NVMe: Expose ns wwid through single sysfs entry
[cascardo/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122         struct nvm_block *blk = rblk->parent;
123         int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125         return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131         struct nvm_block *blk = rblk->parent;
132
133         return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137                                                         struct ppa_addr r)
138 {
139         struct ppa_addr l;
140         int secs, pgs, blks, luns;
141         sector_t ppa = r.ppa;
142
143         l.ppa = 0;
144
145         div_u64_rem(ppa, dev->sec_per_pg, &secs);
146         l.g.sec = secs;
147
148         sector_div(ppa, dev->sec_per_pg);
149         div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150         l.g.pg = pgs;
151
152         sector_div(ppa, dev->pgs_per_blk);
153         div_u64_rem(ppa, dev->blks_per_lun, &blks);
154         l.g.blk = blks;
155
156         sector_div(ppa, dev->blks_per_lun);
157         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158         l.g.lun = luns;
159
160         sector_div(ppa, dev->luns_per_chnl);
161         l.g.ch = ppa;
162
163         return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168         struct ppa_addr paddr;
169
170         paddr.ppa = addr;
171         return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177         struct rrpc *rrpc = rlun->rrpc;
178
179         BUG_ON(!rblk);
180
181         if (rlun->cur) {
182                 spin_lock(&rlun->cur->lock);
183                 WARN_ON(!block_is_full(rrpc, rlun->cur));
184                 spin_unlock(&rlun->cur->lock);
185         }
186         rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190                                                         unsigned long flags)
191 {
192         struct nvm_lun *lun = rlun->parent;
193         struct nvm_block *blk;
194         struct rrpc_block *rblk;
195
196         spin_lock(&lun->lock);
197         blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198         if (!blk) {
199                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200                 spin_unlock(&lun->lock);
201                 return NULL;
202         }
203
204         rblk = rrpc_get_rblk(rlun, blk->id);
205         list_add_tail(&rblk->list, &rlun->open_list);
206         spin_unlock(&lun->lock);
207
208         blk->priv = rblk;
209         bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210         rblk->next_page = 0;
211         rblk->nr_invalid_pages = 0;
212         atomic_set(&rblk->data_cmnt_size, 0);
213
214         return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219         struct rrpc_lun *rlun = rblk->rlun;
220         struct nvm_lun *lun = rlun->parent;
221
222         spin_lock(&lun->lock);
223         nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224         list_del(&rblk->list);
225         spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230         struct rrpc_lun *rlun;
231         int i;
232
233         for (i = 0; i < rrpc->nr_luns; i++) {
234                 rlun = &rrpc->luns[i];
235                 if (rlun->cur)
236                         rrpc_put_blk(rrpc, rlun->cur);
237                 if (rlun->gc_cur)
238                         rrpc_put_blk(rrpc, rlun->gc_cur);
239         }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244         int next = atomic_inc_return(&rrpc->next_lun);
245
246         return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251         struct rrpc_lun *rlun;
252         unsigned int i;
253
254         for (i = 0; i < rrpc->nr_luns; i++) {
255                 rlun = &rrpc->luns[i];
256                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257         }
258 }
259
260 /*
261  * timed GC every interval.
262  */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265         struct rrpc *rrpc = (struct rrpc *)data;
266
267         rrpc_gc_kick(rrpc);
268         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273         struct completion *waiting = bio->bi_private;
274
275         if (bio->bi_error)
276                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278         complete(waiting);
279 }
280
281 /*
282  * rrpc_move_valid_pages -- migrate live data off the block
283  * @rrpc: the 'rrpc' structure
284  * @block: the block from which to migrate live pages
285  *
286  * Description:
287  *   GC algorithms may call this function to migrate remaining live
288  *   pages off the block prior to erasing it. This function blocks
289  *   further execution until the operation is complete.
