x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2  * Copyright (C) 2015 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-cache-policy.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm.h"
10
11 #include <linux/hash.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/vmalloc.h>
16 #include <linux/math64.h>
17
18 #define DM_MSG_PREFIX "cache-policy-smq"
19
20 /*----------------------------------------------------------------*/
21
22 /*
23  * Safe division functions that return zero on divide by zero.
24  */
25 static unsigned safe_div(unsigned n, unsigned d)
26 {
27         return d ? n / d : 0u;
28 }
29
30 static unsigned safe_mod(unsigned n, unsigned d)
31 {
32         return d ? n % d : 0u;
33 }
34
35 /*----------------------------------------------------------------*/
36
37 struct entry {
38         unsigned hash_next:28;
39         unsigned prev:28;
40         unsigned next:28;
41         unsigned level:7;
42         bool dirty:1;
43         bool allocated:1;
44         bool sentinel:1;
45
46         dm_oblock_t oblock;
47 };
48
49 /*----------------------------------------------------------------*/
50
51 #define INDEXER_NULL ((1u << 28u) - 1u)
52
53 /*
54  * An entry_space manages a set of entries that we use for the queues.
55  * The clean and dirty queues share entries, so this object is separate
56  * from the queue itself.
57  */
58 struct entry_space {
59         struct entry *begin;
60         struct entry *end;
61 };
62
63 static int space_init(struct entry_space *es, unsigned nr_entries)
64 {
65         if (!nr_entries) {
66                 es->begin = es->end = NULL;
67                 return 0;
68         }
69
70         es->begin = vzalloc(sizeof(struct entry) * nr_entries);
71         if (!es->begin)
72                 return -ENOMEM;
73
74         es->end = es->begin + nr_entries;
75         return 0;
76 }
77
78 static void space_exit(struct entry_space *es)
79 {
80         vfree(es->begin);
81 }
82
83 static struct entry *__get_entry(struct entry_space *es, unsigned block)
84 {
85         struct entry *e;
86
87         e = es->begin + block;
88         BUG_ON(e >= es->end);
89
90         return e;
91 }
92
93 static unsigned to_index(struct entry_space *es, struct entry *e)
94 {
95         BUG_ON(e < es->begin || e >= es->end);
96         return e - es->begin;
97 }
98
99 static struct entry *to_entry(struct entry_space *es, unsigned block)
100 {
101         if (block == INDEXER_NULL)
102                 return NULL;
103
104         return __get_entry(es, block);
105 }
106
107 /*----------------------------------------------------------------*/
108
109 struct ilist {
110         unsigned nr_elts;       /* excluding sentinel entries */
111         unsigned head, tail;
112 };
113
114 static void l_init(struct ilist *l)
115 {
116         l->nr_elts = 0;
117         l->head = l->tail = INDEXER_NULL;
118 }
119
120 static struct entry *l_head(struct entry_space *es, struct ilist *l)
121 {
122         return to_entry(es, l->head);
123 }
124
125 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
126 {
127         return to_entry(es, l->tail);
128 }
129
130 static struct entry *l_next(struct entry_space *es, struct entry *e)
131 {
132         return to_entry(es, e->next);
133 }
134
135 static struct entry *l_prev(struct entry_space *es, struct entry *e)
136 {
137         return to_entry(es, e->prev);
138 }
139
140 static bool l_empty(struct ilist *l)
141 {
142         return l->head == INDEXER_NULL;
143 }
144
145 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
146 {
147         struct entry *head = l_head(es, l);
148
149         e->next = l->head;
150         e->prev = INDEXER_NULL;
151
152         if (head)
153                 head->prev = l->head = to_index(es, e);
154         else
155                 l->head = l->tail = to_index(es, e);
156
157         if (!e->sentinel)
158                 l->nr_elts++;
159 }
160
161 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
162 {
163         struct entry *tail = l_tail(es, l);
164
165         e->next = INDEXER_NULL;
166         e->prev = l->tail;
167
168         if (tail)
169                 tail->next = l->tail = to_index(es, e);
170         else
171                 l->head = l->tail = to_index(es, e);
172
173         if (!e->sentinel)
174                 l->nr_elts++;
175 }
176
177 static void l_add_before(struct entry_space *es, struct ilist *l,
178                          struct entry *old, struct entry *e)
179 {
180         struct entry *prev = l_prev(es, old);
181
182         if (!prev)
183                 l_add_head(es, l, e);
184
185         else {
186                 e->prev = old->prev;
187                 e->next = to_index(es, old);
188                 prev->next = old->prev = to_index(es, e);
189
190                 if (!e->sentinel)
191                         l->nr_elts++;
192         }
193 }
194
195 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
196 {
197         struct entry *prev = l_prev(es, e);
198         struct entry *next = l_next(es, e);
199
200         if (prev)
201                 prev->next = e->next;
202         else
203                 l->head = e->next;
204
205         if (next)
206                 next->prev = e->prev;
207         else
208                 l->tail = e->prev;
209
210         if (!e->sentinel)
211                 l->nr_elts--;
212 }
213
214 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
215 {
216         struct entry *e;
217
218         for (e = l_tail(es, l); e; e = l_prev(es, e))
219                 if (!e->sentinel) {
220                         l_del(es, l, e);
221                         return e;
222                 }
223
224         return NULL;
225 }
226
227 /*----------------------------------------------------------------*/
228
229 /*
230  * The stochastic-multi-queue is a set of lru lists stacked into levels.
231  * Entries are moved up levels when they are used, which loosely orders the
232  * most accessed entries in the top levels and least in the bottom.  This
233  * structure is *much* better than a single lru list.
234  */
235 #define MAX_LEVELS 64u
236
237 struct queue {
238         struct entry_space *es;
239
240         unsigned nr_elts;
241         unsigned nr_levels;
242         struct ilist qs[MAX_LEVELS];
243
244         /*
245          * We maintain a count of the number of entries we would like in each
246          * level.
