6a86b5d1defa0513f6bc5cc8e88e125aecfaf629
[cascardo/linux.git] / drivers / iommu / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #define pr_fmt(fmt)     "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
50         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
51         bool                    ignore_unhandled;
52         bool                    print_entry;
53 };
54
55 /*
56  * Assumptions:
57  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58  *    before IO devices managed by that unit.
59  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60  *    after IO devices managed by that unit.
61  * 3) Hotplug events are rare.
62  *
63  * Locking rules for DMA and interrupt remapping related global data structures:
64  * 1) Use dmar_global_lock in process context
65  * 2) Use RCU in interrupt context
66  */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static acpi_size dmar_tbl_size;
72 static int dmar_dev_scope_status = 1;
73 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
74
75 static int alloc_iommu(struct dmar_drhd_unit *drhd);
76 static void free_iommu(struct intel_iommu *iommu);
77
78 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
79 {
80         /*
81          * add INCLUDE_ALL at the tail, so scan the list will find it at
82          * the very end.
83          */
84         if (drhd->include_all)
85                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
86         else
87                 list_add_rcu(&drhd->list, &dmar_drhd_units);
88 }
89
90 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
91 {
92         struct acpi_dmar_device_scope *scope;
93
94         *cnt = 0;
95         while (start < end) {
96                 scope = start;
97                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
98                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
99                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
100                         (*cnt)++;
101                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
102                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
103                         pr_warn("Unsupported device scope\n");
104                 }
105                 start += scope->length;
106         }
107         if (*cnt == 0)
108                 return NULL;
109
110         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
111 }
112
113 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
114 {
115         int i;
116         struct device *tmp_dev;
117
118         if (*devices && *cnt) {
119                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120                         put_device(tmp_dev);
121                 kfree(*devices);
122         }
123
124         *devices = NULL;
125         *cnt = 0;
126 }
127
128 /* Optimize out kzalloc()/kfree() for normal cases */
129 static char dmar_pci_notify_info_buf[64];
130
131 static struct dmar_pci_notify_info *
132 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
133 {
134         int level = 0;
135         size_t size;
136         struct pci_dev *tmp;
137         struct dmar_pci_notify_info *info;
138
139         BUG_ON(dev->is_virtfn);
140
141         /* Only generate path[] for device addition event */
142         if (event == BUS_NOTIFY_ADD_DEVICE)
143                 for (tmp = dev; tmp; tmp = tmp->bus->self)
144                         level++;
145
146         size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
147         if (size <= sizeof(dmar_pci_notify_info_buf)) {
148                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149         } else {
150                 info = kzalloc(size, GFP_KERNEL);
151                 if (!info) {
152                         pr_warn("Out of memory when allocating notify_info "
153                                 "for %s.\n", pci_name(dev));
154                         if (dmar_dev_scope_status == 0)
155                                 dmar_dev_scope_status = -ENOMEM;
156                         return NULL;
157                 }
158         }
159
160         info->event = event;
161         info->dev = dev;
162         info->seg = pci_domain_nr(dev->bus);
163         info->level = level;
164         if (event == BUS_NOTIFY_ADD_DEVICE) {
165                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166                         level--;
167                         info->path[level].bus = tmp->bus->number;
168                         info->path[level].device = PCI_SLOT(tmp->devfn);
169                         info->path[level].function = PCI_FUNC(tmp->devfn);
170                         if (pci_is_root_bus(tmp->bus))
171                                 info->bus = tmp->bus->number;
172                 }
173         }
174
175         return info;
176 }
177
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180         if ((void *)info != dmar_pci_notify_info_buf)
181                 kfree(info);
182 }
183
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185                                 struct acpi_dmar_pci_path *path, int count)
186 {
187         int i;
188
189         if (info->bus != bus)
190                 goto fallback;
191         if (info->level != count)
192                 goto fallback;
193
194         for (i = 0; i < count; i++) {
195                 if (path[i].device != info->path[i].device ||
196                     path[i].function != info->path[i].function)
197                         goto fallback;
198         }
199
200         return true;
201
202 fallback:
203
204         if (count != 1)
205                 return false;
206
207         i = info->level - 1;
208         if (bus              == info->path[i].bus &&
209             path[0].device   == info->path[i].device &&
210             path[0].function == info->path[i].function) {
211                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212                         bus, path[0].device, path[0].function);
213                 return true;
214         }
215
216         return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221                           void *start, void*end, u16 segment,
222                           struct dmar_dev_scope *devices,
223                           int devices_cnt)
224 {
225         int i, level;
226         struct device *tmp, *dev = &info->dev->dev;
227         struct acpi_dmar_device_scope *scope;
228         struct acpi_dmar_pci_path *path;
229
230         if (segment != info->seg)
231                 return 0;
232
233         for (; start < end; start += scope->length) {
234                 scope = start;
235                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237                         continue;
238
239                 path = (struct acpi_dmar_pci_path *)(scope + 1);
240                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241                 if (!dmar_match_pci_path(info, scope->bus, path, level))
242                         continue;
243
244                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
245                     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
246                         pr_warn("Device scope type does not match for %s\n",
247                                 pci_name(info->dev));
248                         return -EINVAL;
249                 }
250
251                 for_each_dev_scope(devices, devices_cnt, i, tmp)
252                         if (tmp == NULL) {
253                                 devices[i].bus = info->dev->bus->number;
254                                 devices[i].devfn = info->dev->devfn;
255                                 rcu_assign_pointer(devices[i].dev,
256                                                    get_device(dev));
257                                 return 1;
258                         }
259                 BUG_ON(i >= devices_cnt);
260         }
261
262         return 0;
263 }
264
265 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
266                           struct dmar_dev_scope *devices, int count)
267 {
268         int index;
269         struct device *tmp;
270
271         if (info->seg != segment)
272                 return 0;
273
274         for_each_active_dev_scope(devices, count, index, tmp)
275                 if (tmp == &info->dev->dev) {
276                         RCU_INIT_POINTER(devices[index].dev, NULL);
277                         synchronize_rcu();
278                         put_device(tmp);
279                         return 1;
280                 }
281
282         return 0;
283 }
284
285 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
286 {
287         int ret = 0;
288         struct dmar_drhd_unit *dmaru;
289         struct acpi_dmar_hardware_unit *drhd;
290
291         for_each_drhd_unit(dmaru) {
292                 if (dmaru->include_all)
293                         continue;
294
295                 drhd = container_of(dmaru->hdr,
296                                     struct acpi_dmar_hardware_unit, header);
297                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
298                                 ((void *)drhd) + drhd->header.length,
299                                 dmaru->segment,
300                                 dmaru->devices, dmaru->devices_cnt);
301                 if (ret != 0)
302                         break;
303         }
304         if (ret >= 0)
305                 ret = dmar_iommu_notify_scope_dev(info);
306         if (ret < 0 && dmar_dev_scope_status == 0)
307                 dmar_dev_scope_status = ret;
308
309         return ret;
310 }
311
312 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
313 {
314         struct dmar_drhd_unit *dmaru;
315
316         for_each_drhd_unit(dmaru)
317                 if (dmar_remove_dev_scope(info, dmaru->segment,
318                         dmaru->devices, dmaru->devices_cnt))
319                         break;
320         dmar_iommu_notify_scope_dev(info);
321 }
322
323 static int dmar_pci_bus_notifier(struct notifier_block *nb,
324                                  unsigned long action, void *data)
325 {
326         struct pci_dev *pdev = to_pci_dev(data);
327         struct dmar_pci_notify_info *info;
328
329         /* Only care about add/remove events for physical functions */
330         if (pdev->is_virtfn)
331                 return NOTIFY_DONE;
332         if (action != BUS_NOTIFY_ADD_DEVICE &&
333             action != BUS_NOTIFY_REMOVED_DEVICE)
334                 return NOTIFY_DONE;
