Merge remote-tracking branches 'spi/fix/dt', 'spi/fix/fsl-dspi' and 'spi/fix/fsl...
[cascardo/linux.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32         struct mapped_device *md;
33         unsigned type;
34
35         /* btree table */
36         unsigned int depth;
37         unsigned int counts[MAX_DEPTH]; /* in nodes */
38         sector_t *index[MAX_DEPTH];
39
40         unsigned int num_targets;
41         unsigned int num_allocated;
42         sector_t *highs;
43         struct dm_target *targets;
44
45         struct target_type *immutable_target_type;
46
47         bool integrity_supported:1;
48         bool singleton:1;
49         bool all_blk_mq:1;
50
51         /*
52          * Indicates the rw permissions for the new logical
53          * device.  This should be a combination of FMODE_READ
54          * and FMODE_WRITE.
55          */
56         fmode_t mode;
57
58         /* a list of devices used by this table */
59         struct list_head devices;
60
61         /* events get handed up using this callback */
62         void (*event_fn)(void *);
63         void *event_context;
64
65         struct dm_md_mempools *mempools;
66
67         struct list_head target_callbacks;
68 };
69
70 /*
71  * Similar to ceiling(log_size(n))
72  */
73 static unsigned int int_log(unsigned int n, unsigned int base)
74 {
75         int result = 0;
76
77         while (n > 1) {
78                 n = dm_div_up(n, base);
79                 result++;
80         }
81
82         return result;
83 }
84
85 /*
86  * Calculate the index of the child node of the n'th node k'th key.
87  */
88 static inline unsigned int get_child(unsigned int n, unsigned int k)
89 {
90         return (n * CHILDREN_PER_NODE) + k;
91 }
92
93 /*
94  * Return the n'th node of level l from table t.
95  */
96 static inline sector_t *get_node(struct dm_table *t,
97                                  unsigned int l, unsigned int n)
98 {
99         return t->index[l] + (n * KEYS_PER_NODE);
100 }
101
102 /*
103  * Return the highest key that you could lookup from the n'th
104  * node on level l of the btree.
105  */
106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107 {
108         for (; l < t->depth - 1; l++)
109                 n = get_child(n, CHILDREN_PER_NODE - 1);
110
111         if (n >= t->counts[l])
112                 return (sector_t) - 1;
113
114         return get_node(t, l, n)[KEYS_PER_NODE - 1];
115 }
116
117 /*
118  * Fills in a level of the btree based on the highs of the level
119  * below it.
120  */
121 static int setup_btree_index(unsigned int l, struct dm_table *t)
122 {
123         unsigned int n, k;
124         sector_t *node;
125
126         for (n = 0U; n < t->counts[l]; n++) {
127                 node = get_node(t, l, n);
128
129                 for (k = 0U; k < KEYS_PER_NODE; k++)
130                         node[k] = high(t, l + 1, get_child(n, k));
131         }
132
133         return 0;
134 }
135
136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137 {
138         unsigned long size;
139         void *addr;
140
141         /*
142          * Check that we're not going to overflow.
143          */
144         if (nmemb > (ULONG_MAX / elem_size))
145                 return NULL;
146
147         size = nmemb * elem_size;
148         addr = vzalloc(size);
149
150         return addr;
151 }
152 EXPORT_SYMBOL(dm_vcalloc);
153
154 /*
155  * highs, and targets are managed as dynamic arrays during a
156  * table load.
157  */
158 static int alloc_targets(struct dm_table *t, unsigned int num)
159 {
160         sector_t *n_highs;
161         struct dm_target *n_targets;
162
163         /*
164          * Allocate both the target array and offset array at once.
165          * Append an empty entry to catch sectors beyond the end of
166          * the device.
