14835ae064c109faaecb9c14d0f3d487b7c94420
[cascardo/linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10             /* rdev flag */
34
35 struct raid_dev {
36         /*
37          * Two DM devices, one to hold metadata and one to hold the
38          * actual data/parity.  The reason for this is to not confuse
39          * ti->len and give more flexibility in altering size and
40          * characteristics.
41          *
42          * While it is possible for this device to be associated
43          * with a different physical device than the data_dev, it
44          * is intended for it to be the same.
45          *    |--------- Physical Device ---------|
46          *    |- meta_dev -|------ data_dev ------|
47          */
48         struct dm_dev *meta_dev;
49         struct dm_dev *data_dev;
50         struct md_rdev rdev;
51 };
52
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
105                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109                                   CTR_FLAG_WRITE_MOSTLY | \
110                                   CTR_FLAG_DAEMON_SLEEP | \
111                                   CTR_FLAG_MIN_RECOVERY_RATE | \
112                                   CTR_FLAG_MAX_RECOVERY_RATE | \
113                                   CTR_FLAG_MAX_WRITE_BEHIND | \
114                                   CTR_FLAG_STRIPE_CACHE | \
115                                   CTR_FLAG_REGION_SIZE | \
116                                   CTR_FLAG_RAID10_COPIES | \
117                                   CTR_FLAG_RAID10_FORMAT | \
118                                   CTR_FLAG_DELTA_DISKS | \
119                                   CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
128                                  CTR_FLAG_REBUILD | \
129                                  CTR_FLAG_WRITE_MOSTLY | \
130                                  CTR_FLAG_DAEMON_SLEEP | \
131                                  CTR_FLAG_MIN_RECOVERY_RATE | \
132                                  CTR_FLAG_MAX_RECOVERY_RATE | \
133                                  CTR_FLAG_MAX_WRITE_BEHIND | \
134                                  CTR_FLAG_REGION_SIZE | \
135                                  CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
139                                  CTR_FLAG_REBUILD | \
140                                  CTR_FLAG_DAEMON_SLEEP | \
141                                  CTR_FLAG_MIN_RECOVERY_RATE | \
142                                  CTR_FLAG_MAX_RECOVERY_RATE | \
143                                  CTR_FLAG_REGION_SIZE | \
144                                  CTR_FLAG_RAID10_COPIES | \
145                                  CTR_FLAG_RAID10_FORMAT | \
146                                  CTR_FLAG_DELTA_DISKS | \
147                                  CTR_FLAG_DATA_OFFSET | \
148                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151  * "raid4/5/6" do not accept any raid1 or raid10 specific options
152  *
153  * "raid6" does not accept "nosync", because it is not guaranteed
154  * that both parity and q-syndrome are being written properly with
155  * any writes
156  */
157 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
158                                  CTR_FLAG_REBUILD | \
159                                  CTR_FLAG_DAEMON_SLEEP | \
160                                  CTR_FLAG_MIN_RECOVERY_RATE | \
161                                  CTR_FLAG_MAX_RECOVERY_RATE | \
162                                  CTR_FLAG_MAX_WRITE_BEHIND | \
163                                  CTR_FLAG_STRIPE_CACHE | \
164                                  CTR_FLAG_REGION_SIZE | \
165                                  CTR_FLAG_DELTA_DISKS | \
166                                  CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
169                                  CTR_FLAG_REBUILD | \
170                                  CTR_FLAG_DAEMON_SLEEP | \
171                                  CTR_FLAG_MIN_RECOVERY_RATE | \
172                                  CTR_FLAG_MAX_RECOVERY_RATE | \
173                                  CTR_FLAG_MAX_WRITE_BEHIND | \
174                                  CTR_FLAG_STRIPE_CACHE | \
175                                  CTR_FLAG_REGION_SIZE | \
176                                  CTR_FLAG_DELTA_DISKS | \
177                                  CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181  * Flags for rs->runtime_flags field
182  * (RT_FLAG prefix meaning "runtime flag")
183  *
184  * These are all internal and used to define runtime state,
185  * e.g. to prevent another resume from preresume processing
186  * the raid set all over again.
187  */
188 #define RT_FLAG_RS_PRERESUMED           0
189 #define RT_FLAG_RS_RESUMED              1
190 #define RT_FLAG_RS_BITMAP_LOADED        2
191 #define RT_FLAG_UPDATE_SBS              3
192
193 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
194 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
195
196 /*
197  * raid set level, layout and chunk sectors backup/restore
198  */
199 struct rs_layout {
200         int new_level;
201         int new_layout;
202         int new_chunk_sectors;
203 };
204
205 struct raid_set {
206         struct dm_target *ti;
207
208         uint32_t bitmap_loaded;
209         unsigned long ctr_flags;
210         unsigned long runtime_flags;
211
212         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
213
214         int raid_disks;
215         int delta_disks;
216         int data_offset;
217         int raid10_copies;
218
219         struct mddev md;
220         struct raid_type *raid_type;
221         struct dm_target_callbacks callbacks;
222         struct rs_layout rs_layout;
223
224         struct raid_dev dev[0];
225 };
226
227 static void rs_config_backup(struct raid_set *rs)
228 {
229         struct mddev *mddev = &rs->md;
230         struct rs_layout *l = &rs->rs_layout;
231
232         l->new_level = mddev->new_level;
233         l->new_layout = mddev->new_layout;
234         l->new_chunk_sectors = mddev->new_chunk_sectors;
235 }
236
237 static void rs_config_restore(struct raid_set *rs)
238 {
239         struct mddev *mddev = &rs->md;
240         struct rs_layout *l = &rs->rs_layout;
241
242         mddev->new_level = l->new_level;
243         mddev->new_layout = l->new_layout;
244         mddev->new_chunk_sectors = l->new_chunk_sectors;
245 }
246
247 /* raid10 algorithms (i.e. formats) */
248 #define ALGORITHM_RAID10_DEFAULT        0
249 #define ALGORITHM_RAID10_NEAR           1
250 #define ALGORITHM_RAID10_OFFSET         2
251 #define ALGORITHM_RAID10_FAR            3
252
253 /* Supported raid types and properties. */
254 static struct raid_type {
255         const char *name;               /* RAID algorithm. */
256         const char *descr;              /* Descriptor text for logging. */
257         const unsigned parity_devs;     /* # of parity devices. */
258         const unsigned minimal_devs;    /* minimal # of devices in set. */
259         const unsigned level;           /* RAID level. */
260         const unsigned algorithm;       /* RAID algorithm. */
261 } raid_types[] = {
262         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
263         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
264         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
265         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
266         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
267         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
268         {"raid4",         "raid4 (dedicated last parity disk)",     1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
269         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
270         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
271         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
272         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
273         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
274         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
275         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
276         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
277         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
278         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
279         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
280         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
281         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
282 };
283
284 /* True, if @v is in inclusive range [@min, @max] */
285 static bool __within_range(long v, long min, long max)
286 {
287         return v >= min && v <= max;
288 }
289
290 /* All table line arguments are defined here */
291 static struct arg_name_flag {
292         const unsigned long flag;
293         const char *name;
294 } __arg_name_flags[] = {
295         { CTR_FLAG_SYNC, "sync"},
296         { CTR_FLAG_NOSYNC, "nosync"},
297         { CTR_FLAG_REBUILD, "rebuild"},
298         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
299         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
300         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
301         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
302         { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
303         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
304         { CTR_FLAG_REGION_SIZE, "region_size"},
305         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
306         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
307         { CTR_FLAG_DATA_OFFSET, "data_offset"},
308         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
309         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
310 };
311
312 /* Return argument name string for given @flag */
313 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
314 {
315         if (hweight32(flag) == 1) {
316                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
317
318                 while (anf-- > __arg_name_flags)
319                         if (flag & anf->flag)
320                                 return anf->name;
321
322         } else
323                 DMERR("%s called with more than one flag!", __func__);
324
325         return NULL;
326 }
327
328 /*
329  * bool helpers to test for various raid levels of a raid set,
330  * is. it's level as reported by the superblock rather than
331  * the requested raid_type passed to the constructor.
332  */
333 /* Return true, if raid set in @rs is raid0 */
334 static bool rs_is_raid0(struct raid_set *rs)
335 {
336         return !rs->md.level;
337 }
338
339 /* Return true, if raid set in @rs is raid10 */
340 static bool rs_is_raid10(struct raid_set *rs)
341 {
342         return rs->md.level == 10;
343 }
344
345 /* Return true, if raid set in @rs is level 4, 5 or 6 */
346 static bool rs_is_raid456(struct raid_set *rs)
347 {
348         return __within_range(rs->md.level, 4, 6);
349 }
350
351 /* Return true, if raid set in @rs is reshapable */
352 static unsigned int __is_raid10_far(int layout);
353 static bool rs_is_reshapable(struct raid_set *rs)
354 {
355         return rs_is_raid456(rs) ||
356                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
357 }
358
359 /*
360  * bool helpers to test for various raid levels of a raid type
361  */
362
363 /* Return true, if raid type in @rt is raid0 */
364 static bool rt_is_raid0(struct raid_type *rt)
365 {
366         return !rt->level;
367 }
368
369 /* Return true, if raid type in @rt is raid1 */
370 static bool rt_is_raid1(struct raid_type *rt)
371 {
372         return rt->level == 1;
373 }
374
375 /* Return true, if raid type in @rt is raid10 */
376 static bool rt_is_raid10(struct raid_type *rt)
377 {
378         return rt->level == 10;
379 }
380
381 /* Return true, if raid type in @rt is raid4/5 */
382 static bool rt_is_raid45(struct raid_type *rt)
383 {
384         return __within_range(rt->level, 4, 5);
385 }
386
387 /* Return true, if raid type in @rt is raid6 */
388 static bool rt_is_raid6(struct raid_type *rt)
389 {
390         return rt->level == 6;
391 }
392
393 /* Return true, if raid type in @rt is raid4/5/6 */
394 static bool rt_is_raid456(struct raid_type *rt)
395 {
396         return __within_range(rt->level, 4, 6);
397 }
398 /* END: raid level bools */
399
400 /* Return valid ctr flags for the raid level of @rs */
401 static unsigned long __valid_flags(struct raid_set *rs)
402 {
403         if (rt_is_raid0(rs->raid_type))
404                 return RAID0_VALID_FLAGS;
405         else if (rt_is_raid1(rs->raid_type))
406                 return RAID1_VALID_FLAGS;
407         else if (rt_is_raid10(rs->raid_type))
408                 return RAID10_VALID_FLAGS;
409         else if (rt_is_raid45(rs->raid_type))
410                 return RAID45_VALID_FLAGS;
411         else if (rt_is_raid6(rs->raid_type))
412                 return RAID6_VALID_FLAGS;
413
414         return ~0;
415 }
416
417 /*
418  * Check for valid flags set on @rs
419  *
420  * Has to be called after parsing of the ctr flags!
