ensures that all CM
1195          * callbacks will have finished before a new QP is allocated.
1196          */
1197         for (i = 0; i < target->ch_count; i++) {
1198                 ch = &target->ch[i];
1199                 ret += srp_new_cm_id(ch);
1200         }
1201         for (i = 0; i < target->ch_count; i++) {
1202                 ch = &target->ch[i];
1203                 for (j = 0; j < target->req_ring_size; ++j) {
1204                         struct srp_request *req = &ch->req_ring[j];
1205
1206                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1207                 }
1208         }
1209         for (i = 0; i < target->ch_count; i++) {
1210                 ch = &target->ch[i];
1211                 /*
1212                  * Whether or not creating a new CM ID succeeded, create a new
1213                  * QP. This guarantees that all completion callback function
1214                  * invocations have finished before request resetting starts.
1215                  */
1216                 ret += srp_create_ch_ib(ch);
1217
1218                 INIT_LIST_HEAD(&ch->free_tx);
1219                 for (j = 0; j < target->queue_size; ++j)
1220                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1221         }
1222
1223         target->qp_in_error = false;
1224
1225         for (i = 0; i < target->ch_count; i++) {
1226                 ch = &target->ch[i];
1227                 if (ret)
1228                         break;
1229                 ret = srp_connect_ch(ch, multich);
1230                 multich = true;
1231         }
1232
1233         if (ret == 0)
1234                 shost_printk(KERN_INFO, target->scsi_host,
1235                              PFX "reconnect succeeded\n");
1236
1237         return ret;
1238 }
1239
1240 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1241                          unsigned int dma_len, u32 rkey)
1242 {
1243         struct srp_direct_buf *desc = state->desc;
1244
1245         WARN_ON_ONCE(!dma_len);
1246
1247         desc->va = cpu_to_be64(dma_addr);
1248         desc->key = cpu_to_be32(rkey);
1249         desc->len = cpu_to_be32(dma_len);
1250
1251         state->total_len += dma_len;
1252         state->desc++;
1253         state->ndesc++;
1254 }
1255
1256 static int srp_map_finish_fmr(struct srp_map_state *state,
1257                               struct srp_rdma_ch *ch)
1258 {
1259         struct srp_target_port *target = ch->target;
1260         struct srp_device *dev = target->srp_host->srp_dev;
1261         struct ib_pool_fmr *fmr;
1262         u64 io_addr = 0;
1263
1264         if (state->fmr.next >= state->fmr.end)
1265                 return -ENOMEM;
1266
1267         WARN_ON_ONCE(!dev->use_fmr);
1268
1269         if (state->npages == 0)
1270                 return 0;
1271
1272         if (state->npages == 1 && target->global_mr) {
1273                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1274                              target->global_mr->rkey);
1275                 goto reset_state;
1276         }
1277
1278         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1279                                    state->npages, io_addr);
1280         if (IS_ERR(fmr))
1281                 return PTR_ERR(fmr);
1282
1283         *state->fmr.next++ = fmr;
1284         state->nmdesc++;
1285
1286         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1287                      state->dma_len, fmr->fmr->rkey);
1288
1289 reset_state:
1290         state->npages = 0;
1291         state->dma_len = 0;
1292
1293         return 0;
1294 }
1295
1296 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1297 {
1298         srp_handle_qp_err(cq, wc, "FAST REG");
1299 }
1300
1301 static int srp_map_finish_fr(struct srp_map_state *state,
1302                              struct srp_request *req,
1303                              struct srp_rdma_ch *ch, int sg_nents)
1304 {
1305         struct srp_target_port *target = ch->target;
1306         struct srp_device *dev = target->srp_host->srp_dev;
1307         struct ib_send_wr *bad_wr;
1308         struct ib_reg_wr wr;
1309         struct srp_fr_desc *desc;
1310         u32 rkey;
1311         int n, err;
1312
1313         if (state->fr.next >= state->fr.end)
1314                 return -ENOMEM;
1315
1316         WARN_ON_ONCE(!dev->use_fast_reg);
1317
1318         if (sg_nents == 1 && target->global_mr) {
1319                 srp_map_desc(state, sg_dma_address(state->sg),
1320                              sg_dma_len(state->sg),
1321                              target->global_mr->rkey);
1322                 return 1;
1323         }
1324
1325         desc = srp_fr_pool_get(ch->fr_pool);
1326         if (!desc)
1327                 return -ENOMEM;
1328
1329         rkey = ib_inc_rkey(desc->mr->rkey);
1330         ib_update_fast_reg_key(desc->mr, rkey);
1331
1332         n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, dev->mr_page_size);
1333         if (unlikely(n < 0))
1334                 return n;
1335
1336         req->reg_cqe.done = srp_reg_mr_err_done;
1337
1338         wr.wr.next = NULL;
1339         wr.wr.opcode = IB_WR_REG_MR;
1340         wr.wr.wr_cqe = &req->reg_cqe;
1341         wr.wr.num_sge = 0;
1342         wr.wr.send_flags = 0;
1343         wr.mr = desc->mr;
1344         wr.key = desc->mr->rkey;
1345         wr.access = (IB_ACCESS_LOCAL_WRITE |
1346                      IB_ACCESS_REMOTE_READ |
1347                      IB_ACCESS_REMOTE_WRITE);
1348
1349         *state->fr.next++ = desc;
1350         state->nmdesc++;
1351
1352         srp_map_desc(state, desc->mr->iova,
1353                      desc->mr->length, desc->mr->rkey);
1354
1355         err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1356         if (unlikely(err))
1357                 return err;
1358
1359         return n;
1360 }
1361
1362 static int srp_map_sg_entry(struct srp_map_state *state,
1363                             struct srp_rdma_ch *ch,
1364                             struct scatterlist *sg, int sg_index)
1365 {
1366         struct srp_target_port *target = ch->target;
1367         struct srp_device *dev = target->srp_host->srp_dev;
1368         struct ib_device *ibdev = dev->dev;
1369         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1370         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1371         unsigned int len = 0;
1372         int ret;
1373
1374         WARN_ON_ONCE(!dma_len);
1375
1376         while (dma_len) {
1377                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1378                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1379                         ret = srp_map_finish_fmr(state, ch);
1380                         if (ret)
1381                                 return ret;
1382                 }
1383
1384                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1385
1386                 if (!state->npages)
1387                         state->base_dma_addr = dma_addr;
1388                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1389                 state->dma_len += len;
1390                 dma_addr += len;
1391                 dma_len -= len;
1392         }
1393
1394         /*
1395          * If the last entry of the MR wasn't a full page, then we need to
1396          * close it out and start a new one -- we can only merge at page
1397          * boundaries.
1398          */
1399         ret = 0;
1400         if (len != dev->mr_page_size)
1401                 ret = srp_map_finish_fmr(state, ch);
1402         return ret;
1403 }
1404
1405 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1406                           struct srp_request *req, struct scatterlist *scat,
1407                           int count)
1408 {
1409         struct scatterlist *sg;
1410         int i, ret;
1411
1412         state->desc = req->indirect_desc;
1413         state->pages = req->map_page;
1414         state->fmr.next = req->fmr_list;
1415         state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1416
1417         for_each_sg(scat, sg, count, i) {
1418                 ret = srp_map_sg_entry(state, ch, sg, i);
1419                 if (ret)
1420                         return ret;
1421         }
1422
1423         ret = srp_map_finish_fmr(state, ch);
1424         if (ret)
1425                 return ret;
1426
1427         return 0;
1428 }
1429
1430 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1431                          struct srp_request *req, struct scatterlist *scat,
1432                          int count)
1433 {
1434         state->desc = req->indirect_desc;
1435         state->fr.next = req->fr_list;
1436         state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1437         state->sg = scat;
1438
1439         if (count == 0)
1440                 return 0;
1441
1442         while (count) {
1443                 int i, n;
1444
1445                 n = srp_map_finish_fr(state, req, ch, count);
1446                 if (unlikely(n < 0))
1447                         return n;
1448
1449                 count -= n;
1450                 for (i = 0; i < n; i++)
1451                         state->sg = sg_next(state->sg);
1452         }
1453
1454         return 0;
1455 }
1456
1457 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1458                           struct srp_request *req, struct scatterlist *scat,
1459                           int count)
1460 {
1461         struct srp_target_port *target = ch->target;
1462         struct srp_device *dev = target->srp_host->srp_dev;
1463         struct scatterlist *sg;
1464         int i;
1465
1466         state->desc = req->indirect_desc;
1467         for_each_sg(scat, sg, count, i) {
1468                 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1469                              ib_sg_dma_len(dev->dev, sg),
1470                              target->global_mr->rkey);
1471         }
1472
1473         return 0;
1474 }
1475
1476 /*
1477  * Register the indirect data buffer descriptor with the HCA.
1478  *
1479  * Note: since the indirect data buffer descriptor has been allocated with
1480  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1481  * memory buffer.
