Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE               VTD_PAGE_SIZE
50 #define CONTEXT_SIZE            VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START      (0xfee00000)
57 #define IOAPIC_RANGE_END        (0xfeefffff)
58 #define IOVA_START_ADDR         (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
71                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE            (9)
80 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83  * This bitmap is used to advertise the page sizes our hardware support
84  * to the IOMMU core, which will then use this information to split
85  * physically contiguous memory regions it is mapping into page sizes
86  * that we support.
87  *
88  * Traditionally the IOMMU core just handed us the mappings directly,
89  * after making sure the size is an order of a 4KiB page and that the
90  * mapping has natural alignment.
91  *
92  * To retain this behavior, we currently advertise that we support
93  * all page sizes that are an order of 4KiB.
94  *
95  * If at some point we'd like to utilize the IOMMU core's new behavior,
96  * we could change this to advertise the real page sizes we support.
97  */
98 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102         return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117         return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127         return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132         return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137         return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146    are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158         return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162         return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172  * set to 1 to panic kernel if can't successfully enable VT-d
173  * (used when kernel is launched w/ TXT)
174  */
175 static int force_on = 0;
176
177 /*
178  * 0: Present
179  * 1-11: Reserved
180  * 12-63: Context Ptr (12 - (haw-1))
181  * 64-127: Reserved
182  */
183 struct root_entry {
184         u64     val;
185         u64     rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190         return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194         root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198         root->val &= ~VTD_PAGE_MASK;
199         root->val |= value & VTD_PAGE_MASK;
200 }
201
202 static inline struct context_entry *
203 get_context_addr_from_root(struct root_entry *root)
204 {
205         return (struct context_entry *)
206                 (root_present(root)?phys_to_virt(
207                 root->val & VTD_PAGE_MASK) :
208                 NULL);
209 }
210
211 /*
212  * low 64 bits:
213  * 0: present
214  * 1: fault processing disable
215  * 2-3: translation type
216  * 12-63: address space root
217  * high 64 bits:
218  * 0-2: address width
219  * 3-6: aval
220  * 8-23: domain id
221  */
222 struct context_entry {
223         u64 lo;
224         u64 hi;
225 };
226
227 static inline bool context_present(struct context_entry *context)
228 {
229         return (context->lo & 1);
230 }
231 static inline void context_set_present(struct context_entry *context)
232 {
233         context->lo |= 1;
234 }
235
236 static inline void context_set_fault_enable(struct context_entry *context)
237 {
238         context->lo &= (((u64)-1) << 2) | 1;
239 }
240
241 static inline void context_set_translation_type(struct context_entry *context,
242                                                 unsigned long value)
243 {
244         context->lo &= (((u64)-1) << 4) | 3;
245         context->lo |= (value & 3) << 2;
246 }
247
248 static inline void context_set_address_root(struct context_entry *context,
249                                             unsigned long value)
250 {
251         context->lo &= ~VTD_PAGE_MASK;
252         context->lo |= value & VTD_PAGE_MASK;
253 }
254
255 static inline void context_set_address_width(struct context_entry *context,
256                                              unsigned long value)
257 {
258         context->hi |= value & 7;
259 }
260
261 static inline void context_set_domain_id(struct context_entry *context,
262                                          unsigned long value)
263 {
264         context->hi |= (value & ((1 << 16) - 1)) << 8;
265 }
266
267 static inline void context_clear_entry(struct context_entry *context)
268 {
269         context->lo = 0;
270         context->hi = 0;
271 }
272
273 /*
274  * 0: readable
275  * 1: writable
276  * 2-6: reserved
277  * 7: super page
278  * 8-10: available
279  * 11: snoop behavior
280  * 12-63: Host physcial address
281  */
282 struct dma_pte {
283         u64 val;
284 };
285
286 static inline void dma_clear_pte(struct dma_pte *pte)
287 {
288         pte->val = 0;
289 }
290
291 static inline u64 dma_pte_addr(struct dma_pte *pte)
292 {
293 #ifdef CONFIG_64BIT
294         return pte->val & VTD_PAGE_MASK;
295 #else
296         /* Must have a full atomic 64-bit read */
297         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
298 #endif
299 }
300
301 static inline bool dma_pte_present(struct dma_pte *pte)
302 {
303         return (pte->val & 3) != 0;
304 }
305
306 static inline bool dma_pte_superpage(struct dma_pte *pte)
307 {
308         return (pte->val & DMA_PTE_LARGE_PAGE);
309 }
310
311 static inline int first_pte_in_page(struct dma_pte *pte)
312 {
313         return !((unsigned long)pte & ~VTD_PAGE_MASK);
314 }
315
316 /*
317  * This domain is a statically identity mapping domain.
318  *      1. This domain creats a static 1:1 mapping to all usable memory.
319  *      2. It maps to each iommu if successful.
320  *      3. Each iommu mapps to this domain if successful.
321  */
322 static struct dmar_domain *si_domain;
323 static int hw_pass_through = 1;
324
325 /* domain represents a virtual machine, more than one devices
326  * across iommus may be owned in one domain, e.g. kvm guest.
327  */
328 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
329
330 /* si_domain contains mulitple devices */
331 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
332
333 struct dmar_domain {
334         int     id;                     /* domain id */
335         int     nid;                    /* node id */
336         DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
337                                         /* bitmap of iommus this domain uses*/
338
339         struct list_head devices;       /* all devices' list */
340         struct iova_domain iovad;       /* iova's that belong to this domain */
341
342         struct dma_pte  *pgd;           /* virtual address */
343         int             gaw;            /* max guest address width */
344
345         /* adjusted guest address width, 0 is level 2 30-bit */
346         int             agaw;
347
348         int             flags;          /* flags to find out type of domain */
349
350         int             iommu_coherency;/* indicate coherency of iommu access */
351         int             iommu_snooping; /* indicate snooping control feature*/
352         int             iommu_count;    /* reference count of iommu */
353         int             iommu_superpage;/* Level of superpages supported:
354                                            0 == 4KiB (no superpages), 1 == 2MiB,
355                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
356         spinlock_t      iommu_lock;     /* protect iommu set in domain */
357         u64             max_addr;       /* maximum mapped address */
358 };
359
360 /* PCI domain-device relationship */
361 struct device_domain_info {
362         struct list_head link;  /* link to domain siblings */
363         struct list_head global; /* link to global list */
364         u8 bus;                 /* PCI bus number */
365         u8 devfn;               /* PCI devfn number */
366         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
367         struct intel_iommu *iommu; /* IOMMU used by this device */
368         struct dmar_domain *domain; /* pointer to domain */
369 };
370
371 struct dmar_rmrr_unit {
372         struct list_head list;          /* list of rmrr units   */
373         struct acpi_dmar_header *hdr;   /* ACPI header          */
374         u64     base_address;           /* reserved base address*/
375         u64     end_address;            /* reserved end address */
376         struct dmar_dev_scope *devices; /* target devices */
377         int     devices_cnt;            /* target device count */
378 };
379
380 struct dmar_atsr_unit {
381         struct list_head list;          /* list of ATSR units */
382         struct acpi_dmar_header *hdr;   /* ACPI header */
383         struct dmar_dev_scope *devices; /* target devices */
384         int devices_cnt;                /* target device count */
385         u8 include_all:1;               /* include all ports */
386 };
387
388 static LIST_HEAD(dmar_atsr_units);
389 static LIST_HEAD(dmar_rmrr_units);
390
391 #define for_each_rmrr_units(rmrr) \
392         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
393
394 static void flush_unmaps_timeout(unsigned long data);
395
396 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
397
398 #define HIGH_WATER_MARK 250
399 struct deferred_flush_tables {
400         int next;
401         struct iova *iova[HIGH_WATER_MARK];
402         struct dmar_domain *domain[HIGH_WATER_MARK];
403         struct page *freelist[HIGH_WATER_MARK];
404 };
405
406 static struct deferred_flush_tables *deferred_flush;
407
408 /* bitmap for indexing intel_iommus */
409 static int g_num_of_iommus;
410
411 static DEFINE_SPINLOCK(async_umap_flush_lock);
412 static LIST_HEAD(unmaps_to_do);
413
414 static int timer_on;
415 static long list_size;
416
417 static void domain_exit(struct dmar_domain *domain);
418 static void domain_remove_dev_info(struct dmar_domain *domain);
419 static void domain_remove_one_dev_info(struct dmar_domain *domain,
420                                        struct device *dev);
421 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
422                                            struct device *dev);
423 static int domain_detach_iommu(struct dmar_domain *domain,
424                                struct intel_iommu *iommu);
425
426 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
427 int dmar_disabled = 0;
428 #else
429 int dmar_disabled = 1;
430 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
431
432 int intel_iommu_enabled = 0;
433 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
434
435 static int dmar_map_gfx = 1;
436 static int dmar_forcedac;
437 static int intel_iommu_strict;
438 static int intel_iommu_superpage = 1;
439
440 int intel_iommu_gfx_mapped;
441 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
442
443 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
444 static DEFINE_SPINLOCK(device_domain_lock);
445 static LIST_HEAD(device_domain_list);
446
447 static const struct iommu_ops intel_iommu_ops;
448
449 static int __init intel_iommu_setup(char *str)
450 {
451         if (!str)
452                 return -EINVAL;
453         while (*str) {
454                 if (!strncmp(str, "on", 2)) {
455                         dmar_disabled = 0;
456                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
457                 } else if (!strncmp(str, "off", 3)) {
458                         dmar_disabled = 1;
459                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
460                 } else if (!strncmp(str, "igfx_off", 8)) {
461                         dmar_map_gfx = 0;
462                         printk(KERN_INFO
463                                 "Intel-IOMMU: disable GFX device mapping\n");
464                 } else if (!strncmp(str, "forcedac", 8)) {
465                         printk(KERN_INFO
466                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
467                         dmar_forcedac = 1;
468                 } else if (!strncmp(str, "strict", 6)) {
469                         printk(KERN_INFO
470                                 "Intel-IOMMU: disable batched IOTLB flush\n");
471                         intel_iommu_strict = 1;
472                 } else if (!strncmp(str, "sp_off", 6)) {
473                         printk(KERN_INFO
474                                 "Intel-IOMMU: disable supported super page\n");
475                         intel_iommu_superpage = 0;
476                 }
477
478                 str += strcspn(str, ",");
479                 while (*str == ',')
480                         str++;
481         }
482         return 0;
483 }
484 __setup("intel_iommu=", intel_iommu_setup);
485
486 static struct kmem_cache *iommu_domain_cache;
487 static struct kmem_cache *iommu_devinfo_cache;
488 static struct kmem_cache *iommu_iova_cache;
489
490 static inline void *alloc_pgtable_page(int node)
491 {
492         struct page *page;
493         void *vaddr = NULL;
494
495         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
496         if (page)
497                 vaddr = page_address(page);
498         return vaddr;
499 }
500
501 static inline void free_pgtable_page(void *vaddr)
502 {
503         free_page((unsigned long)vaddr);
504 }
505
506 static inline void *alloc_domain_mem(void)
507 {
508         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
509 }
510
511 static void free_domain_mem(void *vaddr)
512 {
513         kmem_cache_free(iommu_domain_cache, vaddr);
514 }
515
516 static inline void * alloc_devinfo_mem(void)
517 {
518         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
519 }
520
521 static inline void free_devinfo_mem(void *vaddr)
522 {
523         kmem_cache_free(iommu_devinfo_cache, vaddr);
524 }
525
526 struct iova *alloc_iova_mem(void)
527 {
528         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
529 }
530
531 void free_iova_mem(struct iova *iova)
532 {
533         kmem_cache_free(iommu_iova_cache, iova);
534 }
535
536 static inline int domain_type_is_vm(struct dmar_domain *domain)
537 {
538         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
539 }
540
541 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
542 {
543         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
544                                 DOMAIN_FLAG_STATIC_IDENTITY);
545 }
546
547 static inline int domain_pfn_supported(struct dmar_domain *domain,
548                                        unsigned long pfn)
549 {
550         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
551
552         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
553 }
554
555 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
556 {
557         unsigned long sagaw;
558         int agaw = -1;
559
560         sagaw = cap_sagaw(iommu->cap);
561         for (agaw = width_to_agaw(max_gaw);
562              agaw >= 0; agaw--) {
563                 if (test_bit(agaw, &sagaw))
564                         break;
565         }
566
567         return agaw;
568 }
569
570 /*
571  * Calculate max SAGAW for each iommu.
572  */
573 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
574 {
575         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
576 }
577
578 /*
579  * calculate agaw for each iommu.
580  * "SAGAW" may be different across iommus, use a default agaw, and
581  * get a supported less agaw for iommus that don't support the default agaw.
