Merge tag 'tegra-for-4.8-i2c' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra...
[cascardo/linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_iommu.h>
34 #include <linux/of_platform.h>
35 #include <linux/pci.h>
36 #include <linux/platform_device.h>
37
38 #include <linux/amba/bus.h>
39
40 #include "io-pgtable.h"
41
42 /* MMIO registers */
43 #define ARM_SMMU_IDR0                   0x0
44 #define IDR0_ST_LVL_SHIFT               27
45 #define IDR0_ST_LVL_MASK                0x3
46 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
47 #define IDR0_STALL_MODEL_SHIFT          24
48 #define IDR0_STALL_MODEL_MASK           0x3
49 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
50 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
51 #define IDR0_TTENDIAN_SHIFT             21
52 #define IDR0_TTENDIAN_MASK              0x3
53 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
54 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
55 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_CD2L                       (1 << 19)
57 #define IDR0_VMID16                     (1 << 18)
58 #define IDR0_PRI                        (1 << 16)
59 #define IDR0_SEV                        (1 << 14)
60 #define IDR0_MSI                        (1 << 13)
61 #define IDR0_ASID16                     (1 << 12)
62 #define IDR0_ATS                        (1 << 10)
63 #define IDR0_HYP                        (1 << 9)
64 #define IDR0_COHACC                     (1 << 4)
65 #define IDR0_TTF_SHIFT                  2
66 #define IDR0_TTF_MASK                   0x3
67 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
68 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
69 #define IDR0_S1P                        (1 << 1)
70 #define IDR0_S2P                        (1 << 0)
71
72 #define ARM_SMMU_IDR1                   0x4
73 #define IDR1_TABLES_PRESET              (1 << 30)
74 #define IDR1_QUEUES_PRESET              (1 << 29)
75 #define IDR1_REL                        (1 << 28)
76 #define IDR1_CMDQ_SHIFT                 21
77 #define IDR1_CMDQ_MASK                  0x1f
78 #define IDR1_EVTQ_SHIFT                 16
79 #define IDR1_EVTQ_MASK                  0x1f
80 #define IDR1_PRIQ_SHIFT                 11
81 #define IDR1_PRIQ_MASK                  0x1f
82 #define IDR1_SSID_SHIFT                 6
83 #define IDR1_SSID_MASK                  0x1f
84 #define IDR1_SID_SHIFT                  0
85 #define IDR1_SID_MASK                   0x3f
86
87 #define ARM_SMMU_IDR5                   0x14
88 #define IDR5_STALL_MAX_SHIFT            16
89 #define IDR5_STALL_MAX_MASK             0xffff
90 #define IDR5_GRAN64K                    (1 << 6)
91 #define IDR5_GRAN16K                    (1 << 5)
92 #define IDR5_GRAN4K                     (1 << 4)
93 #define IDR5_OAS_SHIFT                  0
94 #define IDR5_OAS_MASK                   0x7
95 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
101
102 #define ARM_SMMU_CR0                    0x20
103 #define CR0_CMDQEN                      (1 << 3)
104 #define CR0_EVTQEN                      (1 << 2)
105 #define CR0_PRIQEN                      (1 << 1)
106 #define CR0_SMMUEN                      (1 << 0)
107
108 #define ARM_SMMU_CR0ACK                 0x24
109
110 #define ARM_SMMU_CR1                    0x28
111 #define CR1_SH_NSH                      0
112 #define CR1_SH_OSH                      2
113 #define CR1_SH_ISH                      3
114 #define CR1_CACHE_NC                    0
115 #define CR1_CACHE_WB                    1
116 #define CR1_CACHE_WT                    2
117 #define CR1_TABLE_SH_SHIFT              10
118 #define CR1_TABLE_OC_SHIFT              8
119 #define CR1_TABLE_IC_SHIFT              6
120 #define CR1_QUEUE_SH_SHIFT              4
121 #define CR1_QUEUE_OC_SHIFT              2
122 #define CR1_QUEUE_IC_SHIFT              0
123
124 #define ARM_SMMU_CR2                    0x2c
125 #define CR2_PTM                         (1 << 2)
126 #define CR2_RECINVSID                   (1 << 1)
127 #define CR2_E2H                         (1 << 0)
128
129 #define ARM_SMMU_GBPA                   0x44
130 #define GBPA_ABORT                      (1 << 20)
131 #define GBPA_UPDATE                     (1 << 31)
132
133 #define ARM_SMMU_IRQ_CTRL               0x50
134 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
135 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
136 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
137
138 #define ARM_SMMU_IRQ_CTRLACK            0x54
139
140 #define ARM_SMMU_GERROR                 0x60
141 #define GERROR_SFM_ERR                  (1 << 8)
142 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
143 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
144 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
145 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
146 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
147 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
148 #define GERROR_CMDQ_ERR                 (1 << 0)
149 #define GERROR_ERR_MASK                 0xfd
150
151 #define ARM_SMMU_GERRORN                0x64
152
153 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
154 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
155 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
156
157 #define ARM_SMMU_STRTAB_BASE            0x80
158 #define STRTAB_BASE_RA                  (1UL << 62)
159 #define STRTAB_BASE_ADDR_SHIFT          6
160 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
161
162 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
163 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
164 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
165 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
166 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
167 #define STRTAB_BASE_CFG_FMT_SHIFT       16
168 #define STRTAB_BASE_CFG_FMT_MASK        0x3
169 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
170 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
171
172 #define ARM_SMMU_CMDQ_BASE              0x90
173 #define ARM_SMMU_CMDQ_PROD              0x98
174 #define ARM_SMMU_CMDQ_CONS              0x9c
175
176 #define ARM_SMMU_EVTQ_BASE              0xa0
177 #define ARM_SMMU_EVTQ_PROD              0x100a8
178 #define ARM_SMMU_EVTQ_CONS              0x100ac
179 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
180 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
181 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
182
183 #define ARM_SMMU_PRIQ_BASE              0xc0
184 #define ARM_SMMU_PRIQ_PROD              0x100c8
185 #define ARM_SMMU_PRIQ_CONS              0x100cc
186 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
187 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
188 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
189
190 /* Common MSI config fields */
191 #define MSI_CFG0_ADDR_SHIFT             2
192 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
193 #define MSI_CFG2_SH_SHIFT               4
194 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
195 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
196 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_MEMATTR_SHIFT          0
198 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
199
200 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
201 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
202 #define Q_OVERFLOW_FLAG                 (1 << 31)
203 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
204 #define Q_ENT(q, p)                     ((q)->base +                    \
205                                          Q_IDX(q, p) * (q)->ent_dwords)
206
207 #define Q_BASE_RWA                      (1UL << 62)
208 #define Q_BASE_ADDR_SHIFT               5
209 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
210 #define Q_BASE_LOG2SIZE_SHIFT           0
211 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
212
213 /*
214  * Stream table.