247          */
248         unsigned last_target_nr_elts;
249         unsigned nr_top_levels;
250         unsigned nr_in_top_levels;
251         unsigned target_count[MAX_LEVELS];
252 };
253
254 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
255 {
256         unsigned i;
257
258         q->es = es;
259         q->nr_elts = 0;
260         q->nr_levels = nr_levels;
261
262         for (i = 0; i < q->nr_levels; i++) {
263                 l_init(q->qs + i);
264                 q->target_count[i] = 0u;
265         }
266
267         q->last_target_nr_elts = 0u;
268         q->nr_top_levels = 0u;
269         q->nr_in_top_levels = 0u;
270 }
271
272 static unsigned q_size(struct queue *q)
273 {
274         return q->nr_elts;
275 }
276
277 /*
278  * Insert an entry to the back of the given level.
279  */
280 static void q_push(struct queue *q, struct entry *e)
281 {
282         if (!e->sentinel)
283                 q->nr_elts++;
284
285         l_add_tail(q->es, q->qs + e->level, e);
286 }
287
288 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
289 {
290         if (!e->sentinel)
291                 q->nr_elts++;
292
293         l_add_before(q->es, q->qs + e->level, old, e);
294 }
295
296 static void q_del(struct queue *q, struct entry *e)
297 {
298         l_del(q->es, q->qs + e->level, e);
299         if (!e->sentinel)
300                 q->nr_elts--;
301 }
302
303 /*
304  * Return the oldest entry of the lowest populated level.
305  */
306 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
307 {
308         unsigned level;
309         struct entry *e;
310
311         max_level = min(max_level, q->nr_levels);
312
313         for (level = 0; level < max_level; level++)
314                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
315                         if (e->sentinel) {
316                                 if (can_cross_sentinel)
317                                         continue;
318                                 else
319                                         break;
320                         }
321
322                         return e;
323                 }
324
325         return NULL;
326 }
327
328 static struct entry *q_pop(struct queue *q)
329 {
330         struct entry *e = q_peek(q, q->nr_levels, true);
331
332         if (e)
333                 q_del(q, e);
334
335         return e;
336 }
337
338 /*
339  * Pops an entry from a level that is not past a sentinel.
340  */
341 static struct entry *q_pop_old(struct queue *q, unsigned max_level)
342 {
343         struct entry *e = q_peek(q, max_level, false);
344
345         if (e)
346                 q_del(q, e);
347
348         return e;
349 }
350
351 /*
352  * This function assumes there is a non-sentinel entry to pop.  It's only
353  * used by redistribute, so we know this is true.  It also doesn't adjust
354  * the q->nr_elts count.
355  */
356 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
357 {
358         struct entry *e;
359
360         for (; level < q->nr_levels; level++)
361                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
362                         if (!e->sentinel) {
363                                 l_del(q->es, q->qs + e->level, e);
364                                 return e;
365                         }
366
367         return NULL;
368 }
369
370 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
371 {
372         unsigned level, nr_levels, entries_per_level, remainder;
373
374         BUG_ON(lbegin > lend);
375         BUG_ON(lend > q->nr_levels);
376         nr_levels = lend - lbegin;
377         entries_per_level = safe_div(nr_elts, nr_levels);
378         remainder = safe_mod(nr_elts, nr_levels);
379
380         for (level = lbegin; level < lend; level++)
381                 q->target_count[level] =
382                         (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
383 }
384
385 /*
386  * Typically we have fewer elements in the top few levels which allows us
387  * to adjust the promote threshold nicely.
388  */
389 static void q_set_targets(struct queue *q)
390 {
391         if (q->last_target_nr_elts == q->nr_elts)
392                 return;
393
394         q->last_target_nr_elts = q->nr_elts;
395
396         if (q->nr_top_levels > q->nr_levels)
397                 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
398
399         else {
400                 q_set_targets_subrange_(q, q->nr_in_top_levels,
401                                         q->nr_levels - q->nr_top_levels, q->nr_levels);
402
403                 if (q->nr_in_top_levels < q->nr_elts)
404                         q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
405                                                 0, q->nr_levels - q->nr_top_levels);
406                 else
407                         q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
408         }
409 }
410
411 static void q_redistribute(struct queue *q)
412 {
413         unsigned target, level;
414         struct ilist *l, *l_above;
415         struct entry *e;
416
417         q_set_targets(q);
418
419         for (level = 0u; level < q->nr_levels - 1u; level++) {
420                 l = q->qs + level;
421                 target = q->target_count[level];
422
423                 /*
424                  * Pull down some entries from the level above.
425                  */
426                 while (l->nr_elts < target) {
427                         e = __redist_pop_from(q, level + 1u);
428                         if (!e) {
429                                 /* bug in nr_elts */
430                                 break;
431                         }
432
433                         e->level = level;
434                         l_add_tail(q->es, l, e);
435                 }
436
437                 /*
438                  * Push some entries up.
439                  */
440                 l_above = q->qs + level + 1u;
441                 while (l->nr_elts > target) {
442                         e = l_pop_tail(q->es, l);
443
444                         if (!e)
445                                 /* bug in nr_elts */
446                                 break;
447
448                         e->level = level + 1u;
449                         l_add_head(q->es, l_above, e);
450                 }
451         }
452 }
453
454 static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
455 {
456         struct entry *de;
457         unsigned new_level;
458
459         q_del(q, e);
460
461         if (extra_levels && (e->level < q->nr_levels - 1u)) {
462                 new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463                 for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
464                         if (de->sentinel)
465                                 continue;
466
467                         q_del(q, de);
468                         de->level = e->level;
469
470                         if (dest)
471                                 q_push_before(q, dest, de);
472                         else
473                                 q_push(q, de);
474                         break;
475                 }
476
477                 e->level = new_level;
478         }
479
480         q_push(q, e);
481 }
482
483 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
484 {
485         q_requeue_before(q, NULL, e, extra_levels);
486 }
487
488 /*----------------------------------------------------------------*/
489
490 #define FP_SHIFT 8
491 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
492 #define EIGHTH (1u << (FP_SHIFT - 3u))
493
494 struct stats {
495         unsigned hit_threshold;
496         unsigned hits;
497         unsigned misses;
498 };
499
500 enum performance {
501         Q_POOR,
502         Q_FAIR,
503         Q_WELL
504 };
505
506 static void stats_init(struct stats *s, unsigned nr_levels)
507 {
508         s->hit_threshold = (nr_levels * 3u) / 4u;
509         s->hits = 0u;
510         s->misses = 0u;
511 }
512
513 static void stats_reset(struct stats *s)
514 {
515         s->hits = s->misses = 0u;
516 }
517
518 static void stats_level_accessed(struct stats *s, unsigned level)
519 {
520         if (level >= s->hit_threshold)
521                 s->hits++;
522         else
523                 s->misses++;
524 }
525
526 static void stats_miss(struct stats *s)
527 {
528         s->misses++;
529 }
530
531 /*
532  * There are times when we don't have any confidence in the hotspot queue.