167          */
168         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169                                           sizeof(sector_t));
170         if (!n_highs)
171                 return -ENOMEM;
172
173         n_targets = (struct dm_target *) (n_highs + num);
174
175         memset(n_highs, -1, sizeof(*n_highs) * num);
176         vfree(t->highs);
177
178         t->num_allocated = num;
179         t->highs = n_highs;
180         t->targets = n_targets;
181
182         return 0;
183 }
184
185 int dm_table_create(struct dm_table **result, fmode_t mode,
186                     unsigned num_targets, struct mapped_device *md)
187 {
188         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189
190         if (!t)
191                 return -ENOMEM;
192
193         INIT_LIST_HEAD(&t->devices);
194         INIT_LIST_HEAD(&t->target_callbacks);
195
196         if (!num_targets)
197                 num_targets = KEYS_PER_NODE;
198
199         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200
201         if (!num_targets) {
202                 kfree(t);
203                 return -ENOMEM;
204         }
205
206         if (alloc_targets(t, num_targets)) {
207                 kfree(t);
208                 return -ENOMEM;
209         }
210
211         t->type = DM_TYPE_NONE;
212         t->mode = mode;
213         t->md = md;
214         *result = t;
215         return 0;
216 }
217
218 static void free_devices(struct list_head *devices, struct mapped_device *md)
219 {
220         struct list_head *tmp, *next;
221
222         list_for_each_safe(tmp, next, devices) {
223                 struct dm_dev_internal *dd =
224                     list_entry(tmp, struct dm_dev_internal, list);
225                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226                        dm_device_name(md), dd->dm_dev->name);
227                 dm_put_table_device(md, dd->dm_dev);
228                 kfree(dd);
229         }
230 }
231
232 void dm_table_destroy(struct dm_table *t)
233 {
234         unsigned int i;
235
236         if (!t)
237                 return;
238
239         /* free the indexes */
240         if (t->depth >= 2)
241                 vfree(t->index[t->depth - 2]);
242
243         /* free the targets */
244         for (i = 0; i < t->num_targets; i++) {
245                 struct dm_target *tgt = t->targets + i;
246
247                 if (tgt->type->dtr)
248                         tgt->type->dtr(tgt);
249
250                 dm_put_target_type(tgt->type);
251         }
252
253         vfree(t->highs);
254
255         /* free the device list */
256         free_devices(&t->devices, t->md);
257
258         dm_free_md_mempools(t->mempools);
259
260         kfree(t);
261 }
262
263 /*
264  * See if we've already got a device in the list.
265  */
266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267 {
268         struct dm_dev_internal *dd;
269
270         list_for_each_entry (dd, l, list)
271                 if (dd->dm_dev->bdev->bd_dev == dev)
272                         return dd;
273
274         return NULL;
275 }
276
277 /*
278  * If possible, this checks an area of a destination device is invalid.
279  */
280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281                                   sector_t start, sector_t len, void *data)
282 {
283         struct request_queue *q;
284         struct queue_limits *limits = data;
285         struct block_device *bdev = dev->bdev;
286         sector_t dev_size =
287                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288         unsigned short logical_block_size_sectors =
289                 limits->logical_block_size >> SECTOR_SHIFT;
290         char b[BDEVNAME_SIZE];
291
292         /*
293          * Some devices exist without request functions,
294          * such as loop devices not yet bound to backing files.
295          * Forbid the use of such devices.
296          */
297         q = bdev_get_queue(bdev);
298         if (!q || !q->make_request_fn) {
299                 DMWARN("%s: %s is not yet initialised: "
300                        "start=%llu, len=%llu, dev_size=%llu",
301                        dm_device_name(ti->table->md), bdevname(bdev, b),
302                        (unsigned long long)start,
303                        (unsigned long long)len,
304                        (unsigned long long)dev_size);
305                 return 1;
306         }
307
308         if (!dev_size)
309                 return 0;
310
311         if ((start >= dev_size) || (start + len > dev_size)) {
312                 DMWARN("%s: %s too small for target: "
313                        "start=%llu, len=%llu, dev_size=%llu",
314                        dm_device_name(ti->table->md), bdevname(bdev, b),
315                        (unsigned long long)start,
316                        (unsigned long long)len,
317                        (unsigned long long)dev_size);
318                 return 1;
319         }
320
321         if (logical_block_size_sectors <= 1)
322                 return 0;
323
324         if (start & (logical_block_size_sectors - 1)) {
325                 DMWARN("%s: start=%llu not aligned to h/w "
326                        "logical block size %u of %s",
327                        dm_device_name(ti->table->md),
328                        (unsigned long long)start,
329                        limits->logical_block_size, bdevname(bdev, b));
330                 return 1;
331         }
332
333         if (len & (logical_block_size_sectors - 1)) {
334                 DMWARN("%s: len=%llu not aligned to h/w "
335                        "logical block size %u of %s",
336                        dm_device_name(ti->table->md),
337                        (unsigned long long)len,
338                        limits->logical_block_size, bdevname(bdev, b));
339                 return 1;
340         }
341
342         return 0;
343 }
344
345 /*
346  * This upgrades the mode on an already open dm_dev, being
347  * careful to leave things as they were if we fail to reopen the
348  * device and not to touch the existing bdev field in case
349  * it is accessed concurrently inside dm_table_any_congested().