335
336         info = dmar_alloc_pci_notify_info(pdev, action);
337         if (!info)
338                 return NOTIFY_DONE;
339
340         down_write(&dmar_global_lock);
341         if (action == BUS_NOTIFY_ADD_DEVICE)
342                 dmar_pci_bus_add_dev(info);
343         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
344                 dmar_pci_bus_del_dev(info);
345         up_write(&dmar_global_lock);
346
347         dmar_free_pci_notify_info(info);
348
349         return NOTIFY_OK;
350 }
351
352 static struct notifier_block dmar_pci_bus_nb = {
353         .notifier_call = dmar_pci_bus_notifier,
354         .priority = INT_MIN,
355 };
356
357 static struct dmar_drhd_unit *
358 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
359 {
360         struct dmar_drhd_unit *dmaru;
361
362         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
363                 if (dmaru->segment == drhd->segment &&
364                     dmaru->reg_base_addr == drhd->address)
365                         return dmaru;
366
367         return NULL;
368 }
369
370 /**
371  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
372  * structure which uniquely represent one DMA remapping hardware unit
373  * present in the platform
374  */
375 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
376 {
377         struct acpi_dmar_hardware_unit *drhd;
378         struct dmar_drhd_unit *dmaru;
379         int ret = 0;
380
381         drhd = (struct acpi_dmar_hardware_unit *)header;
382         dmaru = dmar_find_dmaru(drhd);
383         if (dmaru)
384                 goto out;
385
386         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
387         if (!dmaru)
388                 return -ENOMEM;
389
390         /*
391          * If header is allocated from slab by ACPI _DSM method, we need to
392          * copy the content because the memory buffer will be freed on return.
393          */
394         dmaru->hdr = (void *)(dmaru + 1);
395         memcpy(dmaru->hdr, header, header->length);
396         dmaru->reg_base_addr = drhd->address;
397         dmaru->segment = drhd->segment;
398         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
399         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
400                                               ((void *)drhd) + drhd->header.length,
401                                               &dmaru->devices_cnt);
402         if (dmaru->devices_cnt && dmaru->devices == NULL) {
403                 kfree(dmaru);
404                 return -ENOMEM;
405         }
406
407         ret = alloc_iommu(dmaru);
408         if (ret) {
409                 dmar_free_dev_scope(&dmaru->devices,
410                                     &dmaru->devices_cnt);
411                 kfree(dmaru);
412                 return ret;
413         }
414         dmar_register_drhd_unit(dmaru);
415
416 out:
417         if (arg)
418                 (*(int *)arg)++;
419
420         return 0;
421 }
422
423 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
424 {
425         if (dmaru->devices && dmaru->devices_cnt)
426                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
427         if (dmaru->iommu)
428                 free_iommu(dmaru->iommu);
429         kfree(dmaru);
430 }
431
432 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
433                                       void *arg)
434 {
435         struct acpi_dmar_andd *andd = (void *)header;
436
437         /* Check for NUL termination within the designated length */
438         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
439                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
440                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
441                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
442                            dmi_get_system_info(DMI_BIOS_VENDOR),
443                            dmi_get_system_info(DMI_BIOS_VERSION),
444                            dmi_get_system_info(DMI_PRODUCT_VERSION));
445                 return -EINVAL;
446         }
447         pr_info("ANDD device: %x name: %s\n", andd->device_number,
448                 andd->device_name);
449
450         return 0;
451 }
452
453 #ifdef CONFIG_ACPI_NUMA
454 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
455 {
456         struct acpi_dmar_rhsa *rhsa;
457         struct dmar_drhd_unit *drhd;
458
459         rhsa = (struct acpi_dmar_rhsa *)header;
460         for_each_drhd_unit(drhd) {
461                 if (drhd->reg_base_addr == rhsa->base_address) {
462                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
463
464                         if (!node_online(node))
465                                 node = -1;
466                         drhd->iommu->node = node;
467                         return 0;
468                 }
469         }
470         WARN_TAINT(
471                 1, TAINT_FIRMWARE_WORKAROUND,
472                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
473                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474                 drhd->reg_base_addr,
475                 dmi_get_system_info(DMI_BIOS_VENDOR),
476                 dmi_get_system_info(DMI_BIOS_VERSION),
477                 dmi_get_system_info(DMI_PRODUCT_VERSION));
478
479         return 0;
480 }
481 #else
482 #define dmar_parse_one_rhsa             dmar_res_noop
483 #endif
484
485 static void __init
486 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
487 {
488         struct acpi_dmar_hardware_unit *drhd;
489         struct acpi_dmar_reserved_memory *rmrr;
490         struct acpi_dmar_atsr *atsr;
491         struct acpi_dmar_rhsa *rhsa;
492
493         switch (header->type) {
494         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
495                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
496                                     header);
497                 pr_info("DRHD base: %#016Lx flags: %#x\n",
498                         (unsigned long long)drhd->address, drhd->flags);
499                 break;
500         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
501                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
502                                     header);
503                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
504                         (unsigned long long)rmrr->base_address,
505                         (unsigned long long)rmrr->end_address);
506                 break;
507         case ACPI_DMAR_TYPE_ROOT_ATS:
508                 atsr = container_of(header, struct acpi_dmar_atsr, header);
509                 pr_info("ATSR flags: %#x\n", atsr->flags);
510                 break;
511         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
512                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
513                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
514                        (unsigned long long)rhsa->base_address,
515                        rhsa->proximity_domain);
516                 break;
517         case ACPI_DMAR_TYPE_NAMESPACE:
518                 /* We don't print this here because we need to sanity-check
519                    it first. So print it in dmar_parse_one_andd() instead. */
520                 break;
521         }
522 }
523
524 /**
525  * dmar_table_detect - checks to see if the platform supports DMAR devices
526  */
527 static int __init dmar_table_detect(void)
528 {
529         acpi_status status = AE_OK;
530
531         /* if we could find DMAR table, then there are DMAR devices */
532         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
533                                 (struct acpi_table_header **)&dmar_tbl,
534                                 &dmar_tbl_size);
535
536         if (ACPI_SUCCESS(status) && !dmar_tbl) {
537                 pr_warn("Unable to map DMAR\n");
538                 status = AE_NOT_FOUND;
539         }
540
541         return (ACPI_SUCCESS(status) ? 1 : 0);
542 }
543
544 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
545                                        size_t len, struct dmar_res_callback *cb)
546 {
547         int ret = 0;
548         struct acpi_dmar_header *iter, *next;
549         struct acpi_dmar_header *end = ((void *)start) + len;
550
551         for (iter = start; iter < end && ret == 0; iter = next) {
552                 next = (void *)iter + iter->length;
553                 if (iter->length == 0) {
554                         /* Avoid looping forever on bad ACPI tables */
555                         pr_debug(FW_BUG "Invalid 0-length structure\n");
556                         break;
557                 } else if (next > end) {
558                         /* Avoid passing table end */
559                         pr_warn(FW_BUG "Record passes table end\n");
560                         ret = -EINVAL;
561                         break;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
573                 } else if (!cb->ignore_unhandled) {
574                         pr_warn("No handler for DMAR structure type %d\n",
575                                 iter->type);
576                         ret = -EINVAL;
577                 }
578         }
579
580         return ret;
581 }
582
583 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
584                                        struct dmar_res_callback *cb)
585 {
586         return dmar_walk_remapping_entries((void *)(dmar + 1),
587                         dmar->header.length - sizeof(*dmar), cb);
588 }
589
590 /**
591  * parse_dmar_table - parses the DMA reporting table
592  */
593 static int __init
594 parse_dmar_table(void)
595 {
596         struct acpi_table_dmar *dmar;
597         int ret = 0;
598         int drhd_count = 0;
599         struct dmar_res_callback cb = {
600                 .print_entry = true,
601                 .ignore_unhandled = true,
602                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
603                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
604                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
605                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
606                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
607                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
608         };
609
610         /*
611          * Do it again, earlier dmar_tbl mapping could be mapped with
612          * fixed map.