582  */
583 int iommu_calculate_agaw(struct intel_iommu *iommu)
584 {
585         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
586 }
587
588 /* This functionin only returns single iommu in a domain */
589 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
590 {
591         int iommu_id;
592
593         /* si_domain and vm domain should not get here. */
594         BUG_ON(domain_type_is_vm_or_si(domain));
595         iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
596         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
597                 return NULL;
598
599         return g_iommus[iommu_id];
600 }
601
602 static void domain_update_iommu_coherency(struct dmar_domain *domain)
603 {
604         struct dmar_drhd_unit *drhd;
605         struct intel_iommu *iommu;
606         int i, found = 0;
607
608         domain->iommu_coherency = 1;
609
610         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
611                 found = 1;
612                 if (!ecap_coherent(g_iommus[i]->ecap)) {
613                         domain->iommu_coherency = 0;
614                         break;
615                 }
616         }
617         if (found)
618                 return;
619
620         /* No hardware attached; use lowest common denominator */
621         rcu_read_lock();
622         for_each_active_iommu(iommu, drhd) {
623                 if (!ecap_coherent(iommu->ecap)) {
624                         domain->iommu_coherency = 0;
625                         break;
626                 }
627         }
628         rcu_read_unlock();
629 }
630
631 static int domain_update_iommu_snooping(struct intel_iommu *skip)
632 {
633         struct dmar_drhd_unit *drhd;
634         struct intel_iommu *iommu;
635         int ret = 1;
636
637         rcu_read_lock();
638         for_each_active_iommu(iommu, drhd) {
639                 if (iommu != skip) {
640                         if (!ecap_sc_support(iommu->ecap)) {
641                                 ret = 0;
642                                 break;
643                         }
644                 }
645         }
646         rcu_read_unlock();
647
648         return ret;
649 }
650
651 static int domain_update_iommu_superpage(struct intel_iommu *skip)
652 {
653         struct dmar_drhd_unit *drhd;
654         struct intel_iommu *iommu;
655         int mask = 0xf;
656
657         if (!intel_iommu_superpage) {
658                 return 0;
659         }
660
661         /* set iommu_superpage to the smallest common denominator */
662         rcu_read_lock();
663         for_each_active_iommu(iommu, drhd) {
664                 if (iommu != skip) {
665                         mask &= cap_super_page_val(iommu->cap);
666                         if (!mask)
667                                 break;
668                 }
669         }
670         rcu_read_unlock();
671
672         return fls(mask);
673 }
674
675 /* Some capabilities may be different across iommus */
676 static void domain_update_iommu_cap(struct dmar_domain *domain)
677 {
678         domain_update_iommu_coherency(domain);
679         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
680         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
681 }
682
683 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
684 {
685         struct dmar_drhd_unit *drhd = NULL;
686         struct intel_iommu *iommu;
687         struct device *tmp;
688         struct pci_dev *ptmp, *pdev = NULL;
689         u16 segment = 0;
690         int i;
691
692         if (dev_is_pci(dev)) {
693                 pdev = to_pci_dev(dev);
694                 segment = pci_domain_nr(pdev->bus);
695         } else if (ACPI_COMPANION(dev))
696                 dev = &ACPI_COMPANION(dev)->dev;
697
698         rcu_read_lock();
699         for_each_active_iommu(iommu, drhd) {
700                 if (pdev && segment != drhd->segment)
701                         continue;
702
703                 for_each_active_dev_scope(drhd->devices,
704                                           drhd->devices_cnt, i, tmp) {
705                         if (tmp == dev) {
706                                 *bus = drhd->devices[i].bus;
707                                 *devfn = drhd->devices[i].devfn;
708                                 goto out;
709                         }
710
711                         if (!pdev || !dev_is_pci(tmp))
712                                 continue;
713
714                         ptmp = to_pci_dev(tmp);
715                         if (ptmp->subordinate &&
716                             ptmp->subordinate->number <= pdev->bus->number &&
717                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
718                                 goto got_pdev;
719                 }
720
721                 if (pdev && drhd->include_all) {
722                 got_pdev:
723                         *bus = pdev->bus->number;
724                         *devfn = pdev->devfn;
725                         goto out;
726                 }
727         }
728         iommu = NULL;
729  out:
730         rcu_read_unlock();
731
732         return iommu;
733 }
734
735 static void domain_flush_cache(struct dmar_domain *domain,
736                                void *addr, int size)
737 {
738         if (!domain->iommu_coherency)
739                 clflush_cache_range(addr, size);
740 }
741
742 /* Gets context entry for a given bus and devfn */
743 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
744                 u8 bus, u8 devfn)
745 {
746         struct root_entry *root;
747         struct context_entry *context;
748         unsigned long phy_addr;
749         unsigned long flags;
750
751         spin_lock_irqsave(&iommu->lock, flags);
752         root = &iommu->root_entry[bus];
753         context = get_context_addr_from_root(root);
754         if (!context) {
755                 context = (struct context_entry *)
756                                 alloc_pgtable_page(iommu->node);
757                 if (!context) {
758                         spin_unlock_irqrestore(&iommu->lock, flags);
759                         return NULL;
760                 }
761                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
762                 phy_addr = virt_to_phys((void *)context);
763                 set_root_value(root, phy_addr);
764                 set_root_present(root);
765                 __iommu_flush_cache(iommu, root, sizeof(*root));
766         }
767         spin_unlock_irqrestore(&iommu->lock, flags);
768         return &context[devfn];
769 }
770
771 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
772 {
773         struct root_entry *root;
774         struct context_entry *context;
775         int ret;
776         unsigned long flags;
777
778         spin_lock_irqsave(&iommu->lock, flags);
779         root = &iommu->root_entry[bus];
780         context = get_context_addr_from_root(root);
781         if (!context) {
782                 ret = 0;
783                 goto out;
784         }
785         ret = context_present(&context[devfn]);
786 out:
787         spin_unlock_irqrestore(&iommu->lock, flags);
788         return ret;
789 }
790
791 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
792 {
793         struct root_entry *root;
794         struct context_entry *context;
795         unsigned long flags;
796
797         spin_lock_irqsave(&iommu->lock, flags);
798         root = &iommu->root_entry[bus];
799         context = get_context_addr_from_root(root);
800         if (context) {
801                 context_clear_entry(&context[devfn]);
802                 __iommu_flush_cache(iommu, &context[devfn], \
803                         sizeof(*context));
804         }
805         spin_unlock_irqrestore(&iommu->lock, flags);
806 }
807
808 static void free_context_table(struct intel_iommu *iommu)
809 {
810         struct root_entry *root;
811         int i;
812         unsigned long flags;
813         struct context_entry *context;
814
815         spin_lock_irqsave(&iommu->lock, flags);
816         if (!iommu->root_entry) {
817                 goto out;
818         }
819         for (i = 0; i < ROOT_ENTRY_NR; i++) {
820                 root = &iommu->root_entry[i];
821                 context = get_context_addr_from_root(root);
822                 if (context)
823                         free_pgtable_page(context);
824         }
825         free_pgtable_page(iommu->root_entry);
826         iommu->root_entry = NULL;
827 out:
828         spin_unlock_irqrestore(&iommu->lock, flags);
829 }
830
831 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
832                                       unsigned long pfn, int *target_level)
833 {
834         struct dma_pte *parent, *pte = NULL;
835         int level = agaw_to_level(domain->agaw);
836         int offset;
837
838         BUG_ON(!domain->pgd);
839
840         if (!domain_pfn_supported(domain, pfn))
841                 /* Address beyond IOMMU's addressing capabilities. */
842                 return NULL;
843
844         parent = domain->pgd;
845
846         while (1) {
847                 void *tmp_page;
848
849                 offset = pfn_level_offset(pfn, level);
850                 pte = &parent[offset];
851                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
852                         break;
853                 if (level == *target_level)
854                         break;
855
856                 if (!dma_pte_present(pte)) {
857                         uint64_t pteval;
858
859                         tmp_page = alloc_pgtable_page(domain->nid);
860
861                         if (!tmp_page)
862                                 return NULL;
863
864                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
865                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
866                         if (cmpxchg64(&pte->val, 0ULL, pteval))
867                                 /* Someone else set it while we were thinking; use theirs. */
868                                 free_pgtable_page(tmp_page);
869                         else
870                                 domain_flush_cache(domain, pte, sizeof(*pte));
871                 }
872                 if (level == 1)
873                         break;
874
875                 parent = phys_to_virt(dma_pte_addr(pte));
876                 level--;
877         }
878
879         if (!*target_level)
880                 *target_level = level;
881
882         return pte;
883 }
884
885
886 /* return address's pte at specific level */
887 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
888                                          unsigned long pfn,
889                                          int level, int *large_page)
890 {
891         struct dma_pte *parent, *pte = NULL;
892         int total = agaw_to_level(domain->agaw);
893         int offset;
894
895         parent = domain->pgd;
896         while (level <= total) {
897                 offset = pfn_level_offset(pfn, total);
898                 pte = &parent[offset];
899                 if (level == total)
900                         return pte;
901
902                 if (!dma_pte_present(pte)) {
903                         *large_page = total;
904                         break;
905                 }
906
907                 if (dma_pte_superpage(pte)) {
908                         *large_page = total;
909                         return pte;
910                 }
911
912                 parent = phys_to_virt(dma_pte_addr(pte));
913                 total--;
914         }
915         return NULL;
916 }
917
918 /* clear last level pte, a tlb flush should be followed */
919 static void dma_pte_clear_range(struct dmar_domain *domain,
920                                 unsigned long start_pfn,
921                                 unsigned long last_pfn)
922 {
923         unsigned int large_page = 1;
924         struct dma_pte *first_pte, *pte;
925
926         BUG_ON(!domain_pfn_supported(domain, start_pfn));
927         BUG_ON(!domain_pfn_supported(domain, last_pfn));
928         BUG_ON(start_pfn > last_pfn);
929
930         /* we don't need lock here; nobody else touches the iova range */
931         do {
932                 large_page = 1;
933                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
934                 if (!pte) {
935                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
936                         continue;
937                 }
938                 do {
939                         dma_clear_pte(pte);
940                         start_pfn += lvl_to_nr_pages(large_page);
941                         pte++;
942                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
943
944                 domain_flush_cache(domain, first_pte,
945                                    (void *)pte - (void *)first_pte);
946
947         } while (start_pfn && start_pfn <= last_pfn);
948 }
949
950 static void dma_pte_free_level(struct dmar_domain *domain, int level,
951                                struct dma_pte *pte, unsigned long pfn,
952                                unsigned long start_pfn, unsigned long last_pfn)
953 {
954         pfn = max(start_pfn, pfn);
955         pte = &pte[pfn_level_offset(pfn, level)];
956
957         do {
958                 unsigned long level_pfn;
959                 struct dma_pte *level_pte;
960
961                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
962                         goto next;
963
964                 level_pfn = pfn & level_mask(level - 1);
965                 level_pte = phys_to_virt(dma_pte_addr(pte));
966
967                 if (level > 2)
968                         dma_pte_free_level(domain, level - 1, level_pte,
969                                            level_pfn, start_pfn, last_pfn);
970
971                 /* If range covers entire pagetable, free it */
972                 if (!(start_pfn > level_pfn ||
973                       last_pfn < level_pfn + level_size(level) - 1)) {
974                         dma_clear_pte(pte);
975                         domain_flush_cache(domain, pte, sizeof(*pte));
976                         free_pgtable_page(level_pte);
977                 }
978 next:
979                 pfn += level_size(level);
980         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
981 }
982
983 /* free page table pages. last level pte should already be cleared */
984 static void dma_pte_free_pagetable(struct dmar_domain *domain,
985                                    unsigned long start_pfn,
986                                    unsigned long last_pfn)
987 {
988         BUG_ON(!domain_pfn_supported(domain, start_pfn));
989         BUG_ON(!domain_pfn_supported(domain, last_pfn));
990         BUG_ON(start_pfn > last_pfn);
991
992         dma_pte_clear_range(domain, start_pfn, last_pfn);
993
994         /* We don't need lock here; nobody else touches the iova range */
995         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
996                            domain->pgd, 0, start_pfn, last_pfn);
997
998         /* free pgd */
999         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1000                 free_pgtable_page(domain->pgd);
1001                 domain->pgd = NULL;
1002         }
1003 }
1004
1005 /* When a page at a given level is being unlinked from its parent, we don't
1006    need to *modify* it at all. All we need to do is make a list of all the
1007    pages which can be freed just as soon as we've flushed the IOTLB and we
1008    know the hardware page-walk will no longer touch them.
1009    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1010    be freed. */
1011 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1012                                             int level, struct dma_pte *pte,
1013                                             struct page *freelist)
1014 {
1015         struct page *pg;
1016
1017         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1018         pg->freelist = freelist;
1019         freelist = pg;
1020
1021         if (level == 1)
1022                 return freelist;
1023
1024         pte = page_address(pg);
1025         do {
1026                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1027                         freelist = dma_pte_list_pagetables(domain, level - 1,
1028                                                            pte, freelist);
1029                 pte++;
1030         } while (!first_pte_in_page(pte));
1031
1032         return freelist;
1033 }
1034
1035 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1036                                         struct dma_pte *pte, unsigned long pfn,
1037                                         unsigned long start_pfn,
1038                                         unsigned long last_pfn,
1039                                         struct page *freelist)
1040 {
1041         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1042
1043         pfn = max(start_pfn, pfn);
1044         pte = &pte[pfn_level_offset(pfn, level)];
1045
1046         do {
1047                 unsigned long level_pfn;
1048
1049                 if (!dma_pte_present(pte))
1050                         goto next;
1051
1052                 level_pfn = pfn & level_mask(level);
1053
1054                 /* If range covers entire pagetable, free it */
1055                 if (start_pfn <= level_pfn &&
1056                     last_pfn >= level_pfn + level_size(level) - 1) {
1057                         /* These suborbinate page tables are going away entirely. Don't
1058                            bother to clear them; we're just going to *free* them. */
1059                         if (level > 1 && !dma_pte_superpage(pte))
1060                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1061
1062                         dma_clear_pte(pte);
1063                         if (!first_pte)
1064                                 first_pte = pte;
1065                         last_pte = pte;
1066                 } else if (level > 1) {
1067                         /* Recurse down into a level that isn't *entirely* obsolete */
1068                         freelist = dma_pte_clear_level(domain, level - 1,
1069                                                        phys_to_virt(dma_pte_addr(pte)),
1070                                                        level_pfn, start_pfn, last_pfn,
1071                                                        freelist);
1072                 }
1073 next:
1074                 pfn += level_size(level);
1075         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1076
1077         if (first_pte)
1078                 domain_flush_cache(domain, first_pte,
1079                                    (void *)++last_pte - (void *)first_pte);
1080
1081         return freelist;
1082 }
1083
1084 /* We can't just free the pages because the IOMMU may still be walking
1085    the page tables, and may have cached the intermediate levels. The
1086    pages can only be freed after the IOTLB flush has been done. */
1087 struct page *domain_unmap(struct dmar_domain *domain,
1088                           unsigned long start_pfn,
1089                           unsigned long last_pfn)
1090 {
1091         struct page *freelist = NULL;
1092
1093         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1094         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1095         BUG_ON(start_pfn > last_pfn);
1096
1097         /* we don't need lock here; nobody else touches the iova range */
1098         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1099                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1100
1101         /* free pgd */
1102         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1103                 struct page *pgd_page = virt_to_page(domain->pgd);
1104                 pgd_page->freelist = freelist;
1105                 freelist = pgd_page;
1106
1107                 domain->pgd = NULL;
1108         }
1109
1110         return freelist;
1111 }
1112
1113 void dma_free_pagelist(struct page *freelist)
1114 {
1115         struct page *pg;
1116
1117         while ((pg = freelist)) {
1118                 freelist = pg->freelist;
1119                 free_pgtable_page(page_address(pg));
1120         }
1121 }
1122
1123 /* iommu handling */
1124 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1125 {
1126         struct root_entry *root;
1127         unsigned long flags;
1128
1129         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1130         if (!root) {
1131                 pr_err("IOMMU: allocating root entry for %s failed\n",
1132                         iommu->name);
1133                 return -ENOMEM;
1134         }
1135
1136         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1137
1138         spin_lock_irqsave(&iommu->lock, flags);
1139         iommu->root_entry = root;
1140         spin_unlock_irqrestore(&iommu->lock, flags);
1141
1142         return 0;
1143 }
1144
1145 static void iommu_set_root_entry(struct intel_iommu *iommu)
1146 {
1147         void *addr;
1148         u32 sts;
1149         unsigned long flag;
1150
1151         addr = iommu->root_entry;
1152
1153         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1154         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1155
1156         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1157
1158         /* Make sure hardware complete it */
1159         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1160                       readl, (sts & DMA_GSTS_RTPS), sts);
1161
1162         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1163 }
1164
1165 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1166 {
1167         u32 val;
1168         unsigned long flag;
1169
1170         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1171                 return;
1172
1173         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1174         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1175
1176         /* Make sure hardware complete it */
1177         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1178                       readl, (!(val & DMA_GSTS_WBFS)), val);
1179
1180         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1181 }
1182
1183 /* return value determine if we need a write buffer flush */
1184 static void __iommu_flush_context(struct intel_iommu *iommu,
1185                                   u16 did, u16 source_id, u8 function_mask,
1186                                   u64 type)
1187 {
1188         u64 val = 0;
1189         unsigned long flag;
1190
1191         switch (type) {
1192         case DMA_CCMD_GLOBAL_INVL:
1193                 val = DMA_CCMD_GLOBAL_INVL;
1194                 break;
1195         case DMA_CCMD_DOMAIN_INVL:
1196                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1197                 break;
1198         case DMA_CCMD_DEVICE_INVL:
1199                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1200                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1201                 break;
1202         default:
1203                 BUG();
1204         }
1205         val |= DMA_CCMD_ICC;
1206
1207         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1208         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1209
1210         /* Make sure hardware complete it */
1211         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1212                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1213
1214         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1215 }
1216
1217 /* return value determine if we need a write buffer flush */
1218 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1219                                 u64 addr, unsigned int size_order, u64 type)
1220 {
1221         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1222         u64 val = 0, val_iva = 0;
1223         unsigned long flag;
1224
1225         switch (type) {
1226         case DMA_TLB_GLOBAL_FLUSH:
1227                 /* global flush doesn't need set IVA_REG */
1228                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1229                 break;
1230         case DMA_TLB_DSI_FLUSH:
1231                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1232                 break;
1233         case DMA_TLB_PSI_FLUSH:
1234                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1235                 /* IH bit is passed in as part of address */
1236                 val_iva = size_order | addr;
1237                 break;
1238         default:
1239                 BUG();
1240         }
1241         /* Note: set drain read/write */
1242 #if 0
1243         /*
1244          * This is probably to be super secure.. Looks like we can
1245          * ignore it without any impact.
1246          */
1247         if (cap_read_drain(iommu->cap))
1248                 val |= DMA_TLB_READ_DRAIN;
1249 #endif
1250         if (cap_write_drain(iommu->cap))
1251                 val |= DMA_TLB_WRITE_DRAIN;
1252
1253         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254         /* Note: Only uses first TLB reg currently */
1255         if (val_iva)
1256                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1257         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1258
1259         /* Make sure hardware complete it */
1260         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1261                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1262
1263         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1264
1265         /* check IOTLB invalidation granularity */
1266         if (DMA_TLB_IAIG(val) == 0)
1267                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1268         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1269                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1270                         (unsigned long long)DMA_TLB_IIRG(type),
1271                         (unsigned long long)DMA_TLB_IAIG(val));
1272 }
1273
1274 static struct device_domain_info *
1275 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1276                          u8 bus, u8 devfn)
1277 {
1278         int found = 0;
1279         unsigned long flags;
1280         struct device_domain_info *info;
1281         struct pci_dev *pdev;
1282
1283         if (!ecap_dev_iotlb_support(iommu->ecap))
1284                 return NULL;
1285
1286         if (!iommu->qi)
1287                 return NULL;
1288
1289         spin_lock_irqsave(&device_domain_lock, flags);
1290         list_for_each_entry(info, &domain->devices, link)
1291                 if (info->iommu == iommu && info->bus == bus &&
1292                     info->devfn == devfn) {
1293                         found = 1;
1294                         break;
1295                 }
1296         spin_unlock_irqrestore(&device_domain_lock, flags);
1297
1298         if (!found || !info->dev || !dev_is_pci(info->dev))
1299                 return NULL;
1300
1301         pdev = to_pci_dev(info->dev);
1302
1303         if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1304                 return NULL;
1305
1306         if (!dmar_find_matched_atsr_unit(pdev))
1307                 return NULL;
1308
1309         return info;
1310 }
1311
1312 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1313 {
1314         if (!info || !dev_is_pci(info->dev))
1315                 return;
1316
1317         pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1318 }
1319
1320 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1321 {
1322         if (!info->dev || !dev_is_pci(info->dev) ||
1323             !pci_ats_enabled(to_pci_dev(info->dev)))
1324                 return;
1325
1326         pci_disable_ats(to_pci_dev(info->dev));
1327 }
1328
1329 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1330                                   u64 addr, unsigned mask)
1331 {
1332         u16 sid, qdep;
1333         unsigned long flags;
1334         struct device_domain_info *info;
1335
1336         spin_lock_irqsave(&device_domain_lock, flags);
1337         list_for_each_entry(info, &domain->devices, link) {
1338                 struct pci_dev *pdev;
1339                 if (!info->dev || !dev_is_pci(info->dev))
1340                         continue;
1341
1342                 pdev = to_pci_dev(info->dev);
1343                 if (!pci_ats_enabled(pdev))
1344                         continue;
1345
1346                 sid = info->bus << 8 | info->devfn;
1347                 qdep = pci_ats_queue_depth(pdev);
1348                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1349         }
1350         spin_unlock_irqrestore(&device_domain_lock, flags);
1351 }
1352
1353 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1354                                   unsigned long pfn, unsigned int pages, int ih, int map)
1355 {
1356         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1357         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1358
1359         BUG_ON(pages == 0);
1360
1361         if (ih)
1362                 ih = 1 << 6;
1363         /*
1364          * Fallback to domain selective flush if no PSI support or the size is
1365          * too big.
