dm raid: fix rs_is_recovering() to allow for lvextend
[cascardo/linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10             /* rdev flag */
34
35 struct raid_dev {
36         /*
37          * Two DM devices, one to hold metadata and one to hold the
38          * actual data/parity.  The reason for this is to not confuse
39          * ti->len and give more flexibility in altering size and
40          * characteristics.
41          *
42          * While it is possible for this device to be associated
43          * with a different physical device than the data_dev, it
44          * is intended for it to be the same.
45          *    |--------- Physical Device ---------|
46          *    |- meta_dev -|------ data_dev ------|
47          */
48         struct dm_dev *meta_dev;
49         struct dm_dev *data_dev;
50         struct md_rdev rdev;
51 };
52
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
105                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109                                   CTR_FLAG_WRITE_MOSTLY | \
110                                   CTR_FLAG_DAEMON_SLEEP | \
111                                   CTR_FLAG_MIN_RECOVERY_RATE | \
112                                   CTR_FLAG_MAX_RECOVERY_RATE | \
113                                   CTR_FLAG_MAX_WRITE_BEHIND | \
114                                   CTR_FLAG_STRIPE_CACHE | \
115                                   CTR_FLAG_REGION_SIZE | \
116                                   CTR_FLAG_RAID10_COPIES | \
117                                   CTR_FLAG_RAID10_FORMAT | \
118                                   CTR_FLAG_DELTA_DISKS | \
119                                   CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
128                                  CTR_FLAG_REBUILD | \
129                                  CTR_FLAG_WRITE_MOSTLY | \
130                                  CTR_FLAG_DAEMON_SLEEP | \
131                                  CTR_FLAG_MIN_RECOVERY_RATE | \
132                                  CTR_FLAG_MAX_RECOVERY_RATE | \
133                                  CTR_FLAG_MAX_WRITE_BEHIND | \
134                                  CTR_FLAG_REGION_SIZE | \
135                                  CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
139                                  CTR_FLAG_REBUILD | \
140                                  CTR_FLAG_DAEMON_SLEEP | \
141                                  CTR_FLAG_MIN_RECOVERY_RATE | \
142                                  CTR_FLAG_MAX_RECOVERY_RATE | \
143                                  CTR_FLAG_REGION_SIZE | \
144                                  CTR_FLAG_RAID10_COPIES | \
145                                  CTR_FLAG_RAID10_FORMAT | \
146                                  CTR_FLAG_DELTA_DISKS | \
147                                  CTR_FLAG_DATA_OFFSET | \
148                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151  * "raid4/5/6" do not accept any raid1 or raid10 specific options
152  *
153  * "raid6" does not accept "nosync", because it is not guaranteed
154  * that both parity and q-syndrome are being written properly with
155  * any writes
156  */
157 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
158                                  CTR_FLAG_REBUILD | \
159                                  CTR_FLAG_DAEMON_SLEEP | \
160                                  CTR_FLAG_MIN_RECOVERY_RATE | \
161                                  CTR_FLAG_MAX_RECOVERY_RATE | \
162                                  CTR_FLAG_MAX_WRITE_BEHIND | \
163                                  CTR_FLAG_STRIPE_CACHE | \
164                                  CTR_FLAG_REGION_SIZE | \
165                                  CTR_FLAG_DELTA_DISKS | \
166                                  CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
169                                  CTR_FLAG_REBUILD | \
170                                  CTR_FLAG_DAEMON_SLEEP | \
171                                  CTR_FLAG_MIN_RECOVERY_RATE | \
172                                  CTR_FLAG_MAX_RECOVERY_RATE | \
173                                  CTR_FLAG_MAX_WRITE_BEHIND | \
174                                  CTR_FLAG_STRIPE_CACHE | \
175                                  CTR_FLAG_REGION_SIZE | \
176                                  CTR_FLAG_DELTA_DISKS | \
177                                  CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181  * Flags for rs->runtime_flags field
182  * (RT_FLAG prefix meaning "runtime flag")
183  *
184  * These are all internal and used to define runtime state,
185  * e.g. to prevent another resume from preresume processing
186  * the raid set all over again.
187  */
188 #define RT_FLAG_RS_PRERESUMED           0
189 #define RT_FLAG_RS_RESUMED              1
190 #define RT_FLAG_RS_BITMAP_LOADED        2
191 #define RT_FLAG_UPDATE_SBS              3
192 #define RT_FLAG_RESHAPE_RS              4
193 #define RT_FLAG_KEEP_RS_FROZEN          5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199  * raid set level, layout and chunk sectors backup/restore
200  */
201 struct rs_layout {
202         int new_level;
203         int new_layout;
204         int new_chunk_sectors;
205 };
206
207 struct raid_set {
208         struct dm_target *ti;
209
210         uint32_t bitmap_loaded;
211         uint32_t stripe_cache_entries;
212         unsigned long ctr_flags;
213         unsigned long runtime_flags;
214
215         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217         int raid_disks;
218         int delta_disks;
219         int data_offset;
220         int raid10_copies;
221         int requested_bitmap_chunk_sectors;
222
223         struct mddev md;
224         struct raid_type *raid_type;
225         struct dm_target_callbacks callbacks;
226
227         struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232         struct mddev *mddev = &rs->md;
233
234         l->new_level = mddev->new_level;
235         l->new_layout = mddev->new_layout;
236         l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241         struct mddev *mddev = &rs->md;
242
243         mddev->new_level = l->new_level;
244         mddev->new_layout = l->new_layout;
245         mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT        0
250 #define ALGORITHM_RAID10_NEAR           1
251 #define ALGORITHM_RAID10_OFFSET         2
252 #define ALGORITHM_RAID10_FAR            3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256         const char *name;               /* RAID algorithm. */
257         const char *descr;              /* Descriptor text for logging. */
258         const unsigned parity_devs;     /* # of parity devices. */
259         const unsigned minimal_devs;    /* minimal # of devices in set. */
260         const unsigned level;           /* RAID level. */
261         const unsigned algorithm;       /* RAID algorithm. */
262 } raid_types[] = {
263         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
264         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
265         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
266         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
267         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
268         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269         {"raid4",         "raid4 (dedicated last parity disk)",     1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
271         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
272         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
273         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
274         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
275         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
276         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
277         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
278         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
279         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
280         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
281         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
282         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288         return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293         const unsigned long flag;
294         const char *name;
295 } __arg_name_flags[] = {
296         { CTR_FLAG_SYNC, "sync"},
297         { CTR_FLAG_NOSYNC, "nosync"},
298         { CTR_FLAG_REBUILD, "rebuild"},
299         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
304         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305         { CTR_FLAG_REGION_SIZE, "region_size"},
306         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308         { CTR_FLAG_DATA_OFFSET, "data_offset"},
309         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316         if (hweight32(flag) == 1) {
317                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319                 while (anf-- > __arg_name_flags)
320                         if (flag & anf->flag)
321                                 return anf->name;
322
323         } else
324                 DMERR("%s called with more than one flag!", __func__);
325
326         return NULL;
327 }
328
329 /*
330  * bool helpers to test for various raid levels of a raid set,
331  * is. it's level as reported by the superblock rather than
332  * the requested raid_type passed to the constructor.
333  */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337         return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343         return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349         return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 6 */
353 static bool rs_is_raid6(struct raid_set *rs)
354 {
355         return rs->md.level == 6;
356 }
357
358 /* Return true, if raid set in @rs is level 4, 5 or 6 */
359 static bool rs_is_raid456(struct raid_set *rs)
360 {
361         return __within_range(rs->md.level, 4, 6);
362 }
363
364 /* Return true, if raid set in @rs is reshapable */
365 static unsigned int __is_raid10_far(int layout);
366 static bool rs_is_reshapable(struct raid_set *rs)
367 {
368         return rs_is_raid456(rs) ||
369                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
370 }
371
372 /* Return true, if raid set in @rs is recovering */
373 static bool rs_is_recovering(struct raid_set *rs)
374 {
375         return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
376 }
377
378 /* Return true, if raid set in @rs is reshaping */
379 static bool rs_is_reshaping(struct raid_set *rs)
380 {
381         return rs->md.reshape_position != MaxSector;
382 }
383
384 /*
385  * bool helpers to test for various raid levels of a raid type
386  */
387
388 /* Return true, if raid type in @rt is raid0 */
389 static bool rt_is_raid0(struct raid_type *rt)
390 {
391         return !rt->level;
392 }
393
394 /* Return true, if raid type in @rt is raid1 */
395 static bool rt_is_raid1(struct raid_type *rt)
396 {
397         return rt->level == 1;
398 }
399
400 /* Return true, if raid type in @rt is raid10 */
401 static bool rt_is_raid10(struct raid_type *rt)
402 {
403         return rt->level == 10;
404 }
405
406 /* Return true, if raid type in @rt is raid4/5 */
407 static bool rt_is_raid45(struct raid_type *rt)
408 {
409         return __within_range(rt->level, 4, 5);
410 }
411
412 /* Return true, if raid type in @rt is raid6 */
413 static bool rt_is_raid6(struct raid_type *rt)
414 {
415         return rt->level == 6;
416 }
417
418 /* Return true, if raid type in @rt is raid4/5/6 */
419 static bool rt_is_raid456(struct raid_type *rt)
420 {
421         return __within_range(rt->level, 4, 6);
422 }
423 /* END: raid level bools */
424
425 /* Return valid ctr flags for the raid level of @rs */
426 static unsigned long __valid_flags(struct raid_set *rs)
427 {
428         if (rt_is_raid0(rs->raid_type))
429                 return RAID0_VALID_FLAGS;
430         else if (rt_is_raid1(rs->raid_type))
431                 return RAID1_VALID_FLAGS;
432         else if (rt_is_raid10(rs->raid_type))
433                 return RAID10_VALID_FLAGS;
434         else if (rt_is_raid45(rs->raid_type))
435                 return RAID45_VALID_FLAGS;
436         else if (rt_is_raid6(rs->raid_type))
437                 return RAID6_VALID_FLAGS;
438
439         return ~0;
440 }
441
442 /*
443  * Check for valid flags set on @rs
444  *
445  * Has to be called after parsing of the ctr flags!
446  */
447 static int rs_check_for_valid_flags(struct raid_set *rs)
448 {
449         if (rs->ctr_flags & ~__valid_flags(rs)) {
450                 rs->ti->error = "Invalid flags combination";
451                 return -EINVAL;
452         }
453
454         return 0;
455 }
456
457 /* MD raid10 bit definitions and helpers */
458 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
459 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
460 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
461 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
462
463 /* Return md raid10 near copies for @layout */
464 static unsigned int __raid10_near_copies(int layout)
465 {
466         return layout & 0xFF;
467 }
468
469 /* Return md raid10 far copies for @layout */
470 static unsigned int __raid10_far_copies(int layout)
471 {
472         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
473 }
474
475 /* Return true if md raid10 offset for @layout */
476 static unsigned int __is_raid10_offset(int layout)
477 {
478         return layout & RAID10_OFFSET;
479 }
480
481 /* Return true if md raid10 near for @layout */
482 static unsigned int __is_raid10_near(int layout)
483 {
484         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
485 }
486
487 /* Return true if md raid10 far for @layout */
488 static unsigned int __is_raid10_far(int layout)
489 {
490         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
491 }
492
493 /* Return md raid10 layout string for @layout */
494 static const char *raid10_md_layout_to_format(int layout)
495 {
496         /*
497          * Bit 16 stands for "offset"
498          * (i.e. adjacent stripes hold copies)
499          *
500          * Refer to MD's raid10.c for details
501          */
502         if (__is_raid10_offset(layout))
503                 return "offset";
504
505         if (__raid10_near_copies(layout) > 1)
506                 return "near";
507
508         WARN_ON(__raid10_far_copies(layout) < 2);
509
510         return "far";
511 }
512
513 /* Return md raid10 algorithm for @name */
514 static int raid10_name_to_format(const char *name)
515 {
516         if (!strcasecmp(name, "near"))
517                 return ALGORITHM_RAID10_NEAR;
518         else if (!strcasecmp(name, "offset"))
519                 return ALGORITHM_RAID10_OFFSET;
520         else if (!strcasecmp(name, "far"))
521                 return ALGORITHM_RAID10_FAR;
522
523         return -EINVAL;
524 }
525
526 /* Return md raid10 copies for @layout */
527 static unsigned int raid10_md_layout_to_copies(int layout)
528 {
529         return __raid10_near_copies(layout) > 1 ?
530                 __raid10_near_copies(layout) : __raid10_far_copies(layout);
531 }
532
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535                                       unsigned int algorithm,
536                                       unsigned int copies)
537 {
538         unsigned int n = 1, f = 1, r = 0;
539
540         /*
541          * MD resilienece flaw:
542          *
543          * enabling use_far_sets for far/offset formats causes copies
544          * to be colocated on the same devs together with their origins!
