8e9877b046371f89e4b0e35f312f25e476e674b2
[cascardo/linux.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD        95
23 #define CUTOFF_CACHE_READA      90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31         return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36         return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41         struct bio_vec bv;
42         struct bvec_iter iter;
43         uint64_t csum = 0;
44
45         bio_for_each_segment(bv, bio, iter) {
46                 void *d = kmap(bv.bv_page) + bv.bv_offset;
47                 csum = bch_crc64_update(csum, d, bv.bv_len);
48                 kunmap(bv.bv_page);
49         }
50
51         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59         atomic_t *journal_ref = NULL;
60         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61         int ret;
62
63         /*
64          * If we're looping, might already be waiting on
65          * another journal write - can't wait on more than one journal write at
66          * a time
67          *
68          * XXX: this looks wrong
69          */
70 #if 0
71         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72                 closure_sync(&s->cl);
73 #endif
74
75         if (!op->replace)
76                 journal_ref = bch_journal(op->c, &op->insert_keys,
77                                           op->flush_journal ? cl : NULL);
78
79         ret = bch_btree_insert(op->c, &op->insert_keys,
80                                journal_ref, replace_key);
81         if (ret == -ESRCH) {
82                 op->replace_collision = true;
83         } else if (ret) {
84                 op->error               = -ENOMEM;
85                 op->insert_data_done    = true;
86         }
87
88         if (journal_ref)
89                 atomic_dec_bug(journal_ref);
90
91         if (!op->insert_data_done) {
92                 continue_at(cl, bch_data_insert_start, op->wq);
93                 return;
94         }
95
96         bch_keylist_free(&op->insert_keys);
97         closure_return(cl);
98 }
99
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101                                struct cache_set *c)
102 {
103         size_t oldsize = bch_keylist_nkeys(l);
104         size_t newsize = oldsize + u64s;
105
106         /*
107          * The journalling code doesn't handle the case where the keys to insert
108          * is bigger than an empty write: If we just return -ENOMEM here,
109          * bio_insert() and bio_invalidate() will insert the keys created so far
110          * and finish the rest when the keylist is empty.
111          */
112         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113                 return -ENOMEM;
114
115         return __bch_keylist_realloc(l, u64s);
116 }
117
118 static void bch_data_invalidate(struct closure *cl)
119 {
120         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121         struct bio *bio = op->bio;
122
123         pr_debug("invalidating %i sectors from %llu",
124                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126         while (bio_sectors(bio)) {
127                 unsigned sectors = min(bio_sectors(bio),
128                                        1U << (KEY_SIZE_BITS - 1));
129
130                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131                         goto out;
132
133                 bio->bi_iter.bi_sector  += sectors;
134                 bio->bi_iter.bi_size    -= sectors << 9;
135
136                 bch_keylist_add(&op->insert_keys,
137                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138         }
139
140         op->insert_data_done = true;
141         bio_put(bio);
142 out:
143         continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
146 static void bch_data_insert_error(struct closure *cl)
147 {
148         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150         /*
151          * Our data write just errored, which means we've got a bunch of keys to
152          * insert that point to data that wasn't succesfully written.
153          *
154          * We don't have to insert those keys but we still have to invalidate
155          * that region of the cache - so, if we just strip off all the pointers
156          * from the keys we'll accomplish just that.
157          */
158
159         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161         while (src != op->insert_keys.top) {
162                 struct bkey *n = bkey_next(src);
163
164                 SET_KEY_PTRS(src, 0);
165                 memmove(dst, src, bkey_bytes(src));
166
167                 dst = bkey_next(dst);
168                 src = n;
169         }
170
171         op->insert_keys.top = dst;
172
173         bch_data_insert_keys(cl);
174 }
175
176 static void bch_data_insert_endio(struct bio *bio)
177 {
178         struct closure *cl = bio->bi_private;
179         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181         if (bio->bi_error) {
182                 /* TODO: We could try to recover from this. */
183                 if (op->writeback)
184                         op->error = bio->bi_error;
185                 else if (!op->replace)
186                         set_closure_fn(cl, bch_data_insert_error, op->wq);
187                 else
188                         set_closure_fn(cl, NULL, NULL);
189         }
190
191         bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
192 }
193
194 static void bch_data_insert_start(struct closure *cl)
195 {
196         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197         struct bio *bio = op->bio, *n;
198
199         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
200                 set_gc_sectors(op->c);
201                 wake_up_gc(op->c);
202         }
203
204         if (op->bypass)
205                 return bch_data_invalidate(cl);
206
207         /*
208          * Journal writes are marked REQ_FLUSH; if the original write was a
209          * flush, it'll wait on the journal write.