1366          * PSI requires page size to be 2 ^ x, and the base address is naturally
1367          * aligned to the size
1368          */
1369         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1370                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1371                                                 DMA_TLB_DSI_FLUSH);
1372         else
1373                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1374                                                 DMA_TLB_PSI_FLUSH);
1375
1376         /*
1377          * In caching mode, changes of pages from non-present to present require
1378          * flush. However, device IOTLB doesn't need to be flushed in this case.
1379          */
1380         if (!cap_caching_mode(iommu->cap) || !map)
1381                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1382 }
1383
1384 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1385 {
1386         u32 pmen;
1387         unsigned long flags;
1388
1389         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1390         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1391         pmen &= ~DMA_PMEN_EPM;
1392         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1393
1394         /* wait for the protected region status bit to clear */
1395         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1396                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1397
1398         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1399 }
1400
1401 static void iommu_enable_translation(struct intel_iommu *iommu)
1402 {
1403         u32 sts;
1404         unsigned long flags;
1405
1406         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1407         iommu->gcmd |= DMA_GCMD_TE;
1408         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1409
1410         /* Make sure hardware complete it */
1411         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1412                       readl, (sts & DMA_GSTS_TES), sts);
1413
1414         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1415 }
1416
1417 static void iommu_disable_translation(struct intel_iommu *iommu)
1418 {
1419         u32 sts;
1420         unsigned long flag;
1421
1422         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1423         iommu->gcmd &= ~DMA_GCMD_TE;
1424         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1425
1426         /* Make sure hardware complete it */
1427         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1428                       readl, (!(sts & DMA_GSTS_TES)), sts);
1429
1430         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1431 }
1432
1433
1434 static int iommu_init_domains(struct intel_iommu *iommu)
1435 {
1436         unsigned long ndomains;
1437         unsigned long nlongs;
1438
1439         ndomains = cap_ndoms(iommu->cap);
1440         pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1441                  iommu->seq_id, ndomains);
1442         nlongs = BITS_TO_LONGS(ndomains);
1443
1444         spin_lock_init(&iommu->lock);
1445
1446         /* TBD: there might be 64K domains,
1447          * consider other allocation for future chip
1448          */
1449         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1450         if (!iommu->domain_ids) {
1451                 pr_err("IOMMU%d: allocating domain id array failed\n",
1452                        iommu->seq_id);
1453                 return -ENOMEM;
1454         }
1455         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1456                         GFP_KERNEL);
1457         if (!iommu->domains) {
1458                 pr_err("IOMMU%d: allocating domain array failed\n",
1459                        iommu->seq_id);
1460                 kfree(iommu->domain_ids);
1461                 iommu->domain_ids = NULL;
1462                 return -ENOMEM;
1463         }
1464
1465         /*
1466          * if Caching mode is set, then invalid translations are tagged
1467          * with domainid 0. Hence we need to pre-allocate it.
1468          */
1469         if (cap_caching_mode(iommu->cap))
1470                 set_bit(0, iommu->domain_ids);
1471         return 0;
1472 }
1473
1474 static void disable_dmar_iommu(struct intel_iommu *iommu)
1475 {
1476         struct dmar_domain *domain;
1477         int i;
1478
1479         if ((iommu->domains) && (iommu->domain_ids)) {
1480                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1481                         /*
1482                          * Domain id 0 is reserved for invalid translation
1483                          * if hardware supports caching mode.
1484                          */
1485                         if (cap_caching_mode(iommu->cap) && i == 0)
1486                                 continue;
1487
1488                         domain = iommu->domains[i];
1489                         clear_bit(i, iommu->domain_ids);
1490                         if (domain_detach_iommu(domain, iommu) == 0 &&
1491                             !domain_type_is_vm(domain))
1492                                 domain_exit(domain);
1493                 }
1494         }
1495
1496         if (iommu->gcmd & DMA_GCMD_TE)
1497                 iommu_disable_translation(iommu);
1498 }
1499
1500 static void free_dmar_iommu(struct intel_iommu *iommu)
1501 {
1502         if ((iommu->domains) && (iommu->domain_ids)) {
1503                 kfree(iommu->domains);
1504                 kfree(iommu->domain_ids);
1505                 iommu->domains = NULL;
1506                 iommu->domain_ids = NULL;
1507         }
1508
1509         g_iommus[iommu->seq_id] = NULL;
1510
1511         /* free context mapping */
1512         free_context_table(iommu);
1513 }
1514
1515 static struct dmar_domain *alloc_domain(int flags)
1516 {
1517         /* domain id for virtual machine, it won't be set in context */
1518         static atomic_t vm_domid = ATOMIC_INIT(0);
1519         struct dmar_domain *domain;
1520
1521         domain = alloc_domain_mem();
1522         if (!domain)
1523                 return NULL;
1524
1525         memset(domain, 0, sizeof(*domain));
1526         domain->nid = -1;
1527         domain->flags = flags;
1528         spin_lock_init(&domain->iommu_lock);
1529         INIT_LIST_HEAD(&domain->devices);
1530         if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1531                 domain->id = atomic_inc_return(&vm_domid);
1532
1533         return domain;
1534 }
1535
1536 static int __iommu_attach_domain(struct dmar_domain *domain,
1537                                  struct intel_iommu *iommu)
1538 {
1539         int num;
1540         unsigned long ndomains;
1541
1542         ndomains = cap_ndoms(iommu->cap);
1543         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1544         if (num < ndomains) {
1545                 set_bit(num, iommu->domain_ids);
1546                 iommu->domains[num] = domain;
1547         } else {
1548                 num = -ENOSPC;
1549         }
1550
1551         return num;
1552 }
1553
1554 static int iommu_attach_domain(struct dmar_domain *domain,
1555                                struct intel_iommu *iommu)
1556 {
1557         int num;
1558         unsigned long flags;
1559
1560         spin_lock_irqsave(&iommu->lock, flags);
1561         num = __iommu_attach_domain(domain, iommu);
1562         spin_unlock_irqrestore(&iommu->lock, flags);
1563         if (num < 0)
1564                 pr_err("IOMMU: no free domain ids\n");
1565
1566         return num;
1567 }
1568
1569 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1570                                   struct intel_iommu *iommu)
1571 {
1572         int num;
1573         unsigned long ndomains;
1574
1575         ndomains = cap_ndoms(iommu->cap);
1576         for_each_set_bit(num, iommu->domain_ids, ndomains)
1577                 if (iommu->domains[num] == domain)
1578                         return num;
1579
1580         return __iommu_attach_domain(domain, iommu);
1581 }
1582
1583 static void iommu_detach_domain(struct dmar_domain *domain,
1584                                 struct intel_iommu *iommu)
1585 {
1586         unsigned long flags;
1587         int num, ndomains;
1588
1589         spin_lock_irqsave(&iommu->lock, flags);
1590         if (domain_type_is_vm_or_si(domain)) {
1591                 ndomains = cap_ndoms(iommu->cap);
1592                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1593                         if (iommu->domains[num] == domain) {
1594                                 clear_bit(num, iommu->domain_ids);
1595                                 iommu->domains[num] = NULL;
1596                                 break;
1597                         }
1598                 }
1599         } else {
1600                 clear_bit(domain->id, iommu->domain_ids);
1601                 iommu->domains[domain->id] = NULL;
1602         }
1603         spin_unlock_irqrestore(&iommu->lock, flags);
1604 }
1605
1606 static void domain_attach_iommu(struct dmar_domain *domain,
1607                                struct intel_iommu *iommu)
1608 {
1609         unsigned long flags;
1610
1611         spin_lock_irqsave(&domain->iommu_lock, flags);
1612         if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1613                 domain->iommu_count++;
1614                 if (domain->iommu_count == 1)
1615                         domain->nid = iommu->node;
1616                 domain_update_iommu_cap(domain);
1617         }
1618         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1619 }
1620
1621 static int domain_detach_iommu(struct dmar_domain *domain,
1622                                struct intel_iommu *iommu)
1623 {
1624         unsigned long flags;
1625         int count = INT_MAX;
1626
1627         spin_lock_irqsave(&domain->iommu_lock, flags);
1628         if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1629                 count = --domain->iommu_count;
1630                 domain_update_iommu_cap(domain);
1631         }
1632         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1633
1634         return count;
1635 }
1636
1637 static struct iova_domain reserved_iova_list;
1638 static struct lock_class_key reserved_rbtree_key;
1639
1640 static int dmar_init_reserved_ranges(void)
1641 {
1642         struct pci_dev *pdev = NULL;
1643         struct iova *iova;
1644         int i;
1645
1646         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1647
1648         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1649                 &reserved_rbtree_key);
1650
1651         /* IOAPIC ranges shouldn't be accessed by DMA */
1652         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1653                 IOVA_PFN(IOAPIC_RANGE_END));
1654         if (!iova) {
1655                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1656                 return -ENODEV;
1657         }
1658
1659         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1660         for_each_pci_dev(pdev) {
1661                 struct resource *r;
1662
1663                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1664                         r = &pdev->resource[i];
1665                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1666                                 continue;
1667                         iova = reserve_iova(&reserved_iova_list,
1668                                             IOVA_PFN(r->start),
1669                                             IOVA_PFN(r->end));
1670                         if (!iova) {
1671                                 printk(KERN_ERR "Reserve iova failed\n");
1672                                 return -ENODEV;
1673                         }
1674                 }
1675         }
1676         return 0;
1677 }
1678
1679 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1680 {
1681         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1682 }
1683
1684 static inline int guestwidth_to_adjustwidth(int gaw)
1685 {
1686         int agaw;
1687         int r = (gaw - 12) % 9;
1688
1689         if (r == 0)
1690                 agaw = gaw;
1691         else
1692                 agaw = gaw + 9 - r;
1693         if (agaw > 64)
1694                 agaw = 64;
1695         return agaw;
1696 }
1697
1698 static int domain_init(struct dmar_domain *domain, int guest_width)
1699 {
1700         struct intel_iommu *iommu;
1701         int adjust_width, agaw;
1702         unsigned long sagaw;
1703
1704         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1705         domain_reserve_special_ranges(domain);
1706
1707         /* calculate AGAW */
1708         iommu = domain_get_iommu(domain);
1709         if (guest_width > cap_mgaw(iommu->cap))
1710                 guest_width = cap_mgaw(iommu->cap);
1711         domain->gaw = guest_width;
1712         adjust_width = guestwidth_to_adjustwidth(guest_width);
1713         agaw = width_to_agaw(adjust_width);
1714         sagaw = cap_sagaw(iommu->cap);
1715         if (!test_bit(agaw, &sagaw)) {
1716                 /* hardware doesn't support it, choose a bigger one */
1717                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1718                 agaw = find_next_bit(&sagaw, 5, agaw);
1719                 if (agaw >= 5)
1720                         return -ENODEV;
1721         }
1722         domain->agaw = agaw;
1723
1724         if (ecap_coherent(iommu->ecap))
1725                 domain->iommu_coherency = 1;
1726         else
1727                 domain->iommu_coherency = 0;
1728
1729         if (ecap_sc_support(iommu->ecap))
1730                 domain->iommu_snooping = 1;
1731         else
1732                 domain->iommu_snooping = 0;
1733
1734         if (intel_iommu_superpage)
1735                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1736         else
1737                 domain->iommu_superpage = 0;
1738
1739         domain->nid = iommu->node;
1740
1741         /* always allocate the top pgd */
1742         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1743         if (!domain->pgd)
1744                 return -ENOMEM;
1745         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1746         return 0;
1747 }
1748
1749 static void domain_exit(struct dmar_domain *domain)
1750 {
1751         struct dmar_drhd_unit *drhd;
1752         struct intel_iommu *iommu;
1753         struct page *freelist = NULL;
1754
1755         /* Domain 0 is reserved, so dont process it */
1756         if (!domain)
1757                 return;
1758
1759         /* Flush any lazy unmaps that may reference this domain */
1760         if (!intel_iommu_strict)
1761                 flush_unmaps_timeout(0);
1762
1763         /* remove associated devices */
1764         domain_remove_dev_info(domain);
1765
1766         /* destroy iovas */
1767         put_iova_domain(&domain->iovad);
1768
1769         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1770
1771         /* clear attached or cached domains */
1772         rcu_read_lock();
1773         for_each_active_iommu(iommu, drhd)
1774                 iommu_detach_domain(domain, iommu);
1775         rcu_read_unlock();
1776
1777         dma_free_pagelist(freelist);
1778
1779         free_domain_mem(domain);
1780 }
1781
1782 static int domain_context_mapping_one(struct dmar_domain *domain,
1783                                       struct intel_iommu *iommu,
1784                                       u8 bus, u8 devfn, int translation)
1785 {
1786         struct context_entry *context;
1787         unsigned long flags;
1788         struct dma_pte *pgd;
1789         int id;
1790         int agaw;
1791         struct device_domain_info *info = NULL;
1792
1793         pr_debug("Set context mapping for %02x:%02x.%d\n",
1794                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1795
1796         BUG_ON(!domain->pgd);
1797         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1798                translation != CONTEXT_TT_MULTI_LEVEL);
1799
1800         context = device_to_context_entry(iommu, bus, devfn);
1801         if (!context)
1802                 return -ENOMEM;
1803         spin_lock_irqsave(&iommu->lock, flags);
1804         if (context_present(context)) {
1805                 spin_unlock_irqrestore(&iommu->lock, flags);
1806                 return 0;
1807         }
1808
1809         id = domain->id;
1810         pgd = domain->pgd;
1811
1812         if (domain_type_is_vm_or_si(domain)) {
1813                 if (domain_type_is_vm(domain)) {
1814                         id = iommu_attach_vm_domain(domain, iommu);
1815                         if (id < 0) {
1816                                 spin_unlock_irqrestore(&iommu->lock, flags);
1817                                 pr_err("IOMMU: no free domain ids\n");
1818                                 return -EFAULT;
1819                         }
1820                 }
1821
1822                 /* Skip top levels of page tables for
1823                  * iommu which has less agaw than default.
1824                  * Unnecessary for PT mode.
1825                  */
1826                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1827                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1828                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1829                                 if (!dma_pte_present(pgd)) {
1830                                         spin_unlock_irqrestore(&iommu->lock, flags);
1831                                         return -ENOMEM;
1832                                 }
1833                         }
1834                 }
1835         }
1836
1837         context_set_domain_id(context, id);
1838
1839         if (translation != CONTEXT_TT_PASS_THROUGH) {
1840                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1841                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1842                                      CONTEXT_TT_MULTI_LEVEL;
1843         }
1844         /*
1845          * In pass through mode, AW must be programmed to indicate the largest
1846          * AGAW value supported by hardware. And ASR is ignored by hardware.
