ARM: mvebu: update mvebu_v7_defconfig with cpufreq support
[cascardo/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48 #include "pci.h"
49
50 #define ROOT_SIZE               VTD_PAGE_SIZE
51 #define CONTEXT_SIZE            VTD_PAGE_SIZE
52
53 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
54 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
55 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56
57 #define IOAPIC_RANGE_START      (0xfee00000)
58 #define IOAPIC_RANGE_END        (0xfeefffff)
59 #define IOVA_START_ADDR         (0x1000)
60
61 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62
63 #define MAX_AGAW_WIDTH 64
64 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
65
66 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
67 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
68
69 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
70    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
71 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
72                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
73 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
74
75 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
76 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
77 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
78
79 /* page table handling */
80 #define LEVEL_STRIDE            (9)
81 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
82
83 /*
84  * This bitmap is used to advertise the page sizes our hardware support
85  * to the IOMMU core, which will then use this information to split
86  * physically contiguous memory regions it is mapping into page sizes
87  * that we support.
88  *
89  * Traditionally the IOMMU core just handed us the mappings directly,
90  * after making sure the size is an order of a 4KiB page and that the
91  * mapping has natural alignment.
92  *
93  * To retain this behavior, we currently advertise that we support
94  * all page sizes that are an order of 4KiB.
95  *
96  * If at some point we'd like to utilize the IOMMU core's new behavior,
97  * we could change this to advertise the real page sizes we support.
98  */
99 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
100
101 static inline int agaw_to_level(int agaw)
102 {
103         return agaw + 2;
104 }
105
106 static inline int agaw_to_width(int agaw)
107 {
108         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
109 }
110
111 static inline int width_to_agaw(int width)
112 {
113         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
114 }
115
116 static inline unsigned int level_to_offset_bits(int level)
117 {
118         return (level - 1) * LEVEL_STRIDE;
119 }
120
121 static inline int pfn_level_offset(unsigned long pfn, int level)
122 {
123         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
124 }
125
126 static inline unsigned long level_mask(int level)
127 {
128         return -1UL << level_to_offset_bits(level);
129 }
130
131 static inline unsigned long level_size(int level)
132 {
133         return 1UL << level_to_offset_bits(level);
134 }
135
136 static inline unsigned long align_to_level(unsigned long pfn, int level)
137 {
138         return (pfn + level_size(level) - 1) & level_mask(level);
139 }
140
141 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
142 {
143         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
144 }
145
146 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
147    are never going to work. */
148 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
149 {
150         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
151 }
152
153 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
154 {
155         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
156 }
157 static inline unsigned long page_to_dma_pfn(struct page *pg)
158 {
159         return mm_to_dma_pfn(page_to_pfn(pg));
160 }
161 static inline unsigned long virt_to_dma_pfn(void *p)
162 {
163         return page_to_dma_pfn(virt_to_page(p));
164 }
165
166 /* global iommu list, set NULL for ignored DMAR units */
167 static struct intel_iommu **g_iommus;
168
169 static void __init check_tylersburg_isoch(void);
170 static int rwbf_quirk;
171
172 /*
173  * set to 1 to panic kernel if can't successfully enable VT-d
174  * (used when kernel is launched w/ TXT)
175  */
176 static int force_on = 0;
177
178 /*
179  * 0: Present
180  * 1-11: Reserved
181  * 12-63: Context Ptr (12 - (haw-1))
182  * 64-127: Reserved
183  */
184 struct root_entry {
185         u64     val;
186         u64     rsvd1;
187 };
188 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
189 static inline bool root_present(struct root_entry *root)
190 {
191         return (root->val & 1);
192 }
193 static inline void set_root_present(struct root_entry *root)
194 {
195         root->val |= 1;
196 }
197 static inline void set_root_value(struct root_entry *root, unsigned long value)
198 {
199         root->val |= value & VTD_PAGE_MASK;
200 }
201
202 static inline struct context_entry *
203 get_context_addr_from_root(struct root_entry *root)
204 {
205         return (struct context_entry *)
206                 (root_present(root)?phys_to_virt(
207                 root->val & VTD_PAGE_MASK) :
208                 NULL);
209 }
210
211 /*
212  * low 64 bits:
213  * 0: present
214  * 1: fault processing disable
215  * 2-3: translation type
216  * 12-63: address space root
217  * high 64 bits:
218  * 0-2: address width
219  * 3-6: aval
220  * 8-23: domain id
221  */
222 struct context_entry {
223         u64 lo;
224         u64 hi;
225 };
226
227 static inline bool context_present(struct context_entry *context)
228 {
229         return (context->lo & 1);
230 }
231 static inline void context_set_present(struct context_entry *context)
232 {
233         context->lo |= 1;
234 }
235
236 static inline void context_set_fault_enable(struct context_entry *context)
237 {
238         context->lo &= (((u64)-1) << 2) | 1;
239 }
240
241 static inline void context_set_translation_type(struct context_entry *context,
242                                                 unsigned long value)
243 {
244         context->lo &= (((u64)-1) << 4) | 3;
245         context->lo |= (value & 3) << 2;
246 }
247
248 static inline void context_set_address_root(struct context_entry *context,
249                                             unsigned long value)
250 {
251         context->lo |= value & VTD_PAGE_MASK;
252 }
253
254 static inline void context_set_address_width(struct context_entry *context,
255                                              unsigned long value)
256 {
257         context->hi |= value & 7;
258 }
259
260 static inline void context_set_domain_id(struct context_entry *context,
261                                          unsigned long value)
262 {
263         context->hi |= (value & ((1 << 16) - 1)) << 8;
264 }
265
266 static inline void context_clear_entry(struct context_entry *context)
267 {
268         context->lo = 0;
269         context->hi = 0;
270 }
271
272 /*
273  * 0: readable
274  * 1: writable
275  * 2-6: reserved
276  * 7: super page
277  * 8-10: available
278  * 11: snoop behavior
279  * 12-63: Host physcial address
280  */
281 struct dma_pte {
282         u64 val;
283 };
284
285 static inline void dma_clear_pte(struct dma_pte *pte)
286 {
287         pte->val = 0;
288 }
289
290 static inline u64 dma_pte_addr(struct dma_pte *pte)
291 {
292 #ifdef CONFIG_64BIT
293         return pte->val & VTD_PAGE_MASK;
294 #else
295         /* Must have a full atomic 64-bit read */
296         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297 #endif
298 }
299
300 static inline bool dma_pte_present(struct dma_pte *pte)
301 {
302         return (pte->val & 3) != 0;
303 }
304
305 static inline bool dma_pte_superpage(struct dma_pte *pte)
306 {
307         return (pte->val & (1 << 7));
308 }
309
310 static inline int first_pte_in_page(struct dma_pte *pte)
311 {
312         return !((unsigned long)pte & ~VTD_PAGE_MASK);
313 }
314
315 /*
316  * This domain is a statically identity mapping domain.
317  *      1. This domain creats a static 1:1 mapping to all usable memory.
318  *      2. It maps to each iommu if successful.
319  *      3. Each iommu mapps to this domain if successful.
320  */
321 static struct dmar_domain *si_domain;
322 static int hw_pass_through = 1;
323
324 /* devices under the same p2p bridge are owned in one domain */
325 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
326
327 /* domain represents a virtual machine, more than one devices
328  * across iommus may be owned in one domain, e.g. kvm guest.
329  */
330 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
331
332 /* si_domain contains mulitple devices */
333 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
334
335 /* define the limit of IOMMUs supported in each domain */
336 #ifdef  CONFIG_X86
337 # define        IOMMU_UNITS_SUPPORTED   MAX_IO_APICS
338 #else
339 # define        IOMMU_UNITS_SUPPORTED   64
340 #endif
341
342 struct dmar_domain {
343         int     id;                     /* domain id */
344         int     nid;                    /* node id */
345         DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
346                                         /* bitmap of iommus this domain uses*/
347
348         struct list_head devices;       /* all devices' list */
349         struct iova_domain iovad;       /* iova's that belong to this domain */
350
351         struct dma_pte  *pgd;           /* virtual address */
352         int             gaw;            /* max guest address width */
353
354         /* adjusted guest address width, 0 is level 2 30-bit */
355         int             agaw;
356
357         int             flags;          /* flags to find out type of domain */
358
359         int             iommu_coherency;/* indicate coherency of iommu access */
360         int             iommu_snooping; /* indicate snooping control feature*/
361         int             iommu_count;    /* reference count of iommu */
362         int             iommu_superpage;/* Level of superpages supported:
363                                            0 == 4KiB (no superpages), 1 == 2MiB,
364                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
365         spinlock_t      iommu_lock;     /* protect iommu set in domain */
366         u64             max_addr;       /* maximum mapped address */
367 };
368
369 /* PCI domain-device relationship */
370 struct device_domain_info {
371         struct list_head link;  /* link to domain siblings */
372         struct list_head global; /* link to global list */
373         u8 bus;                 /* PCI bus number */
374         u8 devfn;               /* PCI devfn number */
375         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
376         struct intel_iommu *iommu; /* IOMMU used by this device */
377         struct dmar_domain *domain; /* pointer to domain */
378 };
379
380 struct dmar_rmrr_unit {
381         struct list_head list;          /* list of rmrr units   */
382         struct acpi_dmar_header *hdr;   /* ACPI header          */
383         u64     base_address;           /* reserved base address*/
384         u64     end_address;            /* reserved end address */
385         struct dmar_dev_scope *devices; /* target devices */
386         int     devices_cnt;            /* target device count */
387 };
388
389 struct dmar_atsr_unit {
390         struct list_head list;          /* list of ATSR units */
391         struct acpi_dmar_header *hdr;   /* ACPI header */
392         struct dmar_dev_scope *devices; /* target devices */
393         int devices_cnt;                /* target device count */
394         u8 include_all:1;               /* include all ports */
395 };
396
397 static LIST_HEAD(dmar_atsr_units);
398 static LIST_HEAD(dmar_rmrr_units);
399
400 #define for_each_rmrr_units(rmrr) \
401         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
402
403 static void flush_unmaps_timeout(unsigned long data);
404
405 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
406
407 #define HIGH_WATER_MARK 250
408 struct deferred_flush_tables {
409         int next;
410         struct iova *iova[HIGH_WATER_MARK];
411         struct dmar_domain *domain[HIGH_WATER_MARK];
412         struct page *freelist[HIGH_WATER_MARK];
413 };
414
415 static struct deferred_flush_tables *deferred_flush;
416
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
419
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
422
423 static int timer_on;
424 static long list_size;
425
426 static void domain_exit(struct dmar_domain *domain);
427 static void domain_remove_dev_info(struct dmar_domain *domain);
428 static void domain_remove_one_dev_info(struct dmar_domain *domain,
429                                        struct device *dev);
430 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
431                                            struct device *dev);
432
433 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
434 int dmar_disabled = 0;
435 #else
436 int dmar_disabled = 1;
437 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
438
439 int intel_iommu_enabled = 0;
440 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
441
442 static int dmar_map_gfx = 1;
443 static int dmar_forcedac;
444 static int intel_iommu_strict;
445 static int intel_iommu_superpage = 1;
446
447 int intel_iommu_gfx_mapped;
448 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
449
450 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
451 static DEFINE_SPINLOCK(device_domain_lock);
452 static LIST_HEAD(device_domain_list);
453
454 static struct iommu_ops intel_iommu_ops;
455
456 static int __init intel_iommu_setup(char *str)
457 {
458         if (!str)
459                 return -EINVAL;
460         while (*str) {
461                 if (!strncmp(str, "on", 2)) {
462                         dmar_disabled = 0;
463                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
464                 } else if (!strncmp(str, "off", 3)) {
465                         dmar_disabled = 1;
466                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
467                 } else if (!strncmp(str, "igfx_off", 8)) {
468                         dmar_map_gfx = 0;
469                         printk(KERN_INFO
470                                 "Intel-IOMMU: disable GFX device mapping\n");
471                 } else if (!strncmp(str, "forcedac", 8)) {
472                         printk(KERN_INFO
473                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
474                         dmar_forcedac = 1;
475                 } else if (!strncmp(str, "strict", 6)) {
476                         printk(KERN_INFO
477                                 "Intel-IOMMU: disable batched IOTLB flush\n");
478                         intel_iommu_strict = 1;
479                 } else if (!strncmp(str, "sp_off", 6)) {
480                         printk(KERN_INFO
481                                 "Intel-IOMMU: disable supported super page\n");
482                         intel_iommu_superpage = 0;
483                 }
484
485                 str += strcspn(str, ",");
486                 while (*str == ',')
487                         str++;
488         }
489         return 0;
490 }
491 __setup("intel_iommu=", intel_iommu_setup);
492
493 static struct kmem_cache *iommu_domain_cache;
494 static struct kmem_cache *iommu_devinfo_cache;
495 static struct kmem_cache *iommu_iova_cache;
496
497 static inline void *alloc_pgtable_page(int node)
498 {
499         struct page *page;
500         void *vaddr = NULL;
501
502         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
503         if (page)
504                 vaddr = page_address(page);
505         return vaddr;
506 }
507
508 static inline void free_pgtable_page(void *vaddr)
509 {
510         free_page((unsigned long)vaddr);
511 }
512
513 static inline void *alloc_domain_mem(void)
514 {
515         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
516 }
517
518 static void free_domain_mem(void *vaddr)
519 {
520         kmem_cache_free(iommu_domain_cache, vaddr);
521 }
522
523 static inline void * alloc_devinfo_mem(void)
524 {
525         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
526 }
527
528 static inline void free_devinfo_mem(void *vaddr)
529 {
530         kmem_cache_free(iommu_devinfo_cache, vaddr);
531 }
532
533 struct iova *alloc_iova_mem(void)
534 {
535         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
536 }
537
538 void free_iova_mem(struct iova *iova)
539 {
540         kmem_cache_free(iommu_iova_cache, iova);
541 }
542
543
544 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
545 {
546         unsigned long sagaw;
547         int agaw = -1;
548
549         sagaw = cap_sagaw(iommu->cap);
550         for (agaw = width_to_agaw(max_gaw);
551              agaw >= 0; agaw--) {
552                 if (test_bit(agaw, &sagaw))
553                         break;
554         }
555
556         return agaw;
557 }
558
559 /*
560  * Calculate max SAGAW for each iommu.
561  */
562 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
563 {
564         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
565 }
566
567 /*
568  * calculate agaw for each iommu.
569  * "SAGAW" may be different across iommus, use a default agaw, and
570  * get a supported less agaw for iommus that don't support the default agaw.
