x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / md / dm-kcopyd.c
1 /*
2  * Copyright (C) 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2006 Red Hat GmbH
4  *
5  * This file is released under the GPL.
6  *
7  * Kcopyd provides a simple interface for copying an area of one
8  * block-device to one or more other block-devices, with an asynchronous
9  * completion notification.
10  */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SUB_JOB_SIZE    128
32 #define SPLIT_COUNT     8
33 #define MIN_JOBS        8
34 #define RESERVE_PAGES   (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36 /*-----------------------------------------------------------------
37  * Each kcopyd client has its own little pool of preallocated
38  * pages for kcopyd io.
39  *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41         struct page_list *pages;
42         unsigned nr_reserved_pages;
43         unsigned nr_free_pages;
44
45         struct dm_io_client *io_client;
46
47         wait_queue_head_t destroyq;
48         atomic_t nr_jobs;
49
50         mempool_t *job_pool;
51
52         struct workqueue_struct *kcopyd_wq;
53         struct work_struct kcopyd_work;
54
55         struct dm_kcopyd_throttle *throttle;
56
57 /*
58  * We maintain three lists of jobs:
59  *
60  * i)   jobs waiting for pages
61  * ii)  jobs that have pages, and are waiting for the io to be issued.
62  * iii) jobs that have completed.
63  *
64  * All three of these are protected by job_lock.
65  */
66         spinlock_t job_lock;
67         struct list_head complete_jobs;
68         struct list_head io_jobs;
69         struct list_head pages_jobs;
70 };
71
72 static struct page_list zero_page_list;
73
74 static DEFINE_SPINLOCK(throttle_spinlock);
75
76 /*
77  * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78  * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79  * by 2.
80  */
81 #define ACCOUNT_INTERVAL_SHIFT          SHIFT_HZ
82
83 /*
84  * Sleep this number of milliseconds.
85  *
86  * The value was decided experimentally.
87  * Smaller values seem to cause an increased copy rate above the limit.
88  * The reason for this is unknown but possibly due to jiffies rounding errors
89  * or read/write cache inside the disk.
90  */
91 #define SLEEP_MSEC                      100
92
93 /*
94  * Maximum number of sleep events. There is a theoretical livelock if more
95  * kcopyd clients do work simultaneously which this limit avoids.
96  */
97 #define MAX_SLEEPS                      10
98
99 static void io_job_start(struct dm_kcopyd_throttle *t)
100 {
101         unsigned throttle, now, difference;
102         int slept = 0, skew;
103
104         if (unlikely(!t))
105                 return;
106
107 try_again:
108         spin_lock_irq(&throttle_spinlock);
109
110         throttle = ACCESS_ONCE(t->throttle);
111
112         if (likely(throttle >= 100))
113                 goto skip_limit;
114
115         now = jiffies;
116         difference = now - t->last_jiffies;
117         t->last_jiffies = now;
118         if (t->num_io_jobs)
119                 t->io_period += difference;
120         t->total_period += difference;
121
122         /*
123          * Maintain sane values if we got a temporary overflow.
124          */
125         if (unlikely(t->io_period > t->total_period))
126                 t->io_period = t->total_period;
127
128         if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129                 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130                 t->total_period >>= shift;
131                 t->io_period >>= shift;
132         }
133
134         skew = t->io_period - throttle * t->total_period / 100;
135
136         if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137                 slept++;
138                 spin_unlock_irq(&throttle_spinlock);
139                 msleep(SLEEP_MSEC);
140                 goto try_again;
141         }
142
143 skip_limit:
144         t->num_io_jobs++;
145
146         spin_unlock_irq(&throttle_spinlock);
147 }
148
149 static void io_job_finish(struct dm_kcopyd_throttle *t)
150 {
151         unsigned long flags;
152
153         if (unlikely(!t))
154                 return;
155
156         spin_lock_irqsave(&throttle_spinlock, flags);
157
158         t->num_io_jobs--;
159
160         if (likely(ACCESS_ONCE(t->throttle) >= 100))
161                 goto skip_limit;
162
163         if (!t->num_io_jobs) {
164                 unsigned now, difference;
165
166                 now = jiffies;
167                 difference = now - t->last_jiffies;
168                 t->last_jiffies = now;
169
170                 t->io_period += difference;
171                 t->total_period += difference;
172
173                 /*
174                  * Maintain sane values if we got a temporary overflow.