613          */
614         dmar_table_detect();
615
616         /*
617          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
618          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
619          */
620         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
621
622         dmar = (struct acpi_table_dmar *)dmar_tbl;
623         if (!dmar)
624                 return -ENODEV;
625
626         if (dmar->width < PAGE_SHIFT - 1) {
627                 pr_warn("Invalid DMAR haw\n");
628                 return -EINVAL;
629         }
630
631         pr_info("Host address width %d\n", dmar->width + 1);
632         ret = dmar_walk_dmar_table(dmar, &cb);
633         if (ret == 0 && drhd_count == 0)
634                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
635
636         return ret;
637 }
638
639 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
640                                  int cnt, struct pci_dev *dev)
641 {
642         int index;
643         struct device *tmp;
644
645         while (dev) {
646                 for_each_active_dev_scope(devices, cnt, index, tmp)
647                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
648                                 return 1;
649
650                 /* Check our parent */
651                 dev = dev->bus->self;
652         }
653
654         return 0;
655 }
656
657 struct dmar_drhd_unit *
658 dmar_find_matched_drhd_unit(struct pci_dev *dev)
659 {
660         struct dmar_drhd_unit *dmaru;
661         struct acpi_dmar_hardware_unit *drhd;
662
663         dev = pci_physfn(dev);
664
665         rcu_read_lock();
666         for_each_drhd_unit(dmaru) {
667                 drhd = container_of(dmaru->hdr,
668                                     struct acpi_dmar_hardware_unit,
669                                     header);
670
671                 if (dmaru->include_all &&
672                     drhd->segment == pci_domain_nr(dev->bus))
673                         goto out;
674
675                 if (dmar_pci_device_match(dmaru->devices,
676                                           dmaru->devices_cnt, dev))
677                         goto out;
678         }
679         dmaru = NULL;
680 out:
681         rcu_read_unlock();
682
683         return dmaru;
684 }
685
686 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
687                                               struct acpi_device *adev)
688 {
689         struct dmar_drhd_unit *dmaru;
690         struct acpi_dmar_hardware_unit *drhd;
691         struct acpi_dmar_device_scope *scope;
692         struct device *tmp;
693         int i;
694         struct acpi_dmar_pci_path *path;
695
696         for_each_drhd_unit(dmaru) {
697                 drhd = container_of(dmaru->hdr,
698                                     struct acpi_dmar_hardware_unit,
699                                     header);
700
701                 for (scope = (void *)(drhd + 1);
702                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
703                      scope = ((void *)scope) + scope->length) {
704                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
705                                 continue;
706                         if (scope->enumeration_id != device_number)
707                                 continue;
708
709                         path = (void *)(scope + 1);
710                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
711                                 dev_name(&adev->dev), dmaru->reg_base_addr,
712                                 scope->bus, path->device, path->function);
713                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
714                                 if (tmp == NULL) {
715                                         dmaru->devices[i].bus = scope->bus;
716                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
717                                                                             path->function);
718                                         rcu_assign_pointer(dmaru->devices[i].dev,
719                                                            get_device(&adev->dev));
720                                         return;
721                                 }
722                         BUG_ON(i >= dmaru->devices_cnt);
723                 }
724         }
725         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
726                 device_number, dev_name(&adev->dev));
727 }
728
729 static int __init dmar_acpi_dev_scope_init(void)
730 {
731         struct acpi_dmar_andd *andd;
732
733         if (dmar_tbl == NULL)
734                 return -ENODEV;
735
736         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
737              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
738              andd = ((void *)andd) + andd->header.length) {
739                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
740                         acpi_handle h;
741                         struct acpi_device *adev;
742
743                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
744                                                           andd->device_name,
745                                                           &h))) {
746                                 pr_err("Failed to find handle for ACPI object %s\n",
747                                        andd->device_name);
748                                 continue;
749                         }
750                         if (acpi_bus_get_device(h, &adev)) {
751                                 pr_err("Failed to get device for ACPI object %s\n",
752                                        andd->device_name);
753                                 continue;
754                         }
755                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
756                 }
757         }
758         return 0;
759 }
760
761 int __init dmar_dev_scope_init(void)
762 {
763         struct pci_dev *dev = NULL;
764         struct dmar_pci_notify_info *info;
765
766         if (dmar_dev_scope_status != 1)
767                 return dmar_dev_scope_status;
768
769         if (list_empty(&dmar_drhd_units)) {
770                 dmar_dev_scope_status = -ENODEV;
771         } else {
772                 dmar_dev_scope_status = 0;
773
774                 dmar_acpi_dev_scope_init();
775
776                 for_each_pci_dev(dev) {
777                         if (dev->is_virtfn)
778                                 continue;
779
780                         info = dmar_alloc_pci_notify_info(dev,
781                                         BUS_NOTIFY_ADD_DEVICE);
782                         if (!info) {
783                                 return dmar_dev_scope_status;
784                         } else {
785                                 dmar_pci_bus_add_dev(info);
786                                 dmar_free_pci_notify_info(info);
787                         }
788                 }
789
790                 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
791         }
792
793         return dmar_dev_scope_status;
794 }
795
796
797 int __init dmar_table_init(void)
798 {
799         static int dmar_table_initialized;
800         int ret;
801
802         if (dmar_table_initialized == 0) {
803                 ret = parse_dmar_table();
804                 if (ret < 0) {
805                         if (ret != -ENODEV)
806                                 pr_info("Parse DMAR table failure.\n");
807                 } else  if (list_empty(&dmar_drhd_units)) {
808                         pr_info("No DMAR devices found\n");
809                         ret = -ENODEV;
810                 }
811
812                 if (ret < 0)
813                         dmar_table_initialized = ret;
814                 else
815                         dmar_table_initialized = 1;
816         }
817
818         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
819 }
820
821 static void warn_invalid_dmar(u64 addr, const char *message)
822 {
823         WARN_TAINT_ONCE(