571  */
572 int iommu_calculate_agaw(struct intel_iommu *iommu)
573 {
574         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
575 }
576
577 /* This functionin only returns single iommu in a domain */
578 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
579 {
580         int iommu_id;
581
582         /* si_domain and vm domain should not get here. */
583         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
584         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
585
586         iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
587         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
588                 return NULL;
589
590         return g_iommus[iommu_id];
591 }
592
593 static void domain_update_iommu_coherency(struct dmar_domain *domain)
594 {
595         struct dmar_drhd_unit *drhd;
596         struct intel_iommu *iommu;
597         int i, found = 0;
598
599         domain->iommu_coherency = 1;
600
601         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
602                 found = 1;
603                 if (!ecap_coherent(g_iommus[i]->ecap)) {
604                         domain->iommu_coherency = 0;
605                         break;
606                 }
607         }
608         if (found)
609                 return;
610
611         /* No hardware attached; use lowest common denominator */
612         rcu_read_lock();
613         for_each_active_iommu(iommu, drhd) {
614                 if (!ecap_coherent(iommu->ecap)) {
615                         domain->iommu_coherency = 0;
616                         break;
617                 }
618         }
619         rcu_read_unlock();
620 }
621
622 static void domain_update_iommu_snooping(struct dmar_domain *domain)
623 {
624         int i;
625
626         domain->iommu_snooping = 1;
627
628         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
629                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
630                         domain->iommu_snooping = 0;
631                         break;
632                 }
633         }
634 }
635
636 static void domain_update_iommu_superpage(struct dmar_domain *domain)
637 {
638         struct dmar_drhd_unit *drhd;
639         struct intel_iommu *iommu = NULL;
640         int mask = 0xf;
641
642         if (!intel_iommu_superpage) {
643                 domain->iommu_superpage = 0;
644                 return;
645         }
646
647         /* set iommu_superpage to the smallest common denominator */
648         rcu_read_lock();
649         for_each_active_iommu(iommu, drhd) {
650                 mask &= cap_super_page_val(iommu->cap);
651                 if (!mask) {
652                         break;
653                 }
654         }
655         rcu_read_unlock();
656
657         domain->iommu_superpage = fls(mask);
658 }
659
660 /* Some capabilities may be different across iommus */
661 static void domain_update_iommu_cap(struct dmar_domain *domain)
662 {
663         domain_update_iommu_coherency(domain);
664         domain_update_iommu_snooping(domain);
665         domain_update_iommu_superpage(domain);
666 }
667
668 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
669 {
670         struct dmar_drhd_unit *drhd = NULL;
671         struct intel_iommu *iommu;
672         struct device *tmp;
673         struct pci_dev *ptmp, *pdev = NULL;
674         u16 segment;
675         int i;
676
677         if (dev_is_pci(dev)) {
678                 pdev = to_pci_dev(dev);
679                 segment = pci_domain_nr(pdev->bus);
680         } else if (ACPI_COMPANION(dev))
681                 dev = &ACPI_COMPANION(dev)->dev;
682
683         rcu_read_lock();
684         for_each_active_iommu(iommu, drhd) {
685                 if (pdev && segment != drhd->segment)
686                         continue;
687
688                 for_each_active_dev_scope(drhd->devices,
689                                           drhd->devices_cnt, i, tmp) {
690                         if (tmp == dev) {
691                                 *bus = drhd->devices[i].bus;
692                                 *devfn = drhd->devices[i].devfn;
693                                 goto out;
694                         }
695
696                         if (!pdev || !dev_is_pci(tmp))
697                                 continue;
698
699                         ptmp = to_pci_dev(tmp);
700                         if (ptmp->subordinate &&
701                             ptmp->subordinate->number <= pdev->bus->number &&
702                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
703                                 goto got_pdev;
704                 }
705
706                 if (pdev && drhd->include_all) {
707                 got_pdev:
708                         *bus = pdev->bus->number;
709                         *devfn = pdev->devfn;
710                         goto out;
711                 }
712         }
713         iommu = NULL;
714  out:
715         rcu_read_unlock();
716
717         return iommu;
718 }
719
720 static void domain_flush_cache(struct dmar_domain *domain,
721                                void *addr, int size)
722 {
723         if (!domain->iommu_coherency)
724                 clflush_cache_range(addr, size);
725 }
726
727 /* Gets context entry for a given bus and devfn */
728 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
729                 u8 bus, u8 devfn)
730 {
731         struct root_entry *root;
732         struct context_entry *context;
733         unsigned long phy_addr;
734         unsigned long flags;
735
736         spin_lock_irqsave(&iommu->lock, flags);
737         root = &iommu->root_entry[bus];
738         context = get_context_addr_from_root(root);
739         if (!context) {
740                 context = (struct context_entry *)
741                                 alloc_pgtable_page(iommu->node);
742                 if (!context) {
743                         spin_unlock_irqrestore(&iommu->lock, flags);
744                         return NULL;
745                 }
746                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
747                 phy_addr = virt_to_phys((void *)context);
748                 set_root_value(root, phy_addr);
749                 set_root_present(root);
750                 __iommu_flush_cache(iommu, root, sizeof(*root));
751         }
752         spin_unlock_irqrestore(&iommu->lock, flags);
753         return &context[devfn];
754 }
755
756 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
757 {
758         struct root_entry *root;
759         struct context_entry *context;
760         int ret;
761         unsigned long flags;
762
763         spin_lock_irqsave(&iommu->lock, flags);
764         root = &iommu->root_entry[bus];
765         context = get_context_addr_from_root(root);
766         if (!context) {
767                 ret = 0;
768                 goto out;
769         }
770         ret = context_present(&context[devfn]);
771 out:
772         spin_unlock_irqrestore(&iommu->lock, flags);
773         return ret;
774 }
775
776 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
777 {
778         struct root_entry *root;
779         struct context_entry *context;
780         unsigned long flags;
781
782         spin_lock_irqsave(&iommu->lock, flags);
783         root = &iommu->root_entry[bus];
784         context = get_context_addr_from_root(root);
785         if (context) {
786                 context_clear_entry(&context[devfn]);
787                 __iommu_flush_cache(iommu, &context[devfn], \
788                         sizeof(*context));
789         }
790         spin_unlock_irqrestore(&iommu->lock, flags);
791 }
792
793 static void free_context_table(struct intel_iommu *iommu)
794 {
795         struct root_entry *root;
796         int i;
797         unsigned long flags;
798         struct context_entry *context;
799
800         spin_lock_irqsave(&iommu->lock, flags);
801         if (!iommu->root_entry) {
802                 goto out;
803         }
804         for (i = 0; i < ROOT_ENTRY_NR; i++) {
805                 root = &iommu->root_entry[i];
806                 context = get_context_addr_from_root(root);
807                 if (context)
808                         free_pgtable_page(context);
809         }
810         free_pgtable_page(iommu->root_entry);
811         iommu->root_entry = NULL;
812 out:
813         spin_unlock_irqrestore(&iommu->lock, flags);
814 }
815
816 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
817                                       unsigned long pfn, int *target_level)
818 {
819         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
820         struct dma_pte *parent, *pte = NULL;
821         int level = agaw_to_level(domain->agaw);
822         int offset;
823
824         BUG_ON(!domain->pgd);
825
826         if (addr_width < BITS_PER_LONG && pfn >> addr_width)
827                 /* Address beyond IOMMU's addressing capabilities. */
828                 return NULL;
829
830         parent = domain->pgd;
831
832         while (1) {
833                 void *tmp_page;
834
835                 offset = pfn_level_offset(pfn, level);
836                 pte = &parent[offset];
837                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
838                         break;
839                 if (level == *target_level)
840                         break;
841
842                 if (!dma_pte_present(pte)) {
843                         uint64_t pteval;
844
845                         tmp_page = alloc_pgtable_page(domain->nid);
846
847                         if (!tmp_page)
848                                 return NULL;
849
850                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
851                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
852                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
853                                 /* Someone else set it while we were thinking; use theirs. */
854                                 free_pgtable_page(tmp_page);
855                         } else {
856                                 dma_pte_addr(pte);
857                                 domain_flush_cache(domain, pte, sizeof(*pte));
858                         }
859                 }
860                 if (level == 1)
861                         break;
862
863                 parent = phys_to_virt(dma_pte_addr(pte));
864                 level--;
865         }
866
867         if (!*target_level)
868                 *target_level = level;
869
870         return pte;
871 }
872
873
874 /* return address's pte at specific level */
875 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
876                                          unsigned long pfn,
877                                          int level, int *large_page)
878 {
879         struct dma_pte *parent, *pte = NULL;
880         int total = agaw_to_level(domain->agaw);
881         int offset;
882
883         parent = domain->pgd;
884         while (level <= total) {
885                 offset = pfn_level_offset(pfn, total);
886                 pte = &parent[offset];
887                 if (level == total)
888                         return pte;
889
890                 if (!dma_pte_present(pte)) {
891                         *large_page = total;
892                         break;
893                 }
894
895                 if (pte->val & DMA_PTE_LARGE_PAGE) {
896                         *large_page = total;
897                         return pte;
898                 }
899
900                 parent = phys_to_virt(dma_pte_addr(pte));
901                 total--;
902         }
903         return NULL;
904 }
905
906 /* clear last level pte, a tlb flush should be followed */
907 static void dma_pte_clear_range(struct dmar_domain *domain,
908                                 unsigned long start_pfn,
909                                 unsigned long last_pfn)
910 {
911         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
912         unsigned int large_page = 1;
913         struct dma_pte *first_pte, *pte;
914
915         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
916         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
917         BUG_ON(start_pfn > last_pfn);
918
919         /* we don't need lock here; nobody else touches the iova range */
920         do {
921                 large_page = 1;
922                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
923                 if (!pte) {
924                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
925                         continue;
926                 }
927                 do {
928                         dma_clear_pte(pte);
929                         start_pfn += lvl_to_nr_pages(large_page);
930                         pte++;
931                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
932
933                 domain_flush_cache(domain, first_pte,
934                                    (void *)pte - (void *)first_pte);
935
936         } while (start_pfn && start_pfn <= last_pfn);
937 }
938
939 static void dma_pte_free_level(struct dmar_domain *domain, int level,
940                                struct dma_pte *pte, unsigned long pfn,
941                                unsigned long start_pfn, unsigned long last_pfn)
942 {
943         pfn = max(start_pfn, pfn);
944         pte = &pte[pfn_level_offset(pfn, level)];
945
946         do {
947                 unsigned long level_pfn;
948                 struct dma_pte *level_pte;
949
950                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
951                         goto next;
952
953                 level_pfn = pfn & level_mask(level - 1);
954                 level_pte = phys_to_virt(dma_pte_addr(pte));
955
956                 if (level > 2)
957                         dma_pte_free_level(domain, level - 1, level_pte,
958                                            level_pfn, start_pfn, last_pfn);
959
960                 /* If range covers entire pagetable, free it */
961                 if (!(start_pfn > level_pfn ||
962                       last_pfn < level_pfn + level_size(level) - 1)) {
963                         dma_clear_pte(pte);
964                         domain_flush_cache(domain, pte, sizeof(*pte));
965                         free_pgtable_page(level_pte);
966                 }
967 next:
968                 pfn += level_size(level);
969         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
970 }
971
972 /* free page table pages. last level pte should already be cleared */
973 static void dma_pte_free_pagetable(struct dmar_domain *domain,
974                                    unsigned long start_pfn,
975                                    unsigned long last_pfn)
976 {
977         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
978
979         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
980         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
981         BUG_ON(start_pfn > last_pfn);
982
983         /* We don't need lock here; nobody else touches the iova range */
984         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
985                            domain->pgd, 0, start_pfn, last_pfn);
986
987         /* free pgd */
988         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
989                 free_pgtable_page(domain->pgd);
990                 domain->pgd = NULL;
991         }
992 }
993
994 /* When a page at a given level is being unlinked from its parent, we don't
995    need to *modify* it at all. All we need to do is make a list of all the
996    pages which can be freed just as soon as we've flushed the IOTLB and we
997    know the hardware page-walk will no longer touch them.
998    The 'pte' argument is the *parent* PTE, pointing to the page that is to
999    be freed. */
1000 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1001                                             int level, struct dma_pte *pte,
1002                                             struct page *freelist)
1003 {
1004         struct page *pg;
1005
1006         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1007         pg->freelist = freelist;
1008         freelist = pg;
1009
1010         if (level == 1)
1011                 return freelist;
1012
1013         pte = page_address(pg);
1014         do {
1015                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1016                         freelist = dma_pte_list_pagetables(domain, level - 1,
1017                                                            pte, freelist);
1018                 pte++;
1019         } while (!first_pte_in_page(pte));
1020
1021         return freelist;
1022 }
1023
1024 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1025                                         struct dma_pte *pte, unsigned long pfn,
1026                                         unsigned long start_pfn,
1027                                         unsigned long last_pfn,
1028                                         struct page *freelist)
1029 {
1030         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1031
1032         pfn = max(start_pfn, pfn);
1033         pte = &pte[pfn_level_offset(pfn, level)];
1034
1035         do {
1036                 unsigned long level_pfn;
1037
1038                 if (!dma_pte_present(pte))
1039                         goto next;
1040
1041                 level_pfn = pfn & level_mask(level);
1042
1043                 /* If range covers entire pagetable, free it */
1044                 if (start_pfn <= level_pfn &&
1045                     last_pfn >= level_pfn + level_size(level) - 1) {
1046                         /* These suborbinate page tables are going away entirely. Don't
1047                            bother to clear them; we're just going to *free* them. */
1048                         if (level > 1 && !dma_pte_superpage(pte))
1049                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1050
1051                         dma_clear_pte(pte);
1052                         if (!first_pte)
1053                                 first_pte = pte;
1054                         last_pte = pte;
1055                 } else if (level > 1) {
1056                         /* Recurse down into a level that isn't *entirely* obsolete */
1057                         freelist = dma_pte_clear_level(domain, level - 1,
1058                                                        phys_to_virt(dma_pte_addr(pte)),
1059                                                        level_pfn, start_pfn, last_pfn,
1060                                                        freelist);
1061                 }
1062 next:
1063                 pfn += level_size(level);
1064         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1065
1066         if (first_pte)
1067                 domain_flush_cache(domain, first_pte,
1068                                    (void *)++last_pte - (void *)first_pte);
1069
1070         return freelist;
1071 }
1072
1073 /* We can't just free the pages because the IOMMU may still be walking
1074    the page tables, and may have cached the intermediate levels. The
1075    pages can only be freed after the IOTLB flush has been done. */
1076 struct page *domain_unmap(struct dmar_domain *domain,
1077                           unsigned long start_pfn,
1078                           unsigned long last_pfn)
1079 {
1080         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1081         struct page *freelist = NULL;
1082
1083         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1084         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1085         BUG_ON(start_pfn > last_pfn);
1086
1087         /* we don't need lock here; nobody else touches the iova range */
1088         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1089                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1090
1091         /* free pgd */
1092         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1093                 struct page *pgd_page = virt_to_page(domain->pgd);
1094                 pgd_page->freelist = freelist;
1095                 freelist = pgd_page;
1096
1097                 domain->pgd = NULL;
1098         }
1099
1100         return freelist;
1101 }
1102
1103 void dma_free_pagelist(struct page *freelist)
1104 {
1105         struct page *pg;
1106
1107         while ((pg = freelist)) {
1108                 freelist = pg->freelist;
1109                 free_pgtable_page(page_address(pg));
1110         }
1111 }
1112
1113 /* iommu handling */
1114 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1115 {
1116         struct root_entry *root;
1117         unsigned long flags;
1118
1119         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1120         if (!root)
1121                 return -ENOMEM;
1122
1123         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1124
1125         spin_lock_irqsave(&iommu->lock, flags);
1126         iommu->root_entry = root;
1127         spin_unlock_irqrestore(&iommu->lock, flags);
1128
1129         return 0;
1130 }
1131
1132 static void iommu_set_root_entry(struct intel_iommu *iommu)
1133 {
1134         void *addr;
1135         u32 sts;
1136         unsigned long flag;
1137
1138         addr = iommu->root_entry;
1139
1140         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1141         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1142
1143         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1144
1145         /* Make sure hardware complete it */
1146         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1147                       readl, (sts & DMA_GSTS_RTPS), sts);
1148
1149         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1150 }
1151
1152 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1153 {
1154         u32 val;
1155         unsigned long flag;
1156
1157         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1158                 return;
1159
1160         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1161         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1162
1163         /* Make sure hardware complete it */
1164         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1165                       readl, (!(val & DMA_GSTS_WBFS)), val);
1166
1167         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1168 }
1169
1170 /* return value determine if we need a write buffer flush */
1171 static void __iommu_flush_context(struct intel_iommu *iommu,
1172                                   u16 did, u16 source_id, u8 function_mask,
1173                                   u64 type)
1174 {
1175         u64 val = 0;
1176         unsigned long flag;
1177
1178         switch (type) {
1179         case DMA_CCMD_GLOBAL_INVL:
1180                 val = DMA_CCMD_GLOBAL_INVL;
1181                 break;
1182         case DMA_CCMD_DOMAIN_INVL:
1183                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1184                 break;
1185         case DMA_CCMD_DEVICE_INVL:
1186                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1187                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1188                 break;
1189         default:
1190                 BUG();
1191         }
1192         val |= DMA_CCMD_ICC;
1193
1194         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1195         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1196
1197         /* Make sure hardware complete it */
1198         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1199                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1200
1201         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1202 }
1203
1204 /* return value determine if we need a write buffer flush */
1205 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1206                                 u64 addr, unsigned int size_order, u64 type)
1207 {
1208         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1209         u64 val = 0, val_iva = 0;
1210         unsigned long flag;
1211
1212         switch (type) {
1213         case DMA_TLB_GLOBAL_FLUSH:
1214                 /* global flush doesn't need set IVA_REG */
1215                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1216                 break;
1217         case DMA_TLB_DSI_FLUSH:
1218                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1219                 break;
1220         case DMA_TLB_PSI_FLUSH:
1221                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1222                 /* IH bit is passed in as part of address */
1223                 val_iva = size_order | addr;
1224                 break;
1225         default:
1226                 BUG();
1227         }
1228         /* Note: set drain read/write */
1229 #if 0
1230         /*
1231          * This is probably to be super secure.. Looks like we can
1232          * ignore it without any impact.