533  * Such as when a fresh cache is created and the blocks have been spread
534  * out across the levels, or if an io load changes.  We detect this by
535  * seeing how often a lookup is in the top levels of the hotspot queue.
536  */
537 static enum performance stats_assess(struct stats *s)
538 {
539         unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
540
541         if (confidence < SIXTEENTH)
542                 return Q_POOR;
543
544         else if (confidence < EIGHTH)
545                 return Q_FAIR;
546
547         else
548                 return Q_WELL;
549 }
550
551 /*----------------------------------------------------------------*/
552
553 struct hash_table {
554         struct entry_space *es;
555         unsigned long long hash_bits;
556         unsigned *buckets;
557 };
558
559 /*
560  * All cache entries are stored in a chained hash table.  To save space we
561  * use indexing again, and only store indexes to the next entry.
562  */
563 static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
564 {
565         unsigned i, nr_buckets;
566
567         ht->es = es;
568         nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
569         ht->hash_bits = __ffs(nr_buckets);
570
571         ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
572         if (!ht->buckets)
573                 return -ENOMEM;
574
575         for (i = 0; i < nr_buckets; i++)
576                 ht->buckets[i] = INDEXER_NULL;
577
578         return 0;
579 }
580
581 static void h_exit(struct hash_table *ht)
582 {
583         vfree(ht->buckets);
584 }
585
586 static struct entry *h_head(struct hash_table *ht, unsigned bucket)
587 {
588         return to_entry(ht->es, ht->buckets[bucket]);
589 }
590
591 static struct entry *h_next(struct hash_table *ht, struct entry *e)
592 {
593         return to_entry(ht->es, e->hash_next);
594 }
595
596 static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
597 {
598         e->hash_next = ht->buckets[bucket];
599         ht->buckets[bucket] = to_index(ht->es, e);
600 }
601
602 static void h_insert(struct hash_table *ht, struct entry *e)
603 {
604         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
605         __h_insert(ht, h, e);
606 }
607
608 static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
609                                 struct entry **prev)
610 {
611         struct entry *e;
612
613         *prev = NULL;
614         for (e = h_head(ht, h); e; e = h_next(ht, e)) {
615                 if (e->oblock == oblock)
616                         return e;
617
618                 *prev = e;
619         }
620
621         return NULL;
622 }
623
624 static void __h_unlink(struct hash_table *ht, unsigned h,
625                        struct entry *e, struct entry *prev)
626 {
627         if (prev)
628                 prev->hash_next = e->hash_next;
629         else
630                 ht->buckets[h] = e->hash_next;
631 }
632
633 /*
634  * Also moves each entry to the front of the bucket.
635  */
636 static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
637 {
638         struct entry *e, *prev;
639         unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
640
641         e = __h_lookup(ht, h, oblock, &prev);
642         if (e && prev) {
643                 /*
644                  * Move to the front because this entry is likely
645                  * to be hit again.
646                  */
647                 __h_unlink(ht, h, e, prev);
648                 __h_insert(ht, h, e);
649         }
650
651         return e;
652 }
653
654 static void h_remove(struct hash_table *ht, struct entry *e)
655 {
656         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
657         struct entry *prev;
658
659         /*
660          * The down side of using a singly linked list is we have to
661          * iterate the bucket to remove an item.
662          */
663         e = __h_lookup(ht, h, e->oblock, &prev);
664         if (e)
665                 __h_unlink(ht, h, e, prev);
666 }
667
668 /*----------------------------------------------------------------*/
669
670 struct entry_alloc {
671         struct entry_space *es;
672         unsigned begin;
673
674         unsigned nr_allocated;
675         struct ilist free;
676 };
677
678 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
679                            unsigned begin, unsigned end)
680 {
681         unsigned i;
682
683         ea->es = es;
684         ea->nr_allocated = 0u;
685         ea->begin = begin;
686
687         l_init(&ea->free);
688         for (i = begin; i != end; i++)
689                 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
690 }
691
692 static void init_entry(struct entry *e)
693 {
694         /*
695          * We can't memset because that would clear the hotspot and
696          * sentinel bits which remain constant.
697          */
698         e->hash_next = INDEXER_NULL;
699         e->next = INDEXER_NULL;
700         e->prev = INDEXER_NULL;
701         e->level = 0u;
702         e->allocated = true;
703 }
704
705 static struct entry *alloc_entry(struct entry_alloc *ea)
706 {
707         struct entry *e;
708
709         if (l_empty(&ea->free))
710                 return NULL;
711
712         e = l_pop_tail(ea->es, &ea->free);
713         init_entry(e);
714         ea->nr_allocated++;
715
716         return e;
717 }
718
719 /*
720  * This assumes the cblock hasn't already been allocated.
