7e334b65b1c32c2cc7b99b137ee660c668c30258
[cascardo/linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10             /* rdev flag */
34
35 struct raid_dev {
36         /*
37          * Two DM devices, one to hold metadata and one to hold the
38          * actual data/parity.  The reason for this is to not confuse
39          * ti->len and give more flexibility in altering size and
40          * characteristics.
41          *
42          * While it is possible for this device to be associated
43          * with a different physical device than the data_dev, it
44          * is intended for it to be the same.
45          *    |--------- Physical Device ---------|
46          *    |- meta_dev -|------ data_dev ------|
47          */
48         struct dm_dev *meta_dev;
49         struct dm_dev *data_dev;
50         struct md_rdev rdev;
51 };
52
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
105                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109                                   CTR_FLAG_WRITE_MOSTLY | \
110                                   CTR_FLAG_DAEMON_SLEEP | \
111                                   CTR_FLAG_MIN_RECOVERY_RATE | \
112                                   CTR_FLAG_MAX_RECOVERY_RATE | \
113                                   CTR_FLAG_MAX_WRITE_BEHIND | \
114                                   CTR_FLAG_STRIPE_CACHE | \
115                                   CTR_FLAG_REGION_SIZE | \
116                                   CTR_FLAG_RAID10_COPIES | \
117                                   CTR_FLAG_RAID10_FORMAT | \
118                                   CTR_FLAG_DELTA_DISKS | \
119                                   CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
128                                  CTR_FLAG_REBUILD | \
129                                  CTR_FLAG_WRITE_MOSTLY | \
130                                  CTR_FLAG_DAEMON_SLEEP | \
131                                  CTR_FLAG_MIN_RECOVERY_RATE | \
132                                  CTR_FLAG_MAX_RECOVERY_RATE | \
133                                  CTR_FLAG_MAX_WRITE_BEHIND | \
134                                  CTR_FLAG_REGION_SIZE | \
135                                  CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
139                                  CTR_FLAG_REBUILD | \
140                                  CTR_FLAG_DAEMON_SLEEP | \
141                                  CTR_FLAG_MIN_RECOVERY_RATE | \
142                                  CTR_FLAG_MAX_RECOVERY_RATE | \
143                                  CTR_FLAG_REGION_SIZE | \
144                                  CTR_FLAG_RAID10_COPIES | \
145                                  CTR_FLAG_RAID10_FORMAT | \
146                                  CTR_FLAG_DELTA_DISKS | \
147                                  CTR_FLAG_DATA_OFFSET | \
148                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151  * "raid4/5/6" do not accept any raid1 or raid10 specific options
152  *
153  * "raid6" does not accept "nosync", because it is not guaranteed
154  * that both parity and q-syndrome are being written properly with
155  * any writes
156  */
157 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
158                                  CTR_FLAG_REBUILD | \
159                                  CTR_FLAG_DAEMON_SLEEP | \
160                                  CTR_FLAG_MIN_RECOVERY_RATE | \
161                                  CTR_FLAG_MAX_RECOVERY_RATE | \
162                                  CTR_FLAG_MAX_WRITE_BEHIND | \
163                                  CTR_FLAG_STRIPE_CACHE | \
164                                  CTR_FLAG_REGION_SIZE | \
165                                  CTR_FLAG_DELTA_DISKS | \
166                                  CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
169                                  CTR_FLAG_REBUILD | \
170                                  CTR_FLAG_DAEMON_SLEEP | \
171                                  CTR_FLAG_MIN_RECOVERY_RATE | \
172                                  CTR_FLAG_MAX_RECOVERY_RATE | \
173                                  CTR_FLAG_MAX_WRITE_BEHIND | \
174                                  CTR_FLAG_STRIPE_CACHE | \
175                                  CTR_FLAG_REGION_SIZE | \
176                                  CTR_FLAG_DELTA_DISKS | \
177                                  CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181  * Flags for rs->runtime_flags field
182  * (RT_FLAG prefix meaning "runtime flag")
183  *
184  * These are all internal and used to define runtime state,
185  * e.g. to prevent another resume from preresume processing
186  * the raid set all over again.
187  */
188 #define RT_FLAG_RS_PRERESUMED           0
189 #define RT_FLAG_RS_RESUMED              1
190 #define RT_FLAG_RS_BITMAP_LOADED        2
191 #define RT_FLAG_UPDATE_SBS              3
192 #define RT_FLAG_RESHAPE_RS              4
193 #define RT_FLAG_KEEP_RS_FROZEN          5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199  * raid set level, layout and chunk sectors backup/restore
200  */
201 struct rs_layout {
202         int new_level;
203         int new_layout;
204         int new_chunk_sectors;
205 };
206
207 struct raid_set {
208         struct dm_target *ti;
209
210         uint32_t bitmap_loaded;
211         uint32_t stripe_cache_entries;
212         unsigned long ctr_flags;
213         unsigned long runtime_flags;
214
215         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217         int raid_disks;
218         int delta_disks;
219         int data_offset;
220         int raid10_copies;
221         int requested_bitmap_chunk_sectors;
222
223         struct mddev md;
224         struct raid_type *raid_type;
225         struct dm_target_callbacks callbacks;
226
227         struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232         struct mddev *mddev = &rs->md;
233
234         l->new_level = mddev->new_level;
235         l->new_layout = mddev->new_layout;
236         l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241         struct mddev *mddev = &rs->md;
242
243         mddev->new_level = l->new_level;
244         mddev->new_layout = l->new_layout;
245         mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT        0
250 #define ALGORITHM_RAID10_NEAR           1
251 #define ALGORITHM_RAID10_OFFSET         2
252 #define ALGORITHM_RAID10_FAR            3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256         const char *name;               /* RAID algorithm. */
257         const char *descr;              /* Descriptor text for logging. */
258         const unsigned parity_devs;     /* # of parity devices. */
259         const unsigned minimal_devs;    /* minimal # of devices in set. */
260         const unsigned level;           /* RAID level. */
261         const unsigned algorithm;       /* RAID algorithm. */
262 } raid_types[] = {
263         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
264         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
265         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
266         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
267         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
268         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269         {"raid4",         "raid4 (dedicated last parity disk)",     1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
271         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
272         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
273         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
274         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
275         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
276         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
277         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
278         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
279         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
280         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
281         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
282         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288         return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293         const unsigned long flag;
294         const char *name;
295 } __arg_name_flags[] = {
296         { CTR_FLAG_SYNC, "sync"},
297         { CTR_FLAG_NOSYNC, "nosync"},
298         { CTR_FLAG_REBUILD, "rebuild"},
299         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303         { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
304         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305         { CTR_FLAG_REGION_SIZE, "region_size"},
306         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308         { CTR_FLAG_DATA_OFFSET, "data_offset"},
309         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316         if (hweight32(flag) == 1) {
317                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319                 while (anf-- > __arg_name_flags)
320                         if (flag & anf->flag)
321                                 return anf->name;
322
323         } else
324                 DMERR("%s called with more than one flag!", __func__);
325
326         return NULL;
327 }
328
329 /*
330  * bool helpers to test for various raid levels of a raid set,
331  * is. it's level as reported by the superblock rather than
332  * the requested raid_type passed to the constructor.
333  */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337         return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343         return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349         return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 6 */
353 static bool rs_is_raid6(struct raid_set *rs)
354 {
355         return rs->md.level == 6;
356 }
357
358 /* Return true, if raid set in @rs is level 4, 5 or 6 */
359 static bool rs_is_raid456(struct raid_set *rs)
360 {
361         return __within_range(rs->md.level, 4, 6);
362 }
363
364 /* Return true, if raid set in @rs is reshapable */
365 static unsigned int __is_raid10_far(int layout);
366 static bool rs_is_reshapable(struct raid_set *rs)
367 {
368         return rs_is_raid456(rs) ||
369                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
370 }
371
372 /* Return true, if raid set in @rs is recovering */
373 static bool rs_is_recovering(struct raid_set *rs)
374 {
375         return rs->md.recovery_cp != MaxSector;
376 }
377
378 /* Return true, if raid set in @rs is reshaping */
379 static bool rs_is_reshaping(struct raid_set *rs)
380 {
381         return rs->md.reshape_position != MaxSector;
382 }
383
384 /*
385  * bool helpers to test for various raid levels of a raid type
386  */
387
388 /* Return true, if raid type in @rt is raid0 */
389 static bool rt_is_raid0(struct raid_type *rt)
390 {
391         return !rt->level;
392 }
393
394 /* Return true, if raid type in @rt is raid1 */
395 static bool rt_is_raid1(struct raid_type *rt)
396 {
397         return rt->level == 1;
398 }
399
400 /* Return true, if raid type in @rt is raid10 */
401 static bool rt_is_raid10(struct raid_type *rt)
402 {
403         return rt->level == 10;
404 }
405
406 /* Return true, if raid type in @rt is raid4/5 */
407 static bool rt_is_raid45(struct raid_type *rt)
408 {
409         return __within_range(rt->level, 4, 5);
410 }
411
412 /* Return true, if raid type in @rt is raid6 */
413 static bool rt_is_raid6(struct raid_type *rt)
414 {
415         return rt->level == 6;
416 }
417
418 /* Return true, if raid type in @rt is raid4/5/6 */
419 static bool rt_is_raid456(struct raid_type *rt)
420 {
421         return __within_range(rt->level, 4, 6);
422 }
423 /* END: raid level bools */
424
425 /* Return valid ctr flags for the raid level of @rs */
426 static unsigned long __valid_flags(struct raid_set *rs)
427 {
428         if (rt_is_raid0(rs->raid_type))
429                 return RAID0_VALID_FLAGS;
430         else if (rt_is_raid1(rs->raid_type))
431                 return RAID1_VALID_FLAGS;
432         else if (rt_is_raid10(rs->raid_type))
433                 return RAID10_VALID_FLAGS;
434         else if (rt_is_raid45(rs->raid_type))
435                 return RAID45_VALID_FLAGS;
436         else if (rt_is_raid6(rs->raid_type))
437                 return RAID6_VALID_FLAGS;
438
439         return ~0;
440 }
441
442 /*
443  * Check for valid flags set on @rs
444  *
445  * Has to be called after parsing of the ctr flags!
446  */
447 static int rs_check_for_valid_flags(struct raid_set *rs)
448 {
449         if (rs->ctr_flags & ~__valid_flags(rs)) {
450                 rs->ti->error = "Invalid flags combination";
451                 return -EINVAL;
452         }
453
454         return 0;
455 }
456
457 /* MD raid10 bit definitions and helpers */
458 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
459 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
460 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
461 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
462
463 /* Return md raid10 near copies for @layout */
464 static unsigned int __raid10_near_copies(int layout)
465 {
466         return layout & 0xFF;
467 }
468
469 /* Return md raid10 far copies for @layout */
470 static unsigned int __raid10_far_copies(int layout)
471 {
472         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
473 }
474
475 /* Return true if md raid10 offset for @layout */
476 static unsigned int __is_raid10_offset(int layout)
477 {
478         return layout & RAID10_OFFSET;
479 }
480
481 /* Return true if md raid10 near for @layout */
482 static unsigned int __is_raid10_near(int layout)
483 {
484         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
485 }
486
487 /* Return true if md raid10 far for @layout */
488 static unsigned int __is_raid10_far(int layout)
489 {
490         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
491 }
492
493 /* Return md raid10 layout string for @layout */
494 static const char *raid10_md_layout_to_format(int layout)
495 {
496         /*
497          * Bit 16 stands for "offset"
498          * (i.e. adjacent stripes hold copies)
499          *
500          * Refer to MD's raid10.c for details
501          */
502         if (__is_raid10_offset(layout))
503                 return "offset";
504
505         if (__raid10_near_copies(layout) > 1)
506                 return "near";
507
508         WARN_ON(__raid10_far_copies(layout) < 2);
509
510         return "far";
511 }
512
513 /* Return md raid10 algorithm for @name */
514 static int raid10_name_to_format(const char *name)
515 {
516         if (!strcasecmp(name, "near"))
517                 return ALGORITHM_RAID10_NEAR;
518         else if (!strcasecmp(name, "offset"))
519                 return ALGORITHM_RAID10_OFFSET;
520         else if (!strcasecmp(name, "far"))
521                 return ALGORITHM_RAID10_FAR;
522
523         return -EINVAL;
524 }
525
526 /* Return md raid10 copies for @layout */
527 static unsigned int raid10_md_layout_to_copies(int layout)
528 {
529         return __raid10_near_copies(layout) > 1 ?
530                 __raid10_near_copies(layout) : __raid10_far_copies(layout);
531 }
532
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535                                       unsigned int algorithm,
536                                       unsigned int copies)
537 {
538         unsigned int n = 1, f = 1, r = 0;
539
540         /*
541          * MD resilienece flaw:
542          *
543          * enabling use_far_sets for far/offset formats causes copies
544          * to be colocated on the same devs together with their origins!