545          *
546          * -> disable it for now in the definition above
547          */
548         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549             algorithm == ALGORITHM_RAID10_NEAR)
550                 n = copies;
551
552         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553                 f = copies;
554                 r = RAID10_OFFSET;
555                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556                         r |= RAID10_USE_FAR_SETS;
557
558         } else if (algorithm == ALGORITHM_RAID10_FAR) {
559                 f = copies;
560                 r = !RAID10_OFFSET;
561                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562                         r |= RAID10_USE_FAR_SETS;
563
564         } else
565                 return -EINVAL;
566
567         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570
571 /* Check for any of the raid10 algorithms */
572 static int __got_raid10(struct raid_type *rtp, const int layout)
573 {
574         if (rtp->level == 10) {
575                 switch (rtp->algorithm) {
576                 case ALGORITHM_RAID10_DEFAULT:
577                 case ALGORITHM_RAID10_NEAR:
578                         return __is_raid10_near(layout);
579                 case ALGORITHM_RAID10_OFFSET:
580                         return __is_raid10_offset(layout);
581                 case ALGORITHM_RAID10_FAR:
582                         return __is_raid10_far(layout);
583                 default:
584                         break;
585                 }
586         }
587
588         return 0;
589 }
590
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595
596         while (rtp-- > raid_types)
597                 if (!strcasecmp(rtp->name, name))
598                         return rtp;
599
600         return NULL;
601 }
602
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607
608         while (rtp-- > raid_types) {
609                 /* RAID10 special checks based on @layout flags/properties */
610                 if (rtp->level == level &&
611                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612                         return rtp;
613         }
614
615         return NULL;
616 }
617
618 /*
619  * Conditionally change bdev capacity of @rs
620  * in case of a disk add/remove reshape
621  */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624         struct mddev *mddev = &rs->md;
625         struct md_rdev *rdev;
626         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
627
628         /*
629          * raid10 sets rdev->sector to the device size, which
630          * is unintended in case of out-of-place reshaping
631          */
632         rdev_for_each(rdev, mddev)
633                 rdev->sectors = mddev->dev_sectors;
634
635         set_capacity(gendisk, mddev->array_sectors);
636         revalidate_disk(gendisk);
637 }
638
639 /*
640  * Set the mddev properties in @rs to the current
641  * ones retrieved from the freshest superblock
642  */
643 static void rs_set_cur(struct raid_set *rs)
644 {
645         struct mddev *mddev = &rs->md;
646
647         mddev->new_level = mddev->level;
648         mddev->new_layout = mddev->layout;
649         mddev->new_chunk_sectors = mddev->chunk_sectors;
650 }
651
652 /*
653  * Set the mddev properties in @rs to the new
654  * ones requested by the ctr
655  */
656 static void rs_set_new(struct raid_set *rs)
657 {
658         struct mddev *mddev = &rs->md;
659
660         mddev->level = mddev->new_level;
661         mddev->layout = mddev->new_layout;
662         mddev->chunk_sectors = mddev->new_chunk_sectors;
663         mddev->raid_disks = rs->raid_disks;
664         mddev->delta_disks = 0;
665 }
666
667 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
668                                        unsigned raid_devs)
669 {
670         unsigned i;
671         struct raid_set *rs;
672
673         if (raid_devs <= raid_type->parity_devs) {
674                 ti->error = "Insufficient number of devices";
675                 return ERR_PTR(-EINVAL);
676         }
677
678         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
679         if (!rs) {
680                 ti->error = "Cannot allocate raid context";
681                 return ERR_PTR(-ENOMEM);
682         }
683
684         mddev_init(&rs->md);
685
686         rs->raid_disks = raid_devs;
687         rs->delta_disks = 0;
688
689         rs->ti = ti;
690         rs->raid_type = raid_type;
691         rs->stripe_cache_entries = 256;
692         rs->md.raid_disks = raid_devs;
693         rs->md.level = raid_type->level;
694         rs->md.new_level = rs->md.level;
695         rs->md.layout = raid_type->algorithm;
696         rs->md.new_layout = rs->md.layout;
697         rs->md.delta_disks = 0;
698         rs->md.recovery_cp = MaxSector;
699
700         for (i = 0; i < raid_devs; i++)
701                 md_rdev_init(&rs->dev[i].rdev);
702
703         /*
704          * Remaining items to be initialized by further RAID params:
705          *  rs->md.persistent
706          *  rs->md.external
707          *  rs->md.chunk_sectors
708          *  rs->md.new_chunk_sectors
709          *  rs->md.dev_sectors
710          */
711
712         return rs;
713 }
714
715 static void raid_set_free(struct raid_set *rs)
716 {
717         int i;
718
719         for (i = 0; i < rs->md.raid_disks; i++) {
720                 if (rs->dev[i].meta_dev)
721                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
722                 md_rdev_clear(&rs->dev[i].rdev);
723                 if (rs->dev[i].data_dev)
724                         dm_put_device(rs->ti, rs->dev[i].data_dev);
725         }
726
727         kfree(rs);
728 }
729
730 /*
731  * For every device we have two words
732  *  <meta_dev>: meta device name or '-' if missing
733  *  <data_dev>: data device name or '-' if missing
734  *
735  * The following are permitted:
736  *    - -
737  *    - <data_dev>
738  *    <meta_dev> <data_dev>
739  *
740  * The following is not allowed:
741  *    <meta_dev> -
742  *
743  * This code parses those words.  If there is a failure,
744  * the caller must use raid_set_free() to unwind the operations.
745  */
746 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
747 {
748         int i;
749         int rebuild = 0;
750         int metadata_available = 0;
751         int r = 0;
752         const char *arg;
753
754         /* Put off the number of raid devices argument to get to dev pairs */
755         arg = dm_shift_arg(as);
756         if (!arg)
757                 return -EINVAL;
758
759         for (i = 0; i < rs->md.raid_disks; i++) {
760                 rs->dev[i].rdev.raid_disk = i;
761
762                 rs->dev[i].meta_dev = NULL;
763                 rs->dev[i].data_dev = NULL;
764
765                 /*
766                  * There are no offsets, since there is a separate device
767                  * for data and metadata.
768                  */
769                 rs->dev[i].rdev.data_offset = 0;
770                 rs->dev[i].rdev.mddev = &rs->md;
771
772                 arg = dm_shift_arg(as);
773                 if (!arg)
774                         return -EINVAL;
775
776                 if (strcmp(arg, "-")) {
777                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
778                                           &rs->dev[i].meta_dev);
779                         if (r) {
780                                 rs->ti->error = "RAID metadata device lookup failure";
781                                 return r;
782                         }
783
784                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
785                         if (!rs->dev[i].rdev.sb_page) {
786                                 rs->ti->error = "Failed to allocate superblock page";
787                                 return -ENOMEM;
788                         }
789                 }
790
791                 arg = dm_shift_arg(as);
792                 if (!arg)
793                         return -EINVAL;
794
795                 if (!strcmp(arg, "-")) {
796                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
797                             (!rs->dev[i].rdev.recovery_offset)) {
798                                 rs->ti->error = "Drive designated for rebuild not specified";
799                                 return -EINVAL;
800                         }
801
802                         if (rs->dev[i].meta_dev) {
803                                 rs->ti->error = "No data device supplied with metadata device";
804                                 return -EINVAL;
805                         }
806
807                         continue;
808                 }
809
810                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
811                                   &rs->dev[i].data_dev);
812                 if (r) {
813                         rs->ti->error = "RAID device lookup failure";
814                         return r;
815                 }
816
817                 if (rs->dev[i].meta_dev) {
818                         metadata_available = 1;
819                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
820                 }
821                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
822                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
823                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
824                         rebuild++;
825         }
826
827         if (metadata_available) {
828                 rs->md.external = 0;
829                 rs->md.persistent = 1;
830                 rs->md.major_version = 2;
831         } else if (rebuild && !rs->md.recovery_cp) {
832                 /*
833                  * Without metadata, we will not be able to tell if the array
834                  * is in-sync or not - we must assume it is not.  Therefore,
835                  * it is impossible to rebuild a drive.
836                  *
837                  * Even if there is metadata, the on-disk information may
838                  * indicate that the array is not in-sync and it will then
839                  * fail at that time.
840                  *
841                  * User could specify 'nosync' option if desperate.
842                  */
843                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
844                 return -EINVAL;
845         }
846
847         return 0;
848 }
849
850 /*
851  * validate_region_size
852  * @rs
853  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
854  *
855  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
856  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
857  *
858  * Returns: 0 on success, -EINVAL on failure.
859  */
860 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
861 {
862         unsigned long min_region_size = rs->ti->len / (1 << 21);
863
864         if (!region_size) {
865                 /*
866                  * Choose a reasonable default.  All figures in sectors.
867                  */
868                 if (min_region_size > (1 << 13)) {
869                         /* If not a power of 2, make it the next power of 2 */
870                         region_size = roundup_pow_of_two(min_region_size);
871                         DMINFO("Choosing default region size of %lu sectors",
872                                region_size);
873                 } else {
874                         DMINFO("Choosing default region size of 4MiB");
875                         region_size = 1 << 13; /* sectors */
876                 }
877         } else {
878                 /*
879                  * Validate user-supplied value.
880                  */
881                 if (region_size > rs->ti->len) {
882                         rs->ti->error = "Supplied region size is too large";
883                         return -EINVAL;
884                 }
885
886                 if (region_size < min_region_size) {
887                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888                               region_size, min_region_size);
889                         rs->ti->error = "Supplied region size is too small";
890                         return -EINVAL;
891                 }
892
893                 if (!is_power_of_2(region_size)) {
894                         rs->ti->error = "Region size is not a power of 2";
895                         return -EINVAL;
896                 }
897
898                 if (region_size < rs->md.chunk_sectors) {
899                         rs->ti->error = "Region size is smaller than the chunk size";
900                         return -EINVAL;
901                 }
902         }
903
904         /*
905          * Convert sectors to bytes.
906          */
907         rs->md.bitmap_info.chunksize = (region_size << 9);
908
909         return 0;
910 }
911
912 /*
913  * validate_raid_redundancy
914  * @rs
915  *
916  * Determine if there are enough devices in the array that haven't
917  * failed (or are being rebuilt) to form a usable array.
918  *
919  * Returns: 0 on success, -EINVAL on failure.
920  */
921 static int validate_raid_redundancy(struct raid_set *rs)
922 {
923         unsigned i, rebuild_cnt = 0;
924         unsigned rebuilds_per_group = 0, copies;
925         unsigned group_size, last_group_start;
926
927         for (i = 0; i < rs->md.raid_disks; i++)
928                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929                     !rs->dev[i].rdev.sb_page)
930                         rebuild_cnt++;
931
932         switch (rs->raid_type->level) {
933         case 1:
934                 if (rebuild_cnt >= rs->md.raid_disks)
935                         goto too_many;
936                 break;
937         case 4:
938         case 5:
939         case 6:
940                 if (rebuild_cnt > rs->raid_type->parity_devs)
941                         goto too_many;
942                 break;
943         case 10:
944                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
945                 if (rebuild_cnt < copies)
946                         break;
947
948                 /*
949                  * It is possible to have a higher rebuild count for RAID10,
950                  * as long as the failed devices occur in different mirror
951                  * groups (i.e. different stripes).
952                  *
953                  * When checking "near" format, make sure no adjacent devices
954                  * have failed beyond what can be handled.  In addition to the
955                  * simple case where the number of devices is a multiple of the
956                  * number of copies, we must also handle cases where the number
957                  * of devices is not a multiple of the number of copies.
958                  * E.g.    dev1 dev2 dev3 dev4 dev5
959                  *          A    A    B    B    C
960                  *          C    D    D    E    E
961                  */
962                 if (__is_raid10_near(rs->md.new_layout)) {
963                         for (i = 0; i < rs->raid_disks; i++) {
964                                 if (!(i % copies))
965                                         rebuilds_per_group = 0;
966                                 if ((!rs->dev[i].rdev.sb_page ||
967                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
968                                     (++rebuilds_per_group >= copies))
969                                         goto too_many;
970                         }
971                         break;
972                 }
973
974                 /*
975                  * When checking "far" and "offset" formats, we need to ensure
976                  * that the device that holds its copy is not also dead or
977                  * being rebuilt.  (Note that "far" and "offset" formats only
978                  * support two copies right now.  These formats also only ever
979                  * use the 'use_far_sets' variant.)
980                  *
981                  * This check is somewhat complicated by the need to account
982                  * for arrays that are not a multiple of (far) copies.  This
983                  * results in the need to treat the last (potentially larger)
984                  * set differently.
985                  */
986                 group_size = (rs->md.raid_disks / copies);
987                 last_group_start = (rs->md.raid_disks / group_size) - 1;
988                 last_group_start *= group_size;
989                 for (i = 0; i < rs->md.raid_disks; i++) {
990                         if (!(i % copies) && !(i > last_group_start))
991                                 rebuilds_per_group = 0;
992                         if ((!rs->dev[i].rdev.sb_page ||
993                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
994                             (++rebuilds_per_group >= copies))
995                                         goto too_many;
996                 }
997                 break;
998         default:
999                 if (rebuild_cnt)
1000                         return -EINVAL;
1001         }
1002
1003         return 0;
1004
1005 too_many:
1006         return -EINVAL;
1007 }
1008
1009 /*
1010  * Possible arguments are...