824                 1, TAINT_FIRMWARE_WORKAROUND,
825                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
826                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
827                 addr, message,
828                 dmi_get_system_info(DMI_BIOS_VENDOR),
829                 dmi_get_system_info(DMI_BIOS_VERSION),
830                 dmi_get_system_info(DMI_PRODUCT_VERSION));
831 }
832
833 static int __ref
834 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
835 {
836         struct acpi_dmar_hardware_unit *drhd;
837         void __iomem *addr;
838         u64 cap, ecap;
839
840         drhd = (void *)entry;
841         if (!drhd->address) {
842                 warn_invalid_dmar(0, "");
843                 return -EINVAL;
844         }
845
846         if (arg)
847                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
848         else
849                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
850         if (!addr) {
851                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
852                 return -EINVAL;
853         }
854
855         cap = dmar_readq(addr + DMAR_CAP_REG);
856         ecap = dmar_readq(addr + DMAR_ECAP_REG);
857
858         if (arg)
859                 iounmap(addr);
860         else
861                 early_iounmap(addr, VTD_PAGE_SIZE);
862
863         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
864                 warn_invalid_dmar(drhd->address, " returns all ones");
865                 return -EINVAL;
866         }
867
868         return 0;
869 }
870
871 int __init detect_intel_iommu(void)
872 {
873         int ret;
874         struct dmar_res_callback validate_drhd_cb = {
875                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
876                 .ignore_unhandled = true,
877         };
878
879         down_write(&dmar_global_lock);
880         ret = dmar_table_detect();
881         if (ret)
882                 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
883                                             &validate_drhd_cb);
884         if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
885                 iommu_detected = 1;
886                 /* Make sure ACS will be enabled */
887                 pci_request_acs();
888         }
889
890 #ifdef CONFIG_X86
891         if (ret)
892                 x86_init.iommu.iommu_init = intel_iommu_init;
893 #endif
894
895         early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
896         dmar_tbl = NULL;
897         up_write(&dmar_global_lock);
898
899         return ret ? 1 : -ENODEV;
900 }
901
902
903 static void unmap_iommu(struct intel_iommu *iommu)
904 {
905         iounmap(iommu->reg);
906         release_mem_region(iommu->reg_phys, iommu->reg_size);
907 }
908
909 /**
910  * map_iommu: map the iommu's registers
911  * @iommu: the iommu to map
912  * @phys_addr: the physical address of the base resgister
913  *
914  * Memory map the iommu's registers.  Start w/ a single page, and
915  * possibly expand if that turns out to be insufficent.
916  */
917 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
918 {
919         int map_size, err=0;
920
921         iommu->reg_phys = phys_addr;
922         iommu->reg_size = VTD_PAGE_SIZE;
923
924         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
925                 pr_err("Can't reserve memory\n");
926                 err = -EBUSY;
927                 goto out;
928         }
929
930         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
931         if (!iommu->reg) {
932                 pr_err("Can't map the region\n");
933                 err = -ENOMEM;
934                 goto release;
935         }
936
937         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
938         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
939
940         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
941                 err = -EINVAL;
942                 warn_invalid_dmar(phys_addr, " returns all ones");
943                 goto unmap;
944         }
945
946         /* the registers might be more than one page */
947         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
948                          cap_max_fault_reg_offset(iommu->cap));
949         map_size = VTD_PAGE_ALIGN(map_size);
950         if (map_size > iommu->reg_size) {
951                 iounmap(iommu->reg);
952                 release_mem_region(iommu->reg_phys, iommu->reg_size);
953                 iommu->reg_size = map_size;
954                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
955                                         iommu->name)) {
956                         pr_err("Can't reserve memory\n");
957                         err = -EBUSY;
958                         goto out;
959                 }
960                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
961                 if (!iommu->reg) {
962                         pr_err("Can't map the region\n");
963                         err = -ENOMEM;
964                         goto release;
965                 }
966         }
967         err = 0;
968         goto out;
969
970 unmap:
971         iounmap(iommu->reg);
972 release:
973         release_mem_region(iommu->reg_phys, iommu->reg_size);
974 out:
975         return err;
976 }
977
978 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
979 {
980         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
981                                             DMAR_UNITS_SUPPORTED);
982         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
983                 iommu->seq_id = -1;
984         } else {
985                 set_bit(iommu->seq_id, dmar_seq_ids);
986                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
987         }
988
989         return iommu->seq_id;
990 }
991
992 static void dmar_free_seq_id(struct intel_iommu *iommu)
993 {
994         if (iommu->seq_id >= 0) {
995                 clear_bit(iommu->seq_id, dmar_seq_ids);
996                 iommu->seq_id = -1;
997         }
998 }
999
1000 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1001 {
1002         struct intel_iommu *iommu;
1003         u32 ver, sts;
1004         int agaw = 0;
1005         int msagaw = 0;
1006         int err;
1007
1008         if (!drhd->reg_base_addr) {
1009                 warn_invalid_dmar(0, "");
1010                 return -EINVAL;
1011         }
1012
1013         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1014         if (!iommu)
1015                 return -ENOMEM;
1016
1017         if (dmar_alloc_seq_id(iommu) < 0) {
1018                 pr_err("Failed to allocate seq_id\n");
1019                 err = -ENOSPC;
1020                 goto error;
1021         }
1022
1023         err = map_iommu(iommu, drhd->reg_base_addr);
1024         if (err) {
1025                 pr_err("Failed to map %s\n", iommu->name);
1026                 goto error_free_seq_id;
1027         }
1028
1029         err = -EINVAL;
1030         agaw = iommu_calculate_agaw(iommu);
1031         if (agaw < 0) {
1032                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1033                         iommu->seq_id);
1034                 goto err_unmap;
1035         }
1036         msagaw = iommu_calculate_max_sagaw(iommu);
1037         if (msagaw < 0) {
1038                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1039                         iommu->seq_id);
1040                 goto err_unmap;
1041         }
1042         iommu->agaw = agaw;
1043         iommu->msagaw = msagaw;
1044         iommu->segment = drhd->segment;
1045
1046         iommu->node = -1;
1047
1048         ver = readl(iommu->reg + DMAR_VER_REG);
1049         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1050                 iommu->name,
1051                 (unsigned long long)drhd->reg_base_addr,
1052                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1053                 (unsigned long long)iommu->cap,
1054                 (unsigned long long)iommu->ecap);
1055