545          *
546          * -> disable it for now in the definition above
547          */
548         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549             algorithm == ALGORITHM_RAID10_NEAR)
550                 n = copies;
551
552         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553                 f = copies;
554                 r = RAID10_OFFSET;
555                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556                         r |= RAID10_USE_FAR_SETS;
557
558         } else if (algorithm == ALGORITHM_RAID10_FAR) {
559                 f = copies;
560                 r = !RAID10_OFFSET;
561                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562                         r |= RAID10_USE_FAR_SETS;
563
564         } else
565                 return -EINVAL;
566
567         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570
571 /* Check for any of the raid10 algorithms */
572 static int __got_raid10(struct raid_type *rtp, const int layout)
573 {
574         if (rtp->level == 10) {
575                 switch (rtp->algorithm) {
576                 case ALGORITHM_RAID10_DEFAULT:
577                 case ALGORITHM_RAID10_NEAR:
578                         return __is_raid10_near(layout);
579                 case ALGORITHM_RAID10_OFFSET:
580                         return __is_raid10_offset(layout);
581                 case ALGORITHM_RAID10_FAR:
582                         return __is_raid10_far(layout);
583                 default:
584                         break;
585                 }
586         }
587
588         return 0;
589 }
590
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595
596         while (rtp-- > raid_types)
597                 if (!strcasecmp(rtp->name, name))
598                         return rtp;
599
600         return NULL;
601 }
602
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607
608         while (rtp-- > raid_types) {
609                 /* RAID10 special checks based on @layout flags/properties */
610                 if (rtp->level == level &&
611                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612                         return rtp;
613         }
614
615         return NULL;
616 }
617
618 /*
619  * Conditionally change bdev capacity of @rs
620  * in case of a disk add/remove reshape
621  */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624         struct mddev *mddev = &rs->md;
625         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
626
627         set_capacity(gendisk, mddev->array_sectors);
628         revalidate_disk(gendisk);
629 }
630
631 /*
632  * Set the mddev properties in @rs to the current
633  * ones retrieved from the freshest superblock
634  */
635 static void rs_set_cur(struct raid_set *rs)
636 {
637         struct mddev *mddev = &rs->md;
638
639         mddev->new_level = mddev->level;
640         mddev->new_layout = mddev->layout;
641         mddev->new_chunk_sectors = mddev->chunk_sectors;
642 }
643
644 /*
645  * Set the mddev properties in @rs to the new
646  * ones requested by the ctr
647  */
648 static void rs_set_new(struct raid_set *rs)
649 {
650         struct mddev *mddev = &rs->md;
651
652         mddev->level = mddev->new_level;
653         mddev->layout = mddev->new_layout;
654         mddev->chunk_sectors = mddev->new_chunk_sectors;
655         mddev->raid_disks = rs->raid_disks;
656         mddev->delta_disks = 0;
657 }
658
659 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
660                                        unsigned raid_devs)
661 {
662         unsigned i;
663         struct raid_set *rs;
664
665         if (raid_devs <= raid_type->parity_devs) {
666                 ti->error = "Insufficient number of devices";
667                 return ERR_PTR(-EINVAL);
668         }
669
670         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
671         if (!rs) {
672                 ti->error = "Cannot allocate raid context";
673                 return ERR_PTR(-ENOMEM);
674         }
675
676         mddev_init(&rs->md);
677
678         rs->raid_disks = raid_devs;
679         rs->delta_disks = 0;
680
681         rs->ti = ti;
682         rs->raid_type = raid_type;
683         rs->stripe_cache_entries = 256;
684         rs->md.raid_disks = raid_devs;
685         rs->md.level = raid_type->level;
686         rs->md.new_level = rs->md.level;
687         rs->md.layout = raid_type->algorithm;
688         rs->md.new_layout = rs->md.layout;
689         rs->md.delta_disks = 0;
690         rs->md.recovery_cp = MaxSector;
691
692         for (i = 0; i < raid_devs; i++)
693                 md_rdev_init(&rs->dev[i].rdev);
694
695         /*
696          * Remaining items to be initialized by further RAID params:
697          *  rs->md.persistent
698          *  rs->md.external
699          *  rs->md.chunk_sectors
700          *  rs->md.new_chunk_sectors
701          *  rs->md.dev_sectors
702          */
703
704         return rs;
705 }
706
707 static void raid_set_free(struct raid_set *rs)
708 {
709         int i;
710
711         for (i = 0; i < rs->md.raid_disks; i++) {
712                 if (rs->dev[i].meta_dev)
713                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
714                 md_rdev_clear(&rs->dev[i].rdev);
715                 if (rs->dev[i].data_dev)
716                         dm_put_device(rs->ti, rs->dev[i].data_dev);
717         }
718
719         kfree(rs);
720 }
721
722 /*
723  * For every device we have two words
724  *  <meta_dev>: meta device name or '-' if missing
725  *  <data_dev>: data device name or '-' if missing
726  *
727  * The following are permitted:
728  *    - -
729  *    - <data_dev>
730  *    <meta_dev> <data_dev>
731  *
732  * The following is not allowed:
733  *    <meta_dev> -
734  *
735  * This code parses those words.  If there is a failure,
736  * the caller must use raid_set_free() to unwind the operations.
737  */
738 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
739 {
740         int i;
741         int rebuild = 0;
742         int metadata_available = 0;
743         int r = 0;
744         const char *arg;
745
746         /* Put off the number of raid devices argument to get to dev pairs */
747         arg = dm_shift_arg(as);
748         if (!arg)
749                 return -EINVAL;
750
751         for (i = 0; i < rs->md.raid_disks; i++) {
752                 rs->dev[i].rdev.raid_disk = i;
753
754                 rs->dev[i].meta_dev = NULL;
755                 rs->dev[i].data_dev = NULL;
756
757                 /*
758                  * There are no offsets, since there is a separate device
759                  * for data and metadata.
760                  */
761                 rs->dev[i].rdev.data_offset = 0;
762                 rs->dev[i].rdev.mddev = &rs->md;
763
764                 arg = dm_shift_arg(as);
765                 if (!arg)
766                         return -EINVAL;
767
768                 if (strcmp(arg, "-")) {
769                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
770                                           &rs->dev[i].meta_dev);
771                         if (r) {
772                                 rs->ti->error = "RAID metadata device lookup failure";
773                                 return r;
774                         }
775
776                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
777                         if (!rs->dev[i].rdev.sb_page) {
778                                 rs->ti->error = "Failed to allocate superblock page";
779                                 return -ENOMEM;
780                         }
781                 }
782
783                 arg = dm_shift_arg(as);
784                 if (!arg)
785                         return -EINVAL;
786
787                 if (!strcmp(arg, "-")) {
788                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
789                             (!rs->dev[i].rdev.recovery_offset)) {
790                                 rs->ti->error = "Drive designated for rebuild not specified";
791                                 return -EINVAL;
792                         }
793
794                         if (rs->dev[i].meta_dev) {
795                                 rs->ti->error = "No data device supplied with metadata device";
796                                 return -EINVAL;
797                         }
798
799                         continue;
800                 }
801
802                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
803                                   &rs->dev[i].data_dev);
804                 if (r) {
805                         rs->ti->error = "RAID device lookup failure";
806                         return r;
807                 }
808
809                 if (rs->dev[i].meta_dev) {
810                         metadata_available = 1;
811                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
812                 }
813                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
814                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
815                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
816                         rebuild++;
817         }
818
819         if (metadata_available) {
820                 rs->md.external = 0;
821                 rs->md.persistent = 1;
822                 rs->md.major_version = 2;
823         } else if (rebuild && !rs->md.recovery_cp) {
824                 /*
825                  * Without metadata, we will not be able to tell if the array
826                  * is in-sync or not - we must assume it is not.  Therefore,
827                  * it is impossible to rebuild a drive.
828                  *
829                  * Even if there is metadata, the on-disk information may
830                  * indicate that the array is not in-sync and it will then
831                  * fail at that time.
832                  *
833                  * User could specify 'nosync' option if desperate.
834                  */
835                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
836                 return -EINVAL;
837         }
838
839         return 0;
840 }
841
842 /*
843  * validate_region_size
844  * @rs
845  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
846  *
847  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
848  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
849  *
850  * Returns: 0 on success, -EINVAL on failure.
851  */
852 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
853 {
854         unsigned long min_region_size = rs->ti->len / (1 << 21);
855
856         if (!region_size) {
857                 /*
858                  * Choose a reasonable default.  All figures in sectors.
859                  */
860                 if (min_region_size > (1 << 13)) {
861                         /* If not a power of 2, make it the next power of 2 */
862                         region_size = roundup_pow_of_two(min_region_size);
863                         DMINFO("Choosing default region size of %lu sectors",
864                                region_size);
865                 } else {
866                         DMINFO("Choosing default region size of 4MiB");
867                         region_size = 1 << 13; /* sectors */
868                 }
869         } else {
870                 /*
871                  * Validate user-supplied value.
872                  */
873                 if (region_size > rs->ti->len) {
874                         rs->ti->error = "Supplied region size is too large";
875                         return -EINVAL;
876                 }
877
878                 if (region_size < min_region_size) {
879                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
880                               region_size, min_region_size);
881                         rs->ti->error = "Supplied region size is too small";
882                         return -EINVAL;
883                 }
884
885                 if (!is_power_of_2(region_size)) {
886                         rs->ti->error = "Region size is not a power of 2";
887                         return -EINVAL;
888                 }
889
890                 if (region_size < rs->md.chunk_sectors) {
891                         rs->ti->error = "Region size is smaller than the chunk size";
892                         return -EINVAL;
893                 }
894         }
895
896         /*
897          * Convert sectors to bytes.
898          */
899         rs->md.bitmap_info.chunksize = (region_size << 9);
900
901         return 0;
902 }
903
904 /*
905  * validate_raid_redundancy
906  * @rs
907  *
908  * Determine if there are enough devices in the array that haven't
909  * failed (or are being rebuilt) to form a usable array.
910  *
911  * Returns: 0 on success, -EINVAL on failure.
912  */
913 static int validate_raid_redundancy(struct raid_set *rs)
914 {
915         unsigned i, rebuild_cnt = 0;
916         unsigned rebuilds_per_group = 0, copies;
917         unsigned group_size, last_group_start;
918
919         for (i = 0; i < rs->md.raid_disks; i++)
920                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
921                     !rs->dev[i].rdev.sb_page)
922                         rebuild_cnt++;
923
924         switch (rs->raid_type->level) {
925         case 1:
926                 if (rebuild_cnt >= rs->md.raid_disks)
927                         goto too_many;
928                 break;
929         case 4:
930         case 5:
931         case 6:
932                 if (rebuild_cnt > rs->raid_type->parity_devs)
933                         goto too_many;
934                 break;
935         case 10:
936                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
937                 if (rebuild_cnt < copies)
938                         break;
939
940                 /*
941                  * It is possible to have a higher rebuild count for RAID10,
942                  * as long as the failed devices occur in different mirror
943                  * groups (i.e. different stripes).
944                  *
945                  * When checking "near" format, make sure no adjacent devices
946                  * have failed beyond what can be handled.  In addition to the
947                  * simple case where the number of devices is a multiple of the
948                  * number of copies, we must also handle cases where the number
949                  * of devices is not a multiple of the number of copies.
950                  * E.g.    dev1 dev2 dev3 dev4 dev5
951                  *          A    A    B    B    C
952                  *          C    D    D    E    E
953                  */
954                 if (__is_raid10_near(rs->md.new_layout)) {
955                         for (i = 0; i < rs->raid_disks; i++) {
956                                 if (!(i % copies))
957                                         rebuilds_per_group = 0;
958                                 if ((!rs->dev[i].rdev.sb_page ||
959                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
960                                     (++rebuilds_per_group >= copies))
961                                         goto too_many;
962                         }
963                         break;
964                 }
965
966                 /*
967                  * When checking "far" and "offset" formats, we need to ensure
968                  * that the device that holds its copy is not also dead or
969                  * being rebuilt.  (Note that "far" and "offset" formats only
970                  * support two copies right now.  These formats also only ever
971                  * use the 'use_far_sets' variant.)
972                  *
973                  * This check is somewhat complicated by the need to account
974                  * for arrays that are not a multiple of (far) copies.  This
975                  * results in the need to treat the last (potentially larger)
976                  * set differently.
977                  */
978                 group_size = (rs->md.raid_disks / copies);
979                 last_group_start = (rs->md.raid_disks / group_size) - 1;
980                 last_group_start *= group_size;
981                 for (i = 0; i < rs->md.raid_disks; i++) {
982                         if (!(i % copies) && !(i > last_group_start))
983                                 rebuilds_per_group = 0;
984                         if ((!rs->dev[i].rdev.sb_page ||
985                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
986                             (++rebuilds_per_group >= copies))
987                                         goto too_many;
988                 }
989                 break;
990         default:
991                 if (rebuild_cnt)
992                         return -EINVAL;
993         }
994
995         return 0;
996
997 too_many:
998         return -EINVAL;
999 }
1000
1001 /*
1002  * Possible arguments are...