421  */
422 static int rs_check_for_valid_flags(struct raid_set *rs)
423 {
424         if (rs->ctr_flags & ~__valid_flags(rs)) {
425                 rs->ti->error = "Invalid flags combination";
426                 return -EINVAL;
427         }
428
429         return 0;
430 }
431
432 /* MD raid10 bit definitions and helpers */
433 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
434 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
435 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
436 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
437
438 /* Return md raid10 near copies for @layout */
439 static unsigned int __raid10_near_copies(int layout)
440 {
441         return layout & 0xFF;
442 }
443
444 /* Return md raid10 far copies for @layout */
445 static unsigned int __raid10_far_copies(int layout)
446 {
447         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
448 }
449
450 /* Return true if md raid10 offset for @layout */
451 static unsigned int __is_raid10_offset(int layout)
452 {
453         return layout & RAID10_OFFSET;
454 }
455
456 /* Return true if md raid10 near for @layout */
457 static unsigned int __is_raid10_near(int layout)
458 {
459         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
460 }
461
462 /* Return true if md raid10 far for @layout */
463 static unsigned int __is_raid10_far(int layout)
464 {
465         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
466 }
467
468 /* Return md raid10 layout string for @layout */
469 static const char *raid10_md_layout_to_format(int layout)
470 {
471         /*
472          * Bit 16 stands for "offset"
473          * (i.e. adjacent stripes hold copies)
474          *
475          * Refer to MD's raid10.c for details
476          */
477         if (__is_raid10_offset(layout))
478                 return "offset";
479
480         if (__raid10_near_copies(layout) > 1)
481                 return "near";
482
483         WARN_ON(__raid10_far_copies(layout) < 2);
484
485         return "far";
486 }
487
488 /* Return md raid10 algorithm for @name */
489 static const int raid10_name_to_format(const char *name)
490 {
491         if (!strcasecmp(name, "near"))
492                 return ALGORITHM_RAID10_NEAR;
493         else if (!strcasecmp(name, "offset"))
494                 return ALGORITHM_RAID10_OFFSET;
495         else if (!strcasecmp(name, "far"))
496                 return ALGORITHM_RAID10_FAR;
497
498         return -EINVAL;
499 }
500
501 /* Return md raid10 copies for @layout */
502 static unsigned int raid10_md_layout_to_copies(int layout)
503 {
504         return __raid10_near_copies(layout) > 1 ?
505                 __raid10_near_copies(layout) : __raid10_far_copies(layout);
506 }
507
508 /* Return md raid10 format id for @format string */
509 static int raid10_format_to_md_layout(struct raid_set *rs,
510                                       unsigned int algorithm,
511                                       unsigned int copies)
512 {
513         unsigned int n = 1, f = 1, r = 0;
514
515         /*
516          * MD resilienece flaw:
517          *
518          * enabling use_far_sets for far/offset formats causes copies
519          * to be colocated on the same devs together with their origins!
520          *
521          * -> disable it for now in the definition above
522          */
523         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
524             algorithm == ALGORITHM_RAID10_NEAR)
525                 n = copies;
526
527         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
528                 f = copies;
529                 r = RAID10_OFFSET;
530                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
531                         r |= RAID10_USE_FAR_SETS;
532
533         } else if (algorithm == ALGORITHM_RAID10_FAR) {
534                 f = copies;
535                 r = !RAID10_OFFSET;
536                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
537                         r |= RAID10_USE_FAR_SETS;
538
539         } else
540                 return -EINVAL;
541
542         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
543 }
544 /* END: MD raid10 bit definitions and helpers */
545
546 /* Check for any of the raid10 algorithms */
547 static int __got_raid10(struct raid_type *rtp, const int layout)
548 {
549         if (rtp->level == 10) {
550                 switch (rtp->algorithm) {
551                 case ALGORITHM_RAID10_DEFAULT:
552                 case ALGORITHM_RAID10_NEAR:
553                         return __is_raid10_near(layout);
554                 case ALGORITHM_RAID10_OFFSET:
555                         return __is_raid10_offset(layout);
556                 case ALGORITHM_RAID10_FAR:
557                         return __is_raid10_far(layout);
558                 default:
559                         break;
560                 }
561         }
562
563         return 0;
564 }
565
566 /* Return raid_type for @name */
567 static struct raid_type *get_raid_type(const char *name)
568 {
569         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
570
571         while (rtp-- > raid_types)
572                 if (!strcasecmp(rtp->name, name))
573                         return rtp;
574
575         return NULL;
576 }
577
578 /* Return raid_type for @name based derived from @level and @layout */
579 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
580 {
581         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
582
583         while (rtp-- > raid_types) {
584                 /* RAID10 special checks based on @layout flags/properties */
585                 if (rtp->level == level &&
586                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
587                         return rtp;
588         }
589
590         return NULL;
591 }
592
593 /*
594  * Set the mddev properties in @rs to the current
595  * ones retrieved from the freshest superblock
596  */
597 static void rs_set_cur(struct raid_set *rs)
598 {
599         struct mddev *mddev = &rs->md;
600
601         mddev->new_level = mddev->level;
602         mddev->new_layout = mddev->layout;
603         mddev->new_chunk_sectors = mddev->chunk_sectors;
604 }
605
606 /*
607  * Set the mddev properties in @rs to the new
608  * ones requested by the ctr
609  */
610 static void rs_set_new(struct raid_set *rs)
611 {
612         struct mddev *mddev = &rs->md;
613
614         mddev->level = mddev->new_level;
615         mddev->layout = mddev->new_layout;
616         mddev->chunk_sectors = mddev->new_chunk_sectors;
617         mddev->raid_disks = rs->raid_disks;
618         mddev->delta_disks = 0;
619 }
620
621 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
622                                        unsigned raid_devs)
623 {
624         unsigned i;
625         struct raid_set *rs;
626
627         if (raid_devs <= raid_type->parity_devs) {
628                 ti->error = "Insufficient number of devices";
629                 return ERR_PTR(-EINVAL);
630         }
631
632         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
633         if (!rs) {
634                 ti->error = "Cannot allocate raid context";
635                 return ERR_PTR(-ENOMEM);
636         }
637
638         mddev_init(&rs->md);
639
640         rs->raid_disks = raid_devs;
641         rs->delta_disks = 0;
642
643         rs->ti = ti;
644         rs->raid_type = raid_type;
645         rs->md.raid_disks = raid_devs;
646         rs->md.level = raid_type->level;
647         rs->md.new_level = rs->md.level;
648         rs->md.layout = raid_type->algorithm;
649         rs->md.new_layout = rs->md.layout;
650         rs->md.delta_disks = 0;
651         rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
652
653         for (i = 0; i < raid_devs; i++)
654                 md_rdev_init(&rs->dev[i].rdev);
655
656         /*
657          * Remaining items to be initialized by further RAID params:
658          *  rs->md.persistent
659          *  rs->md.external
660          *  rs->md.chunk_sectors
661          *  rs->md.new_chunk_sectors
662          *  rs->md.dev_sectors
663          */
664
665         return rs;
666 }
667
668 static void raid_set_free(struct raid_set *rs)
669 {
670         int i;
671
672         for (i = 0; i < rs->md.raid_disks; i++) {
673                 if (rs->dev[i].meta_dev)
674                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
675                 md_rdev_clear(&rs->dev[i].rdev);
676                 if (rs->dev[i].data_dev)
677                         dm_put_device(rs->ti, rs->dev[i].data_dev);
678         }
679
680         kfree(rs);
681 }
682
683 /*
684  * For every device we have two words
685  *  <meta_dev>: meta device name or '-' if missing
686  *  <data_dev>: data device name or '-' if missing
687  *
688  * The following are permitted:
689  *    - -
690  *    - <data_dev>
691  *    <meta_dev> <data_dev>
692  *
693  * The following is not allowed:
694  *    <meta_dev> -
695  *
696  * This code parses those words.  If there is a failure,
697  * the caller must use raid_set_free() to unwind the operations.
698  */
699 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
700 {
701         int i;
702         int rebuild = 0;
703         int metadata_available = 0;
704         int r = 0;
705         const char *arg;
706
707         /* Put off the number of raid devices argument to get to dev pairs */
708         arg = dm_shift_arg(as);
709         if (!arg)
710                 return -EINVAL;
711
712         for (i = 0; i < rs->md.raid_disks; i++) {
713                 rs->dev[i].rdev.raid_disk = i;
714
715                 rs->dev[i].meta_dev = NULL;
716                 rs->dev[i].data_dev = NULL;
717
718                 /*
719                  * There are no offsets, since there is a separate device
720                  * for data and metadata.
721                  */
722                 rs->dev[i].rdev.data_offset = 0;
723                 rs->dev[i].rdev.mddev = &rs->md;
724
725                 arg = dm_shift_arg(as);
726                 if (!arg)
727                         return -EINVAL;
728
729                 if (strcmp(arg, "-")) {
730                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
731                                           &rs->dev[i].meta_dev);
732                         if (r) {
733                                 rs->ti->error = "RAID metadata device lookup failure";
734                                 return r;
735                         }
736
737                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
738                         if (!rs->dev[i].rdev.sb_page) {
739                                 rs->ti->error = "Failed to allocate superblock page";
740                                 return -ENOMEM;
741                         }
742                 }
743
744                 arg = dm_shift_arg(as);
745                 if (!arg)
746                         return -EINVAL;
747
748                 if (!strcmp(arg, "-")) {
749                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
750                             (!rs->dev[i].rdev.recovery_offset)) {
751                                 rs->ti->error = "Drive designated for rebuild not specified";
752                                 return -EINVAL;
753                         }
754
755                         if (rs->dev[i].meta_dev) {
756                                 rs->ti->error = "No data device supplied with metadata device";
757                                 return -EINVAL;
758                         }
759
760                         continue;
761                 }
762
763                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
764                                   &rs->dev[i].data_dev);
765                 if (r) {
766                         rs->ti->error = "RAID device lookup failure";
767                         return r;
768                 }
769
770                 if (rs->dev[i].meta_dev) {
771                         metadata_available = 1;
772                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
773                 }
774                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
775                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
776                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
777                         rebuild++;
778         }
779
780         if (metadata_available) {
781                 rs->md.external = 0;
782                 rs->md.persistent = 1;
783                 rs->md.major_version = 2;
784         } else if (rebuild && !rs->md.recovery_cp) {
785                 /*
786                  * Without metadata, we will not be able to tell if the array
787                  * is in-sync or not - we must assume it is not.  Therefore,
788                  * it is impossible to rebuild a drive.
789                  *
790                  * Even if there is metadata, the on-disk information may
791                  * indicate that the array is not in-sync and it will then
792                  * fail at that time.
793                  *
794                  * User could specify 'nosync' option if desperate.
795                  */
796                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
797                 return -EINVAL;
798         }
799
800         return 0;
801 }
802
803 /*
804  * validate_region_size
805  * @rs
806  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
807  *
808  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
809  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
810  *
811  * Returns: 0 on success, -EINVAL on failure.
812  */
813 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
814 {
815         unsigned long min_region_size = rs->ti->len / (1 << 21);
816
817         if (!region_size) {
818                 /*
819                  * Choose a reasonable default.  All figures in sectors.
820                  */
821                 if (min_region_size > (1 << 13)) {
822                         /* If not a power of 2, make it the next power of 2 */
823                         region_size = roundup_pow_of_two(min_region_size);
824                         DMINFO("Choosing default region size of %lu sectors",
825                                region_size);
826                 } else {
827                         DMINFO("Choosing default region size of 4MiB");
828                         region_size = 1 << 13; /* sectors */
829                 }
830         } else {
831                 /*
832                  * Validate user-supplied value.