175                  */
176                 if (unlikely(t->io_period > t->total_period))
177                         t->io_period = t->total_period;
178         }
179
180 skip_limit:
181         spin_unlock_irqrestore(&throttle_spinlock, flags);
182 }
183
184
185 static void wake(struct dm_kcopyd_client *kc)
186 {
187         queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
188 }
189
190 /*
191  * Obtain one page for the use of kcopyd.
192  */
193 static struct page_list *alloc_pl(gfp_t gfp)
194 {
195         struct page_list *pl;
196
197         pl = kmalloc(sizeof(*pl), gfp);
198         if (!pl)
199                 return NULL;
200
201         pl->page = alloc_page(gfp);
202         if (!pl->page) {
203                 kfree(pl);
204                 return NULL;
205         }
206
207         return pl;
208 }
209
210 static void free_pl(struct page_list *pl)
211 {
212         __free_page(pl->page);
213         kfree(pl);
214 }
215
216 /*
217  * Add the provided pages to a client's free page list, releasing
218  * back to the system any beyond the reserved_pages limit.
219  */
220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
221 {
222         struct page_list *next;
223
224         do {
225                 next = pl->next;
226
227                 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228                         free_pl(pl);
229                 else {
230                         pl->next = kc->pages;
231                         kc->pages = pl;
232                         kc->nr_free_pages++;
233                 }
234
235                 pl = next;
236         } while (pl);
237 }
238
239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240                             unsigned int nr, struct page_list **pages)
241 {
242         struct page_list *pl;
243
244         *pages = NULL;
245
246         do {
247                 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
248                 if (unlikely(!pl)) {
249                         /* Use reserved pages */
250                         pl = kc->pages;
251                         if (unlikely(!pl))
252                                 goto out_of_memory;
253                         kc->pages = pl->next;
254                         kc->nr_free_pages--;
255                 }
256                 pl->next = *pages;
257                 *pages = pl;
258         } while (--nr);
259
260         return 0;
261
262 out_of_memory:
263         if (*pages)
264                 kcopyd_put_pages(kc, *pages);
265         return -ENOMEM;
266 }
267
268 /*
269  * These three functions resize the page pool.
270  */
271 static void drop_pages(struct page_list *pl)
272 {
273         struct page_list *next;
274
275         while (pl) {
276                 next = pl->next;
277                 free_pl(pl);
278                 pl = next;
279         }
280 }
281
282 /*
283  * Allocate and reserve nr_pages for the use of a specific client.
284  */
285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
286 {
287         unsigned i;
288         struct page_list *pl = NULL, *next;
289
290         for (i = 0; i < nr_pages; i++) {
291                 next = alloc_pl(GFP_KERNEL);
292                 if (!next) {
293                         if (pl)
294                                 drop_pages(pl);
295                         return -ENOMEM;
296                 }
297                 next->next = pl;
298                 pl = next;
299         }
300
301         kc->nr_reserved_pages += nr_pages;
302         kcopyd_put_pages(kc, pl);
303
304         return 0;
305 }
306
307 static void client_free_pages(struct dm_kcopyd_client *kc)
308 {
309         BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310         drop_pages(kc->pages);
311         kc->pages = NULL;
312         kc->nr_free_pages = kc->nr_reserved_pages = 0;
313 }
314
315 /*-----------------------------------------------------------------
316  * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317  * for this reason we use a mempool to prevent the client from
318  * ever having to do io (which could cause a deadlock).
319  *---------------------------------------------------------------*/
320 struct kcopyd_job {
321         struct dm_kcopyd_client *kc;
322         struct list_head list;
323         unsigned long flags;
324
325         /*
326          * Error state of the job.