215  *
216  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
217  * 2lvl: 128k L1 entries,
218  *       256 lazy entries per table (each table covers a PCI bus)
219  */
220 #define STRTAB_L1_SZ_SHIFT              20
221 #define STRTAB_SPLIT                    8
222
223 #define STRTAB_L1_DESC_DWORDS           1
224 #define STRTAB_L1_DESC_SPAN_SHIFT       0
225 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
226 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
227 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
228
229 #define STRTAB_STE_DWORDS               8
230 #define STRTAB_STE_0_V                  (1UL << 0)
231 #define STRTAB_STE_0_CFG_SHIFT          1
232 #define STRTAB_STE_0_CFG_MASK           0x7UL
233 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
234 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
235 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
237
238 #define STRTAB_STE_0_S1FMT_SHIFT        4
239 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
240 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
241 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
242 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
243 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
244
245 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
246 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
247 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
248 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
249 #define STRTAB_STE_1_S1C_SH_NSH         0UL
250 #define STRTAB_STE_1_S1C_SH_OSH         2UL
251 #define STRTAB_STE_1_S1C_SH_ISH         3UL
252 #define STRTAB_STE_1_S1CIR_SHIFT        2
253 #define STRTAB_STE_1_S1COR_SHIFT        4
254 #define STRTAB_STE_1_S1CSH_SHIFT        6
255
256 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
257
258 #define STRTAB_STE_1_EATS_ABT           0UL
259 #define STRTAB_STE_1_EATS_TRANS         1UL
260 #define STRTAB_STE_1_EATS_S1CHK         2UL
261 #define STRTAB_STE_1_EATS_SHIFT         28
262
263 #define STRTAB_STE_1_STRW_NSEL1         0UL
264 #define STRTAB_STE_1_STRW_EL2           2UL
265 #define STRTAB_STE_1_STRW_SHIFT         30
266
267 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
268 #define STRTAB_STE_1_SHCFG_SHIFT        44
269
270 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
271 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
272
273 #define STRTAB_STE_2_S2VMID_SHIFT       0
274 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
275 #define STRTAB_STE_2_VTCR_SHIFT         32
276 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
277 #define STRTAB_STE_2_S2AA64             (1UL << 51)
278 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
279 #define STRTAB_STE_2_S2PTW              (1UL << 54)
280 #define STRTAB_STE_2_S2R                (1UL << 58)
281
282 #define STRTAB_STE_3_S2TTB_SHIFT        4
283 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
284
285 /* Context descriptor (stage-1 only) */
286 #define CTXDESC_CD_DWORDS               8
287 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
288 #define ARM64_TCR_T0SZ_SHIFT            0
289 #define ARM64_TCR_T0SZ_MASK             0x1fUL
290 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
291 #define ARM64_TCR_TG0_SHIFT             14
292 #define ARM64_TCR_TG0_MASK              0x3UL
293 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
294 #define ARM64_TCR_IRGN0_SHIFT           8
295 #define ARM64_TCR_IRGN0_MASK            0x3UL
296 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
297 #define ARM64_TCR_ORGN0_SHIFT           10
298 #define ARM64_TCR_ORGN0_MASK            0x3UL
299 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
300 #define ARM64_TCR_SH0_SHIFT             12
301 #define ARM64_TCR_SH0_MASK              0x3UL
302 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
303 #define ARM64_TCR_EPD0_SHIFT            7
304 #define ARM64_TCR_EPD0_MASK             0x1UL
305 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
306 #define ARM64_TCR_EPD1_SHIFT            23
307 #define ARM64_TCR_EPD1_MASK             0x1UL
308
309 #define CTXDESC_CD_0_ENDI               (1UL << 15)
310 #define CTXDESC_CD_0_V                  (1UL << 31)
311
312 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
313 #define ARM64_TCR_IPS_SHIFT             32
314 #define ARM64_TCR_IPS_MASK              0x7UL
315 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
316 #define ARM64_TCR_TBI0_SHIFT            37
317 #define ARM64_TCR_TBI0_MASK             0x1UL
318
319 #define CTXDESC_CD_0_AA64               (1UL << 41)
320 #define CTXDESC_CD_0_R                  (1UL << 45)
321 #define CTXDESC_CD_0_A                  (1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT         47
323 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT         48
326 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
327
328 #define CTXDESC_CD_1_TTB0_SHIFT         4
329 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
330
331 #define CTXDESC_CD_3_MAIR_SHIFT         0
332
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
335         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
336          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS                 2
340 #define CMDQ_MAX_SZ_SHIFT               8
341
342 #define CMDQ_ERR_SHIFT                  24
343 #define CMDQ_ERR_MASK                   0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX        0
345 #define CMDQ_ERR_CERROR_ILL_IDX         1
346 #define CMDQ_ERR_CERROR_ABT_IDX         2
347
348 #define CMDQ_0_OP_SHIFT                 0
349 #define CMDQ_0_OP_MASK                  0xffUL
350 #define CMDQ_0_SSV                      (1UL << 11)
351
352 #define CMDQ_PREFETCH_0_SID_SHIFT       32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
354 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
355
356 #define CMDQ_CFGI_0_SID_SHIFT           32
357 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT         0
360 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
361
362 #define CMDQ_TLBI_0_VMID_SHIFT          32
363 #define CMDQ_TLBI_0_ASID_SHIFT          48
364 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
367
368 #define CMDQ_PRI_0_SSID_SHIFT           12
369 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT            32
371 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT          0
373 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT           12
375 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379 #define CMDQ_SYNC_0_CS_SHIFT            12
380 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
382
383 /* Event queue */
384 #define EVTQ_ENT_DWORDS                 4
385 #define EVTQ_MAX_SZ_SHIFT               7
386
387 #define EVTQ_0_ID_SHIFT                 0
388 #define EVTQ_0_ID_MASK                  0xffUL
389
390 /* PRI queue */
391 #define PRIQ_ENT_DWORDS                 2
392 #define PRIQ_MAX_SZ_SHIFT               8
393
394 #define PRIQ_0_SID_SHIFT                0
395 #define PRIQ_0_SID_MASK                 0xffffffffUL
396 #define PRIQ_0_SSID_SHIFT               32
397 #define PRIQ_0_SSID_MASK                0xfffffUL
398 #define PRIQ_0_PERM_PRIV                (1UL << 58)
399 #define PRIQ_0_PERM_EXEC                (1UL << 59)
400 #define PRIQ_0_PERM_READ                (1UL << 60)
401 #define PRIQ_0_PERM_WRITE               (1UL << 61)
402 #define PRIQ_0_PRG_LAST                 (1UL << 62)
403 #define PRIQ_0_SSID_V                   (1UL << 63)
404
405 #define PRIQ_1_PRG_IDX_SHIFT            0
406 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
407 #define PRIQ_1_ADDR_SHIFT               12
408 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
409
410 /* High-level queue structures */
411 #define ARM_SMMU_POLL_TIMEOUT_US        100
412
413 static bool disable_bypass;
414 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
415 MODULE_PARM_DESC(disable_bypass,
416         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
417
418 enum pri_resp {
419         PRI_RESP_DENY,
420         PRI_RESP_FAIL,
421         PRI_RESP_SUCC,
422 };
423
424 enum arm_smmu_msi_index {
425         EVTQ_MSI_INDEX,
426         GERROR_MSI_INDEX,
427         PRIQ_MSI_INDEX,
428         ARM_SMMU_MAX_MSIS,
429 };
430
431 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
432         [EVTQ_MSI_INDEX] = {
433                 ARM_SMMU_EVTQ_IRQ_CFG0,
434                 ARM_SMMU_EVTQ_IRQ_CFG1,
435                 ARM_SMMU_EVTQ_IRQ_CFG2,
436         },
437         [GERROR_MSI_INDEX] = {
438                 ARM_SMMU_GERROR_IRQ_CFG0,
439                 ARM_SMMU_GERROR_IRQ_CFG1,
440                 ARM_SMMU_GERROR_IRQ_CFG2,
441         },
442         [PRIQ_MSI_INDEX] = {
443                 ARM_SMMU_PRIQ_IRQ_CFG0,
444                 ARM_SMMU_PRIQ_IRQ_CFG1,
445                 ARM_SMMU_PRIQ_IRQ_CFG2,
446         },
447 };
448
449 struct arm_smmu_cmdq_ent {
450         /* Common fields */
451         u8                              opcode;
452         bool                            substream_valid;
453
454         /* Command-specific fields */
455         union {
456                 #define CMDQ_OP_PREFETCH_CFG    0x1
457                 struct {
458                         u32                     sid;
459                         u8                      size;
460                         u64                     addr;
461                 } prefetch;
462
463                 #define CMDQ_OP_CFGI_STE        0x3
464                 #define CMDQ_OP_CFGI_ALL        0x4
465                 struct {
466                         u32                     sid;
467                         union {
468                                 bool            leaf;
469                                 u8              span;
470                         };
471                 } cfgi;
472
473                 #define CMDQ_OP_TLBI_NH_ASID    0x11
474                 #define CMDQ_OP_TLBI_NH_VA      0x12
475                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
476                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
477                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
478                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
479                 struct {
480                         u16                     asid;
481                         u16                     vmid;
482                         bool                    leaf;
483                         u64                     addr;
484                 } tlbi;
485
486                 #define CMDQ_OP_PRI_RESP        0x41
487                 struct {
488                         u32                     sid;
489                         u32                     ssid;
490                         u16                     grpid;
491                         enum pri_resp           resp;
492                 } pri;
493
494                 #define CMDQ_OP_CMD_SYNC        0x46
495         };
496 };
497
498 struct arm_smmu_queue {
499         int                             irq; /* Wired interrupt */
500
501         __le64                          *base;
502         dma_addr_t                      base_dma;
503         u64                             q_base;
504
505         size_t                          ent_dwords;
506         u32                             max_n_shift;
507         u32                             prod;
508         u32                             cons;
509
510         u32 __iomem                     *prod_reg;
511         u32 __iomem                     *cons_reg;
512 };
513
514 struct arm_smmu_cmdq {
515         struct arm_smmu_queue           q;
516         spinlock_t                      lock;
517 };
518
519 struct arm_smmu_evtq {
520         struct arm_smmu_queue           q;
521         u32                             max_stalls;
522 };
523
524 struct arm_smmu_priq {
525         struct arm_smmu_queue           q;
526 };
527
528 /* High-level stream table and context descriptor structures */
529 struct arm_smmu_strtab_l1_desc {
530         u8                              span;
531
532         __le64                          *l2ptr;
533         dma_addr_t                      l2ptr_dma;
534 };
535
536 struct arm_smmu_s1_cfg {
537         __le64                          *cdptr;
538         dma_addr_t                      cdptr_dma;
539
540         struct arm_smmu_ctx_desc {
541                 u16     asid;
542                 u64     ttbr;
543                 u64     tcr;
544                 u64     mair;
545         }                               cd;
546 };
547
548 struct arm_smmu_s2_cfg {
549         u16                             vmid;
550         u64                             vttbr;
551         u64                             vtcr;
552 };
553
554 struct arm_smmu_strtab_ent {
555         bool                            valid;
556
557         bool                            bypass; /* Overrides s1/s2 config */
558         struct arm_smmu_s1_cfg          *s1_cfg;
559         struct arm_smmu_s2_cfg          *s2_cfg;
560 };
561
562 struct arm_smmu_strtab_cfg {
563         __le64                          *strtab;
564         dma_addr_t                      strtab_dma;
565         struct arm_smmu_strtab_l1_desc  *l1_desc;
566         unsigned int                    num_l1_ents;
567
568         u64                             strtab_base;
569         u32                             strtab_base_cfg;
570 };
571
572 /* An SMMUv3 instance */
573 struct arm_smmu_device {
574         struct device                   *dev;
575         void __iomem                    *base;
576
577 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