833                  */
834                 if (region_size > rs->ti->len) {
835                         rs->ti->error = "Supplied region size is too large";
836                         return -EINVAL;
837                 }
838
839                 if (region_size < min_region_size) {
840                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
841                               region_size, min_region_size);
842                         rs->ti->error = "Supplied region size is too small";
843                         return -EINVAL;
844                 }
845
846                 if (!is_power_of_2(region_size)) {
847                         rs->ti->error = "Region size is not a power of 2";
848                         return -EINVAL;
849                 }
850
851                 if (region_size < rs->md.chunk_sectors) {
852                         rs->ti->error = "Region size is smaller than the chunk size";
853                         return -EINVAL;
854                 }
855         }
856
857         /*
858          * Convert sectors to bytes.
859          */
860         rs->md.bitmap_info.chunksize = (region_size << 9);
861
862         return 0;
863 }
864
865 /*
866  * validate_raid_redundancy
867  * @rs
868  *
869  * Determine if there are enough devices in the array that haven't
870  * failed (or are being rebuilt) to form a usable array.
871  *
872  * Returns: 0 on success, -EINVAL on failure.
873  */
874 static int validate_raid_redundancy(struct raid_set *rs)
875 {
876         unsigned i, rebuild_cnt = 0;
877         unsigned rebuilds_per_group = 0, copies, d;
878         unsigned group_size, last_group_start;
879
880         for (i = 0; i < rs->md.raid_disks; i++)
881                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
882                     !rs->dev[i].rdev.sb_page)
883                         rebuild_cnt++;
884
885         switch (rs->raid_type->level) {
886         case 1:
887                 if (rebuild_cnt >= rs->md.raid_disks)
888                         goto too_many;
889                 break;
890         case 4:
891         case 5:
892         case 6:
893                 if (rebuild_cnt > rs->raid_type->parity_devs)
894                         goto too_many;
895                 break;
896         case 10:
897                 copies = raid10_md_layout_to_copies(rs->md.layout);
898                 if (rebuild_cnt < copies)
899                         break;
900
901                 /*
902                  * It is possible to have a higher rebuild count for RAID10,
903                  * as long as the failed devices occur in different mirror
904                  * groups (i.e. different stripes).
905                  *
906                  * When checking "near" format, make sure no adjacent devices
907                  * have failed beyond what can be handled.  In addition to the
908                  * simple case where the number of devices is a multiple of the
909                  * number of copies, we must also handle cases where the number
910                  * of devices is not a multiple of the number of copies.
911                  * E.g.    dev1 dev2 dev3 dev4 dev5
912                  *          A    A    B    B    C
913                  *          C    D    D    E    E
914                  */
915                 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
916                         for (i = 0; i < rs->md.raid_disks * copies; i++) {
917                                 if (!(i % copies))
918                                         rebuilds_per_group = 0;
919                                 d = i % rs->md.raid_disks;
920                                 if ((!rs->dev[d].rdev.sb_page ||
921                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
922                                     (++rebuilds_per_group >= copies))
923                                         goto too_many;
924                         }
925                         break;
926                 }
927
928                 /*
929                  * When checking "far" and "offset" formats, we need to ensure
930                  * that the device that holds its copy is not also dead or
931                  * being rebuilt.  (Note that "far" and "offset" formats only
932                  * support two copies right now.  These formats also only ever
933                  * use the 'use_far_sets' variant.)
934                  *
935                  * This check is somewhat complicated by the need to account
936                  * for arrays that are not a multiple of (far) copies.  This
937                  * results in the need to treat the last (potentially larger)
938                  * set differently.
939                  */
940                 group_size = (rs->md.raid_disks / copies);
941                 last_group_start = (rs->md.raid_disks / group_size) - 1;
942                 last_group_start *= group_size;
943                 for (i = 0; i < rs->md.raid_disks; i++) {
944                         if (!(i % copies) && !(i > last_group_start))
945                                 rebuilds_per_group = 0;
946                         if ((!rs->dev[i].rdev.sb_page ||
947                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
948                             (++rebuilds_per_group >= copies))
949                                         goto too_many;
950                 }
951                 break;
952         default:
953                 if (rebuild_cnt)
954                         return -EINVAL;
955         }
956
957         return 0;
958
959 too_many:
960         return -EINVAL;
961 }
962
963 /*
964  * Possible arguments are...
965  *      <chunk_size> [optional_args]
966  *
967  * Argument definitions
968  *    <chunk_size>                      The number of sectors per disk that
969  *                                      will form the "stripe"
970  *    [[no]sync]                        Force or prevent recovery of the
971  *                                      entire array
972  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
973  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
974  *                                      clear bits
975  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
976  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
977  *    [write_mostly <idx>]              Indicate a write mostly drive via index
978  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
979  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
980  *    [region_size <sectors>]           Defines granularity of bitmap
981  *
982  * RAID10-only options:
983  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
984  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
985  */
986 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
987                              unsigned num_raid_params)
988 {
989         int raid10_format = ALGORITHM_RAID10_DEFAULT;
990         unsigned raid10_copies = 2;
991         unsigned i;
992         unsigned value, region_size = 0;
993         sector_t max_io_len;
994         const char *arg, *key;
995         struct raid_dev *rd;
996         struct raid_type *rt = rs->raid_type;
997
998         arg = dm_shift_arg(as);
999         num_raid_params--; /* Account for chunk_size argument */
1000
1001         if (kstrtouint(arg, 10, &value) < 0) {
1002                 rs->ti->error = "Bad numerical argument given for chunk_size";
1003                 return -EINVAL;
1004         }
1005
1006         /*
1007          * First, parse the in-order required arguments
1008          * "chunk_size" is the only argument of this type.
1009          */
1010         if (rt_is_raid1(rt)) {
1011                 if (value)
1012                         DMERR("Ignoring chunk size parameter for RAID 1");
1013                 value = 0;
1014         } else if (!is_power_of_2(value)) {
1015                 rs->ti->error = "Chunk size must be a power of 2";
1016                 return -EINVAL;
1017         } else if (value < 8) {
1018                 rs->ti->error = "Chunk size value is too small";
1019                 return -EINVAL;
1020         }
1021
1022         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1023
1024         /*
1025          * We set each individual device as In_sync with a completed
1026          * 'recovery_offset'.  If there has been a device failure or
1027          * replacement then one of the following cases applies:
1028          *
1029          *   1) User specifies 'rebuild'.
1030          *      - Device is reset when param is read.
1031          *   2) A new device is supplied.
1032          *      - No matching superblock found, resets device.
1033          *   3) Device failure was transient and returns on reload.
1034          *      - Failure noticed, resets device for bitmap replay.
1035          *   4) Device hadn't completed recovery after previous failure.
1036          *      - Superblock is read and overrides recovery_offset.
1037          *
1038          * What is found in the superblocks of the devices is always
1039          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1040          */
1041         for (i = 0; i < rs->md.raid_disks; i++) {
1042                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1043                 rs->dev[i].rdev.recovery_offset = MaxSector;
1044         }
1045
1046         /*
1047          * Second, parse the unordered optional arguments
1048          */
1049         for (i = 0; i < num_raid_params; i++) {
1050                 key = dm_shift_arg(as);
1051                 if (!key) {
1052                         rs->ti->error = "Not enough raid parameters given";
1053                         return -EINVAL;
1054                 }
1055
1056                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1057                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1058                                 rs->ti->error = "Only one 'nosync' argument allowed";
1059                                 return -EINVAL;
1060                         }
1061                         rs->md.recovery_cp = MaxSector;
1062                         continue;
1063                 }
1064                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1065                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1066                                 rs->ti->error = "Only one 'sync' argument allowed";
1067                                 return -EINVAL;
1068                         }
1069                         rs->md.recovery_cp = 0;
1070                         continue;
1071                 }
1072                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1073                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1074                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1075                                 return -EINVAL;
1076                         }
1077                         continue;
1078                 }
1079
1080                 arg = dm_shift_arg(as);
1081                 i++; /* Account for the argument pairs */
1082                 if (!arg) {
1083                         rs->ti->error = "Wrong number of raid parameters given";
1084                         return -EINVAL;
1085                 }
1086
1087                 /*
1088                  * Parameters that take a string value are checked here.
1089                  */
1090
1091                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1092                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1093                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1094                                 return -EINVAL;
1095                         }
1096                         if (!rt_is_raid10(rt)) {
1097                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1098                                 return -EINVAL;
1099                         }
1100                         raid10_format = raid10_name_to_format(arg);
1101                         if (raid10_format < 0) {
1102                                 rs->ti->error = "Invalid 'raid10_format' value given";
1103                                 return raid10_format;
1104                         }
1105                         continue;
1106                 }
1107
1108                 if (kstrtouint(arg, 10, &value) < 0) {
1109                         rs->ti->error = "Bad numerical argument given in raid params";
1110                         return -EINVAL;
1111                 }
1112
1113                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1114                         /*
1115                          * "rebuild" is being passed in by userspace to provide
1116                          * indexes of replaced devices and to set up additional
1117                          * devices on raid level takeover.