1003  *      <chunk_size> [optional_args]
1004  *
1005  * Argument definitions
1006  *    <chunk_size>                      The number of sectors per disk that
1007  *                                      will form the "stripe"
1008  *    [[no]sync]                        Force or prevent recovery of the
1009  *                                      entire array
1010  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1011  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1012  *                                      clear bits
1013  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1014  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1015  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1016  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1017  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1018  *    [region_size <sectors>]           Defines granularity of bitmap
1019  *
1020  * RAID10-only options:
1021  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1022  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1023  */
1024 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1025                              unsigned num_raid_params)
1026 {
1027         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1028         unsigned raid10_copies = 2;
1029         unsigned i, write_mostly = 0;
1030         unsigned region_size = 0;
1031         sector_t max_io_len;
1032         const char *arg, *key;
1033         struct raid_dev *rd;
1034         struct raid_type *rt = rs->raid_type;
1035
1036         arg = dm_shift_arg(as);
1037         num_raid_params--; /* Account for chunk_size argument */
1038
1039         if (kstrtoint(arg, 10, &value) < 0) {
1040                 rs->ti->error = "Bad numerical argument given for chunk_size";
1041                 return -EINVAL;
1042         }
1043
1044         /*
1045          * First, parse the in-order required arguments
1046          * "chunk_size" is the only argument of this type.
1047          */
1048         if (rt_is_raid1(rt)) {
1049                 if (value)
1050                         DMERR("Ignoring chunk size parameter for RAID 1");
1051                 value = 0;
1052         } else if (!is_power_of_2(value)) {
1053                 rs->ti->error = "Chunk size must be a power of 2";
1054                 return -EINVAL;
1055         } else if (value < 8) {
1056                 rs->ti->error = "Chunk size value is too small";
1057                 return -EINVAL;
1058         }
1059
1060         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1061
1062         /*
1063          * We set each individual device as In_sync with a completed
1064          * 'recovery_offset'.  If there has been a device failure or
1065          * replacement then one of the following cases applies:
1066          *
1067          *   1) User specifies 'rebuild'.
1068          *      - Device is reset when param is read.
1069          *   2) A new device is supplied.
1070          *      - No matching superblock found, resets device.
1071          *   3) Device failure was transient and returns on reload.
1072          *      - Failure noticed, resets device for bitmap replay.
1073          *   4) Device hadn't completed recovery after previous failure.
1074          *      - Superblock is read and overrides recovery_offset.
1075          *
1076          * What is found in the superblocks of the devices is always
1077          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1078          */
1079         for (i = 0; i < rs->md.raid_disks; i++) {
1080                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1081                 rs->dev[i].rdev.recovery_offset = MaxSector;
1082         }
1083
1084         /*
1085          * Second, parse the unordered optional arguments
1086          */
1087         for (i = 0; i < num_raid_params; i++) {
1088                 key = dm_shift_arg(as);
1089                 if (!key) {
1090                         rs->ti->error = "Not enough raid parameters given";
1091                         return -EINVAL;
1092                 }
1093
1094                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1095                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1096                                 rs->ti->error = "Only one 'nosync' argument allowed";
1097                                 return -EINVAL;
1098                         }
1099                         continue;
1100                 }
1101                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1102                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1103                                 rs->ti->error = "Only one 'sync' argument allowed";
1104                                 return -EINVAL;
1105                         }
1106                         continue;
1107                 }
1108                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1109                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1110                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1111                                 return -EINVAL;
1112                         }
1113                         continue;
1114                 }
1115
1116                 arg = dm_shift_arg(as);
1117                 i++; /* Account for the argument pairs */
1118                 if (!arg) {
1119                         rs->ti->error = "Wrong number of raid parameters given";
1120                         return -EINVAL;
1121                 }
1122
1123                 /*
1124                  * Parameters that take a string value are checked here.
1125                  */
1126
1127                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1128                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1129                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1130                                 return -EINVAL;
1131                         }
1132                         if (!rt_is_raid10(rt)) {
1133                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1134                                 return -EINVAL;
1135                         }
1136                         raid10_format = raid10_name_to_format(arg);
1137                         if (raid10_format < 0) {
1138                                 rs->ti->error = "Invalid 'raid10_format' value given";
1139                                 return raid10_format;
1140                         }
1141                         continue;
1142                 }
1143
1144                 if (kstrtoint(arg, 10, &value) < 0) {
1145                         rs->ti->error = "Bad numerical argument given in raid params";
1146                         return -EINVAL;
1147                 }
1148
1149                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1150                         /*
1151                          * "rebuild" is being passed in by userspace to provide
1152                          * indexes of replaced devices and to set up additional
1153                          * devices on raid level takeover.
1154                          */
1155                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1156                                 rs->ti->error = "Invalid rebuild index given";
1157                                 return -EINVAL;
1158                         }
1159
1160                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1161                                 rs->ti->error = "rebuild for this index already given";
1162                                 return -EINVAL;
1163                         }
1164
1165                         rd = rs->dev + value;
1166                         clear_bit(In_sync, &rd->rdev.flags);
1167                         clear_bit(Faulty, &rd->rdev.flags);
1168                         rd->rdev.recovery_offset = 0;
1169                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1170                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1171                         if (!rt_is_raid1(rt)) {
1172                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1173                                 return -EINVAL;
1174                         }
1175
1176                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1177                                 rs->ti->error = "Invalid write_mostly index given";
1178                                 return -EINVAL;
1179                         }
1180
1181                         write_mostly++;
1182                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1183                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1184                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1185                         if (!rt_is_raid1(rt)) {
1186                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1187                                 return -EINVAL;
1188                         }
1189
1190                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1191                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1192                                 return -EINVAL;
1193                         }
1194
1195                         /*
1196                          * In device-mapper, we specify things in sectors, but
1197                          * MD records this value in kB
1198                          */
1199                         value /= 2;
1200                         if (value > COUNTER_MAX) {
1201                                 rs->ti->error = "Max write-behind limit out of range";
1202                                 return -EINVAL;
1203                         }
1204
1205                         rs->md.bitmap_info.max_write_behind = value;
1206                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1207                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1208                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1209                                 return -EINVAL;
1210                         }
1211                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1212                                 rs->ti->error = "daemon sleep period out of range";
1213                                 return -EINVAL;
1214                         }
1215                         rs->md.bitmap_info.daemon_sleep = value;
1216                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1217                         /* Userspace passes new data_offset after having extended the the data image LV */
1218                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1219                                 rs->ti->error = "Only one data_offset argument pair allowed";
1220                                 return -EINVAL;
1221                         }
1222                         /* Ensure sensible data offset */
1223                         if (value < 0 ||
1224                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1225                                 rs->ti->error = "Bogus data_offset value";
1226                                 return -EINVAL;
1227                         }
1228                         rs->data_offset = value;
1229                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1230                         /* Define the +/-# of disks to add to/remove from the given raid set */
1231                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1232                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1233                                 return -EINVAL;
1234                         }
1235                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1236                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1237                                 rs->ti->error = "Too many delta_disk requested";
1238                                 return -EINVAL;
1239                         }
1240
1241                         rs->delta_disks = value;
1242                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1243                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1244                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1245                                 return -EINVAL;
1246                         }
1247
1248                         if (!rt_is_raid456(rt)) {
1249                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1250                                 return -EINVAL;
1251                         }
1252
1253                         rs->stripe_cache_entries = value;
1254                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1255                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1256                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1257                                 return -EINVAL;
1258                         }
1259                         if (value > INT_MAX) {
1260                                 rs->ti->error = "min_recovery_rate out of range";
1261                                 return -EINVAL;
1262                         }
1263                         rs->md.sync_speed_min = (int)value;
1264                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1265                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1267                                 return -EINVAL;
1268                         }
1269                         if (value > INT_MAX) {
1270                                 rs->ti->error = "max_recovery_rate out of range";
1271                                 return -EINVAL;
1272                         }
1273                         rs->md.sync_speed_max = (int)value;
1274                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1275                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1276                                 rs->ti->error = "Only one region_size argument pair allowed";
1277                                 return -EINVAL;
1278                         }
1279
1280                         region_size = value;
1281                         rs->requested_bitmap_chunk_sectors = value;
1282                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1283                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1284                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1285                                 return -EINVAL;
1286                         }
1287
1288                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1289                                 rs->ti->error = "Bad value for 'raid10_copies'";
1290                                 return -EINVAL;
1291                         }
1292
1293                         raid10_copies = value;
1294                 } else {
1295                         DMERR("Unable to parse RAID parameter: %s", key);
1296                         rs->ti->error = "Unable to parse RAID parameter";
1297                         return -EINVAL;
1298                 }
1299         }
1300
1301         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1302             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1303                 rs->ti->error = "sync and nosync are mutually exclusive";
1304                 return -EINVAL;
1305         }
1306
1307         if (write_mostly >= rs->md.raid_disks) {
1308                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1309                 return -EINVAL;
1310         }
1311
1312         if (validate_region_size(rs, region_size))
1313                 return -EINVAL;
1314
1315         if (rs->md.chunk_sectors)
1316                 max_io_len = rs->md.chunk_sectors;
1317         else
1318                 max_io_len = region_size;
1319
1320         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1321                 return -EINVAL;
1322
1323         if (rt_is_raid10(rt)) {
1324                 if (raid10_copies > rs->md.raid_disks) {
1325                         rs->ti->error = "Not enough devices to satisfy specification";
1326                         return -EINVAL;
1327                 }
1328
1329                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1330                 if (rs->md.new_layout < 0) {
1331                         rs->ti->error = "Error getting raid10 format";
1332                         return rs->md.new_layout;
1333                 }
1334
1335                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1336                 if (!rt) {
1337                         rs->ti->error = "Failed to recognize new raid10 layout";
1338                         return -EINVAL;
1339                 }
1340
1341                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1342                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1343                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1344                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1345                         return -EINVAL;
1346                 }
1347         }
1348
1349         rs->raid10_copies = raid10_copies;
1350
1351         /* Assume there are no metadata devices until the drives are parsed */
1352         rs->md.persistent = 0;
1353         rs->md.external = 1;
1354
1355         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1356         return rs_check_for_valid_flags(rs);
1357 }
1358
1359 /* Set raid4/5/6 cache size */
1360 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1361 {
1362         int r;
1363         struct r5conf *conf;
1364         struct mddev *mddev = &rs->md;
1365         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1366         uint32_t nr_stripes = rs->stripe_cache_entries;
1367
1368         if (!rt_is_raid456(rs->raid_type)) {
1369                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1370                 return -EINVAL;
1371         }
1372
1373         if (nr_stripes < min_stripes) {
1374                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1375                        nr_stripes, min_stripes);
1376                 nr_stripes = min_stripes;
1377         }
1378
1379         conf = mddev->private;
1380         if (!conf) {
1381                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1382                 return -EINVAL;
1383         }
1384
1385         /* Try setting number of stripes in raid456 stripe cache */
1386         if (conf->min_nr_stripes != nr_stripes) {
1387                 r = raid5_set_cache_size(mddev, nr_stripes);
1388                 if (r) {
1389                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1390                         return r;
1391                 }
1392
1393                 DMINFO("%u stripe cache entries", nr_stripes);
1394         }
1395
1396         return 0;
1397 }
1398
1399 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1400 static unsigned int mddev_data_stripes(struct raid_set *rs)
1401 {
1402         return rs->md.raid_disks - rs->raid_type->parity_devs;
1403 }
1404
1405 /* Return # of data stripes of @rs (i.e. as of ctr) */
1406 static unsigned int rs_data_stripes(struct raid_set *rs)
1407 {
1408         return rs->raid_disks - rs->raid_type->parity_devs;
1409 }
1410
1411 /* Calculate the sectors per device and per array used for @rs */
1412 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1413 {
1414         int delta_disks;
1415         unsigned int data_stripes;
1416         struct mddev *mddev = &rs->md;
1417         struct md_rdev *rdev;
1418         sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1419
1420         if (use_mddev) {
1421                 delta_disks = mddev->delta_disks;
1422                 data_stripes = mddev_data_stripes(rs);
1423         } else {
1424                 delta_disks = rs->delta_disks;
1425                 data_stripes = rs_data_stripes(rs);
1426         }
1427
1428         /* Special raid1 case w/o delta_disks support (yet) */
1429         if (rt_is_raid1(rs->raid_type))
1430                 ;
1431         else if (rt_is_raid10(rs->raid_type)) {
1432                 if (rs->raid10_copies < 2 ||
1433                     delta_disks < 0) {
1434                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1435                         return EINVAL;
1436                 }
1437
1438                 dev_sectors *= rs->raid10_copies;
1439                 if (sector_div(dev_sectors, data_stripes))
1440                         goto bad;
1441
1442                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1443                 if (sector_div(array_sectors, rs->raid10_copies))
1444                         goto bad;
1445
1446         } else if (sector_div(dev_sectors, data_stripes))
1447                 goto bad;
1448
1449         else
1450                 /* Striped layouts */
1451                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1452
1453         rdev_for_each(rdev, mddev)
1454                 rdev->sectors = dev_sectors;
1455
1456         mddev->array_sectors = array_sectors;
1457         mddev->dev_sectors = dev_sectors;
1458
1459         return 0;
1460 bad:
1461         rs->ti->error = "Target length not divisible by number of data devices";
1462         return EINVAL;
1463 }
1464
1465 /* Setup recovery on @rs */
1466 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1467 {
1468         /* raid0 does not recover */
1469         if (rs_is_raid0(rs))
1470                 rs->md.recovery_cp = MaxSector;
1471         /*
1472          * A raid6 set has to be recovered either
1473          * completely or for the grown part to
1474          * ensure proper parity and Q-Syndrome
1475          */
1476         else if (rs_is_raid6(rs))
1477                 rs->md.recovery_cp = dev_sectors;
1478         /*
1479          * Other raid set types may skip recovery
1480          * depending on the 'nosync' flag.