1482  */
1483 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1484                        void **next_mr, void **end_mr, u32 idb_len,
1485                        __be32 *idb_rkey)
1486 {
1487         struct srp_target_port *target = ch->target;
1488         struct srp_device *dev = target->srp_host->srp_dev;
1489         struct srp_map_state state;
1490         struct srp_direct_buf idb_desc;
1491         u64 idb_pages[1];
1492         struct scatterlist idb_sg[1];
1493         int ret;
1494
1495         memset(&state, 0, sizeof(state));
1496         memset(&idb_desc, 0, sizeof(idb_desc));
1497         state.gen.next = next_mr;
1498         state.gen.end = end_mr;
1499         state.desc = &idb_desc;
1500         state.base_dma_addr = req->indirect_dma_addr;
1501         state.dma_len = idb_len;
1502
1503         if (dev->use_fast_reg) {
1504                 state.sg = idb_sg;
1505                 sg_set_buf(idb_sg, req->indirect_desc, idb_len);
1506                 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1507 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1508                 idb_sg->dma_length = idb_sg->length;          /* hack^2 */
1509 #endif
1510                 ret = srp_map_finish_fr(&state, req, ch, 1);
1511                 if (ret < 0)
1512                         return ret;
1513         } else if (dev->use_fmr) {
1514                 state.pages = idb_pages;
1515                 state.pages[0] = (req->indirect_dma_addr &
1516                                   dev->mr_page_mask);
1517                 state.npages = 1;
1518                 ret = srp_map_finish_fmr(&state, ch);
1519                 if (ret < 0)
1520                         return ret;
1521         } else {
1522                 return -EINVAL;
1523         }
1524
1525         *idb_rkey = idb_desc.key;
1526
1527         return 0;
1528 }
1529
1530 /**
1531  * srp_map_data() - map SCSI data buffer onto an SRP request
1532  * @scmnd: SCSI command to map
1533  * @ch: SRP RDMA channel
1534  * @req: SRP request
1535  *
1536  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1537  * mapping failed.
1538  */
1539 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1540                         struct srp_request *req)
1541 {
1542         struct srp_target_port *target = ch->target;
1543         struct scatterlist *scat;
1544         struct srp_cmd *cmd = req->cmd->buf;
1545         int len, nents, count, ret;
1546         struct srp_device *dev;
1547         struct ib_device *ibdev;
1548         struct srp_map_state state;
1549         struct srp_indirect_buf *indirect_hdr;
1550         u32 idb_len, table_len;
1551         __be32 idb_rkey;
1552         u8 fmt;
1553
1554         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1555                 return sizeof (struct srp_cmd);
1556
1557         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1558             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1559                 shost_printk(KERN_WARNING, target->scsi_host,
1560                              PFX "Unhandled data direction %d\n",
1561                              scmnd->sc_data_direction);
1562                 return -EINVAL;
1563         }
1564
1565         nents = scsi_sg_count(scmnd);
1566         scat  = scsi_sglist(scmnd);
1567
1568         dev = target->srp_host->srp_dev;
1569         ibdev = dev->dev;
1570
1571         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1572         if (unlikely(count == 0))
1573                 return -EIO;
1574
1575         fmt = SRP_DATA_DESC_DIRECT;
1576         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1577
1578         if (count == 1 && target->global_mr) {
1579                 /*
1580                  * The midlayer only generated a single gather/scatter
1581                  * entry, or DMA mapping coalesced everything to a
1582                  * single entry.  So a direct descriptor along with
1583                  * the DMA MR suffices.
1584                  */
1585                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1586
1587                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1588                 buf->key = cpu_to_be32(target->global_mr->rkey);
1589                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1590
1591                 req->nmdesc = 0;
1592                 goto map_complete;
1593         }
1594
1595         /*
1596          * We have more than one scatter/gather entry, so build our indirect
1597          * descriptor table, trying to merge as many entries as we can.
1598          */
1599         indirect_hdr = (void *) cmd->add_data;
1600
1601         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1602                                    target->indirect_size, DMA_TO_DEVICE);
1603
1604         memset(&state, 0, sizeof(state));
1605         if (dev->use_fast_reg)
1606                 ret = srp_map_sg_fr(&state, ch, req, scat, count);
1607         else if (dev->use_fmr)
1608                 ret = srp_map_sg_fmr(&state, ch, req, scat, count);
1609         else
1610                 ret = srp_map_sg_dma(&state, ch, req, scat, count);
1611         req->nmdesc = state.nmdesc;
1612         if (ret < 0)
1613                 goto unmap;
1614
1615         /* We've mapped the request, now pull as much of the indirect
1616          * descriptor table as we can into the command buffer. If this
1617          * target is not using an external indirect table, we are
1618          * guaranteed to fit into the command, as the SCSI layer won't
1619          * give us more S/G entries than we allow.
1620          */
1621         if (state.ndesc == 1) {
1622                 /*
1623                  * Memory registration collapsed the sg-list into one entry,
1624                  * so use a direct descriptor.
1625                  */
1626                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1627
1628                 *buf = req->indirect_desc[0];
1629                 goto map_complete;
1630         }
1631
1632         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1633                                                 !target->allow_ext_sg)) {
1634                 shost_printk(KERN_ERR, target->scsi_host,
1635                              "Could not fit S/G list into SRP_CMD\n");
1636                 ret = -EIO;
1637                 goto unmap;
1638         }
1639
1640         count = min(state.ndesc, target->cmd_sg_cnt);
1641         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1642         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1643
1644         fmt = SRP_DATA_DESC_INDIRECT;
1645         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1646         len += count * sizeof (struct srp_direct_buf);
1647
1648         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1649                count * sizeof (struct srp_direct_buf));
1650
1651         if (!target->global_mr) {
1652                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1653                                   idb_len, &idb_rkey);
1654                 if (ret < 0)
1655                         goto unmap;
1656                 req->nmdesc++;
1657         } else {
1658                 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1659         }
1660
1661         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1662         indirect_hdr->table_desc.key = idb_rkey;
1663         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1664         indirect_hdr->len = cpu_to_be32(state.total_len);
1665
1666         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1667                 cmd->data_out_desc_cnt = count;
1668         else
1669                 cmd->data_in_desc_cnt = count;
1670
1671         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1672                                       DMA_TO_DEVICE);
1673
1674 map_complete:
1675         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1676                 cmd->buf_fmt = fmt << 4;
1677         else
1678                 cmd->buf_fmt = fmt;
1679
1680         return len;
1681
1682 unmap:
1683         srp_unmap_data(scmnd, ch, req);
1684         if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1685                 ret = -E2BIG;
1686         return ret;
1687 }
1688
1689 /*
1690  * Return an IU and possible credit to the free pool
1691  */
1692 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1693                           enum srp_iu_type iu_type)
1694 {
1695         unsigned long flags;
1696
1697         spin_lock_irqsave(&ch->lock, flags);
1698         list_add(&iu->list, &ch->free_tx);
1699         if (iu_type != SRP_IU_RSP)
1700                 ++ch->req_lim;
1701         spin_unlock_irqrestore(&ch->lock, flags);
1702 }
1703
1704 /*
1705  * Must be called with ch->lock held to protect req_lim and free_tx.
1706  * If IU is not sent, it must be returned using srp_put_tx_iu().
1707  *
1708  * Note:
1709  * An upper limit for the number of allocated information units for each
1710  * request type is:
1711  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1712  *   more than Scsi_Host.can_queue requests.
1713  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1714  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1715  *   one unanswered SRP request to an initiator.