210          */
211         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
212
213         do {
214                 unsigned i;
215                 struct bkey *k;
216                 struct bio_set *split = op->c->bio_split;
217
218                 /* 1 for the device pointer and 1 for the chksum */
219                 if (bch_keylist_realloc(&op->insert_keys,
220                                         3 + (op->csum ? 1 : 0),
221                                         op->c)) {
222                         continue_at(cl, bch_data_insert_keys, op->wq);
223                         return;
224                 }
225
226                 k = op->insert_keys.top;
227                 bkey_init(k);
228                 SET_KEY_INODE(k, op->inode);
229                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
230
231                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232                                        op->write_point, op->write_prio,
233                                        op->writeback))
234                         goto err;
235
236                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
237
238                 n->bi_end_io    = bch_data_insert_endio;
239                 n->bi_private   = cl;
240
241                 if (op->writeback) {
242                         SET_KEY_DIRTY(k, true);
243
244                         for (i = 0; i < KEY_PTRS(k); i++)
245                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246                                             GC_MARK_DIRTY);
247                 }
248
249                 SET_KEY_CSUM(k, op->csum);
250                 if (KEY_CSUM(k))
251                         bio_csum(n, k);
252
253                 trace_bcache_cache_insert(k);
254                 bch_keylist_push(&op->insert_keys);
255
256                 n->bi_rw |= REQ_WRITE;
257                 bch_submit_bbio(n, op->c, k, 0);
258         } while (n != bio);
259
260         op->insert_data_done = true;
261         continue_at(cl, bch_data_insert_keys, op->wq);
262         return;
263 err:
264         /* bch_alloc_sectors() blocks if s->writeback = true */
265         BUG_ON(op->writeback);
266
267         /*
268          * But if it's not a writeback write we'd rather just bail out if
269          * there aren't any buckets ready to write to - it might take awhile and
270          * we might be starving btree writes for gc or something.
271          */
272
273         if (!op->replace) {
274                 /*
275                  * Writethrough write: We can't complete the write until we've
276                  * updated the index. But we don't want to delay the write while
277                  * we wait for buckets to be freed up, so just invalidate the
278                  * rest of the write.
279                  */
280                 op->bypass = true;
281                 return bch_data_invalidate(cl);
282         } else {
283                 /*
284                  * From a cache miss, we can just insert the keys for the data
285                  * we have written or bail out if we didn't do anything.
286                  */
287                 op->insert_data_done = true;
288                 bio_put(bio);
289
290                 if (!bch_keylist_empty(&op->insert_keys))
291                         continue_at(cl, bch_data_insert_keys, op->wq);
292                 else
293                         closure_return(cl);
294         }
295 }
296
297 /**
298  * bch_data_insert - stick some data in the cache
299  *
300  * This is the starting point for any data to end up in a cache device; it could
301  * be from a normal write, or a writeback write, or a write to a flash only
302  * volume - it's also used by the moving garbage collector to compact data in
303  * mostly empty buckets.
304  *
305  * It first writes the data to the cache, creating a list of keys to be inserted
306  * (if the data had to be fragmented there will be multiple keys); after the
307  * data is written it calls bch_journal, and after the keys have been added to
308  * the next journal write they're inserted into the btree.
309  *
310  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
311  * and op->inode is used for the key inode.
312  *
313  * If s->bypass is true, instead of inserting the data it invalidates the
314  * region of the cache represented by s->cache_bio and op->inode.