1233          */
1234         if (cap_read_drain(iommu->cap))
1235                 val |= DMA_TLB_READ_DRAIN;
1236 #endif
1237         if (cap_write_drain(iommu->cap))
1238                 val |= DMA_TLB_WRITE_DRAIN;
1239
1240         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1241         /* Note: Only uses first TLB reg currently */
1242         if (val_iva)
1243                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1244         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1245
1246         /* Make sure hardware complete it */
1247         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1248                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1249
1250         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251
1252         /* check IOTLB invalidation granularity */
1253         if (DMA_TLB_IAIG(val) == 0)
1254                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1255         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1256                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1257                         (unsigned long long)DMA_TLB_IIRG(type),
1258                         (unsigned long long)DMA_TLB_IAIG(val));
1259 }
1260
1261 static struct device_domain_info *
1262 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1263                          u8 bus, u8 devfn)
1264 {
1265         int found = 0;
1266         unsigned long flags;
1267         struct device_domain_info *info;
1268         struct pci_dev *pdev;
1269
1270         if (!ecap_dev_iotlb_support(iommu->ecap))
1271                 return NULL;
1272
1273         if (!iommu->qi)
1274                 return NULL;
1275
1276         spin_lock_irqsave(&device_domain_lock, flags);
1277         list_for_each_entry(info, &domain->devices, link)
1278                 if (info->bus == bus && info->devfn == devfn) {
1279                         found = 1;
1280                         break;
1281                 }
1282         spin_unlock_irqrestore(&device_domain_lock, flags);
1283
1284         if (!found || !info->dev || !dev_is_pci(info->dev))
1285                 return NULL;
1286
1287         pdev = to_pci_dev(info->dev);
1288
1289         if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1290                 return NULL;
1291
1292         if (!dmar_find_matched_atsr_unit(pdev))
1293                 return NULL;
1294
1295         return info;
1296 }
1297
1298 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1299 {
1300         if (!info || !dev_is_pci(info->dev))
1301                 return;
1302
1303         pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1304 }
1305
1306 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1307 {
1308         if (!info->dev || !dev_is_pci(info->dev) ||
1309             !pci_ats_enabled(to_pci_dev(info->dev)))
1310                 return;
1311
1312         pci_disable_ats(to_pci_dev(info->dev));
1313 }
1314
1315 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1316                                   u64 addr, unsigned mask)
1317 {
1318         u16 sid, qdep;
1319         unsigned long flags;
1320         struct device_domain_info *info;
1321
1322         spin_lock_irqsave(&device_domain_lock, flags);
1323         list_for_each_entry(info, &domain->devices, link) {
1324                 struct pci_dev *pdev;
1325                 if (!info->dev || !dev_is_pci(info->dev))
1326                         continue;
1327
1328                 pdev = to_pci_dev(info->dev);
1329                 if (!pci_ats_enabled(pdev))
1330                         continue;
1331
1332                 sid = info->bus << 8 | info->devfn;
1333                 qdep = pci_ats_queue_depth(pdev);
1334                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1335         }
1336         spin_unlock_irqrestore(&device_domain_lock, flags);
1337 }
1338
1339 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1340                                   unsigned long pfn, unsigned int pages, int ih, int map)
1341 {
1342         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1343         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1344
1345         BUG_ON(pages == 0);
1346
1347         if (ih)
1348                 ih = 1 << 6;
1349         /*
1350          * Fallback to domain selective flush if no PSI support or the size is
1351          * too big.
1352          * PSI requires page size to be 2 ^ x, and the base address is naturally
1353          * aligned to the size
1354          */
1355         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1356                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1357                                                 DMA_TLB_DSI_FLUSH);
1358         else
1359                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1360                                                 DMA_TLB_PSI_FLUSH);
1361
1362         /*
1363          * In caching mode, changes of pages from non-present to present require
1364          * flush. However, device IOTLB doesn't need to be flushed in this case.
1365          */
1366         if (!cap_caching_mode(iommu->cap) || !map)
1367                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1368 }
1369
1370 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1371 {
1372         u32 pmen;
1373         unsigned long flags;
1374
1375         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1376         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1377         pmen &= ~DMA_PMEN_EPM;
1378         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1379
1380         /* wait for the protected region status bit to clear */
1381         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1382                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1383
1384         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1385 }
1386
1387 static int iommu_enable_translation(struct intel_iommu *iommu)
1388 {
1389         u32 sts;
1390         unsigned long flags;
1391
1392         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1393         iommu->gcmd |= DMA_GCMD_TE;
1394         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1395
1396         /* Make sure hardware complete it */
1397         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1398                       readl, (sts & DMA_GSTS_TES), sts);
1399
1400         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1401         return 0;
1402 }
1403
1404 static int iommu_disable_translation(struct intel_iommu *iommu)
1405 {
1406         u32 sts;
1407         unsigned long flag;
1408
1409         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1410         iommu->gcmd &= ~DMA_GCMD_TE;
1411         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1412
1413         /* Make sure hardware complete it */
1414         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1415                       readl, (!(sts & DMA_GSTS_TES)), sts);
1416
1417         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1418         return 0;
1419 }
1420
1421
1422 static int iommu_init_domains(struct intel_iommu *iommu)
1423 {
1424         unsigned long ndomains;
1425         unsigned long nlongs;
1426
1427         ndomains = cap_ndoms(iommu->cap);
1428         pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1429                  iommu->seq_id, ndomains);
1430         nlongs = BITS_TO_LONGS(ndomains);
1431
1432         spin_lock_init(&iommu->lock);
1433
1434         /* TBD: there might be 64K domains,
1435          * consider other allocation for future chip
1436          */
1437         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1438         if (!iommu->domain_ids) {
1439                 pr_err("IOMMU%d: allocating domain id array failed\n",
1440                        iommu->seq_id);
1441                 return -ENOMEM;
1442         }
1443         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1444                         GFP_KERNEL);
1445         if (!iommu->domains) {
1446                 pr_err("IOMMU%d: allocating domain array failed\n",
1447                        iommu->seq_id);
1448                 kfree(iommu->domain_ids);
1449                 iommu->domain_ids = NULL;
1450                 return -ENOMEM;
1451         }
1452
1453         /*
1454          * if Caching mode is set, then invalid translations are tagged
1455          * with domainid 0. Hence we need to pre-allocate it.
1456          */
1457         if (cap_caching_mode(iommu->cap))
1458                 set_bit(0, iommu->domain_ids);
1459         return 0;
1460 }
1461
1462 static void free_dmar_iommu(struct intel_iommu *iommu)
1463 {
1464         struct dmar_domain *domain;
1465         int i, count;
1466         unsigned long flags;
1467
1468         if ((iommu->domains) && (iommu->domain_ids)) {
1469                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1470                         /*
1471                          * Domain id 0 is reserved for invalid translation
1472                          * if hardware supports caching mode.
1473                          */
1474                         if (cap_caching_mode(iommu->cap) && i == 0)
1475                                 continue;
1476
1477                         domain = iommu->domains[i];
1478                         clear_bit(i, iommu->domain_ids);
1479
1480                         spin_lock_irqsave(&domain->iommu_lock, flags);
1481                         count = --domain->iommu_count;
1482                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1483                         if (count == 0)
1484                                 domain_exit(domain);
1485                 }
1486         }
1487
1488         if (iommu->gcmd & DMA_GCMD_TE)
1489                 iommu_disable_translation(iommu);
1490
1491         kfree(iommu->domains);
1492         kfree(iommu->domain_ids);
1493         iommu->domains = NULL;
1494         iommu->domain_ids = NULL;
1495
1496         g_iommus[iommu->seq_id] = NULL;
1497
1498         /* free context mapping */
1499         free_context_table(iommu);
1500 }
1501
1502 static struct dmar_domain *alloc_domain(bool vm)
1503 {
1504         /* domain id for virtual machine, it won't be set in context */
1505         static atomic_t vm_domid = ATOMIC_INIT(0);
1506         struct dmar_domain *domain;
1507
1508         domain = alloc_domain_mem();
1509         if (!domain)
1510                 return NULL;
1511
1512         domain->nid = -1;
1513         domain->iommu_count = 0;
1514         memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1515         domain->flags = 0;
1516         spin_lock_init(&domain->iommu_lock);
1517         INIT_LIST_HEAD(&domain->devices);
1518         if (vm) {
1519                 domain->id = atomic_inc_return(&vm_domid);
1520                 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1521         }
1522
1523         return domain;
1524 }
1525
1526 static int iommu_attach_domain(struct dmar_domain *domain,
1527                                struct intel_iommu *iommu)
1528 {
1529         int num;
1530         unsigned long ndomains;
1531         unsigned long flags;
1532
1533         ndomains = cap_ndoms(iommu->cap);
1534
1535         spin_lock_irqsave(&iommu->lock, flags);
1536
1537         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1538         if (num >= ndomains) {
1539                 spin_unlock_irqrestore(&iommu->lock, flags);
1540                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1541                 return -ENOMEM;
1542         }
1543
1544         domain->id = num;
1545         domain->iommu_count++;
1546         set_bit(num, iommu->domain_ids);
1547         set_bit(iommu->seq_id, domain->iommu_bmp);
1548         iommu->domains[num] = domain;
1549         spin_unlock_irqrestore(&iommu->lock, flags);
1550
1551         return 0;
1552 }
1553
1554 static void iommu_detach_domain(struct dmar_domain *domain,
1555                                 struct intel_iommu *iommu)
1556 {
1557         unsigned long flags;
1558         int num, ndomains;
1559
1560         spin_lock_irqsave(&iommu->lock, flags);
1561         ndomains = cap_ndoms(iommu->cap);
1562         for_each_set_bit(num, iommu->domain_ids, ndomains) {
1563                 if (iommu->domains[num] == domain) {
1564                         clear_bit(num, iommu->domain_ids);
1565                         iommu->domains[num] = NULL;
1566                         break;
1567                 }
1568         }
1569         spin_unlock_irqrestore(&iommu->lock, flags);
1570 }
1571
1572 static struct iova_domain reserved_iova_list;
1573 static struct lock_class_key reserved_rbtree_key;
1574
1575 static int dmar_init_reserved_ranges(void)
1576 {
1577         struct pci_dev *pdev = NULL;
1578         struct iova *iova;
1579         int i;
1580
1581         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1582
1583         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1584                 &reserved_rbtree_key);
1585
1586         /* IOAPIC ranges shouldn't be accessed by DMA */
1587         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1588                 IOVA_PFN(IOAPIC_RANGE_END));
1589         if (!iova) {
1590                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1591                 return -ENODEV;
1592         }
1593
1594         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1595         for_each_pci_dev(pdev) {
1596                 struct resource *r;
1597
1598                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1599                         r = &pdev->resource[i];
1600                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1601                                 continue;
1602                         iova = reserve_iova(&reserved_iova_list,
1603                                             IOVA_PFN(r->start),
1604                                             IOVA_PFN(r->end));
1605                         if (!iova) {
1606                                 printk(KERN_ERR "Reserve iova failed\n");
1607                                 return -ENODEV;
1608                         }
1609                 }
1610         }
1611         return 0;
1612 }
1613
1614 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1615 {
1616         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1617 }
1618
1619 static inline int guestwidth_to_adjustwidth(int gaw)
1620 {
1621         int agaw;
1622         int r = (gaw - 12) % 9;
1623
1624         if (r == 0)
1625                 agaw = gaw;
1626         else
1627                 agaw = gaw + 9 - r;
1628         if (agaw > 64)
1629                 agaw = 64;
1630         return agaw;
1631 }
1632
1633 static int domain_init(struct dmar_domain *domain, int guest_width)
1634 {
1635         struct intel_iommu *iommu;
1636         int adjust_width, agaw;
1637         unsigned long sagaw;
1638
1639         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1640         domain_reserve_special_ranges(domain);
1641
1642         /* calculate AGAW */
1643         iommu = domain_get_iommu(domain);
1644         if (guest_width > cap_mgaw(iommu->cap))
1645                 guest_width = cap_mgaw(iommu->cap);
1646         domain->gaw = guest_width;
1647         adjust_width = guestwidth_to_adjustwidth(guest_width);
1648         agaw = width_to_agaw(adjust_width);
1649         sagaw = cap_sagaw(iommu->cap);
1650         if (!test_bit(agaw, &sagaw)) {
1651                 /* hardware doesn't support it, choose a bigger one */
1652                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1653                 agaw = find_next_bit(&sagaw, 5, agaw);
1654                 if (agaw >= 5)
1655                         return -ENODEV;
1656         }
1657         domain->agaw = agaw;
1658
1659         if (ecap_coherent(iommu->ecap))
1660                 domain->iommu_coherency = 1;
1661         else
1662                 domain->iommu_coherency = 0;
1663
1664         if (ecap_sc_support(iommu->ecap))
1665                 domain->iommu_snooping = 1;
1666         else
1667                 domain->iommu_snooping = 0;
1668
1669         if (intel_iommu_superpage)
1670                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1671         else
1672                 domain->iommu_superpage = 0;
1673
1674         domain->nid = iommu->node;
1675
1676         /* always allocate the top pgd */
1677         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1678         if (!domain->pgd)
1679                 return -ENOMEM;
1680         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1681         return 0;
1682 }
1683
1684 static void domain_exit(struct dmar_domain *domain)
1685 {
1686         struct dmar_drhd_unit *drhd;
1687         struct intel_iommu *iommu;
1688         struct page *freelist = NULL;
1689
1690         /* Domain 0 is reserved, so dont process it */
1691         if (!domain)
1692                 return;
1693
1694         /* Flush any lazy unmaps that may reference this domain */
1695         if (!intel_iommu_strict)
1696                 flush_unmaps_timeout(0);
1697
1698         /* remove associated devices */
1699         domain_remove_dev_info(domain);
1700
1701         /* destroy iovas */
1702         put_iova_domain(&domain->iovad);
1703
1704         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1705
1706         /* clear attached or cached domains */
1707         rcu_read_lock();
1708         for_each_active_iommu(iommu, drhd)
1709                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1710                     test_bit(iommu->seq_id, domain->iommu_bmp))
1711                         iommu_detach_domain(domain, iommu);
1712         rcu_read_unlock();
1713
1714         dma_free_pagelist(freelist);
1715
1716         free_domain_mem(domain);
1717 }
1718
1719 static int domain_context_mapping_one(struct dmar_domain *domain,
1720                                       struct intel_iommu *iommu,
1721                                       u8 bus, u8 devfn, int translation)
1722 {
1723         struct context_entry *context;
1724         unsigned long flags;
1725         struct dma_pte *pgd;
1726         unsigned long num;
1727         unsigned long ndomains;
1728         int id;
1729         int agaw;
1730         struct device_domain_info *info = NULL;
1731
1732         pr_debug("Set context mapping for %02x:%02x.%d\n",
1733                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1734
1735         BUG_ON(!domain->pgd);
1736         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1737                translation != CONTEXT_TT_MULTI_LEVEL);
1738
1739         context = device_to_context_entry(iommu, bus, devfn);
1740         if (!context)
1741                 return -ENOMEM;
1742         spin_lock_irqsave(&iommu->lock, flags);
1743         if (context_present(context)) {
1744                 spin_unlock_irqrestore(&iommu->lock, flags);
1745                 return 0;
1746         }
1747
1748         id = domain->id;
1749         pgd = domain->pgd;
1750
1751         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1752             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1753                 int found = 0;
1754
1755                 /* find an available domain id for this device in iommu */
1756                 ndomains = cap_ndoms(iommu->cap);
1757                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1758                         if (iommu->domains[num] == domain) {
1759                                 id = num;
1760                                 found = 1;
1761                                 break;
1762                         }
1763                 }
1764
1765                 if (found == 0) {
1766                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1767                         if (num >= ndomains) {
1768                                 spin_unlock_irqrestore(&iommu->lock, flags);
1769                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1770                                 return -EFAULT;
1771                         }
1772
1773                         set_bit(num, iommu->domain_ids);
1774                         iommu->domains[num] = domain;
1775                         id = num;
1776                 }
1777
1778                 /* Skip top levels of page tables for
1779                  * iommu which has less agaw than default.
1780                  * Unnecessary for PT mode.
1781                  */
1782                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1783                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1784                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1785                                 if (!dma_pte_present(pgd)) {
1786                                         spin_unlock_irqrestore(&iommu->lock, flags);
1787                                         return -ENOMEM;
1788                                 }
1789                         }
1790                 }
1791         }
1792
1793         context_set_domain_id(context, id);
1794
1795         if (translation != CONTEXT_TT_PASS_THROUGH) {
1796                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1797                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1798                                      CONTEXT_TT_MULTI_LEVEL;
1799         }
1800         /*
1801          * In pass through mode, AW must be programmed to indicate the largest
1802          * AGAW value supported by hardware. And ASR is ignored by hardware.