1716  */
1717 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1718                                       enum srp_iu_type iu_type)
1719 {
1720         struct srp_target_port *target = ch->target;
1721         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1722         struct srp_iu *iu;
1723
1724         ib_process_cq_direct(ch->send_cq, -1);
1725
1726         if (list_empty(&ch->free_tx))
1727                 return NULL;
1728
1729         /* Initiator responses to target requests do not consume credits */
1730         if (iu_type != SRP_IU_RSP) {
1731                 if (ch->req_lim <= rsv) {
1732                         ++target->zero_req_lim;
1733                         return NULL;
1734                 }
1735
1736                 --ch->req_lim;
1737         }
1738
1739         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1740         list_del(&iu->list);
1741         return iu;
1742 }
1743
1744 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1745 {
1746         struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1747         struct srp_rdma_ch *ch = cq->cq_context;
1748
1749         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1750                 srp_handle_qp_err(cq, wc, "SEND");
1751                 return;
1752         }
1753
1754         list_add(&iu->list, &ch->free_tx);
1755 }
1756
1757 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1758 {
1759         struct srp_target_port *target = ch->target;
1760         struct ib_sge list;
1761         struct ib_send_wr wr, *bad_wr;
1762
1763         list.addr   = iu->dma;
1764         list.length = len;
1765         list.lkey   = target->lkey;
1766
1767         iu->cqe.done = srp_send_done;
1768
1769         wr.next       = NULL;
1770         wr.wr_cqe     = &iu->cqe;
1771         wr.sg_list    = &list;
1772         wr.num_sge    = 1;
1773         wr.opcode     = IB_WR_SEND;
1774         wr.send_flags = IB_SEND_SIGNALED;
1775
1776         return ib_post_send(ch->qp, &wr, &bad_wr);
1777 }
1778
1779 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1780 {
1781         struct srp_target_port *target = ch->target;
1782         struct ib_recv_wr wr, *bad_wr;
1783         struct ib_sge list;
1784
1785         list.addr   = iu->dma;
1786         list.length = iu->size;
1787         list.lkey   = target->lkey;
1788
1789         iu->cqe.done = srp_recv_done;
1790
1791         wr.next     = NULL;
1792         wr.wr_cqe   = &iu->cqe;
1793         wr.sg_list  = &list;
1794         wr.num_sge  = 1;
1795
1796         return ib_post_recv(ch->qp, &wr, &bad_wr);
1797 }
1798
1799 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1800 {
1801         struct srp_target_port *target = ch->target;
1802         struct srp_request *req;
1803         struct scsi_cmnd *scmnd;
1804         unsigned long flags;
1805
1806         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1807                 spin_lock_irqsave(&ch->lock, flags);
1808                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1809                 spin_unlock_irqrestore(&ch->lock, flags);
1810
1811                 ch->tsk_mgmt_status = -1;
1812                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1813                         ch->tsk_mgmt_status = rsp->data[3];
1814                 complete(&ch->tsk_mgmt_done);
1815         } else {
1816                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1817                 if (scmnd) {
1818                         req = (void *)scmnd->host_scribble;
1819                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1820                 }
1821                 if (!scmnd) {
1822                         shost_printk(KERN_ERR, target->scsi_host,
1823                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1824                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1825
1826                         spin_lock_irqsave(&ch->lock, flags);
1827                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1828                         spin_unlock_irqrestore(&ch->lock, flags);
1829
1830                         return;
1831                 }
1832                 scmnd->result = rsp->status;
1833
1834                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1835                         memcpy(scmnd->sense_buffer, rsp->data +
1836                                be32_to_cpu(rsp->resp_data_len),
1837                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1838                                      SCSI_SENSE_BUFFERSIZE));
1839                 }
1840
1841                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1842                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1843                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1844                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1845                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1846                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1847                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1848                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1849
1850                 srp_free_req(ch, req, scmnd,
1851                              be32_to_cpu(rsp->req_lim_delta));
1852
1853                 scmnd->host_scribble = NULL;
1854                 scmnd->scsi_done(scmnd);
1855         }
1856 }
1857
1858 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1859                                void *rsp, int len)
1860 {
1861         struct srp_target_port *target = ch->target;
1862         struct ib_device *dev = target->srp_host->srp_dev->dev;
1863         unsigned long flags;
1864         struct srp_iu *iu;
1865         int err;
1866
1867         spin_lock_irqsave(&ch->lock, flags);
1868         ch->req_lim += req_delta;
1869         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1870         spin_unlock_irqrestore(&ch->lock, flags);
1871
1872         if (!iu) {
1873                 shost_printk(KERN_ERR, target->scsi_host, PFX
1874                              "no IU available to send response\n");
1875                 return 1;
1876         }
1877
1878         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1879         memcpy(iu->buf, rsp, len);
1880         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1881
1882         err = srp_post_send(ch, iu, len);
1883         if (err) {
1884                 shost_printk(KERN_ERR, target->scsi_host, PFX
1885                              "unable to post response: %d\n", err);
1886                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1887         }
1888
1889         return err;
1890 }
1891
1892 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1893                                  struct srp_cred_req *req)
1894 {
1895         struct srp_cred_rsp rsp = {
1896                 .opcode = SRP_CRED_RSP,
1897                 .tag = req->tag,
1898         };
1899         s32 delta = be32_to_cpu(req->req_lim_delta);
1900
1901         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1902                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1903                              "problems processing SRP_CRED_REQ\n");
1904 }
1905
1906 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1907                                 struct srp_aer_req *req)
1908 {
1909         struct srp_target_port *target = ch->target;
1910         struct srp_aer_rsp rsp = {
1911                 .opcode = SRP_AER_RSP,
1912                 .tag = req->tag,
1913         };
1914         s32 delta = be32_to_cpu(req->req_lim_delta);
1915
1916         shost_printk(KERN_ERR, target->scsi_host, PFX
1917                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1918
1919         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1920                 shost_printk(KERN_ERR, target->scsi_host, PFX
1921                              "problems processing SRP_AER_REQ\n");
1922 }
1923
1924 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1925 {
1926         struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1927         struct srp_rdma_ch *ch = cq->cq_context;
1928         struct srp_target_port *target = ch->target;
1929         struct ib_device *dev = target->srp_host->srp_dev->dev;
1930         int res;
1931         u8 opcode;
1932
1933         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1934                 srp_handle_qp_err(cq, wc, "RECV");
1935                 return;
1936         }
1937
1938         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1939                                    DMA_FROM_DEVICE);
1940
1941         opcode = *(u8 *) iu->buf;
1942
1943         if (0) {
1944                 shost_printk(KERN_ERR, target->scsi_host,
1945                              PFX "recv completion, opcode 0x%02x\n", opcode);
1946                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1947                                iu->buf, wc->byte_len, true);
1948         }
1949
1950         switch (opcode) {
1951         case SRP_RSP:
1952                 srp_process_rsp(ch, iu->buf);
1953                 break;
1954
1955         case SRP_CRED_REQ:
1956                 srp_process_cred_req(ch, iu->buf);
1957                 break;
1958
1959         case SRP_AER_REQ:
1960                 srp_process_aer_req(ch, iu->buf);
1961                 break;
1962
1963         case SRP_T_LOGOUT:
1964                 /* XXX Handle target logout */
1965                 shost_printk(KERN_WARNING, target->scsi_host,
1966                              PFX "Got target logout request\n");
1967                 break;
1968
1969         default:
1970                 shost_printk(KERN_WARNING, target->scsi_host,
1971                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1972                 break;
1973         }
1974
1975         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1976                                       DMA_FROM_DEVICE);
1977
1978         res = srp_post_recv(ch, iu);
1979         if (res != 0)
1980                 shost_printk(KERN_ERR, target->scsi_host,
1981                              PFX "Recv failed with error code %d\n", res);
1982 }
1983
1984 /**
1985  * srp_tl_err_work() - handle a transport layer error
1986  * @work: Work structure embedded in an SRP target port.
1987  *
1988  * Note: This function may get invoked before the rport has been created,
1989  * hence the target->rport test.
1990  */
1991 static void srp_tl_err_work(struct work_struct *work)
1992 {
1993         struct srp_target_port *target;
1994
1995         target = container_of(work, struct srp_target_port, tl_err_work);
1996         if (target->rport)
1997                 srp_start_tl_fail_timers(target->rport);
1998 }
1999
2000 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2001                 const char *opname)
2002 {
2003         struct srp_rdma_ch *ch = cq->cq_context;
2004         struct srp_target_port *target = ch->target;
2005
2006         if (ch->connected && !target->qp_in_error) {
2007                 shost_printk(KERN_ERR, target->scsi_host,
2008                              PFX "failed %s status %s (%d) for CQE %p\n",
2009                              opname, ib_wc_status_msg(wc->status), wc->status,
2010                              wc->wr_cqe);
2011                 queue_work(system_long_wq, &target->tl_err_work);
2012         }
2013         target->qp_in_error = true;
2014 }
2015
2016 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2017 {
2018         struct srp_target_port *target = host_to_target(shost);
2019         struct srp_rport *rport = target->rport;
2020         struct srp_rdma_ch *ch;
2021         struct srp_request *req;
2022         struct srp_iu *iu;
2023         struct srp_cmd *cmd;
2024         struct ib_device *dev;
2025         unsigned long flags;
2026         u32 tag;
2027         u16 idx;
2028         int len, ret;
2029         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2030
2031         /*
2032          * The SCSI EH thread is the only context from which srp_queuecommand()
2033          * can get invoked for blocked devices (SDEV_BLOCK /
2034          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2035          * locking the rport mutex if invoked from inside the SCSI EH.
2036          */
2037         if (in_scsi_eh)
2038                 mutex_lock(&rport->mutex);
2039
2040         scmnd->result = srp_chkready(target->rport);
2041         if (unlikely(scmnd->result))
2042                 goto err;
2043
2044         WARN_ON_ONCE(scmnd->request->tag < 0);
2045         tag = blk_mq_unique_tag(scmnd->request);
2046         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2047         idx = blk_mq_unique_tag_to_tag(tag);
2048         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2049                   dev_name(&shost->shost_gendev), tag, idx,
2050                   target->req_ring_size);
2051
2052         spin_lock_irqsave(&ch->lock, flags);
2053         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2054         spin_unlock_irqrestore(&ch->lock, flags);
2055
2056         if (!iu)
2057                 goto err;
2058
2059         req = &ch->req_ring[idx];
2060         dev = target->srp_host->srp_dev->dev;
2061         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2062                                    DMA_TO_DEVICE);
2063
2064         scmnd->host_scribble = (void *) req;
2065
2066         cmd = iu->buf;
2067         memset(cmd, 0, sizeof *cmd);
2068
2069         cmd->opcode = SRP_CMD;
2070         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2071         cmd->tag    = tag;
2072         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2073
2074         req->scmnd    = scmnd;
2075         req->cmd      = iu;
2076
2077         len = srp_map_data(scmnd, ch, req);
2078         if (len < 0) {
2079                 shost_printk(KERN_ERR, target->scsi_host,
2080                              PFX "Failed to map data (%d)\n", len);
2081                 /*
2082                  * If we ran out of memory descriptors (-ENOMEM) because an
2083                  * application is queuing many requests with more than
2084                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2085                  * to reduce queue depth temporarily.