315  */
316 void bch_data_insert(struct closure *cl)
317 {
318         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
319
320         trace_bcache_write(op->c, op->inode, op->bio,
321                            op->writeback, op->bypass);
322
323         bch_keylist_init(&op->insert_keys);
324         bio_get(op->bio);
325         bch_data_insert_start(cl);
326 }
327
328 /* Congested? */
329
330 unsigned bch_get_congested(struct cache_set *c)
331 {
332         int i;
333         long rand;
334
335         if (!c->congested_read_threshold_us &&
336             !c->congested_write_threshold_us)
337                 return 0;
338
339         i = (local_clock_us() - c->congested_last_us) / 1024;
340         if (i < 0)
341                 return 0;
342
343         i += atomic_read(&c->congested);
344         if (i >= 0)
345                 return 0;
346
347         i += CONGESTED_MAX;
348
349         if (i > 0)
350                 i = fract_exp_two(i, 6);
351
352         rand = get_random_int();
353         i -= bitmap_weight(&rand, BITS_PER_LONG);
354
355         return i > 0 ? i : 1;
356 }
357
358 static void add_sequential(struct task_struct *t)
359 {
360         ewma_add(t->sequential_io_avg,
361                  t->sequential_io, 8, 0);
362
363         t->sequential_io = 0;
364 }
365
366 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
367 {
368         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
369 }
370
371 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
372 {
373         struct cache_set *c = dc->disk.c;
374         unsigned mode = cache_mode(dc, bio);
375         unsigned sectors, congested = bch_get_congested(c);
376         struct task_struct *task = current;
377         struct io *i;
378
379         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
380             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
381             (bio->bi_rw & REQ_DISCARD))
382                 goto skip;
383
384         if (mode == CACHE_MODE_NONE ||
385             (mode == CACHE_MODE_WRITEAROUND &&
386              (bio->bi_rw & REQ_WRITE)))
387                 goto skip;
388
389         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
390             bio_sectors(bio) & (c->sb.block_size - 1)) {
391                 pr_debug("skipping unaligned io");
392                 goto skip;
393         }
394
395         if (bypass_torture_test(dc)) {
396                 if ((get_random_int() & 3) == 3)
397                         goto skip;
398                 else
399                         goto rescale;
400         }
401
402         if (!congested && !dc->sequential_cutoff)
403                 goto rescale;
404
405         if (!congested &&
406             mode == CACHE_MODE_WRITEBACK &&
407             (bio->bi_rw & REQ_WRITE) &&
408             (bio->bi_rw & REQ_SYNC))
409                 goto rescale;
410
411         spin_lock(&dc->io_lock);
412
413         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
414                 if (i->last == bio->bi_iter.bi_sector &&
415                     time_before(jiffies, i->jiffies))
416                         goto found;
417
418         i = list_first_entry(&dc->io_lru, struct io, lru);
419
420         add_sequential(task);
421         i->sequential = 0;
422 found:
423         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
424                 i->sequential   += bio->bi_iter.bi_size;
425
426         i->last                  = bio_end_sector(bio);
427         i->jiffies               = jiffies + msecs_to_jiffies(5000);
428         task->sequential_io      = i->sequential;
429
430         hlist_del(&i->hash);
431         hlist_add_head(&i->hash, iohash(dc, i->last));
432         list_move_tail(&i->lru, &dc->io_lru);
433
434         spin_unlock(&dc->io_lock);
435
436         sectors = max(task->sequential_io,
437                       task->sequential_io_avg) >> 9;
438
439         if (dc->sequential_cutoff &&
440             sectors >= dc->sequential_cutoff >> 9) {
441                 trace_bcache_bypass_sequential(bio);
442                 goto skip;
443         }
444
445         if (congested && sectors >= congested) {
446                 trace_bcache_bypass_congested(bio);
447                 goto skip;
448         }
449
450 rescale:
451         bch_rescale_priorities(c, bio_sectors(bio));
452         return false;
453 skip:
454         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
455         return true;
456 }
457
458 /* Cache lookup */
459
460 struct search {
461         /* Stack frame for bio_complete */
462         struct closure          cl;
463
464         struct bbio             bio;
465         struct bio              *orig_bio;
466         struct bio              *cache_miss;
467         struct bcache_device    *d;
468
469         unsigned                insert_bio_sectors;
470         unsigned                recoverable:1;
471         unsigned                write:1;
472         unsigned                read_dirty_data:1;
473
474         unsigned long           start_time;
475
476         struct btree_op         op;
477         struct data_insert_op   iop;
478 };
479
480 static void bch_cache_read_endio(struct bio *bio)
481 {
482         struct bbio *b = container_of(bio, struct bbio, bio);
483         struct closure *cl = bio->bi_private;
484         struct search *s = container_of(cl, struct search, cl);
485
486         /*
487          * If the bucket was reused while our bio was in flight, we might have
488          * read the wrong data. Set s->error but not error so it doesn't get
489          * counted against the cache device, but we'll still reread the data
490          * from the backing device.