1481          */
1482         else
1483                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1484                                      ? MaxSector : dev_sectors;
1485 }
1486
1487 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1488 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1489 {
1490         if (!dev_sectors)
1491                 /* New raid set or 'sync' flag provided */
1492                 __rs_setup_recovery(rs, 0);
1493         else if (dev_sectors == MaxSector)
1494                 /* Prevent recovery */
1495                 __rs_setup_recovery(rs, MaxSector);
1496         else if (rs->dev[0].rdev.sectors < dev_sectors)
1497                 /* Grown raid set */
1498                 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1499         else
1500                 __rs_setup_recovery(rs, MaxSector);
1501 }
1502
1503 static void do_table_event(struct work_struct *ws)
1504 {
1505         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1506
1507         smp_rmb(); /* Make sure we access most actual mddev properties */
1508         if (!rs_is_reshaping(rs))
1509                 rs_set_capacity(rs);
1510         dm_table_event(rs->ti->table);
1511 }
1512
1513 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1514 {
1515         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1516
1517         return mddev_congested(&rs->md, bits);
1518 }
1519
1520 /*
1521  * Make sure a valid takover (level switch) is being requested on @rs
1522  *
1523  * Conversions of raid sets from one MD personality to another
1524  * have to conform to restrictions which are enforced here.
1525  */
1526 static int rs_check_takeover(struct raid_set *rs)
1527 {
1528         struct mddev *mddev = &rs->md;
1529         unsigned int near_copies;
1530
1531         if (rs->md.degraded) {
1532                 rs->ti->error = "Can't takeover degraded raid set";
1533                 return -EPERM;
1534         }
1535
1536         if (rs_is_reshaping(rs)) {
1537                 rs->ti->error = "Can't takeover reshaping raid set";
1538                 return -EPERM;
1539         }
1540
1541         switch (mddev->level) {
1542         case 0:
1543                 /* raid0 -> raid1/5 with one disk */
1544                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1545                     mddev->raid_disks == 1)
1546                         return 0;
1547
1548                 /* raid0 -> raid10 */
1549                 if (mddev->new_level == 10 &&
1550                     !(rs->raid_disks % mddev->raid_disks))
1551                         return 0;
1552
1553                 /* raid0 with multiple disks -> raid4/5/6 */
1554                 if (__within_range(mddev->new_level, 4, 6) &&
1555                     mddev->new_layout == ALGORITHM_PARITY_N &&
1556                     mddev->raid_disks > 1)
1557                         return 0;
1558
1559                 break;
1560
1561         case 10:
1562                 /* Can't takeover raid10_offset! */
1563                 if (__is_raid10_offset(mddev->layout))
1564                         break;
1565
1566                 near_copies = __raid10_near_copies(mddev->layout);
1567
1568                 /* raid10* -> raid0 */
1569                 if (mddev->new_level == 0) {
1570                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1571                         if (near_copies > 1 &&
1572                             !(mddev->raid_disks % near_copies)) {
1573                                 mddev->raid_disks /= near_copies;
1574                                 mddev->delta_disks = mddev->raid_disks;
1575                                 return 0;
1576                         }
1577
1578                         /* Can takeover raid10_far */
1579                         if (near_copies == 1 &&
1580                             __raid10_far_copies(mddev->layout) > 1)
1581                                 return 0;
1582
1583                         break;
1584                 }
1585
1586                 /* raid10_{near,far} -> raid1 */
1587                 if (mddev->new_level == 1 &&
1588                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1589                         return 0;
1590
1591                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1592                 if (__within_range(mddev->new_level, 4, 5) &&
1593                     mddev->raid_disks == 2)
1594                         return 0;
1595                 break;
1596
1597         case 1:
1598                 /* raid1 with 2 disks -> raid4/5 */
1599                 if (__within_range(mddev->new_level, 4, 5) &&
1600                     mddev->raid_disks == 2) {
1601                         mddev->degraded = 1;
1602                         return 0;
1603                 }
1604
1605                 /* raid1 -> raid0 */
1606                 if (mddev->new_level == 0 &&
1607                     mddev->raid_disks == 1)
1608                         return 0;
1609
1610                 /* raid1 -> raid10 */
1611                 if (mddev->new_level == 10)
1612                         return 0;
1613
1614                 break;
1615
1616         case 4:
1617                 /* raid4 -> raid0 */
1618                 if (mddev->new_level == 0)
1619                         return 0;
1620
1621                 /* raid4 -> raid1/5 with 2 disks */
1622                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1623                     mddev->raid_disks == 2)
1624                         return 0;
1625
1626                 /* raid4 -> raid5/6 with parity N */
1627                 if (__within_range(mddev->new_level, 5, 6) &&
1628                     mddev->layout == ALGORITHM_PARITY_N)
1629                         return 0;
1630                 break;
1631
1632         case 5:
1633                 /* raid5 with parity N -> raid0 */
1634                 if (mddev->new_level == 0 &&
1635                     mddev->layout == ALGORITHM_PARITY_N)
1636                         return 0;
1637
1638                 /* raid5 with parity N -> raid4 */
1639                 if (mddev->new_level == 4 &&
1640                     mddev->layout == ALGORITHM_PARITY_N)
1641                         return 0;
1642
1643                 /* raid5 with 2 disks -> raid1/4/10 */
1644                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1645                     mddev->raid_disks == 2)
1646                         return 0;
1647
1648                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1649                 if (mddev->new_level == 6 &&
1650                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1651                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1652                         return 0;
1653                 break;
1654
1655         case 6:
1656                 /* raid6 with parity N -> raid0 */
1657                 if (mddev->new_level == 0 &&
1658                     mddev->layout == ALGORITHM_PARITY_N)
1659                         return 0;
1660
1661                 /* raid6 with parity N -> raid4 */
1662                 if (mddev->new_level == 4 &&
1663                     mddev->layout == ALGORITHM_PARITY_N)
1664                         return 0;
1665
1666                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1667                 if (mddev->new_level == 5 &&
1668                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1669                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1670                         return 0;
1671
1672         default:
1673                 break;
1674         }
1675
1676         rs->ti->error = "takeover not possible";
1677         return -EINVAL;
1678 }
1679
1680 /* True if @rs requested to be taken over */
1681 static bool rs_takeover_requested(struct raid_set *rs)
1682 {
1683         return rs->md.new_level != rs->md.level;
1684 }
1685
1686 /* True if @rs is requested to reshape by ctr */
1687 static bool rs_reshape_requested(struct raid_set *rs)
1688 {
1689         struct mddev *mddev = &rs->md;
1690
1691         if (!mddev->level)
1692                 return false;
1693
1694         return !__is_raid10_far(mddev->new_layout) &&
1695                mddev->new_level == mddev->level &&
1696                (mddev->new_layout != mddev->layout ||
1697                 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1698                 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1699 }
1700
1701 /*  Features */
1702 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1703
1704 /* State flags for sb->flags */
1705 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1706 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1707
1708 /*
1709  * This structure is never routinely used by userspace, unlike md superblocks.
1710  * Devices with this superblock should only ever be accessed via device-mapper.
1711  */
1712 #define DM_RAID_MAGIC 0x64526D44
1713 struct dm_raid_superblock {
1714         __le32 magic;           /* "DmRd" */
1715         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1716
1717         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1718         __le32 array_position;  /* The position of this drive in the raid set */
1719
1720         __le64 events;          /* Incremented by md when superblock updated */
1721         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1722                                 /* indicate failures (see extension below) */
1723
1724         /*
1725          * This offset tracks the progress of the repair or replacement of
1726          * an individual drive.
1727          */
1728         __le64 disk_recovery_offset;
1729
1730         /*
1731          * This offset tracks the progress of the initial raid set
1732          * synchronisation/parity calculation.
1733          */
1734         __le64 array_resync_offset;
1735
1736         /*
1737          * raid characteristics
1738          */
1739         __le32 level;
1740         __le32 layout;
1741         __le32 stripe_sectors;
1742
1743         /********************************************************************
1744          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1745          *
1746          * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1747          */
1748
1749         __le32 flags; /* Flags defining array states for reshaping */
1750
1751         /*
1752          * This offset tracks the progress of a raid
1753          * set reshape in order to be able to restart it
1754          */
1755         __le64 reshape_position;
1756
1757         /*
1758          * These define the properties of the array in case of an interrupted reshape
1759          */
1760         __le32 new_level;
1761         __le32 new_layout;
1762         __le32 new_stripe_sectors;
1763         __le32 delta_disks;
1764
1765         __le64 array_sectors; /* Array size in sectors */
1766
1767         /*
1768          * Sector offsets to data on devices (reshaping).
1769          * Needed to support out of place reshaping, thus
1770          * not writing over any stripes whilst converting
1771          * them from old to new layout
1772          */
1773         __le64 data_offset;
1774         __le64 new_data_offset;
1775
1776         __le64 sectors; /* Used device size in sectors */
1777
1778         /*
1779          * Additonal Bit field of devices indicating failures to support
1780          * up to 256 devices with the 1.9.0 on-disk metadata format
1781          */
1782         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1783
1784         __le32 incompat_features;       /* Used to indicate any incompatible features */
1785
1786         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1787 } __packed;
1788
1789 /*
1790  * Check for reshape constraints on raid set @rs:
1791  *
1792  * - reshape function non-existent
1793  * - degraded set
1794  * - ongoing recovery
1795  * - ongoing reshape
1796  *
1797  * Returns 0 if none or -EPERM if given constraint
1798  * and error message reference in @errmsg
1799  */
1800 static int rs_check_reshape(struct raid_set *rs)
1801 {
1802         struct mddev *mddev = &rs->md;
1803
1804         if (!mddev->pers || !mddev->pers->check_reshape)
1805                 rs->ti->error = "Reshape not supported";
1806         else if (mddev->degraded)
1807                 rs->ti->error = "Can't reshape degraded raid set";
1808         else if (rs_is_recovering(rs))
1809                 rs->ti->error = "Convert request on recovering raid set prohibited";
1810         else if (mddev->reshape_position && rs_is_reshaping(rs))
1811                 rs->ti->error = "raid set already reshaping!";
1812         else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1813                 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1814         else
1815                 return 0;
1816
1817         return -EPERM;
1818 }
1819
1820 static int read_disk_sb(struct md_rdev *rdev, int size)
1821 {
1822         BUG_ON(!rdev->sb_page);
1823
1824         if (rdev->sb_loaded)
1825                 return 0;
1826
1827         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1828                 DMERR("Failed to read superblock of device at position %d",
1829                       rdev->raid_disk);
1830                 md_error(rdev->mddev, rdev);
1831                 return -EINVAL;
1832         }
1833
1834         rdev->sb_loaded = 1;
1835
1836         return 0;
1837 }
1838
1839 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1840 {
1841         failed_devices[0] = le64_to_cpu(sb->failed_devices);
1842         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1843
1844         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1845                 int i = ARRAY_SIZE(sb->extended_failed_devices);
1846
1847                 while (i--)
1848                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1849         }
1850 }
1851
1852 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1853 {
1854         int i = ARRAY_SIZE(sb->extended_failed_devices);
1855
1856         sb->failed_devices = cpu_to_le64(failed_devices[0]);
1857         while (i--)
1858                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1859 }
1860
1861 /*
1862  * Synchronize the superblock members with the raid set properties
1863  *
1864  * All superblock data is little endian.