2086                  */
2087                 scmnd->result = len == -ENOMEM ?
2088                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2089                 goto err_iu;
2090         }
2091
2092         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2093                                       DMA_TO_DEVICE);
2094
2095         if (srp_post_send(ch, iu, len)) {
2096                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2097                 goto err_unmap;
2098         }
2099
2100         ret = 0;
2101
2102 unlock_rport:
2103         if (in_scsi_eh)
2104                 mutex_unlock(&rport->mutex);
2105
2106         return ret;
2107
2108 err_unmap:
2109         srp_unmap_data(scmnd, ch, req);
2110
2111 err_iu:
2112         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2113
2114         /*
2115          * Avoid that the loops that iterate over the request ring can
2116          * encounter a dangling SCSI command pointer.
2117          */
2118         req->scmnd = NULL;
2119
2120 err:
2121         if (scmnd->result) {
2122                 scmnd->scsi_done(scmnd);
2123                 ret = 0;
2124         } else {
2125                 ret = SCSI_MLQUEUE_HOST_BUSY;
2126         }
2127
2128         goto unlock_rport;
2129 }
2130
2131 /*
2132  * Note: the resources allocated in this function are freed in
2133  * srp_free_ch_ib().
2134  */
2135 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2136 {
2137         struct srp_target_port *target = ch->target;
2138         int i;
2139
2140         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2141                               GFP_KERNEL);
2142         if (!ch->rx_ring)
2143                 goto err_no_ring;
2144         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2145                               GFP_KERNEL);
2146         if (!ch->tx_ring)
2147                 goto err_no_ring;
2148
2149         for (i = 0; i < target->queue_size; ++i) {
2150                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2151                                               ch->max_ti_iu_len,
2152                                               GFP_KERNEL, DMA_FROM_DEVICE);
2153                 if (!ch->rx_ring[i])
2154                         goto err;
2155         }
2156
2157         for (i = 0; i < target->queue_size; ++i) {
2158                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2159                                               target->max_iu_len,
2160                                               GFP_KERNEL, DMA_TO_DEVICE);
2161                 if (!ch->tx_ring[i])
2162                         goto err;
2163
2164                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2165         }
2166
2167         return 0;
2168
2169 err:
2170         for (i = 0; i < target->queue_size; ++i) {
2171                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2172                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2173         }
2174
2175
2176 err_no_ring:
2177         kfree(ch->tx_ring);
2178         ch->tx_ring = NULL;
2179         kfree(ch->rx_ring);
2180         ch->rx_ring = NULL;
2181
2182         return -ENOMEM;
2183 }
2184
2185 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2186 {
2187         uint64_t T_tr_ns, max_compl_time_ms;
2188         uint32_t rq_tmo_jiffies;
2189
2190         /*
2191          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2192          * table 91), both the QP timeout and the retry count have to be set
2193          * for RC QP's during the RTR to RTS transition.
2194          */
2195         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2196                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2197
2198         /*
2199          * Set target->rq_tmo_jiffies to one second more than the largest time
2200          * it can take before an error completion is generated. See also
2201          * C9-140..142 in the IBTA spec for more information about how to
2202          * convert the QP Local ACK Timeout value to nanoseconds.
2203          */
2204         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2205         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2206         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2207         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2208
2209         return rq_tmo_jiffies;
2210 }
2211
2212 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2213                                const struct srp_login_rsp *lrsp,
2214                                struct srp_rdma_ch *ch)
2215 {
2216         struct srp_target_port *target = ch->target;
2217         struct ib_qp_attr *qp_attr = NULL;
2218         int attr_mask = 0;
2219         int ret;
2220         int i;
2221
2222         if (lrsp->opcode == SRP_LOGIN_RSP) {
2223                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2224                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2225
2226                 /*
2227                  * Reserve credits for task management so we don't
2228                  * bounce requests back to the SCSI mid-layer.
2229                  */
2230                 target->scsi_host->can_queue
2231                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2232                               target->scsi_host->can_queue);
2233                 target->scsi_host->cmd_per_lun
2234                         = min_t(int, target->scsi_host->can_queue,
2235                                 target->scsi_host->cmd_per_lun);
2236         } else {
2237                 shost_printk(KERN_WARNING, target->scsi_host,
2238                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2239                 ret = -ECONNRESET;
2240                 goto error;
2241         }
2242
2243         if (!ch->rx_ring) {
2244                 ret = srp_alloc_iu_bufs(ch);
2245                 if (ret)
2246                         goto error;
2247         }
2248
2249         ret = -ENOMEM;
2250         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2251         if (!qp_attr)
2252                 goto error;
2253
2254         qp_attr->qp_state = IB_QPS_RTR;
2255         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2256         if (ret)
2257                 goto error_free;
2258
2259         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2260         if (ret)
2261                 goto error_free;
2262
2263         for (i = 0; i < target->queue_size; i++) {
2264                 struct srp_iu *iu = ch->rx_ring[i];
2265
2266                 ret = srp_post_recv(ch, iu);
2267                 if (ret)
2268                         goto error_free;
2269         }
2270
2271         qp_attr->qp_state = IB_QPS_RTS;
2272         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2273         if (ret)
2274                 goto error_free;
2275
2276         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2277
2278         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2279         if (ret)
2280                 goto error_free;
2281
2282         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2283
2284 error_free:
2285         kfree(qp_attr);
2286
2287 error:
2288         ch->status = ret;
2289 }
2290
2291 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2292                                struct ib_cm_event *event,
2293                                struct srp_rdma_ch *ch)
2294 {
2295         struct srp_target_port *target = ch->target;
2296         struct Scsi_Host *shost = target->scsi_host;
2297         struct ib_class_port_info *cpi;
2298         int opcode;
2299
2300         switch (event->param.rej_rcvd.reason) {
2301         case IB_CM_REJ_PORT_CM_REDIRECT:
2302                 cpi = event->param.rej_rcvd.ari;
2303                 ch->path.dlid = cpi->redirect_lid;
2304                 ch->path.pkey = cpi->redirect_pkey;
2305                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2306                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2307
2308                 ch->status = ch->path.dlid ?
2309                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2310                 break;
2311
2312         case IB_CM_REJ_PORT_REDIRECT:
2313                 if (srp_target_is_topspin(target)) {
2314                         /*
2315                          * Topspin/Cisco SRP gateways incorrectly send
2316                          * reject reason code 25 when they mean 24
2317                          * (port redirect).
2318                          */
2319                         memcpy(ch->path.dgid.raw,
2320                                event->param.rej_rcvd.ari, 16);
2321
2322                         shost_printk(KERN_DEBUG, shost,
2323                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2324                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2325                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2326
2327                         ch->status = SRP_PORT_REDIRECT;
2328                 } else {
2329                         shost_printk(KERN_WARNING, shost,
2330                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2331                         ch->status = -ECONNRESET;
2332                 }
2333                 break;
2334
2335         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2336                 shost_printk(KERN_WARNING, shost,
2337                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2338                 ch->status = -ECONNRESET;
2339                 break;
2340
2341         case IB_CM_REJ_CONSUMER_DEFINED:
2342                 opcode = *(u8 *) event->private_data;
2343                 if (opcode == SRP_LOGIN_REJ) {
2344                         struct srp_login_rej *rej = event->private_data;
2345                         u32 reason = be32_to_cpu(rej->reason);
2346
2347                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2348                                 shost_printk(KERN_WARNING, shost,
2349                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2350                         else
2351                                 shost_printk(KERN_WARNING, shost, PFX
2352                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2353                                              target->sgid.raw,
2354                                              target->orig_dgid.raw, reason);
2355                 } else
2356                         shost_printk(KERN_WARNING, shost,
2357                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2358                                      " opcode 0x%02x\n", opcode);
2359                 ch->status = -ECONNRESET;
2360                 break;
2361
2362         case IB_CM_REJ_STALE_CONN:
2363                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2364                 ch->status = SRP_STALE_CONN;
2365                 break;
2366
2367         default:
2368                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2369                              event->param.rej_rcvd.reason);
2370                 ch->status = -ECONNRESET;
2371         }
2372 }
2373
2374 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2375 {
2376         struct srp_rdma_ch *ch = cm_id->context;
2377         struct srp_target_port *target = ch->target;
2378         int comp = 0;
2379
2380         switch (event->event) {
2381         case IB_CM_REQ_ERROR:
2382                 shost_printk(KERN_DEBUG, target->scsi_host,
2383                              PFX "Sending CM REQ failed\n");
2384                 comp = 1;
2385                 ch->status = -ECONNRESET;
2386                 break;
2387
2388         case IB_CM_REP_RECEIVED:
2389                 comp = 1;
2390                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2391                 break;
2392
2393         case IB_CM_REJ_RECEIVED:
2394                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2395                 comp = 1;
2396
2397                 srp_cm_rej_handler(cm_id, event, ch);
2398                 break;
2399
2400         case IB_CM_DREQ_RECEIVED:
2401                 shost_printk(KERN_WARNING, target->scsi_host,
2402                              PFX "DREQ received - connection closed\n");
2403                 ch->connected = false;
2404                 if (ib_send_cm_drep(cm_id, NULL, 0))
2405                         shost_printk(KERN_ERR, target->scsi_host,
2406                                      PFX "Sending CM DREP failed\n");
2407                 queue_work(system_long_wq, &target->tl_err_work);
2408                 break;
2409
2410         case IB_CM_TIMEWAIT_EXIT:
2411                 shost_printk(KERN_ERR, target->scsi_host,
2412                              PFX "connection closed\n");
2413                 comp = 1;
2414
2415                 ch->status = 0;
2416                 break;
2417
2418         case IB_CM_MRA_RECEIVED:
2419         case IB_CM_DREQ_ERROR:
2420         case IB_CM_DREP_RECEIVED:
2421                 break;
2422
2423         default:
2424                 shost_printk(KERN_WARNING, target->scsi_host,
2425                              PFX "Unhandled CM event %d\n", event->event);
2426                 break;
2427         }
2428
2429         if (comp)
2430                 complete(&ch->done);
2431
2432         return 0;
2433 }
2434
2435 /**
2436  * srp_change_queue_depth - setting device queue depth
2437  * @sdev: scsi device struct
2438  * @qdepth: requested queue depth
2439  *
2440  * Returns queue depth.