1803          */
1804         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1805                 context_set_address_width(context, iommu->msagaw);
1806         else {
1807                 context_set_address_root(context, virt_to_phys(pgd));
1808                 context_set_address_width(context, iommu->agaw);
1809         }
1810
1811         context_set_translation_type(context, translation);
1812         context_set_fault_enable(context);
1813         context_set_present(context);
1814         domain_flush_cache(domain, context, sizeof(*context));
1815
1816         /*
1817          * It's a non-present to present mapping. If hardware doesn't cache
1818          * non-present entry we only need to flush the write-buffer. If the
1819          * _does_ cache non-present entries, then it does so in the special
1820          * domain #0, which we have to flush:
1821          */
1822         if (cap_caching_mode(iommu->cap)) {
1823                 iommu->flush.flush_context(iommu, 0,
1824                                            (((u16)bus) << 8) | devfn,
1825                                            DMA_CCMD_MASK_NOBIT,
1826                                            DMA_CCMD_DEVICE_INVL);
1827                 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1828         } else {
1829                 iommu_flush_write_buffer(iommu);
1830         }
1831         iommu_enable_dev_iotlb(info);
1832         spin_unlock_irqrestore(&iommu->lock, flags);
1833
1834         spin_lock_irqsave(&domain->iommu_lock, flags);
1835         if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1836                 domain->iommu_count++;
1837                 if (domain->iommu_count == 1)
1838                         domain->nid = iommu->node;
1839                 domain_update_iommu_cap(domain);
1840         }
1841         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1842         return 0;
1843 }
1844
1845 static int
1846 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1847                        int translation)
1848 {
1849         int ret;
1850         struct pci_dev *pdev, *tmp, *parent;
1851         struct intel_iommu *iommu;
1852         u8 bus, devfn;
1853
1854         iommu = device_to_iommu(dev, &bus, &devfn);
1855         if (!iommu)
1856                 return -ENODEV;
1857
1858         ret = domain_context_mapping_one(domain, iommu, bus, devfn,
1859                                          translation);
1860         if (ret || !dev_is_pci(dev))
1861                 return ret;
1862
1863         /* dependent device mapping */
1864         pdev = to_pci_dev(dev);
1865         tmp = pci_find_upstream_pcie_bridge(pdev);
1866         if (!tmp)
1867                 return 0;
1868         /* Secondary interface's bus number and devfn 0 */
1869         parent = pdev->bus->self;
1870         while (parent != tmp) {
1871                 ret = domain_context_mapping_one(domain, iommu,
1872                                                  parent->bus->number,
1873                                                  parent->devfn, translation);
1874                 if (ret)
1875                         return ret;
1876                 parent = parent->bus->self;
1877         }
1878         if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1879                 return domain_context_mapping_one(domain, iommu,
1880                                         tmp->subordinate->number, 0,
1881                                         translation);
1882         else /* this is a legacy PCI bridge */
1883                 return domain_context_mapping_one(domain, iommu,
1884                                                   tmp->bus->number,
1885                                                   tmp->devfn,
1886                                                   translation);
1887 }
1888
1889 static int domain_context_mapped(struct device *dev)
1890 {
1891         int ret;
1892         struct pci_dev *pdev, *tmp, *parent;
1893         struct intel_iommu *iommu;
1894         u8 bus, devfn;
1895
1896         iommu = device_to_iommu(dev, &bus, &devfn);
1897         if (!iommu)
1898                 return -ENODEV;
1899
1900         ret = device_context_mapped(iommu, bus, devfn);
1901         if (!ret || !dev_is_pci(dev))
1902                 return ret;
1903
1904         /* dependent device mapping */
1905         pdev = to_pci_dev(dev);
1906         tmp = pci_find_upstream_pcie_bridge(pdev);
1907         if (!tmp)
1908                 return ret;
1909         /* Secondary interface's bus number and devfn 0 */
1910         parent = pdev->bus->self;
1911         while (parent != tmp) {
1912                 ret = device_context_mapped(iommu, parent->bus->number,
1913                                             parent->devfn);
1914                 if (!ret)
1915                         return ret;
1916                 parent = parent->bus->self;
1917         }
1918         if (pci_is_pcie(tmp))
1919                 return device_context_mapped(iommu, tmp->subordinate->number,
1920                                              0);
1921         else
1922                 return device_context_mapped(iommu, tmp->bus->number,
1923                                              tmp->devfn);
1924 }
1925
1926 /* Returns a number of VTD pages, but aligned to MM page size */
1927 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1928                                             size_t size)
1929 {
1930         host_addr &= ~PAGE_MASK;
1931         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1932 }
1933
1934 /* Return largest possible superpage level for a given mapping */
1935 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1936                                           unsigned long iov_pfn,
1937                                           unsigned long phy_pfn,
1938                                           unsigned long pages)
1939 {
1940         int support, level = 1;
1941         unsigned long pfnmerge;
1942
1943         support = domain->iommu_superpage;
1944
1945         /* To use a large page, the virtual *and* physical addresses
1946            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1947            of them will mean we have to use smaller pages. So just
1948            merge them and check both at once. */
1949         pfnmerge = iov_pfn | phy_pfn;
1950
1951         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1952                 pages >>= VTD_STRIDE_SHIFT;
1953                 if (!pages)
1954                         break;
1955                 pfnmerge >>= VTD_STRIDE_SHIFT;
1956                 level++;
1957                 support--;
1958         }
1959         return level;
1960 }
1961
1962 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1963                             struct scatterlist *sg, unsigned long phys_pfn,
1964                             unsigned long nr_pages, int prot)
1965 {
1966         struct dma_pte *first_pte = NULL, *pte = NULL;
1967         phys_addr_t uninitialized_var(pteval);
1968         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1969         unsigned long sg_res;
1970         unsigned int largepage_lvl = 0;
1971         unsigned long lvl_pages = 0;
1972
1973         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1974
1975         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1976                 return -EINVAL;
1977
1978         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1979
1980         if (sg)
1981                 sg_res = 0;
1982         else {
1983                 sg_res = nr_pages + 1;
1984                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1985         }
1986
1987         while (nr_pages > 0) {
1988                 uint64_t tmp;
1989
1990                 if (!sg_res) {
1991                         sg_res = aligned_nrpages(sg->offset, sg->length);
1992                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1993                         sg->dma_length = sg->length;
1994                         pteval = page_to_phys(sg_page(sg)) | prot;
1995                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
1996                 }
1997
1998                 if (!pte) {
1999                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2000
2001                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2002                         if (!pte)
2003                                 return -ENOMEM;
2004                         /* It is large page*/
2005                         if (largepage_lvl > 1) {
2006                                 pteval |= DMA_PTE_LARGE_PAGE;
2007                                 /* Ensure that old small page tables are removed to make room
2008                                    for superpage, if they exist. */
2009                                 dma_pte_clear_range(domain, iov_pfn,
2010                                                     iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2011                                 dma_pte_free_pagetable(domain, iov_pfn,
2012                                                        iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2013                         } else {
2014                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2015                         }
2016
2017                 }
2018                 /* We don't need lock here, nobody else
2019                  * touches the iova range
2020                  */
2021                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2022                 if (tmp) {
2023                         static int dumps = 5;
2024                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2025                                iov_pfn, tmp, (unsigned long long)pteval);
2026                         if (dumps) {
2027                                 dumps--;
2028                                 debug_dma_dump_mappings(NULL);
2029                         }
2030                         WARN_ON(1);
2031                 }
2032
2033                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2034
2035                 BUG_ON(nr_pages < lvl_pages);
2036                 BUG_ON(sg_res < lvl_pages);
2037
2038                 nr_pages -= lvl_pages;
2039                 iov_pfn += lvl_pages;
2040                 phys_pfn += lvl_pages;
2041                 pteval += lvl_pages * VTD_PAGE_SIZE;
2042                 sg_res -= lvl_pages;
2043
2044                 /* If the next PTE would be the first in a new page, then we
2045                    need to flush the cache on the entries we've just written.
2046                    And then we'll need to recalculate 'pte', so clear it and
2047                    let it get set again in the if (!pte) block above.
2048
2049                    If we're done (!nr_pages) we need to flush the cache too.
2050
2051                    Also if we've been setting superpages, we may need to
2052                    recalculate 'pte' and switch back to smaller pages for the
2053                    end of the mapping, if the trailing size is not enough to
2054                    use another superpage (i.e. sg_res < lvl_pages). */
2055                 pte++;
2056                 if (!nr_pages || first_pte_in_page(pte) ||
2057                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2058                         domain_flush_cache(domain, first_pte,
2059                                            (void *)pte - (void *)first_pte);
2060                         pte = NULL;
2061                 }
2062
2063                 if (!sg_res && nr_pages)
2064                         sg = sg_next(sg);
2065         }
2066         return 0;
2067 }
2068
2069 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2070                                     struct scatterlist *sg, unsigned long nr_pages,
2071                                     int prot)
2072 {
2073         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2074 }
2075
2076 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2077                                      unsigned long phys_pfn, unsigned long nr_pages,
2078                                      int prot)
2079 {
2080         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2081 }
2082
2083 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2084 {
2085         if (!iommu)
2086                 return;
2087
2088         clear_context_table(iommu, bus, devfn);
2089         iommu->flush.flush_context(iommu, 0, 0, 0,
2090                                            DMA_CCMD_GLOBAL_INVL);
2091         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2092 }
2093
2094 static inline void unlink_domain_info(struct device_domain_info *info)
2095 {
2096         assert_spin_locked(&device_domain_lock);
2097         list_del(&info->link);
2098         list_del(&info->global);
2099         if (info->dev)
2100                 info->dev->archdata.iommu = NULL;
2101 }
2102
2103 static void domain_remove_dev_info(struct dmar_domain *domain)
2104 {
2105         struct device_domain_info *info;
2106         unsigned long flags, flags2;
2107
2108         spin_lock_irqsave(&device_domain_lock, flags);
2109         while (!list_empty(&domain->devices)) {
2110                 info = list_entry(domain->devices.next,
2111                         struct device_domain_info, link);
2112                 unlink_domain_info(info);
2113                 spin_unlock_irqrestore(&device_domain_lock, flags);
2114
2115                 iommu_disable_dev_iotlb(info);
2116                 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2117
2118                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2119                         iommu_detach_dependent_devices(info->iommu, info->dev);
2120                         /* clear this iommu in iommu_bmp, update iommu count
2121                          * and capabilities
2122                          */
2123                         spin_lock_irqsave(&domain->iommu_lock, flags2);
2124                         if (test_and_clear_bit(info->iommu->seq_id,
2125                                                domain->iommu_bmp)) {
2126                                 domain->iommu_count--;
2127                                 domain_update_iommu_cap(domain);
2128                         }
2129                         spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2130                 }
2131
2132                 free_devinfo_mem(info);
2133                 spin_lock_irqsave(&device_domain_lock, flags);
2134         }
2135         spin_unlock_irqrestore(&device_domain_lock, flags);
2136 }
2137
2138 /*
2139  * find_domain
2140  * Note: we use struct device->archdata.iommu stores the info
2141  */
2142 static struct dmar_domain *find_domain(struct device *dev)
2143 {
2144         struct device_domain_info *info;
2145
2146         /* No lock here, assumes no domain exit in normal case */
2147         info = dev->archdata.iommu;
2148         if (info)
2149                 return info->domain;
2150         return NULL;
2151 }
2152
2153 static inline struct device_domain_info *
2154 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2155 {
2156         struct device_domain_info *info;
2157
2158         list_for_each_entry(info, &device_domain_list, global)
2159                 if (info->iommu->segment == segment && info->bus == bus &&
2160                     info->devfn == devfn)
2161                         return info;
2162
2163         return NULL;
2164 }
2165
2166 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2167                                                 int bus, int devfn,
2168                                                 struct device *dev,
2169                                                 struct dmar_domain *domain)
2170 {
2171         struct dmar_domain *found = NULL;
2172         struct device_domain_info *info;
2173         unsigned long flags;
2174
2175         info = alloc_devinfo_mem();
2176         if (!info)
2177                 return NULL;
2178
2179         info->bus = bus;
2180         info->devfn = devfn;
2181         info->dev = dev;
2182         info->domain = domain;
2183         info->iommu = iommu;
2184         if (!dev)
2185                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2186
2187         spin_lock_irqsave(&device_domain_lock, flags);
2188         if (dev)
2189                 found = find_domain(dev);
2190         else {
2191                 struct device_domain_info *info2;
2192                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2193                 if (info2)
2194                         found = info2->domain;
2195         }
2196         if (found) {
2197                 spin_unlock_irqrestore(&device_domain_lock, flags);
2198                 free_devinfo_mem(info);
2199                 /* Caller must free the original domain */
2200                 return found;
2201         }
2202
2203         list_add(&info->link, &domain->devices);
2204         list_add(&info->global, &device_domain_list);
2205         if (dev)
2206                 dev->archdata.iommu = info;
2207         spin_unlock_irqrestore(&device_domain_lock, flags);
2208
2209         return domain;
2210 }
2211
2212 /* domain is initialized */
2213 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2214 {
2215         struct dmar_domain *domain, *free = NULL;
2216         struct intel_iommu *iommu = NULL;
2217         struct device_domain_info *info;
2218         struct pci_dev *dev_tmp = NULL;
2219         unsigned long flags;
2220         u8 bus, devfn, bridge_bus, bridge_devfn;
2221
2222         domain = find_domain(dev);
2223         if (domain)
2224                 return domain;
2225
2226         if (dev_is_pci(dev)) {
2227                 struct pci_dev *pdev = to_pci_dev(dev);
2228                 u16 segment;
2229
2230                 segment = pci_domain_nr(pdev->bus);
2231                 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2232                 if (dev_tmp) {
2233                         if (pci_is_pcie(dev_tmp)) {
2234                                 bridge_bus = dev_tmp->subordinate->number;
2235                                 bridge_devfn = 0;
2236                         } else {
2237                                 bridge_bus = dev_tmp->bus->number;
2238                                 bridge_devfn = dev_tmp->devfn;
2239                         }
2240                         spin_lock_irqsave(&device_domain_lock, flags);
2241                         info = dmar_search_domain_by_dev_info(segment,
2242                                                               bridge_bus,
2243                                                               bridge_devfn);
2244                         if (info) {
2245                                 iommu = info->iommu;
2246                                 domain = info->domain;
2247                         }
2248                         spin_unlock_irqrestore(&device_domain_lock, flags);
2249                         /* pcie-pci bridge already has a domain, uses it */
2250                         if (info)
2251                                 goto found_domain;
2252                 }
2253         }
2254
2255         iommu = device_to_iommu(dev, &bus, &devfn);
2256         if (!iommu)
2257                 goto error;
2258
2259         /* Allocate and initialize new domain for the device */
2260         domain = alloc_domain(false);
2261         if (!domain)
2262                 goto error;
2263         if (iommu_attach_domain(domain, iommu)) {
2264                 free_domain_mem(domain);
2265                 domain = NULL;
2266                 goto error;
2267         }
2268         free = domain;
2269         if (domain_init(domain, gaw))
2270                 goto error;
2271
2272         /* register pcie-to-pci device */
2273         if (dev_tmp) {
2274                 domain = dmar_insert_dev_info(iommu, bridge_bus, bridge_devfn,
2275                                               NULL, domain);
2276                 if (!domain)
2277                         goto error;
2278         }
2279
2280 found_domain:
2281         domain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2282 error:
2283         if (free != domain)
2284                 domain_exit(free);
2285
2286         return domain;
2287 }
2288
2289 static int iommu_identity_mapping;
2290 #define IDENTMAP_ALL            1
2291 #define IDENTMAP_GFX            2
2292 #define IDENTMAP_AZALIA         4
2293
2294 static int iommu_domain_identity_map(struct dmar_domain *domain,
2295                                      unsigned long long start,
2296                                      unsigned long long end)
2297 {
2298         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2299         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2300
2301         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2302                           dma_to_mm_pfn(last_vpfn))) {
2303                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2304                 return -ENOMEM;
2305         }
2306
2307         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2308                  start, end, domain->id);
2309         /*
2310          * RMRR range might have overlap with physical memory range,
2311          * clear it first
2312          */
2313         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2314
2315         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2316                                   last_vpfn - first_vpfn + 1,
2317                                   DMA_PTE_READ|DMA_PTE_WRITE);
2318 }
2319
2320 static int iommu_prepare_identity_map(struct device *dev,
2321                                       unsigned long long start,
2322                                       unsigned long long end)
2323 {
2324         struct dmar_domain *domain;
2325         int ret;
2326
2327         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2328         if (!domain)
2329                 return -ENOMEM;
2330
2331         /* For _hardware_ passthrough, don't bother. But for software
2332            passthrough, we do it anyway -- it may indicate a memory
2333            range which is reserved in E820, so which didn't get set
2334            up to start with in si_domain */
2335         if (domain == si_domain && hw_pass_through) {
2336                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2337                        dev_name(dev), start, end);
2338                 return 0;
2339         }
2340
2341         printk(KERN_INFO
2342                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2343                dev_name(dev), start, end);
2344         
2345         if (end < start) {
2346                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2347                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2348                         dmi_get_system_info(DMI_BIOS_VENDOR),
2349                         dmi_get_system_info(DMI_BIOS_VERSION),
2350                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2351                 ret = -EIO;
2352                 goto error;
2353         }
2354
2355         if (end >> agaw_to_width(domain->agaw)) {
2356                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2357                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2358                      agaw_to_width(domain->agaw),
2359                      dmi_get_system_info(DMI_BIOS_VENDOR),
2360                      dmi_get_system_info(DMI_BIOS_VERSION),
2361                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2362                 ret = -EIO;
2363                 goto error;
2364         }
2365
2366         ret = iommu_domain_identity_map(domain, start, end);
2367         if (ret)
2368                 goto error;
2369
2370         /* context entry init */
2371         ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2372         if (ret)
2373                 goto error;
2374
2375         return 0;
2376
2377  error:
2378         domain_exit(domain);
2379         return ret;
2380 }
2381
2382 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2383                                          struct device *dev)
2384 {
2385         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2386                 return 0;
2387         return iommu_prepare_identity_map(dev, rmrr->base_address,
2388                                           rmrr->end_address);
2389 }
2390
2391 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2392 static inline void iommu_prepare_isa(void)
2393 {
2394         struct pci_dev *pdev;
2395         int ret;
2396
2397         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2398         if (!pdev)
2399                 return;
2400
2401         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2402         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2403
2404         if (ret)
2405                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2406                        "floppy might not work\n");
2407
2408 }
2409 #else
2410 static inline void iommu_prepare_isa(void)
2411 {
2412         return;
2413 }
2414 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2415
2416 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2417
2418 static int __init si_domain_init(int hw)
2419 {
2420         struct dmar_drhd_unit *drhd;
2421         struct intel_iommu *iommu;
2422         int nid, ret = 0;
2423
2424         si_domain = alloc_domain(false);
2425         if (!si_domain)
2426                 return -EFAULT;
2427
2428         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2429
2430         for_each_active_iommu(iommu, drhd) {
2431                 ret = iommu_attach_domain(si_domain, iommu);
2432                 if (ret) {
2433                         domain_exit(si_domain);
2434                         return -EFAULT;
2435                 }
2436         }
2437
2438         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2439                 domain_exit(si_domain);
2440                 return -EFAULT;
2441         }
2442
2443         pr_debug("IOMMU: identity mapping domain is domain %d\n",
2444                  si_domain->id);
2445
2446         if (hw)
2447                 return 0;
2448
2449         for_each_online_node(nid) {
2450                 unsigned long start_pfn, end_pfn;
2451                 int i;
2452
2453                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2454                         ret = iommu_domain_identity_map(si_domain,
2455                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2456                         if (ret)
2457                                 return ret;
2458                 }
2459         }
2460
2461         return 0;
2462 }
2463
2464 static int identity_mapping(struct device *dev)
2465 {
2466         struct device_domain_info *info;
2467
2468         if (likely(!iommu_identity_mapping))
2469                 return 0;
2470
2471         info = dev->archdata.iommu;
2472         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2473                 return (info->domain == si_domain);
2474
2475         return 0;
2476 }
2477
2478 static int domain_add_dev_info(struct dmar_domain *domain,
2479                                struct device *dev, int translation)
2480 {
2481         struct dmar_domain *ndomain;
2482         struct intel_iommu *iommu;
2483         u8 bus, devfn;
2484         int ret;
2485
2486         iommu = device_to_iommu(dev, &bus, &devfn);
2487         if (!iommu)
2488                 return -ENODEV;
2489
2490         ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2491         if (ndomain != domain)
2492                 return -EBUSY;
2493
2494         ret = domain_context_mapping(domain, dev, translation);
2495         if (ret) {
2496                 domain_remove_one_dev_info(domain, dev);
2497                 return ret;
2498         }
2499
2500         return 0;
2501 }
2502
2503 static bool device_has_rmrr(struct device *dev)
2504 {
2505         struct dmar_rmrr_unit *rmrr;
2506         struct device *tmp;
2507         int i;
2508
2509         rcu_read_lock();
2510         for_each_rmrr_units(rmrr) {
2511                 /*
2512                  * Return TRUE if this RMRR contains the device that
2513                  * is passed in.