327          */
328         int read_err;
329         unsigned long write_err;
330
331         /*
332          * Either READ or WRITE
333          */
334         int rw;
335         struct dm_io_region source;
336
337         /*
338          * The destinations for the transfer.
339          */
340         unsigned int num_dests;
341         struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
342
343         struct page_list *pages;
344
345         /*
346          * Set this to ensure you are notified when the job has
347          * completed.  'context' is for callback to use.
348          */
349         dm_kcopyd_notify_fn fn;
350         void *context;
351
352         /*
353          * These fields are only used if the job has been split
354          * into more manageable parts.
355          */
356         struct mutex lock;
357         atomic_t sub_jobs;
358         sector_t progress;
359
360         struct kcopyd_job *master_job;
361 };
362
363 static struct kmem_cache *_job_cache;
364
365 int __init dm_kcopyd_init(void)
366 {
367         _job_cache = kmem_cache_create("kcopyd_job",
368                                 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
369                                 __alignof__(struct kcopyd_job), 0, NULL);
370         if (!_job_cache)
371                 return -ENOMEM;
372
373         zero_page_list.next = &zero_page_list;
374         zero_page_list.page = ZERO_PAGE(0);
375
376         return 0;
377 }
378
379 void dm_kcopyd_exit(void)
380 {
381         kmem_cache_destroy(_job_cache);
382         _job_cache = NULL;
383 }
384
385 /*
386  * Functions to push and pop a job onto the head of a given job
387  * list.
388  */
389 static struct kcopyd_job *pop(struct list_head *jobs,
390                               struct dm_kcopyd_client *kc)
391 {
392         struct kcopyd_job *job = NULL;
393         unsigned long flags;
394
395         spin_lock_irqsave(&kc->job_lock, flags);
396
397         if (!list_empty(jobs)) {
398                 job = list_entry(jobs->next, struct kcopyd_job, list);
399                 list_del(&job->list);
400         }
401         spin_unlock_irqrestore(&kc->job_lock, flags);
402
403         return job;
404 }
405
406 static void push(struct list_head *jobs, struct kcopyd_job *job)
407 {
408         unsigned long flags;
409         struct dm_kcopyd_client *kc = job->kc;
410
411         spin_lock_irqsave(&kc->job_lock, flags);
412         list_add_tail(&job->list, jobs);
413         spin_unlock_irqrestore(&kc->job_lock, flags);
414 }
415
416
417 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
418 {
419         unsigned long flags;
420         struct dm_kcopyd_client *kc = job->kc;
421
422         spin_lock_irqsave(&kc->job_lock, flags);
423         list_add(&job->list, jobs);
424         spin_unlock_irqrestore(&kc->job_lock, flags);
425 }
426
427 /*
428  * These three functions process 1 item from the corresponding
429  * job list.
430  *
431  * They return:
432  * < 0: error
433  *   0: success
434  * > 0: can't process yet.
435  */
436 static int run_complete_job(struct kcopyd_job *job)
437 {
438         void *context = job->context;
439         int read_err = job->read_err;
440         unsigned long write_err = job->write_err;
441         dm_kcopyd_notify_fn fn = job->fn;
442         struct dm_kcopyd_client *kc = job->kc;
443
444         if (job->pages && job->pages != &zero_page_list)
445                 kcopyd_put_pages(kc, job->pages);
446         /*
447          * If this is the master job, the sub jobs have already
448          * completed so we can free everything.