491          */
492
493         if (bio->bi_error)
494                 s->iop.error = bio->bi_error;
495         else if (!KEY_DIRTY(&b->key) &&
496                  ptr_stale(s->iop.c, &b->key, 0)) {
497                 atomic_long_inc(&s->iop.c->cache_read_races);
498                 s->iop.error = -EINTR;
499         }
500
501         bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
502 }
503
504 /*
505  * Read from a single key, handling the initial cache miss if the key starts in
506  * the middle of the bio
507  */
508 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
509 {
510         struct search *s = container_of(op, struct search, op);
511         struct bio *n, *bio = &s->bio.bio;
512         struct bkey *bio_key;
513         unsigned ptr;
514
515         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
516                 return MAP_CONTINUE;
517
518         if (KEY_INODE(k) != s->iop.inode ||
519             KEY_START(k) > bio->bi_iter.bi_sector) {
520                 unsigned bio_sectors = bio_sectors(bio);
521                 unsigned sectors = KEY_INODE(k) == s->iop.inode
522                         ? min_t(uint64_t, INT_MAX,
523                                 KEY_START(k) - bio->bi_iter.bi_sector)
524                         : INT_MAX;
525
526                 int ret = s->d->cache_miss(b, s, bio, sectors);
527                 if (ret != MAP_CONTINUE)
528                         return ret;
529
530                 /* if this was a complete miss we shouldn't get here */
531                 BUG_ON(bio_sectors <= sectors);
532         }
533
534         if (!KEY_SIZE(k))
535                 return MAP_CONTINUE;
536
537         /* XXX: figure out best pointer - for multiple cache devices */
538         ptr = 0;
539
540         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
541
542         if (KEY_DIRTY(k))
543                 s->read_dirty_data = true;
544
545         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
546                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
547                            GFP_NOIO, s->d->bio_split);
548
549         bio_key = &container_of(n, struct bbio, bio)->key;
550         bch_bkey_copy_single_ptr(bio_key, k, ptr);
551
552         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
553         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
554
555         n->bi_end_io    = bch_cache_read_endio;
556         n->bi_private   = &s->cl;
557
558         /*
559          * The bucket we're reading from might be reused while our bio
560          * is in flight, and we could then end up reading the wrong
561          * data.
562          *
563          * We guard against this by checking (in cache_read_endio()) if
564          * the pointer is stale again; if so, we treat it as an error
565          * and reread from the backing device (but we don't pass that
566          * error up anywhere).