290  */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293         struct request_queue *q = rrpc->dev->q;
294         struct rrpc_rev_addr *rev;
295         struct nvm_rq *rqd;
296         struct bio *bio;
297         struct page *page;
298         int slot;
299         int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300         u64 phys_addr;
301         DECLARE_COMPLETION_ONSTACK(wait);
302
303         if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304                 return 0;
305
306         bio = bio_alloc(GFP_NOIO, 1);
307         if (!bio) {
308                 pr_err("nvm: could not alloc bio to gc\n");
309                 return -ENOMEM;
310         }
311
312         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313         if (!page)
314                 return -ENOMEM;
315
316         while ((slot = find_first_zero_bit(rblk->invalid_pages,
317                                             nr_sec_per_blk)) < nr_sec_per_blk) {
318
319                 /* Lock laddr */
320                 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
321
322 try:
323                 spin_lock(&rrpc->rev_lock);
324                 /* Get logical address from physical to logical table */
325                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
326                 /* already updated by previous regular write */
327                 if (rev->addr == ADDR_EMPTY) {
328                         spin_unlock(&rrpc->rev_lock);
329                         continue;
330                 }
331
332                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
333                 if (IS_ERR_OR_NULL(rqd)) {
334                         spin_unlock(&rrpc->rev_lock);
335                         schedule();
336                         goto try;
337                 }
338
339                 spin_unlock(&rrpc->rev_lock);
340
341                 /* Perform read to do GC */
342                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
343                 bio->bi_rw = READ;
344                 bio->bi_private = &wait;
345                 bio->bi_end_io = rrpc_end_sync_bio;
346
347                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
348                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
349
350                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
351                         pr_err("rrpc: gc read failed.\n");
352                         rrpc_inflight_laddr_release(rrpc, rqd);
353                         goto finished;
354                 }
355                 wait_for_completion_io(&wait);
356                 if (bio->bi_error) {
357                         rrpc_inflight_laddr_release(rrpc, rqd);
358                         goto finished;
359                 }
360
361                 bio_reset(bio);
362                 reinit_completion(&wait);
363
364                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
365                 bio->bi_rw = WRITE;
366                 bio->bi_private = &wait;
367                 bio->bi_end_io = rrpc_end_sync_bio;
368
369                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
370
371                 /* turn the command around and write the data back to a new
372                  * address
373                  */
374                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
375                         pr_err("rrpc: gc write failed.\n");
376                         rrpc_inflight_laddr_release(rrpc, rqd);
377                         goto finished;
378                 }
379                 wait_for_completion_io(&wait);
380
381                 rrpc_inflight_laddr_release(rrpc, rqd);
382                 if (bio->bi_error)
383                         goto finished;
384
385                 bio_reset(bio);
386         }
387
388 finished:
389         mempool_free(page, rrpc->page_pool);
390         bio_put(bio);
391
392         if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
393                 pr_err("nvm: failed to garbage collect block\n");
394                 return -EIO;
395         }
396
397         return 0;
398 }
399
400 static void rrpc_block_gc(struct work_struct *work)
401 {
402         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
403                                                                         ws_gc);
404         struct rrpc *rrpc = gcb->rrpc;
405         struct rrpc_block *rblk = gcb->rblk;
406         struct nvm_dev *dev = rrpc->dev;
407         struct nvm_lun *lun = rblk->parent->lun;
408         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
409
410         mempool_free(gcb, rrpc->gcb_pool);
411         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
412
413         if (rrpc_move_valid_pages(rrpc, rblk))
414                 goto put_back;
415
416         if (nvm_erase_blk(dev, rblk->parent))
417                 goto put_back;
418
419         rrpc_put_blk(rrpc, rblk);
420
421         return;
422
423 put_back:
424         spin_lock(&rlun->lock);
425         list_add_tail(&rblk->prio, &rlun->prio_list);
426         spin_unlock(&rlun->lock);
427 }
428
429 /* the block with highest number of invalid pages, will be in the beginning
430  * of the list
431  */
432 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
433                                                         struct rrpc_block *rb)
434 {
435         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
436                 return ra;
437
438         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
439 }
440
441 /* linearly find the block with highest number of invalid pages