1847          */
1848         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1849                 context_set_address_width(context, iommu->msagaw);
1850         else {
1851                 context_set_address_root(context, virt_to_phys(pgd));
1852                 context_set_address_width(context, iommu->agaw);
1853         }
1854
1855         context_set_translation_type(context, translation);
1856         context_set_fault_enable(context);
1857         context_set_present(context);
1858         domain_flush_cache(domain, context, sizeof(*context));
1859
1860         /*
1861          * It's a non-present to present mapping. If hardware doesn't cache
1862          * non-present entry we only need to flush the write-buffer. If the
1863          * _does_ cache non-present entries, then it does so in the special
1864          * domain #0, which we have to flush:
1865          */
1866         if (cap_caching_mode(iommu->cap)) {
1867                 iommu->flush.flush_context(iommu, 0,
1868                                            (((u16)bus) << 8) | devfn,
1869                                            DMA_CCMD_MASK_NOBIT,
1870                                            DMA_CCMD_DEVICE_INVL);
1871                 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1872         } else {
1873                 iommu_flush_write_buffer(iommu);
1874         }
1875         iommu_enable_dev_iotlb(info);
1876         spin_unlock_irqrestore(&iommu->lock, flags);
1877
1878         domain_attach_iommu(domain, iommu);
1879
1880         return 0;
1881 }
1882
1883 struct domain_context_mapping_data {
1884         struct dmar_domain *domain;
1885         struct intel_iommu *iommu;
1886         int translation;
1887 };
1888
1889 static int domain_context_mapping_cb(struct pci_dev *pdev,
1890                                      u16 alias, void *opaque)
1891 {
1892         struct domain_context_mapping_data *data = opaque;
1893
1894         return domain_context_mapping_one(data->domain, data->iommu,
1895                                           PCI_BUS_NUM(alias), alias & 0xff,
1896                                           data->translation);
1897 }
1898
1899 static int
1900 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1901                        int translation)
1902 {
1903         struct intel_iommu *iommu;
1904         u8 bus, devfn;
1905         struct domain_context_mapping_data data;
1906
1907         iommu = device_to_iommu(dev, &bus, &devfn);
1908         if (!iommu)
1909                 return -ENODEV;
1910
1911         if (!dev_is_pci(dev))
1912                 return domain_context_mapping_one(domain, iommu, bus, devfn,
1913                                                   translation);
1914
1915         data.domain = domain;
1916         data.iommu = iommu;
1917         data.translation = translation;
1918
1919         return pci_for_each_dma_alias(to_pci_dev(dev),
1920                                       &domain_context_mapping_cb, &data);
1921 }
1922
1923 static int domain_context_mapped_cb(struct pci_dev *pdev,
1924                                     u16 alias, void *opaque)
1925 {
1926         struct intel_iommu *iommu = opaque;
1927
1928         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1929 }
1930
1931 static int domain_context_mapped(struct device *dev)
1932 {
1933         struct intel_iommu *iommu;
1934         u8 bus, devfn;
1935
1936         iommu = device_to_iommu(dev, &bus, &devfn);
1937         if (!iommu)
1938                 return -ENODEV;
1939
1940         if (!dev_is_pci(dev))
1941                 return device_context_mapped(iommu, bus, devfn);
1942
1943         return !pci_for_each_dma_alias(to_pci_dev(dev),
1944                                        domain_context_mapped_cb, iommu);
1945 }
1946
1947 /* Returns a number of VTD pages, but aligned to MM page size */
1948 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1949                                             size_t size)
1950 {
1951         host_addr &= ~PAGE_MASK;
1952         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1953 }
1954
1955 /* Return largest possible superpage level for a given mapping */
1956 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1957                                           unsigned long iov_pfn,
1958                                           unsigned long phy_pfn,
1959                                           unsigned long pages)
1960 {
1961         int support, level = 1;
1962         unsigned long pfnmerge;
1963
1964         support = domain->iommu_superpage;
1965
1966         /* To use a large page, the virtual *and* physical addresses
1967            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1968            of them will mean we have to use smaller pages. So just
1969            merge them and check both at once. */
1970         pfnmerge = iov_pfn | phy_pfn;
1971
1972         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1973                 pages >>= VTD_STRIDE_SHIFT;
1974                 if (!pages)
1975                         break;
1976                 pfnmerge >>= VTD_STRIDE_SHIFT;
1977                 level++;
1978                 support--;
1979         }
1980         return level;
1981 }
1982
1983 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1984                             struct scatterlist *sg, unsigned long phys_pfn,
1985                             unsigned long nr_pages, int prot)
1986 {
1987         struct dma_pte *first_pte = NULL, *pte = NULL;
1988         phys_addr_t uninitialized_var(pteval);
1989         unsigned long sg_res = 0;
1990         unsigned int largepage_lvl = 0;
1991         unsigned long lvl_pages = 0;
1992
1993         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
1994
1995         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1996                 return -EINVAL;
1997
1998         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1999
2000         if (!sg) {
2001                 sg_res = nr_pages;
2002                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2003         }
2004
2005         while (nr_pages > 0) {
2006                 uint64_t tmp;
2007
2008                 if (!sg_res) {
2009                         sg_res = aligned_nrpages(sg->offset, sg->length);
2010                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2011                         sg->dma_length = sg->length;
2012                         pteval = page_to_phys(sg_page(sg)) | prot;
2013                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2014                 }
2015
2016                 if (!pte) {
2017                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2018
2019                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2020                         if (!pte)
2021                                 return -ENOMEM;
2022                         /* It is large page*/
2023                         if (largepage_lvl > 1) {
2024                                 pteval |= DMA_PTE_LARGE_PAGE;
2025                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2026                                 /*
2027                                  * Ensure that old small page tables are
2028                                  * removed to make room for superpage,
2029                                  * if they exist.
2030                                  */
2031                                 dma_pte_free_pagetable(domain, iov_pfn,
2032                                                        iov_pfn + lvl_pages - 1);
2033                         } else {
2034                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2035                         }
2036
2037                 }
2038                 /* We don't need lock here, nobody else
2039                  * touches the iova range
2040                  */
2041                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2042                 if (tmp) {
2043                         static int dumps = 5;
2044                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2045                                iov_pfn, tmp, (unsigned long long)pteval);
2046                         if (dumps) {
2047                                 dumps--;
2048                                 debug_dma_dump_mappings(NULL);
2049                         }
2050                         WARN_ON(1);
2051                 }
2052
2053                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2054
2055                 BUG_ON(nr_pages < lvl_pages);
2056                 BUG_ON(sg_res < lvl_pages);
2057
2058                 nr_pages -= lvl_pages;
2059                 iov_pfn += lvl_pages;
2060                 phys_pfn += lvl_pages;
2061                 pteval += lvl_pages * VTD_PAGE_SIZE;
2062                 sg_res -= lvl_pages;
2063
2064                 /* If the next PTE would be the first in a new page, then we
2065                    need to flush the cache on the entries we've just written.
2066                    And then we'll need to recalculate 'pte', so clear it and
2067                    let it get set again in the if (!pte) block above.
2068
2069                    If we're done (!nr_pages) we need to flush the cache too.
2070
2071                    Also if we've been setting superpages, we may need to
2072                    recalculate 'pte' and switch back to smaller pages for the
2073                    end of the mapping, if the trailing size is not enough to
2074                    use another superpage (i.e. sg_res < lvl_pages). */
2075                 pte++;
2076                 if (!nr_pages || first_pte_in_page(pte) ||
2077                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2078                         domain_flush_cache(domain, first_pte,
2079                                            (void *)pte - (void *)first_pte);
2080                         pte = NULL;
2081                 }
2082
2083                 if (!sg_res && nr_pages)
2084                         sg = sg_next(sg);
2085         }
2086         return 0;
2087 }
2088
2089 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2090                                     struct scatterlist *sg, unsigned long nr_pages,
2091                                     int prot)
2092 {
2093         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2094 }
2095
2096 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2097                                      unsigned long phys_pfn, unsigned long nr_pages,
2098                                      int prot)
2099 {
2100         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2101 }
2102
2103 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2104 {
2105         if (!iommu)
2106                 return;
2107
2108         clear_context_table(iommu, bus, devfn);
2109         iommu->flush.flush_context(iommu, 0, 0, 0,
2110                                            DMA_CCMD_GLOBAL_INVL);
2111         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2112 }
2113
2114 static inline void unlink_domain_info(struct device_domain_info *info)
2115 {
2116         assert_spin_locked(&device_domain_lock);
2117         list_del(&info->link);
2118         list_del(&info->global);
2119         if (info->dev)
2120                 info->dev->archdata.iommu = NULL;
2121 }
2122
2123 static void domain_remove_dev_info(struct dmar_domain *domain)
2124 {
2125         struct device_domain_info *info, *tmp;
2126         unsigned long flags;
2127
2128         spin_lock_irqsave(&device_domain_lock, flags);
2129         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2130                 unlink_domain_info(info);
2131                 spin_unlock_irqrestore(&device_domain_lock, flags);
2132
2133                 iommu_disable_dev_iotlb(info);
2134                 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2135
2136                 if (domain_type_is_vm(domain)) {
2137                         iommu_detach_dependent_devices(info->iommu, info->dev);
2138                         domain_detach_iommu(domain, info->iommu);
2139                 }
2140
2141                 free_devinfo_mem(info);
2142                 spin_lock_irqsave(&device_domain_lock, flags);
2143         }
2144         spin_unlock_irqrestore(&device_domain_lock, flags);
2145 }
2146
2147 /*
2148  * find_domain
2149  * Note: we use struct device->archdata.iommu stores the info
2150  */
2151 static struct dmar_domain *find_domain(struct device *dev)
2152 {
2153         struct device_domain_info *info;
2154
2155         /* No lock here, assumes no domain exit in normal case */
2156         info = dev->archdata.iommu;
2157         if (info)
2158                 return info->domain;
2159         return NULL;
2160 }
2161
2162 static inline struct device_domain_info *
2163 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2164 {
2165         struct device_domain_info *info;
2166
2167         list_for_each_entry(info, &device_domain_list, global)
2168                 if (info->iommu->segment == segment && info->bus == bus &&
2169                     info->devfn == devfn)
2170                         return info;
2171
2172         return NULL;
2173 }
2174
2175 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2176                                                 int bus, int devfn,
2177                                                 struct device *dev,
2178                                                 struct dmar_domain *domain)
2179 {
2180         struct dmar_domain *found = NULL;
2181         struct device_domain_info *info;
2182         unsigned long flags;
2183
2184         info = alloc_devinfo_mem();
2185         if (!info)
2186                 return NULL;
2187
2188         info->bus = bus;
2189         info->devfn = devfn;
2190         info->dev = dev;
2191         info->domain = domain;
2192         info->iommu = iommu;
2193
2194         spin_lock_irqsave(&device_domain_lock, flags);
2195         if (dev)
2196                 found = find_domain(dev);
2197         else {
2198                 struct device_domain_info *info2;
2199                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2200                 if (info2)
2201                         found = info2->domain;
2202         }
2203         if (found) {
2204                 spin_unlock_irqrestore(&device_domain_lock, flags);
2205                 free_devinfo_mem(info);
2206                 /* Caller must free the original domain */
2207                 return found;
2208         }
2209
2210         list_add(&info->link, &domain->devices);
2211         list_add(&info->global, &device_domain_list);
2212         if (dev)
2213                 dev->archdata.iommu = info;
2214         spin_unlock_irqrestore(&device_domain_lock, flags);
2215
2216         return domain;
2217 }
2218
2219 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2220 {
2221         *(u16 *)opaque = alias;
2222         return 0;
2223 }
2224
2225 /* domain is initialized */
2226 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2227 {
2228         struct dmar_domain *domain, *tmp;
2229         struct intel_iommu *iommu;
2230         struct device_domain_info *info;
2231         u16 dma_alias;
2232         unsigned long flags;
2233         u8 bus, devfn;
2234
2235         domain = find_domain(dev);
2236         if (domain)
2237                 return domain;
2238
2239         iommu = device_to_iommu(dev, &bus, &devfn);
2240         if (!iommu)
2241                 return NULL;
2242
2243         if (dev_is_pci(dev)) {
2244                 struct pci_dev *pdev = to_pci_dev(dev);
2245
2246                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2247
2248                 spin_lock_irqsave(&device_domain_lock, flags);
2249                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2250                                                       PCI_BUS_NUM(dma_alias),
2251                                                       dma_alias & 0xff);
2252                 if (info) {
2253                         iommu = info->iommu;
2254                         domain = info->domain;
2255                 }
2256                 spin_unlock_irqrestore(&device_domain_lock, flags);
2257
2258                 /* DMA alias already has a domain, uses it */
2259                 if (info)
2260                         goto found_domain;
2261         }
2262
2263         /* Allocate and initialize new domain for the device */
2264         domain = alloc_domain(0);
2265         if (!domain)
2266                 return NULL;
2267         domain->id = iommu_attach_domain(domain, iommu);
2268         if (domain->id < 0) {
2269                 free_domain_mem(domain);
2270                 return NULL;
2271         }
2272         domain_attach_iommu(domain, iommu);
2273         if (domain_init(domain, gaw)) {
2274                 domain_exit(domain);
2275                 return NULL;
2276         }
2277
2278         /* register PCI DMA alias device */
2279         if (dev_is_pci(dev)) {
2280                 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2281                                            dma_alias & 0xff, NULL, domain);
2282
2283                 if (!tmp || tmp != domain) {
2284                         domain_exit(domain);
2285                         domain = tmp;
2286                 }
2287
2288                 if (!domain)
2289                         return NULL;
2290         }
2291
2292 found_domain:
2293         tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2294
2295         if (!tmp || tmp != domain) {
2296                 domain_exit(domain);
2297                 domain = tmp;
2298         }
2299
2300         return domain;
2301 }
2302
2303 static int iommu_identity_mapping;
2304 #define IDENTMAP_ALL            1
2305 #define IDENTMAP_GFX            2
2306 #define IDENTMAP_AZALIA         4
2307
2308 static int iommu_domain_identity_map(struct dmar_domain *domain,
2309                                      unsigned long long start,
2310                                      unsigned long long end)
2311 {
2312         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2313         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2314
2315         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2316                           dma_to_mm_pfn(last_vpfn))) {
2317                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2318                 return -ENOMEM;
2319         }
2320
2321         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2322                  start, end, domain->id);
2323         /*
2324          * RMRR range might have overlap with physical memory range,
2325          * clear it first
2326          */
2327         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2328
2329         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2330                                   last_vpfn - first_vpfn + 1,
2331                                   DMA_PTE_READ|DMA_PTE_WRITE);
2332 }
2333
2334 static int iommu_prepare_identity_map(struct device *dev,
2335                                       unsigned long long start,
2336                                       unsigned long long end)
2337 {
2338         struct dmar_domain *domain;
2339         int ret;
2340
2341         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2342         if (!domain)
2343                 return -ENOMEM;
2344
2345         /* For _hardware_ passthrough, don't bother. But for software
2346            passthrough, we do it anyway -- it may indicate a memory
2347            range which is reserved in E820, so which didn't get set
2348            up to start with in si_domain */
2349         if (domain == si_domain && hw_pass_through) {
2350                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2351                        dev_name(dev), start, end);
2352                 return 0;
2353         }
2354
2355         printk(KERN_INFO
2356                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2357                dev_name(dev), start, end);
2358         
2359         if (end < start) {
2360                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2361                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2362                         dmi_get_system_info(DMI_BIOS_VENDOR),
2363                         dmi_get_system_info(DMI_BIOS_VERSION),
2364                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2365                 ret = -EIO;
2366                 goto error;
2367         }
2368
2369         if (end >> agaw_to_width(domain->agaw)) {
2370                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2371                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2372                      agaw_to_width(domain->agaw),
2373                      dmi_get_system_info(DMI_BIOS_VENDOR),
2374                      dmi_get_system_info(DMI_BIOS_VERSION),
2375                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2376                 ret = -EIO;
2377                 goto error;
2378         }
2379
2380         ret = iommu_domain_identity_map(domain, start, end);
2381         if (ret)
2382                 goto error;
2383
2384         /* context entry init */
2385         ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2386         if (ret)
2387                 goto error;
2388
2389         return 0;
2390
2391  error:
2392         domain_exit(domain);
2393         return ret;
2394 }
2395
2396 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2397                                          struct device *dev)
2398 {
2399         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2400                 return 0;
2401         return iommu_prepare_identity_map(dev, rmrr->base_address,
2402                                           rmrr->end_address);
2403 }
2404
2405 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2406 static inline void iommu_prepare_isa(void)
2407 {
2408         struct pci_dev *pdev;
2409         int ret;
2410
2411         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2412         if (!pdev)
2413                 return;
2414
2415         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2416         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2417
2418         if (ret)
2419                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2420                        "floppy might not work\n");
2421
2422         pci_dev_put(pdev);
2423 }
2424 #else
2425 static inline void iommu_prepare_isa(void)
2426 {
2427         return;
2428 }
2429 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2430
2431 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2432
2433 static int __init si_domain_init(int hw)
2434 {
2435         struct dmar_drhd_unit *drhd;
2436         struct intel_iommu *iommu;
2437         int nid, ret = 0;
2438         bool first = true;
2439
2440         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2441         if (!si_domain)
2442                 return -EFAULT;
2443
2444         for_each_active_iommu(iommu, drhd) {
2445                 ret = iommu_attach_domain(si_domain, iommu);
2446                 if (ret < 0) {
2447                         domain_exit(si_domain);
2448                         return -EFAULT;
2449                 } else if (first) {
2450                         si_domain->id = ret;
2451                         first = false;
2452                 } else if (si_domain->id != ret) {
2453                         domain_exit(si_domain);
2454                         return -EFAULT;
2455                 }
2456                 domain_attach_iommu(si_domain, iommu);
2457         }
2458
2459         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2460                 domain_exit(si_domain);
2461                 return -EFAULT;
2462         }
2463
2464         pr_debug("IOMMU: identity mapping domain is domain %d\n",
2465                  si_domain->id);
2466
2467         if (hw)
2468                 return 0;
2469
2470         for_each_online_node(nid) {
2471                 unsigned long start_pfn, end_pfn;
2472                 int i;
2473
2474                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2475                         ret = iommu_domain_identity_map(si_domain,
2476                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2477                         if (ret)
2478                                 return ret;
2479                 }
2480         }
2481
2482         return 0;
2483 }
2484
2485 static int identity_mapping(struct device *dev)
2486 {
2487         struct device_domain_info *info;
2488
2489         if (likely(!iommu_identity_mapping))
2490                 return 0;
2491
2492         info = dev->archdata.iommu;
2493         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2494                 return (info->domain == si_domain);
2495
2496         return 0;
2497 }
2498
2499 static int domain_add_dev_info(struct dmar_domain *domain,
2500                                struct device *dev, int translation)
2501 {
2502         struct dmar_domain *ndomain;
2503         struct intel_iommu *iommu;
2504         u8 bus, devfn;
2505         int ret;
2506
2507         iommu = device_to_iommu(dev, &bus, &devfn);
2508         if (!iommu)
2509                 return -ENODEV;
2510
2511         ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2512         if (ndomain != domain)
2513                 return -EBUSY;
2514
2515         ret = domain_context_mapping(domain, dev, translation);
2516         if (ret) {
2517                 domain_remove_one_dev_info(domain, dev);
2518                 return ret;
2519         }
2520
2521         return 0;
2522 }
2523
2524 static bool device_has_rmrr(struct device *dev)
2525 {
2526         struct dmar_rmrr_unit *rmrr;
2527         struct device *tmp;
2528         int i;
2529
2530         rcu_read_lock();
2531         for_each_rmrr_units(rmrr) {
2532                 /*
2533                  * Return TRUE if this RMRR contains the device that
2534                  * is passed in.