567          */
568
569         __bch_submit_bbio(n, b->c);
570         return n == bio ? MAP_DONE : MAP_CONTINUE;
571 }
572
573 static void cache_lookup(struct closure *cl)
574 {
575         struct search *s = container_of(cl, struct search, iop.cl);
576         struct bio *bio = &s->bio.bio;
577         int ret;
578
579         bch_btree_op_init(&s->op, -1);
580
581         ret = bch_btree_map_keys(&s->op, s->iop.c,
582                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
583                                  cache_lookup_fn, MAP_END_KEY);
584         if (ret == -EAGAIN) {
585                 continue_at(cl, cache_lookup, bcache_wq);
586                 return;
587         }
588
589         closure_return(cl);
590 }
591
592 /* Common code for the make_request functions */
593
594 static void request_endio(struct bio *bio)
595 {
596         struct closure *cl = bio->bi_private;
597
598         if (bio->bi_error) {
599                 struct search *s = container_of(cl, struct search, cl);
600                 s->iop.error = bio->bi_error;
601                 /* Only cache read errors are recoverable */
602                 s->recoverable = false;
603         }
604
605         bio_put(bio);
606         closure_put(cl);
607 }
608
609 static void bio_complete(struct search *s)
610 {
611         if (s->orig_bio) {
612                 generic_end_io_acct(bio_data_dir(s->orig_bio),
613                                     &s->d->disk->part0, s->start_time);
614
615                 trace_bcache_request_end(s->d, s->orig_bio);
616                 s->orig_bio->bi_error = s->iop.error;
617                 bio_endio(s->orig_bio);
618                 s->orig_bio = NULL;
619         }
620 }
621
622 static void do_bio_hook(struct search *s, struct bio *orig_bio)
623 {
624         struct bio *bio = &s->bio.bio;
625
626         bio_init(bio);
627         __bio_clone_fast(bio, orig_bio);
628         bio->bi_end_io          = request_endio;
629         bio->bi_private         = &s->cl;
630
631         bio_cnt_set(bio, 3);
632 }
633
634 static void search_free(struct closure *cl)
635 {
636         struct search *s = container_of(cl, struct search, cl);
637         bio_complete(s);
638
639         if (s->iop.bio)
640                 bio_put(s->iop.bio);
641
642         closure_debug_destroy(cl);
643         mempool_free(s, s->d->c->search);
644 }
645
646 static inline struct search *search_alloc(struct bio *bio,
647                                           struct bcache_device *d)
648 {
649         struct search *s;
650
651         s = mempool_alloc(d->c->search, GFP_NOIO);
652
653         closure_init(&s->cl, NULL);
654         do_bio_hook(s, bio);
655
656         s->orig_bio             = bio;
657         s->cache_miss           = NULL;
658         s->d                    = d;
659         s->recoverable          = 1;
660         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
661         s->read_dirty_data      = 0;
662         s->start_time           = jiffies;
663
664         s->iop.c                = d->c;
665         s->iop.bio              = NULL;
666         s->iop.inode            = d->id;
667         s->iop.write_point      = hash_long((unsigned long) current, 16);
668         s->iop.write_prio       = 0;
669         s->iop.error            = 0;
670         s->iop.flags            = 0;
671         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
672         s->iop.wq               = bcache_wq;
673
674         return s;
675 }
676
677 /* Cached devices */
678
679 static void cached_dev_bio_complete(struct closure *cl)
680 {
681         struct search *s = container_of(cl, struct search, cl);
682         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
683
684         search_free(cl);
685         cached_dev_put(dc);
686 }
687
688 /* Process reads */
689
690 static void cached_dev_cache_miss_done(struct closure *cl)
691 {
692         struct search *s = container_of(cl, struct search, cl);
693
694         if (s->iop.replace_collision)
695                 bch_mark_cache_miss_collision(s->iop.c, s->d);
696
697         if (s->iop.bio) {
698                 int i;
699                 struct bio_vec *bv;
700
701                 bio_for_each_segment_all(bv, s->iop.bio, i)
702                         __free_page(bv->bv_page);
703         }
704
705         cached_dev_bio_complete(cl);
706 }
707
708 static void cached_dev_read_error(struct closure *cl)
709 {
710         struct search *s = container_of(cl, struct search, cl);
711         struct bio *bio = &s->bio.bio;
712
713         if (s->recoverable) {
714                 /* Retry from the backing device: */
715                 trace_bcache_read_retry(s->orig_bio);
716
717                 s->iop.error = 0;
718                 do_bio_hook(s, s->orig_bio);
719
720                 /* XXX: invalidate cache */
721
722                 closure_bio_submit(bio, cl);
723         }
724
725         continue_at(cl, cached_dev_cache_miss_done, NULL);
726 }
727
728 static void cached_dev_read_done(struct closure *cl)
729 {
730         struct search *s = container_of(cl, struct search, cl);
731         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
732
733         /*
734          * We had a cache miss; cache_bio now contains data ready to be inserted
735          * into the cache.