449          */
450         if (job->master_job == job)
451                 mempool_free(job, kc->job_pool);
452         fn(read_err, write_err, context);
453
454         if (atomic_dec_and_test(&kc->nr_jobs))
455                 wake_up(&kc->destroyq);
456
457         return 0;
458 }
459
460 static void complete_io(unsigned long error, void *context)
461 {
462         struct kcopyd_job *job = (struct kcopyd_job *) context;
463         struct dm_kcopyd_client *kc = job->kc;
464
465         io_job_finish(kc->throttle);
466
467         if (error) {
468                 if (op_is_write(job->rw))
469                         job->write_err |= error;
470                 else
471                         job->read_err = 1;
472
473                 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
474                         push(&kc->complete_jobs, job);
475                         wake(kc);
476                         return;
477                 }
478         }
479
480         if (op_is_write(job->rw))
481                 push(&kc->complete_jobs, job);
482
483         else {
484                 job->rw = WRITE;
485                 push(&kc->io_jobs, job);
486         }
487
488         wake(kc);
489 }
490
491 /*
492  * Request io on as many buffer heads as we can currently get for
493  * a particular job.
494  */
495 static int run_io_job(struct kcopyd_job *job)
496 {
497         int r;
498         struct dm_io_request io_req = {
499                 .bi_op = job->rw,
500                 .bi_op_flags = 0,
501                 .mem.type = DM_IO_PAGE_LIST,
502                 .mem.ptr.pl = job->pages,
503                 .mem.offset = 0,
504                 .notify.fn = complete_io,
505                 .notify.context = job,
506                 .client = job->kc->io_client,
507         };
508
509         io_job_start(job->kc->throttle);
510
511         if (job->rw == READ)
512                 r = dm_io(&io_req, 1, &job->source, NULL);
513         else
514                 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
515
516         return r;
517 }
518
519 static int run_pages_job(struct kcopyd_job *job)
520 {
521         int r;
522         unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
523
524         r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
525         if (!r) {
526                 /* this job is ready for io */
527                 push(&job->kc->io_jobs, job);
528                 return 0;
529         }
530
531         if (r == -ENOMEM)
532                 /* can't complete now */
533                 return 1;
534
535         return r;
536 }
537
538 /*
539  * Run through a list for as long as possible.  Returns the count
540  * of successful jobs.
541  */
542 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
543                         int (*fn) (struct kcopyd_job *))
544 {
545         struct kcopyd_job *job;
546         int r, count = 0;
547
548         while ((job = pop(jobs, kc))) {
549
550                 r = fn(job);
551
552                 if (r < 0) {
553                         /* error this rogue job */
554                         if (op_is_write(job->rw))
555                                 job->write_err = (unsigned long) -1L;
556                         else
557                                 job->read_err = 1;
558                         push(&kc->complete_jobs, job);
559                         break;
560                 }
561
562                 if (r > 0) {
563                         /*
564                          * We couldn't service this job ATM, so
565                          * push this job back onto the list.
566                          */
567                         push_head(jobs, job);
568                         break;
569                 }
570
571                 count++;
572         }
573
574         return count;
575 }
576
577 /*
578  * kcopyd does this every time it's woken up.
579  */
580 static void do_work(struct work_struct *work)
581 {
582         struct dm_kcopyd_client *kc = container_of(work,
583                                         struct dm_kcopyd_client, kcopyd_work);
584         struct blk_plug plug;
585
586         /*
587          * The order that these are called is *very* important.
588          * complete jobs can free some pages for pages jobs.
589          * Pages jobs when successful will jump onto the io jobs
590          * list.  io jobs call wake when they complete and it all
591          * starts again.
592          */
593         blk_start_plug(&plug);
594         process_jobs(&kc->complete_jobs, kc, run_complete_job);
595         process_jobs(&kc->pages_jobs, kc, run_pages_job);
596         process_jobs(&kc->io_jobs, kc, run_io_job);
597         blk_finish_plug(&plug);
598 }
599
600 /*
601  * If we are copying a small region we just dispatch a single job
602  * to do the copy, otherwise the io has to be split up into many
603  * jobs.