442  * requires lun->lock
443  */
444 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
445 {
446         struct list_head *prio_list = &rlun->prio_list;
447         struct rrpc_block *rblock, *max;
448
449         BUG_ON(list_empty(prio_list));
450
451         max = list_first_entry(prio_list, struct rrpc_block, prio);
452         list_for_each_entry(rblock, prio_list, prio)
453                 max = rblock_max_invalid(max, rblock);
454
455         return max;
456 }
457
458 static void rrpc_lun_gc(struct work_struct *work)
459 {
460         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
461         struct rrpc *rrpc = rlun->rrpc;
462         struct nvm_lun *lun = rlun->parent;
463         struct rrpc_block_gc *gcb;
464         unsigned int nr_blocks_need;
465
466         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
467
468         if (nr_blocks_need < rrpc->nr_luns)
469                 nr_blocks_need = rrpc->nr_luns;
470
471         spin_lock(&rlun->lock);
472         while (nr_blocks_need > lun->nr_free_blocks &&
473                                         !list_empty(&rlun->prio_list)) {
474                 struct rrpc_block *rblock = block_prio_find_max(rlun);
475                 struct nvm_block *block = rblock->parent;
476
477                 if (!rblock->nr_invalid_pages)
478                         break;
479
480                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
481                 if (!gcb)
482                         break;
483
484                 list_del_init(&rblock->prio);
485
486                 BUG_ON(!block_is_full(rrpc, rblock));
487
488                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
489
490                 gcb->rrpc = rrpc;
491                 gcb->rblk = rblock;
492                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
493
494                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
495
496                 nr_blocks_need--;
497         }
498         spin_unlock(&rlun->lock);
499
500         /* TODO: Hint that request queue can be started again */
501 }
502
503 static void rrpc_gc_queue(struct work_struct *work)
504 {
505         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
506                                                                         ws_gc);
507         struct rrpc *rrpc = gcb->rrpc;
508         struct rrpc_block *rblk = gcb->rblk;
509         struct nvm_lun *lun = rblk->parent->lun;
510         struct nvm_block *blk = rblk->parent;
511         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
512
513         spin_lock(&rlun->lock);
514         list_add_tail(&rblk->prio, &rlun->prio_list);
515         spin_unlock(&rlun->lock);
516
517         spin_lock(&lun->lock);
518         lun->nr_open_blocks--;
519         lun->nr_closed_blocks++;
520         blk->state &= ~NVM_BLK_ST_OPEN;
521         blk->state |= NVM_BLK_ST_CLOSED;
522         list_move_tail(&rblk->list, &rlun->closed_list);
523         spin_unlock(&lun->lock);
524
525         mempool_free(gcb, rrpc->gcb_pool);
526         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
527                                                         rblk->parent->id);
528 }
529
530 static const struct block_device_operations rrpc_fops = {
531         .owner          = THIS_MODULE,
532 };
533
534 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
535 {
536         unsigned int i;
537         struct rrpc_lun *rlun, *max_free;
538
539         if (!is_gc)
540                 return get_next_lun(rrpc);
541
542         /* during GC, we don't care about RR, instead we want to make
543          * sure that we maintain evenness between the block luns.
544          */
545         max_free = &rrpc->luns[0];
546         /* prevent GC-ing lun from devouring pages of a lun with
547          * little free blocks. We don't take the lock as we only need an
548          * estimate.
549          */
550         rrpc_for_each_lun(rrpc, rlun, i) {
551                 if (rlun->parent->nr_free_blocks >
552                                         max_free->parent->nr_free_blocks)
553                         max_free = rlun;
554         }
555
556         return max_free;
557 }
558
559 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
560                                         struct rrpc_block *rblk, u64 paddr)
561 {
562         struct rrpc_addr *gp;
563         struct rrpc_rev_addr *rev;
564
565         BUG_ON(laddr >= rrpc->nr_sects);
566
567         gp = &rrpc->trans_map[laddr];
568         spin_lock(&rrpc->rev_lock);
569         if (gp->rblk)
570                 rrpc_page_invalidate(rrpc, gp);
571
572         gp->addr = paddr;
573         gp->rblk = rblk;
574
575         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
576         rev->addr = laddr;
577         spin_unlock(&rrpc->rev_lock);
578
579         return gp;
580 }
581
582 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
583 {
584         u64 addr = ADDR_EMPTY;
585
586         spin_lock(&rblk->lock);
587         if (block_is_full(rrpc, rblk))
588                 goto out;
589
590         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
591
592         rblk->next_page++;
593 out:
594         spin_unlock(&rblk->lock);
595         return addr;
596 }
597
598 /* Simple round-robin Logical to physical address translation.
599  *
600  * Retrieve the mapping using the active append point. Then update the ap for
601  * the next write to the disk.
602  *
603  * Returns rrpc_addr with the physical address and block. Remember to return to
604  * rrpc->addr_cache when request is finished.