2535                  */
2536                 for_each_active_dev_scope(rmrr->devices,
2537                                           rmrr->devices_cnt, i, tmp)
2538                         if (tmp == dev) {
2539                                 rcu_read_unlock();
2540                                 return true;
2541                         }
2542         }
2543         rcu_read_unlock();
2544         return false;
2545 }
2546
2547 /*
2548  * There are a couple cases where we need to restrict the functionality of
2549  * devices associated with RMRRs.  The first is when evaluating a device for
2550  * identity mapping because problems exist when devices are moved in and out
2551  * of domains and their respective RMRR information is lost.  This means that
2552  * a device with associated RMRRs will never be in a "passthrough" domain.
2553  * The second is use of the device through the IOMMU API.  This interface
2554  * expects to have full control of the IOVA space for the device.  We cannot
2555  * satisfy both the requirement that RMRR access is maintained and have an
2556  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2557  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2558  * We therefore prevent devices associated with an RMRR from participating in
2559  * the IOMMU API, which eliminates them from device assignment.
2560  *
2561  * In both cases we assume that PCI USB devices with RMRRs have them largely
2562  * for historical reasons and that the RMRR space is not actively used post
2563  * boot.  This exclusion may change if vendors begin to abuse it.
2564  */
2565 static bool device_is_rmrr_locked(struct device *dev)
2566 {
2567         if (!device_has_rmrr(dev))
2568                 return false;
2569
2570         if (dev_is_pci(dev)) {
2571                 struct pci_dev *pdev = to_pci_dev(dev);
2572
2573                 if ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
2574                         return false;
2575         }
2576
2577         return true;
2578 }
2579
2580 static int iommu_should_identity_map(struct device *dev, int startup)
2581 {
2582
2583         if (dev_is_pci(dev)) {
2584                 struct pci_dev *pdev = to_pci_dev(dev);
2585
2586                 if (device_is_rmrr_locked(dev))
2587                         return 0;
2588
2589                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2590                         return 1;
2591
2592                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2593                         return 1;
2594
2595                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2596                         return 0;
2597
2598                 /*
2599                  * We want to start off with all devices in the 1:1 domain, and
2600                  * take them out later if we find they can't access all of memory.
2601                  *
2602                  * However, we can't do this for PCI devices behind bridges,
2603                  * because all PCI devices behind the same bridge will end up
2604                  * with the same source-id on their transactions.
2605                  *
2606                  * Practically speaking, we can't change things around for these
2607                  * devices at run-time, because we can't be sure there'll be no
2608                  * DMA transactions in flight for any of their siblings.
2609                  *
2610                  * So PCI devices (unless they're on the root bus) as well as
2611                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2612                  * the 1:1 domain, just in _case_ one of their siblings turns out
2613                  * not to be able to map all of memory.
2614                  */
2615                 if (!pci_is_pcie(pdev)) {
2616                         if (!pci_is_root_bus(pdev->bus))
2617                                 return 0;
2618                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2619                                 return 0;
2620                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2621                         return 0;
2622         } else {
2623                 if (device_has_rmrr(dev))
2624                         return 0;
2625         }
2626
2627         /*
2628          * At boot time, we don't yet know if devices will be 64-bit capable.
2629          * Assume that they will — if they turn out not to be, then we can
2630          * take them out of the 1:1 domain later.
2631          */
2632         if (!startup) {
2633                 /*
2634                  * If the device's dma_mask is less than the system's memory
2635                  * size then this is not a candidate for identity mapping.
2636                  */
2637                 u64 dma_mask = *dev->dma_mask;
2638
2639                 if (dev->coherent_dma_mask &&
2640                     dev->coherent_dma_mask < dma_mask)
2641                         dma_mask = dev->coherent_dma_mask;
2642
2643                 return dma_mask >= dma_get_required_mask(dev);
2644         }
2645
2646         return 1;
2647 }
2648
2649 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2650 {
2651         int ret;
2652
2653         if (!iommu_should_identity_map(dev, 1))
2654                 return 0;
2655
2656         ret = domain_add_dev_info(si_domain, dev,
2657                                   hw ? CONTEXT_TT_PASS_THROUGH :
2658                                        CONTEXT_TT_MULTI_LEVEL);
2659         if (!ret)
2660                 pr_info("IOMMU: %s identity mapping for device %s\n",
2661                         hw ? "hardware" : "software", dev_name(dev));
2662         else if (ret == -ENODEV)
2663                 /* device not associated with an iommu */
2664                 ret = 0;
2665
2666         return ret;
2667 }
2668
2669
2670 static int __init iommu_prepare_static_identity_mapping(int hw)
2671 {
2672         struct pci_dev *pdev = NULL;
2673         struct dmar_drhd_unit *drhd;
2674         struct intel_iommu *iommu;
2675         struct device *dev;
2676         int i;
2677         int ret = 0;
2678
2679         ret = si_domain_init(hw);
2680         if (ret)
2681                 return -EFAULT;
2682
2683         for_each_pci_dev(pdev) {
2684                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2685                 if (ret)
2686                         return ret;
2687         }
2688
2689         for_each_active_iommu(iommu, drhd)
2690                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2691                         struct acpi_device_physical_node *pn;
2692                         struct acpi_device *adev;
2693
2694                         if (dev->bus != &acpi_bus_type)
2695                                 continue;
2696                                 
2697                         adev= to_acpi_device(dev);
2698                         mutex_lock(&adev->physical_node_lock);
2699                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2700                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2701                                 if (ret)
2702                                         break;
2703                         }
2704                         mutex_unlock(&adev->physical_node_lock);
2705                         if (ret)
2706                                 return ret;
2707                 }
2708
2709         return 0;
2710 }
2711
2712 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2713 {
2714         /*
2715          * Start from the sane iommu hardware state.
2716          * If the queued invalidation is already initialized by us
2717          * (for example, while enabling interrupt-remapping) then
2718          * we got the things already rolling from a sane state.
2719          */
2720         if (!iommu->qi) {
2721                 /*
2722                  * Clear any previous faults.
2723                  */
2724                 dmar_fault(-1, iommu);
2725                 /*
2726                  * Disable queued invalidation if supported and already enabled
2727                  * before OS handover.
2728                  */
2729                 dmar_disable_qi(iommu);
2730         }
2731
2732         if (dmar_enable_qi(iommu)) {
2733                 /*
2734                  * Queued Invalidate not enabled, use Register Based Invalidate
2735                  */
2736                 iommu->flush.flush_context = __iommu_flush_context;
2737                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2738                 pr_info("IOMMU: %s using Register based invalidation\n",
2739                         iommu->name);
2740         } else {
2741                 iommu->flush.flush_context = qi_flush_context;
2742                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2743                 pr_info("IOMMU: %s using Queued invalidation\n", iommu->name);
2744         }
2745 }
2746
2747 static int __init init_dmars(void)
2748 {
2749         struct dmar_drhd_unit *drhd;
2750         struct dmar_rmrr_unit *rmrr;
2751         struct device *dev;
2752         struct intel_iommu *iommu;
2753         int i, ret;
2754
2755         /*
2756          * for each drhd
2757          *    allocate root
2758          *    initialize and program root entry to not present
2759          * endfor
2760          */
2761         for_each_drhd_unit(drhd) {
2762                 /*
2763                  * lock not needed as this is only incremented in the single
2764                  * threaded kernel __init code path all other access are read
2765                  * only
2766                  */
2767                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
2768                         g_num_of_iommus++;
2769                         continue;
2770                 }
2771                 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2772                           DMAR_UNITS_SUPPORTED);
2773         }
2774
2775         /* Preallocate enough resources for IOMMU hot-addition */
2776         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
2777                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
2778
2779         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2780                         GFP_KERNEL);
2781         if (!g_iommus) {
2782                 printk(KERN_ERR "Allocating global iommu array failed\n");
2783                 ret = -ENOMEM;
2784                 goto error;
2785         }
2786
2787         deferred_flush = kzalloc(g_num_of_iommus *
2788                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2789         if (!deferred_flush) {
2790                 ret = -ENOMEM;
2791                 goto free_g_iommus;
2792         }
2793
2794         for_each_active_iommu(iommu, drhd) {
2795                 g_iommus[iommu->seq_id] = iommu;
2796
2797                 ret = iommu_init_domains(iommu);
2798                 if (ret)
2799                         goto free_iommu;
2800
2801                 /*
2802                  * TBD:
2803                  * we could share the same root & context tables
2804                  * among all IOMMU's. Need to Split it later.
2805                  */
2806                 ret = iommu_alloc_root_entry(iommu);
2807                 if (ret)
2808                         goto free_iommu;
2809                 if (!ecap_pass_through(iommu->ecap))
2810                         hw_pass_through = 0;
2811         }
2812
2813         for_each_active_iommu(iommu, drhd)
2814                 intel_iommu_init_qi(iommu);
2815
2816         if (iommu_pass_through)
2817                 iommu_identity_mapping |= IDENTMAP_ALL;
2818
2819 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2820         iommu_identity_mapping |= IDENTMAP_GFX;
2821 #endif
2822
2823         check_tylersburg_isoch();
2824
2825         /*
2826          * If pass through is not set or not enabled, setup context entries for
2827          * identity mappings for rmrr, gfx, and isa and may fall back to static
2828          * identity mapping if iommu_identity_mapping is set.
2829          */
2830         if (iommu_identity_mapping) {
2831                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2832                 if (ret) {
2833                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2834                         goto free_iommu;
2835                 }
2836         }
2837         /*
2838          * For each rmrr
2839          *   for each dev attached to rmrr
2840          *   do
2841          *     locate drhd for dev, alloc domain for dev
2842          *     allocate free domain
2843          *     allocate page table entries for rmrr
2844          *     if context not allocated for bus
2845          *           allocate and init context
2846          *           set present in root table for this bus
2847          *     init context with domain, translation etc
2848          *    endfor
2849          * endfor
2850          */
2851         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2852         for_each_rmrr_units(rmrr) {
2853                 /* some BIOS lists non-exist devices in DMAR table. */
2854                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2855                                           i, dev) {
2856                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
2857                         if (ret)
2858                                 printk(KERN_ERR
2859                                        "IOMMU: mapping reserved region failed\n");
2860                 }
2861         }
2862
2863         iommu_prepare_isa();
2864
2865         /*
2866          * for each drhd
2867          *   enable fault log
2868          *   global invalidate context cache
2869          *   global invalidate iotlb
2870          *   enable translation
2871          */
2872         for_each_iommu(iommu, drhd) {
2873                 if (drhd->ignored) {
2874                         /*
2875                          * we always have to disable PMRs or DMA may fail on
2876                          * this device
2877                          */
2878                         if (force_on)
2879                                 iommu_disable_protect_mem_regions(iommu);
2880                         continue;
2881                 }
2882
2883                 iommu_flush_write_buffer(iommu);
2884
2885                 ret = dmar_set_interrupt(iommu);
2886                 if (ret)
2887                         goto free_iommu;
2888
2889                 iommu_set_root_entry(iommu);
2890
2891                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2892                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2893                 iommu_enable_translation(iommu);
2894                 iommu_disable_protect_mem_regions(iommu);
2895         }
2896
2897         return 0;
2898
2899 free_iommu:
2900         for_each_active_iommu(iommu, drhd) {
2901                 disable_dmar_iommu(iommu);
2902                 free_dmar_iommu(iommu);
2903         }
2904         kfree(deferred_flush);
2905 free_g_iommus:
2906         kfree(g_iommus);
2907 error:
2908         return ret;
2909 }
2910
2911 /* This takes a number of _MM_ pages, not VTD pages */
2912 static struct iova *intel_alloc_iova(struct device *dev,
2913                                      struct dmar_domain *domain,
2914                                      unsigned long nrpages, uint64_t dma_mask)
2915 {
2916         struct iova *iova = NULL;
2917
2918         /* Restrict dma_mask to the width that the iommu can handle */
2919         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2920
2921         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2922                 /*
2923                  * First try to allocate an io virtual address in
2924                  * DMA_BIT_MASK(32) and if that fails then try allocating
2925                  * from higher range
2926                  */
2927                 iova = alloc_iova(&domain->iovad, nrpages,
2928                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2929                 if (iova)
2930                         return iova;
2931         }
2932         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2933         if (unlikely(!iova)) {
2934                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2935                        nrpages, dev_name(dev));
2936                 return NULL;
2937         }
2938
2939         return iova;
2940 }
2941
2942 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2943 {
2944         struct dmar_domain *domain;
2945         int ret;
2946
2947         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2948         if (!domain) {
2949                 printk(KERN_ERR "Allocating domain for %s failed",
2950                        dev_name(dev));
2951                 return NULL;
2952         }
2953
2954         /* make sure context mapping is ok */
2955         if (unlikely(!domain_context_mapped(dev))) {
2956                 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2957                 if (ret) {
2958                         printk(KERN_ERR "Domain context map for %s failed",
2959                                dev_name(dev));
2960                         return NULL;
2961                 }
2962         }
2963
2964         return domain;
2965 }
2966
2967 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2968 {
2969         struct device_domain_info *info;
2970
2971         /* No lock here, assumes no domain exit in normal case */
2972         info = dev->archdata.iommu;
2973         if (likely(info))
2974                 return info->domain;
2975
2976         return __get_valid_domain_for_dev(dev);
2977 }
2978
2979 static int iommu_dummy(struct device *dev)
2980 {
2981         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2982 }
2983
2984 /* Check if the dev needs to go through non-identity map and unmap process.*/
2985 static int iommu_no_mapping(struct device *dev)
2986 {
2987         int found;
2988
2989         if (iommu_dummy(dev))
2990                 return 1;
2991
2992         if (!iommu_identity_mapping)
2993                 return 0;
2994
2995         found = identity_mapping(dev);
2996         if (found) {
2997                 if (iommu_should_identity_map(dev, 0))
2998                         return 1;
2999                 else {
3000                         /*
3001                          * 32 bit DMA is removed from si_domain and fall back
3002                          * to non-identity mapping.
3003                          */
3004                         domain_remove_one_dev_info(si_domain, dev);
3005                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
3006                                dev_name(dev));
3007                         return 0;
3008                 }
3009         } else {
3010                 /*
3011                  * In case of a detached 64 bit DMA device from vm, the device
3012                  * is put into si_domain for identity mapping.
3013                  */
3014                 if (iommu_should_identity_map(dev, 0)) {
3015                         int ret;
3016                         ret = domain_add_dev_info(si_domain, dev,
3017                                                   hw_pass_through ?
3018                                                   CONTEXT_TT_PASS_THROUGH :
3019                                                   CONTEXT_TT_MULTI_LEVEL);
3020                         if (!ret) {
3021                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
3022                                        dev_name(dev));
3023                                 return 1;
3024                         }
3025                 }
3026         }
3027
3028         return 0;
3029 }
3030
3031 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3032                                      size_t size, int dir, u64 dma_mask)
3033 {
3034         struct dmar_domain *domain;
3035         phys_addr_t start_paddr;
3036         struct iova *iova;
3037         int prot = 0;
3038         int ret;
3039         struct intel_iommu *iommu;
3040         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3041
3042         BUG_ON(dir == DMA_NONE);
3043
3044         if (iommu_no_mapping(dev))
3045                 return paddr;
3046
3047         domain = get_valid_domain_for_dev(dev);
3048         if (!domain)
3049                 return 0;
3050
3051         iommu = domain_get_iommu(domain);
3052         size = aligned_nrpages(paddr, size);
3053
3054         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3055         if (!iova)
3056                 goto error;
3057
3058         /*
3059          * Check if DMAR supports zero-length reads on write only
3060          * mappings..