1011  *      <chunk_size> [optional_args]
1012  *
1013  * Argument definitions
1014  *    <chunk_size>                      The number of sectors per disk that
1015  *                                      will form the "stripe"
1016  *    [[no]sync]                        Force or prevent recovery of the
1017  *                                      entire array
1018  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1019  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1020  *                                      clear bits
1021  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1022  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1023  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1024  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1025  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1026  *    [region_size <sectors>]           Defines granularity of bitmap
1027  *
1028  * RAID10-only options:
1029  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1030  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1031  */
1032 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1033                              unsigned num_raid_params)
1034 {
1035         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1036         unsigned raid10_copies = 2;
1037         unsigned i, write_mostly = 0;
1038         unsigned region_size = 0;
1039         sector_t max_io_len;
1040         const char *arg, *key;
1041         struct raid_dev *rd;
1042         struct raid_type *rt = rs->raid_type;
1043
1044         arg = dm_shift_arg(as);
1045         num_raid_params--; /* Account for chunk_size argument */
1046
1047         if (kstrtoint(arg, 10, &value) < 0) {
1048                 rs->ti->error = "Bad numerical argument given for chunk_size";
1049                 return -EINVAL;
1050         }
1051
1052         /*
1053          * First, parse the in-order required arguments
1054          * "chunk_size" is the only argument of this type.
1055          */
1056         if (rt_is_raid1(rt)) {
1057                 if (value)
1058                         DMERR("Ignoring chunk size parameter for RAID 1");
1059                 value = 0;
1060         } else if (!is_power_of_2(value)) {
1061                 rs->ti->error = "Chunk size must be a power of 2";
1062                 return -EINVAL;
1063         } else if (value < 8) {
1064                 rs->ti->error = "Chunk size value is too small";
1065                 return -EINVAL;
1066         }
1067
1068         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1069
1070         /*
1071          * We set each individual device as In_sync with a completed
1072          * 'recovery_offset'.  If there has been a device failure or
1073          * replacement then one of the following cases applies:
1074          *
1075          *   1) User specifies 'rebuild'.
1076          *      - Device is reset when param is read.
1077          *   2) A new device is supplied.
1078          *      - No matching superblock found, resets device.
1079          *   3) Device failure was transient and returns on reload.
1080          *      - Failure noticed, resets device for bitmap replay.
1081          *   4) Device hadn't completed recovery after previous failure.
1082          *      - Superblock is read and overrides recovery_offset.
1083          *
1084          * What is found in the superblocks of the devices is always
1085          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1086          */
1087         for (i = 0; i < rs->md.raid_disks; i++) {
1088                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1089                 rs->dev[i].rdev.recovery_offset = MaxSector;
1090         }
1091
1092         /*
1093          * Second, parse the unordered optional arguments
1094          */
1095         for (i = 0; i < num_raid_params; i++) {
1096                 key = dm_shift_arg(as);
1097                 if (!key) {
1098                         rs->ti->error = "Not enough raid parameters given";
1099                         return -EINVAL;
1100                 }
1101
1102                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1103                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1104                                 rs->ti->error = "Only one 'nosync' argument allowed";
1105                                 return -EINVAL;
1106                         }
1107                         continue;
1108                 }
1109                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1110                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1111                                 rs->ti->error = "Only one 'sync' argument allowed";
1112                                 return -EINVAL;
1113                         }
1114                         continue;
1115                 }
1116                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1117                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1118                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1119                                 return -EINVAL;
1120                         }
1121                         continue;
1122                 }
1123
1124                 arg = dm_shift_arg(as);
1125                 i++; /* Account for the argument pairs */
1126                 if (!arg) {
1127                         rs->ti->error = "Wrong number of raid parameters given";
1128                         return -EINVAL;
1129                 }
1130
1131                 /*
1132                  * Parameters that take a string value are checked here.
1133                  */
1134
1135                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1136                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1137                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1138                                 return -EINVAL;
1139                         }
1140                         if (!rt_is_raid10(rt)) {
1141                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1142                                 return -EINVAL;
1143                         }
1144                         raid10_format = raid10_name_to_format(arg);
1145                         if (raid10_format < 0) {
1146                                 rs->ti->error = "Invalid 'raid10_format' value given";
1147                                 return raid10_format;
1148                         }
1149                         continue;
1150                 }
1151
1152                 if (kstrtoint(arg, 10, &value) < 0) {
1153                         rs->ti->error = "Bad numerical argument given in raid params";
1154                         return -EINVAL;
1155                 }
1156
1157                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1158                         /*
1159                          * "rebuild" is being passed in by userspace to provide
1160                          * indexes of replaced devices and to set up additional
1161                          * devices on raid level takeover.
1162                          */
1163                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1164                                 rs->ti->error = "Invalid rebuild index given";
1165                                 return -EINVAL;
1166                         }
1167
1168                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1169                                 rs->ti->error = "rebuild for this index already given";
1170                                 return -EINVAL;
1171                         }
1172
1173                         rd = rs->dev + value;
1174                         clear_bit(In_sync, &rd->rdev.flags);
1175                         clear_bit(Faulty, &rd->rdev.flags);
1176                         rd->rdev.recovery_offset = 0;
1177                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1178                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1179                         if (!rt_is_raid1(rt)) {
1180                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1181                                 return -EINVAL;
1182                         }
1183
1184                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1185                                 rs->ti->error = "Invalid write_mostly index given";
1186                                 return -EINVAL;
1187                         }
1188
1189                         write_mostly++;
1190                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1191                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1192                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1193                         if (!rt_is_raid1(rt)) {
1194                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1195                                 return -EINVAL;
1196                         }
1197
1198                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1199                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1200                                 return -EINVAL;
1201                         }
1202
1203                         /*
1204                          * In device-mapper, we specify things in sectors, but
1205                          * MD records this value in kB
1206                          */
1207                         value /= 2;
1208                         if (value > COUNTER_MAX) {
1209                                 rs->ti->error = "Max write-behind limit out of range";
1210                                 return -EINVAL;
1211                         }
1212
1213                         rs->md.bitmap_info.max_write_behind = value;
1214                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1215                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1216                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1217                                 return -EINVAL;
1218                         }
1219                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1220                                 rs->ti->error = "daemon sleep period out of range";
1221                                 return -EINVAL;
1222                         }
1223                         rs->md.bitmap_info.daemon_sleep = value;
1224                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1225                         /* Userspace passes new data_offset after having extended the the data image LV */
1226                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1227                                 rs->ti->error = "Only one data_offset argument pair allowed";
1228                                 return -EINVAL;
1229                         }
1230                         /* Ensure sensible data offset */
1231                         if (value < 0 ||
1232                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1233                                 rs->ti->error = "Bogus data_offset value";
1234                                 return -EINVAL;
1235                         }
1236                         rs->data_offset = value;
1237                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1238                         /* Define the +/-# of disks to add to/remove from the given raid set */
1239                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1240                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1241                                 return -EINVAL;
1242                         }
1243                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1244                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1245                                 rs->ti->error = "Too many delta_disk requested";
1246                                 return -EINVAL;
1247                         }
1248
1249                         rs->delta_disks = value;
1250                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1251                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1252                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1253                                 return -EINVAL;
1254                         }
1255
1256                         if (!rt_is_raid456(rt)) {
1257                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1258                                 return -EINVAL;
1259                         }
1260
1261                         rs->stripe_cache_entries = value;
1262                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1263                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1264                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1265                                 return -EINVAL;
1266                         }
1267                         if (value > INT_MAX) {
1268                                 rs->ti->error = "min_recovery_rate out of range";
1269                                 return -EINVAL;
1270                         }
1271                         rs->md.sync_speed_min = (int)value;
1272                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1273                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1274                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1275                                 return -EINVAL;
1276                         }
1277                         if (value > INT_MAX) {
1278                                 rs->ti->error = "max_recovery_rate out of range";
1279                                 return -EINVAL;
1280                         }
1281                         rs->md.sync_speed_max = (int)value;
1282                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1283                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1284                                 rs->ti->error = "Only one region_size argument pair allowed";
1285                                 return -EINVAL;
1286                         }
1287
1288                         region_size = value;
1289                         rs->requested_bitmap_chunk_sectors = value;
1290                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1291                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1292                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1293                                 return -EINVAL;
1294                         }
1295
1296                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1297                                 rs->ti->error = "Bad value for 'raid10_copies'";
1298                                 return -EINVAL;
1299                         }
1300
1301                         raid10_copies = value;
1302                 } else {
1303                         DMERR("Unable to parse RAID parameter: %s", key);
1304                         rs->ti->error = "Unable to parse RAID parameter";
1305                         return -EINVAL;
1306                 }
1307         }
1308
1309         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1310             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1311                 rs->ti->error = "sync and nosync are mutually exclusive";
1312                 return -EINVAL;
1313         }
1314
1315         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1316             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1317              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1318                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1319                 return -EINVAL;
1320         }
1321
1322         if (write_mostly >= rs->md.raid_disks) {
1323                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1324                 return -EINVAL;
1325         }
1326
1327         if (validate_region_size(rs, region_size))
1328                 return -EINVAL;
1329
1330         if (rs->md.chunk_sectors)
1331                 max_io_len = rs->md.chunk_sectors;
1332         else
1333                 max_io_len = region_size;
1334
1335         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1336                 return -EINVAL;
1337
1338         if (rt_is_raid10(rt)) {
1339                 if (raid10_copies > rs->md.raid_disks) {
1340                         rs->ti->error = "Not enough devices to satisfy specification";
1341                         return -EINVAL;
1342                 }
1343
1344                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1345                 if (rs->md.new_layout < 0) {
1346                         rs->ti->error = "Error getting raid10 format";
1347                         return rs->md.new_layout;
1348                 }
1349
1350                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1351                 if (!rt) {
1352                         rs->ti->error = "Failed to recognize new raid10 layout";
1353                         return -EINVAL;
1354                 }
1355
1356                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1357                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1358                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1359                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1360                         return -EINVAL;
1361                 }
1362         }
1363
1364         rs->raid10_copies = raid10_copies;
1365
1366         /* Assume there are no metadata devices until the drives are parsed */
1367         rs->md.persistent = 0;
1368         rs->md.external = 1;
1369
1370         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1371         return rs_check_for_valid_flags(rs);
1372 }
1373
1374 /* Set raid4/5/6 cache size */
1375 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1376 {
1377         int r;
1378         struct r5conf *conf;
1379         struct mddev *mddev = &rs->md;
1380         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1381         uint32_t nr_stripes = rs->stripe_cache_entries;
1382
1383         if (!rt_is_raid456(rs->raid_type)) {
1384                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1385                 return -EINVAL;
1386         }
1387
1388         if (nr_stripes < min_stripes) {
1389                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1390                        nr_stripes, min_stripes);
1391                 nr_stripes = min_stripes;
1392         }
1393
1394         conf = mddev->private;
1395         if (!conf) {
1396                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1397                 return -EINVAL;
1398         }
1399
1400         /* Try setting number of stripes in raid456 stripe cache */
1401         if (conf->min_nr_stripes != nr_stripes) {
1402                 r = raid5_set_cache_size(mddev, nr_stripes);
1403                 if (r) {
1404                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1405                         return r;
1406                 }
1407
1408                 DMINFO("%u stripe cache entries", nr_stripes);
1409         }
1410
1411         return 0;
1412 }
1413
1414 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1415 static unsigned int mddev_data_stripes(struct raid_set *rs)
1416 {
1417         return rs->md.raid_disks - rs->raid_type->parity_devs;
1418 }
1419
1420 /* Return # of data stripes of @rs (i.e. as of ctr) */
1421 static unsigned int rs_data_stripes(struct raid_set *rs)
1422 {
1423         return rs->raid_disks - rs->raid_type->parity_devs;
1424 }
1425
1426 /* Calculate the sectors per device and per array used for @rs */
1427 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1428 {
1429         int delta_disks;
1430         unsigned int data_stripes;
1431         struct mddev *mddev = &rs->md;
1432         struct md_rdev *rdev;
1433         sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1434
1435         if (use_mddev) {
1436                 delta_disks = mddev->delta_disks;
1437                 data_stripes = mddev_data_stripes(rs);
1438         } else {
1439                 delta_disks = rs->delta_disks;
1440                 data_stripes = rs_data_stripes(rs);
1441         }
1442
1443         /* Special raid1 case w/o delta_disks support (yet) */
1444         if (rt_is_raid1(rs->raid_type))
1445                 ;
1446         else if (rt_is_raid10(rs->raid_type)) {
1447                 if (rs->raid10_copies < 2 ||
1448                     delta_disks < 0) {
1449                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1450                         return EINVAL;
1451                 }
1452
1453                 dev_sectors *= rs->raid10_copies;
1454                 if (sector_div(dev_sectors, data_stripes))
1455                         goto bad;
1456
1457                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1458                 if (sector_div(array_sectors, rs->raid10_copies))
1459                         goto bad;
1460
1461         } else if (sector_div(dev_sectors, data_stripes))
1462                 goto bad;
1463
1464         else
1465                 /* Striped layouts */
1466                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1467
1468         rdev_for_each(rdev, mddev)
1469                 rdev->sectors = dev_sectors;
1470
1471         mddev->array_sectors = array_sectors;
1472         mddev->dev_sectors = dev_sectors;
1473
1474         return 0;
1475 bad:
1476         rs->ti->error = "Target length not divisible by number of data devices";
1477         return EINVAL;
1478 }
1479
1480 /* Setup recovery on @rs */
1481 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1482 {
1483         /* raid0 does not recover */
1484         if (rs_is_raid0(rs))
1485                 rs->md.recovery_cp = MaxSector;
1486         /*
1487          * A raid6 set has to be recovered either
1488          * completely or for the grown part to
1489          * ensure proper parity and Q-Syndrome
1490          */
1491         else if (rs_is_raid6(rs))
1492                 rs->md.recovery_cp = dev_sectors;
1493         /*
1494          * Other raid set types may skip recovery
1495          * depending on the 'nosync' flag.