1118                          */
1119                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1120                                 rs->ti->error = "Invalid rebuild index given";
1121                                 return -EINVAL;
1122                         }
1123
1124                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1125                                 rs->ti->error = "rebuild for this index already given";
1126                                 return -EINVAL;
1127                         }
1128
1129                         rd = rs->dev + value;
1130                         clear_bit(In_sync, &rd->rdev.flags);
1131                         clear_bit(Faulty, &rd->rdev.flags);
1132                         rd->rdev.recovery_offset = 0;
1133                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1134                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1135                         if (!rt_is_raid1(rt)) {
1136                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1137                                 return -EINVAL;
1138                         }
1139
1140                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1141                                 rs->ti->error = "Invalid write_mostly index given";
1142                                 return -EINVAL;
1143                         }
1144
1145                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1146                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1147                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1148                         if (!rt_is_raid1(rt)) {
1149                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1150                                 return -EINVAL;
1151                         }
1152
1153                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1154                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1155                                 return -EINVAL;
1156                         }
1157
1158                         /*
1159                          * In device-mapper, we specify things in sectors, but
1160                          * MD records this value in kB
1161                          */
1162                         value /= 2;
1163                         if (value > COUNTER_MAX) {
1164                                 rs->ti->error = "Max write-behind limit out of range";
1165                                 return -EINVAL;
1166                         }
1167
1168                         rs->md.bitmap_info.max_write_behind = value;
1169                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1170                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1171                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1172                                 return -EINVAL;
1173                         }
1174                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1175                                 rs->ti->error = "daemon sleep period out of range";
1176                                 return -EINVAL;
1177                         }
1178                         rs->md.bitmap_info.daemon_sleep = value;
1179                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1180                         /* Userspace passes new data_offset after having extended the the data image LV */
1181                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1182                                 rs->ti->error = "Only one data_offset argument pair allowed";
1183                                 return -EINVAL;
1184                         }
1185                         /* Ensure sensible data offset */
1186                         if (value < 0) {
1187                                 rs->ti->error = "Bogus data_offset value";
1188                                 return -EINVAL;
1189                         }
1190                         rs->data_offset = value;
1191                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1192                         /* Define the +/-# of disks to add to/remove from the given raid set */
1193                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1194                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1195                                 return -EINVAL;
1196                         }
1197                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1198                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1199                                 rs->ti->error = "Too many delta_disk requested";
1200                                 return -EINVAL;
1201                         }
1202
1203                         rs->delta_disks = value;
1204                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1205                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1206                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1207                                 return -EINVAL;
1208                         }
1209
1210                         /*
1211                          * In device-mapper, we specify things in sectors, but
1212                          * MD records this value in kB
1213                          */
1214                         value /= 2;
1215
1216                         if (!rt_is_raid456(rt)) {
1217                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1218                                 return -EINVAL;
1219                         }
1220                         if (raid5_set_cache_size(&rs->md, (int)value)) {
1221                                 rs->ti->error = "Bad stripe_cache size";
1222                                 return -EINVAL;
1223                         }
1224
1225                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1226                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1227                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1228                                 return -EINVAL;
1229                         }
1230                         if (value > INT_MAX) {
1231                                 rs->ti->error = "min_recovery_rate out of range";
1232                                 return -EINVAL;
1233                         }
1234                         rs->md.sync_speed_min = (int)value;
1235                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1236                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1237                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1238                                 return -EINVAL;
1239                         }
1240                         if (value > INT_MAX) {
1241                                 rs->ti->error = "max_recovery_rate out of range";
1242                                 return -EINVAL;
1243                         }
1244                         rs->md.sync_speed_max = (int)value;
1245                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1246                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1247                                 rs->ti->error = "Only one region_size argument pair allowed";
1248                                 return -EINVAL;
1249                         }
1250
1251                         region_size = value;
1252                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1253                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1254                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1255                                 return -EINVAL;
1256                         }
1257
1258                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1259                                 rs->ti->error = "Bad value for 'raid10_copies'";
1260                                 return -EINVAL;
1261                         }
1262
1263                         raid10_copies = value;
1264                 } else {
1265                         DMERR("Unable to parse RAID parameter: %s", key);
1266                         rs->ti->error = "Unable to parse RAID parameter";
1267                         return -EINVAL;
1268                 }
1269         }
1270
1271         if (validate_region_size(rs, region_size))
1272                 return -EINVAL;
1273
1274         if (rs->md.chunk_sectors)
1275                 max_io_len = rs->md.chunk_sectors;
1276         else
1277                 max_io_len = region_size;
1278
1279         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1280                 return -EINVAL;
1281
1282         if (rt_is_raid10(rt)) {
1283                 if (raid10_copies > rs->md.raid_disks) {
1284                         rs->ti->error = "Not enough devices to satisfy specification";
1285                         return -EINVAL;
1286                 }
1287
1288                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1289                 if (rs->md.new_layout < 0) {
1290                         rs->ti->error = "Error getting raid10 format";
1291                         return rs->md.new_layout;
1292                 }
1293
1294                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1295                 if (!rt) {
1296                         rs->ti->error = "Failed to recognize new raid10 layout";
1297                         return -EINVAL;
1298                 }
1299
1300                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1301                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1302                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1303                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1304                         return -EINVAL;
1305                 }
1306
1307                 rs->md.layout = rs->md.new_layout;
1308         }
1309
1310         rs->raid10_copies = raid10_copies;
1311
1312         /* Assume there are no metadata devices until the drives are parsed */
1313         rs->md.persistent = 0;
1314         rs->md.external = 1;
1315
1316         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1317         return rs_check_for_valid_flags(rs);
1318 }
1319
1320 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1321 static unsigned int mddev_data_stripes(struct raid_set *rs)
1322 {
1323         return rs->md.raid_disks - rs->raid_type->parity_devs;
1324 }
1325
1326 /* Return # of data stripes of @rs (i.e. as of ctr) */
1327 static unsigned int rs_data_stripes(struct raid_set *rs)
1328 {
1329         return rs->raid_disks - rs->raid_type->parity_devs;
1330 }
1331
1332 /* Calculate the sectors per device and per array used for @rs */
1333 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1334 {
1335         int delta_disks;
1336         unsigned int data_stripes;
1337         struct mddev *mddev = &rs->md;
1338         struct md_rdev *rdev;
1339         sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1340
1341         if (use_mddev) {
1342                 delta_disks = mddev->delta_disks;
1343                 data_stripes = mddev_data_stripes(rs);
1344         } else {
1345                 delta_disks = rs->delta_disks;
1346                 data_stripes = rs_data_stripes(rs);
1347         }
1348
1349         /* Special raid1 case w/o delta_disks support (yet) */
1350         if (rt_is_raid1(rs->raid_type))
1351                 ;
1352         else if (rt_is_raid10(rs->raid_type)) {
1353                 if (rs->raid10_copies < 2 ||
1354                     delta_disks < 0) {
1355                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1356                         return EINVAL;
1357                 }
1358
1359                 dev_sectors *= rs->raid10_copies;
1360                 if (sector_div(dev_sectors, data_stripes))
1361                         goto bad;
1362
1363                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1364                 if (sector_div(array_sectors, rs->raid10_copies))
1365                         goto bad;
1366
1367         } else if (sector_div(dev_sectors, data_stripes))
1368                 goto bad;
1369
1370         else
1371                 /* Striped layouts */
1372                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1373
1374         rdev_for_each(rdev, mddev)
1375                 rdev->sectors = dev_sectors;
1376
1377         mddev->array_sectors = array_sectors;
1378         mddev->dev_sectors = dev_sectors;
1379
1380         return 0;
1381 bad:
1382         rs->ti->error = "Target length not divisible by number of data devices";
1383         return EINVAL;
1384 }
1385
1386 static void do_table_event(struct work_struct *ws)
1387 {
1388         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1389
1390         dm_table_event(rs->ti->table);
1391 }
1392
1393 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1394 {
1395         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1396
1397         return mddev_congested(&rs->md, bits);
1398 }
1399
1400 /*
1401  * Make sure a valid takover (level switch) is being requested on @rs
1402  *
1403  * Conversions of raid sets from one MD personality to another
1404  * have to conform to restrictions which are enforced here.
1405  *
1406  * Degration is already checked for in rs_check_conversion() below.
1407  */
1408 static int rs_check_takeover(struct raid_set *rs)
1409 {
1410         struct mddev *mddev = &rs->md;
1411         unsigned int near_copies;
1412
1413         switch (mddev->level) {
1414         case 0:
1415                 /* raid0 -> raid1/5 with one disk */
1416                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1417                     mddev->raid_disks == 1)
1418                         return 0;
1419
1420                 /* raid0 -> raid10 */
1421                 if (mddev->new_level == 10 &&
1422                     !(rs->raid_disks % 2))
1423                         return 0;
1424
1425                 /* raid0 with multiple disks -> raid4/5/6 */
1426                 if (__within_range(mddev->new_level, 4, 6) &&
1427                     mddev->new_layout == ALGORITHM_PARITY_N &&
1428                     mddev->raid_disks > 1)
1429                         return 0;
1430
1431                 break;
1432
1433         case 10:
1434                 /* Can't takeover raid10_offset! */
1435                 if (__is_raid10_offset(mddev->layout))
1436                         break;
1437
1438                 near_copies = __raid10_near_copies(mddev->layout);
1439
1440                 /* raid10* -> raid0 */
1441                 if (mddev->new_level == 0) {
1442                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1443                         if (near_copies > 1 &&
1444                             !(mddev->raid_disks % near_copies)) {
1445                                 mddev->raid_disks /= near_copies;
1446                                 mddev->delta_disks = mddev->raid_disks;
1447                                 return 0;
1448                         }
1449
1450                         /* Can takeover raid10_far */
1451                         if (near_copies == 1 &&
1452                             __raid10_far_copies(mddev->layout) > 1)
1453                                 return 0;
1454
1455                         break;
1456                 }
1457
1458                 /* raid10_{near,far} -> raid1 */
1459                 if (mddev->new_level == 1 &&
1460                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1461                         return 0;
1462
1463                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1464                 if (__within_range(mddev->new_level, 4, 5) &&
1465                     mddev->raid_disks == 2)
1466                         return 0;
1467                 break;
1468
1469         case 1:
1470                 /* raid1 with 2 disks -> raid4/5 */
1471                 if (__within_range(mddev->new_level, 4, 5) &&
1472                     mddev->raid_disks == 2) {
1473                         mddev->degraded = 1;
1474                         return 0;
1475                 }
1476
1477                 /* raid1 -> raid0 */
1478                 if (mddev->new_level == 0 &&
1479                     mddev->raid_disks == 1)
1480                         return 0;
1481
1482                 /* raid1 -> raid10 */
1483                 if (mddev->new_level == 10)
1484                         return 0;
1485
1486                 break;
1487
1488         case 4:
1489                 /* raid4 -> raid0 */
1490                 if (mddev->new_level == 0)
1491                         return 0;
1492
1493                 /* raid4 -> raid1/5 with 2 disks */
1494                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1495                     mddev->raid_disks == 2)
1496                         return 0;
1497
1498                 /* raid4 -> raid5/6 with parity N */
1499                 if (__within_range(mddev->new_level, 5, 6) &&
1500                     mddev->layout == ALGORITHM_PARITY_N)
1501                         return 0;
1502                 break;
1503
1504         case 5:
1505                 /* raid5 with parity N -> raid0 */
1506                 if (mddev->new_level == 0 &&
1507                     mddev->layout == ALGORITHM_PARITY_N)
1508                         return 0;
1509
1510                 /* raid5 with parity N -> raid4 */
1511                 if (mddev->new_level == 4 &&
1512                     mddev->layout == ALGORITHM_PARITY_N)
1513                         return 0;
1514
1515                 /* raid5 with 2 disks -> raid1/4/10 */
1516                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1517                     mddev->raid_disks == 2)
1518                         return 0;
1519
1520                 /* raid5 with parity N -> raid6 with parity N */
1521                 if (mddev->new_level == 6 &&
1522                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1523                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1524                         return 0;
1525                 break;
1526
1527         case 6:
1528                 /* raid6 with parity N -> raid0 */
1529                 if (mddev->new_level == 0 &&
1530                     mddev->layout == ALGORITHM_PARITY_N)
1531                         return 0;
1532
1533                 /* raid6 with parity N -> raid4 */
1534                 if (mddev->new_level == 4 &&
1535                     mddev->layout == ALGORITHM_PARITY_N)
1536                         return 0;
1537
1538                 /* raid6_*_n with parity N -> raid5_* */
1539                 if (mddev->new_level == 5 &&
1540                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1541                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1542                         return 0;
1543
1544         default:
1545                 break;
1546         }
1547
1548         rs->ti->error = "takeover not possible";
1549         return -EINVAL;
1550 }
1551
1552 /* True if @rs requested to be taken over */
1553 static bool rs_takeover_requested(struct raid_set *rs)
1554 {
1555         return rs->md.new_level != rs->md.level;
1556 }
1557
1558 /* True if @rs is requested to reshape by ctr */
1559 static bool rs_reshape_requested(struct raid_set *rs)
1560 {
1561         struct mddev *mddev = &rs->md;
1562
1563         if (!mddev->level)
1564                 return false;
1565
1566         return !__is_raid10_far(mddev->new_layout) &&
1567                mddev->new_level == mddev->level &&
1568                (mddev->new_layout != mddev->layout ||
1569                 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1570                 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1571 }
1572
1573 /*  Features */
1574 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1575
1576 /* State flags for sb->flags */
1577 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1578 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1579
1580 /*
1581  * This structure is never routinely used by userspace, unlike md superblocks.
1582  * Devices with this superblock should only ever be accessed via device-mapper.
1583  */
1584 #define DM_RAID_MAGIC 0x64526D44
1585 struct dm_raid_superblock {
1586         __le32 magic;           /* "DmRd" */
1587         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1588
1589         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1590         __le32 array_position;  /* The position of this drive in the raid set */
1591
1592         __le64 events;          /* Incremented by md when superblock updated */
1593         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1594                                 /* indicate failures (see extension below) */
1595
1596         /*
1597          * This offset tracks the progress of the repair or replacement of
1598          * an individual drive.