605  */
606 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
607                                                                 int is_gc)
608 {
609         struct rrpc_lun *rlun;
610         struct rrpc_block *rblk;
611         struct nvm_lun *lun;
612         u64 paddr;
613
614         rlun = rrpc_get_lun_rr(rrpc, is_gc);
615         lun = rlun->parent;
616
617         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
618                 return NULL;
619
620         spin_lock(&rlun->lock);
621
622         rblk = rlun->cur;
623 retry:
624         paddr = rrpc_alloc_addr(rrpc, rblk);
625
626         if (paddr == ADDR_EMPTY) {
627                 rblk = rrpc_get_blk(rrpc, rlun, 0);
628                 if (rblk) {
629                         rrpc_set_lun_cur(rlun, rblk);
630                         goto retry;
631                 }
632
633                 if (is_gc) {
634                         /* retry from emergency gc block */
635                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
636                         if (paddr == ADDR_EMPTY) {
637                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
638                                 if (!rblk) {
639                                         pr_err("rrpc: no more blocks");
640                                         goto err;
641                                 }
642
643                                 rlun->gc_cur = rblk;
644                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
645                         }
646                         rblk = rlun->gc_cur;
647                 }
648         }
649
650         spin_unlock(&rlun->lock);
651         return rrpc_update_map(rrpc, laddr, rblk, paddr);
652 err:
653         spin_unlock(&rlun->lock);
654         return NULL;
655 }
656
657 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
658 {
659         struct rrpc_block_gc *gcb;
660
661         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
662         if (!gcb) {
663                 pr_err("rrpc: unable to queue block for gc.");
664                 return;
665         }
666
667         gcb->rrpc = rrpc;
668         gcb->rblk = rblk;
669
670         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
671         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
672 }
673
674 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
675                                                 sector_t laddr, uint8_t npages)
676 {
677         struct rrpc_addr *p;
678         struct rrpc_block *rblk;
679         struct nvm_lun *lun;
680         int cmnt_size, i;
681
682         for (i = 0; i < npages; i++) {
683                 p = &rrpc->trans_map[laddr + i];
684                 rblk = p->rblk;
685                 lun = rblk->parent->lun;
686
687                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
688                 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
689                         rrpc_run_gc(rrpc, rblk);
690         }
691 }
692
693 static void rrpc_end_io(struct nvm_rq *rqd)
694 {
695         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
696         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
697         uint8_t npages = rqd->nr_pages;
698         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
699
700         if (bio_data_dir(rqd->bio) == WRITE)
701                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
702
703         bio_put(rqd->bio);
704
705         if (rrqd->flags & NVM_IOTYPE_GC)
706                 return;
707
708         rrpc_unlock_rq(rrpc, rqd);
709
710         if (npages > 1)
711                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
712         if (rqd->metadata)
713                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
714
715         mempool_free(rqd, rrpc->rq_pool);
716 }
717
718 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
719                         struct nvm_rq *rqd, unsigned long flags, int npages)
720 {
721         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
722         struct rrpc_addr *gp;
723         sector_t laddr = rrpc_get_laddr(bio);
724         int is_gc = flags & NVM_IOTYPE_GC;
725         int i;
726
727         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
728                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
729                 return NVM_IO_REQUEUE;
730         }
731
732         for (i = 0; i < npages; i++) {
733                 /* We assume that mapping occurs at 4KB granularity */
734                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
735                 gp = &rrpc->trans_map[laddr + i];
736
737                 if (gp->rblk) {
738                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
739                                                                 gp->addr);
740                 } else {
741                         BUG_ON(is_gc);
742                         rrpc_unlock_laddr(rrpc, r);
743                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
744                                                         rqd->dma_ppa_list);
745                         return NVM_IO_DONE;
746                 }
747         }
748
749         rqd->opcode = NVM_OP_HBREAD;
750
751         return NVM_IO_OK;
752 }
753
754 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
755                                                         unsigned long flags)
756 {
757         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
758         int is_gc = flags & NVM_IOTYPE_GC;
759         sector_t laddr = rrpc_get_laddr(bio);