736          *
737          * First, we copy the data we just read from cache_bio's bounce buffers
738          * to the buffers the original bio pointed to:
739          */
740
741         if (s->iop.bio) {
742                 bio_reset(s->iop.bio);
743                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
744                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
745                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
746                 bch_bio_map(s->iop.bio, NULL);
747
748                 bio_copy_data(s->cache_miss, s->iop.bio);
749
750                 bio_put(s->cache_miss);
751                 s->cache_miss = NULL;
752         }
753
754         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
755                 bch_data_verify(dc, s->orig_bio);
756
757         bio_complete(s);
758
759         if (s->iop.bio &&
760             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
761                 BUG_ON(!s->iop.replace);
762                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
763         }
764
765         continue_at(cl, cached_dev_cache_miss_done, NULL);
766 }
767
768 static void cached_dev_read_done_bh(struct closure *cl)
769 {
770         struct search *s = container_of(cl, struct search, cl);
771         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
772
773         bch_mark_cache_accounting(s->iop.c, s->d,
774                                   !s->cache_miss, s->iop.bypass);
775         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
776
777         if (s->iop.error)
778                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
779         else if (s->iop.bio || verify(dc, &s->bio.bio))
780                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
781         else
782                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
783 }
784
785 static int cached_dev_cache_miss(struct btree *b, struct search *s,
786                                  struct bio *bio, unsigned sectors)
787 {
788         int ret = MAP_CONTINUE;
789         unsigned reada = 0;
790         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
791         struct bio *miss, *cache_bio;
792
793         if (s->cache_miss || s->iop.bypass) {
794                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
795                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
796                 goto out_submit;
797         }
798
799         if (!(bio->bi_rw & REQ_RAHEAD) &&
800             !(bio->bi_rw & REQ_META) &&
801             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
802                 reada = min_t(sector_t, dc->readahead >> 9,
803                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
804
805         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
806
807         s->iop.replace_key = KEY(s->iop.inode,
808                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
809                                  s->insert_bio_sectors);
810
811         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
812         if (ret)
813                 return ret;
814
815         s->iop.replace = true;
816
817         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
818
819         /* btree_search_recurse()'s btree iterator is no good anymore */
820         ret = miss == bio ? MAP_DONE : -EINTR;
821
822         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
823                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
824                         dc->disk.bio_split);
825         if (!cache_bio)
826                 goto out_submit;
827
828         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
829         cache_bio->bi_bdev              = miss->bi_bdev;
830         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
831
832         cache_bio->bi_end_io    = request_endio;
833         cache_bio->bi_private   = &s->cl;
834
835         bch_bio_map(cache_bio, NULL);
836         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
837                 goto out_put;
838
839         if (reada)
840                 bch_mark_cache_readahead(s->iop.c, s->d);
841
842         s->cache_miss   = miss;
843         s->iop.bio      = cache_bio;
844         bio_get(cache_bio);
845         closure_bio_submit(cache_bio, &s->cl);
846
847         return ret;
848 out_put:
849         bio_put(cache_bio);
850 out_submit:
851         miss->bi_end_io         = request_endio;
852         miss->bi_private        = &s->cl;
853         closure_bio_submit(miss, &s->cl);
854         return ret;
855 }
856
857 static void cached_dev_read(struct cached_dev *dc, struct search *s)
858 {
859         struct closure *cl = &s->cl;
860
861         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
862         continue_at(cl, cached_dev_read_done_bh, NULL);
863 }
864
865 /* Process writes */
866
867 static void cached_dev_write_complete(struct closure *cl)
868 {
869         struct search *s = container_of(cl, struct search, cl);
870         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
871
872         up_read_non_owner(&dc->writeback_lock);
873         cached_dev_bio_complete(cl);
874 }
875
876 static void cached_dev_write(struct cached_dev *dc, struct search *s)
877 {
878         struct closure *cl = &s->cl;
879         struct bio *bio = &s->bio.bio;
880         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
881         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
882
883         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
884
885         down_read_non_owner(&dc->writeback_lock);
886         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
887                 /*
888                  * We overlap with some dirty data undergoing background
889                  * writeback, force this write to writeback
890                  */
891                 s->iop.bypass = false;
892                 s->iop.writeback = true;
893         }
894
895         /*
896          * Discards aren't _required_ to do anything, so skipping if
897          * check_overlapping returned true is ok
898          *
899          * But check_overlapping drops dirty keys for which io hasn't started,
900          * so we still want to call it.