2441  */
2442 static int
2443 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2444 {
2445         if (!sdev->tagged_supported)
2446                 qdepth = 1;
2447         return scsi_change_queue_depth(sdev, qdepth);
2448 }
2449
2450 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2451                              u8 func)
2452 {
2453         struct srp_target_port *target = ch->target;
2454         struct srp_rport *rport = target->rport;
2455         struct ib_device *dev = target->srp_host->srp_dev->dev;
2456         struct srp_iu *iu;
2457         struct srp_tsk_mgmt *tsk_mgmt;
2458
2459         if (!ch->connected || target->qp_in_error)
2460                 return -1;
2461
2462         init_completion(&ch->tsk_mgmt_done);
2463
2464         /*
2465          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2466          * invoked while a task management function is being sent.
2467          */
2468         mutex_lock(&rport->mutex);
2469         spin_lock_irq(&ch->lock);
2470         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2471         spin_unlock_irq(&ch->lock);
2472
2473         if (!iu) {
2474                 mutex_unlock(&rport->mutex);
2475
2476                 return -1;
2477         }
2478
2479         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2480                                    DMA_TO_DEVICE);
2481         tsk_mgmt = iu->buf;
2482         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2483
2484         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2485         int_to_scsilun(lun, &tsk_mgmt->lun);
2486         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2487         tsk_mgmt->tsk_mgmt_func = func;
2488         tsk_mgmt->task_tag      = req_tag;
2489
2490         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2491                                       DMA_TO_DEVICE);
2492         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2493                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2494                 mutex_unlock(&rport->mutex);
2495
2496                 return -1;
2497         }
2498         mutex_unlock(&rport->mutex);
2499
2500         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2501                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2502                 return -1;
2503
2504         return 0;
2505 }
2506
2507 static int srp_abort(struct scsi_cmnd *scmnd)
2508 {
2509         struct srp_target_port *target = host_to_target(scmnd->device->host);
2510         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2511         u32 tag;
2512         u16 ch_idx;
2513         struct srp_rdma_ch *ch;
2514         int ret;
2515
2516         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2517
2518         if (!req)
2519                 return SUCCESS;
2520         tag = blk_mq_unique_tag(scmnd->request);
2521         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2522         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2523                 return SUCCESS;
2524         ch = &target->ch[ch_idx];
2525         if (!srp_claim_req(ch, req, NULL, scmnd))
2526                 return SUCCESS;
2527         shost_printk(KERN_ERR, target->scsi_host,
2528                      "Sending SRP abort for tag %#x\n", tag);
2529         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2530                               SRP_TSK_ABORT_TASK) == 0)
2531                 ret = SUCCESS;
2532         else if (target->rport->state == SRP_RPORT_LOST)
2533                 ret = FAST_IO_FAIL;
2534         else
2535                 ret = FAILED;
2536         srp_free_req(ch, req, scmnd, 0);
2537         scmnd->result = DID_ABORT << 16;
2538         scmnd->scsi_done(scmnd);
2539
2540         return ret;
2541 }
2542
2543 static int srp_reset_device(struct scsi_cmnd *scmnd)
2544 {
2545         struct srp_target_port *target = host_to_target(scmnd->device->host);
2546         struct srp_rdma_ch *ch;
2547         int i;
2548
2549         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2550
2551         ch = &target->ch[0];
2552         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2553                               SRP_TSK_LUN_RESET))
2554                 return FAILED;
2555         if (ch->tsk_mgmt_status)
2556                 return FAILED;
2557
2558         for (i = 0; i < target->ch_count; i++) {
2559                 ch = &target->ch[i];
2560                 for (i = 0; i < target->req_ring_size; ++i) {
2561                         struct srp_request *req = &ch->req_ring[i];
2562
2563                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2564                 }
2565         }
2566
2567         return SUCCESS;
2568 }
2569
2570 static int srp_reset_host(struct scsi_cmnd *scmnd)
2571 {
2572         struct srp_target_port *target = host_to_target(scmnd->device->host);
2573
2574         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2575
2576         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2577 }
2578
2579 static int srp_slave_configure(struct scsi_device *sdev)
2580 {
2581         struct Scsi_Host *shost = sdev->host;
2582         struct srp_target_port *target = host_to_target(shost);
2583         struct request_queue *q = sdev->request_queue;
2584         unsigned long timeout;
2585
2586         if (sdev->type == TYPE_DISK) {
2587                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2588                 blk_queue_rq_timeout(q, timeout);
2589         }
2590
2591         return 0;
2592 }
2593
2594 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2595                            char *buf)
2596 {
2597         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2598
2599         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2600 }
2601
2602 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2603                              char *buf)
2604 {
2605         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2606
2607         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2608 }
2609
2610 static ssize_t show_service_id(struct device *dev,
2611                                struct device_attribute *attr, char *buf)
2612 {
2613         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2614
2615         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2616 }
2617
2618 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2619                          char *buf)
2620 {
2621         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2622
2623         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2624 }
2625
2626 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2627                          char *buf)
2628 {
2629         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2630
2631         return sprintf(buf, "%pI6\n", target->sgid.raw);
2632 }
2633
2634 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2635                          char *buf)
2636 {
2637         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2638         struct srp_rdma_ch *ch = &target->ch[0];
2639
2640         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2641 }
2642
2643 static ssize_t show_orig_dgid(struct device *dev,
2644                               struct device_attribute *attr, char *buf)
2645 {
2646         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2647
2648         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2649 }
2650
2651 static ssize_t show_req_lim(struct device *dev,
2652                             struct device_attribute *attr, char *buf)
2653 {
2654         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2655         struct srp_rdma_ch *ch;
2656         int i, req_lim = INT_MAX;
2657
2658         for (i = 0; i < target->ch_count; i++) {
2659                 ch = &target->ch[i];
2660                 req_lim = min(req_lim, ch->req_lim);
2661         }
2662         return sprintf(buf, "%d\n", req_lim);
2663 }
2664
2665 static ssize_t show_zero_req_lim(struct device *dev,
2666                                  struct device_attribute *attr, char *buf)
2667 {
2668         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2669
2670         return sprintf(buf, "%d\n", target->zero_req_lim);
2671 }
2672
2673 static ssize_t show_local_ib_port(struct device *dev,
2674                                   struct device_attribute *attr, char *buf)
2675 {
2676         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2677
2678         return sprintf(buf, "%d\n", target->srp_host->port);
2679 }
2680
2681 static ssize_t show_local_ib_device(struct device *dev,
2682                                     struct device_attribute *attr, char *buf)
2683 {
2684         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2685
2686         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2687 }
2688
2689 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2690                              char *buf)
2691 {
2692         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2693
2694         return sprintf(buf, "%d\n", target->ch_count);
2695 }
2696
2697 static ssize_t show_comp_vector(struct device *dev,
2698                                 struct device_attribute *attr, char *buf)
2699 {
2700         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2701
2702         return sprintf(buf, "%d\n", target->comp_vector);
2703 }
2704
2705 static ssize_t show_tl_retry_count(struct device *dev,
2706                                    struct device_attribute *attr, char *buf)
2707 {
2708         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2709
2710         return sprintf(buf, "%d\n", target->tl_retry_count);
2711 }
2712
2713 static ssize_t show_cmd_sg_entries(struct device *dev,
2714                                    struct device_attribute *attr, char *buf)
2715 {
2716         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2717
2718         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2719 }
2720
2721 static ssize_t show_allow_ext_sg(struct device *dev,
2722                                  struct device_attribute *attr, char *buf)
2723 {
2724         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2725
2726         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2727 }
2728
2729 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2730 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2731 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2732 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2733 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2734 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2735 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2736 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2737 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2738 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2739 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2740 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2741 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2742 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2743 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2744 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2745
2746 static struct device_attribute *srp_host_attrs[] = {
2747         &dev_attr_id_ext,
2748         &dev_attr_ioc_guid,
2749         &dev_attr_service_id,
2750         &dev_attr_pkey,
2751         &dev_attr_sgid,
2752         &dev_attr_dgid,
2753         &dev_attr_orig_dgid,
2754         &dev_attr_req_lim,
2755         &dev_attr_zero_req_lim,
2756         &dev_attr_local_ib_port,
2757         &dev_attr_local_ib_device,
2758         &dev_attr_ch_count,
2759         &dev_attr_comp_vector,
2760         &dev_attr_tl_retry_count,
2761         &dev_attr_cmd_sg_entries,
2762         &dev_attr_allow_ext_sg,
2763         NULL
2764 };
2765
2766 static struct scsi_host_template srp_template = {
2767         .module                         = THIS_MODULE,
2768         .name                           = "InfiniBand SRP initiator",
2769         .proc_name                      = DRV_NAME,
2770         .slave_configure                = srp_slave_configure,
2771         .info                           = srp_target_info,
2772         .queuecommand                   = srp_queuecommand,
2773         .change_queue_depth             = srp_change_queue_depth,
2774         .eh_abort_handler               = srp_abort,
2775         .eh_device_reset_handler        = srp_reset_device,
2776         .eh_host_reset_handler          = srp_reset_host,
2777         .skip_settle_delay              = true,
2778         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2779         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2780         .this_id                        = -1,
2781         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2782         .use_clustering                 = ENABLE_CLUSTERING,
2783         .shost_attrs                    = srp_host_attrs,
2784         .track_queue_depth              = 1,
2785 };
2786
2787 static int srp_sdev_count(struct Scsi_Host *host)
2788 {
2789         struct scsi_device *sdev;
2790         int c = 0;
2791
2792         shost_for_each_device(sdev, host)
2793                 c++;
2794
2795         return c;
2796 }
2797
2798 /*
2799  * Return values:
2800  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2801  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2802  *    removal has been scheduled.