604  */
605 static void dispatch_job(struct kcopyd_job *job)
606 {
607         struct dm_kcopyd_client *kc = job->kc;
608         atomic_inc(&kc->nr_jobs);
609         if (unlikely(!job->source.count))
610                 push(&kc->complete_jobs, job);
611         else if (job->pages == &zero_page_list)
612                 push(&kc->io_jobs, job);
613         else
614                 push(&kc->pages_jobs, job);
615         wake(kc);
616 }
617
618 static void segment_complete(int read_err, unsigned long write_err,
619                              void *context)
620 {
621         /* FIXME: tidy this function */
622         sector_t progress = 0;
623         sector_t count = 0;
624         struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
625         struct kcopyd_job *job = sub_job->master_job;
626         struct dm_kcopyd_client *kc = job->kc;
627
628         mutex_lock(&job->lock);
629
630         /* update the error */
631         if (read_err)
632                 job->read_err = 1;
633
634         if (write_err)
635                 job->write_err |= write_err;
636
637         /*
638          * Only dispatch more work if there hasn't been an error.
639          */
640         if ((!job->read_err && !job->write_err) ||
641             test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
642                 /* get the next chunk of work */
643                 progress = job->progress;
644                 count = job->source.count - progress;
645                 if (count) {
646                         if (count > SUB_JOB_SIZE)
647                                 count = SUB_JOB_SIZE;
648
649                         job->progress += count;
650                 }
651         }
652         mutex_unlock(&job->lock);
653
654         if (count) {
655                 int i;
656
657                 *sub_job = *job;
658                 sub_job->source.sector += progress;
659                 sub_job->source.count = count;
660
661                 for (i = 0; i < job->num_dests; i++) {
662                         sub_job->dests[i].sector += progress;
663                         sub_job->dests[i].count = count;
664                 }
665
666                 sub_job->fn = segment_complete;
667                 sub_job->context = sub_job;
668                 dispatch_job(sub_job);
669
670         } else if (atomic_dec_and_test(&job->sub_jobs)) {
671
672                 /*
673                  * Queue the completion callback to the kcopyd thread.
674                  *
675                  * Some callers assume that all the completions are called
676                  * from a single thread and don't race with each other.
677                  *
678                  * We must not call the callback directly here because this
679                  * code may not be executing in the thread.
680                  */
681                 push(&kc->complete_jobs, job);
682                 wake(kc);
683         }
684 }
685
686 /*
687  * Create some sub jobs to share the work between them.
688  */
689 static void split_job(struct kcopyd_job *master_job)
690 {
691         int i;
692
693         atomic_inc(&master_job->kc->nr_jobs);
694
695         atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
696         for (i = 0; i < SPLIT_COUNT; i++) {
697                 master_job[i + 1].master_job = master_job;
698                 segment_complete(0, 0u, &master_job[i + 1]);
699         }
700 }
701
702 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
703                    unsigned int num_dests, struct dm_io_region *dests,
704                    unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
705 {
706         struct kcopyd_job *job;
707         int i;
708
709         /*
710          * Allocate an array of jobs consisting of one master job
711          * followed by SPLIT_COUNT sub jobs.
712          */
713         job = mempool_alloc(kc->job_pool, GFP_NOIO);
714
715         /*
716          * set up for the read.
717          */
718         job->kc = kc;
719         job->flags = flags;
720         job->read_err = 0;
721         job->write_err = 0;
722
723         job->num_dests = num_dests;
724         memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
725
726         if (from) {
727                 job->source = *from;
728                 job->pages = NULL;
729                 job->rw = READ;
730         } else {
731                 memset(&job->source, 0, sizeof job->source);
732                 job->source.count = job->dests[0].count;
733                 job->pages = &zero_page_list;
734
735                 /*
736                  * Use WRITE SAME to optimize zeroing if all dests support it.