2514                  */
2515                 for_each_active_dev_scope(rmrr->devices,
2516                                           rmrr->devices_cnt, i, tmp)
2517                         if (tmp == dev) {
2518                                 rcu_read_unlock();
2519                                 return true;
2520                         }
2521         }
2522         rcu_read_unlock();
2523         return false;
2524 }
2525
2526 static int iommu_should_identity_map(struct device *dev, int startup)
2527 {
2528
2529         if (dev_is_pci(dev)) {
2530                 struct pci_dev *pdev = to_pci_dev(dev);
2531
2532                 /*
2533                  * We want to prevent any device associated with an RMRR from
2534                  * getting placed into the SI Domain. This is done because
2535                  * problems exist when devices are moved in and out of domains
2536                  * and their respective RMRR info is lost. We exempt USB devices
2537                  * from this process due to their usage of RMRRs that are known
2538                  * to not be needed after BIOS hand-off to OS.
2539                  */
2540                 if (device_has_rmrr(dev) &&
2541                     (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2542                         return 0;
2543
2544                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2545                         return 1;
2546
2547                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2548                         return 1;
2549
2550                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2551                         return 0;
2552
2553                 /*
2554                  * We want to start off with all devices in the 1:1 domain, and
2555                  * take them out later if we find they can't access all of memory.
2556                  *
2557                  * However, we can't do this for PCI devices behind bridges,
2558                  * because all PCI devices behind the same bridge will end up
2559                  * with the same source-id on their transactions.
2560                  *
2561                  * Practically speaking, we can't change things around for these
2562                  * devices at run-time, because we can't be sure there'll be no
2563                  * DMA transactions in flight for any of their siblings.
2564                  *
2565                  * So PCI devices (unless they're on the root bus) as well as
2566                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2567                  * the 1:1 domain, just in _case_ one of their siblings turns out
2568                  * not to be able to map all of memory.
2569                  */
2570                 if (!pci_is_pcie(pdev)) {
2571                         if (!pci_is_root_bus(pdev->bus))
2572                                 return 0;
2573                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2574                                 return 0;
2575                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2576                         return 0;
2577         } else {
2578                 if (device_has_rmrr(dev))
2579                         return 0;
2580         }
2581
2582         /*
2583          * At boot time, we don't yet know if devices will be 64-bit capable.
2584          * Assume that they will — if they turn out not to be, then we can
2585          * take them out of the 1:1 domain later.
2586          */
2587         if (!startup) {
2588                 /*
2589                  * If the device's dma_mask is less than the system's memory
2590                  * size then this is not a candidate for identity mapping.
2591                  */
2592                 u64 dma_mask = *dev->dma_mask;
2593
2594                 if (dev->coherent_dma_mask &&
2595                     dev->coherent_dma_mask < dma_mask)
2596                         dma_mask = dev->coherent_dma_mask;
2597
2598                 return dma_mask >= dma_get_required_mask(dev);
2599         }
2600
2601         return 1;
2602 }
2603
2604 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2605 {
2606         int ret;
2607
2608         if (!iommu_should_identity_map(dev, 1))
2609                 return 0;
2610
2611         ret = domain_add_dev_info(si_domain, dev,
2612                                   hw ? CONTEXT_TT_PASS_THROUGH :
2613                                        CONTEXT_TT_MULTI_LEVEL);
2614         if (!ret)
2615                 pr_info("IOMMU: %s identity mapping for device %s\n",
2616                         hw ? "hardware" : "software", dev_name(dev));
2617         else if (ret == -ENODEV)
2618                 /* device not associated with an iommu */
2619                 ret = 0;
2620
2621         return ret;
2622 }
2623
2624
2625 static int __init iommu_prepare_static_identity_mapping(int hw)
2626 {
2627         struct pci_dev *pdev = NULL;
2628         struct dmar_drhd_unit *drhd;
2629         struct intel_iommu *iommu;
2630         struct device *dev;
2631         int i;
2632         int ret = 0;
2633
2634         ret = si_domain_init(hw);
2635         if (ret)
2636                 return -EFAULT;
2637
2638         for_each_pci_dev(pdev) {
2639                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2640                 if (ret)
2641                         return ret;
2642         }
2643
2644         for_each_active_iommu(iommu, drhd)
2645                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2646                         struct acpi_device_physical_node *pn;
2647                         struct acpi_device *adev;
2648
2649                         if (dev->bus != &acpi_bus_type)
2650                                 continue;
2651                                 
2652                         adev= to_acpi_device(dev);
2653                         mutex_lock(&adev->physical_node_lock);
2654                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2655                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2656                                 if (ret)
2657                                         break;
2658                         }
2659                         mutex_unlock(&adev->physical_node_lock);
2660                         if (ret)
2661                                 return ret;
2662                 }
2663
2664         return 0;
2665 }
2666
2667 static int __init init_dmars(void)
2668 {
2669         struct dmar_drhd_unit *drhd;
2670         struct dmar_rmrr_unit *rmrr;
2671         struct device *dev;
2672         struct intel_iommu *iommu;
2673         int i, ret;
2674
2675         /*
2676          * for each drhd
2677          *    allocate root
2678          *    initialize and program root entry to not present
2679          * endfor
2680          */
2681         for_each_drhd_unit(drhd) {
2682                 /*
2683                  * lock not needed as this is only incremented in the single
2684                  * threaded kernel __init code path all other access are read
2685                  * only
2686                  */
2687                 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2688                         g_num_of_iommus++;
2689                         continue;
2690                 }
2691                 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2692                           IOMMU_UNITS_SUPPORTED);
2693         }
2694
2695         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2696                         GFP_KERNEL);
2697         if (!g_iommus) {
2698                 printk(KERN_ERR "Allocating global iommu array failed\n");
2699                 ret = -ENOMEM;
2700                 goto error;
2701         }
2702
2703         deferred_flush = kzalloc(g_num_of_iommus *
2704                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2705         if (!deferred_flush) {
2706                 ret = -ENOMEM;
2707                 goto free_g_iommus;
2708         }
2709
2710         for_each_active_iommu(iommu, drhd) {
2711                 g_iommus[iommu->seq_id] = iommu;
2712
2713                 ret = iommu_init_domains(iommu);
2714                 if (ret)
2715                         goto free_iommu;
2716
2717                 /*
2718                  * TBD:
2719                  * we could share the same root & context tables
2720                  * among all IOMMU's. Need to Split it later.
2721                  */
2722                 ret = iommu_alloc_root_entry(iommu);
2723                 if (ret) {
2724                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2725                         goto free_iommu;
2726                 }
2727                 if (!ecap_pass_through(iommu->ecap))
2728                         hw_pass_through = 0;
2729         }
2730
2731         /*
2732          * Start from the sane iommu hardware state.
2733          */
2734         for_each_active_iommu(iommu, drhd) {
2735                 /*
2736                  * If the queued invalidation is already initialized by us
2737                  * (for example, while enabling interrupt-remapping) then
2738                  * we got the things already rolling from a sane state.
2739                  */
2740                 if (iommu->qi)
2741                         continue;
2742
2743                 /*
2744                  * Clear any previous faults.
2745                  */
2746                 dmar_fault(-1, iommu);
2747                 /*
2748                  * Disable queued invalidation if supported and already enabled
2749                  * before OS handover.
2750                  */
2751                 dmar_disable_qi(iommu);
2752         }
2753
2754         for_each_active_iommu(iommu, drhd) {
2755                 if (dmar_enable_qi(iommu)) {
2756                         /*
2757                          * Queued Invalidate not enabled, use Register Based
2758                          * Invalidate
2759                          */
2760                         iommu->flush.flush_context = __iommu_flush_context;
2761                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2762                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2763                                "invalidation\n",
2764                                 iommu->seq_id,
2765                                (unsigned long long)drhd->reg_base_addr);
2766                 } else {
2767                         iommu->flush.flush_context = qi_flush_context;
2768                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2769                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2770                                "invalidation\n",
2771                                 iommu->seq_id,
2772                                (unsigned long long)drhd->reg_base_addr);
2773                 }
2774         }
2775
2776         if (iommu_pass_through)
2777                 iommu_identity_mapping |= IDENTMAP_ALL;
2778
2779 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2780         iommu_identity_mapping |= IDENTMAP_GFX;
2781 #endif
2782
2783         check_tylersburg_isoch();
2784
2785         /*
2786          * If pass through is not set or not enabled, setup context entries for
2787          * identity mappings for rmrr, gfx, and isa and may fall back to static
2788          * identity mapping if iommu_identity_mapping is set.
2789          */
2790         if (iommu_identity_mapping) {
2791                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2792                 if (ret) {
2793                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2794                         goto free_iommu;
2795                 }
2796         }
2797         /*
2798          * For each rmrr
2799          *   for each dev attached to rmrr
2800          *   do
2801          *     locate drhd for dev, alloc domain for dev
2802          *     allocate free domain
2803          *     allocate page table entries for rmrr
2804          *     if context not allocated for bus
2805          *           allocate and init context
2806          *           set present in root table for this bus
2807          *     init context with domain, translation etc
2808          *    endfor
2809          * endfor
2810          */
2811         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2812         for_each_rmrr_units(rmrr) {
2813                 /* some BIOS lists non-exist devices in DMAR table. */
2814                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2815                                           i, dev) {
2816                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
2817                         if (ret)
2818                                 printk(KERN_ERR
2819                                        "IOMMU: mapping reserved region failed\n");
2820                 }
2821         }
2822
2823         iommu_prepare_isa();
2824
2825         /*
2826          * for each drhd
2827          *   enable fault log
2828          *   global invalidate context cache
2829          *   global invalidate iotlb
2830          *   enable translation
2831          */
2832         for_each_iommu(iommu, drhd) {
2833                 if (drhd->ignored) {
2834                         /*
2835                          * we always have to disable PMRs or DMA may fail on
2836                          * this device
2837                          */
2838                         if (force_on)
2839                                 iommu_disable_protect_mem_regions(iommu);
2840                         continue;
2841                 }
2842
2843                 iommu_flush_write_buffer(iommu);
2844
2845                 ret = dmar_set_interrupt(iommu);
2846                 if (ret)
2847                         goto free_iommu;
2848
2849                 iommu_set_root_entry(iommu);
2850
2851                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2852                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2853
2854                 ret = iommu_enable_translation(iommu);
2855                 if (ret)
2856                         goto free_iommu;
2857
2858                 iommu_disable_protect_mem_regions(iommu);
2859         }
2860
2861         return 0;
2862
2863 free_iommu:
2864         for_each_active_iommu(iommu, drhd)
2865                 free_dmar_iommu(iommu);
2866         kfree(deferred_flush);
2867 free_g_iommus:
2868         kfree(g_iommus);
2869 error:
2870         return ret;
2871 }
2872
2873 /* This takes a number of _MM_ pages, not VTD pages */
2874 static struct iova *intel_alloc_iova(struct device *dev,
2875                                      struct dmar_domain *domain,
2876                                      unsigned long nrpages, uint64_t dma_mask)
2877 {
2878         struct iova *iova = NULL;
2879
2880         /* Restrict dma_mask to the width that the iommu can handle */
2881         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2882
2883         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2884                 /*
2885                  * First try to allocate an io virtual address in
2886                  * DMA_BIT_MASK(32) and if that fails then try allocating
2887                  * from higher range
2888                  */
2889                 iova = alloc_iova(&domain->iovad, nrpages,
2890                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2891                 if (iova)
2892                         return iova;
2893         }
2894         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2895         if (unlikely(!iova)) {
2896                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2897                        nrpages, dev_name(dev));
2898                 return NULL;
2899         }
2900
2901         return iova;
2902 }
2903
2904 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2905 {
2906         struct dmar_domain *domain;
2907         int ret;
2908
2909         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2910         if (!domain) {
2911                 printk(KERN_ERR "Allocating domain for %s failed",
2912                        dev_name(dev));
2913                 return NULL;
2914         }
2915
2916         /* make sure context mapping is ok */
2917         if (unlikely(!domain_context_mapped(dev))) {
2918                 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2919                 if (ret) {
2920                         printk(KERN_ERR "Domain context map for %s failed",
2921                                dev_name(dev));
2922                         return NULL;
2923                 }
2924         }
2925
2926         return domain;
2927 }
2928
2929 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2930 {
2931         struct device_domain_info *info;
2932
2933         /* No lock here, assumes no domain exit in normal case */
2934         info = dev->archdata.iommu;
2935         if (likely(info))
2936                 return info->domain;
2937
2938         return __get_valid_domain_for_dev(dev);
2939 }
2940
2941 static int iommu_dummy(struct device *dev)
2942 {
2943         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2944 }
2945
2946 /* Check if the dev needs to go through non-identity map and unmap process.*/
2947 static int iommu_no_mapping(struct device *dev)
2948 {
2949         int found;
2950
2951         if (iommu_dummy(dev))
2952                 return 1;
2953
2954         if (!iommu_identity_mapping)
2955                 return 0;
2956
2957         found = identity_mapping(dev);
2958         if (found) {
2959                 if (iommu_should_identity_map(dev, 0))
2960                         return 1;
2961                 else {
2962                         /*
2963                          * 32 bit DMA is removed from si_domain and fall back
2964                          * to non-identity mapping.