578 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
579 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
580 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
581 #define ARM_SMMU_FEAT_PRI               (1 << 4)
582 #define ARM_SMMU_FEAT_ATS               (1 << 5)
583 #define ARM_SMMU_FEAT_SEV               (1 << 6)
584 #define ARM_SMMU_FEAT_MSI               (1 << 7)
585 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
586 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
587 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
588 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
589 #define ARM_SMMU_FEAT_HYP               (1 << 12)
590         u32                             features;
591
592 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
593         u32                             options;
594
595         struct arm_smmu_cmdq            cmdq;
596         struct arm_smmu_evtq            evtq;
597         struct arm_smmu_priq            priq;
598
599         int                             gerr_irq;
600
601         unsigned long                   ias; /* IPA */
602         unsigned long                   oas; /* PA */
603         unsigned long                   pgsize_bitmap;
604
605 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
606         unsigned int                    asid_bits;
607         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
608
609 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
610         unsigned int                    vmid_bits;
611         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
612
613         unsigned int                    ssid_bits;
614         unsigned int                    sid_bits;
615
616         struct arm_smmu_strtab_cfg      strtab_cfg;
617 };
618
619 /* SMMU private data for each master */
620 struct arm_smmu_master_data {
621         struct arm_smmu_device          *smmu;
622         struct arm_smmu_strtab_ent      ste;
623 };
624
625 /* SMMU private data for an IOMMU domain */
626 enum arm_smmu_domain_stage {
627         ARM_SMMU_DOMAIN_S1 = 0,
628         ARM_SMMU_DOMAIN_S2,
629         ARM_SMMU_DOMAIN_NESTED,
630 };
631
632 struct arm_smmu_domain {
633         struct arm_smmu_device          *smmu;
634         struct mutex                    init_mutex; /* Protects smmu pointer */
635
636         struct io_pgtable_ops           *pgtbl_ops;
637         spinlock_t                      pgtbl_lock;
638
639         enum arm_smmu_domain_stage      stage;
640         union {
641                 struct arm_smmu_s1_cfg  s1_cfg;
642                 struct arm_smmu_s2_cfg  s2_cfg;
643         };
644
645         struct iommu_domain             domain;
646 };
647
648 struct arm_smmu_option_prop {
649         u32 opt;
650         const char *prop;
651 };
652
653 static struct arm_smmu_option_prop arm_smmu_options[] = {
654         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
655         { 0, NULL},
656 };
657
658 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
659 {
660         return container_of(dom, struct arm_smmu_domain, domain);
661 }
662
663 static void parse_driver_options(struct arm_smmu_device *smmu)
664 {
665         int i = 0;
666
667         do {
668                 if (of_property_read_bool(smmu->dev->of_node,
669                                                 arm_smmu_options[i].prop)) {
670                         smmu->options |= arm_smmu_options[i].opt;
671                         dev_notice(smmu->dev, "option %s\n",
672                                 arm_smmu_options[i].prop);
673                 }
674         } while (arm_smmu_options[++i].opt);
675 }
676
677 /* Low-level queue manipulation functions */
678 static bool queue_full(struct arm_smmu_queue *q)
679 {
680         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
681                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
682 }
683
684 static bool queue_empty(struct arm_smmu_queue *q)
685 {
686         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
687                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
688 }
689
690 static void queue_sync_cons(struct arm_smmu_queue *q)
691 {
692         q->cons = readl_relaxed(q->cons_reg);
693 }
694
695 static void queue_inc_cons(struct arm_smmu_queue *q)
696 {
697         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
698
699         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
700         writel(q->cons, q->cons_reg);
701 }
702
703 static int queue_sync_prod(struct arm_smmu_queue *q)
704 {
705         int ret = 0;
706         u32 prod = readl_relaxed(q->prod_reg);
707
708         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
709                 ret = -EOVERFLOW;
710
711         q->prod = prod;
712         return ret;
713 }
714
715 static void queue_inc_prod(struct arm_smmu_queue *q)
716 {
717         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
718
719         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
720         writel(q->prod, q->prod_reg);
721 }
722
723 /*
724  * Wait for the SMMU to consume items. If drain is true, wait until the queue
725  * is empty. Otherwise, wait until there is at least one free slot.
726  */
727 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
728 {
729         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
730
731         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
732                 if (ktime_compare(ktime_get(), timeout) > 0)
733                         return -ETIMEDOUT;
734
735                 if (wfe) {
736                         wfe();
737                 } else {
738                         cpu_relax();
739                         udelay(1);
740                 }
741         }
742
743         return 0;
744 }
745
746 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
747 {
748         int i;
749
750         for (i = 0; i < n_dwords; ++i)
751                 *dst++ = cpu_to_le64(*src++);
752 }
753
754 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
755 {
756         if (queue_full(q))
757                 return -ENOSPC;
758
759         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
760         queue_inc_prod(q);
761         return 0;
762 }
763
764 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
765 {
766         int i;
767
768         for (i = 0; i < n_dwords; ++i)
769                 *dst++ = le64_to_cpu(*src++);
770 }
771
772 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
773 {
774         if (queue_empty(q))
775                 return -EAGAIN;
776
777         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
778         queue_inc_cons(q);
779         return 0;
780 }
781
782 /* High-level queue accessors */
783 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
784 {
785         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
786         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
787
788         switch (ent->opcode) {
789         case CMDQ_OP_TLBI_EL2_ALL:
790         case CMDQ_OP_TLBI_NSNH_ALL:
791                 break;
792         case CMDQ_OP_PREFETCH_CFG:
793                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
794                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
795                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
796                 break;
797         case CMDQ_OP_CFGI_STE:
798                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
799                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
800                 break;
801         case CMDQ_OP_CFGI_ALL:
802                 /* Cover the entire SID range */
803                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
804                 break;
805         case CMDQ_OP_TLBI_NH_VA:
806                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
808                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
809                 break;
810         case CMDQ_OP_TLBI_S2_IPA:
811                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
814                 break;
815         case CMDQ_OP_TLBI_NH_ASID:
816                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
817                 /* Fallthrough */
818         case CMDQ_OP_TLBI_S12_VMALL:
819                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
820                 break;
821         case CMDQ_OP_PRI_RESP:
822                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
823                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
824                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
825                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
826                 switch (ent->pri.resp) {
827                 case PRI_RESP_DENY:
828                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
829                         break;
830                 case PRI_RESP_FAIL:
831                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
832                         break;
833                 case PRI_RESP_SUCC:
834                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
835                         break;
836                 default:
837                         return -EINVAL;
838                 }
839                 break;
840         case CMDQ_OP_CMD_SYNC:
841                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
842                 break;
843         default:
844                 return -ENOENT;
845         }
846
847         return 0;
848 }
849
850 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
851 {
852         static const char *cerror_str[] = {
853                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
854                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
855                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
856         };
857
858         int i;
859         u64 cmd[CMDQ_ENT_DWORDS];
860         struct arm_smmu_queue *q = &smmu->cmdq.q;
861         u32 cons = readl_relaxed(q->cons_reg);
862         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
863         struct arm_smmu_cmdq_ent cmd_sync = {
864                 .opcode = CMDQ_OP_CMD_SYNC,
865         };
866
867         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
868                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
869
870         switch (idx) {
871         case CMDQ_ERR_CERROR_ABT_IDX:
872                 dev_err(smmu->dev, "retrying command fetch\n");
873         case CMDQ_ERR_CERROR_NONE_IDX:
874                 return;
875         case CMDQ_ERR_CERROR_ILL_IDX:
876                 /* Fallthrough */
877         default:
878                 break;
879         }
880
881         /*
882          * We may have concurrent producers, so we need to be careful
883          * not to touch any of the shadow cmdq state.
884          */
885         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
886         dev_err(smmu->dev, "skipping command in error state:\n");
887         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
888                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
889
890         /* Convert the erroneous command into a CMD_SYNC */
891         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
892                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
893                 return;
894         }
895
896         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
897 }
898
899 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
900                                     struct arm_smmu_cmdq_ent *ent)
901 {
902         u64 cmd[CMDQ_ENT_DWORDS];
903         unsigned long flags;
904         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
905         struct arm_smmu_queue *q = &smmu->cmdq.q;
906
907         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
908                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
909                          ent->opcode);
910                 return;
911         }
912
913         spin_lock_irqsave(&smmu->cmdq.lock, flags);
914         while (queue_insert_raw(q, cmd) == -ENOSPC) {
915                 if (queue_poll_cons(q, false, wfe))
916                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
917         }
918
919         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
920                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
921         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
922 }
923
924 /* Context descriptor manipulation functions */
925 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
926 {
927         u64 val = 0;
928
929         /* Repack the TCR. Just care about TTBR0 for now */
930         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
931         val |= ARM_SMMU_TCR2CD(tcr, TG0);
932         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
933         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
934         val |= ARM_SMMU_TCR2CD(tcr, SH0);
935         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
936         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
937         val |= ARM_SMMU_TCR2CD(tcr, IPS);
938         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
939
940         return val;
941 }
942
943 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
944                                     struct arm_smmu_s1_cfg *cfg)
945 {
946         u64 val;
947
948         /*
949          * We don't need to issue any invalidation here, as we'll invalidate
950          * the STE when installing the new entry anyway.