2803  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2804  */
2805 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2806 {
2807         struct srp_rport_identifiers ids;
2808         struct srp_rport *rport;
2809
2810         target->state = SRP_TARGET_SCANNING;
2811         sprintf(target->target_name, "SRP.T10:%016llX",
2812                 be64_to_cpu(target->id_ext));
2813
2814         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2815                 return -ENODEV;
2816
2817         memcpy(ids.port_id, &target->id_ext, 8);
2818         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2819         ids.roles = SRP_RPORT_ROLE_TARGET;
2820         rport = srp_rport_add(target->scsi_host, &ids);
2821         if (IS_ERR(rport)) {
2822                 scsi_remove_host(target->scsi_host);
2823                 return PTR_ERR(rport);
2824         }
2825
2826         rport->lld_data = target;
2827         target->rport = rport;
2828
2829         spin_lock(&host->target_lock);
2830         list_add_tail(&target->list, &host->target_list);
2831         spin_unlock(&host->target_lock);
2832
2833         scsi_scan_target(&target->scsi_host->shost_gendev,
2834                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2835
2836         if (srp_connected_ch(target) < target->ch_count ||
2837             target->qp_in_error) {
2838                 shost_printk(KERN_INFO, target->scsi_host,
2839                              PFX "SCSI scan failed - removing SCSI host\n");
2840                 srp_queue_remove_work(target);
2841                 goto out;
2842         }
2843
2844         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2845                  dev_name(&target->scsi_host->shost_gendev),
2846                  srp_sdev_count(target->scsi_host));
2847
2848         spin_lock_irq(&target->lock);
2849         if (target->state == SRP_TARGET_SCANNING)
2850                 target->state = SRP_TARGET_LIVE;
2851         spin_unlock_irq(&target->lock);
2852
2853 out:
2854         return 0;
2855 }
2856
2857 static void srp_release_dev(struct device *dev)
2858 {
2859         struct srp_host *host =
2860                 container_of(dev, struct srp_host, dev);
2861
2862         complete(&host->released);
2863 }
2864
2865 static struct class srp_class = {
2866         .name    = "infiniband_srp",
2867         .dev_release = srp_release_dev
2868 };
2869
2870 /**
2871  * srp_conn_unique() - check whether the connection to a target is unique
2872  * @host:   SRP host.
2873  * @target: SRP target port.
2874  */
2875 static bool srp_conn_unique(struct srp_host *host,
2876                             struct srp_target_port *target)
2877 {
2878         struct srp_target_port *t;
2879         bool ret = false;
2880
2881         if (target->state == SRP_TARGET_REMOVED)
2882                 goto out;
2883
2884         ret = true;
2885
2886         spin_lock(&host->target_lock);
2887         list_for_each_entry(t, &host->target_list, list) {
2888                 if (t != target &&
2889                     target->id_ext == t->id_ext &&
2890                     target->ioc_guid == t->ioc_guid &&
2891                     target->initiator_ext == t->initiator_ext) {
2892                         ret = false;
2893                         break;
2894                 }
2895         }
2896         spin_unlock(&host->target_lock);
2897
2898 out:
2899         return ret;
2900 }
2901
2902 /*
2903  * Target ports are added by writing
2904  *
2905  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2906  *     pkey=<P_Key>,service_id=<service ID>
2907  *
2908  * to the add_target sysfs attribute.
2909  */
2910 enum {
2911         SRP_OPT_ERR             = 0,
2912         SRP_OPT_ID_EXT          = 1 << 0,
2913         SRP_OPT_IOC_GUID        = 1 << 1,
2914         SRP_OPT_DGID            = 1 << 2,
2915         SRP_OPT_PKEY            = 1 << 3,
2916         SRP_OPT_SERVICE_ID      = 1 << 4,
2917         SRP_OPT_MAX_SECT        = 1 << 5,
2918         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2919         SRP_OPT_IO_CLASS        = 1 << 7,
2920         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2921         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2922         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2923         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2924         SRP_OPT_COMP_VECTOR     = 1 << 12,
2925         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2926         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2927         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2928                                    SRP_OPT_IOC_GUID     |
2929                                    SRP_OPT_DGID         |
2930                                    SRP_OPT_PKEY         |
2931                                    SRP_OPT_SERVICE_ID),
2932 };
2933
2934 static const match_table_t srp_opt_tokens = {
2935         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2936         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2937         { SRP_OPT_DGID,                 "dgid=%s"               },
2938         { SRP_OPT_PKEY,                 "pkey=%x"               },
2939         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2940         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2941         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2942         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2943         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2944         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2945         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2946         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2947         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2948         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2949         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2950         { SRP_OPT_ERR,                  NULL                    }
2951 };
2952
2953 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2954 {
2955         char *options, *sep_opt;
2956         char *p;
2957         char dgid[3];
2958         substring_t args[MAX_OPT_ARGS];
2959         int opt_mask = 0;
2960         int token;
2961         int ret = -EINVAL;
2962         int i;
2963
2964         options = kstrdup(buf, GFP_KERNEL);
2965         if (!options)
2966                 return -ENOMEM;
2967
2968         sep_opt = options;
2969         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2970                 if (!*p)
2971                         continue;
2972
2973                 token = match_token(p, srp_opt_tokens, args);
2974                 opt_mask |= token;
2975
2976                 switch (token) {
2977                 case SRP_OPT_ID_EXT:
2978                         p = match_strdup(args);
2979                         if (!p) {
2980                                 ret = -ENOMEM;
2981                                 goto out;
2982                         }
2983                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2984                         kfree(p);
2985                         break;
2986
2987                 case SRP_OPT_IOC_GUID:
2988                         p = match_strdup(args);
2989                         if (!p) {
2990                                 ret = -ENOMEM;
2991                                 goto out;
2992                         }
2993                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2994                         kfree(p);
2995                         break;
2996
2997                 case SRP_OPT_DGID:
2998                         p = match_strdup(args);
2999                         if (!p) {
3000                                 ret = -ENOMEM;
3001                                 goto out;
3002                         }
3003                         if (strlen(p) != 32) {
3004                                 pr_warn("bad dest GID parameter '%s'\n", p);
3005                                 kfree(p);
3006                                 goto out;
3007                         }
3008
3009                         for (i = 0; i < 16; ++i) {
3010                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
3011                                 if (sscanf(dgid, "%hhx",
3012                                            &target->orig_dgid.raw[i]) < 1) {
3013                                         ret = -EINVAL;
3014                                         kfree(p);
3015                                         goto out;
3016                                 }
3017                         }
3018                         kfree(p);
3019                         break;
3020
3021                 case SRP_OPT_PKEY:
3022                         if (match_hex(args, &token)) {
3023                                 pr_warn("bad P_Key parameter '%s'\n", p);
3024                                 goto out;
3025                         }
3026                         target->pkey = cpu_to_be16(token);
3027                         break;
3028
3029                 case SRP_OPT_SERVICE_ID:
3030                         p = match_strdup(args);
3031                         if (!p) {
3032                                 ret = -ENOMEM;
3033                                 goto out;
3034                         }
3035                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3036                         kfree(p);
3037                         break;
3038
3039                 case SRP_OPT_MAX_SECT:
3040                         if (match_int(args, &token)) {
3041                                 pr_warn("bad max sect parameter '%s'\n", p);
3042                                 goto out;
3043                         }
3044                         target->scsi_host->max_sectors = token;
3045                         break;
3046
3047                 case SRP_OPT_QUEUE_SIZE:
3048                         if (match_int(args, &token) || token < 1) {
3049                                 pr_warn("bad queue_size parameter '%s'\n", p);
3050                                 goto out;
3051                         }
3052                         target->scsi_host->can_queue = token;
3053                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3054                                              SRP_TSK_MGMT_SQ_SIZE;
3055                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3056                                 target->scsi_host->cmd_per_lun = token;
3057                         break;
3058
3059                 case SRP_OPT_MAX_CMD_PER_LUN:
3060                         if (match_int(args, &token) || token < 1) {
3061                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3062                                         p);
3063                                 goto out;
3064                         }
3065                         target->scsi_host->cmd_per_lun = token;
3066                         break;
3067
3068                 case SRP_OPT_IO_CLASS:
3069                         if (match_hex(args, &token)) {
3070                                 pr_warn("bad IO class parameter '%s'\n", p);
3071                                 goto out;
3072                         }
3073                         if (token != SRP_REV10_IB_IO_CLASS &&
3074                             token != SRP_REV16A_IB_IO_CLASS) {