1056         /* Reflect status in gcmd */
1057         sts = readl(iommu->reg + DMAR_GSTS_REG);
1058         if (sts & DMA_GSTS_IRES)
1059                 iommu->gcmd |= DMA_GCMD_IRE;
1060         if (sts & DMA_GSTS_TES)
1061                 iommu->gcmd |= DMA_GCMD_TE;
1062         if (sts & DMA_GSTS_QIES)
1063                 iommu->gcmd |= DMA_GCMD_QIE;
1064
1065         raw_spin_lock_init(&iommu->register_lock);
1066
1067         if (intel_iommu_enabled) {
1068                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1069                                                        intel_iommu_groups,
1070                                                        "%s", iommu->name);
1071
1072                 if (IS_ERR(iommu->iommu_dev)) {
1073                         err = PTR_ERR(iommu->iommu_dev);
1074                         goto err_unmap;
1075                 }
1076         }
1077
1078         drhd->iommu = iommu;
1079
1080         return 0;
1081
1082 err_unmap:
1083         unmap_iommu(iommu);
1084 error_free_seq_id:
1085         dmar_free_seq_id(iommu);
1086 error:
1087         kfree(iommu);
1088         return err;
1089 }
1090
1091 static void free_iommu(struct intel_iommu *iommu)
1092 {
1093         iommu_device_destroy(iommu->iommu_dev);
1094
1095         if (iommu->irq) {
1096                 if (iommu->pr_irq) {
1097                         free_irq(iommu->pr_irq, iommu);
1098                         dmar_free_hwirq(iommu->pr_irq);
1099                         iommu->pr_irq = 0;
1100                 }
1101                 free_irq(iommu->irq, iommu);
1102                 dmar_free_hwirq(iommu->irq);
1103                 iommu->irq = 0;
1104         }
1105
1106         if (iommu->qi) {
1107                 free_page((unsigned long)iommu->qi->desc);
1108                 kfree(iommu->qi->desc_status);
1109                 kfree(iommu->qi);
1110         }
1111
1112         if (iommu->reg)
1113                 unmap_iommu(iommu);
1114
1115         dmar_free_seq_id(iommu);
1116         kfree(iommu);
1117 }
1118
1119 /*
1120  * Reclaim all the submitted descriptors which have completed its work.
1121  */
1122 static inline void reclaim_free_desc(struct q_inval *qi)
1123 {
1124         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1125                qi->desc_status[qi->free_tail] == QI_ABORT) {
1126                 qi->desc_status[qi->free_tail] = QI_FREE;
1127                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1128                 qi->free_cnt++;
1129         }
1130 }
1131
1132 static int qi_check_fault(struct intel_iommu *iommu, int index)
1133 {
1134         u32 fault;
1135         int head, tail;
1136         struct q_inval *qi = iommu->qi;
1137         int wait_index = (index + 1) % QI_LENGTH;
1138
1139         if (qi->desc_status[wait_index] == QI_ABORT)
1140                 return -EAGAIN;
1141
1142         fault = readl(iommu->reg + DMAR_FSTS_REG);
1143
1144         /*
1145          * If IQE happens, the head points to the descriptor associated
1146          * with the error. No new descriptors are fetched until the IQE
1147          * is cleared.
1148          */
1149         if (fault & DMA_FSTS_IQE) {
1150                 head = readl(iommu->reg + DMAR_IQH_REG);
1151                 if ((head >> DMAR_IQ_SHIFT) == index) {
1152                         pr_err("VT-d detected invalid descriptor: "
1153                                 "low=%llx, high=%llx\n",
1154                                 (unsigned long long)qi->desc[index].low,
1155                                 (unsigned long long)qi->desc[index].high);
1156                         memcpy(&qi->desc[index], &qi->desc[wait_index],
1157                                         sizeof(struct qi_desc));
1158                         __iommu_flush_cache(iommu, &qi->desc[index],
1159                                         sizeof(struct qi_desc));
1160                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1161                         return -EINVAL;
1162                 }
1163         }
1164
1165         /*
1166          * If ITE happens, all pending wait_desc commands are aborted.
1167          * No new descriptors are fetched until the ITE is cleared.
1168          */
1169         if (fault & DMA_FSTS_ITE) {
1170                 head = readl(iommu->reg + DMAR_IQH_REG);
1171                 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1172                 head |= 1;
1173                 tail = readl(iommu->reg + DMAR_IQT_REG);
1174                 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1175
1176                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1177
1178                 do {
1179                         if (qi->desc_status[head] == QI_IN_USE)
1180                                 qi->desc_status[head] = QI_ABORT;
1181                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1182                 } while (head != tail);
1183
1184                 if (qi->desc_status[wait_index] == QI_ABORT)
1185                         return -EAGAIN;
1186         }
1187
1188         if (fault & DMA_FSTS_ICE)
1189                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1190
1191         return 0;
1192 }
1193
1194 /*
1195  * Submit the queued invalidation descriptor to the remapping
1196  * hardware unit and wait for its completion.
1197  */
1198 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1199 {
1200         int rc;
1201         struct q_inval *qi = iommu->qi;
1202         struct qi_desc *hw, wait_desc;
1203         int wait_index, index;
1204         unsigned long flags;
1205
1206         if (!qi)
1207                 return 0;
1208
1209         hw = qi->desc;
1210
1211 restart:
1212         rc = 0;
1213
1214         raw_spin_lock_irqsave(&qi->q_lock, flags);
1215         while (qi->free_cnt < 3) {
1216                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1217                 cpu_relax();
1218                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1219         }
1220
1221         index = qi->free_head;
1222         wait_index = (index + 1) % QI_LENGTH;
1223
1224         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1225
1226         hw[index] = *desc;
1227
1228         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1229                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1230         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1231
1232         hw[wait_index] = wait_desc;
1233
1234         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1235         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1236
1237         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1238         qi->free_cnt -= 2;
1239
1240         /*
1241          * update the HW tail register indicating the presence of
1242          * new descriptors.
1243          */
1244         writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1245
1246         while (qi->desc_status[wait_index] != QI_DONE) {
1247                 /*
1248                  * We will leave the interrupts disabled, to prevent interrupt
1249                  * context to queue another cmd while a cmd is already submitted
1250                  * and waiting for completion on this cpu. This is to avoid
1251                  * a deadlock where the interrupt context can wait indefinitely
1252                  * for free slots in the queue.
1253                  */
1254                 rc = qi_check_fault(iommu, index);
1255                 if (rc)
1256                         break;
1257
1258                 raw_spin_unlock(&qi->q_lock);
1259                 cpu_relax();
1260                 raw_spin_lock(&qi->q_lock);
1261         }
1262
1263         qi->desc_status[index] = QI_DONE;
1264
1265         reclaim_free_desc(qi);
1266         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1267
1268         if (rc == -EAGAIN)
1269                 goto restart;
1270
1271         return rc;
1272 }
1273
1274 /*
1275  * Flush the global interrupt entry cache.