1496          */
1497         else
1498                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1499                                      ? MaxSector : dev_sectors;
1500 }
1501
1502 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1503 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1504 {
1505         if (!dev_sectors)
1506                 /* New raid set or 'sync' flag provided */
1507                 __rs_setup_recovery(rs, 0);
1508         else if (dev_sectors == MaxSector)
1509                 /* Prevent recovery */
1510                 __rs_setup_recovery(rs, MaxSector);
1511         else if (rs->dev[0].rdev.sectors < dev_sectors)
1512                 /* Grown raid set */
1513                 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1514         else
1515                 __rs_setup_recovery(rs, MaxSector);
1516 }
1517
1518 static void do_table_event(struct work_struct *ws)
1519 {
1520         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1521
1522         smp_rmb(); /* Make sure we access most actual mddev properties */
1523         if (!rs_is_reshaping(rs))
1524                 rs_set_capacity(rs);
1525         dm_table_event(rs->ti->table);
1526 }
1527
1528 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1529 {
1530         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1531
1532         return mddev_congested(&rs->md, bits);
1533 }
1534
1535 /*
1536  * Make sure a valid takover (level switch) is being requested on @rs
1537  *
1538  * Conversions of raid sets from one MD personality to another
1539  * have to conform to restrictions which are enforced here.
1540  */
1541 static int rs_check_takeover(struct raid_set *rs)
1542 {
1543         struct mddev *mddev = &rs->md;
1544         unsigned int near_copies;
1545
1546         if (rs->md.degraded) {
1547                 rs->ti->error = "Can't takeover degraded raid set";
1548                 return -EPERM;
1549         }
1550
1551         if (rs_is_reshaping(rs)) {
1552                 rs->ti->error = "Can't takeover reshaping raid set";
1553                 return -EPERM;
1554         }
1555
1556         switch (mddev->level) {
1557         case 0:
1558                 /* raid0 -> raid1/5 with one disk */
1559                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1560                     mddev->raid_disks == 1)
1561                         return 0;
1562
1563                 /* raid0 -> raid10 */
1564                 if (mddev->new_level == 10 &&
1565                     !(rs->raid_disks % mddev->raid_disks))
1566                         return 0;
1567
1568                 /* raid0 with multiple disks -> raid4/5/6 */
1569                 if (__within_range(mddev->new_level, 4, 6) &&
1570                     mddev->new_layout == ALGORITHM_PARITY_N &&
1571                     mddev->raid_disks > 1)
1572                         return 0;
1573
1574                 break;
1575
1576         case 10:
1577                 /* Can't takeover raid10_offset! */
1578                 if (__is_raid10_offset(mddev->layout))
1579                         break;
1580
1581                 near_copies = __raid10_near_copies(mddev->layout);
1582
1583                 /* raid10* -> raid0 */
1584                 if (mddev->new_level == 0) {
1585                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1586                         if (near_copies > 1 &&
1587                             !(mddev->raid_disks % near_copies)) {
1588                                 mddev->raid_disks /= near_copies;
1589                                 mddev->delta_disks = mddev->raid_disks;
1590                                 return 0;
1591                         }
1592
1593                         /* Can takeover raid10_far */
1594                         if (near_copies == 1 &&
1595                             __raid10_far_copies(mddev->layout) > 1)
1596                                 return 0;
1597
1598                         break;
1599                 }
1600
1601                 /* raid10_{near,far} -> raid1 */
1602                 if (mddev->new_level == 1 &&
1603                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1604                         return 0;
1605
1606                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1607                 if (__within_range(mddev->new_level, 4, 5) &&
1608                     mddev->raid_disks == 2)
1609                         return 0;
1610                 break;
1611
1612         case 1:
1613                 /* raid1 with 2 disks -> raid4/5 */
1614                 if (__within_range(mddev->new_level, 4, 5) &&
1615                     mddev->raid_disks == 2) {
1616                         mddev->degraded = 1;
1617                         return 0;
1618                 }
1619
1620                 /* raid1 -> raid0 */
1621                 if (mddev->new_level == 0 &&
1622                     mddev->raid_disks == 1)
1623                         return 0;
1624
1625                 /* raid1 -> raid10 */
1626                 if (mddev->new_level == 10)
1627                         return 0;
1628                 break;
1629
1630         case 4:
1631                 /* raid4 -> raid0 */
1632                 if (mddev->new_level == 0)
1633                         return 0;
1634
1635                 /* raid4 -> raid1/5 with 2 disks */
1636                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1637                     mddev->raid_disks == 2)
1638                         return 0;
1639
1640                 /* raid4 -> raid5/6 with parity N */
1641                 if (__within_range(mddev->new_level, 5, 6) &&
1642                     mddev->layout == ALGORITHM_PARITY_N)
1643                         return 0;
1644                 break;
1645
1646         case 5:
1647                 /* raid5 with parity N -> raid0 */
1648                 if (mddev->new_level == 0 &&
1649                     mddev->layout == ALGORITHM_PARITY_N)
1650                         return 0;
1651
1652                 /* raid5 with parity N -> raid4 */
1653                 if (mddev->new_level == 4 &&
1654                     mddev->layout == ALGORITHM_PARITY_N)
1655                         return 0;
1656
1657                 /* raid5 with 2 disks -> raid1/4/10 */
1658                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1659                     mddev->raid_disks == 2)
1660                         return 0;
1661
1662                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1663                 if (mddev->new_level == 6 &&
1664                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1665                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1666                         return 0;
1667                 break;
1668
1669         case 6:
1670                 /* raid6 with parity N -> raid0 */
1671                 if (mddev->new_level == 0 &&
1672                     mddev->layout == ALGORITHM_PARITY_N)
1673                         return 0;
1674
1675                 /* raid6 with parity N -> raid4 */
1676                 if (mddev->new_level == 4 &&
1677                     mddev->layout == ALGORITHM_PARITY_N)
1678                         return 0;
1679
1680                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1681                 if (mddev->new_level == 5 &&
1682                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1683                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1684                         return 0;
1685
1686         default:
1687                 break;
1688         }
1689
1690         rs->ti->error = "takeover not possible";
1691         return -EINVAL;
1692 }
1693
1694 /* True if @rs requested to be taken over */
1695 static bool rs_takeover_requested(struct raid_set *rs)
1696 {
1697         return rs->md.new_level != rs->md.level;
1698 }
1699
1700 /* True if @rs is requested to reshape by ctr */
1701 static bool rs_reshape_requested(struct raid_set *rs)
1702 {
1703         struct mddev *mddev = &rs->md;
1704
1705         if (!mddev->level)
1706                 return false;
1707
1708         return !__is_raid10_far(mddev->new_layout) &&
1709                mddev->new_level == mddev->level &&
1710                (mddev->new_layout != mddev->layout ||
1711                 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1712                 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1713 }
1714
1715 /*  Features */
1716 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1717
1718 /* State flags for sb->flags */
1719 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1720 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1721
1722 /*
1723  * This structure is never routinely used by userspace, unlike md superblocks.
1724  * Devices with this superblock should only ever be accessed via device-mapper.
1725  */
1726 #define DM_RAID_MAGIC 0x64526D44
1727 struct dm_raid_superblock {
1728         __le32 magic;           /* "DmRd" */
1729         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1730
1731         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1732         __le32 array_position;  /* The position of this drive in the raid set */
1733
1734         __le64 events;          /* Incremented by md when superblock updated */
1735         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1736                                 /* indicate failures (see extension below) */
1737
1738         /*
1739          * This offset tracks the progress of the repair or replacement of
1740          * an individual drive.
1741          */
1742         __le64 disk_recovery_offset;
1743
1744         /*
1745          * This offset tracks the progress of the initial raid set
1746          * synchronisation/parity calculation.
1747          */
1748         __le64 array_resync_offset;
1749
1750         /*
1751          * raid characteristics
1752          */
1753         __le32 level;
1754         __le32 layout;
1755         __le32 stripe_sectors;
1756
1757         /********************************************************************
1758          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1759          *
1760          * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1761          */
1762
1763         __le32 flags; /* Flags defining array states for reshaping */
1764
1765         /*
1766          * This offset tracks the progress of a raid
1767          * set reshape in order to be able to restart it
1768          */
1769         __le64 reshape_position;
1770
1771         /*
1772          * These define the properties of the array in case of an interrupted reshape
1773          */
1774         __le32 new_level;
1775         __le32 new_layout;
1776         __le32 new_stripe_sectors;
1777         __le32 delta_disks;
1778
1779         __le64 array_sectors; /* Array size in sectors */
1780
1781         /*
1782          * Sector offsets to data on devices (reshaping).
1783          * Needed to support out of place reshaping, thus
1784          * not writing over any stripes whilst converting
1785          * them from old to new layout
1786          */
1787         __le64 data_offset;
1788         __le64 new_data_offset;
1789
1790         __le64 sectors; /* Used device size in sectors */
1791
1792         /*
1793          * Additonal Bit field of devices indicating failures to support
1794          * up to 256 devices with the 1.9.0 on-disk metadata format
1795          */
1796         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1797
1798         __le32 incompat_features;       /* Used to indicate any incompatible features */
1799
1800         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1801 } __packed;
1802
1803 /*
1804  * Check for reshape constraints on raid set @rs:
1805  *
1806  * - reshape function non-existent
1807  * - degraded set
1808  * - ongoing recovery
1809  * - ongoing reshape
1810  *
1811  * Returns 0 if none or -EPERM if given constraint
1812  * and error message reference in @errmsg
1813  */
1814 static int rs_check_reshape(struct raid_set *rs)
1815 {
1816         struct mddev *mddev = &rs->md;
1817
1818         if (!mddev->pers || !mddev->pers->check_reshape)
1819                 rs->ti->error = "Reshape not supported";
1820         else if (mddev->degraded)
1821                 rs->ti->error = "Can't reshape degraded raid set";
1822         else if (rs_is_recovering(rs))
1823                 rs->ti->error = "Convert request on recovering raid set prohibited";
1824         else if (mddev->reshape_position && rs_is_reshaping(rs))
1825                 rs->ti->error = "raid set already reshaping!";
1826         else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1827                 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1828         else
1829                 return 0;
1830
1831         return -EPERM;
1832 }
1833
1834 static int read_disk_sb(struct md_rdev *rdev, int size)
1835 {
1836         BUG_ON(!rdev->sb_page);
1837
1838         if (rdev->sb_loaded)
1839                 return 0;
1840
1841         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1842                 DMERR("Failed to read superblock of device at position %d",
1843                       rdev->raid_disk);
1844                 md_error(rdev->mddev, rdev);
1845                 return -EINVAL;
1846         }
1847
1848         rdev->sb_loaded = 1;
1849
1850         return 0;
1851 }
1852
1853 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1854 {
1855         failed_devices[0] = le64_to_cpu(sb->failed_devices);
1856         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1857
1858         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1859                 int i = ARRAY_SIZE(sb->extended_failed_devices);
1860
1861                 while (i--)
1862                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1863         }
1864 }
1865
1866 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1867 {
1868         int i = ARRAY_SIZE(sb->extended_failed_devices);
1869
1870         sb->failed_devices = cpu_to_le64(failed_devices[0]);
1871         while (i--)
1872                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1873 }
1874
1875 /*
1876  * Synchronize the superblock members with the raid set properties
1877  *
1878  * All superblock data is little endian.