1865  */
1866 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1867 {
1868         bool update_failed_devices = false;
1869         unsigned int i;
1870         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1871         struct dm_raid_superblock *sb;
1872         struct raid_set *rs = container_of(mddev, struct raid_set, md);
1873
1874         /* No metadata device, no superblock */
1875         if (!rdev->meta_bdev)
1876                 return;
1877
1878         BUG_ON(!rdev->sb_page);
1879
1880         sb = page_address(rdev->sb_page);
1881
1882         sb_retrieve_failed_devices(sb, failed_devices);
1883
1884         for (i = 0; i < rs->raid_disks; i++)
1885                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1886                         update_failed_devices = true;
1887                         set_bit(i, (void *) failed_devices);
1888                 }
1889
1890         if (update_failed_devices)
1891                 sb_update_failed_devices(sb, failed_devices);
1892
1893         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1894         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1895
1896         sb->num_devices = cpu_to_le32(mddev->raid_disks);
1897         sb->array_position = cpu_to_le32(rdev->raid_disk);
1898
1899         sb->events = cpu_to_le64(mddev->events);
1900
1901         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1902         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1903
1904         sb->level = cpu_to_le32(mddev->level);
1905         sb->layout = cpu_to_le32(mddev->layout);
1906         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1907
1908         sb->new_level = cpu_to_le32(mddev->new_level);
1909         sb->new_layout = cpu_to_le32(mddev->new_layout);
1910         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1911
1912         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1913
1914         smp_rmb(); /* Make sure we access most recent reshape position */
1915         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1916         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1917                 /* Flag ongoing reshape */
1918                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1919
1920                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1921                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1922         } else {
1923                 /* Clear reshape flags */
1924                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1925         }
1926
1927         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1928         sb->data_offset = cpu_to_le64(rdev->data_offset);
1929         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1930         sb->sectors = cpu_to_le64(rdev->sectors);
1931
1932         /* Zero out the rest of the payload after the size of the superblock */
1933         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1934 }
1935
1936 /*
1937  * super_load
1938  *
1939  * This function creates a superblock if one is not found on the device
1940  * and will decide which superblock to use if there's a choice.
1941  *
1942  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1943  */
1944 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1945 {
1946         int r;
1947         struct dm_raid_superblock *sb;
1948         struct dm_raid_superblock *refsb;
1949         uint64_t events_sb, events_refsb;
1950
1951         rdev->sb_start = 0;
1952         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1953         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1954                 DMERR("superblock size of a logical block is no longer valid");
1955                 return -EINVAL;
1956         }
1957
1958         r = read_disk_sb(rdev, rdev->sb_size);
1959         if (r)
1960                 return r;
1961
1962         sb = page_address(rdev->sb_page);
1963
1964         /*
1965          * Two cases that we want to write new superblocks and rebuild:
1966          * 1) New device (no matching magic number)
1967          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1968          */
1969         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1970             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1971                 super_sync(rdev->mddev, rdev);
1972
1973                 set_bit(FirstUse, &rdev->flags);
1974                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1975
1976                 /* Force writing of superblocks to disk */
1977                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1978
1979                 /* Any superblock is better than none, choose that if given */
1980                 return refdev ? 0 : 1;
1981         }
1982
1983         if (!refdev)
1984                 return 1;
1985
1986         events_sb = le64_to_cpu(sb->events);
1987
1988         refsb = page_address(refdev->sb_page);
1989         events_refsb = le64_to_cpu(refsb->events);
1990
1991         return (events_sb > events_refsb) ? 1 : 0;
1992 }
1993
1994 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1995 {
1996         int role;
1997         unsigned int d;
1998         struct mddev *mddev = &rs->md;
1999         uint64_t events_sb;
2000         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2001         struct dm_raid_superblock *sb;
2002         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2003         struct md_rdev *r;
2004         struct dm_raid_superblock *sb2;
2005
2006         sb = page_address(rdev->sb_page);
2007         events_sb = le64_to_cpu(sb->events);
2008
2009         /*
2010          * Initialise to 1 if this is a new superblock.
2011          */
2012         mddev->events = events_sb ? : 1;
2013
2014         mddev->reshape_position = MaxSector;
2015
2016         /*
2017          * Reshaping is supported, e.g. reshape_position is valid
2018          * in superblock and superblock content is authoritative.
2019          */
2020         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2021                 /* Superblock is authoritative wrt given raid set layout! */
2022                 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2023                 mddev->level = le32_to_cpu(sb->level);
2024                 mddev->layout = le32_to_cpu(sb->layout);
2025                 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2026                 mddev->new_level = le32_to_cpu(sb->new_level);
2027                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2028                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2029                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2030                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2031
2032                 /* raid was reshaping and got interrupted */
2033                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2034                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2035                                 DMERR("Reshape requested but raid set is still reshaping");
2036                                 return -EINVAL;
2037                         }
2038
2039                         if (mddev->delta_disks < 0 ||
2040                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2041                                 mddev->reshape_backwards = 1;
2042                         else
2043                                 mddev->reshape_backwards = 0;
2044
2045                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2046                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2047                 }
2048
2049         } else {
2050                 /*
2051                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2052                  */
2053                 if (le32_to_cpu(sb->level) != mddev->level) {
2054                         DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2055                         return -EINVAL;
2056                 }
2057                 if (le32_to_cpu(sb->layout) != mddev->layout) {
2058                         DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2059                         DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2060                         DMERR("  Old layout: %s w/ %d copies",
2061                               raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2062                               raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2063                         DMERR("  New layout: %s w/ %d copies",
2064                               raid10_md_layout_to_format(mddev->layout),
2065                               raid10_md_layout_to_copies(mddev->layout));
2066                         return -EINVAL;
2067                 }
2068                 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2069                         DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2070                         return -EINVAL;
2071                 }
2072
2073                 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2074                 if (!rt_is_raid1(rs->raid_type) &&
2075                     (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2076                         DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2077                               sb->num_devices, mddev->raid_disks);
2078                         return -EINVAL;
2079                 }
2080
2081                 /* Table line is checked vs. authoritative superblock */
2082                 rs_set_new(rs);
2083         }
2084
2085         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2086                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2087
2088         /*
2089          * During load, we set FirstUse if a new superblock was written.
2090          * There are two reasons we might not have a superblock:
2091          * 1) The raid set is brand new - in which case, all of the
2092          *    devices must have their In_sync bit set.  Also,
2093          *    recovery_cp must be 0, unless forced.
2094          * 2) This is a new device being added to an old raid set
2095          *    and the new device needs to be rebuilt - in which
2096          *    case the In_sync bit will /not/ be set and
2097          *    recovery_cp must be MaxSector.
2098          * 3) This is/are a new device(s) being added to an old
2099          *    raid set during takeover to a higher raid level
2100          *    to provide capacity for redundancy or during reshape
2101          *    to add capacity to grow the raid set.
2102          */
2103         d = 0;
2104         rdev_for_each(r, mddev) {
2105                 if (test_bit(FirstUse, &r->flags))
2106                         new_devs++;
2107
2108                 if (!test_bit(In_sync, &r->flags)) {
2109                         DMINFO("Device %d specified for rebuild; clearing superblock",
2110                                 r->raid_disk);
2111                         rebuilds++;
2112
2113                         if (test_bit(FirstUse, &r->flags))
2114                                 rebuild_and_new++;
2115                 }
2116
2117                 d++;
2118         }
2119
2120         if (new_devs == rs->raid_disks || !rebuilds) {
2121                 /* Replace a broken device */
2122                 if (new_devs == 1 && !rs->delta_disks)
2123                         ;
2124                 if (new_devs == rs->raid_disks) {
2125                         DMINFO("Superblocks created for new raid set");
2126                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2127                 } else if (new_devs != rebuilds &&
2128                            new_devs != rs->delta_disks) {
2129                         DMERR("New device injected into existing raid set without "
2130                               "'delta_disks' or 'rebuild' parameter specified");
2131                         return -EINVAL;
2132                 }
2133         } else if (new_devs && new_devs != rebuilds) {
2134                 DMERR("%u 'rebuild' devices cannot be injected into"
2135                       " a raid set with %u other first-time devices",
2136                       rebuilds, new_devs);
2137                 return -EINVAL;
2138         } else if (rebuilds) {
2139                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2140                         DMERR("new device%s provided without 'rebuild'",
2141                               new_devs > 1 ? "s" : "");
2142                         return -EINVAL;
2143                 } else if (rs_is_recovering(rs)) {
2144                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2145                               (unsigned long long) mddev->recovery_cp);
2146                         return -EINVAL;
2147                 } else if (rs_is_reshaping(rs)) {
2148                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2149                               (unsigned long long) mddev->reshape_position);
2150                         return -EINVAL;
2151                 }
2152         }
2153
2154         /*
2155          * Now we set the Faulty bit for those devices that are
2156          * recorded in the superblock as failed.
2157          */
2158         sb_retrieve_failed_devices(sb, failed_devices);
2159         rdev_for_each(r, mddev) {
2160                 if (!r->sb_page)
2161                         continue;
2162                 sb2 = page_address(r->sb_page);
2163                 sb2->failed_devices = 0;
2164                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2165
2166                 /*
2167                  * Check for any device re-ordering.
2168                  */
2169                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2170                         role = le32_to_cpu(sb2->array_position);
2171                         if (role < 0)
2172                                 continue;
2173
2174                         if (role != r->raid_disk) {
2175                                 if (__is_raid10_near(mddev->layout)) {
2176                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2177                                             rs->raid_disks % rs->raid10_copies) {
2178                                                 rs->ti->error =
2179                                                         "Cannot change raid10 near set to odd # of devices!";
2180                                                 return -EINVAL;
2181                                         }
2182
2183                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2184
2185                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2186                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2187                                            !rt_is_raid1(rs->raid_type)) {
2188                                         rs->ti->error = "Cannot change device positions in raid set";
2189                                         return -EINVAL;
2190                                 }
2191
2192                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2193                         }
2194
2195                         /*
2196                          * Partial recovery is performed on
2197                          * returning failed devices.
2198                          */
2199                         if (test_bit(role, (void *) failed_devices))
2200                                 set_bit(Faulty, &r->flags);
2201                 }
2202         }
2203
2204         return 0;
2205 }
2206
2207 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2208 {
2209         struct mddev *mddev = &rs->md;
2210         struct dm_raid_superblock *sb;
2211
2212         if (rs_is_raid0(rs) || !rdev->sb_page)
2213                 return 0;
2214
2215         sb = page_address(rdev->sb_page);
2216
2217         /*
2218          * If mddev->events is not set, we know we have not yet initialized
2219          * the array.
2220          */
2221         if (!mddev->events && super_init_validation(rs, rdev))
2222                 return -EINVAL;
2223
2224         if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2225                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2226                 return -EINVAL;
2227         }
2228
2229         if (sb->incompat_features) {
2230                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2231                 return -EINVAL;
2232         }
2233
2234         /* Enable bitmap creation for RAID levels != 0 */
2235         mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2236         rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2237
2238         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2239                 /* Retrieve device size stored in superblock to be prepared for shrink */
2240                 rdev->sectors = le64_to_cpu(sb->sectors);
2241                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2242                 if (rdev->recovery_offset == MaxSector)
2243                         set_bit(In_sync, &rdev->flags);
2244                 /*
2245                  * If no reshape in progress -> we're recovering single
2246                  * disk(s) and have to set the device(s) to out-of-sync
2247                  */
2248                 else if (!rs_is_reshaping(rs))
2249                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2250         }
2251
2252         /*
2253          * If a device comes back, set it as not In_sync and no longer faulty.
2254          */
2255         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2256                 rdev->recovery_offset = 0;
2257                 clear_bit(In_sync, &rdev->flags);
2258                 rdev->saved_raid_disk = rdev->raid_disk;
2259         }
2260
2261         /* Reshape support -> restore repective data offsets */
2262         rdev->data_offset = le64_to_cpu(sb->data_offset);
2263         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2264
2265         return 0;
2266 }
2267
2268 /*
2269  * Analyse superblocks and select the freshest.
2270  */
2271 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2272 {
2273         int r;
2274         struct raid_dev *dev;
2275         struct md_rdev *rdev, *tmp, *freshest;
2276         struct mddev *mddev = &rs->md;
2277
2278         freshest = NULL;
2279         rdev_for_each_safe(rdev, tmp, mddev) {
2280                 /*
2281                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2282                  * the array to undergo initialization again as
2283                  * though it were new.  This is the intended effect
2284                  * of the "sync" directive.
2285                  *
2286                  * When reshaping capability is added, we must ensure
2287                  * that the "sync" directive is disallowed during the
2288                  * reshape.
2289                  */
2290                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2291                         continue;
2292
2293                 if (!rdev->meta_bdev)
2294                         continue;
2295
2296                 r = super_load(rdev, freshest);
2297
2298                 switch (r) {
2299                 case 1:
2300                         freshest = rdev;
2301                         break;
2302                 case 0:
2303                         break;
2304                 default:
2305                         dev = container_of(rdev, struct raid_dev, rdev);
2306                         if (dev->meta_dev)
2307                                 dm_put_device(ti, dev->meta_dev);
2308
2309                         dev->meta_dev = NULL;
2310                         rdev->meta_bdev = NULL;
2311
2312                         if (rdev->sb_page)
2313                                 put_page(rdev->sb_page);
2314
2315                         rdev->sb_page = NULL;
2316
2317                         rdev->sb_loaded = 0;
2318
2319                         /*
2320                          * We might be able to salvage the data device
2321                          * even though the meta device has failed.  For
2322                          * now, we behave as though '- -' had been
2323                          * set for this device in the table.