721  */
722 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
723 {
724         struct entry *e = __get_entry(ea->es, ea->begin + i);
725
726         BUG_ON(e->allocated);
727
728         l_del(ea->es, &ea->free, e);
729         init_entry(e);
730         ea->nr_allocated++;
731
732         return e;
733 }
734
735 static void free_entry(struct entry_alloc *ea, struct entry *e)
736 {
737         BUG_ON(!ea->nr_allocated);
738         BUG_ON(!e->allocated);
739
740         ea->nr_allocated--;
741         e->allocated = false;
742         l_add_tail(ea->es, &ea->free, e);
743 }
744
745 static bool allocator_empty(struct entry_alloc *ea)
746 {
747         return l_empty(&ea->free);
748 }
749
750 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
751 {
752         return to_index(ea->es, e) - ea->begin;
753 }
754
755 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
756 {
757         return __get_entry(ea->es, ea->begin + index);
758 }
759
760 /*----------------------------------------------------------------*/
761
762 #define NR_HOTSPOT_LEVELS 64u
763 #define NR_CACHE_LEVELS 64u
764
765 #define WRITEBACK_PERIOD (10 * HZ)
766 #define DEMOTE_PERIOD (60 * HZ)
767
768 #define HOTSPOT_UPDATE_PERIOD (HZ)
769 #define CACHE_UPDATE_PERIOD (10u * HZ)
770
771 struct smq_policy {
772         struct dm_cache_policy policy;
773
774         /* protects everything */
775         spinlock_t lock;
776         dm_cblock_t cache_size;
777         sector_t cache_block_size;
778
779         sector_t hotspot_block_size;
780         unsigned nr_hotspot_blocks;
781         unsigned cache_blocks_per_hotspot_block;
782         unsigned hotspot_level_jump;
783
784         struct entry_space es;
785         struct entry_alloc writeback_sentinel_alloc;
786         struct entry_alloc demote_sentinel_alloc;
787         struct entry_alloc hotspot_alloc;
788         struct entry_alloc cache_alloc;
789
790         unsigned long *hotspot_hit_bits;
791         unsigned long *cache_hit_bits;
792
793         /*
794          * We maintain three queues of entries.  The cache proper,
795          * consisting of a clean and dirty queue, containing the currently
796          * active mappings.  The hotspot queue uses a larger block size to
797          * track blocks that are being hit frequently and potential
798          * candidates for promotion to the cache.
799          */
800         struct queue hotspot;
801         struct queue clean;
802         struct queue dirty;
803
804         struct stats hotspot_stats;
805         struct stats cache_stats;
806
807         /*
808          * Keeps track of time, incremented by the core.  We use this to
809          * avoid attributing multiple hits within the same tick.
810          */
811         unsigned tick;
812
813         /*
814          * The hash tables allows us to quickly find an entry by origin
815          * block.
816          */
817         struct hash_table table;
818         struct hash_table hotspot_table;
819
820         bool current_writeback_sentinels;
821         unsigned long next_writeback_period;
822
823         bool current_demote_sentinels;
824         unsigned long next_demote_period;
825
826         unsigned write_promote_level;
827         unsigned read_promote_level;
828
829         unsigned long next_hotspot_period;
830         unsigned long next_cache_period;
831 };
832
833 /*----------------------------------------------------------------*/
834
835 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
836 {
837         return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
838 }
839
840 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
841 {
842         return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
843 }
844
845 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
846 {
847         return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
848 }
849
850 static void __update_writeback_sentinels(struct smq_policy *mq)
851 {
852         unsigned level;
853         struct queue *q = &mq->dirty;
854         struct entry *sentinel;
855
856         for (level = 0; level < q->nr_levels; level++) {
857                 sentinel = writeback_sentinel(mq, level);
858                 q_del(q, sentinel);
859                 q_push(q, sentinel);
860         }
861 }
862
863 static void __update_demote_sentinels(struct smq_policy *mq)
864 {
865         unsigned level;
866         struct queue *q = &mq->clean;
867         struct entry *sentinel;
868
869         for (level = 0; level < q->nr_levels; level++) {
870                 sentinel = demote_sentinel(mq, level);
871                 q_del(q, sentinel);
872                 q_push(q, sentinel);
873         }
874 }
875
876 static void update_sentinels(struct smq_policy *mq)
877 {
878         if (time_after(jiffies, mq->next_writeback_period)) {
879                 __update_writeback_sentinels(mq);
880                 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
881                 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
882         }
883
884         if (time_after(jiffies, mq->next_demote_period)) {
885                 __update_demote_sentinels(mq);
886                 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
887                 mq->current_demote_sentinels = !mq->current_demote_sentinels;
888         }
889 }
890
891 static void __sentinels_init(struct smq_policy *mq)
892 {
893         unsigned level;
894         struct entry *sentinel;
895
896         for (level = 0; level < NR_CACHE_LEVELS; level++) {
897                 sentinel = writeback_sentinel(mq, level);
898                 sentinel->level = level;
899                 q_push(&mq->dirty, sentinel);
900
901                 sentinel = demote_sentinel(mq, level);
902                 sentinel->level = level;
903                 q_push(&mq->clean, sentinel);
904         }
905 }
906
907 static void sentinels_init(struct smq_policy *mq)
908 {
909         mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
910         mq->next_demote_period = jiffies + DEMOTE_PERIOD;
911
912         mq->current_writeback_sentinels = false;
913         mq->current_demote_sentinels = false;
914         __sentinels_init(mq);
915
916         mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
917         mq->current_demote_sentinels = !mq->current_demote_sentinels;
918         __sentinels_init(mq);
919 }
920
921 /*----------------------------------------------------------------*/
922
923 /*
924  * These methods tie together the dirty queue, clean queue and hash table.
925  */
926 static void push_new(struct smq_policy *mq, struct entry *e)
927 {
928         struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
929         h_insert(&mq->table, e);
930         q_push(q, e);
931 }
932
933 static void push(struct smq_policy *mq, struct entry *e)
934 {
935         struct entry *sentinel;
936
937         h_insert(&mq->table, e);
938
939         /*
940          * Punch this into the queue just in front of the sentinel, to
941          * ensure it's cleaned straight away.
942          */
943         if (e->dirty) {
944                 sentinel = writeback_sentinel(mq, e->level);
945                 q_push_before(&mq->dirty, sentinel, e);
946         } else {
947                 sentinel = demote_sentinel(mq, e->level);
948                 q_push_before(&mq->clean, sentinel, e);
949         }
950 }
951
952 /*
953  * Removes an entry from cache.  Removes from the hash table.
954  */
955 static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
956 {
957         q_del(q, e);
958         h_remove(&mq->table, e);
959 }
960
961 static void del(struct smq_policy *mq, struct entry *e)
962 {
963         __del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
964 }
965
966 static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
967 {
968         struct entry *e = q_pop_old(q, max_level);
969         if (e)
970                 h_remove(&mq->table, e);
971         return e;
972 }
973
974 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
975 {
976         return to_cblock(get_index(&mq->cache_alloc, e));
977 }
978
979 static void requeue(struct smq_policy *mq, struct entry *e)
980 {
981         struct entry *sentinel;
982
983         if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
984                 if (e->dirty) {
985                         sentinel = writeback_sentinel(mq, e->level);
986                         q_requeue_before(&mq->dirty, sentinel, e, 1u);
987                 } else {
988                         sentinel = demote_sentinel(mq, e->level);
989                         q_requeue_before(&mq->clean, sentinel, e, 1u);
990                 }
991         }
992 }
993
994 static unsigned default_promote_level(struct smq_policy *mq)
995 {
996         /*
997          * The promote level depends on the current performance of the
998          * cache.