951          */
952         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
953 #ifdef __BIG_ENDIAN
954               CTXDESC_CD_0_ENDI |
955 #endif
956               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
957               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
958               CTXDESC_CD_0_V;
959         cfg->cdptr[0] = cpu_to_le64(val);
960
961         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
962         cfg->cdptr[1] = cpu_to_le64(val);
963
964         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
965 }
966
967 /* Stream table manipulation functions */
968 static void
969 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
970 {
971         u64 val = 0;
972
973         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
974                 << STRTAB_L1_DESC_SPAN_SHIFT;
975         val |= desc->l2ptr_dma &
976                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
977
978         *dst = cpu_to_le64(val);
979 }
980
981 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
982 {
983         struct arm_smmu_cmdq_ent cmd = {
984                 .opcode = CMDQ_OP_CFGI_STE,
985                 .cfgi   = {
986                         .sid    = sid,
987                         .leaf   = true,
988                 },
989         };
990
991         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
992         cmd.opcode = CMDQ_OP_CMD_SYNC;
993         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 }
995
996 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
997                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
998 {
999         /*
1000          * This is hideously complicated, but we only really care about
1001          * three cases at the moment:
1002          *
1003          * 1. Invalid (all zero) -> bypass  (init)
1004          * 2. Bypass -> translation (attach)
1005          * 3. Translation -> bypass (detach)
1006          *
1007          * Given that we can't update the STE atomically and the SMMU
1008          * doesn't read the thing in a defined order, that leaves us
1009          * with the following maintenance requirements:
1010          *
1011          * 1. Update Config, return (init time STEs aren't live)
1012          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1013          * 3. Update Config, sync
1014          */
1015         u64 val = le64_to_cpu(dst[0]);
1016         bool ste_live = false;
1017         struct arm_smmu_cmdq_ent prefetch_cmd = {
1018                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1019                 .prefetch       = {
1020                         .sid    = sid,
1021                 },
1022         };
1023
1024         if (val & STRTAB_STE_0_V) {
1025                 u64 cfg;
1026
1027                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1028                 switch (cfg) {
1029                 case STRTAB_STE_0_CFG_BYPASS:
1030                         break;
1031                 case STRTAB_STE_0_CFG_S1_TRANS:
1032                 case STRTAB_STE_0_CFG_S2_TRANS:
1033                         ste_live = true;
1034                         break;
1035                 case STRTAB_STE_0_CFG_ABORT:
1036                         if (disable_bypass)
1037                                 break;
1038                 default:
1039                         BUG(); /* STE corruption */
1040                 }
1041         }
1042
1043         /* Nuke the existing Config, as we're going to rewrite it */
1044         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1045
1046         if (ste->valid)
1047                 val |= STRTAB_STE_0_V;
1048         else
1049                 val &= ~STRTAB_STE_0_V;
1050
1051         if (ste->bypass) {
1052                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1053                                       : STRTAB_STE_0_CFG_BYPASS;
1054                 dst[0] = cpu_to_le64(val);
1055                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1056                          << STRTAB_STE_1_SHCFG_SHIFT);
1057                 dst[2] = 0; /* Nuke the VMID */
1058                 if (ste_live)
1059                         arm_smmu_sync_ste_for_sid(smmu, sid);
1060                 return;
1061         }
1062
1063         if (ste->s1_cfg) {
1064                 BUG_ON(ste_live);
1065                 dst[1] = cpu_to_le64(
1066                          STRTAB_STE_1_S1C_CACHE_WBRA
1067                          << STRTAB_STE_1_S1CIR_SHIFT |
1068                          STRTAB_STE_1_S1C_CACHE_WBRA
1069                          << STRTAB_STE_1_S1COR_SHIFT |
1070                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1071 #ifdef CONFIG_PCI_ATS
1072                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1073 #endif
1074                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1075                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1076                          STRTAB_STE_1_PRIVCFG_SHIFT);
1077
1078                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1079                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1080
1081                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1082                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1083                         STRTAB_STE_0_CFG_S1_TRANS;
1084
1085         }
1086
1087         if (ste->s2_cfg) {
1088                 BUG_ON(ste_live);
1089                 dst[2] = cpu_to_le64(
1090                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092                           << STRTAB_STE_2_VTCR_SHIFT |
1093 #ifdef __BIG_ENDIAN
1094                          STRTAB_STE_2_S2ENDI |
1095 #endif
1096                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097                          STRTAB_STE_2_S2R);
1098
1099                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103         }
1104
1105         arm_smmu_sync_ste_for_sid(smmu, sid);
1106         dst[0] = cpu_to_le64(val);
1107         arm_smmu_sync_ste_for_sid(smmu, sid);
1108
1109         /* It's likely that we'll want to use the new STE soon */
1110         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1111                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1112 }
1113
1114 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1115 {
1116         unsigned int i;
1117         struct arm_smmu_strtab_ent ste = {
1118                 .valid  = true,
1119                 .bypass = true,
1120         };
1121
1122         for (i = 0; i < nent; ++i) {
1123                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1124                 strtab += STRTAB_STE_DWORDS;
1125         }
1126 }
1127
1128 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129 {
1130         size_t size;
1131         void *strtab;
1132         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1133         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1134
1135         if (desc->l2ptr)
1136                 return 0;
1137
1138         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1139         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1140
1141         desc->span = STRTAB_SPLIT + 1;
1142         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1143                                           GFP_KERNEL | __GFP_ZERO);
1144         if (!desc->l2ptr) {
1145                 dev_err(smmu->dev,
1146                         "failed to allocate l2 stream table for SID %u\n",
1147                         sid);
1148                 return -ENOMEM;
1149         }
1150
1151         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1152         arm_smmu_write_strtab_l1_desc(strtab, desc);
1153         return 0;
1154 }
1155
1156 /* IRQ and event handlers */
1157 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1158 {
1159         int i;
1160         struct arm_smmu_device *smmu = dev;
1161         struct arm_smmu_queue *q = &smmu->evtq.q;
1162         u64 evt[EVTQ_ENT_DWORDS];
1163
1164         do {
1165                 while (!queue_remove_raw(q, evt)) {
1166                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1167
1168                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1169                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1170                                 dev_info(smmu->dev, "\t0x%016llx\n",
1171                                          (unsigned long long)evt[i]);
1172
1173                 }
1174
1175                 /*
1176                  * Not much we can do on overflow, so scream and pretend we're
1177                  * trying harder.
1178                  */
1179                 if (queue_sync_prod(q) == -EOVERFLOW)
1180                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1181         } while (!queue_empty(q));
1182
1183         /* Sync our overflow flag, as we believe we're up to speed */
1184         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1185         return IRQ_HANDLED;
1186 }
1187
1188 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1189 {
1190         u32 sid, ssid;
1191         u16 grpid;
1192         bool ssv, last;
1193
1194         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1195         ssv = evt[0] & PRIQ_0_SSID_V;
1196         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1197         last = evt[0] & PRIQ_0_PRG_LAST;
1198         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1199
1200         dev_info(smmu->dev, "unexpected PRI request received:\n");
1201         dev_info(smmu->dev,
1202                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1203                  sid, ssid, grpid, last ? "L" : "",
1204                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1205                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1206                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1207                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1208                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1209
1210         if (last) {
1211                 struct arm_smmu_cmdq_ent cmd = {
1212                         .opcode                 = CMDQ_OP_PRI_RESP,
1213                         .substream_valid        = ssv,
1214                         .pri                    = {
1215                                 .sid    = sid,
1216                                 .ssid   = ssid,
1217                                 .grpid  = grpid,
1218                                 .resp   = PRI_RESP_DENY,
1219                         },
1220                 };
1221
1222                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1223         }
1224 }
1225
1226 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1227 {
1228         struct arm_smmu_device *smmu = dev;
1229         struct arm_smmu_queue *q = &smmu->priq.q;
1230         u64 evt[PRIQ_ENT_DWORDS];
1231
1232         do {
1233                 while (!queue_remove_raw(q, evt))
1234                         arm_smmu_handle_ppr(smmu, evt);
1235
1236                 if (queue_sync_prod(q) == -EOVERFLOW)
1237                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1238         } while (!queue_empty(q));
1239
1240         /* Sync our overflow flag, as we believe we're up to speed */
1241         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1242         return IRQ_HANDLED;
1243 }
1244
1245 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1246 {
1247         /* We don't actually use CMD_SYNC interrupts for anything */
1248         return IRQ_HANDLED;
1249 }
1250
1251 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1252
1253 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1254 {
1255         u32 gerror, gerrorn, active;
1256         struct arm_smmu_device *smmu = dev;
1257
1258         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1259         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1260
1261         active = gerror ^ gerrorn;
1262         if (!(active & GERROR_ERR_MASK))
1263                 return IRQ_NONE; /* No errors pending */
1264
1265         dev_warn(smmu->dev,
1266                  "unexpected global error reported (0x%08x), this could be serious\n",
1267                  active);
1268
1269         if (active & GERROR_SFM_ERR) {
1270                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1271                 arm_smmu_device_disable(smmu);
1272         }
1273
1274         if (active & GERROR_MSI_GERROR_ABT_ERR)
1275                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1276
1277         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1278                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1279
1280         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1281                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1282
1283         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1284                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1285                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1286         }
1287
1288         if (active & GERROR_PRIQ_ABT_ERR)
1289                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1290
1291         if (active & GERROR_EVTQ_ABT_ERR)
1292                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1293
1294         if (active & GERROR_CMDQ_ERR)
1295                 arm_smmu_cmdq_skip_err(smmu);
1296
1297         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1298         return IRQ_HANDLED;
1299 }
1300
1301 /* IO_PGTABLE API */
1302 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1303 {
1304         struct arm_smmu_cmdq_ent cmd;
1305
1306         cmd.opcode = CMDQ_OP_CMD_SYNC;
1307         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1308 }
1309
1310 static void arm_smmu_tlb_sync(void *cookie)
1311 {
1312         struct arm_smmu_domain *smmu_domain = cookie;
1313         __arm_smmu_tlb_sync(smmu_domain->smmu);
1314 }
1315
1316 static void arm_smmu_tlb_inv_context(void *cookie)
1317 {
1318         struct arm_smmu_domain *smmu_domain = cookie;
1319         struct arm_smmu_device *smmu = smmu_domain->smmu;
1320         struct arm_smmu_cmdq_ent cmd;
1321
1322         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1323                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1324                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1325                 cmd.tlbi.vmid   = 0;
1326         } else {
1327                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1328                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1329         }
1330
1331         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1332         __arm_smmu_tlb_sync(smmu);
1333 }
1334
1335 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1336                                           size_t granule, bool leaf, void *cookie)
1337 {
1338         struct arm_smmu_domain *smmu_domain = cookie;
1339         struct arm_smmu_device *smmu = smmu_domain->smmu;
1340         struct arm_smmu_cmdq_ent cmd = {
1341                 .tlbi = {
1342                         .leaf   = leaf,
1343                         .addr   = iova,
1344                 },
1345         };
1346
1347         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1349                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1350         } else {
1351                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1352                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1353         }
1354
1355         do {
1356                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357                 cmd.tlbi.addr += granule;
1358         } while (size -= granule);
1359 }
1360
1361 static struct iommu_gather_ops arm_smmu_gather_ops = {
1362         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1363         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1364         .tlb_sync       = arm_smmu_tlb_sync,
1365 };
1366
1367 /* IOMMU API */
1368 static bool arm_smmu_capable(enum iommu_cap cap)
1369 {
1370         switch (cap) {
1371         case IOMMU_CAP_CACHE_COHERENCY:
1372                 return true;
1373         case IOMMU_CAP_INTR_REMAP:
1374                 return true; /* MSIs are just memory writes */
1375         case IOMMU_CAP_NOEXEC:
1376                 return true;
1377         default:
1378                 return false;
1379         }
1380 }
1381
1382 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1383 {
1384         struct arm_smmu_domain *smmu_domain;
1385
1386         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1387                 return NULL;
1388
1389         /*
1390          * Allocate the domain and initialise some of its data structures.