2324                          */
2325                         if (dev->data_dev)
2326                                 dm_put_device(ti, dev->data_dev);
2327
2328                         dev->data_dev = NULL;
2329                         rdev->bdev = NULL;
2330
2331                         list_del(&rdev->same_set);
2332                 }
2333         }
2334
2335         if (!freshest)
2336                 return 0;
2337
2338         if (validate_raid_redundancy(rs)) {
2339                 rs->ti->error = "Insufficient redundancy to activate array";
2340                 return -EINVAL;
2341         }
2342
2343         /*
2344          * Validation of the freshest device provides the source of
2345          * validation for the remaining devices.
2346          */
2347         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2348         if (super_validate(rs, freshest))
2349                 return -EINVAL;
2350
2351         rdev_for_each(rdev, mddev)
2352                 if ((rdev != freshest) && super_validate(rs, rdev))
2353                         return -EINVAL;
2354         return 0;
2355 }
2356
2357 /*
2358  * Adjust data_offset and new_data_offset on all disk members of @rs
2359  * for out of place reshaping if requested by contructor
2360  *
2361  * We need free space at the beginning of each raid disk for forward
2362  * and at the end for backward reshapes which userspace has to provide
2363  * via remapping/reordering of space.
2364  */
2365 static int rs_adjust_data_offsets(struct raid_set *rs)
2366 {
2367         sector_t data_offset = 0, new_data_offset = 0;
2368         struct md_rdev *rdev;
2369
2370         /* Constructor did not request data offset change */
2371         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2372                 if (!rs_is_reshapable(rs))
2373                         goto out;
2374
2375                 return 0;
2376         }
2377
2378         /* HM FIXME: get InSync raid_dev? */
2379         rdev = &rs->dev[0].rdev;
2380
2381         if (rs->delta_disks < 0) {
2382                 /*
2383                  * Removing disks (reshaping backwards):
2384                  *
2385                  * - before reshape: data is at offset 0 and free space
2386                  *                   is at end of each component LV
2387                  *
2388                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2389                  */
2390                 data_offset = 0;
2391                 new_data_offset = rs->data_offset;
2392
2393         } else if (rs->delta_disks > 0) {
2394                 /*
2395                  * Adding disks (reshaping forwards):
2396                  *
2397                  * - before reshape: data is at offset rs->data_offset != 0 and
2398                  *                   free space is at begin of each component LV
2399                  *
2400                  * - after reshape: data is at offset 0 on each component LV
2401                  */
2402                 data_offset = rs->data_offset;
2403                 new_data_offset = 0;
2404
2405         } else {
2406                 /*
2407                  * User space passes in 0 for data offset after having removed reshape space
2408                  *
2409                  * - or - (data offset != 0)
2410                  *
2411                  * Changing RAID layout or chunk size -> toggle offsets
2412                  *
2413                  * - before reshape: data is at offset rs->data_offset 0 and
2414                  *                   free space is at end of each component LV
2415                  *                   -or-
2416                  *                   data is at offset rs->data_offset != 0 and
2417                  *                   free space is at begin of each component LV
2418                  *
2419                  * - after reshape: data is at offset 0 if i was at offset != 0
2420                  *                  of at offset != 0 if it was at offset 0
2421                  *                  on each component LV
2422                  *
2423                  */
2424                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2425                 new_data_offset = data_offset ? 0 : rs->data_offset;
2426                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2427         }
2428
2429         /*
2430          * Make sure we got a minimum amount of free sectors per device
2431          */
2432         if (rs->data_offset &&
2433             to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2434                 rs->ti->error = data_offset ? "No space for forward reshape" :
2435                                               "No space for backward reshape";
2436                 return -ENOSPC;
2437         }
2438 out:
2439         /* Adjust data offsets on all rdevs */
2440         rdev_for_each(rdev, &rs->md) {
2441                 rdev->data_offset = data_offset;
2442                 rdev->new_data_offset = new_data_offset;
2443         }
2444
2445         return 0;
2446 }
2447
2448 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2449 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2450 {
2451         int i = 0;
2452         struct md_rdev *rdev;
2453
2454         rdev_for_each(rdev, &rs->md) {
2455                 rdev->raid_disk = i++;
2456                 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2457         }
2458 }
2459
2460 /*
2461  * Setup @rs for takeover by a different raid level
2462  */
2463 static int rs_setup_takeover(struct raid_set *rs)
2464 {
2465         struct mddev *mddev = &rs->md;
2466         struct md_rdev *rdev;
2467         unsigned int d = mddev->raid_disks = rs->raid_disks;
2468         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2469
2470         if (rt_is_raid10(rs->raid_type)) {
2471                 if (mddev->level == 0) {
2472                         /* Userpace reordered disks -> adjust raid_disk indexes */
2473                         __reorder_raid_disk_indexes(rs);
2474
2475                         /* raid0 -> raid10_far layout */
2476                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2477                                                                    rs->raid10_copies);
2478                 } else if (mddev->level == 1)
2479                         /* raid1 -> raid10_near layout */
2480                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2481                                                                    rs->raid_disks);
2482                  else
2483                         return -EINVAL;
2484
2485         }
2486
2487         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2488         mddev->recovery_cp = MaxSector;
2489
2490         while (d--) {
2491                 rdev = &rs->dev[d].rdev;
2492
2493                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2494                         clear_bit(In_sync, &rdev->flags);
2495                         clear_bit(Faulty, &rdev->flags);
2496                         mddev->recovery_cp = rdev->recovery_offset = 0;
2497                         /* Bitmap has to be created when we do an "up" takeover */
2498                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2499                 }
2500
2501                 rdev->new_data_offset = new_data_offset;
2502         }
2503
2504         return 0;
2505 }
2506
2507 /*
2508  *
2509  * - change raid layout
2510  * - change chunk size
2511  * - add disks
2512  * - remove disks
2513  */
2514 static int rs_setup_reshape(struct raid_set *rs)
2515 {
2516         int r = 0;
2517         unsigned int cur_raid_devs, d;
2518         struct mddev *mddev = &rs->md;
2519         struct md_rdev *rdev;
2520
2521         mddev->delta_disks = rs->delta_disks;
2522         cur_raid_devs = mddev->raid_disks;
2523
2524         /* Ignore impossible layout change whilst adding/removing disks */
2525         if (mddev->delta_disks &&
2526             mddev->layout != mddev->new_layout) {
2527                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2528                 mddev->new_layout = mddev->layout;
2529         }
2530
2531         /*
2532          * Adjust array size:
2533          *
2534          * - in case of adding disks, array size has
2535          *   to grow after the disk adding reshape,
2536          *   which'll hapen in the event handler;
2537          *   reshape will happen forward, so space has to
2538          *   be available at the beginning of each disk
2539          *
2540          * - in case of removing disks, array size
2541          *   has to shrink before starting the reshape,
2542          *   which'll happen here;
2543          *   reshape will happen backward, so space has to
2544          *   be available at the end of each disk
2545          *
2546          * - data_offset and new_data_offset are
2547          *   adjusted for aforementioned out of place
2548          *   reshaping based on userspace passing in
2549          *   the "data_offset <sectors>" key/value
2550          *   pair via the constructor
2551          */
2552
2553         /* Add disk(s) */
2554         if (rs->delta_disks > 0) {
2555                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2556                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2557                         rdev = &rs->dev[d].rdev;
2558                         clear_bit(In_sync, &rdev->flags);
2559
2560                         /*
2561                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2562                          * by md, which'll store that erroneously in the superblock on reshape
2563                          */
2564                         rdev->saved_raid_disk = -1;
2565                         rdev->raid_disk = d;
2566
2567                         rdev->sectors = mddev->dev_sectors;
2568                         rdev->recovery_offset = MaxSector;
2569                 }
2570
2571                 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2572
2573         /* Remove disk(s) */
2574         } else if (rs->delta_disks < 0) {
2575                 r = rs_set_dev_and_array_sectors(rs, true);
2576                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2577
2578         /* Change layout and/or chunk size */
2579         } else {
2580                 /*
2581                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2582                  *
2583                  * keeping number of disks and do layout change ->
2584                  *
2585                  * toggle reshape_backward depending on data_offset:
2586                  *
2587                  * - free space upfront -> reshape forward
2588                  *
2589                  * - free space at the end -> reshape backward
2590                  *
2591                  *
2592                  * This utilizes free reshape space avoiding the need
2593                  * for userspace to move (parts of) LV segments in
2594                  * case of layout/chunksize change  (for disk
2595                  * adding/removing reshape space has to be at
2596                  * the proper address (see above with delta_disks):
2597                  *
2598                  * add disk(s)   -> begin
2599                  * remove disk(s)-> end
2600                  */
2601                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2602         }
2603
2604         return r;
2605 }
2606
2607 /*
2608  * Enable/disable discard support on RAID set depending on
2609  * RAID level and discard properties of underlying RAID members.
2610  */
2611 static void configure_discard_support(struct raid_set *rs)
2612 {
2613         int i;
2614         bool raid456;
2615         struct dm_target *ti = rs->ti;
2616
2617         /* Assume discards not supported until after checks below. */
2618         ti->discards_supported = false;
2619
2620         /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2621         raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2622
2623         for (i = 0; i < rs->md.raid_disks; i++) {
2624                 struct request_queue *q;
2625
2626                 if (!rs->dev[i].rdev.bdev)
2627                         continue;
2628
2629                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2630                 if (!q || !blk_queue_discard(q))
2631                         return;
2632
2633                 if (raid456) {
2634                         if (!q->limits.discard_zeroes_data)
2635                                 return;
2636                         if (!devices_handle_discard_safely) {
2637                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2638                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2639                                 return;
2640                         }
2641                 }
2642         }
2643
2644         /* All RAID members properly support discards */
2645         ti->discards_supported = true;
2646
2647         /*
2648          * RAID1 and RAID10 personalities require bio splitting,
2649          * RAID0/4/5/6 don't and process large discard bios properly.
2650          */
2651         ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2652         ti->num_discard_bios = 1;
2653 }
2654
2655 /*
2656  * Construct a RAID0/1/10/4/5/6 mapping:
2657  * Args:
2658  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2659  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2660  *
2661  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2662  * details on possible <raid_params>.
2663  *
2664  * Userspace is free to initialize the metadata devices, hence the superblocks to
2665  * enforce recreation based on the passed in table parameters.
2666  *
2667  */
2668 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2669 {
2670         int r;
2671         struct raid_type *rt;
2672         unsigned num_raid_params, num_raid_devs;
2673         sector_t calculated_dev_sectors;
2674         struct raid_set *rs = NULL;
2675         const char *arg;
2676         struct rs_layout rs_layout;
2677         struct dm_arg_set as = { argc, argv }, as_nrd;
2678         struct dm_arg _args[] = {
2679                 { 0, as.argc, "Cannot understand number of raid parameters" },
2680                 { 1, 254, "Cannot understand number of raid devices parameters" }
2681         };
2682
2683         /* Must have <raid_type> */
2684         arg = dm_shift_arg(&as);
2685         if (!arg) {
2686                 ti->error = "No arguments";
2687                 return -EINVAL;
2688         }
2689
2690         rt = get_raid_type(arg);
2691         if (!rt) {
2692                 ti->error = "Unrecognised raid_type";
2693                 return -EINVAL;
2694         }
2695
2696         /* Must have <#raid_params> */
2697         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2698                 return -EINVAL;
2699
2700         /* number of raid device tupples <meta_dev data_dev> */
2701         as_nrd = as;
2702         dm_consume_args(&as_nrd, num_raid_params);
2703         _args[1].max = (as_nrd.argc - 1) / 2;
2704         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2705                 return -EINVAL;
2706
2707         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2708                 ti->error = "Invalid number of supplied raid devices";
2709                 return -EINVAL;
2710         }
2711
2712         rs = raid_set_alloc(ti, rt, num_raid_devs);
2713         if (IS_ERR(rs))
2714                 return PTR_ERR(rs);
2715
2716         r = parse_raid_params(rs, &as, num_raid_params);
2717         if (r)
2718                 goto bad;
2719
2720         r = parse_dev_params(rs, &as);
2721         if (r)
2722                 goto bad;
2723
2724         rs->md.sync_super = super_sync;
2725
2726         r = rs_set_dev_and_array_sectors(rs, false);
2727         if (r)
2728                 return r;
2729
2730         calculated_dev_sectors = rs->dev[0].rdev.sectors;
2731
2732         /*
2733          * Backup any new raid set level, layout, ...
2734          * requested to be able to compare to superblock
2735          * members for conversion decisions.