1879  */
1880 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1881 {
1882         bool update_failed_devices = false;
1883         unsigned int i;
1884         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1885         struct dm_raid_superblock *sb;
1886         struct raid_set *rs = container_of(mddev, struct raid_set, md);
1887
1888         /* No metadata device, no superblock */
1889         if (!rdev->meta_bdev)
1890                 return;
1891
1892         BUG_ON(!rdev->sb_page);
1893
1894         sb = page_address(rdev->sb_page);
1895
1896         sb_retrieve_failed_devices(sb, failed_devices);
1897
1898         for (i = 0; i < rs->raid_disks; i++)
1899                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1900                         update_failed_devices = true;
1901                         set_bit(i, (void *) failed_devices);
1902                 }
1903
1904         if (update_failed_devices)
1905                 sb_update_failed_devices(sb, failed_devices);
1906
1907         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1908         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1909
1910         sb->num_devices = cpu_to_le32(mddev->raid_disks);
1911         sb->array_position = cpu_to_le32(rdev->raid_disk);
1912
1913         sb->events = cpu_to_le64(mddev->events);
1914
1915         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1916         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1917
1918         sb->level = cpu_to_le32(mddev->level);
1919         sb->layout = cpu_to_le32(mddev->layout);
1920         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1921
1922         sb->new_level = cpu_to_le32(mddev->new_level);
1923         sb->new_layout = cpu_to_le32(mddev->new_layout);
1924         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1925
1926         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1927
1928         smp_rmb(); /* Make sure we access most recent reshape position */
1929         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1930         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1931                 /* Flag ongoing reshape */
1932                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1933
1934                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1935                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1936         } else {
1937                 /* Clear reshape flags */
1938                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1939         }
1940
1941         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1942         sb->data_offset = cpu_to_le64(rdev->data_offset);
1943         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1944         sb->sectors = cpu_to_le64(rdev->sectors);
1945
1946         /* Zero out the rest of the payload after the size of the superblock */
1947         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1948 }
1949
1950 /*
1951  * super_load
1952  *
1953  * This function creates a superblock if one is not found on the device
1954  * and will decide which superblock to use if there's a choice.
1955  *
1956  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1957  */
1958 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1959 {
1960         int r;
1961         struct dm_raid_superblock *sb;
1962         struct dm_raid_superblock *refsb;
1963         uint64_t events_sb, events_refsb;
1964
1965         rdev->sb_start = 0;
1966         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1967         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1968                 DMERR("superblock size of a logical block is no longer valid");
1969                 return -EINVAL;
1970         }
1971
1972         r = read_disk_sb(rdev, rdev->sb_size);
1973         if (r)
1974                 return r;
1975
1976         sb = page_address(rdev->sb_page);
1977
1978         /*
1979          * Two cases that we want to write new superblocks and rebuild:
1980          * 1) New device (no matching magic number)
1981          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1982          */
1983         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1984             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1985                 super_sync(rdev->mddev, rdev);
1986
1987                 set_bit(FirstUse, &rdev->flags);
1988                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1989
1990                 /* Force writing of superblocks to disk */
1991                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1992
1993                 /* Any superblock is better than none, choose that if given */
1994                 return refdev ? 0 : 1;
1995         }
1996
1997         if (!refdev)
1998                 return 1;
1999
2000         events_sb = le64_to_cpu(sb->events);
2001
2002         refsb = page_address(refdev->sb_page);
2003         events_refsb = le64_to_cpu(refsb->events);
2004
2005         return (events_sb > events_refsb) ? 1 : 0;
2006 }
2007
2008 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2009 {
2010         int role;
2011         unsigned int d;
2012         struct mddev *mddev = &rs->md;
2013         uint64_t events_sb;
2014         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2015         struct dm_raid_superblock *sb;
2016         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2017         struct md_rdev *r;
2018         struct dm_raid_superblock *sb2;
2019
2020         sb = page_address(rdev->sb_page);
2021         events_sb = le64_to_cpu(sb->events);
2022
2023         /*
2024          * Initialise to 1 if this is a new superblock.
2025          */
2026         mddev->events = events_sb ? : 1;
2027
2028         mddev->reshape_position = MaxSector;
2029
2030         /*
2031          * Reshaping is supported, e.g. reshape_position is valid
2032          * in superblock and superblock content is authoritative.
2033          */
2034         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2035                 /* Superblock is authoritative wrt given raid set layout! */
2036                 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2037                 mddev->level = le32_to_cpu(sb->level);
2038                 mddev->layout = le32_to_cpu(sb->layout);
2039                 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2040                 mddev->new_level = le32_to_cpu(sb->new_level);
2041                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2042                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2043                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2044                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2045
2046                 /* raid was reshaping and got interrupted */
2047                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2048                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2049                                 DMERR("Reshape requested but raid set is still reshaping");
2050                                 return -EINVAL;
2051                         }
2052
2053                         if (mddev->delta_disks < 0 ||
2054                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2055                                 mddev->reshape_backwards = 1;
2056                         else
2057                                 mddev->reshape_backwards = 0;
2058
2059                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2060                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2061                 }
2062
2063         } else {
2064                 /*
2065                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2066                  */
2067                 if (le32_to_cpu(sb->level) != mddev->level) {
2068                         DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2069                         return -EINVAL;
2070                 }
2071                 if (le32_to_cpu(sb->layout) != mddev->layout) {
2072                         DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2073                         DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2074                         DMERR("  Old layout: %s w/ %d copies",
2075                               raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2076                               raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2077                         DMERR("  New layout: %s w/ %d copies",
2078                               raid10_md_layout_to_format(mddev->layout),
2079                               raid10_md_layout_to_copies(mddev->layout));
2080                         return -EINVAL;
2081                 }
2082                 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2083                         DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2084                         return -EINVAL;
2085                 }
2086
2087                 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2088                 if (!rt_is_raid1(rs->raid_type) &&
2089                     (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2090                         DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2091                               sb->num_devices, mddev->raid_disks);
2092                         return -EINVAL;
2093                 }
2094
2095                 /* Table line is checked vs. authoritative superblock */
2096                 rs_set_new(rs);
2097         }
2098
2099         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2100                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2101
2102         /*
2103          * During load, we set FirstUse if a new superblock was written.
2104          * There are two reasons we might not have a superblock:
2105          * 1) The raid set is brand new - in which case, all of the
2106          *    devices must have their In_sync bit set.  Also,
2107          *    recovery_cp must be 0, unless forced.
2108          * 2) This is a new device being added to an old raid set
2109          *    and the new device needs to be rebuilt - in which
2110          *    case the In_sync bit will /not/ be set and
2111          *    recovery_cp must be MaxSector.
2112          * 3) This is/are a new device(s) being added to an old
2113          *    raid set during takeover to a higher raid level
2114          *    to provide capacity for redundancy or during reshape
2115          *    to add capacity to grow the raid set.
2116          */
2117         d = 0;
2118         rdev_for_each(r, mddev) {
2119                 if (test_bit(FirstUse, &r->flags))
2120                         new_devs++;
2121
2122                 if (!test_bit(In_sync, &r->flags)) {
2123                         DMINFO("Device %d specified for rebuild; clearing superblock",
2124                                 r->raid_disk);
2125                         rebuilds++;
2126
2127                         if (test_bit(FirstUse, &r->flags))
2128                                 rebuild_and_new++;
2129                 }
2130
2131                 d++;
2132         }
2133
2134         if (new_devs == rs->raid_disks || !rebuilds) {
2135                 /* Replace a broken device */
2136                 if (new_devs == 1 && !rs->delta_disks)
2137                         ;
2138                 if (new_devs == rs->raid_disks) {
2139                         DMINFO("Superblocks created for new raid set");
2140                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2141                 } else if (new_devs != rebuilds &&
2142                            new_devs != rs->delta_disks) {
2143                         DMERR("New device injected into existing raid set without "
2144                               "'delta_disks' or 'rebuild' parameter specified");
2145                         return -EINVAL;
2146                 }
2147         } else if (new_devs && new_devs != rebuilds) {
2148                 DMERR("%u 'rebuild' devices cannot be injected into"
2149                       " a raid set with %u other first-time devices",
2150                       rebuilds, new_devs);
2151                 return -EINVAL;
2152         } else if (rebuilds) {
2153                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2154                         DMERR("new device%s provided without 'rebuild'",
2155                               new_devs > 1 ? "s" : "");
2156                         return -EINVAL;
2157                 } else if (rs_is_recovering(rs)) {
2158                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2159                               (unsigned long long) mddev->recovery_cp);
2160                         return -EINVAL;
2161                 } else if (rs_is_reshaping(rs)) {
2162                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2163                               (unsigned long long) mddev->reshape_position);
2164                         return -EINVAL;
2165                 }
2166         }
2167
2168         /*
2169          * Now we set the Faulty bit for those devices that are
2170          * recorded in the superblock as failed.
2171          */
2172         sb_retrieve_failed_devices(sb, failed_devices);
2173         rdev_for_each(r, mddev) {
2174                 if (!r->sb_page)
2175                         continue;
2176                 sb2 = page_address(r->sb_page);
2177                 sb2->failed_devices = 0;
2178                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2179
2180                 /*
2181                  * Check for any device re-ordering.
2182                  */
2183                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2184                         role = le32_to_cpu(sb2->array_position);
2185                         if (role < 0)
2186                                 continue;
2187
2188                         if (role != r->raid_disk) {
2189                                 if (__is_raid10_near(mddev->layout)) {
2190                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2191                                             rs->raid_disks % rs->raid10_copies) {
2192                                                 rs->ti->error =
2193                                                         "Cannot change raid10 near set to odd # of devices!";
2194                                                 return -EINVAL;
2195                                         }
2196
2197                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2198
2199                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2200                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2201                                            !rt_is_raid1(rs->raid_type)) {
2202                                         rs->ti->error = "Cannot change device positions in raid set";
2203                                         return -EINVAL;
2204                                 }
2205
2206                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2207                         }
2208
2209                         /*
2210                          * Partial recovery is performed on
2211                          * returning failed devices.
2212                          */
2213                         if (test_bit(role, (void *) failed_devices))
2214                                 set_bit(Faulty, &r->flags);
2215                 }
2216         }
2217
2218         return 0;
2219 }
2220
2221 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2222 {
2223         struct mddev *mddev = &rs->md;
2224         struct dm_raid_superblock *sb;
2225
2226         if (rs_is_raid0(rs) || !rdev->sb_page)
2227                 return 0;
2228
2229         sb = page_address(rdev->sb_page);
2230
2231         /*
2232          * If mddev->events is not set, we know we have not yet initialized
2233          * the array.
2234          */
2235         if (!mddev->events && super_init_validation(rs, rdev))
2236                 return -EINVAL;
2237
2238         if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2239                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2240                 return -EINVAL;
2241         }
2242
2243         if (sb->incompat_features) {
2244                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2245                 return -EINVAL;
2246         }
2247
2248         /* Enable bitmap creation for RAID levels != 0 */
2249         mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2250         rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2251
2252         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2253                 /* Retrieve device size stored in superblock to be prepared for shrink */
2254                 rdev->sectors = le64_to_cpu(sb->sectors);
2255                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2256                 if (rdev->recovery_offset == MaxSector)
2257                         set_bit(In_sync, &rdev->flags);
2258                 /*
2259                  * If no reshape in progress -> we're recovering single
2260                  * disk(s) and have to set the device(s) to out-of-sync
2261                  */
2262                 else if (!rs_is_reshaping(rs))
2263                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2264         }
2265
2266         /*
2267          * If a device comes back, set it as not In_sync and no longer faulty.
2268          */
2269         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2270                 rdev->recovery_offset = 0;
2271                 clear_bit(In_sync, &rdev->flags);
2272                 rdev->saved_raid_disk = rdev->raid_disk;
2273         }
2274
2275         /* Reshape support -> restore repective data offsets */
2276         rdev->data_offset = le64_to_cpu(sb->data_offset);
2277         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2278
2279         return 0;
2280 }
2281
2282 /*
2283  * Analyse superblocks and select the freshest.
2284  */
2285 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2286 {
2287         int r;
2288         struct raid_dev *dev;
2289         struct md_rdev *rdev, *tmp, *freshest;
2290         struct mddev *mddev = &rs->md;
2291
2292         freshest = NULL;
2293         rdev_for_each_safe(rdev, tmp, mddev) {
2294                 /*
2295                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2296                  * the array to undergo initialization again as
2297                  * though it were new.  This is the intended effect
2298                  * of the "sync" directive.
2299                  *
2300                  * When reshaping capability is added, we must ensure
2301                  * that the "sync" directive is disallowed during the
2302                  * reshape.
2303                  */
2304                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2305                         continue;
2306
2307                 if (!rdev->meta_bdev)
2308                         continue;
2309
2310                 r = super_load(rdev, freshest);
2311
2312                 switch (r) {
2313                 case 1:
2314                         freshest = rdev;
2315                         break;
2316                 case 0:
2317                         break;
2318                 default:
2319                         dev = container_of(rdev, struct raid_dev, rdev);
2320                         if (dev->meta_dev)
2321                                 dm_put_device(ti, dev->meta_dev);
2322
2323                         dev->meta_dev = NULL;
2324                         rdev->meta_bdev = NULL;
2325
2326                         if (rdev->sb_page)
2327                                 put_page(rdev->sb_page);
2328
2329                         rdev->sb_page = NULL;
2330
2331                         rdev->sb_loaded = 0;
2332
2333                         /*
2334                          * We might be able to salvage the data device
2335                          * even though the meta device has failed.  For
2336                          * now, we behave as though '- -' had been
2337                          * set for this device in the table.