1276  */
1277 void qi_global_iec(struct intel_iommu *iommu)
1278 {
1279         struct qi_desc desc;
1280
1281         desc.low = QI_IEC_TYPE;
1282         desc.high = 0;
1283
1284         /* should never fail */
1285         qi_submit_sync(&desc, iommu);
1286 }
1287
1288 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1289                       u64 type)
1290 {
1291         struct qi_desc desc;
1292
1293         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1294                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1295         desc.high = 0;
1296
1297         qi_submit_sync(&desc, iommu);
1298 }
1299
1300 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1301                     unsigned int size_order, u64 type)
1302 {
1303         u8 dw = 0, dr = 0;
1304
1305         struct qi_desc desc;
1306         int ih = 0;
1307
1308         if (cap_write_drain(iommu->cap))
1309                 dw = 1;
1310
1311         if (cap_read_drain(iommu->cap))
1312                 dr = 1;
1313
1314         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1315                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1316         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1317                 | QI_IOTLB_AM(size_order);
1318
1319         qi_submit_sync(&desc, iommu);
1320 }
1321
1322 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1323                         u64 addr, unsigned mask)
1324 {
1325         struct qi_desc desc;
1326
1327         if (mask) {
1328                 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1329                 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1330                 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1331         } else
1332                 desc.high = QI_DEV_IOTLB_ADDR(addr);
1333
1334         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1335                 qdep = 0;
1336
1337         desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1338                    QI_DIOTLB_TYPE;
1339
1340         qi_submit_sync(&desc, iommu);
1341 }
1342
1343 /*
1344  * Disable Queued Invalidation interface.
1345  */
1346 void dmar_disable_qi(struct intel_iommu *iommu)
1347 {
1348         unsigned long flags;
1349         u32 sts;
1350         cycles_t start_time = get_cycles();
1351
1352         if (!ecap_qis(iommu->ecap))
1353                 return;
1354
1355         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1356
1357         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1358         if (!(sts & DMA_GSTS_QIES))
1359                 goto end;
1360
1361         /*
1362          * Give a chance to HW to complete the pending invalidation requests.
1363          */
1364         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1365                 readl(iommu->reg + DMAR_IQH_REG)) &&
1366                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1367                 cpu_relax();
1368
1369         iommu->gcmd &= ~DMA_GCMD_QIE;
1370         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1371
1372         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1373                       !(sts & DMA_GSTS_QIES), sts);
1374 end:
1375         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1376 }
1377
1378 /*
1379  * Enable queued invalidation.
1380  */
1381 static void __dmar_enable_qi(struct intel_iommu *iommu)
1382 {
1383         u32 sts;
1384         unsigned long flags;
1385         struct q_inval *qi = iommu->qi;
1386
1387         qi->free_head = qi->free_tail = 0;
1388         qi->free_cnt = QI_LENGTH;
1389
1390         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1391
1392         /* write zero to the tail reg */
1393         writel(0, iommu->reg + DMAR_IQT_REG);
1394
1395         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1396
1397         iommu->gcmd |= DMA_GCMD_QIE;
1398         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1399
1400         /* Make sure hardware complete it */
1401         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1402
1403         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1404 }
1405
1406 /*
1407  * Enable Queued Invalidation interface. This is a must to support
1408  * interrupt-remapping. Also used by DMA-remapping, which replaces
1409  * register based IOTLB invalidation.
1410  */
1411 int dmar_enable_qi(struct intel_iommu *iommu)
1412 {
1413         struct q_inval *qi;
1414         struct page *desc_page;
1415
1416         if (!ecap_qis(iommu->ecap))
1417                 return -ENOENT;
1418
1419         /*
1420          * queued invalidation is already setup and enabled.
1421          */
1422         if (iommu->qi)
1423                 return 0;
1424
1425         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1426         if (!iommu->qi)
1427                 return -ENOMEM;
1428
1429         qi = iommu->qi;
1430
1431
1432         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1433         if (!desc_page) {
1434                 kfree(qi);
1435                 iommu->qi = NULL;
1436                 return -ENOMEM;
1437         }
1438
1439         qi->desc = page_address(desc_page);
1440
1441         qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1442         if (!qi->desc_status) {
1443                 free_page((unsigned long) qi->desc);
1444                 kfree(qi);
1445                 iommu->qi = NULL;
1446                 return -ENOMEM;
1447         }
1448
1449         raw_spin_lock_init(&qi->q_lock);
1450
1451         __dmar_enable_qi(iommu);
1452
1453         return 0;
1454 }
1455
1456 /* iommu interrupt handling. Most stuff are MSI-like. */
1457
1458 enum faulttype {
1459         DMA_REMAP,
1460         INTR_REMAP,
1461         UNKNOWN,
1462 };
1463
1464 static const char *dma_remap_fault_reasons[] =
1465 {
1466         "Software",
1467         "Present bit in root entry is clear",
1468         "Present bit in context entry is clear",
1469         "Invalid context entry",
1470         "Access beyond MGAW",
1471         "PTE Write access is not set",
1472         "PTE Read access is not set",
1473         "Next page table ptr is invalid",
1474         "Root table address invalid",
1475         "Context table ptr is invalid",
1476         "non-zero reserved fields in RTP",
1477         "non-zero reserved fields in CTP",
1478         "non-zero reserved fields in PTE",
1479         "PCE for translation request specifies blocking",
1480 };
1481
1482 static const char *irq_remap_fault_reasons[] =
1483 {
1484         "Detected reserved fields in the decoded interrupt-remapped request",
1485         "Interrupt index exceeded the interrupt-remapping table size",
1486         "Present field in the IRTE entry is clear",
1487         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1488         "Detected reserved fields in the IRTE entry",
1489         "Blocked a compatibility format interrupt request",
1490         "Blocked an interrupt request due to source-id verification failure",
1491 };
1492
1493 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1494 {
1495         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1496                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1497                 *fault_type = INTR_REMAP;
1498                 return irq_remap_fault_reasons[fault_reason - 0x20];
1499         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1500                 *fault_type = DMA_REMAP;
1501                 return dma_remap_fault_reasons[fault_reason];
1502         } else {
1503                 *fault_type = UNKNOWN;
1504                 return "Unknown";
1505         }
1506 }
1507
1508
1509 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1510 {
1511         if (iommu->irq == irq)
1512                 return DMAR_FECTL_REG;
1513         else if (iommu->pr_irq == irq)
1514                 return DMAR_PECTL_REG;
1515         else
1516                 BUG();
1517 }
1518
1519 void dmar_msi_unmask(struct irq_data *data)
1520 {
1521         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1522         int reg = dmar_msi_reg(iommu, data->irq);
1523         unsigned long flag;
1524
1525         /* unmask it */
1526         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1527         writel(0, iommu->reg + reg);