760         struct rrpc_addr *gp;
761
762         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
763                 return NVM_IO_REQUEUE;
764
765         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
766         gp = &rrpc->trans_map[laddr];
767
768         if (gp->rblk) {
769                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
770         } else {
771                 BUG_ON(is_gc);
772                 rrpc_unlock_rq(rrpc, rqd);
773                 return NVM_IO_DONE;
774         }
775
776         rqd->opcode = NVM_OP_HBREAD;
777         rrqd->addr = gp;
778
779         return NVM_IO_OK;
780 }
781
782 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
783                         struct nvm_rq *rqd, unsigned long flags, int npages)
784 {
785         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
786         struct rrpc_addr *p;
787         sector_t laddr = rrpc_get_laddr(bio);
788         int is_gc = flags & NVM_IOTYPE_GC;
789         int i;
790
791         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
792                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
793                 return NVM_IO_REQUEUE;
794         }
795
796         for (i = 0; i < npages; i++) {
797                 /* We assume that mapping occurs at 4KB granularity */
798                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
799                 if (!p) {
800                         BUG_ON(is_gc);
801                         rrpc_unlock_laddr(rrpc, r);
802                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
803                                                         rqd->dma_ppa_list);
804                         rrpc_gc_kick(rrpc);
805                         return NVM_IO_REQUEUE;
806                 }
807
808                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
809                                                                 p->addr);
810         }
811
812         rqd->opcode = NVM_OP_HBWRITE;
813
814         return NVM_IO_OK;
815 }
816
817 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
818                                 struct nvm_rq *rqd, unsigned long flags)
819 {
820         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
821         struct rrpc_addr *p;
822         int is_gc = flags & NVM_IOTYPE_GC;
823         sector_t laddr = rrpc_get_laddr(bio);
824
825         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
826                 return NVM_IO_REQUEUE;
827
828         p = rrpc_map_page(rrpc, laddr, is_gc);
829         if (!p) {
830                 BUG_ON(is_gc);
831                 rrpc_unlock_rq(rrpc, rqd);
832                 rrpc_gc_kick(rrpc);
833                 return NVM_IO_REQUEUE;
834         }
835
836         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
837         rqd->opcode = NVM_OP_HBWRITE;
838         rrqd->addr = p;
839
840         return NVM_IO_OK;
841 }
842
843 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
844                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
845 {
846         if (npages > 1) {
847                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
848                                                         &rqd->dma_ppa_list);
849                 if (!rqd->ppa_list) {
850                         pr_err("rrpc: not able to allocate ppa list\n");
851                         return NVM_IO_ERR;
852                 }
853
854                 if (bio_rw(bio) == WRITE)
855                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
856                                                                         npages);
857
858                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
859         }
860
861         if (bio_rw(bio) == WRITE)
862                 return rrpc_write_rq(rrpc, bio, rqd, flags);
863
864         return rrpc_read_rq(rrpc, bio, rqd, flags);
865 }
866
867 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
868                                 struct nvm_rq *rqd, unsigned long flags)
869 {
870         int err;
871         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
872         uint8_t nr_pages = rrpc_get_pages(bio);
873         int bio_size = bio_sectors(bio) << 9;
874
875         if (bio_size < rrpc->dev->sec_size)
876                 return NVM_IO_ERR;
877         else if (bio_size > rrpc->dev->max_rq_size)
878                 return NVM_IO_ERR;
879
880         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
881         if (err)
882                 return err;
883
884         bio_get(bio);
885         rqd->bio = bio;
886         rqd->ins = &rrpc->instance;
887         rqd->nr_pages = nr_pages;
888         rrq->flags = flags;
889
890         err = nvm_submit_io(rrpc->dev, rqd);
891         if (err) {
892                 pr_err("rrpc: I/O submission failed: %d\n", err);
893                 bio_put(bio);
894                 if (!(flags & NVM_IOTYPE_GC)) {
895                         rrpc_unlock_rq(rrpc, rqd);
896                         if (rqd->nr_pages > 1)
897                                 nvm_dev_dma_free(rrpc->dev,
898                         rqd->ppa_list, rqd->dma_ppa_list);
899                 }
900                 return NVM_IO_ERR;
901         }
902
903         return NVM_IO_OK;
904 }
905
906 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
907 {
908         struct rrpc *rrpc = q->queuedata;
909         struct nvm_rq *rqd;
910         int err;
911
912         if (bio->bi_rw & REQ_DISCARD) {
913                 rrpc_discard(rrpc, bio);
914                 return BLK_QC_T_NONE;
915         }
916