901          */
902         if (bio->bi_rw & REQ_DISCARD)
903                 s->iop.bypass = true;
904
905         if (should_writeback(dc, s->orig_bio,
906                              cache_mode(dc, bio),
907                              s->iop.bypass)) {
908                 s->iop.bypass = false;
909                 s->iop.writeback = true;
910         }
911
912         if (s->iop.bypass) {
913                 s->iop.bio = s->orig_bio;
914                 bio_get(s->iop.bio);
915
916                 if (!(bio->bi_rw & REQ_DISCARD) ||
917                     blk_queue_discard(bdev_get_queue(dc->bdev)))
918                         closure_bio_submit(bio, cl);
919         } else if (s->iop.writeback) {
920                 bch_writeback_add(dc);
921                 s->iop.bio = bio;
922
923                 if (bio->bi_rw & REQ_FLUSH) {
924                         /* Also need to send a flush to the backing device */
925                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
926                                                              dc->disk.bio_split);
927
928                         flush->bi_rw    = WRITE_FLUSH;
929                         flush->bi_bdev  = bio->bi_bdev;
930                         flush->bi_end_io = request_endio;
931                         flush->bi_private = cl;
932
933                         closure_bio_submit(flush, cl);
934                 }
935         } else {
936                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
937
938                 closure_bio_submit(bio, cl);
939         }
940
941         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
942         continue_at(cl, cached_dev_write_complete, NULL);
943 }
944
945 static void cached_dev_nodata(struct closure *cl)
946 {
947         struct search *s = container_of(cl, struct search, cl);
948         struct bio *bio = &s->bio.bio;
949
950         if (s->iop.flush_journal)
951                 bch_journal_meta(s->iop.c, cl);
952
953         /* If it's a flush, we send the flush to the backing device too */
954         closure_bio_submit(bio, cl);
955
956         continue_at(cl, cached_dev_bio_complete, NULL);
957 }
958
959 /* Cached devices - read & write stuff */
960
961 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
962 {
963         struct search *s;
964         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
965         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
966         int rw = bio_data_dir(bio);
967
968         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
969
970         bio->bi_bdev = dc->bdev;
971         bio->bi_iter.bi_sector += dc->sb.data_offset;
972
973         if (cached_dev_get(dc)) {
974                 s = search_alloc(bio, d);
975                 trace_bcache_request_start(s->d, bio);
976
977                 if (!bio->bi_iter.bi_size) {
978                         /*
979                          * can't call bch_journal_meta from under
980                          * generic_make_request
981                          */
982                         continue_at_nobarrier(&s->cl,
983                                               cached_dev_nodata,
984                                               bcache_wq);
985                 } else {
986                         s->iop.bypass = check_should_bypass(dc, bio);
987
988                         if (rw)
989                                 cached_dev_write(dc, s);
990                         else
991                                 cached_dev_read(dc, s);
992                 }
993         } else {
994                 if ((bio->bi_rw & REQ_DISCARD) &&
995                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
996                         bio_endio(bio);
997                 else
998                         generic_make_request(bio);
999         }
1000 }
1001
1002 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1003                             unsigned int cmd, unsigned long arg)
1004 {
1005         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1006         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1007 }
1008
1009 static int cached_dev_congested(void *data, int bits)
1010 {
1011         struct bcache_device *d = data;
1012         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1013         struct request_queue *q = bdev_get_queue(dc->bdev);
1014         int ret = 0;
1015
1016         if (bdi_congested(&q->backing_dev_info, bits))
1017                 return 1;
1018
1019         if (cached_dev_get(dc)) {
1020                 unsigned i;