999          *
1000          * If the cache is performing badly, then we can't afford
1001          * to promote much without causing performance to drop below that
1002          * of the origin device.
1003          *
1004          * If the cache is performing well, then we don't need to promote
1005          * much.  If it isn't broken, don't fix it.
1006          *
1007          * If the cache is middling then we promote more.
1008          *
1009          * This scheme reminds me of a graph of entropy vs probability of a
1010          * binary variable.
1011          */
1012         static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1013
1014         unsigned hits = mq->cache_stats.hits;
1015         unsigned misses = mq->cache_stats.misses;
1016         unsigned index = safe_div(hits << 4u, hits + misses);
1017         return table[index];
1018 }
1019
1020 static void update_promote_levels(struct smq_policy *mq)
1021 {
1022         /*
1023          * If there are unused cache entries then we want to be really
1024          * eager to promote.
1025          */
1026         unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1027                 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1028
1029         /*
1030          * If the hotspot queue is performing badly then we have little
1031          * confidence that we know which blocks to promote.  So we cut down
1032          * the amount of promotions.
1033          */
1034         switch (stats_assess(&mq->hotspot_stats)) {
1035         case Q_POOR:
1036                 threshold_level /= 4u;
1037                 break;
1038
1039         case Q_FAIR:
1040                 threshold_level /= 2u;
1041                 break;
1042
1043         case Q_WELL:
1044                 break;
1045         }
1046
1047         mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1048         mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1049 }
1050
1051 /*
1052  * If the hotspot queue is performing badly, then we try and move entries
1053  * around more quickly.
1054  */
1055 static void update_level_jump(struct smq_policy *mq)
1056 {
1057         switch (stats_assess(&mq->hotspot_stats)) {
1058         case Q_POOR:
1059                 mq->hotspot_level_jump = 4u;
1060                 break;
1061
1062         case Q_FAIR:
1063                 mq->hotspot_level_jump = 2u;
1064                 break;
1065
1066         case Q_WELL:
1067                 mq->hotspot_level_jump = 1u;
1068                 break;
1069         }
1070 }
1071
1072 static void end_hotspot_period(struct smq_policy *mq)
1073 {
1074         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1075         update_promote_levels(mq);
1076
1077         if (time_after(jiffies, mq->next_hotspot_period)) {
1078                 update_level_jump(mq);
1079                 q_redistribute(&mq->hotspot);
1080                 stats_reset(&mq->hotspot_stats);
1081                 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1082         }
1083 }
1084
1085 static void end_cache_period(struct smq_policy *mq)
1086 {
1087         if (time_after(jiffies, mq->next_cache_period)) {
1088                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1089
1090                 q_redistribute(&mq->dirty);
1091                 q_redistribute(&mq->clean);
1092                 stats_reset(&mq->cache_stats);
1093
1094                 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1095         }
1096 }
1097
1098 static int demote_cblock(struct smq_policy *mq,
1099                          struct policy_locker *locker,
1100                          dm_oblock_t *oblock)
1101 {
1102         struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1103         if (!demoted)
1104                 /*
1105                  * We could get a block from mq->dirty, but that
1106                  * would add extra latency to the triggering bio as it
1107                  * waits for the writeback.  Better to not promote this
1108                  * time and hope there's a clean block next time this block
1109                  * is hit.
1110                  */
1111                 return -ENOSPC;
1112
1113         if (locker->fn(locker, demoted->oblock))
1114                 /*
1115                  * We couldn't lock this block.
1116                  */
1117                 return -EBUSY;
1118
1119         del(mq, demoted);
1120         *oblock = demoted->oblock;
1121         free_entry(&mq->cache_alloc, demoted);
1122
1123         return 0;
1124 }
1125
1126 enum promote_result {
1127         PROMOTE_NOT,
1128         PROMOTE_TEMPORARY,
1129         PROMOTE_PERMANENT
1130 };
1131
1132 /*
1133  * Converts a boolean into a promote result.
1134  */
1135 static enum promote_result maybe_promote(bool promote)
1136 {
1137         return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1138 }
1139
1140 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1141                                           bool fast_promote)
1142 {
1143         if (bio_data_dir(bio) == WRITE) {
1144                 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1145                         return PROMOTE_TEMPORARY;
1146
1147                 else
1148                         return maybe_promote(hs_e->level >= mq->write_promote_level);
1149         } else
1150                 return maybe_promote(hs_e->level >= mq->read_promote_level);
1151 }
1152
1153 static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1154                             struct policy_locker *locker,
1155                             struct policy_result *result, enum promote_result pr)
1156 {
1157         int r;
1158         struct entry *e;
1159
1160         if (allocator_empty(&mq->cache_alloc)) {
1161                 result->op = POLICY_REPLACE;
1162                 r = demote_cblock(mq, locker, &result->old_oblock);
1163                 if (r) {
1164                         result->op = POLICY_MISS;
1165                         return;
1166                 }
1167
1168         } else
1169                 result->op = POLICY_NEW;
1170
1171         e = alloc_entry(&mq->cache_alloc);
1172         BUG_ON(!e);
1173         e->oblock = oblock;
1174
1175         if (pr == PROMOTE_TEMPORARY)
1176                 push(mq, e);
1177         else
1178                 push_new(mq, e);
1179
1180         result->cblock = infer_cblock(mq, e);
1181 }
1182
1183 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1184 {
1185         sector_t r = from_oblock(b);
1186         (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1187         return to_oblock(r);
1188 }
1189
1190 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1191 {
1192         unsigned hi;
1193         dm_oblock_t hb = to_hblock(mq, b);
1194         struct entry *e = h_lookup(&mq->hotspot_table, hb);
1195
1196         if (e) {
1197                 stats_level_accessed(&mq->hotspot_stats, e->level);
1198
1199                 hi = get_index(&mq->hotspot_alloc, e);
1200                 q_requeue(&mq->hotspot, e,
1201                           test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1202                           0u : mq->hotspot_level_jump);
1203
1204         } else {
1205                 stats_miss(&mq->hotspot_stats);
1206
1207                 e = alloc_entry(&mq->hotspot_alloc);
1208                 if (!e) {
1209                         e = q_pop(&mq->hotspot);
1210                         if (e) {
1211                                 h_remove(&mq->hotspot_table, e);
1212                                 hi = get_index(&mq->hotspot_alloc, e);
1213                                 clear_bit(hi, mq->hotspot_hit_bits);
1214                         }
1215
1216                 }
1217
1218                 if (e) {
1219                         e->oblock = hb;
1220                         q_push(&mq->hotspot, e);
1221                         h_insert(&mq->hotspot_table, e);
1222                 }
1223         }
1224
1225         return e;
1226 }
1227
1228 /*
1229  * Looks the oblock up in the hash table, then decides whether to put in
1230  * pre_cache, or cache etc.