1391          * We can't really do anything meaningful until we've added a
1392          * master.
1393          */
1394         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1395         if (!smmu_domain)
1396                 return NULL;
1397
1398         if (type == IOMMU_DOMAIN_DMA &&
1399             iommu_get_dma_cookie(&smmu_domain->domain)) {
1400                 kfree(smmu_domain);
1401                 return NULL;
1402         }
1403
1404         mutex_init(&smmu_domain->init_mutex);
1405         spin_lock_init(&smmu_domain->pgtbl_lock);
1406         return &smmu_domain->domain;
1407 }
1408
1409 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1410 {
1411         int idx, size = 1 << span;
1412
1413         do {
1414                 idx = find_first_zero_bit(map, size);
1415                 if (idx == size)
1416                         return -ENOSPC;
1417         } while (test_and_set_bit(idx, map));
1418
1419         return idx;
1420 }
1421
1422 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1423 {
1424         clear_bit(idx, map);
1425 }
1426
1427 static void arm_smmu_domain_free(struct iommu_domain *domain)
1428 {
1429         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1430         struct arm_smmu_device *smmu = smmu_domain->smmu;
1431
1432         iommu_put_dma_cookie(domain);
1433         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1434
1435         /* Free the CD and ASID, if we allocated them */
1436         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1437                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1438
1439                 if (cfg->cdptr) {
1440                         dmam_free_coherent(smmu_domain->smmu->dev,
1441                                            CTXDESC_CD_DWORDS << 3,
1442                                            cfg->cdptr,
1443                                            cfg->cdptr_dma);
1444
1445                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1446                 }
1447         } else {
1448                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1449                 if (cfg->vmid)
1450                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1451         }
1452
1453         kfree(smmu_domain);
1454 }
1455
1456 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1457                                        struct io_pgtable_cfg *pgtbl_cfg)
1458 {
1459         int ret;
1460         int asid;
1461         struct arm_smmu_device *smmu = smmu_domain->smmu;
1462         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1463
1464         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1465         if (asid < 0)
1466                 return asid;
1467
1468         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1469                                          &cfg->cdptr_dma,
1470                                          GFP_KERNEL | __GFP_ZERO);
1471         if (!cfg->cdptr) {
1472                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1473                 ret = -ENOMEM;
1474                 goto out_free_asid;
1475         }
1476
1477         cfg->cd.asid    = (u16)asid;
1478         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1479         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1480         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1481         return 0;
1482
1483 out_free_asid:
1484         arm_smmu_bitmap_free(smmu->asid_map, asid);
1485         return ret;
1486 }
1487
1488 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1489                                        struct io_pgtable_cfg *pgtbl_cfg)
1490 {
1491         int vmid;
1492         struct arm_smmu_device *smmu = smmu_domain->smmu;
1493         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1494
1495         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1496         if (vmid < 0)
1497                 return vmid;
1498
1499         cfg->vmid       = (u16)vmid;
1500         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1501         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1502         return 0;
1503 }
1504
1505 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1506 {
1507         int ret;
1508         unsigned long ias, oas;
1509         enum io_pgtable_fmt fmt;
1510         struct io_pgtable_cfg pgtbl_cfg;
1511         struct io_pgtable_ops *pgtbl_ops;
1512         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1513                                  struct io_pgtable_cfg *);
1514         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1515         struct arm_smmu_device *smmu = smmu_domain->smmu;
1516
1517         /* Restrict the stage to what we can actually support */
1518         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1519                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1520         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1521                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1522
1523         switch (smmu_domain->stage) {
1524         case ARM_SMMU_DOMAIN_S1:
1525                 ias = VA_BITS;
1526                 oas = smmu->ias;
1527                 fmt = ARM_64_LPAE_S1;
1528                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1529                 break;
1530         case ARM_SMMU_DOMAIN_NESTED:
1531         case ARM_SMMU_DOMAIN_S2:
1532                 ias = smmu->ias;
1533                 oas = smmu->oas;
1534                 fmt = ARM_64_LPAE_S2;
1535                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1536                 break;
1537         default:
1538                 return -EINVAL;
1539         }
1540
1541         pgtbl_cfg = (struct io_pgtable_cfg) {
1542                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1543                 .ias            = ias,
1544                 .oas            = oas,
1545                 .tlb            = &arm_smmu_gather_ops,
1546                 .iommu_dev      = smmu->dev,
1547         };
1548
1549         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1550         if (!pgtbl_ops)
1551                 return -ENOMEM;
1552
1553         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1554         domain->geometry.aperture_end = (1UL << ias) - 1;
1555         domain->geometry.force_aperture = true;
1556         smmu_domain->pgtbl_ops = pgtbl_ops;
1557
1558         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1559         if (ret < 0)
1560                 free_io_pgtable_ops(pgtbl_ops);
1561
1562         return ret;
1563 }
1564
1565 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1566 {
1567         __le64 *step;
1568         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1569
1570         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1571                 struct arm_smmu_strtab_l1_desc *l1_desc;
1572                 int idx;
1573
1574                 /* Two-level walk */
1575                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1576                 l1_desc = &cfg->l1_desc[idx];
1577                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1578                 step = &l1_desc->l2ptr[idx];
1579         } else {
1580                 /* Simple linear lookup */
1581                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1582         }
1583
1584         return step;
1585 }
1586
1587 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1588 {
1589         int i;
1590         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1591         struct arm_smmu_device *smmu = master->smmu;
1592
1593         for (i = 0; i < fwspec->num_ids; ++i) {
1594                 u32 sid = fwspec->ids[i];
1595                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1596
1597                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1598         }
1599
1600         return 0;
1601 }
1602
1603 static void arm_smmu_detach_dev(struct device *dev)
1604 {
1605         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1606
1607         master->ste.bypass = true;
1608         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1609                 dev_warn(dev, "failed to install bypass STE\n");
1610 }
1611
1612 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1613 {
1614         int ret = 0;
1615         struct arm_smmu_device *smmu;
1616         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1617         struct arm_smmu_master_data *master;
1618         struct arm_smmu_strtab_ent *ste;
1619
1620         if (!dev->iommu_fwspec)
1621                 return -ENOENT;
1622
1623         master = dev->iommu_fwspec->iommu_priv;
1624         smmu = master->smmu;
1625         ste = &master->ste;
1626
1627         /* Already attached to a different domain? */
1628         if (!ste->bypass)
1629                 arm_smmu_detach_dev(dev);
1630
1631         mutex_lock(&smmu_domain->init_mutex);
1632
1633         if (!smmu_domain->smmu) {
1634                 smmu_domain->smmu = smmu;
1635                 ret = arm_smmu_domain_finalise(domain);
1636                 if (ret) {
1637                         smmu_domain->smmu = NULL;
1638                         goto out_unlock;
1639                 }
1640         } else if (smmu_domain->smmu != smmu) {
1641                 dev_err(dev,
1642                         "cannot attach to SMMU %s (upstream of %s)\n",
1643                         dev_name(smmu_domain->smmu->dev),
1644                         dev_name(smmu->dev));
1645                 ret = -ENXIO;
1646                 goto out_unlock;
1647         }
1648
1649         ste->bypass = false;
1650         ste->valid = true;
1651
1652         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1653                 ste->s1_cfg = &smmu_domain->s1_cfg;
1654                 ste->s2_cfg = NULL;
1655                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1656         } else {
1657                 ste->s1_cfg = NULL;
1658                 ste->s2_cfg = &smmu_domain->s2_cfg;
1659         }
1660
1661         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1662         if (ret < 0)
1663                 ste->valid = false;
1664
1665 out_unlock:
1666         mutex_unlock(&smmu_domain->init_mutex);
1667         return ret;
1668 }
1669
1670 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1671                         phys_addr_t paddr, size_t size, int prot)
1672 {
1673         int ret;
1674         unsigned long flags;
1675         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1676         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1677
1678         if (!ops)
1679                 return -ENODEV;
1680
1681         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1682         ret = ops->map(ops, iova, paddr, size, prot);
1683         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1684         return ret;