2338                          */
2339                         if (dev->data_dev)
2340                                 dm_put_device(ti, dev->data_dev);
2341
2342                         dev->data_dev = NULL;
2343                         rdev->bdev = NULL;
2344
2345                         list_del(&rdev->same_set);
2346                 }
2347         }
2348
2349         if (!freshest)
2350                 return 0;
2351
2352         if (validate_raid_redundancy(rs)) {
2353                 rs->ti->error = "Insufficient redundancy to activate array";
2354                 return -EINVAL;
2355         }
2356
2357         /*
2358          * Validation of the freshest device provides the source of
2359          * validation for the remaining devices.
2360          */
2361         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2362         if (super_validate(rs, freshest))
2363                 return -EINVAL;
2364
2365         rdev_for_each(rdev, mddev)
2366                 if ((rdev != freshest) && super_validate(rs, rdev))
2367                         return -EINVAL;
2368         return 0;
2369 }
2370
2371 /*
2372  * Adjust data_offset and new_data_offset on all disk members of @rs
2373  * for out of place reshaping if requested by contructor
2374  *
2375  * We need free space at the beginning of each raid disk for forward
2376  * and at the end for backward reshapes which userspace has to provide
2377  * via remapping/reordering of space.
2378  */
2379 static int rs_adjust_data_offsets(struct raid_set *rs)
2380 {
2381         sector_t data_offset = 0, new_data_offset = 0;
2382         struct md_rdev *rdev;
2383
2384         /* Constructor did not request data offset change */
2385         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2386                 if (!rs_is_reshapable(rs))
2387                         goto out;
2388
2389                 return 0;
2390         }
2391
2392         /* HM FIXME: get InSync raid_dev? */
2393         rdev = &rs->dev[0].rdev;
2394
2395         if (rs->delta_disks < 0) {
2396                 /*
2397                  * Removing disks (reshaping backwards):
2398                  *
2399                  * - before reshape: data is at offset 0 and free space
2400                  *                   is at end of each component LV
2401                  *
2402                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2403                  */
2404                 data_offset = 0;
2405                 new_data_offset = rs->data_offset;
2406
2407         } else if (rs->delta_disks > 0) {
2408                 /*
2409                  * Adding disks (reshaping forwards):
2410                  *
2411                  * - before reshape: data is at offset rs->data_offset != 0 and
2412                  *                   free space is at begin of each component LV
2413                  *
2414                  * - after reshape: data is at offset 0 on each component LV
2415                  */
2416                 data_offset = rs->data_offset;
2417                 new_data_offset = 0;
2418
2419         } else {
2420                 /*
2421                  * User space passes in 0 for data offset after having removed reshape space
2422                  *
2423                  * - or - (data offset != 0)
2424                  *
2425                  * Changing RAID layout or chunk size -> toggle offsets
2426                  *
2427                  * - before reshape: data is at offset rs->data_offset 0 and
2428                  *                   free space is at end of each component LV
2429                  *                   -or-
2430                  *                   data is at offset rs->data_offset != 0 and
2431                  *                   free space is at begin of each component LV
2432                  *
2433                  * - after reshape: data is at offset 0 if it was at offset != 0
2434                  *                  or at offset != 0 if it was at offset 0
2435                  *                  on each component LV
2436                  *
2437                  */
2438                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2439                 new_data_offset = data_offset ? 0 : rs->data_offset;
2440                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2441         }
2442
2443         /*
2444          * Make sure we got a minimum amount of free sectors per device
2445          */
2446         if (rs->data_offset &&
2447             to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2448                 rs->ti->error = data_offset ? "No space for forward reshape" :
2449                                               "No space for backward reshape";
2450                 return -ENOSPC;
2451         }
2452 out:
2453         /* Adjust data offsets on all rdevs */
2454         rdev_for_each(rdev, &rs->md) {
2455                 rdev->data_offset = data_offset;
2456                 rdev->new_data_offset = new_data_offset;
2457         }
2458
2459         return 0;
2460 }
2461
2462 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2463 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2464 {
2465         int i = 0;
2466         struct md_rdev *rdev;
2467
2468         rdev_for_each(rdev, &rs->md) {
2469                 rdev->raid_disk = i++;
2470                 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2471         }
2472 }
2473
2474 /*
2475  * Setup @rs for takeover by a different raid level
2476  */
2477 static int rs_setup_takeover(struct raid_set *rs)
2478 {
2479         struct mddev *mddev = &rs->md;
2480         struct md_rdev *rdev;
2481         unsigned int d = mddev->raid_disks = rs->raid_disks;
2482         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2483
2484         if (rt_is_raid10(rs->raid_type)) {
2485                 if (mddev->level == 0) {
2486                         /* Userpace reordered disks -> adjust raid_disk indexes */
2487                         __reorder_raid_disk_indexes(rs);
2488
2489                         /* raid0 -> raid10_far layout */
2490                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2491                                                                    rs->raid10_copies);
2492                 } else if (mddev->level == 1)
2493                         /* raid1 -> raid10_near layout */
2494                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2495                                                                    rs->raid_disks);
2496                  else
2497                         return -EINVAL;
2498
2499         }
2500
2501         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2502         mddev->recovery_cp = MaxSector;
2503
2504         while (d--) {
2505                 rdev = &rs->dev[d].rdev;
2506
2507                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2508                         clear_bit(In_sync, &rdev->flags);
2509                         clear_bit(Faulty, &rdev->flags);
2510                         mddev->recovery_cp = rdev->recovery_offset = 0;
2511                         /* Bitmap has to be created when we do an "up" takeover */
2512                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2513                 }
2514
2515                 rdev->new_data_offset = new_data_offset;
2516         }
2517
2518         return 0;
2519 }
2520
2521 /*
2522  *
2523  * - change raid layout
2524  * - change chunk size
2525  * - add disks
2526  * - remove disks
2527  */
2528 static int rs_setup_reshape(struct raid_set *rs)
2529 {
2530         int r = 0;
2531         unsigned int cur_raid_devs, d;
2532         struct mddev *mddev = &rs->md;
2533         struct md_rdev *rdev;
2534
2535         mddev->delta_disks = rs->delta_disks;
2536         cur_raid_devs = mddev->raid_disks;
2537
2538         /* Ignore impossible layout change whilst adding/removing disks */
2539         if (mddev->delta_disks &&
2540             mddev->layout != mddev->new_layout) {
2541                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2542                 mddev->new_layout = mddev->layout;
2543         }
2544
2545         /*
2546          * Adjust array size:
2547          *
2548          * - in case of adding disks, array size has
2549          *   to grow after the disk adding reshape,
2550          *   which'll hapen in the event handler;
2551          *   reshape will happen forward, so space has to
2552          *   be available at the beginning of each disk
2553          *
2554          * - in case of removing disks, array size
2555          *   has to shrink before starting the reshape,
2556          *   which'll happen here;
2557          *   reshape will happen backward, so space has to
2558          *   be available at the end of each disk
2559          *
2560          * - data_offset and new_data_offset are
2561          *   adjusted for aforementioned out of place
2562          *   reshaping based on userspace passing in
2563          *   the "data_offset <sectors>" key/value
2564          *   pair via the constructor
2565          */
2566
2567         /* Add disk(s) */
2568         if (rs->delta_disks > 0) {
2569                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2570                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2571                         rdev = &rs->dev[d].rdev;
2572                         clear_bit(In_sync, &rdev->flags);
2573
2574                         /*
2575                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2576                          * by md, which'll store that erroneously in the superblock on reshape
2577                          */
2578                         rdev->saved_raid_disk = -1;
2579                         rdev->raid_disk = d;
2580
2581                         rdev->sectors = mddev->dev_sectors;
2582                         rdev->recovery_offset = MaxSector;
2583                 }
2584
2585                 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2586
2587         /* Remove disk(s) */
2588         } else if (rs->delta_disks < 0) {
2589                 r = rs_set_dev_and_array_sectors(rs, true);
2590                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2591
2592         /* Change layout and/or chunk size */
2593         } else {
2594                 /*
2595                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2596                  *
2597                  * keeping number of disks and do layout change ->
2598                  *
2599                  * toggle reshape_backward depending on data_offset:
2600                  *
2601                  * - free space upfront -> reshape forward
2602                  *
2603                  * - free space at the end -> reshape backward
2604                  *
2605                  *
2606                  * This utilizes free reshape space avoiding the need
2607                  * for userspace to move (parts of) LV segments in
2608                  * case of layout/chunksize change  (for disk
2609                  * adding/removing reshape space has to be at
2610                  * the proper address (see above with delta_disks):
2611                  *
2612                  * add disk(s)   -> begin
2613                  * remove disk(s)-> end
2614                  */
2615                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2616         }
2617
2618         return r;
2619 }
2620
2621 /*
2622  * Enable/disable discard support on RAID set depending on
2623  * RAID level and discard properties of underlying RAID members.
2624  */
2625 static void configure_discard_support(struct raid_set *rs)
2626 {
2627         int i;
2628         bool raid456;
2629         struct dm_target *ti = rs->ti;
2630
2631         /* Assume discards not supported until after checks below. */
2632         ti->discards_supported = false;
2633
2634         /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2635         raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2636
2637         for (i = 0; i < rs->md.raid_disks; i++) {
2638                 struct request_queue *q;
2639
2640                 if (!rs->dev[i].rdev.bdev)
2641                         continue;
2642
2643                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2644                 if (!q || !blk_queue_discard(q))
2645                         return;
2646
2647                 if (raid456) {
2648                         if (!q->limits.discard_zeroes_data)
2649                                 return;
2650                         if (!devices_handle_discard_safely) {
2651                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2652                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2653                                 return;
2654                         }
2655                 }
2656         }
2657
2658         /* All RAID members properly support discards */
2659         ti->discards_supported = true;
2660
2661         /*
2662          * RAID1 and RAID10 personalities require bio splitting,
2663          * RAID0/4/5/6 don't and process large discard bios properly.
2664          */
2665         ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2666         ti->num_discard_bios = 1;
2667 }
2668
2669 /*
2670  * Construct a RAID0/1/10/4/5/6 mapping:
2671  * Args:
2672  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2673  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2674  *
2675  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2676  * details on possible <raid_params>.
2677  *
2678  * Userspace is free to initialize the metadata devices, hence the superblocks to
2679  * enforce recreation based on the passed in table parameters.
2680  *
2681  */
2682 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2683 {
2684         int r;
2685         struct raid_type *rt;
2686         unsigned num_raid_params, num_raid_devs;
2687         sector_t calculated_dev_sectors;
2688         struct raid_set *rs = NULL;
2689         const char *arg;
2690         struct rs_layout rs_layout;
2691         struct dm_arg_set as = { argc, argv }, as_nrd;
2692         struct dm_arg _args[] = {
2693                 { 0, as.argc, "Cannot understand number of raid parameters" },
2694                 { 1, 254, "Cannot understand number of raid devices parameters" }
2695         };
2696
2697         /* Must have <raid_type> */
2698         arg = dm_shift_arg(&as);
2699         if (!arg) {
2700                 ti->error = "No arguments";
2701                 return -EINVAL;
2702         }
2703
2704         rt = get_raid_type(arg);
2705         if (!rt) {
2706                 ti->error = "Unrecognised raid_type";
2707                 return -EINVAL;
2708         }
2709
2710         /* Must have <#raid_params> */
2711         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2712                 return -EINVAL;
2713
2714         /* number of raid device tupples <meta_dev data_dev> */
2715         as_nrd = as;
2716         dm_consume_args(&as_nrd, num_raid_params);
2717         _args[1].max = (as_nrd.argc - 1) / 2;
2718         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2719                 return -EINVAL;
2720
2721         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2722                 ti->error = "Invalid number of supplied raid devices";
2723                 return -EINVAL;
2724         }
2725
2726         rs = raid_set_alloc(ti, rt, num_raid_devs);
2727         if (IS_ERR(rs))
2728                 return PTR_ERR(rs);
2729
2730         r = parse_raid_params(rs, &as, num_raid_params);
2731         if (r)
2732                 goto bad;
2733
2734         r = parse_dev_params(rs, &as);
2735         if (r)
2736                 goto bad;
2737
2738         rs->md.sync_super = super_sync;
2739
2740         /*
2741          * Calculate ctr requested array and device sizes to allow
2742          * for superblock analysis needing device sizes defined.
2743          *
2744          * Any existing superblock will overwrite the array and device sizes
2745          */
2746         r = rs_set_dev_and_array_sectors(rs, false);
2747         if (r)
2748                 goto bad;
2749
2750         calculated_dev_sectors = rs->dev[0].rdev.sectors;
2751
2752         /*
2753          * Backup any new raid set level, layout, ...
2754          * requested to be able to compare to superblock
2755          * members for conversion decisions.
2756          */
2757         rs_config_backup(rs, &rs_layout);
2758
2759         r = analyse_superblocks(ti, rs);
2760         if (r)
2761                 goto bad;
2762
2763         rs_setup_recovery(rs, calculated_dev_sectors);
2764
2765         INIT_WORK(&rs->md.event_work, do_table_event);
2766         ti->private = rs;
2767         ti->num_flush_bios = 1;
2768
2769         /* Restore any requested new layout for conversion decision */
2770         rs_config_restore(rs, &rs_layout);
2771
2772         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2773                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2774                 rs_set_new(rs);
2775                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2776                 if (rs_is_raid6(rs) &&
2777                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2778                         ti->error = "'nosync' not allowed for new raid6 set";
2779                         r = -EINVAL;
2780                         goto bad;
2781                 }
2782                 rs_setup_recovery(rs, 0);
2783         } else if (rs_is_recovering(rs) || rs_is_reshaping(rs)) {
2784                 /* Have to reject size change request during recovery/reshape */
2785                 if (calculated_dev_sectors != rs->dev[0].rdev.sectors) {
2786                         ti->error = rs_is_recovering(rs) ?