3075                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3076                                         token, SRP_REV10_IB_IO_CLASS,
3077                                         SRP_REV16A_IB_IO_CLASS);
3078                                 goto out;
3079                         }
3080                         target->io_class = token;
3081                         break;
3082
3083                 case SRP_OPT_INITIATOR_EXT:
3084                         p = match_strdup(args);
3085                         if (!p) {
3086                                 ret = -ENOMEM;
3087                                 goto out;
3088                         }
3089                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3090                         kfree(p);
3091                         break;
3092
3093                 case SRP_OPT_CMD_SG_ENTRIES:
3094                         if (match_int(args, &token) || token < 1 || token > 255) {
3095                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3096                                         p);
3097                                 goto out;
3098                         }
3099                         target->cmd_sg_cnt = token;
3100                         break;
3101
3102                 case SRP_OPT_ALLOW_EXT_SG:
3103                         if (match_int(args, &token)) {
3104                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3105                                 goto out;
3106                         }
3107                         target->allow_ext_sg = !!token;
3108                         break;
3109
3110                 case SRP_OPT_SG_TABLESIZE:
3111                         if (match_int(args, &token) || token < 1 ||
3112                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3113                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3114                                         p);
3115                                 goto out;
3116                         }
3117                         target->sg_tablesize = token;
3118                         break;
3119
3120                 case SRP_OPT_COMP_VECTOR:
3121                         if (match_int(args, &token) || token < 0) {
3122                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3123                                 goto out;
3124                         }
3125                         target->comp_vector = token;
3126                         break;
3127
3128                 case SRP_OPT_TL_RETRY_COUNT:
3129                         if (match_int(args, &token) || token < 2 || token > 7) {
3130                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3131                                         p);
3132                                 goto out;
3133                         }
3134                         target->tl_retry_count = token;
3135                         break;
3136
3137                 default:
3138                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3139                                 p);
3140                         goto out;
3141                 }
3142         }
3143
3144         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3145                 ret = 0;
3146         else
3147                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3148                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3149                             !(srp_opt_tokens[i].token & opt_mask))
3150                                 pr_warn("target creation request is missing parameter '%s'\n",
3151                                         srp_opt_tokens[i].pattern);
3152
3153         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3154             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3155                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3156                         target->scsi_host->cmd_per_lun,
3157                         target->scsi_host->can_queue);
3158
3159 out:
3160         kfree(options);
3161         return ret;
3162 }
3163
3164 static ssize_t srp_create_target(struct device *dev,
3165                                  struct device_attribute *attr,
3166                                  const char *buf, size_t count)
3167 {
3168         struct srp_host *host =
3169                 container_of(dev, struct srp_host, dev);
3170         struct Scsi_Host *target_host;
3171         struct srp_target_port *target;
3172         struct srp_rdma_ch *ch;
3173         struct srp_device *srp_dev = host->srp_dev;
3174         struct ib_device *ibdev = srp_dev->dev;
3175         int ret, node_idx, node, cpu, i;
3176         bool multich = false;
3177
3178         target_host = scsi_host_alloc(&srp_template,
3179                                       sizeof (struct srp_target_port));
3180         if (!target_host)
3181                 return -ENOMEM;
3182
3183         target_host->transportt  = ib_srp_transport_template;
3184         target_host->max_channel = 0;
3185         target_host->max_id      = 1;
3186         target_host->max_lun     = -1LL;
3187         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3188
3189         target = host_to_target(target_host);
3190
3191         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3192         target->scsi_host       = target_host;
3193         target->srp_host        = host;
3194         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3195         target->global_mr       = host->srp_dev->global_mr;
3196         target->cmd_sg_cnt      = cmd_sg_entries;
3197         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3198         target->allow_ext_sg    = allow_ext_sg;
3199         target->tl_retry_count  = 7;
3200         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3201
3202         /*
3203          * Avoid that the SCSI host can be removed by srp_remove_target()
3204          * before this function returns.
3205          */
3206         scsi_host_get(target->scsi_host);
3207
3208         mutex_lock(&host->add_target_mutex);
3209
3210         ret = srp_parse_options(buf, target);
3211         if (ret)
3212                 goto out;
3213
3214         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3215
3216         if (!srp_conn_unique(target->srp_host, target)) {
3217                 shost_printk(KERN_INFO, target->scsi_host,
3218                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3219                              be64_to_cpu(target->id_ext),
3220                              be64_to_cpu(target->ioc_guid),
3221                              be64_to_cpu(target->initiator_ext));
3222                 ret = -EEXIST;
3223                 goto out;
3224         }
3225
3226         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3227             target->cmd_sg_cnt < target->sg_tablesize) {
3228                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3229                 target->sg_tablesize = target->cmd_sg_cnt;
3230         }
3231
3232         target_host->sg_tablesize = target->sg_tablesize;
3233         target->mr_pool_size = target->scsi_host->can_queue;
3234         target->indirect_size = target->sg_tablesize *
3235                                 sizeof (struct srp_direct_buf);
3236         target->max_iu_len = sizeof (struct srp_cmd) +
3237                              sizeof (struct srp_indirect_buf) +
3238                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3239
3240         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3241         INIT_WORK(&target->remove_work, srp_remove_work);
3242         spin_lock_init(&target->lock);
3243         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3244         if (ret)
3245                 goto out;
3246
3247         ret = -ENOMEM;
3248         target->ch_count = max_t(unsigned, num_online_nodes(),
3249                                  min(ch_count ? :
3250                                      min(4 * num_online_nodes(),
3251                                          ibdev->num_comp_vectors),
3252                                      num_online_cpus()));
3253         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3254                              GFP_KERNEL);
3255         if (!target->ch)
3256                 goto out;
3257
3258         node_idx = 0;
3259         for_each_online_node(node) {
3260                 const int ch_start = (node_idx * target->ch_count /
3261                                       num_online_nodes());
3262                 const int ch_end = ((node_idx + 1) * target->ch_count /
3263                                     num_online_nodes());
3264                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3265                                       num_online_nodes() + target->comp_vector)
3266                                      % ibdev->num_comp_vectors;
3267                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3268                                     num_online_nodes() + target->comp_vector)
3269                                    % ibdev->num_comp_vectors;
3270                 int cpu_idx = 0;
3271
3272                 for_each_online_cpu(cpu) {
3273                         if (cpu_to_node(cpu) != node)
3274                                 continue;
3275                         if (ch_start + cpu_idx >= ch_end)
3276                                 continue;
3277                         ch = &target->ch[ch_start + cpu_idx];
3278                         ch->target = target;
3279                         ch->comp_vector = cv_start == cv_end ? cv_start :
3280                                 cv_start + cpu_idx % (cv_end - cv_start);
3281                         spin_lock_init(&ch->lock);
3282                         INIT_LIST_HEAD(&ch->free_tx);
3283                         ret = srp_new_cm_id(ch);
3284                         if (ret)
3285                                 goto err_disconnect;
3286
3287                         ret = srp_create_ch_ib(ch);
3288                         if (ret)
3289                                 goto err_disconnect;
3290
3291                         ret = srp_alloc_req_data(ch);
3292                         if (ret)
3293                                 goto err_disconnect;
3294
3295                         ret = srp_connect_ch(ch, multich);
3296                         if (ret) {
3297                                 shost_printk(KERN_ERR, target->scsi_host,
3298                                              PFX "Connection %d/%d failed\n",
3299                                              ch_start + cpu_idx,
3300                                              target->ch_count);
3301                                 if (node_idx == 0 && cpu_idx == 0) {
3302                                         goto err_disconnect;
3303                                 } else {
3304                                         srp_free_ch_ib(target, ch);
3305                                         srp_free_req_data(target, ch);
3306                                         target->ch_count = ch - target->ch;
3307                                         goto connected;
3308                                 }
3309                         }
3310
3311                         multich = true;
3312                         cpu_idx++;
3313                 }
3314                 node_idx++;
3315         }
3316
3317 connected:
3318         target->scsi_host->nr_hw_queues = target->ch_count;