1685 }
1686
1687 static size_t
1688 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1689 {
1690         size_t ret;
1691         unsigned long flags;
1692         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1693         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1694
1695         if (!ops)
1696                 return 0;
1697
1698         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1699         ret = ops->unmap(ops, iova, size);
1700         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1701         return ret;
1702 }
1703
1704 static phys_addr_t
1705 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1706 {
1707         phys_addr_t ret;
1708         unsigned long flags;
1709         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1710         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1711
1712         if (!ops)
1713                 return 0;
1714
1715         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1716         ret = ops->iova_to_phys(ops, iova);
1717         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1718
1719         return ret;
1720 }
1721
1722 static struct platform_driver arm_smmu_driver;
1723
1724 static int arm_smmu_match_node(struct device *dev, void *data)
1725 {
1726         return dev->of_node == data;
1727 }
1728
1729 static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
1730 {
1731         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1732                                                 np, arm_smmu_match_node);
1733         put_device(dev);
1734         return dev ? dev_get_drvdata(dev) : NULL;
1735 }
1736
1737 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1738 {
1739         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1740
1741         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1742                 limit *= 1UL << STRTAB_SPLIT;
1743
1744         return sid < limit;
1745 }
1746
1747 static struct iommu_ops arm_smmu_ops;
1748
1749 static int arm_smmu_add_device(struct device *dev)
1750 {
1751         int i, ret;
1752         struct arm_smmu_device *smmu;
1753         struct arm_smmu_master_data *master;
1754         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1755         struct iommu_group *group;
1756
1757         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1758                 return -ENODEV;
1759         /*
1760          * We _can_ actually withstand dodgy bus code re-calling add_device()
1761          * without an intervening remove_device()/of_xlate() sequence, but
1762          * we're not going to do so quietly...
1763          */
1764         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1765                 master = fwspec->iommu_priv;
1766                 smmu = master->smmu;
1767         } else {
1768                 smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
1769                 if (!smmu)
1770                         return -ENODEV;
1771                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1772                 if (!master)
1773                         return -ENOMEM;
1774
1775                 master->smmu = smmu;
1776                 fwspec->iommu_priv = master;
1777         }
1778
1779         /* Check the SIDs are in range of the SMMU and our stream table */
1780         for (i = 0; i < fwspec->num_ids; i++) {
1781                 u32 sid = fwspec->ids[i];
1782
1783                 if (!arm_smmu_sid_in_range(smmu, sid))
1784                         return -ERANGE;
1785
1786                 /* Ensure l2 strtab is initialised */
1787                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1788                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1789                         if (ret)
1790                                 return ret;
1791                 }
1792         }
1793
1794         group = iommu_group_get_for_dev(dev);
1795         if (!IS_ERR(group))
1796                 iommu_group_put(group);
1797
1798         return PTR_ERR_OR_ZERO(group);
1799 }
1800
1801 static void arm_smmu_remove_device(struct device *dev)
1802 {
1803         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1804         struct arm_smmu_master_data *master;
1805
1806         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1807                 return;
1808
1809         master = fwspec->iommu_priv;
1810         if (master && master->ste.valid)
1811                 arm_smmu_detach_dev(dev);
1812         iommu_group_remove_device(dev);
1813         kfree(master);
1814         iommu_fwspec_free(dev);
1815 }
1816
1817 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1818 {
1819         struct iommu_group *group;
1820
1821         /*
1822          * We don't support devices sharing stream IDs other than PCI RID
1823          * aliases, since the necessary ID-to-device lookup becomes rather
1824          * impractical given a potential sparse 32-bit stream ID space.
1825          */
1826         if (dev_is_pci(dev))
1827                 group = pci_device_group(dev);
1828         else
1829                 group = generic_device_group(dev);
1830
1831         return group;
1832 }
1833
1834 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1835                                     enum iommu_attr attr, void *data)
1836 {
1837         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1838
1839         switch (attr) {
1840         case DOMAIN_ATTR_NESTING:
1841                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1842                 return 0;
1843         default:
1844                 return -ENODEV;
1845         }
1846 }
1847
1848 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1849                                     enum iommu_attr attr, void *data)
1850 {
1851         int ret = 0;
1852         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1853
1854         mutex_lock(&smmu_domain->init_mutex);
1855
1856         switch (attr) {
1857         case DOMAIN_ATTR_NESTING:
1858                 if (smmu_domain->smmu) {
1859                         ret = -EPERM;
1860                         goto out_unlock;
1861                 }
1862
1863                 if (*(int *)data)
1864                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1865                 else
1866                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1867
1868                 break;
1869         default:
1870                 ret = -ENODEV;
1871         }
1872
1873 out_unlock:
1874         mutex_unlock(&smmu_domain->init_mutex);
1875         return ret;
1876 }
1877
1878 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1879 {
1880         return iommu_fwspec_add_ids(dev, args->args, 1);
1881 }
1882
1883 static struct iommu_ops arm_smmu_ops = {
1884         .capable                = arm_smmu_capable,
1885         .domain_alloc           = arm_smmu_domain_alloc,
1886         .domain_free            = arm_smmu_domain_free,
1887         .attach_dev             = arm_smmu_attach_dev,
1888         .map                    = arm_smmu_map,
1889         .unmap                  = arm_smmu_unmap,
1890         .map_sg                 = default_iommu_map_sg,
1891         .iova_to_phys           = arm_smmu_iova_to_phys,
1892         .add_device             = arm_smmu_add_device,
1893         .remove_device          = arm_smmu_remove_device,
1894         .device_group           = arm_smmu_device_group,
1895         .domain_get_attr        = arm_smmu_domain_get_attr,
1896         .domain_set_attr        = arm_smmu_domain_set_attr,
1897         .of_xlate               = arm_smmu_of_xlate,
1898         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1899 };
1900
1901 /* Probing and initialisation functions */
1902 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1903                                    struct arm_smmu_queue *q,
1904                                    unsigned long prod_off,
1905                                    unsigned long cons_off,
1906                                    size_t dwords)
1907 {
1908         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1909
1910         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1911         if (!q->base) {
1912                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1913                         qsz);
1914                 return -ENOMEM;
1915         }
1916
1917         q->prod_reg     = smmu->base + prod_off;
1918         q->cons_reg     = smmu->base + cons_off;
1919         q->ent_dwords   = dwords;
1920
1921         q->q_base  = Q_BASE_RWA;
1922         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1923         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1924                      << Q_BASE_LOG2SIZE_SHIFT;
1925
1926         q->prod = q->cons = 0;
1927         return 0;
1928 }
1929
1930 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1931 {
1932         int ret;
1933
1934         /* cmdq */
1935         spin_lock_init(&smmu->cmdq.lock);
1936         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1937                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1938         if (ret)
1939                 return ret;
1940
1941         /* evtq */
1942         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1943                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1944         if (ret)
1945                 return ret;
1946
1947         /* priq */
1948         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1949                 return 0;
1950
1951         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1952                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1953 }
1954
1955 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1956 {
1957         unsigned int i;
1958         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1959         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1960         void *strtab = smmu->strtab_cfg.strtab;
1961
1962         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1963         if (!cfg->l1_desc) {
1964                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1965                 return -ENOMEM;
1966         }
1967
1968         for (i = 0; i < cfg->num_l1_ents; ++i) {
1969                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1970                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1971         }
1972
1973         return 0;
1974 }
1975
1976 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1977 {
1978         void *strtab;
1979         u64 reg;
1980         u32 size, l1size;
1981         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1982
1983         /*
1984          * If we can resolve everything with a single L2 table, then we
1985          * just need a single L1 descriptor. Otherwise, calculate the L1
1986          * size, capped to the SIDSIZE.