917         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
918         if (!rqd) {
919                 pr_err_ratelimited("rrpc: not able to queue bio.");
920                 bio_io_error(bio);
921                 return BLK_QC_T_NONE;
922         }
923         memset(rqd, 0, sizeof(struct nvm_rq));
924
925         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
926         switch (err) {
927         case NVM_IO_OK:
928                 return BLK_QC_T_NONE;
929         case NVM_IO_ERR:
930                 bio_io_error(bio);
931                 break;
932         case NVM_IO_DONE:
933                 bio_endio(bio);
934                 break;
935         case NVM_IO_REQUEUE:
936                 spin_lock(&rrpc->bio_lock);
937                 bio_list_add(&rrpc->requeue_bios, bio);
938                 spin_unlock(&rrpc->bio_lock);
939                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
940                 break;
941         }
942
943         mempool_free(rqd, rrpc->rq_pool);
944         return BLK_QC_T_NONE;
945 }
946
947 static void rrpc_requeue(struct work_struct *work)
948 {
949         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
950         struct bio_list bios;
951         struct bio *bio;
952
953         bio_list_init(&bios);
954
955         spin_lock(&rrpc->bio_lock);
956         bio_list_merge(&bios, &rrpc->requeue_bios);
957         bio_list_init(&rrpc->requeue_bios);
958         spin_unlock(&rrpc->bio_lock);
959
960         while ((bio = bio_list_pop(&bios)))
961                 rrpc_make_rq(rrpc->disk->queue, bio);
962 }
963
964 static void rrpc_gc_free(struct rrpc *rrpc)
965 {
966         struct rrpc_lun *rlun;
967         int i;
968
969         if (rrpc->krqd_wq)
970                 destroy_workqueue(rrpc->krqd_wq);
971
972         if (rrpc->kgc_wq)
973                 destroy_workqueue(rrpc->kgc_wq);
974
975         if (!rrpc->luns)
976                 return;
977
978         for (i = 0; i < rrpc->nr_luns; i++) {
979                 rlun = &rrpc->luns[i];
980
981                 if (!rlun->blocks)
982                         break;
983                 vfree(rlun->blocks);
984         }
985 }
986
987 static int rrpc_gc_init(struct rrpc *rrpc)
988 {
989         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
990                                                                 rrpc->nr_luns);
991         if (!rrpc->krqd_wq)
992                 return -ENOMEM;
993
994         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
995         if (!rrpc->kgc_wq)
996                 return -ENOMEM;
997
998         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
999
1000         return 0;
1001 }
1002
1003 static void rrpc_map_free(struct rrpc *rrpc)
1004 {
1005         vfree(rrpc->rev_trans_map);
1006         vfree(rrpc->trans_map);
1007 }
1008
1009 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1010 {
1011         struct rrpc *rrpc = (struct rrpc *)private;
1012         struct nvm_dev *dev = rrpc->dev;
1013         struct rrpc_addr *addr = rrpc->trans_map + slba;
1014         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1015         u64 elba = slba + nlb;
1016         u64 i;
1017
1018         if (unlikely(elba > dev->total_secs)) {
1019                 pr_err("nvm: L2P data from device is out of bounds!\n");
1020                 return -EINVAL;
1021         }
1022
1023         for (i = 0; i < nlb; i++) {
1024                 u64 pba = le64_to_cpu(entries[i]);
1025                 unsigned int mod;
1026                 /* LNVM treats address-spaces as silos, LBA and PBA are
1027                  * equally large and zero-indexed.
1028                  */
1029                 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1030                         pr_err("nvm: L2P data entry is out of bounds!\n");
1031                         return -EINVAL;
1032                 }
1033
1034                 /* Address zero is a special one. The first page on a disk is
1035                  * protected. As it often holds internal device boot
1036                  * information.
1037                  */
1038                 if (!pba)
1039                         continue;
1040
1041                 div_u64_rem(pba, rrpc->nr_sects, &mod);
1042
1043                 addr[i].addr = pba;
1044                 raddr[mod].addr = slba + i;
1045         }
1046
1047         return 0;
1048 }
1049
1050 static int rrpc_map_init(struct rrpc *rrpc)
1051 {
1052         struct nvm_dev *dev = rrpc->dev;
1053         sector_t i;
1054         int ret;
1055
1056         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1057         if (!rrpc->trans_map)
1058                 return -ENOMEM;
1059
1060         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1061                                                         * rrpc->nr_sects);
1062         if (!rrpc->rev_trans_map)
1063                 return -ENOMEM;
1064
1065         for (i = 0; i < rrpc->nr_sects; i++) {
1066                 struct rrpc_addr *p = &rrpc->trans_map[i];
1067                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1068
1069                 p->addr = ADDR_EMPTY;
1070                 r->addr = ADDR_EMPTY;
1071         }
1072
1073         if (!dev->ops->get_l2p_tbl)
1074                 return 0;
1075
1076         /* Bring up the mapping table from device */
1077         ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_secs, rrpc_l2p_update,
1078                                                                         rrpc);
1079         if (ret) {
1080                 pr_err("nvm: rrpc: could not read L2P table.\n");