1599          */
1600         __le64 disk_recovery_offset;
1601
1602         /*
1603          * This offset tracks the progress of the initial raid set
1604          * synchronisation/parity calculation.
1605          */
1606         __le64 array_resync_offset;
1607
1608         /*
1609          * raid characteristics
1610          */
1611         __le32 level;
1612         __le32 layout;
1613         __le32 stripe_sectors;
1614
1615         /********************************************************************
1616          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1617          *
1618          * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1619          */
1620
1621         __le32 flags; /* Flags defining array states for reshaping */
1622
1623         /*
1624          * This offset tracks the progress of a raid
1625          * set reshape in order to be able to restart it
1626          */
1627         __le64 reshape_position;
1628
1629         /*
1630          * These define the properties of the array in case of an interrupted reshape
1631          */
1632         __le32 new_level;
1633         __le32 new_layout;
1634         __le32 new_stripe_sectors;
1635         __le32 delta_disks;
1636
1637         __le64 array_sectors; /* Array size in sectors */
1638
1639         /*
1640          * Sector offsets to data on devices (reshaping).
1641          * Needed to support out of place reshaping, thus
1642          * not writing over any stripes whilst converting
1643          * them from old to new layout
1644          */
1645         __le64 data_offset;
1646         __le64 new_data_offset;
1647
1648         __le64 sectors; /* Used device size in sectors */
1649
1650         /*
1651          * Additonal Bit field of devices indicating failures to support
1652          * up to 256 devices with the 1.9.0 on-disk metadata format
1653          */
1654         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1655
1656         __le32 incompat_features;       /* Used to indicate any incompatible features */
1657
1658         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1659 } __packed;
1660
1661 static int read_disk_sb(struct md_rdev *rdev, int size)
1662 {
1663         BUG_ON(!rdev->sb_page);
1664
1665         if (rdev->sb_loaded)
1666                 return 0;
1667
1668         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) {
1669                 DMERR("Failed to read superblock of device at position %d",
1670                       rdev->raid_disk);
1671                 md_error(rdev->mddev, rdev);
1672                 return -EINVAL;
1673         }
1674
1675         rdev->sb_loaded = 1;
1676
1677         return 0;
1678 }
1679
1680 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1681 {
1682         failed_devices[0] = le64_to_cpu(sb->failed_devices);
1683         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1684
1685         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1686                 int i = ARRAY_SIZE(sb->extended_failed_devices);
1687
1688                 while (i--)
1689                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1690         }
1691 }
1692
1693 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1694 {
1695         int i = ARRAY_SIZE(sb->extended_failed_devices);
1696
1697         sb->failed_devices = cpu_to_le64(failed_devices[0]);
1698         while (i--)
1699                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1700 }
1701
1702 /*
1703  * Synchronize the superblock members with the raid set properties
1704  *
1705  * All superblock data is little endian.
1706  */
1707 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1708 {
1709         bool update_failed_devices = false;
1710         unsigned int i;
1711         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1712         struct dm_raid_superblock *sb;
1713         struct raid_set *rs = container_of(mddev, struct raid_set, md);
1714
1715         /* No metadata device, no superblock */
1716         if (!rdev->meta_bdev)
1717                 return;
1718
1719         BUG_ON(!rdev->sb_page);
1720
1721         sb = page_address(rdev->sb_page);
1722
1723         sb_retrieve_failed_devices(sb, failed_devices);
1724
1725         for (i = 0; i < rs->raid_disks; i++)
1726                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1727                         update_failed_devices = true;
1728                         set_bit(i, (void *) failed_devices);
1729                 }
1730
1731         if (update_failed_devices)
1732                 sb_update_failed_devices(sb, failed_devices);
1733
1734         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1735         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1736
1737         sb->num_devices = cpu_to_le32(mddev->raid_disks);
1738         sb->array_position = cpu_to_le32(rdev->raid_disk);
1739
1740         sb->events = cpu_to_le64(mddev->events);
1741
1742         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1743         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1744
1745         sb->level = cpu_to_le32(mddev->level);
1746         sb->layout = cpu_to_le32(mddev->layout);
1747         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1748
1749         sb->new_level = cpu_to_le32(mddev->new_level);
1750         sb->new_layout = cpu_to_le32(mddev->new_layout);
1751         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1752
1753         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1754
1755         smp_rmb(); /* Make sure we access most recent reshape position */
1756         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1757         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1758                 /* Flag ongoing reshape */
1759                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1760
1761                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1762                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1763         } else {
1764                 /* Clear reshape flags */
1765                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1766         }
1767
1768         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1769         sb->data_offset = cpu_to_le64(rdev->data_offset);
1770         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1771         sb->sectors = cpu_to_le64(rdev->sectors);
1772
1773         /* Zero out the rest of the payload after the size of the superblock */
1774         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1775 }
1776
1777 /*
1778  * super_load
1779  *
1780  * This function creates a superblock if one is not found on the device
1781  * and will decide which superblock to use if there's a choice.
1782  *
1783  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1784  */
1785 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1786 {
1787         int r;
1788         struct dm_raid_superblock *sb;
1789         struct dm_raid_superblock *refsb;
1790         uint64_t events_sb, events_refsb;
1791
1792         rdev->sb_start = 0;
1793         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1794         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1795                 DMERR("superblock size of a logical block is no longer valid");
1796                 return -EINVAL;
1797         }
1798
1799         r = read_disk_sb(rdev, rdev->sb_size);
1800         if (r)
1801                 return r;
1802
1803         sb = page_address(rdev->sb_page);
1804
1805         /*
1806          * Two cases that we want to write new superblocks and rebuild:
1807          * 1) New device (no matching magic number)
1808          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1809          */
1810         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1811             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1812                 super_sync(rdev->mddev, rdev);
1813
1814                 set_bit(FirstUse, &rdev->flags);
1815                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1816
1817                 /* Force writing of superblocks to disk */
1818                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1819
1820                 /* Any superblock is better than none, choose that if given */
1821                 return refdev ? 0 : 1;
1822         }
1823
1824         if (!refdev)
1825                 return 1;
1826
1827         events_sb = le64_to_cpu(sb->events);
1828
1829         refsb = page_address(refdev->sb_page);
1830         events_refsb = le64_to_cpu(refsb->events);
1831
1832         return (events_sb > events_refsb) ? 1 : 0;
1833 }
1834
1835 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1836 {
1837         int role;
1838         unsigned int d;
1839         struct mddev *mddev = &rs->md;
1840         uint64_t events_sb;
1841         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1842         struct dm_raid_superblock *sb;
1843         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
1844         struct md_rdev *r;
1845         struct dm_raid_superblock *sb2;
1846
1847         sb = page_address(rdev->sb_page);
1848         events_sb = le64_to_cpu(sb->events);
1849
1850         /*
1851          * Initialise to 1 if this is a new superblock.
1852          */
1853         mddev->events = events_sb ? : 1;
1854
1855         mddev->reshape_position = MaxSector;
1856
1857         /*
1858          * Reshaping is supported, e.g. reshape_position is valid
1859          * in superblock and superblock content is authoritative.
1860          */
1861         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1862                 /* Superblock is authoritative wrt given raid set layout! */
1863                 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1864                 mddev->level = le32_to_cpu(sb->level);
1865                 mddev->layout = le32_to_cpu(sb->layout);
1866                 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1867                 mddev->new_level = le32_to_cpu(sb->new_level);
1868                 mddev->new_layout = le32_to_cpu(sb->new_layout);
1869                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1870                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1871                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1872
1873                 /* raid was reshaping and got interrupted */
1874                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
1875                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1876                                 DMERR("Reshape requested but raid set is still reshaping");
1877                                 return -EINVAL;
1878                         }
1879
1880                         if (mddev->delta_disks < 0 ||
1881                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
1882                                 mddev->reshape_backwards = 1;
1883                         else
1884                                 mddev->reshape_backwards = 0;
1885
1886                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1887                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
1888                 }
1889
1890         } else {
1891                 /*
1892                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
1893                  */
1894                 if (le32_to_cpu(sb->level) != mddev->level) {
1895                         DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
1896                         return -EINVAL;
1897                 }
1898                 if (le32_to_cpu(sb->layout) != mddev->layout) {
1899                         DMERR("Reshaping raid sets not yet supported. (raid layout change)");
1900                         DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
1901                         DMERR("  Old layout: %s w/ %d copies",
1902                               raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
1903                               raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
1904                         DMERR("  New layout: %s w/ %d copies",
1905                               raid10_md_layout_to_format(mddev->layout),
1906                               raid10_md_layout_to_copies(mddev->layout));
1907                         return -EINVAL;
1908                 }
1909                 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
1910                         DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
1911                         return -EINVAL;
1912                 }
1913
1914                 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
1915                 if (!rt_is_raid1(rs->raid_type) &&
1916                     (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
1917                         DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
1918                               sb->num_devices, mddev->raid_disks);
1919                         return -EINVAL;
1920                 }
1921
1922                 /* Table line is checked vs. authoritative superblock */
1923                 rs_set_new(rs);
1924         }
1925
1926         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
1927                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
1928
1929         /*
1930          * During load, we set FirstUse if a new superblock was written.
1931          * There are two reasons we might not have a superblock:
1932          * 1) The raid set is brand new - in which case, all of the
1933          *    devices must have their In_sync bit set.  Also,
1934          *    recovery_cp must be 0, unless forced.
1935          * 2) This is a new device being added to an old raid set
1936          *    and the new device needs to be rebuilt - in which
1937          *    case the In_sync bit will /not/ be set and
1938          *    recovery_cp must be MaxSector.
1939          */
1940         d = 0;
1941         rdev_for_each(r, mddev) {
1942                 if (test_bit(FirstUse, &r->flags))
1943                         new_devs++;
1944
1945                 if (!test_bit(In_sync, &r->flags)) {
1946                         DMINFO("Device %d specified for rebuild; clearing superblock",
1947                                 r->raid_disk);
1948                         rebuilds++;
1949
1950                         if (test_bit(FirstUse, &r->flags))
1951                                 rebuild_and_new++;
1952                 }
1953
1954                 d++;
1955         }
1956
1957         if (new_devs == rs->raid_disks || !rebuilds) {
1958                 /* Replace a broken device */
1959                 if (new_devs == 1 && !rs->delta_disks)
1960                         ;
1961                 if (new_devs == rs->raid_disks) {
1962                         DMINFO("Superblocks created for new raid set");
1963                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
1964                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
1965                         mddev->recovery_cp = 0;
1966                 } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) {
1967                         DMERR("New device injected into existing raid set without "
1968                               "'delta_disks' or 'rebuild' parameter specified");
1969                         return -EINVAL;
1970                 }
1971         } else if (new_devs && new_devs != rebuilds) {
1972                 DMERR("%u 'rebuild' devices cannot be injected into"
1973                       " a raid set with %u other first-time devices",
1974                       rebuilds, new_devs);
1975                 return -EINVAL;
1976         } else if (rebuilds) {
1977                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
1978                         DMERR("new device%s provided without 'rebuild'",
1979                               new_devs > 1 ? "s" : "");
1980                         return -EINVAL;
1981                 } else if (mddev->recovery_cp != MaxSector) {
1982                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
1983                               (unsigned long long) mddev->recovery_cp);
1984                         return -EINVAL;
1985                 } else if (mddev->reshape_position != MaxSector) {
1986                         DMERR("'rebuild' specified while raid set is being reshaped");
1987                         return -EINVAL;
1988                 }
1989         }
1990
1991         /*
1992          * Now we set the Faulty bit for those devices that are
1993          * recorded in the superblock as failed.