1231  */
1232 static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1233                bool can_migrate, bool fast_promote,
1234                struct policy_locker *locker, struct policy_result *result)
1235 {
1236         struct entry *e, *hs_e;
1237         enum promote_result pr;
1238
1239         hs_e = update_hotspot_queue(mq, oblock, bio);
1240
1241         e = h_lookup(&mq->table, oblock);
1242         if (e) {
1243                 stats_level_accessed(&mq->cache_stats, e->level);
1244
1245                 requeue(mq, e);
1246                 result->op = POLICY_HIT;
1247                 result->cblock = infer_cblock(mq, e);
1248
1249         } else {
1250                 stats_miss(&mq->cache_stats);
1251
1252                 pr = should_promote(mq, hs_e, bio, fast_promote);
1253                 if (pr == PROMOTE_NOT)
1254                         result->op = POLICY_MISS;
1255
1256                 else {
1257                         if (!can_migrate) {
1258                                 result->op = POLICY_MISS;
1259                                 return -EWOULDBLOCK;
1260                         }
1261
1262                         insert_in_cache(mq, oblock, locker, result, pr);
1263                 }
1264         }
1265
1266         return 0;
1267 }
1268
1269 /*----------------------------------------------------------------*/
1270
1271 /*
1272  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1273  * description of these.
1274  */
1275
1276 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1277 {
1278         return container_of(p, struct smq_policy, policy);
1279 }
1280
1281 static void smq_destroy(struct dm_cache_policy *p)
1282 {
1283         struct smq_policy *mq = to_smq_policy(p);
1284
1285         h_exit(&mq->hotspot_table);
1286         h_exit(&mq->table);
1287         free_bitset(mq->hotspot_hit_bits);
1288         free_bitset(mq->cache_hit_bits);
1289         space_exit(&mq->es);
1290         kfree(mq);
1291 }
1292
1293 static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1294                    bool can_block, bool can_migrate, bool fast_promote,
1295                    struct bio *bio, struct policy_locker *locker,
1296                    struct policy_result *result)
1297 {
1298         int r;
1299         unsigned long flags;
1300         struct smq_policy *mq = to_smq_policy(p);
1301
1302         result->op = POLICY_MISS;
1303
1304         spin_lock_irqsave(&mq->lock, flags);
1305         r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1306         spin_unlock_irqrestore(&mq->lock, flags);
1307
1308         return r;
1309 }
1310
1311 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1312 {
1313         int r;
1314         unsigned long flags;
1315         struct smq_policy *mq = to_smq_policy(p);
1316         struct entry *e;
1317
1318         spin_lock_irqsave(&mq->lock, flags);
1319         e = h_lookup(&mq->table, oblock);
1320         if (e) {
1321                 *cblock = infer_cblock(mq, e);
1322                 r = 0;
1323         } else
1324                 r = -ENOENT;
1325         spin_unlock_irqrestore(&mq->lock, flags);
1326
1327         return r;
1328 }
1329
1330 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1331 {
1332         struct entry *e;
1333
1334         e = h_lookup(&mq->table, oblock);
1335         BUG_ON(!e);
1336
1337         del(mq, e);
1338         e->dirty = set;
1339         push(mq, e);
1340 }
1341
1342 static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1343 {
1344         unsigned long flags;
1345         struct smq_policy *mq = to_smq_policy(p);
1346
1347         spin_lock_irqsave(&mq->lock, flags);
1348         __smq_set_clear_dirty(mq, oblock, true);
1349         spin_unlock_irqrestore(&mq->lock, flags);
1350 }
1351
1352 static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1353 {
1354         struct smq_policy *mq = to_smq_policy(p);
1355         unsigned long flags;
1356
1357         spin_lock_irqsave(&mq->lock, flags);
1358         __smq_set_clear_dirty(mq, oblock, false);
1359         spin_unlock_irqrestore(&mq->lock, flags);
1360 }
1361
1362 static unsigned random_level(dm_cblock_t cblock)
1363 {
1364         return hash_32_generic(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1365 }
1366
1367 static int smq_load_mapping(struct dm_cache_policy *p,
1368                             dm_oblock_t oblock, dm_cblock_t cblock,
1369                             uint32_t hint, bool hint_valid)
1370 {
1371         struct smq_policy *mq = to_smq_policy(p);
1372         struct entry *e;
1373
1374         e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1375         e->oblock = oblock;
1376         e->dirty = false;       /* this gets corrected in a minute */
1377         e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1378         push(mq, e);
1379
1380         return 0;
1381 }
1382
1383 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1384 {
1385         struct smq_policy *mq = to_smq_policy(p);
1386         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1387
1388         if (!e->allocated)
1389                 return 0;
1390
1391         return e->level;
1392 }
1393
1394 static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1395 {
1396         struct entry *e;
1397
1398         e = h_lookup(&mq->table, oblock);
1399         BUG_ON(!e);
1400
1401         del(mq, e);
1402         free_entry(&mq->cache_alloc, e);
1403 }
1404
1405 static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1406 {
1407         struct smq_policy *mq = to_smq_policy(p);
1408         unsigned long flags;
1409
1410         spin_lock_irqsave(&mq->lock, flags);
1411         __remove_mapping(mq, oblock);
1412         spin_unlock_irqrestore(&mq->lock, flags);
1413 }
1414
1415 static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1416 {
1417         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1418
1419         if (!e || !e->allocated)
1420                 return -ENODATA;
1421
1422         del(mq, e);
1423         free_entry(&mq->cache_alloc, e);
1424
1425         return 0;
1426 }
1427
1428 static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1429 {
1430         int r;
1431         unsigned long flags;
1432         struct smq_policy *mq = to_smq_policy(p);
1433
1434         spin_lock_irqsave(&mq->lock, flags);
1435         r = __remove_cblock(mq, cblock);
1436         spin_unlock_irqrestore(&mq->lock, flags);
1437
1438         return r;
1439 }
1440
1441
1442 #define CLEAN_TARGET_CRITICAL 5u /* percent */
1443
1444 static bool clean_target_met(struct smq_policy *mq, bool critical)
1445 {
1446         if (critical) {
1447                 /*
1448                  * Cache entries may not be populated.  So we're cannot rely on the
1449                  * size of the clean queue.