350  */
351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352                         struct mapped_device *md)
353 {
354         int r;
355         struct dm_dev *old_dev, *new_dev;
356
357         old_dev = dd->dm_dev;
358
359         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360                                 dd->dm_dev->mode | new_mode, &new_dev);
361         if (r)
362                 return r;
363
364         dd->dm_dev = new_dev;
365         dm_put_table_device(md, old_dev);
366
367         return 0;
368 }
369
370 /*
371  * Convert the path to a device
372  */
373 dev_t dm_get_dev_t(const char *path)
374 {
375         dev_t uninitialized_var(dev);
376         struct block_device *bdev;
377
378         bdev = lookup_bdev(path);
379         if (IS_ERR(bdev))
380                 dev = name_to_dev_t(path);
381         else {
382                 dev = bdev->bd_dev;
383                 bdput(bdev);
384         }
385
386         return dev;
387 }
388 EXPORT_SYMBOL_GPL(dm_get_dev_t);
389
390 /*
391  * Add a device to the list, or just increment the usage count if
392  * it's already present.
393  */
394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395                   struct dm_dev **result)
396 {
397         int r;
398         dev_t dev;
399         struct dm_dev_internal *dd;
400         struct dm_table *t = ti->table;
401
402         BUG_ON(!t);
403
404         dev = dm_get_dev_t(path);
405         if (!dev)
406                 return -ENODEV;
407
408         dd = find_device(&t->devices, dev);
409         if (!dd) {
410                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411                 if (!dd)
412                         return -ENOMEM;
413
414                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415                         kfree(dd);
416                         return r;
417                 }
418
419                 atomic_set(&dd->count, 0);
420                 list_add(&dd->list, &t->devices);
421
422         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423                 r = upgrade_mode(dd, mode, t->md);
424                 if (r)
425                         return r;
426         }
427         atomic_inc(&dd->count);
428
429         *result = dd->dm_dev;
430         return 0;
431 }
432 EXPORT_SYMBOL(dm_get_device);
433
434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435                                 sector_t start, sector_t len, void *data)
436 {
437         struct queue_limits *limits = data;
438         struct block_device *bdev = dev->bdev;
439         struct request_queue *q = bdev_get_queue(bdev);
440         char b[BDEVNAME_SIZE];
441
442         if (unlikely(!q)) {
443                 DMWARN("%s: Cannot set limits for nonexistent device %s",
444                        dm_device_name(ti->table->md), bdevname(bdev, b));
445                 return 0;
446         }
447
448         if (bdev_stack_limits(limits, bdev, start) < 0)
449                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450                        "physical_block_size=%u, logical_block_size=%u, "
451                        "alignment_offset=%u, start=%llu",
452                        dm_device_name(ti->table->md), bdevname(bdev, b),
453                        q->limits.physical_block_size,
454                        q->limits.logical_block_size,
455                        q->limits.alignment_offset,
456                        (unsigned long long) start << SECTOR_SHIFT);
457
458         return 0;
459 }
460
461 /*
462  * Decrement a device's use count and remove it if necessary.
463  */
464 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465 {
466         int found = 0;
467         struct list_head *devices = &ti->table->devices;
468         struct dm_dev_internal *dd;
469
470         list_for_each_entry(dd, devices, list) {
471                 if (dd->dm_dev == d) {
472                         found = 1;
473                         break;
474                 }
475         }
476         if (!found) {
477                 DMWARN("%s: device %s not in table devices list",
478                        dm_device_name(ti->table->md), d->name);
479                 return;
480         }
481         if (atomic_dec_and_test(&dd->count)) {
482                 dm_put_table_device(ti->table->md, d);
483                 list_del(&dd->list);
484                 kfree(dd);
485         }
486 }
487 EXPORT_SYMBOL(dm_put_device);
488
489 /*
490  * Checks to see if the target joins onto the end of the table.
491  */
492 static int adjoin(struct dm_table *table, struct dm_target *ti)
493 {
494         struct dm_target *prev;
495
496         if (!table->num_targets)
497                 return !ti->begin;
498
499         prev = &table->targets[table->num_targets - 1];
500         return (ti->begin == (prev->begin + prev->len));
501 }
502
503 /*
504  * Used to dynamically allocate the arg array.
505  *
506  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507  * process messages even if some device is suspended. These messages have a
508  * small fixed number of arguments.
509  *
510  * On the other hand, dm-switch needs to process bulk data using messages and
511  * excessive use of GFP_NOIO could cause trouble.