1528         /* Read a reg to force flush the post write */
1529         readl(iommu->reg + reg);
1530         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1531 }
1532
1533 void dmar_msi_mask(struct irq_data *data)
1534 {
1535         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1536         int reg = dmar_msi_reg(iommu, data->irq);
1537         unsigned long flag;
1538
1539         /* mask it */
1540         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1541         writel(DMA_FECTL_IM, iommu->reg + reg);
1542         /* Read a reg to force flush the post write */
1543         readl(iommu->reg + reg);
1544         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1545 }
1546
1547 void dmar_msi_write(int irq, struct msi_msg *msg)
1548 {
1549         struct intel_iommu *iommu = irq_get_handler_data(irq);
1550         int reg = dmar_msi_reg(iommu, irq);
1551         unsigned long flag;
1552
1553         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1554         writel(msg->data, iommu->reg + reg + 4);
1555         writel(msg->address_lo, iommu->reg + reg + 8);
1556         writel(msg->address_hi, iommu->reg + reg + 12);
1557         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1558 }
1559
1560 void dmar_msi_read(int irq, struct msi_msg *msg)
1561 {
1562         struct intel_iommu *iommu = irq_get_handler_data(irq);
1563         int reg = dmar_msi_reg(iommu, irq);
1564         unsigned long flag;
1565
1566         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1567         msg->data = readl(iommu->reg + reg + 4);
1568         msg->address_lo = readl(iommu->reg + reg + 8);
1569         msg->address_hi = readl(iommu->reg + reg + 12);
1570         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1571 }
1572
1573 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1574                 u8 fault_reason, u16 source_id, unsigned long long addr)
1575 {
1576         const char *reason;
1577         int fault_type;
1578
1579         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1580
1581         if (fault_type == INTR_REMAP)
1582                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1583                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1584                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1585                         fault_reason, reason);
1586         else
1587                 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1588                        type ? "DMA Read" : "DMA Write",
1589                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1590                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1591         return 0;
1592 }
1593
1594 #define PRIMARY_FAULT_REG_LEN (16)
1595 irqreturn_t dmar_fault(int irq, void *dev_id)
1596 {
1597         struct intel_iommu *iommu = dev_id;
1598         int reg, fault_index;
1599         u32 fault_status;
1600         unsigned long flag;
1601         bool ratelimited;
1602         static DEFINE_RATELIMIT_STATE(rs,
1603                                       DEFAULT_RATELIMIT_INTERVAL,
1604                                       DEFAULT_RATELIMIT_BURST);
1605
1606         /* Disable printing, simply clear the fault when ratelimited */
1607         ratelimited = !__ratelimit(&rs);
1608
1609         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1610         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1611         if (fault_status && !ratelimited)
1612                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1613
1614         /* TBD: ignore advanced fault log currently */
1615         if (!(fault_status & DMA_FSTS_PPF))
1616                 goto unlock_exit;
1617
1618         fault_index = dma_fsts_fault_record_index(fault_status);
1619         reg = cap_fault_reg_offset(iommu->cap);
1620         while (1) {
1621                 u8 fault_reason;
1622                 u16 source_id;
1623                 u64 guest_addr;
1624                 int type;
1625                 u32 data;
1626
1627                 /* highest 32 bits */
1628                 data = readl(iommu->reg + reg +
1629                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1630                 if (!(data & DMA_FRCD_F))
1631                         break;
1632
1633                 if (!ratelimited) {
1634                         fault_reason = dma_frcd_fault_reason(data);
1635                         type = dma_frcd_type(data);
1636
1637                         data = readl(iommu->reg + reg +
1638                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1639                         source_id = dma_frcd_source_id(data);
1640
1641                         guest_addr = dmar_readq(iommu->reg + reg +
1642                                         fault_index * PRIMARY_FAULT_REG_LEN);
1643                         guest_addr = dma_frcd_page_addr(guest_addr);
1644                 }
1645
1646                 /* clear the fault */
1647                 writel(DMA_FRCD_F, iommu->reg + reg +
1648                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1649
1650                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1651
1652                 if (!ratelimited)
1653                         dmar_fault_do_one(iommu, type, fault_reason,
1654                                           source_id, guest_addr);
1655
1656                 fault_index++;
1657                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1658                         fault_index = 0;
1659                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1660         }
1661
1662         writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1663
1664 unlock_exit:
1665         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666         return IRQ_HANDLED;
1667 }
1668
1669 int dmar_set_interrupt(struct intel_iommu *iommu)
1670 {
1671         int irq, ret;
1672
1673         /*
1674          * Check if the fault interrupt is already initialized.
1675          */
1676         if (iommu->irq)
1677                 return 0;
1678
1679         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1680         if (irq > 0) {
1681                 iommu->irq = irq;
1682         } else {
1683                 pr_err("No free IRQ vectors\n");
1684                 return -EINVAL;
1685         }
1686
1687         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1688         if (ret)
1689                 pr_err("Can't request irq\n");
1690         return ret;
1691 }
1692
1693 int __init enable_drhd_fault_handling(void)
1694 {
1695         struct dmar_drhd_unit *drhd;
1696         struct intel_iommu *iommu;
1697
1698         /*
1699          * Enable fault control interrupt.
1700          */
1701         for_each_iommu(iommu, drhd) {
1702                 u32 fault_status;
1703                 int ret = dmar_set_interrupt(iommu);
1704
1705                 if (ret) {
1706                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1707                                (unsigned long long)drhd->reg_base_addr, ret);
1708                         return -1;
1709                 }
1710
1711                 /*
1712                  * Clear any previous faults.
1713                  */
1714                 dmar_fault(iommu->irq, iommu);
1715                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1716                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1717         }
1718
1719         return 0;
1720 }
1721
1722 /*
1723  * Re-enable Queued Invalidation interface.
1724  */
1725 int dmar_reenable_qi(struct intel_iommu *iommu)
1726 {
1727         if (!ecap_qis(iommu->ecap))
1728                 return -ENOENT;
1729
1730         if (!iommu->qi)
1731                 return -ENOENT;
1732
1733         /*
1734          * First disable queued invalidation.
1735          */
1736         dmar_disable_qi(iommu);
1737         /*
1738          * Then enable queued invalidation again. Since there is no pending
1739          * invalidation requests now, it's safe to re-enable queued
1740          * invalidation.
1741          */
1742         __dmar_enable_qi(iommu);
1743
1744         return 0;
1745 }
1746
1747 /*
1748  * Check interrupt remapping support in DMAR table description.