737                  */
738                 job->rw = REQ_OP_WRITE_SAME;
739                 for (i = 0; i < job->num_dests; i++)
740                         if (!bdev_write_same(job->dests[i].bdev)) {
741                                 job->rw = WRITE;
742                                 break;
743                         }
744         }
745
746         job->fn = fn;
747         job->context = context;
748         job->master_job = job;
749
750         if (job->source.count <= SUB_JOB_SIZE)
751                 dispatch_job(job);
752         else {
753                 mutex_init(&job->lock);
754                 job->progress = 0;
755                 split_job(job);
756         }
757
758         return 0;
759 }
760 EXPORT_SYMBOL(dm_kcopyd_copy);
761
762 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
763                    unsigned num_dests, struct dm_io_region *dests,
764                    unsigned flags, dm_kcopyd_notify_fn fn, void *context)
765 {
766         return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
767 }
768 EXPORT_SYMBOL(dm_kcopyd_zero);
769
770 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
771                                  dm_kcopyd_notify_fn fn, void *context)
772 {
773         struct kcopyd_job *job;
774
775         job = mempool_alloc(kc->job_pool, GFP_NOIO);
776
777         memset(job, 0, sizeof(struct kcopyd_job));
778         job->kc = kc;
779         job->fn = fn;
780         job->context = context;
781         job->master_job = job;
782
783         atomic_inc(&kc->nr_jobs);
784
785         return job;
786 }
787 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
788
789 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
790 {
791         struct kcopyd_job *job = j;
792         struct dm_kcopyd_client *kc = job->kc;
793
794         job->read_err = read_err;
795         job->write_err = write_err;
796
797         push(&kc->complete_jobs, job);
798         wake(kc);
799 }
800 EXPORT_SYMBOL(dm_kcopyd_do_callback);
801
802 /*
803  * Cancels a kcopyd job, eg. someone might be deactivating a
804  * mirror.
805  */
806 #if 0
807 int kcopyd_cancel(struct kcopyd_job *job, int block)
808 {
809         /* FIXME: finish */
810         return -1;
811 }
812 #endif  /*  0  */
813
814 /*-----------------------------------------------------------------
815  * Client setup
816  *---------------------------------------------------------------*/
817 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
818 {
819         int r = -ENOMEM;
820         struct dm_kcopyd_client *kc;
821
822         kc = kmalloc(sizeof(*kc), GFP_KERNEL);
823         if (!kc)
824                 return ERR_PTR(-ENOMEM);
825
826         spin_lock_init(&kc->job_lock);
827         INIT_LIST_HEAD(&kc->complete_jobs);
828         INIT_LIST_HEAD(&kc->io_jobs);
829         INIT_LIST_HEAD(&kc->pages_jobs);
830         kc->throttle = throttle;
831
832         kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
833         if (!kc->job_pool)
834                 goto bad_slab;
835
836         INIT_WORK(&kc->kcopyd_work, do_work);
837         kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
838         if (!kc->kcopyd_wq)
839                 goto bad_workqueue;
840
841         kc->pages = NULL;
842         kc->nr_reserved_pages = kc->nr_free_pages = 0;
843         r = client_reserve_pages(kc, RESERVE_PAGES);
844         if (r)
845                 goto bad_client_pages;
846
847         kc->io_client = dm_io_client_create();
848         if (IS_ERR(kc->io_client)) {
849                 r = PTR_ERR(kc->io_client);
850                 goto bad_io_client;
851         }
852
853         init_waitqueue_head(&kc->destroyq);
854         atomic_set(&kc->nr_jobs, 0);
855
856         return kc;
857
858 bad_io_client:
859         client_free_pages(kc);
860 bad_client_pages:
861         destroy_workqueue(kc->kcopyd_wq);
862 bad_workqueue:
863         mempool_destroy(kc->job_pool);
864 bad_slab:
865         kfree(kc);
866
867         return ERR_PTR(r);
868 }
869 EXPORT_SYMBOL(dm_kcopyd_client_create);
870
871 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
872 {
873         /* Wait for completion of all jobs submitted by this client. */
874         wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
875
876         BUG_ON(!list_empty(&kc->complete_jobs));
877         BUG_ON(!list_empty(&kc->io_jobs));
878         BUG_ON(!list_empty(&kc->pages_jobs));
879         destroy_workqueue(kc->kcopyd_wq);
880         dm_io_client_destroy(kc->io_client);
881         client_free_pages(kc);
882         mempool_destroy(kc->job_pool);
883         kfree(kc);
884 }
885 EXPORT_SYMBOL(dm_kcopyd_client_destroy);