1987          */
1988         if (smmu->sid_bits < STRTAB_SPLIT) {
1989                 size = 0;
1990         } else {
1991                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1992                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1993         }
1994         cfg->num_l1_ents = 1 << size;
1995
1996         size += STRTAB_SPLIT;
1997         if (size < smmu->sid_bits)
1998                 dev_warn(smmu->dev,
1999                          "2-level strtab only covers %u/%u bits of SID\n",
2000                          size, smmu->sid_bits);
2001
2002         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2003         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2004                                      GFP_KERNEL | __GFP_ZERO);
2005         if (!strtab) {
2006                 dev_err(smmu->dev,
2007                         "failed to allocate l1 stream table (%u bytes)\n",
2008                         size);
2009                 return -ENOMEM;
2010         }
2011         cfg->strtab = strtab;
2012
2013         /* Configure strtab_base_cfg for 2 levels */
2014         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2015         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2016                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2017         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2018                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2019         cfg->strtab_base_cfg = reg;
2020
2021         return arm_smmu_init_l1_strtab(smmu);
2022 }
2023
2024 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2025 {
2026         void *strtab;
2027         u64 reg;
2028         u32 size;
2029         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2030
2031         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2032         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2033                                      GFP_KERNEL | __GFP_ZERO);
2034         if (!strtab) {
2035                 dev_err(smmu->dev,
2036                         "failed to allocate linear stream table (%u bytes)\n",
2037                         size);
2038                 return -ENOMEM;
2039         }
2040         cfg->strtab = strtab;
2041         cfg->num_l1_ents = 1 << smmu->sid_bits;
2042
2043         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2044         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2045         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2046                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2047         cfg->strtab_base_cfg = reg;
2048
2049         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2050         return 0;
2051 }
2052
2053 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2054 {
2055         u64 reg;
2056         int ret;
2057
2058         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2059                 ret = arm_smmu_init_strtab_2lvl(smmu);
2060         else
2061                 ret = arm_smmu_init_strtab_linear(smmu);
2062
2063         if (ret)
2064                 return ret;
2065
2066         /* Set the strtab base address */
2067         reg  = smmu->strtab_cfg.strtab_dma &
2068                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2069         reg |= STRTAB_BASE_RA;
2070         smmu->strtab_cfg.strtab_base = reg;
2071
2072         /* Allocate the first VMID for stage-2 bypass STEs */
2073         set_bit(0, smmu->vmid_map);
2074         return 0;
2075 }
2076
2077 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2078 {
2079         int ret;
2080
2081         ret = arm_smmu_init_queues(smmu);
2082         if (ret)
2083                 return ret;
2084
2085         return arm_smmu_init_strtab(smmu);
2086 }
2087
2088 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2089                                    unsigned int reg_off, unsigned int ack_off)
2090 {
2091         u32 reg;
2092
2093         writel_relaxed(val, smmu->base + reg_off);
2094         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2095                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2096 }
2097
2098 /* GBPA is "special" */
2099 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2100 {
2101         int ret;
2102         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2103
2104         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2105                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2106         if (ret)
2107                 return ret;
2108
2109         reg &= ~clr;
2110         reg |= set;
2111         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2112         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2113                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2114 }
2115
2116 static void arm_smmu_free_msis(void *data)
2117 {
2118         struct device *dev = data;
2119         platform_msi_domain_free_irqs(dev);
2120 }
2121
2122 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2123 {
2124         phys_addr_t doorbell;
2125         struct device *dev = msi_desc_to_dev(desc);
2126         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2127         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2128
2129         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2130         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2131
2132         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2133         writel_relaxed(msg->data, smmu->base + cfg[1]);
2134         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2135 }
2136
2137 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2138 {
2139         struct msi_desc *desc;
2140         int ret, nvec = ARM_SMMU_MAX_MSIS;
2141         struct device *dev = smmu->dev;
2142
2143         /* Clear the MSI address regs */
2144         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2145         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2146
2147         if (smmu->features & ARM_SMMU_FEAT_PRI)
2148                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2149         else
2150                 nvec--;
2151
2152         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2153                 return;
2154
2155         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2156         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2157         if (ret) {
2158                 dev_warn(dev, "failed to allocate MSIs\n");
2159                 return;
2160         }
2161
2162         for_each_msi_entry(desc, dev) {
2163                 switch (desc->platform.msi_index) {
2164                 case EVTQ_MSI_INDEX:
2165                         smmu->evtq.q.irq = desc->irq;
2166                         break;
2167                 case GERROR_MSI_INDEX:
2168                         smmu->gerr_irq = desc->irq;
2169                         break;
2170                 case PRIQ_MSI_INDEX:
2171                         smmu->priq.q.irq = desc->irq;
2172                         break;
2173                 default:        /* Unknown */
2174                         continue;
2175                 }
2176         }
2177
2178         /* Add callback to free MSIs on teardown */
2179         devm_add_action(dev, arm_smmu_free_msis, dev);
2180 }
2181
2182 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2183 {
2184         int ret, irq;
2185         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2186
2187         /* Disable IRQs first */
2188         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2189                                       ARM_SMMU_IRQ_CTRLACK);
2190         if (ret) {
2191                 dev_err(smmu->dev, "failed to disable irqs\n");
2192                 return ret;
2193         }
2194
2195         arm_smmu_setup_msis(smmu);
2196
2197         /* Request interrupt lines */
2198         irq = smmu->evtq.q.irq;
2199         if (irq) {
2200                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2201                                                 arm_smmu_evtq_thread,
2202                                                 IRQF_ONESHOT,
2203                                                 "arm-smmu-v3-evtq", smmu);
2204                 if (ret < 0)
2205                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2206         }
2207
2208         irq = smmu->cmdq.q.irq;
2209         if (irq) {
2210                 ret = devm_request_irq(smmu->dev, irq,
2211                                        arm_smmu_cmdq_sync_handler, 0,
2212                                        "arm-smmu-v3-cmdq-sync", smmu);
2213                 if (ret < 0)
2214                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2215         }
2216
2217         irq = smmu->gerr_irq;
2218         if (irq) {
2219                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2220                                        0, "arm-smmu-v3-gerror", smmu);
2221                 if (ret < 0)
2222                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2223         }
2224
2225         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2226                 irq = smmu->priq.q.irq;
2227                 if (irq) {
2228                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2229                                                         arm_smmu_priq_thread,
2230                                                         IRQF_ONESHOT,
2231                                                         "arm-smmu-v3-priq",
2232                                                         smmu);
2233                         if (ret < 0)
2234                                 dev_warn(smmu->dev,
2235                                          "failed to enable priq irq\n");
2236                         else
2237                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2238                 }
2239         }
2240
2241         /* Enable interrupt generation on the SMMU */
2242         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2243                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2244         if (ret)
2245                 dev_warn(smmu->dev, "failed to enable irqs\n");
2246
2247         return 0;
2248 }
2249
2250 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2251 {
2252         int ret;
2253
2254         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2255         if (ret)
2256                 dev_err(smmu->dev, "failed to clear cr0\n");
2257
2258         return ret;
2259 }
2260
2261 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2262 {
2263         int ret;
2264         u32 reg, enables;
2265         struct arm_smmu_cmdq_ent cmd;
2266
2267         /* Clear CR0 and sync (disables SMMU and queue processing) */
2268         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2269         if (reg & CR0_SMMUEN)
2270                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2271
2272         ret = arm_smmu_device_disable(smmu);
2273         if (ret)
2274                 return ret;
2275
2276         /* CR1 (table and queue memory attributes) */
2277         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2278               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2279               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2280               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2281               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2282               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2283         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2284
2285         /* CR2 (random crap) */
2286         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2287         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2288
2289         /* Stream table */
2290         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2291                        smmu->base + ARM_SMMU_STRTAB_BASE);
2292         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2293                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2294
2295         /* Command queue */
2296         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2297         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2298         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2299
2300         enables = CR0_CMDQEN;
2301         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2302                                       ARM_SMMU_CR0ACK);
2303         if (ret) {
2304                 dev_err(smmu->dev, "failed to enable command queue\n");
2305                 return ret;
2306         }
2307
2308         /* Invalidate any cached configuration */
2309         cmd.opcode = CMDQ_OP_CFGI_ALL;
2310         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2311         cmd.opcode = CMDQ_OP_CMD_SYNC;
2312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2313
2314         /* Invalidate any stale TLB entries */
2315         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2316                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2317                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2318         }
2319
2320         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2321         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2322         cmd.opcode = CMDQ_OP_CMD_SYNC;
2323         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2324
2325         /* Event queue */
2326         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2327         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2328         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2329
2330         enables |= CR0_EVTQEN;
2331         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2332                                       ARM_SMMU_CR0ACK);
2333         if (ret) {
2334                 dev_err(smmu->dev, "failed to enable event queue\n");
2335                 return ret;
2336         }
2337
2338         /* PRI queue */
2339         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2340                 writeq_relaxed(smmu->priq.q.q_base,
2341                                smmu->base + ARM_SMMU_PRIQ_BASE);
2342                 writel_relaxed(smmu->priq.q.prod,
2343                                smmu->base + ARM_SMMU_PRIQ_PROD);
2344                 writel_relaxed(smmu->priq.q.cons,
2345                                smmu->base + ARM_SMMU_PRIQ_CONS);
2346
2347                 enables |= CR0_PRIQEN;
2348                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2349                                               ARM_SMMU_CR0ACK);
2350                 if (ret) {
2351                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2352                         return ret;
2353                 }
2354         }
2355
2356         ret = arm_smmu_setup_irqs(smmu);
2357         if (ret) {
2358                 dev_err(smmu->dev, "failed to setup irqs\n");
2359                 return ret;
2360         }
2361
2362
2363         /* Enable the SMMU interface, or ensure bypass */
2364         if (!bypass || disable_bypass) {
2365                 enables |= CR0_SMMUEN;
2366         } else {
2367                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2368                 if (ret) {
2369                         dev_err(smmu->dev, "GBPA not responding to update\n");
2370                         return ret;
2371                 }
2372         }
2373         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2374                                       ARM_SMMU_CR0ACK);
2375         if (ret) {
2376                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2377                 return ret;
2378         }
2379
2380         return 0;
2381 }
2382
2383 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2384 {
2385         u32 reg;
2386         bool coherent;
2387
2388         /* IDR0 */
2389         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2390
2391         /* 2-level structures */
2392         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2393                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2394
2395         if (reg & IDR0_CD2L)
2396                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2397
2398         /*
2399          * Translation table endianness.