1749  */
1750 int __init dmar_ir_support(void)
1751 {
1752         struct acpi_table_dmar *dmar;
1753         dmar = (struct acpi_table_dmar *)dmar_tbl;
1754         if (!dmar)
1755                 return 0;
1756         return dmar->flags & 0x1;
1757 }
1758
1759 /* Check whether DMAR units are in use */
1760 static inline bool dmar_in_use(void)
1761 {
1762         return irq_remapping_enabled || intel_iommu_enabled;
1763 }
1764
1765 static int __init dmar_free_unused_resources(void)
1766 {
1767         struct dmar_drhd_unit *dmaru, *dmaru_n;
1768
1769         if (dmar_in_use())
1770                 return 0;
1771
1772         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1773                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1774
1775         down_write(&dmar_global_lock);
1776         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1777                 list_del(&dmaru->list);
1778                 dmar_free_drhd(dmaru);
1779         }
1780         up_write(&dmar_global_lock);
1781
1782         return 0;
1783 }
1784
1785 late_initcall(dmar_free_unused_resources);
1786 IOMMU_INIT_POST(detect_intel_iommu);
1787
1788 /*
1789  * DMAR Hotplug Support
1790  * For more details, please refer to Intel(R) Virtualization Technology
1791  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1792  * "Remapping Hardware Unit Hot Plug".
1793  */
1794 static u8 dmar_hp_uuid[] = {
1795         /* 0000 */    0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1796         /* 0008 */    0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1797 };
1798
1799 /*
1800  * Currently there's only one revision and BIOS will not check the revision id,
1801  * so use 0 for safety.
1802  */
1803 #define DMAR_DSM_REV_ID                 0
1804 #define DMAR_DSM_FUNC_DRHD              1
1805 #define DMAR_DSM_FUNC_ATSR              2
1806 #define DMAR_DSM_FUNC_RHSA              3
1807
1808 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1809 {
1810         return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1811 }
1812
1813 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1814                                   dmar_res_handler_t handler, void *arg)
1815 {
1816         int ret = -ENODEV;
1817         union acpi_object *obj;
1818         struct acpi_dmar_header *start;
1819         struct dmar_res_callback callback;
1820         static int res_type[] = {
1821                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1822                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1823                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1824         };
1825
1826         if (!dmar_detect_dsm(handle, func))
1827                 return 0;
1828
1829         obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1830                                       func, NULL, ACPI_TYPE_BUFFER);
1831         if (!obj)
1832                 return -ENODEV;
1833
1834         memset(&callback, 0, sizeof(callback));
1835         callback.cb[res_type[func]] = handler;
1836         callback.arg[res_type[func]] = arg;
1837         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1838         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1839
1840         ACPI_FREE(obj);
1841
1842         return ret;
1843 }
1844
1845 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1846 {
1847         int ret;
1848         struct dmar_drhd_unit *dmaru;
1849
1850         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1851         if (!dmaru)
1852                 return -ENODEV;
1853
1854         ret = dmar_ir_hotplug(dmaru, true);
1855         if (ret == 0)
1856                 ret = dmar_iommu_hotplug(dmaru, true);
1857
1858         return ret;
1859 }
1860
1861 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1862 {
1863         int i, ret;
1864         struct device *dev;
1865         struct dmar_drhd_unit *dmaru;
1866
1867         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1868         if (!dmaru)
1869                 return 0;
1870
1871         /*
1872          * All PCI devices managed by this unit should have been destroyed.
1873          */
1874         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt)
1875                 for_each_active_dev_scope(dmaru->devices,
1876                                           dmaru->devices_cnt, i, dev)
1877                         return -EBUSY;
1878
1879         ret = dmar_ir_hotplug(dmaru, false);
1880         if (ret == 0)
1881                 ret = dmar_iommu_hotplug(dmaru, false);
1882
1883         return ret;
1884 }
1885
1886 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1887 {
1888         struct dmar_drhd_unit *dmaru;
1889
1890         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1891         if (dmaru) {
1892                 list_del_rcu(&dmaru->list);
1893                 synchronize_rcu();
1894                 dmar_free_drhd(dmaru);
1895         }
1896
1897         return 0;
1898 }
1899
1900 static int dmar_hotplug_insert(acpi_handle handle)
1901 {
1902         int ret;
1903         int drhd_count = 0;
1904
1905         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1906                                      &dmar_validate_one_drhd, (void *)1);
1907         if (ret)
1908                 goto out;
1909
1910         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1911                                      &dmar_parse_one_drhd, (void *)&drhd_count);
1912         if (ret == 0 && drhd_count == 0) {
1913                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1914                 goto out;
1915         } else if (ret) {
1916                 goto release_drhd;
1917         }
1918
1919         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1920                                      &dmar_parse_one_rhsa, NULL);
1921         if (ret)
1922                 goto release_drhd;
1923
1924         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1925                                      &dmar_parse_one_atsr, NULL);
1926         if (ret)
1927                 goto release_atsr;
1928
1929         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1930                                      &dmar_hp_add_drhd, NULL);
1931         if (!ret)
1932                 return 0;
1933
1934         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1935                                &dmar_hp_remove_drhd, NULL);
1936 release_atsr:
1937         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1938                                &dmar_release_one_atsr, NULL);
1939 release_drhd:
1940         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1941                                &dmar_hp_release_drhd, NULL);
1942 out:
1943         return ret;
1944 }
1945
1946 static int dmar_hotplug_remove(acpi_handle handle)
1947 {
1948         int ret;
1949
1950         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1951                                      &dmar_check_one_atsr, NULL);
1952         if (ret)
1953                 return ret;
1954
1955         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1956                                      &dmar_hp_remove_drhd, NULL);
1957         if (ret == 0) {
1958                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1959                                                &dmar_release_one_atsr, NULL));
1960                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1961                                                &dmar_hp_release_drhd, NULL));
1962         } else {
1963                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1964                                        &dmar_hp_add_drhd, NULL);
1965         }
1966
1967         return ret;
1968 }
1969
1970 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1971                                        void *context, void **retval)
1972 {
1973         acpi_handle *phdl = retval;
1974
1975         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1976                 *phdl = handle;
1977                 return AE_CTRL_TERMINATE;
1978         }
1979
1980         return AE_OK;
1981 }
1982
1983 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1984 {
1985         int ret;
1986         acpi_handle tmp = NULL;
1987         acpi_status status;
1988
1989         if (!dmar_in_use())
1990                 return 0;
1991
1992         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1993                 tmp = handle;
1994         } else {
1995                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1996                                              ACPI_UINT32_MAX,
1997                                              dmar_get_dsm_handle,
1998                                              NULL, NULL, &tmp);
1999                 if (ACPI_FAILURE(status)) {
2000                         pr_warn("Failed to locate _DSM method.\n");
2001                         return -ENXIO;
2002                 }
2003         }
2004         if (tmp == NULL)
2005                 return 0;
2006
2007         down_write(&dmar_global_lock);
2008         if (insert)
2009                 ret = dmar_hotplug_insert(tmp);
2010         else
2011                 ret = dmar_hotplug_remove(tmp);
2012         up_write(&dmar_global_lock);
2013
2014         return ret;
2015 }
2016
2017 int dmar_device_add(acpi_handle handle)
2018 {
2019         return dmar_device_hotplug(handle, true);
2020 }
2021
2022 int dmar_device_remove(acpi_handle handle)
2023 {
2024         return dmar_device_hotplug(handle, false);
2025 }