2965                          */
2966                         domain_remove_one_dev_info(si_domain, dev);
2967                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2968                                dev_name(dev));
2969                         return 0;
2970                 }
2971         } else {
2972                 /*
2973                  * In case of a detached 64 bit DMA device from vm, the device
2974                  * is put into si_domain for identity mapping.
2975                  */
2976                 if (iommu_should_identity_map(dev, 0)) {
2977                         int ret;
2978                         ret = domain_add_dev_info(si_domain, dev,
2979                                                   hw_pass_through ?
2980                                                   CONTEXT_TT_PASS_THROUGH :
2981                                                   CONTEXT_TT_MULTI_LEVEL);
2982                         if (!ret) {
2983                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2984                                        dev_name(dev));
2985                                 return 1;
2986                         }
2987                 }
2988         }
2989
2990         return 0;
2991 }
2992
2993 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
2994                                      size_t size, int dir, u64 dma_mask)
2995 {
2996         struct dmar_domain *domain;
2997         phys_addr_t start_paddr;
2998         struct iova *iova;
2999         int prot = 0;
3000         int ret;
3001         struct intel_iommu *iommu;
3002         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3003
3004         BUG_ON(dir == DMA_NONE);
3005
3006         if (iommu_no_mapping(dev))
3007                 return paddr;
3008
3009         domain = get_valid_domain_for_dev(dev);
3010         if (!domain)
3011                 return 0;
3012
3013         iommu = domain_get_iommu(domain);
3014         size = aligned_nrpages(paddr, size);
3015
3016         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3017         if (!iova)
3018                 goto error;
3019
3020         /*
3021          * Check if DMAR supports zero-length reads on write only
3022          * mappings..
3023          */
3024         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3025                         !cap_zlr(iommu->cap))
3026                 prot |= DMA_PTE_READ;
3027         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3028                 prot |= DMA_PTE_WRITE;
3029         /*
3030          * paddr - (paddr + size) might be partial page, we should map the whole
3031          * page.  Note: if two part of one page are separately mapped, we
3032          * might have two guest_addr mapping to the same host paddr, but this
3033          * is not a big problem
3034          */
3035         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3036                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3037         if (ret)
3038                 goto error;
3039
3040         /* it's a non-present to present mapping. Only flush if caching mode */
3041         if (cap_caching_mode(iommu->cap))
3042                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3043         else
3044                 iommu_flush_write_buffer(iommu);
3045
3046         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3047         start_paddr += paddr & ~PAGE_MASK;
3048         return start_paddr;
3049
3050 error:
3051         if (iova)
3052                 __free_iova(&domain->iovad, iova);
3053         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3054                 dev_name(dev), size, (unsigned long long)paddr, dir);
3055         return 0;
3056 }
3057
3058 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3059                                  unsigned long offset, size_t size,
3060                                  enum dma_data_direction dir,
3061                                  struct dma_attrs *attrs)
3062 {
3063         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3064                                   dir, *dev->dma_mask);
3065 }
3066
3067 static void flush_unmaps(void)
3068 {
3069         int i, j;
3070
3071         timer_on = 0;
3072
3073         /* just flush them all */
3074         for (i = 0; i < g_num_of_iommus; i++) {
3075                 struct intel_iommu *iommu = g_iommus[i];
3076                 if (!iommu)
3077                         continue;
3078
3079                 if (!deferred_flush[i].next)
3080                         continue;
3081
3082                 /* In caching mode, global flushes turn emulation expensive */
3083                 if (!cap_caching_mode(iommu->cap))
3084                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3085                                          DMA_TLB_GLOBAL_FLUSH);
3086                 for (j = 0; j < deferred_flush[i].next; j++) {
3087                         unsigned long mask;
3088                         struct iova *iova = deferred_flush[i].iova[j];
3089                         struct dmar_domain *domain = deferred_flush[i].domain[j];
3090
3091                         /* On real hardware multiple invalidations are expensive */
3092                         if (cap_caching_mode(iommu->cap))
3093                                 iommu_flush_iotlb_psi(iommu, domain->id,
3094                                         iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3095                                         !deferred_flush[i].freelist[j], 0);
3096                         else {
3097                                 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3098                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3099                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3100                         }
3101                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3102                         if (deferred_flush[i].freelist[j])
3103                                 dma_free_pagelist(deferred_flush[i].freelist[j]);
3104                 }
3105                 deferred_flush[i].next = 0;
3106         }
3107
3108         list_size = 0;
3109 }
3110
3111 static void flush_unmaps_timeout(unsigned long data)
3112 {
3113         unsigned long flags;
3114
3115         spin_lock_irqsave(&async_umap_flush_lock, flags);
3116         flush_unmaps();
3117         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3118 }
3119
3120 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3121 {
3122         unsigned long flags;
3123         int next, iommu_id;
3124         struct intel_iommu *iommu;
3125
3126         spin_lock_irqsave(&async_umap_flush_lock, flags);
3127         if (list_size == HIGH_WATER_MARK)
3128                 flush_unmaps();
3129
3130         iommu = domain_get_iommu(dom);
3131         iommu_id = iommu->seq_id;
3132
3133         next = deferred_flush[iommu_id].next;
3134         deferred_flush[iommu_id].domain[next] = dom;
3135         deferred_flush[iommu_id].iova[next] = iova;
3136         deferred_flush[iommu_id].freelist[next] = freelist;
3137         deferred_flush[iommu_id].next++;
3138
3139         if (!timer_on) {
3140                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3141                 timer_on = 1;
3142         }
3143         list_size++;
3144         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3145 }
3146
3147 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3148                              size_t size, enum dma_data_direction dir,
3149                              struct dma_attrs *attrs)
3150 {
3151         struct dmar_domain *domain;
3152         unsigned long start_pfn, last_pfn;
3153         struct iova *iova;
3154         struct intel_iommu *iommu;
3155         struct page *freelist;
3156
3157         if (iommu_no_mapping(dev))
3158                 return;
3159
3160         domain = find_domain(dev);
3161         BUG_ON(!domain);
3162
3163         iommu = domain_get_iommu(domain);
3164
3165         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3166         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3167                       (unsigned long long)dev_addr))
3168                 return;
3169
3170         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3171         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3172
3173         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3174                  dev_name(dev), start_pfn, last_pfn);
3175
3176         freelist = domain_unmap(domain, start_pfn, last_pfn);
3177
3178         if (intel_iommu_strict) {
3179                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3180                                       last_pfn - start_pfn + 1, !freelist, 0);
3181                 /* free iova */
3182                 __free_iova(&domain->iovad, iova);
3183                 dma_free_pagelist(freelist);
3184         } else {
3185                 add_unmap(domain, iova, freelist);
3186                 /*
3187                  * queue up the release of the unmap to save the 1/6th of the
3188                  * cpu used up by the iotlb flush operation...
3189                  */
3190         }
3191 }
3192
3193 static void *intel_alloc_coherent(struct device *dev, size_t size,
3194                                   dma_addr_t *dma_handle, gfp_t flags,
3195                                   struct dma_attrs *attrs)
3196 {
3197         struct page *page = NULL;
3198         int order;
3199
3200         size = PAGE_ALIGN(size);
3201         order = get_order(size);
3202
3203         if (!iommu_no_mapping(dev))
3204                 flags &= ~(GFP_DMA | GFP_DMA32);
3205         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3206                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3207                         flags |= GFP_DMA;
3208                 else
3209                         flags |= GFP_DMA32;
3210         }
3211
3212         if (flags & __GFP_WAIT) {
3213                 unsigned int count = size >> PAGE_SHIFT;
3214
3215                 page = dma_alloc_from_contiguous(dev, count, order);
3216                 if (page && iommu_no_mapping(dev) &&
3217                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3218                         dma_release_from_contiguous(dev, page, count);
3219                         page = NULL;
3220                 }
3221         }
3222
3223         if (!page)
3224                 page = alloc_pages(flags, order);
3225         if (!page)
3226                 return NULL;
3227         memset(page_address(page), 0, size);
3228
3229         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3230                                          DMA_BIDIRECTIONAL,
3231                                          dev->coherent_dma_mask);
3232         if (*dma_handle)
3233                 return page_address(page);
3234         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3235                 __free_pages(page, order);
3236
3237         return NULL;
3238 }
3239
3240 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3241                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
3242 {
3243         int order;
3244         struct page *page = virt_to_page(vaddr);
3245
3246         size = PAGE_ALIGN(size);
3247         order = get_order(size);
3248
3249         intel_unmap_page(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3250         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3251                 __free_pages(page, order);
3252 }
3253
3254 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3255                            int nelems, enum dma_data_direction dir,
3256                            struct dma_attrs *attrs)
3257 {
3258         struct dmar_domain *domain;
3259         unsigned long start_pfn, last_pfn;
3260         struct iova *iova;
3261         struct intel_iommu *iommu;
3262         struct page *freelist;
3263
3264         if (iommu_no_mapping(dev))
3265                 return;
3266
3267         domain = find_domain(dev);
3268         BUG_ON(!domain);
3269
3270         iommu = domain_get_iommu(domain);
3271
3272         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3273         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3274                       (unsigned long long)sglist[0].dma_address))
3275                 return;
3276
3277         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3278         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3279
3280         freelist = domain_unmap(domain, start_pfn, last_pfn);
3281
3282         if (intel_iommu_strict) {
3283                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3284                                       last_pfn - start_pfn + 1, !freelist, 0);
3285                 /* free iova */
3286                 __free_iova(&domain->iovad, iova);
3287                 dma_free_pagelist(freelist);
3288         } else {
3289                 add_unmap(domain, iova, freelist);
3290                 /*
3291                  * queue up the release of the unmap to save the 1/6th of the
3292                  * cpu used up by the iotlb flush operation...
3293                  */
3294         }
3295 }
3296
3297 static int intel_nontranslate_map_sg(struct device *hddev,
3298         struct scatterlist *sglist, int nelems, int dir)
3299 {
3300         int i;
3301         struct scatterlist *sg;
3302
3303         for_each_sg(sglist, sg, nelems, i) {
3304                 BUG_ON(!sg_page(sg));
3305                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3306                 sg->dma_length = sg->length;
3307         }
3308         return nelems;
3309 }
3310
3311 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3312                         enum dma_data_direction dir, struct dma_attrs *attrs)
3313 {
3314         int i;
3315         struct dmar_domain *domain;
3316         size_t size = 0;
3317         int prot = 0;
3318         struct iova *iova = NULL;
3319         int ret;
3320         struct scatterlist *sg;
3321         unsigned long start_vpfn;
3322         struct intel_iommu *iommu;
3323
3324         BUG_ON(dir == DMA_NONE);
3325         if (iommu_no_mapping(dev))
3326                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3327
3328         domain = get_valid_domain_for_dev(dev);
3329         if (!domain)
3330                 return 0;
3331
3332         iommu = domain_get_iommu(domain);
3333
3334         for_each_sg(sglist, sg, nelems, i)
3335                 size += aligned_nrpages(sg->offset, sg->length);
3336
3337         iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3338                                 *dev->dma_mask);
3339         if (!iova) {
3340                 sglist->dma_length = 0;
3341                 return 0;
3342         }
3343
3344         /*
3345          * Check if DMAR supports zero-length reads on write only
3346          * mappings..
3347          */
3348         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3349                         !cap_zlr(iommu->cap))
3350                 prot |= DMA_PTE_READ;
3351         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3352                 prot |= DMA_PTE_WRITE;
3353
3354         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3355
3356         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3357         if (unlikely(ret)) {
3358                 /*  clear the page */
3359                 dma_pte_clear_range(domain, start_vpfn,
3360                                     start_vpfn + size - 1);
3361                 /* free page tables */
3362                 dma_pte_free_pagetable(domain, start_vpfn,
3363                                        start_vpfn + size - 1);
3364                 /* free iova */
3365                 __free_iova(&domain->iovad, iova);
3366                 return 0;
3367         }
3368
3369         /* it's a non-present to present mapping. Only flush if caching mode */
3370         if (cap_caching_mode(iommu->cap))
3371                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3372         else
3373                 iommu_flush_write_buffer(iommu);
3374
3375         return nelems;
3376 }
3377
3378 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3379 {
3380         return !dma_addr;
3381 }
3382
3383 struct dma_map_ops intel_dma_ops = {
3384         .alloc = intel_alloc_coherent,
3385         .free = intel_free_coherent,
3386         .map_sg = intel_map_sg,
3387         .unmap_sg = intel_unmap_sg,
3388         .map_page = intel_map_page,
3389         .unmap_page = intel_unmap_page,
3390         .mapping_error = intel_mapping_error,
3391 };
3392
3393 static inline int iommu_domain_cache_init(void)
3394 {
3395         int ret = 0;
3396
3397         iommu_domain_cache = kmem_cache_create("iommu_domain",
3398                                          sizeof(struct dmar_domain),
3399                                          0,
3400                                          SLAB_HWCACHE_ALIGN,
3401
3402                                          NULL);
3403         if (!iommu_domain_cache) {
3404                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3405                 ret = -ENOMEM;
3406         }
3407
3408         return ret;
3409 }
3410
3411 static inline int iommu_devinfo_cache_init(void)
3412 {
3413         int ret = 0;
3414
3415         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3416                                          sizeof(struct device_domain_info),
3417                                          0,
3418                                          SLAB_HWCACHE_ALIGN,
3419                                          NULL);
3420         if (!iommu_devinfo_cache) {
3421                 printk(KERN_ERR "Couldn't create devinfo cache\n");
3422                 ret = -ENOMEM;
3423         }
3424
3425         return ret;
3426 }
3427
3428 static inline int iommu_iova_cache_init(void)
3429 {
3430         int ret = 0;
3431
3432         iommu_iova_cache = kmem_cache_create("iommu_iova",
3433                                          sizeof(struct iova),
3434                                          0,
3435                                          SLAB_HWCACHE_ALIGN,
3436                                          NULL);
3437         if (!iommu_iova_cache) {
3438                 printk(KERN_ERR "Couldn't create iova cache\n");
3439                 ret = -ENOMEM;
3440         }
3441
3442         return ret;
3443 }
3444
3445 static int __init iommu_init_mempool(void)
3446 {
3447         int ret;
3448         ret = iommu_iova_cache_init();
3449         if (ret)
3450                 return ret;
3451
3452         ret = iommu_domain_cache_init();
3453         if (ret)
3454                 goto domain_error;
3455
3456         ret = iommu_devinfo_cache_init();
3457         if (!ret)
3458                 return ret;
3459
3460         kmem_cache_destroy(iommu_domain_cache);
3461 domain_error:
3462         kmem_cache_destroy(iommu_iova_cache);
3463
3464         return -ENOMEM;
3465 }
3466
3467 static void __init iommu_exit_mempool(void)
3468 {
3469         kmem_cache_destroy(iommu_devinfo_cache);
3470         kmem_cache_destroy(iommu_domain_cache);
3471         kmem_cache_destroy(iommu_iova_cache);
3472
3473 }
3474
3475 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3476 {
3477         struct dmar_drhd_unit *drhd;
3478         u32 vtbar;
3479         int rc;
3480
3481         /* We know that this device on this chipset has its own IOMMU.
3482          * If we find it under a different IOMMU, then the BIOS is lying
3483          * to us. Hope that the IOMMU for this device is actually
3484          * disabled, and it needs no translation...