2400          * We currently require the same endianness as the CPU, but this
2401          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2402          */
2403         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2404         case IDR0_TTENDIAN_MIXED:
2405                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2406                 break;
2407 #ifdef __BIG_ENDIAN
2408         case IDR0_TTENDIAN_BE:
2409                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2410                 break;
2411 #else
2412         case IDR0_TTENDIAN_LE:
2413                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2414                 break;
2415 #endif
2416         default:
2417                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2418                 return -ENXIO;
2419         }
2420
2421         /* Boolean feature flags */
2422         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2423                 smmu->features |= ARM_SMMU_FEAT_PRI;
2424
2425         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2426                 smmu->features |= ARM_SMMU_FEAT_ATS;
2427
2428         if (reg & IDR0_SEV)
2429                 smmu->features |= ARM_SMMU_FEAT_SEV;
2430
2431         if (reg & IDR0_MSI)
2432                 smmu->features |= ARM_SMMU_FEAT_MSI;
2433
2434         if (reg & IDR0_HYP)
2435                 smmu->features |= ARM_SMMU_FEAT_HYP;
2436
2437         /*
2438          * The dma-coherent property is used in preference to the ID
2439          * register, but warn on mismatch.
2440          */
2441         coherent = of_dma_is_coherent(smmu->dev->of_node);
2442         if (coherent)
2443                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2444
2445         if (!!(reg & IDR0_COHACC) != coherent)
2446                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2447                          coherent ? "true" : "false");
2448
2449         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2450         case IDR0_STALL_MODEL_STALL:
2451                 /* Fallthrough */
2452         case IDR0_STALL_MODEL_FORCE:
2453                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2454         }
2455
2456         if (reg & IDR0_S1P)
2457                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2458
2459         if (reg & IDR0_S2P)
2460                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2461
2462         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2463                 dev_err(smmu->dev, "no translation support!\n");
2464                 return -ENXIO;
2465         }
2466
2467         /* We only support the AArch64 table format at present */
2468         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2469         case IDR0_TTF_AARCH32_64:
2470                 smmu->ias = 40;
2471                 /* Fallthrough */
2472         case IDR0_TTF_AARCH64:
2473                 break;
2474         default:
2475                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2476                 return -ENXIO;
2477         }
2478
2479         /* ASID/VMID sizes */
2480         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2481         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2482
2483         /* IDR1 */
2484         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2485         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2486                 dev_err(smmu->dev, "embedded implementation not supported\n");
2487                 return -ENXIO;
2488         }
2489
2490         /* Queue sizes, capped at 4k */
2491         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2492                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2493         if (!smmu->cmdq.q.max_n_shift) {
2494                 /* Odd alignment restrictions on the base, so ignore for now */
2495                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2496                 return -ENXIO;
2497         }
2498
2499         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2500                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2501         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2502                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2503
2504         /* SID/SSID sizes */
2505         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2506         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2507
2508         /* IDR5 */
2509         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2510
2511         /* Maximum number of outstanding stalls */
2512         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2513                                 & IDR5_STALL_MAX_MASK;
2514
2515         /* Page sizes */
2516         if (reg & IDR5_GRAN64K)
2517                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2518         if (reg & IDR5_GRAN16K)
2519                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2520         if (reg & IDR5_GRAN4K)
2521                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2522
2523         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2524                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2525         else
2526                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2527
2528         /* Output address size */
2529         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2530         case IDR5_OAS_32_BIT:
2531                 smmu->oas = 32;
2532                 break;
2533         case IDR5_OAS_36_BIT:
2534                 smmu->oas = 36;
2535                 break;
2536         case IDR5_OAS_40_BIT:
2537                 smmu->oas = 40;
2538                 break;
2539         case IDR5_OAS_42_BIT:
2540                 smmu->oas = 42;
2541                 break;
2542         case IDR5_OAS_44_BIT:
2543                 smmu->oas = 44;
2544                 break;
2545         default:
2546                 dev_info(smmu->dev,
2547                         "unknown output address size. Truncating to 48-bit\n");
2548                 /* Fallthrough */
2549         case IDR5_OAS_48_BIT:
2550                 smmu->oas = 48;
2551         }
2552
2553         /* Set the DMA mask for our table walker */
2554         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2555                 dev_warn(smmu->dev,
2556                          "failed to set DMA mask for table walker\n");
2557
2558         smmu->ias = max(smmu->ias, smmu->oas);
2559
2560         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2561                  smmu->ias, smmu->oas, smmu->features);
2562         return 0;
2563 }
2564
2565 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2566 {
2567         int irq, ret;
2568         struct resource *res;
2569         struct arm_smmu_device *smmu;
2570         struct device *dev = &pdev->dev;
2571         bool bypass = true;
2572         u32 cells;
2573
2574         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2575                 dev_err(dev, "missing #iommu-cells property\n");
2576         else if (cells != 1)
2577                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2578         else
2579                 bypass = false;
2580
2581         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2582         if (!smmu) {
2583                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2584                 return -ENOMEM;
2585         }
2586         smmu->dev = dev;
2587
2588         /* Base address */
2589         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2590         if (resource_size(res) + 1 < SZ_128K) {
2591                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2592                 return -EINVAL;
2593         }
2594
2595         smmu->base = devm_ioremap_resource(dev, res);
2596         if (IS_ERR(smmu->base))
2597                 return PTR_ERR(smmu->base);
2598
2599         /* Interrupt lines */
2600         irq = platform_get_irq_byname(pdev, "eventq");
2601         if (irq > 0)
2602                 smmu->evtq.q.irq = irq;
2603
2604         irq = platform_get_irq_byname(pdev, "priq");
2605         if (irq > 0)
2606                 smmu->priq.q.irq = irq;
2607
2608         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2609         if (irq > 0)
2610                 smmu->cmdq.q.irq = irq;
2611
2612         irq = platform_get_irq_byname(pdev, "gerror");
2613         if (irq > 0)
2614                 smmu->gerr_irq = irq;
2615
2616         parse_driver_options(smmu);
2617
2618         /* Probe the h/w */
2619         ret = arm_smmu_device_probe(smmu);
2620         if (ret)
2621                 return ret;
2622
2623         /* Initialise in-memory data structures */
2624         ret = arm_smmu_init_structures(smmu);
2625         if (ret)
2626                 return ret;
2627
2628         /* Record our private device structure */
2629         platform_set_drvdata(pdev, smmu);
2630
2631         /* Reset the device */
2632         ret = arm_smmu_device_reset(smmu, bypass);
2633         if (ret)
2634                 return ret;
2635
2636         /* And we're up. Go go go! */
2637         of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2638 #ifdef CONFIG_PCI
2639         pci_request_acs();
2640         ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2641         if (ret)
2642                 return ret;
2643 #endif
2644 #ifdef CONFIG_ARM_AMBA
2645         ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2646         if (ret)
2647                 return ret;
2648 #endif
2649         return bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2650 }
2651
2652 static int arm_smmu_device_remove(struct platform_device *pdev)
2653 {
2654         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2655
2656         arm_smmu_device_disable(smmu);
2657         return 0;
2658 }
2659
2660 static struct of_device_id arm_smmu_of_match[] = {
2661         { .compatible = "arm,smmu-v3", },
2662         { },
2663 };
2664 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2665
2666 static struct platform_driver arm_smmu_driver = {
2667         .driver = {
2668                 .name           = "arm-smmu-v3",
2669                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2670         },
2671         .probe  = arm_smmu_device_dt_probe,
2672         .remove = arm_smmu_device_remove,
2673 };
2674
2675 static int __init arm_smmu_init(void)
2676 {
2677         static bool registered;
2678         int ret = 0;
2679
2680         if (!registered) {
2681                 ret = platform_driver_register(&arm_smmu_driver);
2682                 registered = !ret;
2683         }
2684         return ret;
2685 }
2686
2687 static void __exit arm_smmu_exit(void)
2688 {
2689         return platform_driver_unregister(&arm_smmu_driver);
2690 }
2691
2692 subsys_initcall(arm_smmu_init);
2693 module_exit(arm_smmu_exit);
2694
2695 static int __init arm_smmu_of_init(struct device_node *np)
2696 {
2697         int ret = arm_smmu_init();
2698
2699         if (ret)
2700                 return ret;
2701
2702         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2703                 return -ENODEV;
2704
2705         return 0;
2706 }
2707 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2708
2709 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2710 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2711 MODULE_LICENSE("GPL v2");