2787                                     "Can't resize a recovering raid set" :
2788                                     "Can't resize a reshaping raid set";
2789                         r = -EPERM;
2790                         goto bad;
2791                 }
2792                 /* skip setup rs */
2793         } else if (rs_takeover_requested(rs)) {
2794                 if (rs_is_reshaping(rs)) {
2795                         ti->error = "Can't takeover a reshaping raid set";
2796                         r = -EPERM;
2797                         goto bad;
2798                 }
2799
2800                 /*
2801                  * If a takeover is needed, userspace sets any additional
2802                  * devices to rebuild, so just set the level to the new
2803                  * requested one and allow the raid set to run
2804                  */
2805                 r = rs_check_takeover(rs);
2806                 if (r)
2807                         goto bad;
2808
2809                 r = rs_setup_takeover(rs);
2810                 if (r)
2811                         goto bad;
2812
2813                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2814                 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2815                 rs_set_new(rs);
2816         } else if (rs_reshape_requested(rs)) {
2817                 if (rs_is_reshaping(rs)) {
2818                         ti->error = "raid set already reshaping!";
2819                         r = -EPERM;
2820                         goto bad;
2821                 }
2822
2823                 if (rs_is_raid10(rs)) {
2824                         if (rs->raid_disks != rs->md.raid_disks &&
2825                             __is_raid10_near(rs->md.layout) &&
2826                             rs->raid10_copies &&
2827                             rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2828                                 /*
2829                                  * raid disk have to be multiple of data copies to allow this conversion,
2830                                  *
2831                                  * This is actually not a reshape it is a
2832                                  * rebuild of any additional mirrors per group
2833                                  */
2834                                 if (rs->raid_disks % rs->raid10_copies) {
2835                                         ti->error = "Can't reshape raid10 mirror groups";
2836                                         r = -EINVAL;
2837                                         goto bad;
2838                                 }
2839
2840                                 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2841                                 __reorder_raid_disk_indexes(rs);
2842                                 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2843                                                                            rs->raid10_copies);
2844                                 rs->md.new_layout = rs->md.layout;
2845
2846                         } else
2847                                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2848
2849                 } else if (rs_is_raid456(rs))
2850                         set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2851
2852                 /*
2853                  * HM FIXME: process raid1 via delta_disks as well?
2854                  *           Would cause allocations in raid1->check_reshape
2855                  *           though, thus more issues with potential failures
2856                  */
2857                 else if (rs_is_raid1(rs)) {
2858                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2859                         rs->md.raid_disks = rs->raid_disks;
2860                 }
2861
2862                 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2863                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2864                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2865                 }
2866
2867                 /* Create new superblocks and bitmaps, if any */
2868                 if (rs->md.raid_disks < rs->raid_disks)
2869                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2870
2871                 rs_set_cur(rs);
2872                 rs_setup_recovery(rs, MaxSector);
2873         } else {
2874                 rs_set_cur(rs);
2875                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2876                         rs_setup_recovery(rs, MaxSector);
2877                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2878                 } else
2879                         rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2880                                               0 : calculated_dev_sectors);
2881         }
2882
2883         /* If constructor requested it, change data and new_data offsets */
2884         r = rs_adjust_data_offsets(rs);
2885         if (r)
2886                 goto bad;
2887
2888         /* Start raid set read-only and assumed clean to change in raid_resume() */
2889         rs->md.ro = 1;
2890         rs->md.in_sync = 1;
2891         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2892
2893         /* Has to be held on running the array */
2894         mddev_lock_nointr(&rs->md);
2895         r = md_run(&rs->md);
2896         rs->md.in_sync = 0; /* Assume already marked dirty */
2897
2898         if (r) {
2899                 ti->error = "Failed to run raid array";
2900                 mddev_unlock(&rs->md);
2901                 goto bad;
2902         }
2903
2904         rs->callbacks.congested_fn = raid_is_congested;
2905         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2906
2907         mddev_suspend(&rs->md);
2908
2909         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2910         if (rs_is_raid456(rs)) {
2911                 r = rs_set_raid456_stripe_cache(rs);
2912                 if (r)
2913                         goto bad_stripe_cache;
2914         }
2915
2916         /* Now do an early reshape check */
2917         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2918                 r = rs_check_reshape(rs);
2919                 if (r)
2920                         goto bad_check_reshape;
2921
2922                 /* Restore new, ctr requested layout to perform check */
2923                 rs_config_restore(rs, &rs_layout);
2924
2925                 r = rs->md.pers->check_reshape(&rs->md);
2926                 if (r) {
2927                         ti->error = "Reshape check failed";
2928                         goto bad_check_reshape;
2929                 }
2930         }
2931
2932         mddev_unlock(&rs->md);
2933         return 0;
2934
2935 bad_stripe_cache:
2936 bad_check_reshape:
2937         md_stop(&rs->md);
2938 bad:
2939         raid_set_free(rs);
2940
2941         return r;
2942 }
2943
2944 static void raid_dtr(struct dm_target *ti)
2945 {
2946         struct raid_set *rs = ti->private;
2947
2948         list_del_init(&rs->callbacks.list);
2949         md_stop(&rs->md);
2950         raid_set_free(rs);
2951 }
2952
2953 static int raid_map(struct dm_target *ti, struct bio *bio)
2954 {
2955         struct raid_set *rs = ti->private;
2956         struct mddev *mddev = &rs->md;
2957
2958         /*
2959          * If we're reshaping to add disk(s)), ti->len and
2960          * mddev->array_sectors will differ during the process
2961          * (ti->len > mddev->array_sectors), so we have to requeue
2962          * bios with addresses > mddev->array_sectors here or
2963          * there will occur accesses past EOD of the component
2964          * data images thus erroring the raid set.
2965          */
2966         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2967                 return DM_MAPIO_REQUEUE;
2968
2969         mddev->pers->make_request(mddev, bio);
2970
2971         return DM_MAPIO_SUBMITTED;
2972 }
2973
2974 /* Return string describing the current sync action of @mddev */
2975 static const char *decipher_sync_action(struct mddev *mddev)
2976 {
2977         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2978                 return "frozen";
2979
2980         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2981             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2982                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2983                         return "reshape";
2984
2985                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2986                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2987                                 return "resync";
2988                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2989                                 return "check";
2990                         return "repair";
2991                 }
2992
2993                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2994                         return "recover";
2995         }
2996
2997         return "idle";
2998 }
2999
3000 /*
3001  * Return status string @rdev
3002  *
3003  * Status characters:
3004  *
3005  *  'D' = Dead/Failed device
3006  *  'a' = Alive but not in-sync
3007  *  'A' = Alive and in-sync
3008  */
3009 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3010 {
3011         if (test_bit(Faulty, &rdev->flags))
3012                 return "D";
3013         else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3014                 return "a";
3015         else
3016                 return "A";
3017 }
3018
3019 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3020 static sector_t rs_get_progress(struct raid_set *rs,
3021                                 sector_t resync_max_sectors, bool *array_in_sync)
3022 {
3023         sector_t r, recovery_cp, curr_resync_completed;
3024         struct mddev *mddev = &rs->md;
3025
3026         curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3027         recovery_cp = mddev->recovery_cp;
3028         *array_in_sync = false;
3029
3030         if (rs_is_raid0(rs)) {
3031                 r = resync_max_sectors;
3032                 *array_in_sync = true;
3033
3034         } else {
3035                 r = mddev->reshape_position;
3036
3037                 /* Reshape is relative to the array size */
3038                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3039                     r != MaxSector) {
3040                         if (r == MaxSector) {
3041                                 *array_in_sync = true;
3042                                 r = resync_max_sectors;
3043                         } else {
3044                                 /* Got to reverse on backward reshape */
3045                                 if (mddev->reshape_backwards)
3046                                         r = mddev->array_sectors - r;
3047
3048                                 /* Devide by # of data stripes */
3049                                 sector_div(r, mddev_data_stripes(rs));
3050                         }
3051
3052                 /* Sync is relative to the component device size */
3053                 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3054                         r = curr_resync_completed;
3055                 else
3056                         r = recovery_cp;
3057
3058                 if (r == MaxSector) {
3059                         /*
3060                          * Sync complete.
3061                          */
3062                         *array_in_sync = true;
3063                         r = resync_max_sectors;
3064                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3065                         /*
3066                          * If "check" or "repair" is occurring, the raid set has
3067                          * undergone an initial sync and the health characters
3068                          * should not be 'a' anymore.
3069                          */
3070                         *array_in_sync = true;
3071                 } else {
3072                         struct md_rdev *rdev;
3073
3074                         /*
3075                          * The raid set may be doing an initial sync, or it may
3076                          * be rebuilding individual components.  If all the
3077                          * devices are In_sync, then it is the raid set that is
3078                          * being initialized.
3079                          */
3080                         rdev_for_each(rdev, mddev)
3081                                 if (!test_bit(In_sync, &rdev->flags))
3082                                         *array_in_sync = true;
3083 #if 0
3084                         r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3085 #endif
3086                 }
3087         }
3088
3089         return r;
3090 }
3091
3092 /* Helper to return @dev name or "-" if !@dev */
3093 static const char *__get_dev_name(struct dm_dev *dev)
3094 {
3095         return dev ? dev->name : "-";
3096 }
3097
3098 static void raid_status(struct dm_target *ti, status_type_t type,
3099                         unsigned int status_flags, char *result, unsigned int maxlen)
3100 {
3101         struct raid_set *rs = ti->private;
3102         struct mddev *mddev = &rs->md;
3103         struct r5conf *conf = mddev->private;
3104         int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3105         bool array_in_sync;
3106         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3107         unsigned int sz = 0;
3108         unsigned int write_mostly_params = 0;
3109         sector_t progress, resync_max_sectors, resync_mismatches;
3110         const char *sync_action;
3111         struct raid_type *rt;
3112         struct md_rdev *rdev;
3113
3114         switch (type) {
3115         case STATUSTYPE_INFO:
3116                 /* *Should* always succeed */
3117                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3118                 if (!rt)
3119                         return;
3120
3121                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3122
3123                 /* Access most recent mddev properties for status output */
3124                 smp_rmb();
3125                 /* Get sensible max sectors even if raid set not yet started */
3126                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3127                                       mddev->resync_max_sectors : mddev->dev_sectors;
3128                 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3129                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3130                                     atomic64_read(&mddev->resync_mismatches) : 0;
3131                 sync_action = decipher_sync_action(&rs->md);
3132
3133                 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3134                 rdev_for_each(rdev, mddev)
3135                         DMEMIT(__raid_dev_status(rdev, array_in_sync));
3136
3137                 /*
3138                  * In-sync/Reshape ratio:
3139                  *  The in-sync ratio shows the progress of:
3140                  *   - Initializing the raid set
3141                  *   - Rebuilding a subset of devices of the raid set
3142                  *  The user can distinguish between the two by referring
3143                  *  to the status characters.
3144                  *
3145                  *  The reshape ratio shows the progress of
3146                  *  changing the raid layout or the number of
3147                  *  disks of a raid set
3148                  */
3149                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3150                                      (unsigned long long) resync_max_sectors);
3151
3152                 /*
3153                  * v1.5.0+:
3154                  *
3155                  * Sync action:
3156                  *   See Documentation/device-mapper/dm-raid.txt for
3157                  *   information on each of these states.
3158                  */
3159                 DMEMIT(" %s", sync_action);
3160
3161                 /*
3162                  * v1.5.0+:
3163                  *
3164                  * resync_mismatches/mismatch_cnt
3165                  *   This field shows the number of discrepancies found when
3166                  *   performing a "check" of the raid set.
3167                  */
3168                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3169
3170                 /*
3171                  * v1.9.0+:
3172                  *
3173                  * data_offset (needed for out of space reshaping)
3174                  *   This field shows the data offset into the data
3175                  *   image LV where the first stripes data starts.
3176                  *
3177                  * We keep data_offset equal on all raid disks of the set,
3178                  * so retrieving it from the first raid disk is sufficient.