1081                 return -EINVAL;
1082         }
1083
1084         return 0;
1085 }
1086
1087
1088 /* Minimum pages needed within a lun */
1089 #define PAGE_POOL_SIZE 16
1090 #define ADDR_POOL_SIZE 64
1091
1092 static int rrpc_core_init(struct rrpc *rrpc)
1093 {
1094         down_write(&rrpc_lock);
1095         if (!rrpc_gcb_cache) {
1096                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1097                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1098                 if (!rrpc_gcb_cache) {
1099                         up_write(&rrpc_lock);
1100                         return -ENOMEM;
1101                 }
1102
1103                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1104                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1105                                 0, 0, NULL);
1106                 if (!rrpc_rq_cache) {
1107                         kmem_cache_destroy(rrpc_gcb_cache);
1108                         up_write(&rrpc_lock);
1109                         return -ENOMEM;
1110                 }
1111         }
1112         up_write(&rrpc_lock);
1113
1114         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1115         if (!rrpc->page_pool)
1116                 return -ENOMEM;
1117
1118         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1119                                                                 rrpc_gcb_cache);
1120         if (!rrpc->gcb_pool)
1121                 return -ENOMEM;
1122
1123         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1124         if (!rrpc->rq_pool)
1125                 return -ENOMEM;
1126
1127         spin_lock_init(&rrpc->inflights.lock);
1128         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1129
1130         return 0;
1131 }
1132
1133 static void rrpc_core_free(struct rrpc *rrpc)
1134 {
1135         mempool_destroy(rrpc->page_pool);
1136         mempool_destroy(rrpc->gcb_pool);
1137         mempool_destroy(rrpc->rq_pool);
1138 }
1139
1140 static void rrpc_luns_free(struct rrpc *rrpc)
1141 {
1142         kfree(rrpc->luns);
1143 }
1144
1145 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1146 {
1147         struct nvm_dev *dev = rrpc->dev;
1148         struct rrpc_lun *rlun;
1149         int i, j;
1150
1151         if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1152                 pr_err("rrpc: number of pages per block too high.");
1153                 return -EINVAL;
1154         }
1155
1156         spin_lock_init(&rrpc->rev_lock);
1157
1158         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1159                                                                 GFP_KERNEL);
1160         if (!rrpc->luns)
1161                 return -ENOMEM;
1162
1163         /* 1:1 mapping */
1164         for (i = 0; i < rrpc->nr_luns; i++) {
1165                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1166
1167                 rlun = &rrpc->luns[i];
1168                 rlun->rrpc = rrpc;
1169                 rlun->parent = lun;
1170                 INIT_LIST_HEAD(&rlun->prio_list);
1171                 INIT_LIST_HEAD(&rlun->open_list);
1172                 INIT_LIST_HEAD(&rlun->closed_list);
1173
1174                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1175                 spin_lock_init(&rlun->lock);
1176
1177                 rrpc->total_blocks += dev->blks_per_lun;
1178                 rrpc->nr_sects += dev->sec_per_lun;
1179
1180                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1181                                                 rrpc->dev->blks_per_lun);
1182                 if (!rlun->blocks)
1183                         goto err;
1184
1185                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1186                         struct rrpc_block *rblk = &rlun->blocks[j];
1187                         struct nvm_block *blk = &lun->blocks[j];
1188
1189                         rblk->parent = blk;
1190                         rblk->rlun = rlun;
1191                         INIT_LIST_HEAD(&rblk->prio);
1192                         spin_lock_init(&rblk->lock);
1193                 }
1194         }
1195
1196         return 0;
1197 err:
1198         return -ENOMEM;
1199 }
1200
1201 static void rrpc_free(struct rrpc *rrpc)
1202 {
1203         rrpc_gc_free(rrpc);
1204         rrpc_map_free(rrpc);
1205         rrpc_core_free(rrpc);
1206         rrpc_luns_free(rrpc);
1207
1208         kfree(rrpc);
1209 }
1210
1211 static void rrpc_exit(void *private)
1212 {
1213         struct rrpc *rrpc = private;
1214
1215         del_timer(&rrpc->gc_timer);
1216
1217         flush_workqueue(rrpc->krqd_wq);
1218         flush_workqueue(rrpc->kgc_wq);
1219
1220         rrpc_free(rrpc);
1221 }
1222
1223 static sector_t rrpc_capacity(void *private)
1224 {
1225         struct rrpc *rrpc = private;
1226         struct nvm_dev *dev = rrpc->dev;
1227         sector_t reserved, provisioned;
1228
1229         /* cur, gc, and two emergency blocks for each lun */
1230         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1231         provisioned = rrpc->nr_sects - reserved;
1232
1233         if (reserved > rrpc->nr_sects) {
1234                 pr_err("rrpc: not enough space available to expose storage.\n");
1235                 return 0;
1236         }
1237
1238         sector_div(provisioned, 10);
1239         return provisioned * 9 * NR_PHY_IN_LOG;
1240 }
1241
1242 /*
1243  * Looks up the logical address from reverse trans map and check if its valid by
1244  * comparing the logical to physical address with the physical address.