3061          */
3062         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3063                         !cap_zlr(iommu->cap))
3064                 prot |= DMA_PTE_READ;
3065         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3066                 prot |= DMA_PTE_WRITE;
3067         /*
3068          * paddr - (paddr + size) might be partial page, we should map the whole
3069          * page.  Note: if two part of one page are separately mapped, we
3070          * might have two guest_addr mapping to the same host paddr, but this
3071          * is not a big problem
3072          */
3073         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3074                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3075         if (ret)
3076                 goto error;
3077
3078         /* it's a non-present to present mapping. Only flush if caching mode */
3079         if (cap_caching_mode(iommu->cap))
3080                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3081         else
3082                 iommu_flush_write_buffer(iommu);
3083
3084         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3085         start_paddr += paddr & ~PAGE_MASK;
3086         return start_paddr;
3087
3088 error:
3089         if (iova)
3090                 __free_iova(&domain->iovad, iova);
3091         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3092                 dev_name(dev), size, (unsigned long long)paddr, dir);
3093         return 0;
3094 }
3095
3096 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3097                                  unsigned long offset, size_t size,
3098                                  enum dma_data_direction dir,
3099                                  struct dma_attrs *attrs)
3100 {
3101         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3102                                   dir, *dev->dma_mask);
3103 }
3104
3105 static void flush_unmaps(void)
3106 {
3107         int i, j;
3108
3109         timer_on = 0;
3110
3111         /* just flush them all */
3112         for (i = 0; i < g_num_of_iommus; i++) {
3113                 struct intel_iommu *iommu = g_iommus[i];
3114                 if (!iommu)
3115                         continue;
3116
3117                 if (!deferred_flush[i].next)
3118                         continue;
3119
3120                 /* In caching mode, global flushes turn emulation expensive */
3121                 if (!cap_caching_mode(iommu->cap))
3122                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3123                                          DMA_TLB_GLOBAL_FLUSH);
3124                 for (j = 0; j < deferred_flush[i].next; j++) {
3125                         unsigned long mask;
3126                         struct iova *iova = deferred_flush[i].iova[j];
3127                         struct dmar_domain *domain = deferred_flush[i].domain[j];
3128
3129                         /* On real hardware multiple invalidations are expensive */
3130                         if (cap_caching_mode(iommu->cap))
3131                                 iommu_flush_iotlb_psi(iommu, domain->id,
3132                                         iova->pfn_lo, iova_size(iova),
3133                                         !deferred_flush[i].freelist[j], 0);
3134                         else {
3135                                 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3136                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3137                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3138                         }
3139                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3140                         if (deferred_flush[i].freelist[j])
3141                                 dma_free_pagelist(deferred_flush[i].freelist[j]);
3142                 }
3143                 deferred_flush[i].next = 0;
3144         }
3145
3146         list_size = 0;
3147 }
3148
3149 static void flush_unmaps_timeout(unsigned long data)
3150 {
3151         unsigned long flags;
3152
3153         spin_lock_irqsave(&async_umap_flush_lock, flags);
3154         flush_unmaps();
3155         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3156 }
3157
3158 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3159 {
3160         unsigned long flags;
3161         int next, iommu_id;
3162         struct intel_iommu *iommu;
3163
3164         spin_lock_irqsave(&async_umap_flush_lock, flags);
3165         if (list_size == HIGH_WATER_MARK)
3166                 flush_unmaps();
3167
3168         iommu = domain_get_iommu(dom);
3169         iommu_id = iommu->seq_id;
3170
3171         next = deferred_flush[iommu_id].next;
3172         deferred_flush[iommu_id].domain[next] = dom;
3173         deferred_flush[iommu_id].iova[next] = iova;
3174         deferred_flush[iommu_id].freelist[next] = freelist;
3175         deferred_flush[iommu_id].next++;
3176
3177         if (!timer_on) {
3178                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3179                 timer_on = 1;
3180         }
3181         list_size++;
3182         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3183 }
3184
3185 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3186 {
3187         struct dmar_domain *domain;
3188         unsigned long start_pfn, last_pfn;
3189         struct iova *iova;
3190         struct intel_iommu *iommu;
3191         struct page *freelist;
3192
3193         if (iommu_no_mapping(dev))
3194                 return;
3195
3196         domain = find_domain(dev);
3197         BUG_ON(!domain);
3198
3199         iommu = domain_get_iommu(domain);
3200
3201         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3202         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3203                       (unsigned long long)dev_addr))
3204                 return;
3205
3206         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3207         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3208
3209         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3210                  dev_name(dev), start_pfn, last_pfn);
3211
3212         freelist = domain_unmap(domain, start_pfn, last_pfn);
3213
3214         if (intel_iommu_strict) {
3215                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3216                                       last_pfn - start_pfn + 1, !freelist, 0);
3217                 /* free iova */
3218                 __free_iova(&domain->iovad, iova);
3219                 dma_free_pagelist(freelist);
3220         } else {
3221                 add_unmap(domain, iova, freelist);
3222                 /*
3223                  * queue up the release of the unmap to save the 1/6th of the
3224                  * cpu used up by the iotlb flush operation...
3225                  */
3226         }
3227 }
3228
3229 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3230                              size_t size, enum dma_data_direction dir,
3231                              struct dma_attrs *attrs)
3232 {
3233         intel_unmap(dev, dev_addr);
3234 }
3235
3236 static void *intel_alloc_coherent(struct device *dev, size_t size,
3237                                   dma_addr_t *dma_handle, gfp_t flags,
3238                                   struct dma_attrs *attrs)
3239 {
3240         struct page *page = NULL;
3241         int order;
3242
3243         size = PAGE_ALIGN(size);
3244         order = get_order(size);
3245
3246         if (!iommu_no_mapping(dev))
3247                 flags &= ~(GFP_DMA | GFP_DMA32);
3248         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3249                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3250                         flags |= GFP_DMA;
3251                 else
3252                         flags |= GFP_DMA32;
3253         }
3254
3255         if (flags & __GFP_WAIT) {
3256                 unsigned int count = size >> PAGE_SHIFT;
3257
3258                 page = dma_alloc_from_contiguous(dev, count, order);
3259                 if (page && iommu_no_mapping(dev) &&
3260                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3261                         dma_release_from_contiguous(dev, page, count);
3262                         page = NULL;
3263                 }
3264         }
3265
3266         if (!page)
3267                 page = alloc_pages(flags, order);
3268         if (!page)
3269                 return NULL;
3270         memset(page_address(page), 0, size);
3271
3272         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3273                                          DMA_BIDIRECTIONAL,
3274                                          dev->coherent_dma_mask);
3275         if (*dma_handle)
3276                 return page_address(page);
3277         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3278                 __free_pages(page, order);
3279
3280         return NULL;
3281 }
3282
3283 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3284                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
3285 {
3286         int order;
3287         struct page *page = virt_to_page(vaddr);
3288
3289         size = PAGE_ALIGN(size);
3290         order = get_order(size);
3291
3292         intel_unmap(dev, dma_handle);
3293         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3294                 __free_pages(page, order);
3295 }
3296
3297 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3298                            int nelems, enum dma_data_direction dir,
3299                            struct dma_attrs *attrs)
3300 {
3301         intel_unmap(dev, sglist[0].dma_address);
3302 }
3303
3304 static int intel_nontranslate_map_sg(struct device *hddev,
3305         struct scatterlist *sglist, int nelems, int dir)
3306 {
3307         int i;
3308         struct scatterlist *sg;
3309
3310         for_each_sg(sglist, sg, nelems, i) {
3311                 BUG_ON(!sg_page(sg));
3312                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3313                 sg->dma_length = sg->length;
3314         }
3315         return nelems;
3316 }
3317
3318 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3319                         enum dma_data_direction dir, struct dma_attrs *attrs)
3320 {
3321         int i;
3322         struct dmar_domain *domain;
3323         size_t size = 0;
3324         int prot = 0;
3325         struct iova *iova = NULL;
3326         int ret;
3327         struct scatterlist *sg;
3328         unsigned long start_vpfn;
3329         struct intel_iommu *iommu;
3330
3331         BUG_ON(dir == DMA_NONE);
3332         if (iommu_no_mapping(dev))
3333                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3334
3335         domain = get_valid_domain_for_dev(dev);
3336         if (!domain)
3337                 return 0;
3338
3339         iommu = domain_get_iommu(domain);
3340
3341         for_each_sg(sglist, sg, nelems, i)
3342                 size += aligned_nrpages(sg->offset, sg->length);
3343
3344         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3345                                 *dev->dma_mask);
3346         if (!iova) {
3347                 sglist->dma_length = 0;
3348                 return 0;
3349         }
3350
3351         /*
3352          * Check if DMAR supports zero-length reads on write only
3353          * mappings..
3354          */
3355         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3356                         !cap_zlr(iommu->cap))
3357                 prot |= DMA_PTE_READ;
3358         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3359                 prot |= DMA_PTE_WRITE;
3360
3361         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3362
3363         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3364         if (unlikely(ret)) {
3365                 dma_pte_free_pagetable(domain, start_vpfn,
3366                                        start_vpfn + size - 1);
3367                 __free_iova(&domain->iovad, iova);
3368                 return 0;
3369         }
3370
3371         /* it's a non-present to present mapping. Only flush if caching mode */
3372         if (cap_caching_mode(iommu->cap))
3373                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3374         else
3375                 iommu_flush_write_buffer(iommu);
3376
3377         return nelems;
3378 }
3379
3380 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3381 {
3382         return !dma_addr;
3383 }
3384
3385 struct dma_map_ops intel_dma_ops = {
3386         .alloc = intel_alloc_coherent,
3387         .free = intel_free_coherent,
3388         .map_sg = intel_map_sg,
3389         .unmap_sg = intel_unmap_sg,
3390         .map_page = intel_map_page,
3391         .unmap_page = intel_unmap_page,
3392         .mapping_error = intel_mapping_error,
3393 };
3394
3395 static inline int iommu_domain_cache_init(void)
3396 {
3397         int ret = 0;
3398
3399         iommu_domain_cache = kmem_cache_create("iommu_domain",
3400                                          sizeof(struct dmar_domain),
3401                                          0,
3402                                          SLAB_HWCACHE_ALIGN,
3403
3404                                          NULL);
3405         if (!iommu_domain_cache) {
3406                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3407                 ret = -ENOMEM;
3408         }
3409
3410         return ret;
3411 }
3412
3413 static inline int iommu_devinfo_cache_init(void)
3414 {
3415         int ret = 0;
3416
3417         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3418                                          sizeof(struct device_domain_info),
3419                                          0,
3420                                          SLAB_HWCACHE_ALIGN,
3421                                          NULL);
3422         if (!iommu_devinfo_cache) {
3423                 printk(KERN_ERR "Couldn't create devinfo cache\n");
3424                 ret = -ENOMEM;
3425         }
3426
3427         return ret;
3428 }
3429
3430 static inline int iommu_iova_cache_init(void)
3431 {
3432         int ret = 0;
3433
3434         iommu_iova_cache = kmem_cache_create("iommu_iova",
3435                                          sizeof(struct iova),
3436                                          0,
3437                                          SLAB_HWCACHE_ALIGN,
3438                                          NULL);
3439         if (!iommu_iova_cache) {
3440                 printk(KERN_ERR "Couldn't create iova cache\n");
3441                 ret = -ENOMEM;
3442         }
3443
3444         return ret;
3445 }
3446
3447 static int __init iommu_init_mempool(void)
3448 {
3449         int ret;
3450         ret = iommu_iova_cache_init();
3451         if (ret)
3452                 return ret;
3453
3454         ret = iommu_domain_cache_init();
3455         if (ret)
3456                 goto domain_error;
3457
3458         ret = iommu_devinfo_cache_init();
3459         if (!ret)
3460                 return ret;
3461
3462         kmem_cache_destroy(iommu_domain_cache);
3463 domain_error:
3464         kmem_cache_destroy(iommu_iova_cache);
3465
3466         return -ENOMEM;
3467 }
3468
3469 static void __init iommu_exit_mempool(void)
3470 {
3471         kmem_cache_destroy(iommu_devinfo_cache);
3472         kmem_cache_destroy(iommu_domain_cache);
3473         kmem_cache_destroy(iommu_iova_cache);
3474
3475 }
3476
3477 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3478 {
3479         struct dmar_drhd_unit *drhd;
3480         u32 vtbar;
3481         int rc;
3482
3483         /* We know that this device on this chipset has its own IOMMU.
3484          * If we find it under a different IOMMU, then the BIOS is lying
3485          * to us. Hope that the IOMMU for this device is actually
3486          * disabled, and it needs no translation...
3487          */
3488         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3489         if (rc) {
3490                 /* "can't" happen */
3491                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3492                 return;
3493         }
3494         vtbar &= 0xffff0000;
3495
3496         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3497         drhd = dmar_find_matched_drhd_unit(pdev);
3498         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3499                             TAINT_FIRMWARE_WORKAROUND,
3500                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3501                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3502 }
3503 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3504
3505 static void __init init_no_remapping_devices(void)
3506 {
3507         struct dmar_drhd_unit *drhd;
3508         struct device *dev;
3509         int i;
3510
3511         for_each_drhd_unit(drhd) {
3512                 if (!drhd->include_all) {
3513                         for_each_active_dev_scope(drhd->devices,
3514                                                   drhd->devices_cnt, i, dev)
3515                                 break;
3516                         /* ignore DMAR unit if no devices exist */
3517                         if (i == drhd->devices_cnt)
3518                                 drhd->ignored = 1;
3519                 }
3520         }
3521
3522         for_each_active_drhd_unit(drhd) {
3523                 if (drhd->include_all)
3524                         continue;
3525
3526                 for_each_active_dev_scope(drhd->devices,
3527                                           drhd->devices_cnt, i, dev)
3528                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3529                                 break;
3530                 if (i < drhd->devices_cnt)
3531                         continue;
3532
3533                 /* This IOMMU has *only* gfx devices. Either bypass it or
3534                    set the gfx_mapped flag, as appropriate */
3535                 if (dmar_map_gfx) {
3536                         intel_iommu_gfx_mapped = 1;
3537                 } else {
3538                         drhd->ignored = 1;
3539                         for_each_active_dev_scope(drhd->devices,
3540                                                   drhd->devices_cnt, i, dev)
3541                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3542                 }
3543         }
3544 }
3545
3546 #ifdef CONFIG_SUSPEND
3547 static int init_iommu_hw(void)
3548 {
3549         struct dmar_drhd_unit *drhd;
3550         struct intel_iommu *iommu = NULL;
3551
3552         for_each_active_iommu(iommu, drhd)
3553                 if (iommu->qi)
3554                         dmar_reenable_qi(iommu);
3555
3556         for_each_iommu(iommu, drhd) {
3557                 if (drhd->ignored) {
3558                         /*
3559                          * we always have to disable PMRs or DMA may fail on
3560                          * this device
3561                          */
3562                         if (force_on)
3563                                 iommu_disable_protect_mem_regions(iommu);
3564                         continue;
3565                 }
3566         
3567                 iommu_flush_write_buffer(iommu);
3568
3569                 iommu_set_root_entry(iommu);
3570
3571                 iommu->flush.flush_context(iommu, 0, 0, 0,
3572                                            DMA_CCMD_GLOBAL_INVL);
3573                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3574                 iommu_enable_translation(iommu);
3575                 iommu_disable_protect_mem_regions(iommu);
3576         }
3577
3578         return 0;
3579 }
3580
3581 static void iommu_flush_all(void)
3582 {
3583         struct dmar_drhd_unit *drhd;
3584         struct intel_iommu *iommu;
3585
3586         for_each_active_iommu(iommu, drhd) {
3587                 iommu->flush.flush_context(iommu, 0, 0, 0,
3588                                            DMA_CCMD_GLOBAL_INVL);
3589                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3590                                          DMA_TLB_GLOBAL_FLUSH);
3591         }
3592 }
3593
3594 static int iommu_suspend(void)
3595 {
3596         struct dmar_drhd_unit *drhd;
3597         struct intel_iommu *iommu = NULL;
3598         unsigned long flag;
3599
3600         for_each_active_iommu(iommu, drhd) {
3601                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3602                                                  GFP_ATOMIC);
3603                 if (!iommu->iommu_state)
3604                         goto nomem;
3605         }
3606
3607         iommu_flush_all();
3608
3609         for_each_active_iommu(iommu, drhd) {
3610                 iommu_disable_translation(iommu);
3611
3612                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3613
3614                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3615                         readl(iommu->reg + DMAR_FECTL_REG);
3616                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3617                         readl(iommu->reg + DMAR_FEDATA_REG);
3618                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3619                         readl(iommu->reg + DMAR_FEADDR_REG);
3620                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3621                         readl(iommu->reg + DMAR_FEUADDR_REG);
3622
3623                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3624         }
3625         return 0;
3626
3627 nomem:
3628         for_each_active_iommu(iommu, drhd)
3629                 kfree(iommu->iommu_state);
3630
3631         return -ENOMEM;
3632 }
3633
3634 static void iommu_resume(void)
3635 {
3636         struct dmar_drhd_unit *drhd;
3637         struct intel_iommu *iommu = NULL;
3638         unsigned long flag;
3639
3640         if (init_iommu_hw()) {
3641                 if (force_on)
3642                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3643                 else
3644                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3645                 return;
3646         }
3647
3648         for_each_active_iommu(iommu, drhd) {
3649
3650                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3651
3652                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3653                         iommu->reg + DMAR_FECTL_REG);
3654                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3655                         iommu->reg + DMAR_FEDATA_REG);
3656                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3657                         iommu->reg + DMAR_FEADDR_REG);
3658                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3659                         iommu->reg + DMAR_FEUADDR_REG);
3660
3661                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3662         }
3663
3664         for_each_active_iommu(iommu, drhd)
3665                 kfree(iommu->iommu_state);
3666 }
3667
3668 static struct syscore_ops iommu_syscore_ops = {
3669         .resume         = iommu_resume,
3670         .suspend        = iommu_suspend,
3671 };
3672
3673 static void __init init_iommu_pm_ops(void)
3674 {
3675         register_syscore_ops(&iommu_syscore_ops);
3676 }
3677
3678 #else
3679 static inline void init_iommu_pm_ops(void) {}
3680 #endif  /* CONFIG_PM */
3681
3682
3683 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3684 {
3685         struct acpi_dmar_reserved_memory *rmrr;
3686         struct dmar_rmrr_unit *rmrru;
3687
3688         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3689         if (!rmrru)
3690                 return -ENOMEM;
3691
3692         rmrru->hdr = header;
3693         rmrr = (struct acpi_dmar_reserved_memory *)header;
3694         rmrru->base_address = rmrr->base_address;
3695         rmrru->end_address = rmrr->end_address;
3696         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3697                                 ((void *)rmrr) + rmrr->header.length,
3698                                 &rmrru->devices_cnt);
3699         if (rmrru->devices_cnt && rmrru->devices == NULL) {
3700                 kfree(rmrru);
3701                 return -ENOMEM;
3702         }
3703
3704         list_add(&rmrru->list, &dmar_rmrr_units);
3705
3706         return 0;
3707 }
3708
3709 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3710 {
3711         struct dmar_atsr_unit *atsru;
3712         struct acpi_dmar_atsr *tmp;
3713
3714         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3715                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3716                 if (atsr->segment != tmp->segment)
3717                         continue;
3718                 if (atsr->header.length != tmp->header.length)
3719                         continue;
3720                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3721                         return atsru;
3722         }
3723
3724         return NULL;
3725 }
3726
3727 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3728 {
3729         struct acpi_dmar_atsr *atsr;
3730         struct dmar_atsr_unit *atsru;
3731
3732         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3733                 return 0;
3734
3735         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3736         atsru = dmar_find_atsr(atsr);
3737         if (atsru)
3738                 return 0;
3739
3740         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3741         if (!atsru)
3742                 return -ENOMEM;
3743
3744         /*
3745          * If memory is allocated from slab by ACPI _DSM method, we need to
3746          * copy the memory content because the memory buffer will be freed
3747          * on return.