512  */
513 static char **realloc_argv(unsigned *array_size, char **old_argv)
514 {
515         char **argv;
516         unsigned new_size;
517         gfp_t gfp;
518
519         if (*array_size) {
520                 new_size = *array_size * 2;
521                 gfp = GFP_KERNEL;
522         } else {
523                 new_size = 8;
524                 gfp = GFP_NOIO;
525         }
526         argv = kmalloc(new_size * sizeof(*argv), gfp);
527         if (argv) {
528                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
529                 *array_size = new_size;
530         }
531
532         kfree(old_argv);
533         return argv;
534 }
535
536 /*
537  * Destructively splits up the argument list to pass to ctr.
538  */
539 int dm_split_args(int *argc, char ***argvp, char *input)
540 {
541         char *start, *end = input, *out, **argv = NULL;
542         unsigned array_size = 0;
543
544         *argc = 0;
545
546         if (!input) {
547                 *argvp = NULL;
548                 return 0;
549         }
550
551         argv = realloc_argv(&array_size, argv);
552         if (!argv)
553                 return -ENOMEM;
554
555         while (1) {
556                 /* Skip whitespace */
557                 start = skip_spaces(end);
558
559                 if (!*start)
560                         break;  /* success, we hit the end */
561
562                 /* 'out' is used to remove any back-quotes */
563                 end = out = start;
564                 while (*end) {
565                         /* Everything apart from '\0' can be quoted */
566                         if (*end == '\\' && *(end + 1)) {
567                                 *out++ = *(end + 1);
568                                 end += 2;
569                                 continue;
570                         }
571
572                         if (isspace(*end))
573                                 break;  /* end of token */
574
575                         *out++ = *end++;
576                 }
577
578                 /* have we already filled the array ? */
579                 if ((*argc + 1) > array_size) {
580                         argv = realloc_argv(&array_size, argv);
581                         if (!argv)
582                                 return -ENOMEM;
583                 }
584
585                 /* we know this is whitespace */
586                 if (*end)
587                         end++;
588
589                 /* terminate the string and put it in the array */
590                 *out = '\0';
591                 argv[*argc] = start;
592                 (*argc)++;
593         }
594
595         *argvp = argv;
596         return 0;
597 }
598
599 /*
600  * Impose necessary and sufficient conditions on a devices's table such
601  * that any incoming bio which respects its logical_block_size can be
602  * processed successfully.  If it falls across the boundary between
603  * two or more targets, the size of each piece it gets split into must
604  * be compatible with the logical_block_size of the target processing it.
605  */
606 static int validate_hardware_logical_block_alignment(struct dm_table *table,
607                                                  struct queue_limits *limits)
608 {
609         /*
610          * This function uses arithmetic modulo the logical_block_size
611          * (in units of 512-byte sectors).
612          */
613         unsigned short device_logical_block_size_sects =
614                 limits->logical_block_size >> SECTOR_SHIFT;
615
616         /*
617          * Offset of the start of the next table entry, mod logical_block_size.
618          */
619         unsigned short next_target_start = 0;
620
621         /*
622          * Given an aligned bio that extends beyond the end of a
623          * target, how many sectors must the next target handle?
624          */
625         unsigned short remaining = 0;
626
627         struct dm_target *uninitialized_var(ti);
628         struct queue_limits ti_limits;
629         unsigned i = 0;
630
631         /*
632          * Check each entry in the table in turn.
633          */
634         while (i < dm_table_get_num_targets(table)) {
635                 ti = dm_table_get_target(table, i++);
636
637                 blk_set_stacking_limits(&ti_limits);
638
639                 /* combine all target devices' limits */
640                 if (ti->type->iterate_devices)
641                         ti->type->iterate_devices(ti, dm_set_device_limits,
642                                                   &ti_limits);
643
644                 /*
645                  * If the remaining sectors fall entirely within this
646                  * table entry are they compatible with its logical_block_size?
647                  */
648                 if (remaining < ti->len &&
649                     remaining & ((ti_limits.logical_block_size >>
650                                   SECTOR_SHIFT) - 1))
651                         break;  /* Error */
652
653                 next_target_start =
654                     (unsigned short) ((next_target_start + ti->len) &
655                                       (device_logical_block_size_sects - 1));
656                 remaining = next_target_start ?