3485          */
3486         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3487         if (rc) {
3488                 /* "can't" happen */
3489                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3490                 return;
3491         }
3492         vtbar &= 0xffff0000;
3493
3494         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3495         drhd = dmar_find_matched_drhd_unit(pdev);
3496         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3497                             TAINT_FIRMWARE_WORKAROUND,
3498                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3499                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3500 }
3501 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3502
3503 static void __init init_no_remapping_devices(void)
3504 {
3505         struct dmar_drhd_unit *drhd;
3506         struct device *dev;
3507         int i;
3508
3509         for_each_drhd_unit(drhd) {
3510                 if (!drhd->include_all) {
3511                         for_each_active_dev_scope(drhd->devices,
3512                                                   drhd->devices_cnt, i, dev)
3513                                 break;
3514                         /* ignore DMAR unit if no devices exist */
3515                         if (i == drhd->devices_cnt)
3516                                 drhd->ignored = 1;
3517                 }
3518         }
3519
3520         for_each_active_drhd_unit(drhd) {
3521                 if (drhd->include_all)
3522                         continue;
3523
3524                 for_each_active_dev_scope(drhd->devices,
3525                                           drhd->devices_cnt, i, dev)
3526                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3527                                 break;
3528                 if (i < drhd->devices_cnt)
3529                         continue;
3530
3531                 /* This IOMMU has *only* gfx devices. Either bypass it or
3532                    set the gfx_mapped flag, as appropriate */
3533                 if (dmar_map_gfx) {
3534                         intel_iommu_gfx_mapped = 1;
3535                 } else {
3536                         drhd->ignored = 1;
3537                         for_each_active_dev_scope(drhd->devices,
3538                                                   drhd->devices_cnt, i, dev)
3539                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3540                 }
3541         }
3542 }
3543
3544 #ifdef CONFIG_SUSPEND
3545 static int init_iommu_hw(void)
3546 {
3547         struct dmar_drhd_unit *drhd;
3548         struct intel_iommu *iommu = NULL;
3549
3550         for_each_active_iommu(iommu, drhd)
3551                 if (iommu->qi)
3552                         dmar_reenable_qi(iommu);
3553
3554         for_each_iommu(iommu, drhd) {
3555                 if (drhd->ignored) {
3556                         /*
3557                          * we always have to disable PMRs or DMA may fail on
3558                          * this device
3559                          */
3560                         if (force_on)
3561                                 iommu_disable_protect_mem_regions(iommu);
3562                         continue;
3563                 }
3564         
3565                 iommu_flush_write_buffer(iommu);
3566
3567                 iommu_set_root_entry(iommu);
3568
3569                 iommu->flush.flush_context(iommu, 0, 0, 0,
3570                                            DMA_CCMD_GLOBAL_INVL);
3571                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3572                                          DMA_TLB_GLOBAL_FLUSH);
3573                 if (iommu_enable_translation(iommu))
3574                         return 1;
3575                 iommu_disable_protect_mem_regions(iommu);
3576         }
3577
3578         return 0;
3579 }
3580
3581 static void iommu_flush_all(void)
3582 {
3583         struct dmar_drhd_unit *drhd;
3584         struct intel_iommu *iommu;
3585
3586         for_each_active_iommu(iommu, drhd) {
3587                 iommu->flush.flush_context(iommu, 0, 0, 0,
3588                                            DMA_CCMD_GLOBAL_INVL);
3589                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3590                                          DMA_TLB_GLOBAL_FLUSH);
3591         }
3592 }
3593
3594 static int iommu_suspend(void)
3595 {
3596         struct dmar_drhd_unit *drhd;
3597         struct intel_iommu *iommu = NULL;
3598         unsigned long flag;
3599
3600         for_each_active_iommu(iommu, drhd) {
3601                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3602                                                  GFP_ATOMIC);
3603                 if (!iommu->iommu_state)
3604                         goto nomem;
3605         }
3606
3607         iommu_flush_all();
3608
3609         for_each_active_iommu(iommu, drhd) {
3610                 iommu_disable_translation(iommu);
3611
3612                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3613
3614                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3615                         readl(iommu->reg + DMAR_FECTL_REG);
3616                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3617                         readl(iommu->reg + DMAR_FEDATA_REG);
3618                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3619                         readl(iommu->reg + DMAR_FEADDR_REG);
3620                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3621                         readl(iommu->reg + DMAR_FEUADDR_REG);
3622
3623                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3624         }
3625         return 0;
3626
3627 nomem:
3628         for_each_active_iommu(iommu, drhd)
3629                 kfree(iommu->iommu_state);
3630
3631         return -ENOMEM;
3632 }
3633
3634 static void iommu_resume(void)
3635 {
3636         struct dmar_drhd_unit *drhd;
3637         struct intel_iommu *iommu = NULL;
3638         unsigned long flag;
3639
3640         if (init_iommu_hw()) {
3641                 if (force_on)
3642                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3643                 else
3644                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3645                 return;
3646         }
3647
3648         for_each_active_iommu(iommu, drhd) {
3649
3650                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3651
3652                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3653                         iommu->reg + DMAR_FECTL_REG);
3654                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3655                         iommu->reg + DMAR_FEDATA_REG);
3656                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3657                         iommu->reg + DMAR_FEADDR_REG);
3658                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3659                         iommu->reg + DMAR_FEUADDR_REG);
3660
3661                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3662         }
3663
3664         for_each_active_iommu(iommu, drhd)
3665                 kfree(iommu->iommu_state);
3666 }
3667
3668 static struct syscore_ops iommu_syscore_ops = {
3669         .resume         = iommu_resume,
3670         .suspend        = iommu_suspend,
3671 };
3672
3673 static void __init init_iommu_pm_ops(void)
3674 {
3675         register_syscore_ops(&iommu_syscore_ops);
3676 }
3677
3678 #else
3679 static inline void init_iommu_pm_ops(void) {}
3680 #endif  /* CONFIG_PM */
3681
3682
3683 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3684 {
3685         struct acpi_dmar_reserved_memory *rmrr;
3686         struct dmar_rmrr_unit *rmrru;
3687
3688         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3689         if (!rmrru)
3690                 return -ENOMEM;
3691
3692         rmrru->hdr = header;
3693         rmrr = (struct acpi_dmar_reserved_memory *)header;
3694         rmrru->base_address = rmrr->base_address;
3695         rmrru->end_address = rmrr->end_address;
3696         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3697                                 ((void *)rmrr) + rmrr->header.length,
3698                                 &rmrru->devices_cnt);
3699         if (rmrru->devices_cnt && rmrru->devices == NULL) {
3700                 kfree(rmrru);
3701                 return -ENOMEM;
3702         }
3703
3704         list_add(&rmrru->list, &dmar_rmrr_units);
3705
3706         return 0;
3707 }
3708
3709 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3710 {
3711         struct acpi_dmar_atsr *atsr;
3712         struct dmar_atsr_unit *atsru;
3713
3714         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3715         atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3716         if (!atsru)
3717                 return -ENOMEM;
3718
3719         atsru->hdr = hdr;
3720         atsru->include_all = atsr->flags & 0x1;
3721         if (!atsru->include_all) {
3722                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3723                                 (void *)atsr + atsr->header.length,
3724                                 &atsru->devices_cnt);
3725                 if (atsru->devices_cnt && atsru->devices == NULL) {
3726                         kfree(atsru);
3727                         return -ENOMEM;
3728                 }
3729         }
3730
3731         list_add_rcu(&atsru->list, &dmar_atsr_units);
3732
3733         return 0;
3734 }
3735
3736 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3737 {
3738         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3739         kfree(atsru);
3740 }
3741
3742 static void intel_iommu_free_dmars(void)
3743 {
3744         struct dmar_rmrr_unit *rmrru, *rmrr_n;
3745         struct dmar_atsr_unit *atsru, *atsr_n;
3746
3747         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3748                 list_del(&rmrru->list);
3749                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3750                 kfree(rmrru);
3751         }
3752
3753         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3754                 list_del(&atsru->list);
3755                 intel_iommu_free_atsr(atsru);
3756         }
3757 }
3758
3759 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3760 {
3761         int i, ret = 1;
3762         struct pci_bus *bus;
3763         struct pci_dev *bridge = NULL;
3764         struct device *tmp;
3765         struct acpi_dmar_atsr *atsr;
3766         struct dmar_atsr_unit *atsru;
3767
3768         dev = pci_physfn(dev);
3769         for (bus = dev->bus; bus; bus = bus->parent) {
3770                 bridge = bus->self;
3771                 if (!bridge || !pci_is_pcie(bridge) ||
3772                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3773                         return 0;
3774                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3775                         break;
3776         }
3777         if (!bridge)
3778                 return 0;
3779
3780         rcu_read_lock();
3781         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3782                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3783                 if (atsr->segment != pci_domain_nr(dev->bus))
3784                         continue;
3785
3786                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3787                         if (tmp == &bridge->dev)
3788                                 goto out;
3789
3790                 if (atsru->include_all)
3791                         goto out;
3792         }
3793         ret = 0;
3794 out:
3795         rcu_read_unlock();
3796
3797         return ret;
3798 }
3799
3800 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3801 {
3802         int ret = 0;
3803         struct dmar_rmrr_unit *rmrru;
3804         struct dmar_atsr_unit *atsru;
3805         struct acpi_dmar_atsr *atsr;
3806         struct acpi_dmar_reserved_memory *rmrr;
3807
3808         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3809                 return 0;
3810
3811         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3812                 rmrr = container_of(rmrru->hdr,
3813                                     struct acpi_dmar_reserved_memory, header);
3814                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3815                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3816                                 ((void *)rmrr) + rmrr->header.length,
3817                                 rmrr->segment, rmrru->devices,
3818                                 rmrru->devices_cnt);
3819                         if (ret > 0)
3820                                 break;
3821                         else if(ret < 0)
3822                                 return ret;
3823                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3824                         if (dmar_remove_dev_scope(info, rmrr->segment,
3825                                 rmrru->devices, rmrru->devices_cnt))
3826                                 break;
3827                 }
3828         }
3829
3830         list_for_each_entry(atsru, &dmar_atsr_units, list) {
3831                 if (atsru->include_all)
3832                         continue;
3833
3834                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3835                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3836                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3837                                         (void *)atsr + atsr->header.length,
3838                                         atsr->segment, atsru->devices,
3839                                         atsru->devices_cnt);
3840                         if (ret > 0)
3841                                 break;
3842                         else if(ret < 0)
3843                                 return ret;
3844                 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3845                         if (dmar_remove_dev_scope(info, atsr->segment,
3846                                         atsru->devices, atsru->devices_cnt))
3847                                 break;
3848                 }
3849         }
3850
3851         return 0;
3852 }
3853
3854 /*
3855  * Here we only respond to action of unbound device from driver.
3856  *
3857  * Added device is not attached to its DMAR domain here yet. That will happen
3858  * when mapping the device to iova.
3859  */
3860 static int device_notifier(struct notifier_block *nb,
3861                                   unsigned long action, void *data)
3862 {
3863         struct device *dev = data;
3864         struct dmar_domain *domain;
3865
3866         if (iommu_dummy(dev))
3867                 return 0;
3868
3869         if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3870             action != BUS_NOTIFY_DEL_DEVICE)
3871                 return 0;
3872
3873         domain = find_domain(dev);
3874         if (!domain)
3875                 return 0;
3876
3877         down_read(&dmar_global_lock);
3878         domain_remove_one_dev_info(domain, dev);
3879         if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3880             !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3881             list_empty(&domain->devices))
3882                 domain_exit(domain);
3883         up_read(&dmar_global_lock);
3884
3885         return 0;
3886 }
3887
3888 static struct notifier_block device_nb = {
3889         .notifier_call = device_notifier,
3890 };
3891
3892 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3893                                        unsigned long val, void *v)
3894 {
3895         struct memory_notify *mhp = v;
3896         unsigned long long start, end;
3897         unsigned long start_vpfn, last_vpfn;
3898
3899         switch (val) {
3900         case MEM_GOING_ONLINE:
3901                 start = mhp->start_pfn << PAGE_SHIFT;
3902                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3903                 if (iommu_domain_identity_map(si_domain, start, end)) {
3904                         pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3905                                 start, end);
3906                         return NOTIFY_BAD;
3907                 }
3908                 break;
3909
3910         case MEM_OFFLINE:
3911         case MEM_CANCEL_ONLINE:
3912                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3913                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3914                 while (start_vpfn <= last_vpfn) {
3915                         struct iova *iova;
3916                         struct dmar_drhd_unit *drhd;
3917                         struct intel_iommu *iommu;
3918                         struct page *freelist;
3919
3920                         iova = find_iova(&si_domain->iovad, start_vpfn);
3921                         if (iova == NULL) {
3922                                 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3923                                          start_vpfn);
3924                                 break;
3925                         }
3926
3927                         iova = split_and_remove_iova(&si_domain->iovad, iova,
3928                                                      start_vpfn, last_vpfn);
3929                         if (iova == NULL) {
3930                                 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3931                                         start_vpfn, last_vpfn);
3932                                 return NOTIFY_BAD;
3933                         }
3934
3935                         freelist = domain_unmap(si_domain, iova->pfn_lo,
3936                                                iova->pfn_hi);
3937
3938                         rcu_read_lock();
3939                         for_each_active_iommu(iommu, drhd)
3940                                 iommu_flush_iotlb_psi(iommu, si_domain->id,
3941                                         iova->pfn_lo,
3942                                         iova->pfn_hi - iova->pfn_lo + 1,
3943                                         !freelist, 0);
3944                         rcu_read_unlock();
3945                         dma_free_pagelist(freelist);
3946
3947                         start_vpfn = iova->pfn_hi + 1;
3948                         free_iova_mem(iova);
3949                 }
3950                 break;
3951         }
3952
3953         return NOTIFY_OK;
3954 }
3955
3956 static struct notifier_block intel_iommu_memory_nb = {
3957         .notifier_call = intel_iommu_memory_notifier,
3958         .priority = 0
3959 };
3960
3961 int __init intel_iommu_init(void)
3962 {
3963         int ret = -ENODEV;
3964         struct dmar_drhd_unit *drhd;
3965         struct intel_iommu *iommu;
3966
3967         /* VT-d is required for a TXT/tboot launch, so enforce that */
3968         force_on = tboot_force_iommu();
3969
3970         if (iommu_init_mempool()) {
3971                 if (force_on)
3972                         panic("tboot: Failed to initialize iommu memory\n");
3973                 return -ENOMEM;
3974         }
3975
3976         down_write(&dmar_global_lock);
3977         if (dmar_table_init()) {
3978                 if (force_on)
3979                         panic("tboot: Failed to initialize DMAR table\n");
3980                 goto out_free_dmar;
3981         }
3982
3983         /*
3984          * Disable translation if already enabled prior to OS handover.