3748          */
3749         atsru->hdr = (void *)(atsru + 1);
3750         memcpy(atsru->hdr, hdr, hdr->length);
3751         atsru->include_all = atsr->flags & 0x1;
3752         if (!atsru->include_all) {
3753                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3754                                 (void *)atsr + atsr->header.length,
3755                                 &atsru->devices_cnt);
3756                 if (atsru->devices_cnt && atsru->devices == NULL) {
3757                         kfree(atsru);
3758                         return -ENOMEM;
3759                 }
3760         }
3761
3762         list_add_rcu(&atsru->list, &dmar_atsr_units);
3763
3764         return 0;
3765 }
3766
3767 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3768 {
3769         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3770         kfree(atsru);
3771 }
3772
3773 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3774 {
3775         struct acpi_dmar_atsr *atsr;
3776         struct dmar_atsr_unit *atsru;
3777
3778         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3779         atsru = dmar_find_atsr(atsr);
3780         if (atsru) {
3781                 list_del_rcu(&atsru->list);
3782                 synchronize_rcu();
3783                 intel_iommu_free_atsr(atsru);
3784         }
3785
3786         return 0;
3787 }
3788
3789 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3790 {
3791         int i;
3792         struct device *dev;
3793         struct acpi_dmar_atsr *atsr;
3794         struct dmar_atsr_unit *atsru;
3795
3796         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3797         atsru = dmar_find_atsr(atsr);
3798         if (!atsru)
3799                 return 0;
3800
3801         if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
3802                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3803                                           i, dev)
3804                         return -EBUSY;
3805
3806         return 0;
3807 }
3808
3809 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3810 {
3811         int sp, ret = 0;
3812         struct intel_iommu *iommu = dmaru->iommu;
3813
3814         if (g_iommus[iommu->seq_id])
3815                 return 0;
3816
3817         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3818                 pr_warn("IOMMU: %s doesn't support hardware pass through.\n",
3819                         iommu->name);
3820                 return -ENXIO;
3821         }
3822         if (!ecap_sc_support(iommu->ecap) &&
3823             domain_update_iommu_snooping(iommu)) {
3824                 pr_warn("IOMMU: %s doesn't support snooping.\n",
3825                         iommu->name);
3826                 return -ENXIO;
3827         }
3828         sp = domain_update_iommu_superpage(iommu) - 1;
3829         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3830                 pr_warn("IOMMU: %s doesn't support large page.\n",
3831                         iommu->name);
3832                 return -ENXIO;
3833         }
3834
3835         /*
3836          * Disable translation if already enabled prior to OS handover.
3837          */
3838         if (iommu->gcmd & DMA_GCMD_TE)
3839                 iommu_disable_translation(iommu);
3840
3841         g_iommus[iommu->seq_id] = iommu;
3842         ret = iommu_init_domains(iommu);
3843         if (ret == 0)
3844                 ret = iommu_alloc_root_entry(iommu);
3845         if (ret)
3846                 goto out;
3847
3848         if (dmaru->ignored) {
3849                 /*
3850                  * we always have to disable PMRs or DMA may fail on this device
3851                  */
3852                 if (force_on)
3853                         iommu_disable_protect_mem_regions(iommu);
3854                 return 0;
3855         }
3856
3857         intel_iommu_init_qi(iommu);
3858         iommu_flush_write_buffer(iommu);
3859         ret = dmar_set_interrupt(iommu);
3860         if (ret)
3861                 goto disable_iommu;
3862
3863         iommu_set_root_entry(iommu);
3864         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3865         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3866         iommu_enable_translation(iommu);
3867
3868         if (si_domain) {
3869                 ret = iommu_attach_domain(si_domain, iommu);
3870                 if (ret < 0 || si_domain->id != ret)
3871                         goto disable_iommu;
3872                 domain_attach_iommu(si_domain, iommu);
3873         }
3874
3875         iommu_disable_protect_mem_regions(iommu);
3876         return 0;
3877
3878 disable_iommu:
3879         disable_dmar_iommu(iommu);
3880 out:
3881         free_dmar_iommu(iommu);
3882         return ret;
3883 }
3884
3885 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3886 {
3887         int ret = 0;
3888         struct intel_iommu *iommu = dmaru->iommu;
3889
3890         if (!intel_iommu_enabled)
3891                 return 0;
3892         if (iommu == NULL)
3893                 return -EINVAL;
3894
3895         if (insert) {
3896                 ret = intel_iommu_add(dmaru);
3897         } else {
3898                 disable_dmar_iommu(iommu);
3899                 free_dmar_iommu(iommu);
3900         }
3901
3902         return ret;
3903 }
3904
3905 static void intel_iommu_free_dmars(void)
3906 {
3907         struct dmar_rmrr_unit *rmrru, *rmrr_n;
3908         struct dmar_atsr_unit *atsru, *atsr_n;
3909
3910         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3911                 list_del(&rmrru->list);
3912                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3913                 kfree(rmrru);
3914         }
3915
3916         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3917                 list_del(&atsru->list);
3918                 intel_iommu_free_atsr(atsru);
3919         }
3920 }
3921
3922 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3923 {
3924         int i, ret = 1;
3925         struct pci_bus *bus;
3926         struct pci_dev *bridge = NULL;
3927         struct device *tmp;
3928         struct acpi_dmar_atsr *atsr;
3929         struct dmar_atsr_unit *atsru;
3930
3931         dev = pci_physfn(dev);
3932         for (bus = dev->bus; bus; bus = bus->parent) {
3933                 bridge = bus->self;
3934                 if (!bridge || !pci_is_pcie(bridge) ||
3935                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3936                         return 0;
3937                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3938                         break;
3939         }
3940         if (!bridge)
3941                 return 0;
3942
3943         rcu_read_lock();
3944         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3945                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3946                 if (atsr->segment != pci_domain_nr(dev->bus))
3947                         continue;
3948
3949                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3950                         if (tmp == &bridge->dev)
3951                                 goto out;
3952
3953                 if (atsru->include_all)
3954                         goto out;
3955         }
3956         ret = 0;
3957 out:
3958         rcu_read_unlock();
3959
3960         return ret;
3961 }
3962
3963 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3964 {
3965         int ret = 0;
3966         struct dmar_rmrr_unit *rmrru;
3967         struct dmar_atsr_unit *atsru;
3968         struct acpi_dmar_atsr *atsr;
3969         struct acpi_dmar_reserved_memory *rmrr;
3970
3971         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3972                 return 0;
3973
3974         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3975                 rmrr = container_of(rmrru->hdr,
3976                                     struct acpi_dmar_reserved_memory, header);
3977                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3978                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3979                                 ((void *)rmrr) + rmrr->header.length,
3980                                 rmrr->segment, rmrru->devices,
3981                                 rmrru->devices_cnt);
3982                         if(ret < 0)
3983                                 return ret;
3984                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3985                         dmar_remove_dev_scope(info, rmrr->segment,
3986                                 rmrru->devices, rmrru->devices_cnt);
3987                 }
3988         }
3989
3990         list_for_each_entry(atsru, &dmar_atsr_units, list) {
3991                 if (atsru->include_all)
3992                         continue;
3993
3994                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3995                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3996                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3997                                         (void *)atsr + atsr->header.length,
3998                                         atsr->segment, atsru->devices,
3999                                         atsru->devices_cnt);
4000                         if (ret > 0)
4001                                 break;
4002                         else if(ret < 0)
4003                                 return ret;
4004                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4005                         if (dmar_remove_dev_scope(info, atsr->segment,
4006                                         atsru->devices, atsru->devices_cnt))
4007                                 break;
4008                 }
4009         }
4010
4011         return 0;
4012 }
4013
4014 /*
4015  * Here we only respond to action of unbound device from driver.
4016  *
4017  * Added device is not attached to its DMAR domain here yet. That will happen
4018  * when mapping the device to iova.
4019  */
4020 static int device_notifier(struct notifier_block *nb,
4021                                   unsigned long action, void *data)
4022 {
4023         struct device *dev = data;
4024         struct dmar_domain *domain;
4025
4026         if (iommu_dummy(dev))
4027                 return 0;
4028
4029         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4030                 return 0;
4031
4032         /*
4033          * If the device is still attached to a device driver we can't
4034          * tear down the domain yet as DMA mappings may still be in use.
4035          * Wait for the BUS_NOTIFY_UNBOUND_DRIVER event to do that.
4036          */
4037         if (action == BUS_NOTIFY_DEL_DEVICE && dev->driver != NULL)
4038                 return 0;
4039
4040         domain = find_domain(dev);
4041         if (!domain)
4042                 return 0;
4043
4044         down_read(&dmar_global_lock);
4045         domain_remove_one_dev_info(domain, dev);
4046         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4047                 domain_exit(domain);
4048         up_read(&dmar_global_lock);
4049
4050         return 0;
4051 }
4052
4053 static struct notifier_block device_nb = {
4054         .notifier_call = device_notifier,
4055 };
4056
4057 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4058                                        unsigned long val, void *v)
4059 {
4060         struct memory_notify *mhp = v;
4061         unsigned long long start, end;
4062         unsigned long start_vpfn, last_vpfn;
4063
4064         switch (val) {
4065         case MEM_GOING_ONLINE:
4066                 start = mhp->start_pfn << PAGE_SHIFT;
4067                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4068                 if (iommu_domain_identity_map(si_domain, start, end)) {
4069                         pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
4070                                 start, end);
4071                         return NOTIFY_BAD;
4072                 }
4073                 break;
4074
4075         case MEM_OFFLINE:
4076         case MEM_CANCEL_ONLINE:
4077                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4078                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4079                 while (start_vpfn <= last_vpfn) {
4080                         struct iova *iova;
4081                         struct dmar_drhd_unit *drhd;
4082                         struct intel_iommu *iommu;
4083                         struct page *freelist;
4084
4085                         iova = find_iova(&si_domain->iovad, start_vpfn);
4086                         if (iova == NULL) {
4087                                 pr_debug("dmar: failed get IOVA for PFN %lx\n",
4088                                          start_vpfn);
4089                                 break;
4090                         }
4091
4092                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4093                                                      start_vpfn, last_vpfn);
4094                         if (iova == NULL) {
4095                                 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4096                                         start_vpfn, last_vpfn);
4097                                 return NOTIFY_BAD;
4098                         }
4099
4100                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4101                                                iova->pfn_hi);
4102
4103                         rcu_read_lock();
4104                         for_each_active_iommu(iommu, drhd)
4105                                 iommu_flush_iotlb_psi(iommu, si_domain->id,
4106                                         iova->pfn_lo, iova_size(iova),
4107                                         !freelist, 0);
4108                         rcu_read_unlock();
4109                         dma_free_pagelist(freelist);
4110
4111                         start_vpfn = iova->pfn_hi + 1;
4112                         free_iova_mem(iova);
4113                 }
4114                 break;
4115         }
4116
4117         return NOTIFY_OK;
4118 }
4119
4120 static struct notifier_block intel_iommu_memory_nb = {
4121         .notifier_call = intel_iommu_memory_notifier,
4122         .priority = 0
4123 };
4124
4125
4126 static ssize_t intel_iommu_show_version(struct device *dev,
4127                                         struct device_attribute *attr,
4128                                         char *buf)
4129 {
4130         struct intel_iommu *iommu = dev_get_drvdata(dev);
4131         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4132         return sprintf(buf, "%d:%d\n",
4133                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4134 }
4135 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4136
4137 static ssize_t intel_iommu_show_address(struct device *dev,
4138                                         struct device_attribute *attr,
4139                                         char *buf)
4140 {
4141         struct intel_iommu *iommu = dev_get_drvdata(dev);
4142         return sprintf(buf, "%llx\n", iommu->reg_phys);
4143 }
4144 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4145
4146 static ssize_t intel_iommu_show_cap(struct device *dev,
4147                                     struct device_attribute *attr,
4148                                     char *buf)
4149 {
4150         struct intel_iommu *iommu = dev_get_drvdata(dev);
4151         return sprintf(buf, "%llx\n", iommu->cap);
4152 }
4153 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4154
4155 static ssize_t intel_iommu_show_ecap(struct device *dev,
4156                                     struct device_attribute *attr,
4157                                     char *buf)
4158 {
4159         struct intel_iommu *iommu = dev_get_drvdata(dev);
4160         return sprintf(buf, "%llx\n", iommu->ecap);
4161 }
4162 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4163
4164 static struct attribute *intel_iommu_attrs[] = {
4165         &dev_attr_version.attr,
4166         &dev_attr_address.attr,
4167         &dev_attr_cap.attr,
4168         &dev_attr_ecap.attr,
4169         NULL,
4170 };
4171
4172 static struct attribute_group intel_iommu_group = {
4173         .name = "intel-iommu",
4174         .attrs = intel_iommu_attrs,
4175 };
4176
4177 const struct attribute_group *intel_iommu_groups[] = {
4178         &intel_iommu_group,
4179         NULL,
4180 };
4181
4182 int __init intel_iommu_init(void)
4183 {
4184         int ret = -ENODEV;
4185         struct dmar_drhd_unit *drhd;
4186         struct intel_iommu *iommu;
4187
4188         /* VT-d is required for a TXT/tboot launch, so enforce that */
4189         force_on = tboot_force_iommu();
4190
4191         if (iommu_init_mempool()) {
4192                 if (force_on)
4193                         panic("tboot: Failed to initialize iommu memory\n");
4194                 return -ENOMEM;
4195         }
4196
4197         down_write(&dmar_global_lock);
4198         if (dmar_table_init()) {
4199                 if (force_on)
4200                         panic("tboot: Failed to initialize DMAR table\n");
4201                 goto out_free_dmar;
4202         }
4203
4204         /*
4205          * Disable translation if already enabled prior to OS handover.