1450                  */
1451                 unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1452                 unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1453
1454                 return nr_clean >= target;
1455         } else
1456                 return !q_size(&mq->dirty);
1457 }
1458
1459 static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1460                                 dm_cblock_t *cblock, bool critical_only)
1461 {
1462         struct entry *e = NULL;
1463         bool target_met = clean_target_met(mq, critical_only);
1464
1465         if (critical_only)
1466                 /*
1467                  * Always try and keep the bottom level clean.
1468                  */
1469                 e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1470
1471         else
1472                 e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1473
1474         if (!e)
1475                 return -ENODATA;
1476
1477         *oblock = e->oblock;
1478         *cblock = infer_cblock(mq, e);
1479         e->dirty = false;
1480         push_new(mq, e);
1481
1482         return 0;
1483 }
1484
1485 static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1486                               dm_cblock_t *cblock, bool critical_only)
1487 {
1488         int r;
1489         unsigned long flags;
1490         struct smq_policy *mq = to_smq_policy(p);
1491
1492         spin_lock_irqsave(&mq->lock, flags);
1493         r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1494         spin_unlock_irqrestore(&mq->lock, flags);
1495
1496         return r;
1497 }
1498
1499 static void __force_mapping(struct smq_policy *mq,
1500                             dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1501 {
1502         struct entry *e = h_lookup(&mq->table, current_oblock);
1503
1504         if (e) {
1505                 del(mq, e);
1506                 e->oblock = new_oblock;
1507                 e->dirty = true;
1508                 push(mq, e);
1509         }
1510 }
1511
1512 static void smq_force_mapping(struct dm_cache_policy *p,
1513                               dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1514 {
1515         unsigned long flags;
1516         struct smq_policy *mq = to_smq_policy(p);
1517
1518         spin_lock_irqsave(&mq->lock, flags);
1519         __force_mapping(mq, current_oblock, new_oblock);
1520         spin_unlock_irqrestore(&mq->lock, flags);
1521 }
1522
1523 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1524 {
1525         dm_cblock_t r;
1526         unsigned long flags;
1527         struct smq_policy *mq = to_smq_policy(p);
1528
1529         spin_lock_irqsave(&mq->lock, flags);
1530         r = to_cblock(mq->cache_alloc.nr_allocated);
1531         spin_unlock_irqrestore(&mq->lock, flags);
1532
1533         return r;
1534 }
1535
1536 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1537 {
1538         struct smq_policy *mq = to_smq_policy(p);
1539         unsigned long flags;
1540
1541         spin_lock_irqsave(&mq->lock, flags);
1542         mq->tick++;
1543         update_sentinels(mq);
1544         end_hotspot_period(mq);
1545         end_cache_period(mq);
1546         spin_unlock_irqrestore(&mq->lock, flags);
1547 }
1548
1549 /*
1550  * smq has no config values, but the old mq policy did.  To avoid breaking
1551  * software we continue to accept these configurables for the mq policy,
1552  * but they have no effect.
1553  */
1554 static int mq_set_config_value(struct dm_cache_policy *p,
1555                                const char *key, const char *value)
1556 {
1557         unsigned long tmp;
1558
1559         if (kstrtoul(value, 10, &tmp))
1560                 return -EINVAL;
1561
1562         if (!strcasecmp(key, "random_threshold") ||
1563             !strcasecmp(key, "sequential_threshold") ||
1564             !strcasecmp(key, "discard_promote_adjustment") ||
1565             !strcasecmp(key, "read_promote_adjustment") ||
1566             !strcasecmp(key, "write_promote_adjustment")) {
1567                 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1568                 return 0;
1569         }
1570
1571         return -EINVAL;
1572 }
1573
1574 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1575                                  unsigned maxlen, ssize_t *sz_ptr)
1576 {
1577         ssize_t sz = *sz_ptr;
1578
1579         DMEMIT("10 random_threshold 0 "
1580                "sequential_threshold 0 "
1581                "discard_promote_adjustment 0 "
1582                "read_promote_adjustment 0 "
1583                "write_promote_adjustment 0 ");
1584
1585         *sz_ptr = sz;
1586         return 0;
1587 }
1588
1589 /* Init the policy plugin interface function pointers. */
1590 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1591 {
1592         mq->policy.destroy = smq_destroy;
1593         mq->policy.map = smq_map;
1594         mq->policy.lookup = smq_lookup;
1595         mq->policy.set_dirty = smq_set_dirty;
1596         mq->policy.clear_dirty = smq_clear_dirty;
1597         mq->policy.load_mapping = smq_load_mapping;
1598         mq->policy.get_hint = smq_get_hint;
1599         mq->policy.remove_mapping = smq_remove_mapping;
1600         mq->policy.remove_cblock = smq_remove_cblock;
1601         mq->policy.writeback_work = smq_writeback_work;
1602         mq->policy.force_mapping = smq_force_mapping;
1603         mq->policy.residency = smq_residency;
1604         mq->policy.tick = smq_tick;
1605
1606         if (mimic_mq) {
1607                 mq->policy.set_config_value = mq_set_config_value;
1608                 mq->policy.emit_config_values = mq_emit_config_values;
1609         }
1610 }
1611
1612 static bool too_many_hotspot_blocks(sector_t origin_size,
1613                                     sector_t hotspot_block_size,
1614                                     unsigned nr_hotspot_blocks)
1615 {
1616         return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1617 }
1618
1619 static void calc_hotspot_params(sector_t origin_size,
1620                                 sector_t cache_block_size,
1621                                 unsigned nr_cache_blocks,
1622                                 sector_t *hotspot_block_size,
1623                                 unsigned *nr_hotspot_blocks)
1624 {
1625         *hotspot_block_size = cache_block_size * 16u;
1626         *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1627
1628         while ((*hotspot_block_size > cache_block_size) &&
1629                too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1630                 *hotspot_block_size /= 2u;
1631 }
1632
1633 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1634                                             sector_t origin_size,
1635                                             sector_t cache_block_size,