3179                  */
3180                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3181                 break;
3182
3183         case STATUSTYPE_TABLE:
3184                 /* Report the table line string you would use to construct this raid set */
3185
3186                 /* Calculate raid parameter count */
3187                 rdev_for_each(rdev, mddev)
3188                         if (test_bit(WriteMostly, &rdev->flags))
3189                                 write_mostly_params += 2;
3190                 raid_param_cnt += memweight(rs->rebuild_disks,
3191                                             DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3192                                   write_mostly_params +
3193                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3194                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3195                 /* Emit table line */
3196                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3197                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3198                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3199                                          raid10_md_layout_to_format(mddev->layout));
3200                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3201                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3202                                          raid10_md_layout_to_copies(mddev->layout));
3203                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3204                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3205                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3206                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3207                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3208                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3209                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3210                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3211                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3212                                            (unsigned long long) rs->data_offset);
3213                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3214                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3215                                           mddev->bitmap_info.daemon_sleep);
3216                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3217                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3218                                          mddev->delta_disks);
3219                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3220                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3221                                          max_nr_stripes);
3222                 rdev_for_each(rdev, mddev)
3223                         if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3224                                 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3225                                                  rdev->raid_disk);
3226                 rdev_for_each(rdev, mddev)
3227                         if (test_bit(WriteMostly, &rdev->flags))
3228                                 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3229                                                  rdev->raid_disk);
3230                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3231                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3232                                           mddev->bitmap_info.max_write_behind);
3233                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3234                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3235                                          mddev->sync_speed_max);
3236                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3237                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3238                                          mddev->sync_speed_min);
3239                 DMEMIT(" %d", rs->raid_disks);
3240                 rdev_for_each(rdev, mddev) {
3241                         struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3242
3243                         DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3244                                          __get_dev_name(rd->data_dev));
3245                 }
3246         }
3247 }
3248
3249 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3250 {
3251         struct raid_set *rs = ti->private;
3252         struct mddev *mddev = &rs->md;
3253
3254         if (!mddev->pers || !mddev->pers->sync_request)
3255                 return -EINVAL;
3256
3257         if (!strcasecmp(argv[0], "frozen"))
3258                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3259         else
3260                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3261
3262         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3263                 if (mddev->sync_thread) {
3264                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3265                         md_reap_sync_thread(mddev);
3266                 }
3267         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3268                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3269                 return -EBUSY;
3270         else if (!strcasecmp(argv[0], "resync"))
3271                 ; /* MD_RECOVERY_NEEDED set below */
3272         else if (!strcasecmp(argv[0], "recover"))
3273                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3274         else {
3275                 if (!strcasecmp(argv[0], "check"))
3276                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3277                 else if (!!strcasecmp(argv[0], "repair"))
3278                         return -EINVAL;
3279                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3280                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3281         }
3282         if (mddev->ro == 2) {
3283                 /* A write to sync_action is enough to justify
3284                  * canceling read-auto mode
3285                  */
3286                 mddev->ro = 0;
3287                 if (!mddev->suspended && mddev->sync_thread)
3288                         md_wakeup_thread(mddev->sync_thread);
3289         }
3290         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3291         if (!mddev->suspended && mddev->thread)
3292                 md_wakeup_thread(mddev->thread);
3293
3294         return 0;
3295 }
3296
3297 static int raid_iterate_devices(struct dm_target *ti,
3298                                 iterate_devices_callout_fn fn, void *data)
3299 {
3300         struct raid_set *rs = ti->private;
3301         unsigned i;
3302         int r = 0;
3303
3304         for (i = 0; !r && i < rs->md.raid_disks; i++)
3305                 if (rs->dev[i].data_dev)
3306                         r = fn(ti,
3307                                  rs->dev[i].data_dev,
3308                                  0, /* No offset on data devs */
3309                                  rs->md.dev_sectors,
3310                                  data);
3311
3312         return r;
3313 }
3314
3315 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3316 {
3317         struct raid_set *rs = ti->private;
3318         unsigned chunk_size = rs->md.chunk_sectors << 9;
3319         struct r5conf *conf = rs->md.private;
3320
3321         blk_limits_io_min(limits, chunk_size);
3322         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3323 }
3324
3325 static void raid_presuspend(struct dm_target *ti)
3326 {
3327         struct raid_set *rs = ti->private;
3328
3329         md_stop_writes(&rs->md);
3330 }
3331
3332 static void raid_postsuspend(struct dm_target *ti)
3333 {
3334         struct raid_set *rs = ti->private;
3335
3336         if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3337                 if (!rs->md.suspended)
3338                         mddev_suspend(&rs->md);
3339                 rs->md.ro = 1;
3340         }
3341 }
3342
3343 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3344 {
3345         int i;
3346         uint64_t failed_devices, cleared_failed_devices = 0;
3347         unsigned long flags;
3348         struct dm_raid_superblock *sb;
3349         struct md_rdev *r;
3350
3351         for (i = 0; i < rs->md.raid_disks; i++) {
3352                 r = &rs->dev[i].rdev;
3353                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3354                     sync_page_io(r, 0, r->sb_size, r->sb_page,
3355                                  REQ_OP_READ, 0, true)) {
3356                         DMINFO("Faulty %s device #%d has readable super block."
3357                                "  Attempting to revive it.",
3358                                rs->raid_type->name, i);
3359
3360                         /*
3361                          * Faulty bit may be set, but sometimes the array can
3362                          * be suspended before the personalities can respond
3363                          * by removing the device from the array (i.e. calling
3364                          * 'hot_remove_disk').  If they haven't yet removed
3365                          * the failed device, its 'raid_disk' number will be
3366                          * '>= 0' - meaning we must call this function
3367                          * ourselves.
3368                          */
3369                         if ((r->raid_disk >= 0) &&
3370                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3371                                 /* Failed to revive this device, try next */
3372                                 continue;
3373
3374                         r->raid_disk = i;
3375                         r->saved_raid_disk = i;
3376                         flags = r->flags;
3377                         clear_bit(Faulty, &r->flags);
3378                         clear_bit(WriteErrorSeen, &r->flags);
3379                         clear_bit(In_sync, &r->flags);
3380                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3381                                 r->raid_disk = -1;
3382                                 r->saved_raid_disk = -1;
3383                                 r->flags = flags;
3384                         } else {
3385                                 r->recovery_offset = 0;
3386                                 cleared_failed_devices |= 1 << i;
3387                         }
3388                 }
3389         }
3390         if (cleared_failed_devices) {
3391                 rdev_for_each(r, &rs->md) {
3392                         sb = page_address(r->sb_page);
3393                         failed_devices = le64_to_cpu(sb->failed_devices);
3394                         failed_devices &= ~cleared_failed_devices;
3395                         sb->failed_devices = cpu_to_le64(failed_devices);
3396                 }
3397         }
3398 }
3399
3400 static int __load_dirty_region_bitmap(struct raid_set *rs)
3401 {
3402         int r = 0;
3403
3404         /* Try loading the bitmap unless "raid0", which does not have one */
3405         if (!rs_is_raid0(rs) &&
3406             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3407                 r = bitmap_load(&rs->md);
3408                 if (r)
3409                         DMERR("Failed to load bitmap");
3410         }
3411
3412         return r;
3413 }
3414
3415 /* Enforce updating all superblocks */
3416 static void rs_update_sbs(struct raid_set *rs)
3417 {
3418         struct mddev *mddev = &rs->md;
3419         int ro = mddev->ro;
3420
3421         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3422         mddev->ro = 0;
3423         md_update_sb(mddev, 1);
3424         mddev->ro = ro;
3425 }
3426
3427 /*
3428  * Reshape changes raid algorithm of @rs to new one within personality
3429  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3430  * disks from a raid set thus growing/shrinking it or resizes the set
3431  *
3432  * Call mddev_lock_nointr() before!
3433  */
3434 static int rs_start_reshape(struct raid_set *rs)
3435 {
3436         int r;
3437         struct mddev *mddev = &rs->md;
3438         struct md_personality *pers = mddev->pers;
3439
3440         r = rs_setup_reshape(rs);
3441         if (r)
3442                 return r;
3443
3444         /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3445         if (mddev->suspended)
3446                 mddev_resume(mddev);
3447
3448         /*
3449          * Check any reshape constraints enforced by the personalility
3450          *
3451          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3452          */
3453         r = pers->check_reshape(mddev);
3454         if (r) {
3455                 rs->ti->error = "pers->check_reshape() failed";
3456                 return r;
3457         }
3458
3459         /*
3460          * Personality may not provide start reshape method in which
3461          * case check_reshape above has already covered everything
3462          */
3463         if (pers->start_reshape) {
3464                 r = pers->start_reshape(mddev);
3465                 if (r) {
3466                         rs->ti->error = "pers->start_reshape() failed";
3467                         return r;
3468                 }
3469         }
3470
3471         /* Suspend because a resume will happen in raid_resume() */
3472         if (!mddev->suspended)
3473                 mddev_suspend(mddev);
3474
3475         /*
3476          * Now reshape got set up, update superblocks to
3477          * reflect the fact so that a table reload will
3478          * access proper superblock content in the ctr.
3479          */
3480         rs_update_sbs(rs);
3481
3482         return 0;
3483 }
3484
3485 static int raid_preresume(struct dm_target *ti)
3486 {
3487         int r;
3488         struct raid_set *rs = ti->private;
3489         struct mddev *mddev = &rs->md;
3490
3491         /* This is a resume after a suspend of the set -> it's already started */
3492         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3493                 return 0;
3494
3495         /*
3496          * The superblocks need to be updated on disk if the
3497          * array is new or new devices got added (thus zeroed
3498          * out by userspace) or __load_dirty_region_bitmap
3499          * will overwrite them in core with old data or fail.
3500          */
3501         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3502                 rs_update_sbs(rs);
3503
3504         /*
3505          * Disable/enable discard support on raid set after any
3506          * conversion, because devices can have been added
3507          */
3508         configure_discard_support(rs);
3509
3510         /* Load the bitmap from disk unless raid0 */
3511         r = __load_dirty_region_bitmap(rs);
3512         if (r)
3513                 return r;
3514
3515         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3516         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3517             mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3518                 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3519                                   to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3520                 if (r)
3521                         DMERR("Failed to resize bitmap");
3522         }
3523
3524         /* Check for any resize/reshape on @rs and adjust/initiate */
3525         /* Be prepared for mddev_resume() in raid_resume() */
3526         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3527         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3528                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3529                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3530                 mddev->resync_min = mddev->recovery_cp;
3531         }
3532
3533         rs_set_capacity(rs);
3534
3535         /* Check for any reshape request unless new raid set */
3536         if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3537                 /* Initiate a reshape. */
3538                 mddev_lock_nointr(mddev);
3539                 r = rs_start_reshape(rs);
3540                 mddev_unlock(mddev);
3541                 if (r)
3542                         DMWARN("Failed to check/start reshape, continuing without change");
3543                 r = 0;
3544         }
3545
3546         return r;
3547 }
3548
3549 static void raid_resume(struct dm_target *ti)
3550 {
3551         struct raid_set *rs = ti->private;
3552         struct mddev *mddev = &rs->md;
3553
3554         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3555                 /*
3556                  * A secondary resume while the device is active.
3557                  * Take this opportunity to check whether any failed
3558                  * devices are reachable again.
3559                  */
3560                 attempt_restore_of_faulty_devices(rs);
3561         } else {
3562                 mddev->ro = 0;
3563                 mddev->in_sync = 0;
3564
3565                 /*
3566                  * When passing in flags to the ctr, we expect userspace
3567                  * to reset them because they made it to the superblocks
3568                  * and reload the mapping anyway.
3569                  *
3570                  * -> only unfreeze recovery in case of a table reload or
3571                  *    we'll have a bogus recovery/reshape position
3572                  *    retrieved from the superblock by the ctr because
3573                  *    the ongoing recovery/reshape will change it after read.
3574                  */
3575                 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3576                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3577
3578                 if (mddev->suspended)
3579                         mddev_resume(mddev);
3580         }
3581 }
3582
3583 static struct target_type raid_target = {
3584         .name = "raid",
3585         .version = {1, 9, 0},
3586         .module = THIS_MODULE,
3587         .ctr = raid_ctr,
3588         .dtr = raid_dtr,
3589         .map = raid_map,
3590         .status = raid_status,
3591         .message = raid_message,
3592         .iterate_devices = raid_iterate_devices,
3593         .io_hints = raid_io_hints,
3594         .presuspend = raid_presuspend,
3595         .postsuspend = raid_postsuspend,
3596         .preresume = raid_preresume,
3597         .resume = raid_resume,
3598 };
3599
3600 static int __init dm_raid_init(void)
3601 {
3602         DMINFO("Loading target version %u.%u.%u",
3603                raid_target.version[0],
3604                raid_target.version[1],
3605                raid_target.version[2]);
3606         return dm_register_target(&raid_target);
3607 }
3608
3609 static void __exit dm_raid_exit(void)
3610 {
3611         dm_unregister_target(&raid_target);
3612 }
3613
3614 module_init(dm_raid_init);
3615 module_exit(dm_raid_exit);
3616
3617 module_param(devices_handle_discard_safely, bool, 0644);
3618 MODULE_PARM_DESC(devices_handle_discard_safely,
3619                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3620
3621 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3622 MODULE_ALIAS("dm-raid0");
3623 MODULE_ALIAS("dm-raid1");
3624 MODULE_ALIAS("dm-raid10");
3625 MODULE_ALIAS("dm-raid4");
3626 MODULE_ALIAS("dm-raid5");
3627 MODULE_ALIAS("dm-raid6");
3628 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3629 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3630 MODULE_LICENSE("GPL");