1245  * Returns 0 on free, otherwise 1 if in use
1246  */
1247 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1248 {
1249         struct nvm_dev *dev = rrpc->dev;
1250         int offset;
1251         struct rrpc_addr *laddr;
1252         u64 bpaddr, paddr, pladdr;
1253
1254         bpaddr = block_to_rel_addr(rrpc, rblk);
1255         for (offset = 0; offset < dev->sec_per_blk; offset++) {
1256                 paddr = bpaddr + offset;
1257
1258                 pladdr = rrpc->rev_trans_map[paddr].addr;
1259                 if (pladdr == ADDR_EMPTY)
1260                         continue;
1261
1262                 laddr = &rrpc->trans_map[pladdr];
1263
1264                 if (paddr == laddr->addr) {
1265                         laddr->rblk = rblk;
1266                 } else {
1267                         set_bit(offset, rblk->invalid_pages);
1268                         rblk->nr_invalid_pages++;
1269                 }
1270         }
1271 }
1272
1273 static int rrpc_blocks_init(struct rrpc *rrpc)
1274 {
1275         struct rrpc_lun *rlun;
1276         struct rrpc_block *rblk;
1277         int lun_iter, blk_iter;
1278
1279         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1280                 rlun = &rrpc->luns[lun_iter];
1281
1282                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1283                                                                 blk_iter++) {
1284                         rblk = &rlun->blocks[blk_iter];
1285                         rrpc_block_map_update(rrpc, rblk);
1286                 }
1287         }
1288
1289         return 0;
1290 }
1291
1292 static int rrpc_luns_configure(struct rrpc *rrpc)
1293 {
1294         struct rrpc_lun *rlun;
1295         struct rrpc_block *rblk;
1296         int i;
1297
1298         for (i = 0; i < rrpc->nr_luns; i++) {
1299                 rlun = &rrpc->luns[i];
1300
1301                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1302                 if (!rblk)
1303                         goto err;
1304
1305                 rrpc_set_lun_cur(rlun, rblk);
1306
1307                 /* Emergency gc block */
1308                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1309                 if (!rblk)
1310                         goto err;
1311                 rlun->gc_cur = rblk;
1312         }
1313
1314         return 0;
1315 err:
1316         rrpc_put_blks(rrpc);
1317         return -EINVAL;
1318 }
1319
1320 static struct nvm_tgt_type tt_rrpc;
1321
1322 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1323                                                 int lun_begin, int lun_end)
1324 {
1325         struct request_queue *bqueue = dev->q;
1326         struct request_queue *tqueue = tdisk->queue;
1327         struct rrpc *rrpc;
1328         int ret;
1329
1330         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1331                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1332                                                         dev->identity.dom);
1333                 return ERR_PTR(-EINVAL);
1334         }
1335
1336         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1337         if (!rrpc)
1338                 return ERR_PTR(-ENOMEM);
1339
1340         rrpc->instance.tt = &tt_rrpc;
1341         rrpc->dev = dev;
1342         rrpc->disk = tdisk;
1343
1344         bio_list_init(&rrpc->requeue_bios);
1345         spin_lock_init(&rrpc->bio_lock);
1346         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1347
1348         rrpc->nr_luns = lun_end - lun_begin + 1;
1349
1350         /* simple round-robin strategy */
1351         atomic_set(&rrpc->next_lun, -1);
1352
1353         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1354         if (ret) {
1355                 pr_err("nvm: rrpc: could not initialize luns\n");
1356                 goto err;
1357         }
1358
1359         rrpc->poffset = dev->sec_per_lun * lun_begin;
1360         rrpc->lun_offset = lun_begin;
1361
1362         ret = rrpc_core_init(rrpc);
1363         if (ret) {
1364                 pr_err("nvm: rrpc: could not initialize core\n");
1365                 goto err;
1366         }
1367
1368         ret = rrpc_map_init(rrpc);
1369         if (ret) {
1370                 pr_err("nvm: rrpc: could not initialize maps\n");
1371                 goto err;
1372         }
1373
1374         ret = rrpc_blocks_init(rrpc);
1375         if (ret) {
1376                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1377                 goto err;
1378         }
1379
1380         ret = rrpc_luns_configure(rrpc);
1381         if (ret) {
1382                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1383                 goto err;
1384         }
1385
1386         ret = rrpc_gc_init(rrpc);
1387         if (ret) {
1388                 pr_err("nvm: rrpc: could not initialize gc\n");
1389                 goto err;
1390         }
1391
1392         /* inherit the size from the underlying device */
1393         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1394         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1395
1396         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1397                         rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1398
1399         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1400
1401         return rrpc;
1402 err:
1403         rrpc_free(rrpc);
1404         return ERR_PTR(ret);
1405 }
1406
1407 /* round robin, page-based FTL, and cost-based GC */
1408 static struct nvm_tgt_type tt_rrpc = {
1409         .name           = "rrpc",
1410         .version        = {1, 0, 0},
1411
1412         .make_rq        = rrpc_make_rq,
1413         .capacity       = rrpc_capacity,
1414         .end_io         = rrpc_end_io,
1415
1416         .init           = rrpc_init,
1417         .exit           = rrpc_exit,
1418 };
1419
1420 static int __init rrpc_module_init(void)
1421 {
1422         return nvm_register_target(&tt_rrpc);
1423 }
1424
1425 static void rrpc_module_exit(void)
1426 {
1427         nvm_unregister_target(&tt_rrpc);
1428 }
1429
1430 module_init(rrpc_module_init);
1431 module_exit(rrpc_module_exit);
1432 MODULE_LICENSE("GPL v2");
1433 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");