1636                                             bool mimic_mq)
1637 {
1638         unsigned i;
1639         unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1640         unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1641         struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1642
1643         if (!mq)
1644                 return NULL;
1645
1646         init_policy_functions(mq, mimic_mq);
1647         mq->cache_size = cache_size;
1648         mq->cache_block_size = cache_block_size;
1649
1650         calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1651                             &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1652
1653         mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1654         mq->hotspot_level_jump = 1u;
1655         if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1656                 DMERR("couldn't initialize entry space");
1657                 goto bad_pool_init;
1658         }
1659
1660         init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1661         for (i = 0; i < nr_sentinels_per_queue; i++)
1662                 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1663
1664         init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1665         for (i = 0; i < nr_sentinels_per_queue; i++)
1666                 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1667
1668         init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1669                        total_sentinels + mq->nr_hotspot_blocks);
1670
1671         init_allocator(&mq->cache_alloc, &mq->es,
1672                        total_sentinels + mq->nr_hotspot_blocks,
1673                        total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1674
1675         mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1676         if (!mq->hotspot_hit_bits) {
1677                 DMERR("couldn't allocate hotspot hit bitset");
1678                 goto bad_hotspot_hit_bits;
1679         }
1680         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1681
1682         if (from_cblock(cache_size)) {
1683                 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1684                 if (!mq->cache_hit_bits) {
1685                         DMERR("couldn't allocate cache hit bitset");
1686                         goto bad_cache_hit_bits;
1687                 }
1688                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1689         } else
1690                 mq->cache_hit_bits = NULL;
1691
1692         mq->tick = 0;
1693         spin_lock_init(&mq->lock);
1694
1695         q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1696         mq->hotspot.nr_top_levels = 8;
1697         mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1698                                            from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1699
1700         q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1701         q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1702
1703         stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1704         stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1705
1706         if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1707                 goto bad_alloc_table;
1708
1709         if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1710                 goto bad_alloc_hotspot_table;
1711
1712         sentinels_init(mq);
1713         mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1714
1715         mq->next_hotspot_period = jiffies;
1716         mq->next_cache_period = jiffies;
1717
1718         return &mq->policy;
1719
1720 bad_alloc_hotspot_table:
1721         h_exit(&mq->table);
1722 bad_alloc_table:
1723         free_bitset(mq->cache_hit_bits);
1724 bad_cache_hit_bits:
1725         free_bitset(mq->hotspot_hit_bits);
1726 bad_hotspot_hit_bits:
1727         space_exit(&mq->es);
1728 bad_pool_init:
1729         kfree(mq);
1730
1731         return NULL;
1732 }
1733
1734 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1735                                           sector_t origin_size,
1736                                           sector_t cache_block_size)
1737 {
1738         return __smq_create(cache_size, origin_size, cache_block_size, false);
1739 }
1740
1741 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1742                                          sector_t origin_size,
1743                                          sector_t cache_block_size)
1744 {
1745         return __smq_create(cache_size, origin_size, cache_block_size, true);
1746 }
1747
1748 /*----------------------------------------------------------------*/
1749
1750 static struct dm_cache_policy_type smq_policy_type = {
1751         .name = "smq",
1752         .version = {1, 5, 0},
1753         .hint_size = 4,
1754         .owner = THIS_MODULE,
1755         .create = smq_create
1756 };
1757
1758 static struct dm_cache_policy_type mq_policy_type = {
1759         .name = "mq",
1760         .version = {1, 5, 0},
1761         .hint_size = 4,
1762         .owner = THIS_MODULE,
1763         .create = mq_create,
1764 };
1765
1766 static struct dm_cache_policy_type default_policy_type = {
1767         .name = "default",
1768         .version = {1, 5, 0},
1769         .hint_size = 4,
1770         .owner = THIS_MODULE,
1771         .create = smq_create,
1772         .real = &smq_policy_type
1773 };
1774
1775 static int __init smq_init(void)
1776 {
1777         int r;
1778
1779         r = dm_cache_policy_register(&smq_policy_type);
1780         if (r) {
1781                 DMERR("register failed %d", r);
1782                 return -ENOMEM;
1783         }
1784
1785         r = dm_cache_policy_register(&mq_policy_type);
1786         if (r) {
1787                 DMERR("register failed (as mq) %d", r);
1788                 dm_cache_policy_unregister(&smq_policy_type);
1789                 return -ENOMEM;
1790         }
1791
1792         r = dm_cache_policy_register(&default_policy_type);
1793         if (r) {
1794                 DMERR("register failed (as default) %d", r);
1795                 dm_cache_policy_unregister(&mq_policy_type);
1796                 dm_cache_policy_unregister(&smq_policy_type);
1797                 return -ENOMEM;
1798         }
1799
1800         return 0;
1801 }
1802
1803 static void __exit smq_exit(void)
1804 {
1805         dm_cache_policy_unregister(&smq_policy_type);
1806         dm_cache_policy_unregister(&mq_policy_type);
1807         dm_cache_policy_unregister(&default_policy_type);
1808 }
1809
1810 module_init(smq_init);
1811 module_exit(smq_exit);
1812
1813 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1814 MODULE_LICENSE("GPL");
1815 MODULE_DESCRIPTION("smq cache policy");
1816
1817 MODULE_ALIAS("dm-cache-default");
1818 MODULE_ALIAS("dm-cache-mq");