2736          */
2737         rs_config_backup(rs, &rs_layout);
2738
2739         r = analyse_superblocks(ti, rs);
2740         if (r)
2741                 goto bad;
2742
2743         rs_setup_recovery(rs, calculated_dev_sectors);
2744
2745         INIT_WORK(&rs->md.event_work, do_table_event);
2746         ti->private = rs;
2747         ti->num_flush_bios = 1;
2748
2749         /* Restore any requested new layout for conversion decision */
2750         rs_config_restore(rs, &rs_layout);
2751
2752         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2753                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2754                 rs_set_new(rs);
2755         } else if (rs_is_reshaping(rs))
2756                 ; /* skip rs setup */
2757         else if (rs_takeover_requested(rs)) {
2758                 if (rs_is_reshaping(rs)) {
2759                         ti->error = "Can't takeover a reshaping raid set";
2760                         return -EPERM;
2761                 }
2762
2763                 /*
2764                  * If a takeover is needed, just set the level to
2765                  * the new requested one and allow the raid set to run.
2766                  */
2767                 r = rs_check_takeover(rs);
2768                 if (r)
2769                         return r;
2770
2771                 r = rs_setup_takeover(rs);
2772                 if (r)
2773                         return r;
2774
2775                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2776                 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2777                 rs_set_new(rs);
2778         } else if (rs_reshape_requested(rs)) {
2779                 if (rs_is_reshaping(rs)) {
2780                         ti->error = "raid set already reshaping!";
2781                         return -EPERM;
2782                 }
2783
2784                 if (rs_is_raid10(rs)) {
2785                         if (rs->raid_disks != rs->md.raid_disks &&
2786                             __is_raid10_near(rs->md.layout) &&
2787                             rs->raid10_copies &&
2788                             rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2789                                 /*
2790                                  * raid disk have to be multiple of data copies to allow this conversion,
2791                                  *
2792                                  * This is actually not a reshape it is a
2793                                  * rebuild of any additional mirrors per group
2794                                  */
2795                                 if (rs->raid_disks % rs->raid10_copies) {
2796                                         ti->error = "Can't reshape raid10 mirror groups";
2797                                         return -EINVAL;
2798                                 }
2799
2800                                 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2801                                 __reorder_raid_disk_indexes(rs);
2802                                 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2803                                                                            rs->raid10_copies);
2804                                 rs->md.new_layout = rs->md.layout;
2805
2806                         } else
2807                                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2808
2809                 } else if (rs_is_raid456(rs))
2810                         set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2811
2812                 /*
2813                  * HM FIXME: process raid1 via delta_disks as well?
2814                  *           Would cause allocations in raid1->check_reshape
2815                  *           though, thus more issues with potential failures
2816                  */
2817                 else if (rs_is_raid1(rs)) {
2818                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2819                         rs->md.raid_disks = rs->raid_disks;
2820                 }
2821
2822                 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2823                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2824                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2825                 }
2826
2827                 if (rs->md.raid_disks < rs->raid_disks)
2828                         set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags);
2829
2830                 rs_set_cur(rs);
2831                 rs_setup_recovery(rs, MaxSector);
2832         } else {
2833                 rs_set_cur(rs);
2834                 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2835                                       0 : calculated_dev_sectors);
2836         }
2837
2838         /* If constructor requested it, change data and new_data offsets */
2839         r = rs_adjust_data_offsets(rs);
2840         if (r)
2841                 return r;
2842
2843         /* Start raid set read-only and assumed clean to change in raid_resume() */
2844         rs->md.ro = 1;
2845         rs->md.in_sync = 1;
2846         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2847
2848         /* Has to be held on running the array */
2849         mddev_lock_nointr(&rs->md);
2850         r = md_run(&rs->md);
2851         rs->md.in_sync = 0; /* Assume already marked dirty */
2852
2853         if (r) {
2854                 ti->error = "Failed to run raid array";
2855                 mddev_unlock(&rs->md);
2856                 goto bad;
2857         }
2858
2859         rs->callbacks.congested_fn = raid_is_congested;
2860         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2861
2862         mddev_suspend(&rs->md);
2863
2864         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2865         if (rs_is_raid456(rs)) {
2866                 r = rs_set_raid456_stripe_cache(rs);
2867                 if (r)
2868                         goto bad_stripe_cache;
2869         }
2870
2871         /* Now do an early reshape check */
2872         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2873                 r = rs_check_reshape(rs);
2874                 if (r)
2875                         return r;
2876
2877                 /* Restore new, ctr requested layout to perform check */
2878                 rs_config_restore(rs, &rs_layout);
2879
2880                 r = rs->md.pers->check_reshape(&rs->md);
2881                 if (r) {
2882                         ti->error = "Reshape check failed";
2883                         goto bad_check_reshape;
2884                 }
2885         }
2886
2887         mddev_unlock(&rs->md);
2888         return 0;
2889
2890 bad_stripe_cache:
2891 bad_check_reshape:
2892         md_stop(&rs->md);
2893 bad:
2894         raid_set_free(rs);
2895
2896         return r;
2897 }
2898
2899 static void raid_dtr(struct dm_target *ti)
2900 {
2901         struct raid_set *rs = ti->private;
2902
2903         list_del_init(&rs->callbacks.list);
2904         md_stop(&rs->md);
2905         raid_set_free(rs);
2906 }
2907
2908 static int raid_map(struct dm_target *ti, struct bio *bio)
2909 {
2910         struct raid_set *rs = ti->private;
2911         struct mddev *mddev = &rs->md;
2912
2913         /*
2914          * If we're reshaping to add disk(s)), ti->len and
2915          * mddev->array_sectors will differ during the process
2916          * (ti->len > mddev->array_sectors), so we have to requeue
2917          * bios with addresses > mddev->array_sectors here or
2918          * or there will occur accesses past EOD of the component
2919          * data images thus erroring the raid set.
2920          */
2921         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2922                 return DM_MAPIO_REQUEUE;
2923
2924         mddev->pers->make_request(mddev, bio);
2925
2926         return DM_MAPIO_SUBMITTED;
2927 }
2928
2929 /* Return string describing the current sync action of @mddev */
2930 static const char *decipher_sync_action(struct mddev *mddev)
2931 {
2932         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2933                 return "frozen";
2934
2935         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2936             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2937                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2938                         return "reshape";
2939
2940                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2941                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2942                                 return "resync";
2943                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2944                                 return "check";
2945                         return "repair";
2946                 }
2947
2948                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2949                         return "recover";
2950         }
2951
2952         return "idle";
2953 }
2954
2955 /*
2956  * Return status string @rdev
2957  *
2958  * Status characters:
2959  *
2960  *  'D' = Dead/Failed device
2961  *  'a' = Alive but not in-sync
2962  *  'A' = Alive and in-sync
2963  */
2964 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2965 {
2966         if (test_bit(Faulty, &rdev->flags))
2967                 return "D";
2968         else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2969                 return "a";
2970         else
2971                 return "A";
2972 }
2973
2974 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2975 static sector_t rs_get_progress(struct raid_set *rs,
2976                                 sector_t resync_max_sectors, bool *array_in_sync)
2977 {
2978         sector_t r, recovery_cp, curr_resync_completed;
2979         struct mddev *mddev = &rs->md;
2980
2981         curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2982         recovery_cp = mddev->recovery_cp;
2983         *array_in_sync = false;
2984
2985         if (rs_is_raid0(rs)) {
2986                 r = resync_max_sectors;
2987                 *array_in_sync = true;
2988
2989         } else {
2990                 r = mddev->reshape_position;
2991
2992                 /* Reshape is relative to the array size */
2993                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2994                     r != MaxSector) {
2995                         if (r == MaxSector) {
2996                                 *array_in_sync = true;
2997                                 r = resync_max_sectors;
2998                         } else {
2999                                 /* Got to reverse on backward reshape */
3000                                 if (mddev->reshape_backwards)
3001                                         r = mddev->array_sectors - r;
3002
3003                                 /* Devide by # of data stripes */
3004                                 sector_div(r, mddev_data_stripes(rs));
3005                         }
3006
3007                 /* Sync is relative to the component device size */
3008                 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3009                         r = curr_resync_completed;
3010                 else
3011                         r = recovery_cp;
3012
3013                 if (r == MaxSector) {
3014                         /*
3015                          * Sync complete.
3016                          */
3017                         *array_in_sync = true;
3018                         r = resync_max_sectors;
3019                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3020                         /*
3021                          * If "check" or "repair" is occurring, the raid set has
3022                          * undergone an initial sync and the health characters
3023                          * should not be 'a' anymore.
3024                          */
3025                         *array_in_sync = true;
3026                 } else {
3027                         struct md_rdev *rdev;
3028
3029                         /*
3030                          * The raid set may be doing an initial sync, or it may
3031                          * be rebuilding individual components.  If all the
3032                          * devices are In_sync, then it is the raid set that is
3033                          * being initialized.
3034                          */
3035                         rdev_for_each(rdev, mddev)
3036                                 if (!test_bit(In_sync, &rdev->flags))
3037                                         *array_in_sync = true;
3038 #if 0
3039                         r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3040 #endif
3041                 }
3042         }
3043
3044         return r;
3045 }
3046
3047 /* Helper to return @dev name or "-" if !@dev */
3048 static const char *__get_dev_name(struct dm_dev *dev)
3049 {
3050         return dev ? dev->name : "-";
3051 }
3052
3053 static void raid_status(struct dm_target *ti, status_type_t type,
3054                         unsigned int status_flags, char *result, unsigned int maxlen)
3055 {
3056         struct raid_set *rs = ti->private;
3057         struct mddev *mddev = &rs->md;
3058         struct r5conf *conf = mddev->private;
3059         int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3060         bool array_in_sync;
3061         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3062         unsigned int sz = 0;
3063         unsigned int write_mostly_params = 0;
3064         sector_t progress, resync_max_sectors, resync_mismatches;
3065         const char *sync_action;
3066         struct raid_type *rt;
3067         struct md_rdev *rdev;
3068
3069         switch (type) {
3070         case STATUSTYPE_INFO:
3071                 /* *Should* always succeed */
3072                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3073                 if (!rt)
3074                         return;
3075
3076                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3077
3078                 /* Access most recent mddev properties for status output */
3079                 smp_rmb();
3080                 /* Get sensible max sectors even if raid set not yet started */
3081                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3082                                       mddev->resync_max_sectors : mddev->dev_sectors;
3083                 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3084                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3085                                     atomic64_read(&mddev->resync_mismatches) : 0;
3086                 sync_action = decipher_sync_action(&rs->md);
3087
3088                 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3089                 rdev_for_each(rdev, mddev)
3090                         DMEMIT(__raid_dev_status(rdev, array_in_sync));
3091
3092                 /*
3093                  * In-sync/Reshape ratio:
3094                  *  The in-sync ratio shows the progress of:
3095                  *   - Initializing the raid set
3096                  *   - Rebuilding a subset of devices of the raid set
3097                  *  The user can distinguish between the two by referring
3098                  *  to the status characters.
3099                  *
3100                  *  The reshape ratio shows the progress of
3101                  *  changing the raid layout or the number of
3102                  *  disks of a raid set
3103                  */
3104                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3105                                      (unsigned long long) resync_max_sectors);
3106
3107                 /*
3108                  * v1.5.0+:
3109                  *
3110                  * Sync action:
3111                  *   See Documentation/device-mapper/dm-raid.txt for
3112                  *   information on each of these states.
3113                  */
3114                 DMEMIT(" %s", sync_action);
3115
3116                 /*
3117                  * v1.5.0+:
3118                  *
3119                  * resync_mismatches/mismatch_cnt
3120                  *   This field shows the number of discrepancies found when
3121                  *   performing a "check" of the raid set.
3122                  */
3123                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3124
3125                 /*
3126                  * v1.9.0+:
3127                  *
3128                  * data_offset (needed for out of space reshaping)
3129                  *   This field shows the data offset into the data
3130                  *   image LV where the first stripes data starts.
3131                  *
3132                  * We keep data_offset equal on all raid disks of the set,
3133                  * so retrieving it from the first raid disk is sufficient.