1994          */
1995         sb_retrieve_failed_devices(sb, failed_devices);
1996         rdev_for_each(r, mddev) {
1997                 if (!r->sb_page)
1998                         continue;
1999                 sb2 = page_address(r->sb_page);
2000                 sb2->failed_devices = 0;
2001                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2002
2003                 /*
2004                  * Check for any device re-ordering.
2005                  */
2006                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2007                         role = le32_to_cpu(sb2->array_position);
2008                         if (role < 0)
2009                                 continue;
2010
2011                         if (role != r->raid_disk) {
2012                                 if (__is_raid10_near(mddev->layout)) {
2013                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2014                                             rs->raid_disks % rs->raid10_copies) {
2015                                                 rs->ti->error =
2016                                                         "Cannot change raid10 near set to odd # of devices!";
2017                                                 return -EINVAL;
2018                                         }
2019
2020                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2021
2022                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2023                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2024                                            !rt_is_raid1(rs->raid_type)) {
2025                                         rs->ti->error = "Cannot change device positions in raid set";
2026                                         return -EINVAL;
2027                                 }
2028
2029                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2030                         }
2031
2032                         /*
2033                          * Partial recovery is performed on
2034                          * returning failed devices.
2035                          */
2036                         if (test_bit(role, (void *) failed_devices))
2037                                 set_bit(Faulty, &r->flags);
2038                 }
2039         }
2040
2041         return 0;
2042 }
2043
2044 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2045 {
2046         struct mddev *mddev = &rs->md;
2047         struct dm_raid_superblock *sb;
2048
2049         if (rs_is_raid0(rs) || !rdev->sb_page)
2050                 return 0;
2051
2052         sb = page_address(rdev->sb_page);
2053
2054         /*
2055          * If mddev->events is not set, we know we have not yet initialized
2056          * the array.
2057          */
2058         if (!mddev->events && super_init_validation(rs, rdev))
2059                 return -EINVAL;
2060
2061         if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2062                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2063                 return -EINVAL;
2064         }
2065
2066         if (sb->incompat_features) {
2067                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2068                 return -EINVAL;
2069         }
2070
2071         /* Enable bitmap creation for RAID levels != 0 */
2072         mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2073         rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2074
2075         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2076                 /* Retrieve device size stored in superblock to be prepared for shrink */
2077                 rdev->sectors = le64_to_cpu(sb->sectors);
2078                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2079                 if (rdev->recovery_offset == MaxSector)
2080                         set_bit(In_sync, &rdev->flags);
2081                 /*
2082                  * If no reshape in progress -> we're recovering single
2083                  * disk(s) and have to set the device(s) to out-of-sync
2084                  */
2085                 else if (rs->md.reshape_position == MaxSector)
2086                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2087         }
2088
2089         /*
2090          * If a device comes back, set it as not In_sync and no longer faulty.
2091          */
2092         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2093                 rdev->recovery_offset = 0;
2094                 clear_bit(In_sync, &rdev->flags);
2095                 rdev->saved_raid_disk = rdev->raid_disk;
2096         }
2097
2098         /* Reshape support -> restore repective data offsets */
2099         rdev->data_offset = le64_to_cpu(sb->data_offset);
2100         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2101
2102         return 0;
2103 }
2104
2105 /*
2106  * Analyse superblocks and select the freshest.
2107  */
2108 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2109 {
2110         int r;
2111         struct raid_dev *dev;
2112         struct md_rdev *rdev, *tmp, *freshest;
2113         struct mddev *mddev = &rs->md;
2114
2115         freshest = NULL;
2116         rdev_for_each_safe(rdev, tmp, mddev) {
2117                 /*
2118                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2119                  * the array to undergo initialization again as
2120                  * though it were new.  This is the intended effect
2121                  * of the "sync" directive.
2122                  *
2123                  * When reshaping capability is added, we must ensure
2124                  * that the "sync" directive is disallowed during the
2125                  * reshape.
2126                  */
2127                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2128                         continue;
2129
2130                 if (!rdev->meta_bdev)
2131                         continue;
2132
2133                 r = super_load(rdev, freshest);
2134
2135                 switch (r) {
2136                 case 1:
2137                         freshest = rdev;
2138                         break;
2139                 case 0:
2140                         break;
2141                 default:
2142                         dev = container_of(rdev, struct raid_dev, rdev);
2143                         if (dev->meta_dev)
2144                                 dm_put_device(ti, dev->meta_dev);
2145
2146                         dev->meta_dev = NULL;
2147                         rdev->meta_bdev = NULL;
2148
2149                         if (rdev->sb_page)
2150                                 put_page(rdev->sb_page);
2151
2152                         rdev->sb_page = NULL;
2153
2154                         rdev->sb_loaded = 0;
2155
2156                         /*
2157                          * We might be able to salvage the data device
2158                          * even though the meta device has failed.  For
2159                          * now, we behave as though '- -' had been
2160                          * set for this device in the table.
2161                          */
2162                         if (dev->data_dev)
2163                                 dm_put_device(ti, dev->data_dev);
2164
2165                         dev->data_dev = NULL;
2166                         rdev->bdev = NULL;
2167
2168                         list_del(&rdev->same_set);
2169                 }
2170         }
2171
2172         if (!freshest)
2173                 return 0;
2174
2175         if (validate_raid_redundancy(rs)) {
2176                 rs->ti->error = "Insufficient redundancy to activate array";
2177                 return -EINVAL;
2178         }
2179
2180         /*
2181          * Validation of the freshest device provides the source of
2182          * validation for the remaining devices.
2183          */
2184         if (super_validate(rs, freshest)) {
2185                 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2186                 return -EINVAL;
2187         }
2188
2189         rdev_for_each(rdev, mddev)
2190                 if ((rdev != freshest) && super_validate(rs, rdev))
2191                         return -EINVAL;
2192
2193         return 0;
2194 }
2195
2196 /*
2197  * Adjust data_offset and new_data_offset on all disk members of @rs
2198  * for out of place reshaping if requested by contructor
2199  *
2200  * We need free space at the beginning of each raid disk for forward
2201  * and at the end for backward reshapes which userspace has to provide
2202  * via remapping/reordering of space.
2203  */
2204 static int rs_adjust_data_offsets(struct raid_set *rs)
2205 {
2206         sector_t data_offset = 0, new_data_offset = 0;
2207         struct md_rdev *rdev;
2208
2209         /* Constructor did not request data offset change */
2210         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2211                 if (!rs_is_reshapable(rs))
2212                         goto out;
2213
2214                 return 0;
2215         }
2216
2217         /* HM FIXME: get InSync raid_dev? */
2218         rdev = &rs->dev[0].rdev;
2219
2220         if (rs->delta_disks < 0) {
2221                 /*
2222                  * Removing disks (reshaping backwards):
2223                  *
2224                  * - before reshape: data is at offset 0 and free space
2225                  *                   is at end of each component LV
2226                  *
2227                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2228                  */
2229                 data_offset = 0;
2230                 new_data_offset = rs->data_offset;
2231
2232         } else if (rs->delta_disks > 0) {
2233                 /*
2234                  * Adding disks (reshaping forwards):
2235                  *
2236                  * - before reshape: data is at offset rs->data_offset != 0 and
2237                  *                   free space is at begin of each component LV
2238                  *
2239                  * - after reshape: data is at offset 0 on each component LV
2240                  */
2241                 data_offset = rs->data_offset;
2242                 new_data_offset = 0;
2243
2244         } else {
2245                 /*
2246                  * User space passes in 0 for data offset after having removed reshape space
2247                  *
2248                  * - or - (data offset != 0)
2249                  *
2250                  * Changing RAID layout or chunk size -> toggle offsets
2251                  *
2252                  * - before reshape: data is at offset rs->data_offset 0 and
2253                  *                   free space is at end of each component LV
2254                  *                   -or-
2255                  *                   data is at offset rs->data_offset != 0 and
2256                  *                   free space is at begin of each component LV
2257                  *
2258                  * - after reshape: data is at offset 0 if i was at offset != 0
2259                  *                  of at offset != 0 if it was at offset 0
2260                  *                  on each component LV
2261                  *
2262                  */
2263                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2264                 new_data_offset = data_offset ? 0 : rs->data_offset;
2265                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2266         }
2267
2268         /*
2269          * Make sure we got a minimum amount of free sectors per device
2270          */
2271         if (rs->data_offset &&
2272             to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2273                 rs->ti->error = data_offset ? "No space for forward reshape" :
2274                                               "No space for backward reshape";
2275                 return -ENOSPC;
2276         }
2277 out:
2278         /* Adjust data offsets on all rdevs */
2279         rdev_for_each(rdev, &rs->md) {
2280                 rdev->data_offset = data_offset;
2281                 rdev->new_data_offset = new_data_offset;
2282         }
2283
2284         return 0;
2285 }
2286
2287 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2288 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2289 {
2290         int i = 0;
2291         struct md_rdev *rdev;
2292
2293         rdev_for_each(rdev, &rs->md) {
2294                 rdev->raid_disk = i++;
2295                 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2296         }
2297 }
2298
2299 /*
2300  * Setup @rs for takeover by a different raid level
2301  */
2302 static int rs_setup_takeover(struct raid_set *rs)
2303 {
2304         struct mddev *mddev = &rs->md;
2305         struct md_rdev *rdev;
2306         unsigned int d = mddev->raid_disks = rs->raid_disks;
2307         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2308
2309         if (rt_is_raid10(rs->raid_type)) {
2310                 if (mddev->level == 0) {
2311                         /* Userpace reordered disks -> adjust raid_disk indexes */
2312                         __reorder_raid_disk_indexes(rs);
2313
2314                         /* raid0 -> raid10_far layout */
2315                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2316                                                                    rs->raid10_copies);
2317                 } else if (mddev->level == 1)
2318                         /* raid1 -> raid10_near layout */
2319                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2320                                                                    rs->raid_disks);
2321                  else
2322                         return -EINVAL;
2323
2324         }
2325
2326         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2327         mddev->recovery_cp = MaxSector;
2328
2329         while (d--) {
2330                 rdev = &rs->dev[d].rdev;
2331
2332                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2333                         clear_bit(In_sync, &rdev->flags);
2334                         clear_bit(Faulty, &rdev->flags);
2335                         mddev->recovery_cp = rdev->recovery_offset = 0;
2336                         /* Bitmap has to be created when we do an "up" takeover */
2337                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2338                 }
2339
2340                 rdev->new_data_offset = new_data_offset;
2341         }
2342
2343         return 0;
2344 }
2345
2346 /*
2347  * Enable/disable discard support on RAID set depending on
2348  * RAID level and discard properties of underlying RAID members.