3985          */
3986         for_each_active_iommu(iommu, drhd)
3987                 if (iommu->gcmd & DMA_GCMD_TE)
3988                         iommu_disable_translation(iommu);
3989
3990         if (dmar_dev_scope_init() < 0) {
3991                 if (force_on)
3992                         panic("tboot: Failed to initialize DMAR device scope\n");
3993                 goto out_free_dmar;
3994         }
3995
3996         if (no_iommu || dmar_disabled)
3997                 goto out_free_dmar;
3998
3999         if (list_empty(&dmar_rmrr_units))
4000                 printk(KERN_INFO "DMAR: No RMRR found\n");
4001
4002         if (list_empty(&dmar_atsr_units))
4003                 printk(KERN_INFO "DMAR: No ATSR found\n");
4004
4005         if (dmar_init_reserved_ranges()) {
4006                 if (force_on)
4007                         panic("tboot: Failed to reserve iommu ranges\n");
4008                 goto out_free_reserved_range;
4009         }
4010
4011         init_no_remapping_devices();
4012
4013         ret = init_dmars();
4014         if (ret) {
4015                 if (force_on)
4016                         panic("tboot: Failed to initialize DMARs\n");
4017                 printk(KERN_ERR "IOMMU: dmar init failed\n");
4018                 goto out_free_reserved_range;
4019         }
4020         up_write(&dmar_global_lock);
4021         printk(KERN_INFO
4022         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4023
4024         init_timer(&unmap_timer);
4025 #ifdef CONFIG_SWIOTLB
4026         swiotlb = 0;
4027 #endif
4028         dma_ops = &intel_dma_ops;
4029
4030         init_iommu_pm_ops();
4031
4032         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4033         bus_register_notifier(&pci_bus_type, &device_nb);
4034         if (si_domain && !hw_pass_through)
4035                 register_memory_notifier(&intel_iommu_memory_nb);
4036
4037         intel_iommu_enabled = 1;
4038
4039         return 0;
4040
4041 out_free_reserved_range:
4042         put_iova_domain(&reserved_iova_list);
4043 out_free_dmar:
4044         intel_iommu_free_dmars();
4045         up_write(&dmar_global_lock);
4046         iommu_exit_mempool();
4047         return ret;
4048 }
4049
4050 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4051                                            struct device *dev)
4052 {
4053         struct pci_dev *tmp, *parent, *pdev;
4054
4055         if (!iommu || !dev || !dev_is_pci(dev))
4056                 return;
4057
4058         pdev = to_pci_dev(dev);
4059
4060         /* dependent device detach */
4061         tmp = pci_find_upstream_pcie_bridge(pdev);
4062         /* Secondary interface's bus number and devfn 0 */
4063         if (tmp) {
4064                 parent = pdev->bus->self;
4065                 while (parent != tmp) {
4066                         iommu_detach_dev(iommu, parent->bus->number,
4067                                          parent->devfn);
4068                         parent = parent->bus->self;
4069                 }
4070                 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4071                         iommu_detach_dev(iommu,
4072                                 tmp->subordinate->number, 0);
4073                 else /* this is a legacy PCI bridge */
4074                         iommu_detach_dev(iommu, tmp->bus->number,
4075                                          tmp->devfn);
4076         }
4077 }
4078
4079 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4080                                        struct device *dev)
4081 {
4082         struct device_domain_info *info, *tmp;
4083         struct intel_iommu *iommu;
4084         unsigned long flags;
4085         int found = 0;
4086         u8 bus, devfn;
4087
4088         iommu = device_to_iommu(dev, &bus, &devfn);
4089         if (!iommu)
4090                 return;
4091
4092         spin_lock_irqsave(&device_domain_lock, flags);
4093         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4094                 if (info->iommu == iommu && info->bus == bus &&
4095                     info->devfn == devfn) {
4096                         unlink_domain_info(info);
4097                         spin_unlock_irqrestore(&device_domain_lock, flags);
4098
4099                         iommu_disable_dev_iotlb(info);
4100                         iommu_detach_dev(iommu, info->bus, info->devfn);
4101                         iommu_detach_dependent_devices(iommu, dev);
4102                         free_devinfo_mem(info);
4103
4104                         spin_lock_irqsave(&device_domain_lock, flags);
4105
4106                         if (found)
4107                                 break;
4108                         else
4109                                 continue;
4110                 }
4111
4112                 /* if there is no other devices under the same iommu
4113                  * owned by this domain, clear this iommu in iommu_bmp
4114                  * update iommu count and coherency
4115                  */
4116                 if (info->iommu == iommu)
4117                         found = 1;
4118         }
4119
4120         spin_unlock_irqrestore(&device_domain_lock, flags);
4121
4122         if (found == 0) {
4123                 unsigned long tmp_flags;
4124                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4125                 clear_bit(iommu->seq_id, domain->iommu_bmp);
4126                 domain->iommu_count--;
4127                 domain_update_iommu_cap(domain);
4128                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4129
4130                 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4131                     !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4132                         spin_lock_irqsave(&iommu->lock, tmp_flags);
4133                         clear_bit(domain->id, iommu->domain_ids);
4134                         iommu->domains[domain->id] = NULL;
4135                         spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4136                 }
4137         }
4138 }
4139
4140 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4141 {
4142         int adjust_width;
4143
4144         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4145         domain_reserve_special_ranges(domain);
4146
4147         /* calculate AGAW */
4148         domain->gaw = guest_width;
4149         adjust_width = guestwidth_to_adjustwidth(guest_width);
4150         domain->agaw = width_to_agaw(adjust_width);
4151
4152         domain->iommu_coherency = 0;
4153         domain->iommu_snooping = 0;
4154         domain->iommu_superpage = 0;
4155         domain->max_addr = 0;
4156         domain->nid = -1;
4157
4158         /* always allocate the top pgd */
4159         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4160         if (!domain->pgd)
4161                 return -ENOMEM;
4162         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4163         return 0;
4164 }
4165
4166 static int intel_iommu_domain_init(struct iommu_domain *domain)
4167 {
4168         struct dmar_domain *dmar_domain;
4169
4170         dmar_domain = alloc_domain(true);
4171         if (!dmar_domain) {
4172                 printk(KERN_ERR
4173                         "intel_iommu_domain_init: dmar_domain == NULL\n");
4174                 return -ENOMEM;
4175         }
4176         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4177                 printk(KERN_ERR
4178                         "intel_iommu_domain_init() failed\n");
4179                 domain_exit(dmar_domain);
4180                 return -ENOMEM;
4181         }
4182         domain_update_iommu_cap(dmar_domain);
4183         domain->priv = dmar_domain;
4184
4185         domain->geometry.aperture_start = 0;
4186         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4187         domain->geometry.force_aperture = true;
4188
4189         return 0;
4190 }
4191
4192 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4193 {
4194         struct dmar_domain *dmar_domain = domain->priv;
4195
4196         domain->priv = NULL;
4197         domain_exit(dmar_domain);
4198 }
4199
4200 static int intel_iommu_attach_device(struct iommu_domain *domain,
4201                                      struct device *dev)
4202 {
4203         struct dmar_domain *dmar_domain = domain->priv;
4204         struct intel_iommu *iommu;
4205         int addr_width;
4206         u8 bus, devfn;
4207
4208         /* normally dev is not mapped */
4209         if (unlikely(domain_context_mapped(dev))) {
4210                 struct dmar_domain *old_domain;
4211
4212                 old_domain = find_domain(dev);
4213                 if (old_domain) {
4214                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4215                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4216                                 domain_remove_one_dev_info(old_domain, dev);
4217                         else
4218                                 domain_remove_dev_info(old_domain);
4219                 }
4220         }
4221
4222         iommu = device_to_iommu(dev, &bus, &devfn);
4223         if (!iommu)
4224                 return -ENODEV;
4225
4226         /* check if this iommu agaw is sufficient for max mapped address */
4227         addr_width = agaw_to_width(iommu->agaw);
4228         if (addr_width > cap_mgaw(iommu->cap))
4229                 addr_width = cap_mgaw(iommu->cap);
4230
4231         if (dmar_domain->max_addr > (1LL << addr_width)) {
4232                 printk(KERN_ERR "%s: iommu width (%d) is not "
4233                        "sufficient for the mapped address (%llx)\n",
4234                        __func__, addr_width, dmar_domain->max_addr);
4235                 return -EFAULT;
4236         }
4237         dmar_domain->gaw = addr_width;
4238
4239         /*
4240          * Knock out extra levels of page tables if necessary
4241          */
4242         while (iommu->agaw < dmar_domain->agaw) {
4243                 struct dma_pte *pte;
4244
4245                 pte = dmar_domain->pgd;
4246                 if (dma_pte_present(pte)) {
4247                         dmar_domain->pgd = (struct dma_pte *)
4248                                 phys_to_virt(dma_pte_addr(pte));
4249                         free_pgtable_page(pte);
4250                 }
4251                 dmar_domain->agaw--;
4252         }
4253
4254         return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4255 }
4256
4257 static void intel_iommu_detach_device(struct iommu_domain *domain,
4258                                       struct device *dev)
4259 {
4260         struct dmar_domain *dmar_domain = domain->priv;
4261
4262         domain_remove_one_dev_info(dmar_domain, dev);
4263 }
4264
4265 static int intel_iommu_map(struct iommu_domain *domain,
4266                            unsigned long iova, phys_addr_t hpa,
4267                            size_t size, int iommu_prot)
4268 {
4269         struct dmar_domain *dmar_domain = domain->priv;
4270         u64 max_addr;
4271         int prot = 0;
4272         int ret;
4273
4274         if (iommu_prot & IOMMU_READ)
4275                 prot |= DMA_PTE_READ;
4276         if (iommu_prot & IOMMU_WRITE)
4277                 prot |= DMA_PTE_WRITE;
4278         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4279                 prot |= DMA_PTE_SNP;
4280
4281         max_addr = iova + size;
4282         if (dmar_domain->max_addr < max_addr) {
4283                 u64 end;
4284
4285                 /* check if minimum agaw is sufficient for mapped address */
4286                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4287                 if (end < max_addr) {
4288                         printk(KERN_ERR "%s: iommu width (%d) is not "
4289                                "sufficient for the mapped address (%llx)\n",
4290                                __func__, dmar_domain->gaw, max_addr);
4291                         return -EFAULT;
4292                 }
4293                 dmar_domain->max_addr = max_addr;
4294         }
4295         /* Round up size to next multiple of PAGE_SIZE, if it and
4296            the low bits of hpa would take us onto the next page */
4297         size = aligned_nrpages(hpa, size);
4298         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4299                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4300         return ret;
4301 }
4302
4303 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4304                                 unsigned long iova, size_t size)
4305 {
4306         struct dmar_domain *dmar_domain = domain->priv;
4307         struct page *freelist = NULL;
4308         struct intel_iommu *iommu;
4309         unsigned long start_pfn, last_pfn;
4310         unsigned int npages;
4311         int iommu_id, num, ndomains, level = 0;
4312
4313         /* Cope with horrid API which requires us to unmap more than the
4314            size argument if it happens to be a large-page mapping. */
4315         if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4316                 BUG();
4317
4318         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4319                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4320
4321         start_pfn = iova >> VTD_PAGE_SHIFT;
4322         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4323
4324         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4325
4326         npages = last_pfn - start_pfn + 1;
4327
4328         for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4329                iommu = g_iommus[iommu_id];
4330
4331                /*
4332                 * find bit position of dmar_domain
4333                 */
4334                ndomains = cap_ndoms(iommu->cap);
4335                for_each_set_bit(num, iommu->domain_ids, ndomains) {
4336                        if (iommu->domains[num] == dmar_domain)
4337                                iommu_flush_iotlb_psi(iommu, num, start_pfn,
4338                                                      npages, !freelist, 0);
4339                }
4340
4341         }
4342
4343         dma_free_pagelist(freelist);
4344
4345         if (dmar_domain->max_addr == iova + size)
4346                 dmar_domain->max_addr = iova;
4347
4348         return size;
4349 }
4350
4351 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4352                                             dma_addr_t iova)
4353 {
4354         struct dmar_domain *dmar_domain = domain->priv;
4355         struct dma_pte *pte;
4356         int level = 0;
4357         u64 phys = 0;
4358
4359         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4360         if (pte)
4361                 phys = dma_pte_addr(pte);
4362
4363         return phys;
4364 }
4365
4366 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4367                                       unsigned long cap)
4368 {
4369         struct dmar_domain *dmar_domain = domain->priv;
4370
4371         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4372                 return dmar_domain->iommu_snooping;
4373         if (cap == IOMMU_CAP_INTR_REMAP)
4374                 return irq_remapping_enabled;
4375
4376         return 0;
4377 }
4378
4379 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4380
4381 static int intel_iommu_add_device(struct device *dev)
4382 {
4383         struct pci_dev *pdev = to_pci_dev(dev);
4384         struct pci_dev *bridge, *dma_pdev = NULL;
4385         struct iommu_group *group;
4386         int ret;
4387         u8 bus, devfn;
4388
4389         if (!device_to_iommu(dev, &bus, &devfn))
4390                 return -ENODEV;
4391
4392         bridge = pci_find_upstream_pcie_bridge(pdev);
4393         if (bridge) {
4394                 if (pci_is_pcie(bridge))
4395                         dma_pdev = pci_get_domain_bus_and_slot(
4396                                                 pci_domain_nr(pdev->bus),
4397                                                 bridge->subordinate->number, 0);
4398                 if (!dma_pdev)
4399                         dma_pdev = pci_dev_get(bridge);
4400         } else
4401                 dma_pdev = pci_dev_get(pdev);
4402
4403         /* Account for quirked devices */
4404         swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4405
4406         /*
4407          * If it's a multifunction device that does not support our
4408          * required ACS flags, add to the same group as lowest numbered
4409          * function that also does not suport the required ACS flags.
4410          */
4411         if (dma_pdev->multifunction &&
4412             !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4413                 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4414
4415                 for (i = 0; i < 8; i++) {
4416                         struct pci_dev *tmp;
4417
4418                         tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4419                         if (!tmp)
4420                                 continue;
4421
4422                         if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4423                                 swap_pci_ref(&dma_pdev, tmp);
4424                                 break;
4425                         }
4426                         pci_dev_put(tmp);
4427                 }
4428         }
4429
4430         /*
4431          * Devices on the root bus go through the iommu.  If that's not us,
4432          * find the next upstream device and test ACS up to the root bus.
4433          * Finding the next device may require skipping virtual buses.
4434          */
4435         while (!pci_is_root_bus(dma_pdev->bus)) {
4436                 struct pci_bus *bus = dma_pdev->bus;
4437
4438                 while (!bus->self) {
4439                         if (!pci_is_root_bus(bus))
4440                                 bus = bus->parent;
4441                         else
4442                                 goto root_bus;
4443                 }
4444
4445                 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4446                         break;
4447
4448                 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4449         }
4450
4451 root_bus:
4452         group = iommu_group_get(&dma_pdev->dev);
4453         pci_dev_put(dma_pdev);
4454         if (!group) {
4455                 group = iommu_group_alloc();
4456                 if (IS_ERR(group))
4457                         return PTR_ERR(group);
4458         }
4459
4460         ret = iommu_group_add_device(group, dev);
4461
4462         iommu_group_put(group);
4463         return ret;
4464 }
4465
4466 static void intel_iommu_remove_device(struct device *dev)
4467 {
4468         iommu_group_remove_device(dev);
4469 }
4470
4471 static struct iommu_ops intel_iommu_ops = {
4472         .domain_init    = intel_iommu_domain_init,
4473         .domain_destroy = intel_iommu_domain_destroy,
4474         .attach_dev     = intel_iommu_attach_device,
4475         .detach_dev     = intel_iommu_detach_device,
4476         .map            = intel_iommu_map,
4477         .unmap          = intel_iommu_unmap,
4478         .iova_to_phys   = intel_iommu_iova_to_phys,
4479         .domain_has_cap = intel_iommu_domain_has_cap,
4480         .add_device     = intel_iommu_add_device,
4481         .remove_device  = intel_iommu_remove_device,
4482         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4483 };
4484
4485 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4486 {
4487         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4488         printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4489         dmar_map_gfx = 0;
4490 }
4491
4492 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4493 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4494 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4495 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4496 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4497 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4498 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4499
4500 static void quirk_iommu_rwbf(struct pci_dev *dev)
4501 {
4502         /*
4503          * Mobile 4 Series Chipset neglects to set RWBF capability,
4504          * but needs it. Same seems to hold for the desktop versions.
4505          */
4506         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4507         rwbf_quirk = 1;
4508 }
4509
4510 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4511 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4512 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4513 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4514 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4515 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4516 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4517
4518 #define GGC 0x52
4519 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4520 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4521 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4522 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4523 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4524 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4525 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4526 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4527
4528 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4529 {
4530         unsigned short ggc;
4531
4532         if (pci_read_config_word(dev, GGC, &ggc))
4533                 return;
4534
4535         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4536                 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4537                 dmar_map_gfx = 0;
4538         } else if (dmar_map_gfx) {
4539                 /* we have to ensure the gfx device is idle before we flush */
4540                 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4541                 intel_iommu_strict = 1;
4542        }
4543 }
4544 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4545 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4546 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4547 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4548
4549 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4550    ISOCH DMAR unit for the Azalia sound device, but not give it any
4551    TLB entries, which causes it to deadlock. Check for that.  We do
4552    this in a function called from init_dmars(), instead of in a PCI
4553    quirk, because we don't want to print the obnoxious "BIOS broken"
4554    message if VT-d is actually disabled.
4555 */
4556 static void __init check_tylersburg_isoch(void)
4557 {
4558         struct pci_dev *pdev;
4559         uint32_t vtisochctrl;
4560
4561         /* If there's no Azalia in the system anyway, forget it. */
4562         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4563         if (!pdev)
4564                 return;
4565         pci_dev_put(pdev);
4566
4567         /* System Management Registers. Might be hidden, in which case
4568            we can't do the sanity check. But that's OK, because the
4569            known-broken BIOSes _don't_ actually hide it, so far. */
4570         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4571         if (!pdev)
4572                 return;
4573
4574         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4575                 pci_dev_put(pdev);
4576                 return;
4577         }
4578
4579         pci_dev_put(pdev);
4580
4581         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4582         if (vtisochctrl & 1)
4583                 return;
4584
4585         /* Drop all bits other than the number of TLB entries */
4586         vtisochctrl &= 0x1c;
4587
4588         /* If we have the recommended number of TLB entries (16), fine. */
4589         if (vtisochctrl == 0x10)
4590                 return;
4591
4592         /* Zero TLB entries? You get to ride the short bus to school. */
4593         if (!vtisochctrl) {
4594                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4595                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4596                      dmi_get_system_info(DMI_BIOS_VENDOR),
4597                      dmi_get_system_info(DMI_BIOS_VERSION),
4598                      dmi_get_system_info(DMI_PRODUCT_VERSION));
4599                 iommu_identity_mapping |= IDENTMAP_AZALIA;
4600                 return;
4601         }
4602         
4603         printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4604                vtisochctrl);
4605 }