3134                  */
3135                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3136                 break;
3137
3138         case STATUSTYPE_TABLE:
3139                 /* Report the table line string you would use to construct this raid set */
3140
3141                 /* Calculate raid parameter count */
3142                 rdev_for_each(rdev, mddev)
3143                         if (test_bit(WriteMostly, &rdev->flags))
3144                                 write_mostly_params += 2;
3145                 raid_param_cnt += memweight(rs->rebuild_disks,
3146                                             DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3147                                   write_mostly_params +
3148                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3149                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3150                 /* Emit table line */
3151                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3152                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3153                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3154                                          raid10_md_layout_to_format(mddev->layout));
3155                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3156                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3157                                          raid10_md_layout_to_copies(mddev->layout));
3158                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3159                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3160                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3161                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3162                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3163                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3164                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3165                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3166                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3167                                            (unsigned long long) rs->data_offset);
3168                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3169                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3170                                           mddev->bitmap_info.daemon_sleep);
3171                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3172                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3173                                          mddev->delta_disks);
3174                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3175                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3176                                          max_nr_stripes);
3177                 rdev_for_each(rdev, mddev)
3178                         if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3179                                 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3180                                                  rdev->raid_disk);
3181                 rdev_for_each(rdev, mddev)
3182                         if (test_bit(WriteMostly, &rdev->flags))
3183                                 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3184                                                  rdev->raid_disk);
3185                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3186                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3187                                           mddev->bitmap_info.max_write_behind);
3188                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3189                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3190                                          mddev->sync_speed_max);
3191                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3192                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3193                                          mddev->sync_speed_min);
3194                 DMEMIT(" %d", rs->raid_disks);
3195                 rdev_for_each(rdev, mddev) {
3196                         struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3197
3198                         DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3199                                          __get_dev_name(rd->data_dev));
3200                 }
3201         }
3202 }
3203
3204 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3205 {
3206         struct raid_set *rs = ti->private;
3207         struct mddev *mddev = &rs->md;
3208
3209         if (!mddev->pers || !mddev->pers->sync_request)
3210                 return -EINVAL;
3211
3212         if (!strcasecmp(argv[0], "frozen"))
3213                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3214         else
3215                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3216
3217         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3218                 if (mddev->sync_thread) {
3219                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3220                         md_reap_sync_thread(mddev);
3221                 }
3222         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3223                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3224                 return -EBUSY;
3225         else if (!strcasecmp(argv[0], "resync"))
3226                 ; /* MD_RECOVERY_NEEDED set below */
3227         else if (!strcasecmp(argv[0], "recover"))
3228                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3229         else {
3230                 if (!strcasecmp(argv[0], "check"))
3231                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3232                 else if (!!strcasecmp(argv[0], "repair"))
3233                         return -EINVAL;
3234                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3235                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3236         }
3237         if (mddev->ro == 2) {
3238                 /* A write to sync_action is enough to justify
3239                  * canceling read-auto mode
3240                  */
3241                 mddev->ro = 0;
3242                 if (!mddev->suspended && mddev->sync_thread)
3243                         md_wakeup_thread(mddev->sync_thread);
3244         }
3245         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3246         if (!mddev->suspended && mddev->thread)
3247                 md_wakeup_thread(mddev->thread);
3248
3249         return 0;
3250 }
3251
3252 static int raid_iterate_devices(struct dm_target *ti,
3253                                 iterate_devices_callout_fn fn, void *data)
3254 {
3255         struct raid_set *rs = ti->private;
3256         unsigned i;
3257         int r = 0;
3258
3259         for (i = 0; !r && i < rs->md.raid_disks; i++)
3260                 if (rs->dev[i].data_dev)
3261                         r = fn(ti,
3262                                  rs->dev[i].data_dev,
3263                                  0, /* No offset on data devs */
3264                                  rs->md.dev_sectors,
3265                                  data);
3266
3267         return r;
3268 }
3269
3270 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3271 {
3272         struct raid_set *rs = ti->private;
3273         unsigned chunk_size = rs->md.chunk_sectors << 9;
3274         struct r5conf *conf = rs->md.private;
3275
3276         blk_limits_io_min(limits, chunk_size);
3277         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3278 }
3279
3280 static void raid_presuspend(struct dm_target *ti)
3281 {
3282         struct raid_set *rs = ti->private;
3283
3284         md_stop_writes(&rs->md);
3285 }
3286
3287 static void raid_postsuspend(struct dm_target *ti)
3288 {
3289         struct raid_set *rs = ti->private;
3290
3291         if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3292                 if (!rs->md.suspended)
3293                         mddev_suspend(&rs->md);
3294                 rs->md.ro = 1;
3295         }
3296 }
3297
3298 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3299 {
3300         int i;
3301         uint64_t failed_devices, cleared_failed_devices = 0;
3302         unsigned long flags;
3303         struct dm_raid_superblock *sb;
3304         struct md_rdev *r;
3305
3306         for (i = 0; i < rs->md.raid_disks; i++) {
3307                 r = &rs->dev[i].rdev;
3308                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3309                     sync_page_io(r, 0, r->sb_size, r->sb_page,
3310                                  REQ_OP_READ, 0, true)) {
3311                         DMINFO("Faulty %s device #%d has readable super block."
3312                                "  Attempting to revive it.",
3313                                rs->raid_type->name, i);
3314
3315                         /*
3316                          * Faulty bit may be set, but sometimes the array can
3317                          * be suspended before the personalities can respond
3318                          * by removing the device from the array (i.e. calling
3319                          * 'hot_remove_disk').  If they haven't yet removed
3320                          * the failed device, its 'raid_disk' number will be
3321                          * '>= 0' - meaning we must call this function
3322                          * ourselves.
3323                          */
3324                         if ((r->raid_disk >= 0) &&
3325                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3326                                 /* Failed to revive this device, try next */
3327                                 continue;
3328
3329                         r->raid_disk = i;
3330                         r->saved_raid_disk = i;
3331                         flags = r->flags;
3332                         clear_bit(Faulty, &r->flags);
3333                         clear_bit(WriteErrorSeen, &r->flags);
3334                         clear_bit(In_sync, &r->flags);
3335                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3336                                 r->raid_disk = -1;
3337                                 r->saved_raid_disk = -1;
3338                                 r->flags = flags;
3339                         } else {
3340                                 r->recovery_offset = 0;
3341                                 cleared_failed_devices |= 1 << i;
3342                         }
3343                 }
3344         }
3345         if (cleared_failed_devices) {
3346                 rdev_for_each(r, &rs->md) {
3347                         sb = page_address(r->sb_page);
3348                         failed_devices = le64_to_cpu(sb->failed_devices);
3349                         failed_devices &= ~cleared_failed_devices;
3350                         sb->failed_devices = cpu_to_le64(failed_devices);
3351                 }
3352         }
3353 }
3354
3355 static int __load_dirty_region_bitmap(struct raid_set *rs)
3356 {
3357         int r = 0;
3358
3359         /* Try loading the bitmap unless "raid0", which does not have one */
3360         if (!rs_is_raid0(rs) &&
3361             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3362                 r = bitmap_load(&rs->md);
3363                 if (r)
3364                         DMERR("Failed to load bitmap");
3365         }
3366
3367         return r;
3368 }
3369
3370 /* Enforce updating all superblocks */
3371 static void rs_update_sbs(struct raid_set *rs)
3372 {
3373         struct mddev *mddev = &rs->md;
3374         int ro = mddev->ro;
3375
3376         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3377         mddev->ro = 0;
3378         md_update_sb(mddev, 1);
3379         mddev->ro = ro;
3380 }
3381
3382 /*
3383  * Reshape changes raid algorithm of @rs to new one within personality
3384  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3385  * disks from a raid set thus growing/shrinking it or resizes the set
3386  *
3387  * Call mddev_lock_nointr() before!
3388  */
3389 static int rs_start_reshape(struct raid_set *rs)
3390 {
3391         int r;
3392         struct mddev *mddev = &rs->md;
3393         struct md_personality *pers = mddev->pers;
3394
3395         r = rs_setup_reshape(rs);
3396         if (r)
3397                 return r;
3398
3399         /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3400         if (mddev->suspended)
3401                 mddev_resume(mddev);
3402
3403         /*
3404          * Check any reshape constraints enforced by the personalility
3405          *
3406          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3407          */
3408         r = pers->check_reshape(mddev);
3409         if (r) {
3410                 rs->ti->error = "pers->check_reshape() failed";
3411                 return r;
3412         }
3413
3414         /*
3415          * Personality may not provide start reshape method in which
3416          * case check_reshape above has already covered everything
3417          */
3418         if (pers->start_reshape) {
3419                 r = pers->start_reshape(mddev);
3420                 if (r) {
3421                         rs->ti->error = "pers->start_reshape() failed";
3422                         return r;
3423                 }
3424         }
3425
3426         /* Suspend because a resume will happen in raid_resume() */
3427         if (!mddev->suspended)
3428                 mddev_suspend(mddev);
3429
3430         /*
3431          * Now reshape got set up, update superblocks to
3432          * reflect the fact so that a table reload will
3433          * access proper superblock content in the ctr.
3434          */
3435         rs_update_sbs(rs);
3436
3437         return 0;
3438 }
3439
3440 static int raid_preresume(struct dm_target *ti)
3441 {
3442         int r;
3443         struct raid_set *rs = ti->private;
3444         struct mddev *mddev = &rs->md;
3445
3446         /* This is a resume after a suspend of the set -> it's already started */
3447         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3448                 return 0;
3449
3450         /*
3451          * The superblocks need to be updated on disk if the
3452          * array is new or new devices got added (thus zeroed
3453          * out by userspace) or __load_dirty_region_bitmap
3454          * will overwrite them in core with old data or fail.
3455          */
3456         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3457                 rs_update_sbs(rs);
3458
3459         /*
3460          * Disable/enable discard support on raid set after any
3461          * conversion, because devices can have been added
3462          */
3463         configure_discard_support(rs);
3464
3465         /* Load the bitmap from disk unless raid0 */
3466         r = __load_dirty_region_bitmap(rs);
3467         if (r)
3468                 return r;
3469
3470         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3471         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3472             mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3473                 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3474                                   to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3475                 if (r)
3476                         DMERR("Failed to resize bitmap");
3477         }
3478
3479         /* Check for any resize/reshape on @rs and adjust/initiate */
3480         /* Be prepared for mddev_resume() in raid_resume() */
3481         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3482         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3483                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3484                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3485                 mddev->resync_min = mddev->recovery_cp;
3486         }
3487
3488         rs_set_capacity(rs);
3489
3490         /* Check for any reshape request and region size change unless new raid set */
3491         if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3492                 /* Initiate a reshape. */
3493                 mddev_lock_nointr(mddev);
3494                 r = rs_start_reshape(rs);
3495                 mddev_unlock(mddev);
3496                 if (r)
3497                         DMWARN("Failed to check/start reshape, continuing without change");
3498                 r = 0;
3499         }
3500
3501         return r;
3502 }
3503
3504 static void raid_resume(struct dm_target *ti)
3505 {
3506         struct raid_set *rs = ti->private;
3507         struct mddev *mddev = &rs->md;
3508
3509         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3510                 /*
3511                  * A secondary resume while the device is active.
3512                  * Take this opportunity to check whether any failed
3513                  * devices are reachable again.
3514                  */
3515                 attempt_restore_of_faulty_devices(rs);
3516         } else {
3517                 mddev->ro = 0;
3518                 mddev->in_sync = 0;
3519
3520                 /*
3521                  * When passing in flags to the ctr, we expect userspace
3522                  * to reset them because they made it to the superblocks
3523                  * and reload the mapping anyway.
3524                  *
3525                  * -> only unfreeze recovery in case of a table reload or
3526                  *    we'll have a bogus recovery/reshape position
3527                  *    retrieved from the superblock by the ctr because
3528                  *    the ongoing recovery/reshape will change it after read.
3529                  */
3530                 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3531                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3532
3533                 if (mddev->suspended)
3534                         mddev_resume(mddev);
3535         }
3536 }
3537
3538 static struct target_type raid_target = {
3539         .name = "raid",
3540         .version = {1, 9, 0},
3541         .module = THIS_MODULE,
3542         .ctr = raid_ctr,
3543         .dtr = raid_dtr,
3544         .map = raid_map,
3545         .status = raid_status,
3546         .message = raid_message,
3547         .iterate_devices = raid_iterate_devices,
3548         .io_hints = raid_io_hints,
3549         .presuspend = raid_presuspend,
3550         .postsuspend = raid_postsuspend,
3551         .preresume = raid_preresume,
3552         .resume = raid_resume,
3553 };
3554
3555 static int __init dm_raid_init(void)
3556 {
3557         DMINFO("Loading target version %u.%u.%u",
3558                raid_target.version[0],
3559                raid_target.version[1],
3560                raid_target.version[2]);
3561         return dm_register_target(&raid_target);
3562 }
3563
3564 static void __exit dm_raid_exit(void)
3565 {
3566         dm_unregister_target(&raid_target);
3567 }
3568
3569 module_init(dm_raid_init);
3570 module_exit(dm_raid_exit);
3571
3572 module_param(devices_handle_discard_safely, bool, 0644);
3573 MODULE_PARM_DESC(devices_handle_discard_safely,
3574                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3575
3576 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3577 MODULE_ALIAS("dm-raid0");
3578 MODULE_ALIAS("dm-raid1");
3579 MODULE_ALIAS("dm-raid10");
3580 MODULE_ALIAS("dm-raid4");
3581 MODULE_ALIAS("dm-raid5");
3582 MODULE_ALIAS("dm-raid6");
3583 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3584 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3585 MODULE_LICENSE("GPL");