2349  */
2350 static void configure_discard_support(struct raid_set *rs)
2351 {
2352         int i;
2353         bool raid456;
2354         struct dm_target *ti = rs->ti;
2355
2356         /* Assume discards not supported until after checks below. */
2357         ti->discards_supported = false;
2358
2359         /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2360         raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2361
2362         for (i = 0; i < rs->md.raid_disks; i++) {
2363                 struct request_queue *q;
2364
2365                 if (!rs->dev[i].rdev.bdev)
2366                         continue;
2367
2368                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2369                 if (!q || !blk_queue_discard(q))
2370                         return;
2371
2372                 if (raid456) {
2373                         if (!q->limits.discard_zeroes_data)
2374                                 return;
2375                         if (!devices_handle_discard_safely) {
2376                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2377                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2378                                 return;
2379                         }
2380                 }
2381         }
2382
2383         /* All RAID members properly support discards */
2384         ti->discards_supported = true;
2385
2386         /*
2387          * RAID1 and RAID10 personalities require bio splitting,
2388          * RAID0/4/5/6 don't and process large discard bios properly.
2389          */
2390         ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2391         ti->num_discard_bios = 1;
2392 }
2393
2394 /*
2395  * Construct a RAID0/1/10/4/5/6 mapping:
2396  * Args:
2397  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2398  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2399  *
2400  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2401  * details on possible <raid_params>.
2402  *
2403  * Userspace is free to initialize the metadata devices, hence the superblocks to
2404  * enforce recreation based on the passed in table parameters.
2405  *
2406  */
2407 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2408 {
2409         int r;
2410         struct raid_type *rt;
2411         unsigned num_raid_params, num_raid_devs;
2412         struct raid_set *rs = NULL;
2413         const char *arg;
2414         struct dm_arg_set as = { argc, argv }, as_nrd;
2415         struct dm_arg _args[] = {
2416                 { 0, as.argc, "Cannot understand number of raid parameters" },
2417                 { 1, 254, "Cannot understand number of raid devices parameters" }
2418         };
2419
2420         /* Must have <raid_type> */
2421         arg = dm_shift_arg(&as);
2422         if (!arg) {
2423                 ti->error = "No arguments";
2424                 return -EINVAL;
2425         }
2426
2427         rt = get_raid_type(arg);
2428         if (!rt) {
2429                 ti->error = "Unrecognised raid_type";
2430                 return -EINVAL;
2431         }
2432
2433         /* Must have <#raid_params> */
2434         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2435                 return -EINVAL;
2436
2437         /* number of raid device tupples <meta_dev data_dev> */
2438         as_nrd = as;
2439         dm_consume_args(&as_nrd, num_raid_params);
2440         _args[1].max = (as_nrd.argc - 1) / 2;
2441         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2442                 return -EINVAL;
2443
2444         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2445                 ti->error = "Invalid number of supplied raid devices";
2446                 return -EINVAL;
2447         }
2448
2449         rs = raid_set_alloc(ti, rt, num_raid_devs);
2450         if (IS_ERR(rs))
2451                 return PTR_ERR(rs);
2452
2453         r = parse_raid_params(rs, &as, num_raid_params);
2454         if (r)
2455                 goto bad;
2456
2457         r = parse_dev_params(rs, &as);
2458         if (r)
2459                 goto bad;
2460
2461         rs->md.sync_super = super_sync;
2462
2463         r = rs_set_dev_and_array_sectors(rs, false);
2464         if (r)
2465                 return r;
2466
2467         /*
2468          * Backup any new raid set level, layout, ...
2469          * requested to be able to compare to superblock
2470          * members for conversion decisions.
2471          */
2472         rs_config_backup(rs);
2473
2474         r = analyse_superblocks(ti, rs);
2475         if (r)
2476                 goto bad;
2477
2478         INIT_WORK(&rs->md.event_work, do_table_event);
2479         ti->private = rs;
2480         ti->num_flush_bios = 1;
2481
2482         /* Restore any requested new layout for conversion decision */
2483         rs_config_restore(rs);
2484
2485         /*
2486          * If a takeover is needed, just set the level to
2487          * the new requested one and allow the raid set to run.
2488          */
2489         if (rs_takeover_requested(rs)) {
2490                 r = rs_check_takeover(rs);
2491                 if (r)
2492                         return r;
2493
2494                 r = rs_setup_takeover(rs);
2495                 if (r)
2496                         return r;
2497
2498                 /* Tell preresume to update superblocks with new layout */
2499                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2500                 rs_set_new(rs);
2501         } else if (rs_reshape_requested(rs)) {
2502                 rs_set_cur(rs); /* Dummy to reject, fill in */
2503         } else
2504                 rs_set_cur(rs);
2505
2506         /* If constructor requested it, change data and new_data offsets */
2507         r = rs_adjust_data_offsets(rs);
2508         if (r)
2509                 return r;
2510
2511         /* Start raid set read-only and assumed clean to change in raid_resume() */
2512         rs->md.ro = 1;
2513         rs->md.in_sync = 1;
2514         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2515
2516         /* Has to be held on running the array */
2517         mddev_lock_nointr(&rs->md);
2518         r = md_run(&rs->md);
2519         rs->md.in_sync = 0; /* Assume already marked dirty */
2520         mddev_unlock(&rs->md);
2521
2522         if (r) {
2523                 ti->error = "Fail to run raid array";
2524                 goto bad;
2525         }
2526
2527         if (ti->len != rs->md.array_sectors) {
2528                 ti->error = "Array size does not match requested target length";
2529                 r = -EINVAL;
2530                 goto size_mismatch;
2531         }
2532         rs->callbacks.congested_fn = raid_is_congested;
2533         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2534
2535         mddev_suspend(&rs->md);
2536         return 0;
2537
2538 size_mismatch:
2539         md_stop(&rs->md);
2540 bad:
2541         raid_set_free(rs);
2542
2543         return r;
2544 }
2545
2546 static void raid_dtr(struct dm_target *ti)
2547 {
2548         struct raid_set *rs = ti->private;
2549
2550         list_del_init(&rs->callbacks.list);
2551         md_stop(&rs->md);
2552         raid_set_free(rs);
2553 }
2554
2555 static int raid_map(struct dm_target *ti, struct bio *bio)
2556 {
2557         struct raid_set *rs = ti->private;
2558         struct mddev *mddev = &rs->md;
2559
2560         mddev->pers->make_request(mddev, bio);
2561
2562         return DM_MAPIO_SUBMITTED;
2563 }
2564
2565 /* Return string describing the current sync action of @mddev */
2566 static const char *decipher_sync_action(struct mddev *mddev)
2567 {
2568         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2569                 return "frozen";
2570
2571         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2572             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2573                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2574                         return "reshape";
2575
2576                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2577                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2578                                 return "resync";
2579                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2580                                 return "check";
2581                         return "repair";
2582                 }
2583
2584                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2585                         return "recover";
2586         }
2587
2588         return "idle";
2589 }
2590
2591 /*
2592  * Return status string @rdev
2593  *
2594  * Status characters:
2595  *
2596  *  'D' = Dead/Failed device
2597  *  'a' = Alive but not in-sync
2598  *  'A' = Alive and in-sync
2599  */
2600 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2601 {
2602         if (test_bit(Faulty, &rdev->flags))
2603                 return "D";
2604         else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2605                 return "a";
2606         else
2607                 return "A";
2608 }
2609
2610 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2611 static sector_t rs_get_progress(struct raid_set *rs,
2612                                 sector_t resync_max_sectors, bool *array_in_sync)
2613 {
2614         sector_t r, recovery_cp, curr_resync_completed;
2615         struct mddev *mddev = &rs->md;
2616
2617         curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2618         recovery_cp = mddev->recovery_cp;
2619         *array_in_sync = false;
2620
2621         if (rs_is_raid0(rs)) {
2622                 r = resync_max_sectors;
2623                 *array_in_sync = true;
2624
2625         } else {
2626                 r = mddev->reshape_position;
2627
2628                 /* Reshape is relative to the array size */
2629                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2630                     r != MaxSector) {
2631                         if (r == MaxSector) {
2632                                 *array_in_sync = true;
2633                                 r = resync_max_sectors;
2634                         } else {
2635                                 /* Got to reverse on backward reshape */
2636                                 if (mddev->reshape_backwards)
2637                                         r = mddev->array_sectors - r;
2638
2639                                 /* Devide by # of data stripes */
2640                                 sector_div(r, mddev_data_stripes(rs));
2641                         }
2642
2643                 /* Sync is relative to the component device size */
2644                 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2645                         r = curr_resync_completed;
2646                 else
2647                         r = recovery_cp;
2648
2649                 if (r == MaxSector) {
2650                         /*
2651                          * Sync complete.
2652                          */
2653                         *array_in_sync = true;
2654                         r = resync_max_sectors;
2655                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2656                         /*
2657                          * If "check" or "repair" is occurring, the raid set has
2658                          * undergone an initial sync and the health characters
2659                          * should not be 'a' anymore.
2660                          */
2661                         *array_in_sync = true;
2662                 } else {
2663                         struct md_rdev *rdev;
2664
2665                         /*
2666                          * The raid set may be doing an initial sync, or it may
2667                          * be rebuilding individual components.  If all the
2668                          * devices are In_sync, then it is the raid set that is
2669                          * being initialized.
2670                          */
2671                         rdev_for_each(rdev, mddev)
2672                                 if (!test_bit(In_sync, &rdev->flags))
2673                                         *array_in_sync = true;
2674 #if 0
2675                         r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2676 #endif
2677                 }
2678         }
2679
2680         return r;
2681 }
2682
2683 /* Helper to return @dev name or "-" if !@dev */
2684 static const char *__get_dev_name(struct dm_dev *dev)
2685 {
2686         return dev ? dev->name : "-";
2687 }
2688
2689 static void raid_status(struct dm_target *ti, status_type_t type,
2690                         unsigned int status_flags, char *result, unsigned int maxlen)
2691 {
2692         struct raid_set *rs = ti->private;
2693         struct mddev *mddev = &rs->md;
2694         struct r5conf *conf = mddev->private;
2695         int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
2696         bool array_in_sync;
2697         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
2698         unsigned int sz = 0;
2699         unsigned int write_mostly_params = 0;
2700         sector_t progress, resync_max_sectors, resync_mismatches;
2701         const char *sync_action;
2702         struct raid_type *rt;
2703         struct md_rdev *rdev;
2704
2705         switch (type) {
2706         case STATUSTYPE_INFO:
2707                 /* *Should* always succeed */
2708                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2709                 if (!rt)
2710                         return;
2711
2712                 DMEMIT("%s %d ", rt ? rt->name : "unknown", mddev->raid_disks);
2713
2714                 /* Access most recent mddev properties for status output */
2715                 smp_rmb();
2716                 /* Get sensible max sectors even if raid set not yet started */
2717                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
2718                                       mddev->resync_max_sectors : mddev->dev_sectors;
2719                 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
2720                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
2721                                     (unsigned int) atomic64_read(&mddev->resync_mismatches) : 0;
2722                 sync_action = decipher_sync_action(&rs->md);
2723
2724                 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
2725                 rdev_for_each(rdev, mddev)
2726                         DMEMIT(__raid_dev_status(rdev, array_in_sync));
2727
2728                 /*
2729                  * In-sync/Reshape ratio:
2730                  *  The in-sync ratio shows the progress of:
2731                  *   - Initializing the raid set
2732                  *   - Rebuilding a subset of devices of the raid set
2733                  *  The user can distinguish between the two by referring
2734                  *  to the status characters.
2735                  *
2736                  *  The reshape ratio shows the progress of
2737                  *  changing the raid layout or the number of
2738                  *  disks of a raid set
2739                  */
2740                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
2741                                      (unsigned long long) resync_max_sectors);
2742
2743                 /*
2744                  * v1.5.0+:
2745                  *
2746                  * Sync action:
2747                  *   See Documentation/device-mapper/dm-raid.txt for
2748                  *   information on each of these states.