1021                 struct cache *ca;
1022
1023                 for_each_cache(ca, d->c, i) {
1024                         q = bdev_get_queue(ca->bdev);
1025                         ret |= bdi_congested(&q->backing_dev_info, bits);
1026                 }
1027
1028                 cached_dev_put(dc);
1029         }
1030
1031         return ret;
1032 }
1033
1034 void bch_cached_dev_request_init(struct cached_dev *dc)
1035 {
1036         struct gendisk *g = dc->disk.disk;
1037
1038         g->queue->make_request_fn               = cached_dev_make_request;
1039         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1040         dc->disk.cache_miss                     = cached_dev_cache_miss;
1041         dc->disk.ioctl                          = cached_dev_ioctl;
1042 }
1043
1044 /* Flash backed devices */
1045
1046 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1047                                 struct bio *bio, unsigned sectors)
1048 {
1049         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1050
1051         swap(bio->bi_iter.bi_size, bytes);
1052         zero_fill_bio(bio);
1053         swap(bio->bi_iter.bi_size, bytes);
1054
1055         bio_advance(bio, bytes);
1056
1057         if (!bio->bi_iter.bi_size)
1058                 return MAP_DONE;
1059
1060         return MAP_CONTINUE;
1061 }
1062
1063 static void flash_dev_nodata(struct closure *cl)
1064 {
1065         struct search *s = container_of(cl, struct search, cl);
1066
1067         if (s->iop.flush_journal)
1068                 bch_journal_meta(s->iop.c, cl);
1069
1070         continue_at(cl, search_free, NULL);
1071 }
1072
1073 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1074 {
1075         struct search *s;
1076         struct closure *cl;
1077         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1078         int rw = bio_data_dir(bio);
1079
1080         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1081
1082         s = search_alloc(bio, d);
1083         cl = &s->cl;
1084         bio = &s->bio.bio;
1085
1086         trace_bcache_request_start(s->d, bio);
1087
1088         if (!bio->bi_iter.bi_size) {
1089                 /*
1090                  * can't call bch_journal_meta from under
1091                  * generic_make_request
1092                  */
1093                 continue_at_nobarrier(&s->cl,
1094                                       flash_dev_nodata,
1095                                       bcache_wq);
1096                 return;
1097         } else if (rw) {
1098                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1099                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1100                                         &KEY(d->id, bio_end_sector(bio), 0));
1101
1102                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1103                 s->iop.writeback        = true;
1104                 s->iop.bio              = bio;
1105
1106                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1107         } else {
1108                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1109         }
1110
1111         continue_at(cl, search_free, NULL);
1112 }
1113
1114 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1115                            unsigned int cmd, unsigned long arg)
1116 {
1117         return -ENOTTY;
1118 }
1119
1120 static int flash_dev_congested(void *data, int bits)
1121 {
1122         struct bcache_device *d = data;
1123         struct request_queue *q;
1124         struct cache *ca;
1125         unsigned i;
1126         int ret = 0;
1127
1128         for_each_cache(ca, d->c, i) {
1129                 q = bdev_get_queue(ca->bdev);
1130                 ret |= bdi_congested(&q->backing_dev_info, bits);
1131         }
1132
1133         return ret;
1134 }
1135
1136 void bch_flash_dev_request_init(struct bcache_device *d)
1137 {
1138         struct gendisk *g = d->disk;
1139
1140         g->queue->make_request_fn               = flash_dev_make_request;
1141         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1142         d->cache_miss                           = flash_dev_cache_miss;
1143         d->ioctl                                = flash_dev_ioctl;
1144 }
1145
1146 void bch_request_exit(void)
1147 {
1148         if (bch_search_cache)
1149                 kmem_cache_destroy(bch_search_cache);
1150 }
1151
1152 int __init bch_request_init(void)
1153 {
1154         bch_search_cache = KMEM_CACHE(search, 0);
1155         if (!bch_search_cache)
1156                 return -ENOMEM;
1157
1158         return 0;
1159 }