3319
3320         ret = srp_add_target(host, target);
3321         if (ret)
3322                 goto err_disconnect;
3323
3324         if (target->state != SRP_TARGET_REMOVED) {
3325                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3326                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3327                              be64_to_cpu(target->id_ext),
3328                              be64_to_cpu(target->ioc_guid),
3329                              be16_to_cpu(target->pkey),
3330                              be64_to_cpu(target->service_id),
3331                              target->sgid.raw, target->orig_dgid.raw);
3332         }
3333
3334         ret = count;
3335
3336 out:
3337         mutex_unlock(&host->add_target_mutex);
3338
3339         scsi_host_put(target->scsi_host);
3340         if (ret < 0)
3341                 scsi_host_put(target->scsi_host);
3342
3343         return ret;
3344
3345 err_disconnect:
3346         srp_disconnect_target(target);
3347
3348         for (i = 0; i < target->ch_count; i++) {
3349                 ch = &target->ch[i];
3350                 srp_free_ch_ib(target, ch);
3351                 srp_free_req_data(target, ch);
3352         }
3353
3354         kfree(target->ch);
3355         goto out;
3356 }
3357
3358 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3359
3360 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3361                           char *buf)
3362 {
3363         struct srp_host *host = container_of(dev, struct srp_host, dev);
3364
3365         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3366 }
3367
3368 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3369
3370 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3371                          char *buf)
3372 {
3373         struct srp_host *host = container_of(dev, struct srp_host, dev);
3374
3375         return sprintf(buf, "%d\n", host->port);
3376 }
3377
3378 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3379
3380 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3381 {
3382         struct srp_host *host;
3383
3384         host = kzalloc(sizeof *host, GFP_KERNEL);
3385         if (!host)
3386                 return NULL;
3387
3388         INIT_LIST_HEAD(&host->target_list);
3389         spin_lock_init(&host->target_lock);
3390         init_completion(&host->released);
3391         mutex_init(&host->add_target_mutex);
3392         host->srp_dev = device;
3393         host->port = port;
3394
3395         host->dev.class = &srp_class;
3396         host->dev.parent = device->dev->dma_device;
3397         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3398
3399         if (device_register(&host->dev))
3400                 goto free_host;
3401         if (device_create_file(&host->dev, &dev_attr_add_target))
3402                 goto err_class;
3403         if (device_create_file(&host->dev, &dev_attr_ibdev))
3404                 goto err_class;
3405         if (device_create_file(&host->dev, &dev_attr_port))
3406                 goto err_class;
3407
3408         return host;
3409
3410 err_class:
3411         device_unregister(&host->dev);
3412
3413 free_host:
3414         kfree(host);
3415
3416         return NULL;
3417 }
3418
3419 static void srp_add_one(struct ib_device *device)
3420 {
3421         struct srp_device *srp_dev;
3422         struct srp_host *host;
3423         int mr_page_shift, p;
3424         u64 max_pages_per_mr;
3425
3426         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3427         if (!srp_dev)
3428                 return;
3429
3430         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3431                             device->map_phys_fmr && device->unmap_fmr);
3432         srp_dev->has_fr = (device->attrs.device_cap_flags &
3433                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3434         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3435                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3436
3437         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3438                                  (!srp_dev->has_fmr || prefer_fr));
3439         srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3440
3441         /*
3442          * Use the smallest page size supported by the HCA, down to a
3443          * minimum of 4096 bytes. We're unlikely to build large sglists
3444          * out of smaller entries.
3445          */
3446         mr_page_shift           = max(12, ffs(device->attrs.page_size_cap) - 1);
3447         srp_dev->mr_page_size   = 1 << mr_page_shift;
3448         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3449         max_pages_per_mr        = device->attrs.max_mr_size;
3450         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3451         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3452                                           max_pages_per_mr);
3453         if (srp_dev->use_fast_reg) {
3454                 srp_dev->max_pages_per_mr =
3455                         min_t(u32, srp_dev->max_pages_per_mr,
3456                               device->attrs.max_fast_reg_page_list_len);
3457         }
3458         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3459                                    srp_dev->max_pages_per_mr;
3460         pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3461                  device->name, mr_page_shift, device->attrs.max_mr_size,
3462                  device->attrs.max_fast_reg_page_list_len,
3463                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3464
3465         INIT_LIST_HEAD(&srp_dev->dev_list);
3466
3467         srp_dev->dev = device;
3468         srp_dev->pd  = ib_alloc_pd(device);
3469         if (IS_ERR(srp_dev->pd))
3470                 goto free_dev;
3471
3472         if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3473                 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3474                                                    IB_ACCESS_LOCAL_WRITE |
3475                                                    IB_ACCESS_REMOTE_READ |
3476                                                    IB_ACCESS_REMOTE_WRITE);
3477                 if (IS_ERR(srp_dev->global_mr))
3478                         goto err_pd;
3479         } else {
3480                 srp_dev->global_mr = NULL;
3481         }
3482
3483         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3484                 host = srp_add_port(srp_dev, p);
3485                 if (host)
3486                         list_add_tail(&host->list, &srp_dev->dev_list);
3487         }
3488
3489         ib_set_client_data(device, &srp_client, srp_dev);
3490         return;
3491
3492 err_pd:
3493         ib_dealloc_pd(srp_dev->pd);
3494
3495 free_dev:
3496         kfree(srp_dev);
3497 }
3498
3499 static void srp_remove_one(struct ib_device *device, void *client_data)
3500 {
3501         struct srp_device *srp_dev;
3502         struct srp_host *host, *tmp_host;
3503         struct srp_target_port *target;
3504
3505         srp_dev = client_data;
3506         if (!srp_dev)
3507                 return;
3508
3509         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3510                 device_unregister(&host->dev);
3511                 /*
3512                  * Wait for the sysfs entry to go away, so that no new
3513                  * target ports can be created.
3514                  */
3515                 wait_for_completion(&host->released);
3516
3517                 /*
3518                  * Remove all target ports.
3519                  */
3520                 spin_lock(&host->target_lock);
3521                 list_for_each_entry(target, &host->target_list, list)
3522                         srp_queue_remove_work(target);
3523                 spin_unlock(&host->target_lock);
3524
3525                 /*
3526                  * Wait for tl_err and target port removal tasks.
3527                  */
3528                 flush_workqueue(system_long_wq);
3529                 flush_workqueue(srp_remove_wq);
3530
3531                 kfree(host);
3532         }
3533
3534         if (srp_dev->global_mr)
3535                 ib_dereg_mr(srp_dev->global_mr);
3536         ib_dealloc_pd(srp_dev->pd);
3537
3538         kfree(srp_dev);
3539 }
3540
3541 static struct srp_function_template ib_srp_transport_functions = {
3542         .has_rport_state         = true,
3543         .reset_timer_if_blocked  = true,
3544         .reconnect_delay         = &srp_reconnect_delay,
3545         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3546         .dev_loss_tmo            = &srp_dev_loss_tmo,
3547         .reconnect               = srp_rport_reconnect,
3548         .rport_delete            = srp_rport_delete,
3549         .terminate_rport_io      = srp_terminate_io,
3550 };
3551
3552 static int __init srp_init_module(void)
3553 {
3554         int ret;
3555
3556         if (srp_sg_tablesize) {
3557                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3558                 if (!cmd_sg_entries)
3559                         cmd_sg_entries = srp_sg_tablesize;
3560         }
3561
3562         if (!cmd_sg_entries)
3563                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3564
3565         if (cmd_sg_entries > 255) {
3566                 pr_warn("Clamping cmd_sg_entries to 255\n");
3567                 cmd_sg_entries = 255;
3568         }
3569
3570         if (!indirect_sg_entries)
3571                 indirect_sg_entries = cmd_sg_entries;
3572         else if (indirect_sg_entries < cmd_sg_entries) {
3573                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3574                         cmd_sg_entries);
3575                 indirect_sg_entries = cmd_sg_entries;
3576         }
3577
3578         srp_remove_wq = create_workqueue("srp_remove");
3579         if (!srp_remove_wq) {
3580                 ret = -ENOMEM;
3581                 goto out;
3582         }
3583
3584         ret = -ENOMEM;
3585         ib_srp_transport_template =
3586                 srp_attach_transport(&ib_srp_transport_functions);
3587         if (!ib_srp_transport_template)
3588                 goto destroy_wq;
3589
3590         ret = class_register(&srp_class);
3591         if (ret) {
3592                 pr_err("couldn't register class infiniband_srp\n");
3593                 goto release_tr;
3594         }
3595
3596         ib_sa_register_client(&srp_sa_client);
3597
3598         ret = ib_register_client(&srp_client);
3599         if (ret) {
3600                 pr_err("couldn't register IB client\n");
3601                 goto unreg_sa;
3602         }
3603
3604 out:
3605         return ret;
3606
3607 unreg_sa:
3608         ib_sa_unregister_client(&srp_sa_client);
3609         class_unregister(&srp_class);
3610
3611 release_tr:
3612         srp_release_transport(ib_srp_transport_template);
3613
3614 destroy_wq:
3615         destroy_workqueue(srp_remove_wq);
3616         goto out;
3617 }
3618
3619 static void __exit srp_cleanup_module(void)
3620 {
3621         ib_unregister_client(&srp_client);
3622         ib_sa_unregister_client(&srp_sa_client);
3623         class_unregister(&srp_class);
3624         srp_release_transport(ib_srp_transport_template);
3625         destroy_workqueue(srp_remove_wq);
3626 }
3627
3628 module_init(srp_init_module);
3629 module_exit(srp_cleanup_module);