4206          */
4207         for_each_active_iommu(iommu, drhd)
4208                 if (iommu->gcmd & DMA_GCMD_TE)
4209                         iommu_disable_translation(iommu);
4210
4211         if (dmar_dev_scope_init() < 0) {
4212                 if (force_on)
4213                         panic("tboot: Failed to initialize DMAR device scope\n");
4214                 goto out_free_dmar;
4215         }
4216
4217         if (no_iommu || dmar_disabled)
4218                 goto out_free_dmar;
4219
4220         if (list_empty(&dmar_rmrr_units))
4221                 printk(KERN_INFO "DMAR: No RMRR found\n");
4222
4223         if (list_empty(&dmar_atsr_units))
4224                 printk(KERN_INFO "DMAR: No ATSR found\n");
4225
4226         if (dmar_init_reserved_ranges()) {
4227                 if (force_on)
4228                         panic("tboot: Failed to reserve iommu ranges\n");
4229                 goto out_free_reserved_range;
4230         }
4231
4232         init_no_remapping_devices();
4233
4234         ret = init_dmars();
4235         if (ret) {
4236                 if (force_on)
4237                         panic("tboot: Failed to initialize DMARs\n");
4238                 printk(KERN_ERR "IOMMU: dmar init failed\n");
4239                 goto out_free_reserved_range;
4240         }
4241         up_write(&dmar_global_lock);
4242         printk(KERN_INFO
4243         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4244
4245         init_timer(&unmap_timer);
4246 #ifdef CONFIG_SWIOTLB
4247         swiotlb = 0;
4248 #endif
4249         dma_ops = &intel_dma_ops;
4250
4251         init_iommu_pm_ops();
4252
4253         for_each_active_iommu(iommu, drhd)
4254                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4255                                                        intel_iommu_groups,
4256                                                        iommu->name);
4257
4258         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4259         bus_register_notifier(&pci_bus_type, &device_nb);
4260         if (si_domain && !hw_pass_through)
4261                 register_memory_notifier(&intel_iommu_memory_nb);
4262
4263         intel_iommu_enabled = 1;
4264
4265         return 0;
4266
4267 out_free_reserved_range:
4268         put_iova_domain(&reserved_iova_list);
4269 out_free_dmar:
4270         intel_iommu_free_dmars();
4271         up_write(&dmar_global_lock);
4272         iommu_exit_mempool();
4273         return ret;
4274 }
4275
4276 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4277 {
4278         struct intel_iommu *iommu = opaque;
4279
4280         iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4281         return 0;
4282 }
4283
4284 /*
4285  * NB - intel-iommu lacks any sort of reference counting for the users of
4286  * dependent devices.  If multiple endpoints have intersecting dependent
4287  * devices, unbinding the driver from any one of them will possibly leave
4288  * the others unable to operate.
4289  */
4290 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4291                                            struct device *dev)
4292 {
4293         if (!iommu || !dev || !dev_is_pci(dev))
4294                 return;
4295
4296         pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4297 }
4298
4299 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4300                                        struct device *dev)
4301 {
4302         struct device_domain_info *info, *tmp;
4303         struct intel_iommu *iommu;
4304         unsigned long flags;
4305         int found = 0;
4306         u8 bus, devfn;
4307
4308         iommu = device_to_iommu(dev, &bus, &devfn);
4309         if (!iommu)
4310                 return;
4311
4312         spin_lock_irqsave(&device_domain_lock, flags);
4313         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4314                 if (info->iommu == iommu && info->bus == bus &&
4315                     info->devfn == devfn) {
4316                         unlink_domain_info(info);
4317                         spin_unlock_irqrestore(&device_domain_lock, flags);
4318
4319                         iommu_disable_dev_iotlb(info);
4320                         iommu_detach_dev(iommu, info->bus, info->devfn);
4321                         iommu_detach_dependent_devices(iommu, dev);
4322                         free_devinfo_mem(info);
4323
4324                         spin_lock_irqsave(&device_domain_lock, flags);
4325
4326                         if (found)
4327                                 break;
4328                         else
4329                                 continue;
4330                 }
4331
4332                 /* if there is no other devices under the same iommu
4333                  * owned by this domain, clear this iommu in iommu_bmp
4334                  * update iommu count and coherency
4335                  */
4336                 if (info->iommu == iommu)
4337                         found = 1;
4338         }
4339
4340         spin_unlock_irqrestore(&device_domain_lock, flags);
4341
4342         if (found == 0) {
4343                 domain_detach_iommu(domain, iommu);
4344                 if (!domain_type_is_vm_or_si(domain))
4345                         iommu_detach_domain(domain, iommu);
4346         }
4347 }
4348
4349 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4350 {
4351         int adjust_width;
4352
4353         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4354         domain_reserve_special_ranges(domain);
4355
4356         /* calculate AGAW */
4357         domain->gaw = guest_width;
4358         adjust_width = guestwidth_to_adjustwidth(guest_width);
4359         domain->agaw = width_to_agaw(adjust_width);
4360
4361         domain->iommu_coherency = 0;
4362         domain->iommu_snooping = 0;
4363         domain->iommu_superpage = 0;
4364         domain->max_addr = 0;
4365
4366         /* always allocate the top pgd */
4367         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4368         if (!domain->pgd)
4369                 return -ENOMEM;
4370         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4371         return 0;
4372 }
4373
4374 static int intel_iommu_domain_init(struct iommu_domain *domain)
4375 {
4376         struct dmar_domain *dmar_domain;
4377
4378         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4379         if (!dmar_domain) {
4380                 printk(KERN_ERR
4381                         "intel_iommu_domain_init: dmar_domain == NULL\n");
4382                 return -ENOMEM;
4383         }
4384         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4385                 printk(KERN_ERR
4386                         "intel_iommu_domain_init() failed\n");
4387                 domain_exit(dmar_domain);
4388                 return -ENOMEM;
4389         }
4390         domain_update_iommu_cap(dmar_domain);
4391         domain->priv = dmar_domain;
4392
4393         domain->geometry.aperture_start = 0;
4394         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4395         domain->geometry.force_aperture = true;
4396
4397         return 0;
4398 }
4399
4400 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4401 {
4402         struct dmar_domain *dmar_domain = domain->priv;
4403
4404         domain->priv = NULL;
4405         domain_exit(dmar_domain);
4406 }
4407
4408 static int intel_iommu_attach_device(struct iommu_domain *domain,
4409                                      struct device *dev)
4410 {
4411         struct dmar_domain *dmar_domain = domain->priv;
4412         struct intel_iommu *iommu;
4413         int addr_width;
4414         u8 bus, devfn;
4415
4416         if (device_is_rmrr_locked(dev)) {
4417                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4418                 return -EPERM;
4419         }
4420
4421         /* normally dev is not mapped */
4422         if (unlikely(domain_context_mapped(dev))) {
4423                 struct dmar_domain *old_domain;
4424
4425                 old_domain = find_domain(dev);
4426                 if (old_domain) {
4427                         if (domain_type_is_vm_or_si(dmar_domain))
4428                                 domain_remove_one_dev_info(old_domain, dev);
4429                         else
4430                                 domain_remove_dev_info(old_domain);
4431                 }
4432         }
4433
4434         iommu = device_to_iommu(dev, &bus, &devfn);
4435         if (!iommu)
4436                 return -ENODEV;
4437
4438         /* check if this iommu agaw is sufficient for max mapped address */
4439         addr_width = agaw_to_width(iommu->agaw);
4440         if (addr_width > cap_mgaw(iommu->cap))
4441                 addr_width = cap_mgaw(iommu->cap);
4442
4443         if (dmar_domain->max_addr > (1LL << addr_width)) {
4444                 printk(KERN_ERR "%s: iommu width (%d) is not "
4445                        "sufficient for the mapped address (%llx)\n",
4446                        __func__, addr_width, dmar_domain->max_addr);
4447                 return -EFAULT;
4448         }
4449         dmar_domain->gaw = addr_width;
4450
4451         /*
4452          * Knock out extra levels of page tables if necessary
4453          */
4454         while (iommu->agaw < dmar_domain->agaw) {
4455                 struct dma_pte *pte;
4456
4457                 pte = dmar_domain->pgd;
4458                 if (dma_pte_present(pte)) {
4459                         dmar_domain->pgd = (struct dma_pte *)
4460                                 phys_to_virt(dma_pte_addr(pte));
4461                         free_pgtable_page(pte);
4462                 }
4463                 dmar_domain->agaw--;
4464         }
4465
4466         return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4467 }
4468
4469 static void intel_iommu_detach_device(struct iommu_domain *domain,
4470                                       struct device *dev)
4471 {
4472         struct dmar_domain *dmar_domain = domain->priv;
4473
4474         domain_remove_one_dev_info(dmar_domain, dev);
4475 }
4476
4477 static int intel_iommu_map(struct iommu_domain *domain,
4478                            unsigned long iova, phys_addr_t hpa,
4479                            size_t size, int iommu_prot)
4480 {
4481         struct dmar_domain *dmar_domain = domain->priv;
4482         u64 max_addr;
4483         int prot = 0;
4484         int ret;
4485
4486         if (iommu_prot & IOMMU_READ)
4487                 prot |= DMA_PTE_READ;
4488         if (iommu_prot & IOMMU_WRITE)
4489                 prot |= DMA_PTE_WRITE;
4490         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4491                 prot |= DMA_PTE_SNP;
4492
4493         max_addr = iova + size;
4494         if (dmar_domain->max_addr < max_addr) {
4495                 u64 end;
4496
4497                 /* check if minimum agaw is sufficient for mapped address */
4498                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4499                 if (end < max_addr) {
4500                         printk(KERN_ERR "%s: iommu width (%d) is not "
4501                                "sufficient for the mapped address (%llx)\n",
4502                                __func__, dmar_domain->gaw, max_addr);
4503                         return -EFAULT;
4504                 }
4505                 dmar_domain->max_addr = max_addr;
4506         }
4507         /* Round up size to next multiple of PAGE_SIZE, if it and
4508            the low bits of hpa would take us onto the next page */
4509         size = aligned_nrpages(hpa, size);
4510         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4511                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4512         return ret;
4513 }
4514
4515 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4516                                 unsigned long iova, size_t size)
4517 {
4518         struct dmar_domain *dmar_domain = domain->priv;
4519         struct page *freelist = NULL;
4520         struct intel_iommu *iommu;
4521         unsigned long start_pfn, last_pfn;
4522         unsigned int npages;
4523         int iommu_id, num, ndomains, level = 0;
4524
4525         /* Cope with horrid API which requires us to unmap more than the
4526            size argument if it happens to be a large-page mapping. */
4527         if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4528                 BUG();
4529
4530         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4531                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4532
4533         start_pfn = iova >> VTD_PAGE_SHIFT;
4534         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4535
4536         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4537
4538         npages = last_pfn - start_pfn + 1;
4539
4540         for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4541                iommu = g_iommus[iommu_id];
4542
4543                /*
4544                 * find bit position of dmar_domain
4545                 */
4546                ndomains = cap_ndoms(iommu->cap);
4547                for_each_set_bit(num, iommu->domain_ids, ndomains) {
4548                        if (iommu->domains[num] == dmar_domain)
4549                                iommu_flush_iotlb_psi(iommu, num, start_pfn,
4550                                                      npages, !freelist, 0);
4551                }
4552
4553         }
4554
4555         dma_free_pagelist(freelist);
4556
4557         if (dmar_domain->max_addr == iova + size)
4558                 dmar_domain->max_addr = iova;
4559
4560         return size;
4561 }
4562
4563 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4564                                             dma_addr_t iova)
4565 {
4566         struct dmar_domain *dmar_domain = domain->priv;
4567         struct dma_pte *pte;
4568         int level = 0;
4569         u64 phys = 0;
4570
4571         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4572         if (pte)
4573                 phys = dma_pte_addr(pte);
4574
4575         return phys;
4576 }
4577
4578 static bool intel_iommu_capable(enum iommu_cap cap)
4579 {
4580         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4581                 return domain_update_iommu_snooping(NULL) == 1;
4582         if (cap == IOMMU_CAP_INTR_REMAP)
4583                 return irq_remapping_enabled == 1;
4584
4585         return false;
4586 }
4587
4588 static int intel_iommu_add_device(struct device *dev)
4589 {
4590         struct intel_iommu *iommu;
4591         struct iommu_group *group;
4592         u8 bus, devfn;
4593
4594         iommu = device_to_iommu(dev, &bus, &devfn);
4595         if (!iommu)
4596                 return -ENODEV;
4597
4598         iommu_device_link(iommu->iommu_dev, dev);
4599
4600         group = iommu_group_get_for_dev(dev);
4601
4602         if (IS_ERR(group))
4603                 return PTR_ERR(group);
4604
4605         iommu_group_put(group);
4606         return 0;
4607 }
4608
4609 static void intel_iommu_remove_device(struct device *dev)
4610 {
4611         struct intel_iommu *iommu;
4612         u8 bus, devfn;
4613
4614         iommu = device_to_iommu(dev, &bus, &devfn);
4615         if (!iommu)
4616                 return;
4617
4618         iommu_group_remove_device(dev);
4619
4620         iommu_device_unlink(iommu->iommu_dev, dev);
4621 }
4622
4623 static const struct iommu_ops intel_iommu_ops = {
4624         .capable        = intel_iommu_capable,
4625         .domain_init    = intel_iommu_domain_init,
4626         .domain_destroy = intel_iommu_domain_destroy,
4627         .attach_dev     = intel_iommu_attach_device,
4628         .detach_dev     = intel_iommu_detach_device,
4629         .map            = intel_iommu_map,
4630         .unmap          = intel_iommu_unmap,
4631         .map_sg         = default_iommu_map_sg,
4632         .iova_to_phys   = intel_iommu_iova_to_phys,
4633         .add_device     = intel_iommu_add_device,
4634         .remove_device  = intel_iommu_remove_device,
4635         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4636 };
4637
4638 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4639 {
4640         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4641         printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4642         dmar_map_gfx = 0;
4643 }
4644
4645 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4646 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4647 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4648 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4650 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4651 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4652
4653 static void quirk_iommu_rwbf(struct pci_dev *dev)
4654 {
4655         /*
4656          * Mobile 4 Series Chipset neglects to set RWBF capability,
4657          * but needs it. Same seems to hold for the desktop versions.
4658          */
4659         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4660         rwbf_quirk = 1;
4661 }
4662
4663 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4664 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4665 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4666 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4667 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4668 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4669 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4670
4671 #define GGC 0x52
4672 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4673 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4674 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4675 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4676 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4677 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4678 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4679 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4680
4681 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4682 {
4683         unsigned short ggc;
4684
4685         if (pci_read_config_word(dev, GGC, &ggc))
4686                 return;
4687
4688         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4689                 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4690                 dmar_map_gfx = 0;
4691         } else if (dmar_map_gfx) {
4692                 /* we have to ensure the gfx device is idle before we flush */
4693                 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4694                 intel_iommu_strict = 1;
4695        }
4696 }
4697 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4698 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4699 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4700 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4701
4702 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4703    ISOCH DMAR unit for the Azalia sound device, but not give it any
4704    TLB entries, which causes it to deadlock. Check for that.  We do
4705    this in a function called from init_dmars(), instead of in a PCI
4706    quirk, because we don't want to print the obnoxious "BIOS broken"
4707    message if VT-d is actually disabled.
4708 */
4709 static void __init check_tylersburg_isoch(void)
4710 {
4711         struct pci_dev *pdev;
4712         uint32_t vtisochctrl;
4713
4714         /* If there's no Azalia in the system anyway, forget it. */
4715         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4716         if (!pdev)
4717                 return;
4718         pci_dev_put(pdev);
4719
4720         /* System Management Registers. Might be hidden, in which case
4721            we can't do the sanity check. But that's OK, because the
4722            known-broken BIOSes _don't_ actually hide it, so far. */
4723         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4724         if (!pdev)
4725                 return;
4726
4727         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4728                 pci_dev_put(pdev);
4729                 return;
4730         }
4731
4732         pci_dev_put(pdev);
4733
4734         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4735         if (vtisochctrl & 1)
4736                 return;
4737
4738         /* Drop all bits other than the number of TLB entries */
4739         vtisochctrl &= 0x1c;
4740
4741         /* If we have the recommended number of TLB entries (16), fine. */
4742         if (vtisochctrl == 0x10)
4743                 return;
4744
4745         /* Zero TLB entries? You get to ride the short bus to school. */
4746         if (!vtisochctrl) {
4747                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4748                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4749                      dmi_get_system_info(DMI_BIOS_VENDOR),
4750                      dmi_get_system_info(DMI_BIOS_VERSION),
4751                      dmi_get_system_info(DMI_PRODUCT_VERSION));
4752                 iommu_identity_mapping |= IDENTMAP_AZALIA;
4753                 return;
4754         }
4755         
4756         printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4757                vtisochctrl);
4758 }