2749                  */
2750                 DMEMIT(" %s", sync_action);
2751
2752                 /*
2753                  * v1.5.0+:
2754                  *
2755                  * resync_mismatches/mismatch_cnt
2756                  *   This field shows the number of discrepancies found when
2757                  *   performing a "check" of the raid set.
2758                  */
2759                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
2760
2761                 /*
2762                  * v1.9.0+:
2763                  *
2764                  * data_offset (needed for out of space reshaping)
2765                  *   This field shows the data offset into the data
2766                  *   image LV where the first stripes data starts.
2767                  *
2768                  * We keep data_offset equal on all raid disks of the set,
2769                  * so retrieving it from the first raid disk is sufficient.
2770                  */
2771                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
2772                 break;
2773
2774         case STATUSTYPE_TABLE:
2775                 /* Report the table line string you would use to construct this raid set */
2776
2777                 /* Calculate raid parameter count */
2778                 rdev_for_each(rdev, mddev)
2779                         if (test_bit(WriteMostly, &rdev->flags))
2780                                 write_mostly_params += 2;
2781                 raid_param_cnt += memweight(rs->rebuild_disks,
2782                                             DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
2783                                   write_mostly_params +
2784                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
2785                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
2786                 /* Emit table line */
2787                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
2788                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
2789                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
2790                                          raid10_md_layout_to_format(mddev->layout));
2791                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
2792                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
2793                                          raid10_md_layout_to_copies(mddev->layout));
2794                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2795                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
2796                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2797                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
2798                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
2799                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
2800                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
2801                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
2802                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
2803                                            (unsigned long long) rs->data_offset);
2804                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
2805                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
2806                                           mddev->bitmap_info.daemon_sleep);
2807                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
2808                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
2809                                          mddev->delta_disks);
2810                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
2811                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
2812                                          max_nr_stripes);
2813                 rdev_for_each(rdev, mddev)
2814                         if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
2815                                 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
2816                                                  rdev->raid_disk);
2817                 rdev_for_each(rdev, mddev)
2818                         if (test_bit(WriteMostly, &rdev->flags))
2819                                 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
2820                                                  rdev->raid_disk);
2821                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
2822                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
2823                                           mddev->bitmap_info.max_write_behind);
2824                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
2825                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
2826                                          mddev->sync_speed_max);
2827                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
2828                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
2829                                          mddev->sync_speed_min);
2830                 DMEMIT(" %d", rs->raid_disks);
2831                 rdev_for_each(rdev, mddev) {
2832                         struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
2833
2834                         DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
2835                                          __get_dev_name(rd->data_dev));
2836                 }
2837         }
2838 }
2839
2840 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
2841 {
2842         struct raid_set *rs = ti->private;
2843         struct mddev *mddev = &rs->md;
2844
2845         if (!mddev->pers || !mddev->pers->sync_request)
2846                 return -EINVAL;
2847
2848         if (!strcasecmp(argv[0], "frozen"))
2849                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2850         else
2851                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2852
2853         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
2854                 if (mddev->sync_thread) {
2855                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2856                         md_reap_sync_thread(mddev);
2857                 }
2858         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2859                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2860                 return -EBUSY;
2861         else if (!strcasecmp(argv[0], "resync"))
2862                 ; /* MD_RECOVERY_NEEDED set below */
2863         else if (!strcasecmp(argv[0], "recover"))
2864                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2865         else {
2866                 if (!strcasecmp(argv[0], "check"))
2867                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2868                 else if (!!strcasecmp(argv[0], "repair"))
2869                         return -EINVAL;
2870                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2871                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2872         }
2873         if (mddev->ro == 2) {
2874                 /* A write to sync_action is enough to justify
2875                  * canceling read-auto mode
2876                  */
2877                 mddev->ro = 0;
2878                 if (!mddev->suspended && mddev->sync_thread)
2879                         md_wakeup_thread(mddev->sync_thread);
2880         }
2881         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2882         if (!mddev->suspended && mddev->thread)
2883                 md_wakeup_thread(mddev->thread);
2884
2885         return 0;
2886 }
2887
2888 static int raid_iterate_devices(struct dm_target *ti,
2889                                 iterate_devices_callout_fn fn, void *data)
2890 {
2891         struct raid_set *rs = ti->private;
2892         unsigned i;
2893         int r = 0;
2894
2895         for (i = 0; !r && i < rs->md.raid_disks; i++)
2896                 if (rs->dev[i].data_dev)
2897                         r = fn(ti,
2898                                  rs->dev[i].data_dev,
2899                                  0, /* No offset on data devs */
2900                                  rs->md.dev_sectors,
2901                                  data);
2902
2903         return r;
2904 }
2905
2906 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
2907 {
2908         struct raid_set *rs = ti->private;
2909         unsigned chunk_size = rs->md.chunk_sectors << 9;
2910         struct r5conf *conf = rs->md.private;
2911
2912         blk_limits_io_min(limits, chunk_size);
2913         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
2914 }
2915
2916 static void raid_presuspend(struct dm_target *ti)
2917 {
2918         struct raid_set *rs = ti->private;
2919
2920         md_stop_writes(&rs->md);
2921 }
2922
2923 static void raid_postsuspend(struct dm_target *ti)
2924 {
2925         struct raid_set *rs = ti->private;
2926
2927         mddev_suspend(&rs->md);
2928 }
2929
2930 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
2931 {
2932         int i;
2933         uint64_t failed_devices, cleared_failed_devices = 0;
2934         unsigned long flags;
2935         struct dm_raid_superblock *sb;
2936         struct md_rdev *r;
2937
2938         for (i = 0; i < rs->md.raid_disks; i++) {
2939                 r = &rs->dev[i].rdev;
2940                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
2941                     sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0,
2942                                  1)) {
2943                         DMINFO("Faulty %s device #%d has readable super block."
2944                                "  Attempting to revive it.",
2945                                rs->raid_type->name, i);
2946
2947                         /*
2948                          * Faulty bit may be set, but sometimes the array can
2949                          * be suspended before the personalities can respond
2950                          * by removing the device from the array (i.e. calling
2951                          * 'hot_remove_disk').  If they haven't yet removed
2952                          * the failed device, its 'raid_disk' number will be
2953                          * '>= 0' - meaning we must call this function
2954                          * ourselves.
2955                          */
2956                         if ((r->raid_disk >= 0) &&
2957                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
2958                                 /* Failed to revive this device, try next */
2959                                 continue;
2960
2961                         r->raid_disk = i;
2962                         r->saved_raid_disk = i;
2963                         flags = r->flags;
2964                         clear_bit(Faulty, &r->flags);
2965                         clear_bit(WriteErrorSeen, &r->flags);
2966                         clear_bit(In_sync, &r->flags);
2967                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
2968                                 r->raid_disk = -1;
2969                                 r->saved_raid_disk = -1;
2970                                 r->flags = flags;
2971                         } else {
2972                                 r->recovery_offset = 0;
2973                                 cleared_failed_devices |= 1 << i;
2974                         }
2975                 }
2976         }
2977         if (cleared_failed_devices) {
2978                 rdev_for_each(r, &rs->md) {
2979                         sb = page_address(r->sb_page);
2980                         failed_devices = le64_to_cpu(sb->failed_devices);
2981                         failed_devices &= ~cleared_failed_devices;
2982                         sb->failed_devices = cpu_to_le64(failed_devices);
2983                 }
2984         }
2985 }
2986
2987 static int __load_dirty_region_bitmap(struct raid_set *rs)
2988 {
2989         int r = 0;
2990
2991         /* Try loading the bitmap unless "raid0", which does not have one */
2992         if (!rs_is_raid0(rs) &&
2993             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
2994                 r = bitmap_load(&rs->md);
2995                 if (r)
2996                         DMERR("Failed to load bitmap");
2997         }
2998
2999         return r;
3000 }
3001
3002 static int raid_preresume(struct dm_target *ti)
3003 {
3004         struct raid_set *rs = ti->private;
3005         struct mddev *mddev = &rs->md;
3006
3007         /* This is a resume after a suspend of the set -> it's already started */
3008         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3009                 return 0;
3010
3011         /*
3012          * The superblocks need to be updated on disk if the
3013          * array is new or __load_dirty_region_bitmap will overwrite them
3014          * in core with old data.
3015          *
3016          * In case the array got modified (takeover/reshape/resize)
3017          * or the data offsets on the component devices changed, they
3018          * have to be updated as well.
3019          *
3020          * Have to switch to readwrite and back in order to
3021          * allow for the superblock updates.
3022          */
3023         if (test_and_clear_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) {
3024                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3025                 mddev->ro = 0;
3026                 md_update_sb(mddev, 1);
3027                 mddev->ro = 1;
3028         }
3029
3030         /*
3031          * Disable/enable discard support on raid set after any
3032          * conversion, because devices can have been added
3033          */
3034         configure_discard_support(rs);
3035
3036         /* Load the bitmap from disk unless raid0 */
3037         return __load_dirty_region_bitmap(rs);
3038 }
3039
3040 static void raid_resume(struct dm_target *ti)
3041 {
3042         struct raid_set *rs = ti->private;
3043         struct mddev *mddev = &rs->md;
3044
3045         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3046                 /*
3047                  * A secondary resume while the device is active.
3048                  * Take this opportunity to check whether any failed
3049                  * devices are reachable again.
3050                  */
3051                 attempt_restore_of_faulty_devices(rs);
3052         }
3053
3054         mddev->ro = 0;
3055         mddev->in_sync = 0;
3056         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3057
3058         if (mddev->suspended)
3059                 mddev_resume(mddev);
3060 }
3061
3062 static struct target_type raid_target = {
3063         .name = "raid",
3064         .version = {1, 9, 0},
3065         .module = THIS_MODULE,
3066         .ctr = raid_ctr,
3067         .dtr = raid_dtr,
3068         .map = raid_map,
3069         .status = raid_status,
3070         .message = raid_message,
3071         .iterate_devices = raid_iterate_devices,
3072         .io_hints = raid_io_hints,
3073         .presuspend = raid_presuspend,
3074         .postsuspend = raid_postsuspend,
3075         .preresume = raid_preresume,
3076         .resume = raid_resume,
3077 };
3078
3079 static int __init dm_raid_init(void)
3080 {
3081         DMINFO("Loading target version %u.%u.%u",
3082                raid_target.version[0],
3083                raid_target.version[1],
3084                raid_target.version[2]);
3085         return dm_register_target(&raid_target);
3086 }
3087
3088 static void __exit dm_raid_exit(void)
3089 {
3090         dm_unregister_target(&raid_target);
3091 }
3092
3093 module_init(dm_raid_init);
3094 module_exit(dm_raid_exit);
3095
3096 module_param(devices_handle_discard_safely, bool, 0644);
3097 MODULE_PARM_DESC(devices_handle_discard_safely,
3098                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3099
3100 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3101 MODULE_ALIAS("dm-raid0");
3102 MODULE_ALIAS("dm-raid1");
3103 MODULE_ALIAS("dm-raid10");
3104 MODULE_ALIAS("dm-raid4");
3105 MODULE_ALIAS("dm-raid5");
3106 MODULE_ALIAS("dm-raid6");
3107 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3108 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3109 MODULE_LICENSE("GPL");