657                     device_logical_block_size_sects - next_target_start : 0;
658         }
659
660         if (remaining) {
661                 DMWARN("%s: table line %u (start sect %llu len %llu) "
662                        "not aligned to h/w logical block size %u",
663                        dm_device_name(table->md), i,
664                        (unsigned long long) ti->begin,
665                        (unsigned long long) ti->len,
666                        limits->logical_block_size);
667                 return -EINVAL;
668         }
669
670         return 0;
671 }
672
673 int dm_table_add_target(struct dm_table *t, const char *type,
674                         sector_t start, sector_t len, char *params)
675 {
676         int r = -EINVAL, argc;
677         char **argv;
678         struct dm_target *tgt;
679
680         if (t->singleton) {
681                 DMERR("%s: target type %s must appear alone in table",
682                       dm_device_name(t->md), t->targets->type->name);
683                 return -EINVAL;
684         }
685
686         BUG_ON(t->num_targets >= t->num_allocated);
687
688         tgt = t->targets + t->num_targets;
689         memset(tgt, 0, sizeof(*tgt));
690
691         if (!len) {
692                 DMERR("%s: zero-length target", dm_device_name(t->md));
693                 return -EINVAL;
694         }
695
696         tgt->type = dm_get_target_type(type);
697         if (!tgt->type) {
698                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
699                       type);
700                 return -EINVAL;
701         }
702
703         if (dm_target_needs_singleton(tgt->type)) {
704                 if (t->num_targets) {
705                         DMERR("%s: target type %s must appear alone in table",
706                               dm_device_name(t->md), type);
707                         return -EINVAL;
708                 }
709                 t->singleton = true;
710         }
711
712         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
713                 DMERR("%s: target type %s may not be included in read-only tables",
714                       dm_device_name(t->md), type);
715                 return -EINVAL;
716         }
717
718         if (t->immutable_target_type) {
719                 if (t->immutable_target_type != tgt->type) {
720                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
721                               dm_device_name(t->md), t->immutable_target_type->name);
722                         return -EINVAL;
723                 }
724         } else if (dm_target_is_immutable(tgt->type)) {
725                 if (t->num_targets) {
726                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
727                               dm_device_name(t->md), tgt->type->name);
728                         return -EINVAL;
729                 }
730                 t->immutable_target_type = tgt->type;
731         }
732
733         tgt->table = t;
734         tgt->begin = start;
735         tgt->len = len;
736         tgt->error = "Unknown error";
737
738         /*
739          * Does this target adjoin the previous one ?
740          */
741         if (!adjoin(t, tgt)) {
742                 tgt->error = "Gap in table";
743                 r = -EINVAL;
744                 goto bad;
745         }
746
747         r = dm_split_args(&argc, &argv, params);
748         if (r) {
749                 tgt->error = "couldn't split parameters (insufficient memory)";
750                 goto bad;
751         }
752
753         r = tgt->type->ctr(tgt, argc, argv);
754         kfree(argv);
755         if (r)
756                 goto bad;
757
758         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
759
760         if (!tgt->num_discard_bios && tgt->discards_supported)
761                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762                        dm_device_name(t->md), type);
763
764         return 0;
765
766  bad:
767         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
768         dm_put_target_type(tgt->type);
769         return r;
770 }
771
772 /*
773  * Target argument parsing helpers.
774  */
775 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
776                              unsigned *value, char **error, unsigned grouped)
777 {
778         const char *arg_str = dm_shift_arg(arg_set);
779         char dummy;
780
781         if (!arg_str ||
782             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
783             (*value < arg->min) ||
784             (*value > arg->max) ||
785             (grouped && arg_set->argc < *value)) {
786                 *error = arg->error;
787                 return -EINVAL;
788         }
789
790         return 0;
791 }
792
793 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
794                 unsigned *value, char **error)
795 {
796         return validate_next_arg(arg, arg_set, value, error, 0);
797 }
798 EXPORT_SYMBOL(dm_read_arg);
799
800 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
801                       unsigned *value, char **error)
802 {
803         return validate_next_arg(arg, arg_set, value, error, 1);
804 }
805 EXPORT_SYMBOL(dm_read_arg_group);
806
807 const char *dm_shift_arg(struct dm_arg_set *as)
808 {
809         char *r;
810
811         if (as->argc) {
812                 as->argc--;
813                 r = *as->argv;
814                 as->argv++;
815                 return r;
816         }
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(dm_shift_arg);
821
822 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
823 {
824         BUG_ON(as->argc < num_args);
825         as->argc -= num_args;
826         as->argv += num_args;
827 }
828 EXPORT_SYMBOL(dm_consume_args);
829
830 static bool __table_type_bio_based(unsigned table_type)
831 {
832         return (table_type == DM_TYPE_BIO_BASED ||
833                 table_type == DM_TYPE_DAX_BIO_BASED);
834 }
835
836 static bool __table_type_request_based(unsigned table_type)
837 {
838         return (table_type == DM_TYPE_REQUEST_BASED ||
839                 table_type == DM_TYPE_MQ_REQUEST_BASED);
840 }
841
842 void dm_table_set_type(struct dm_table *t, unsigned type)
843 {
844         t->type = type;
845 }
846 EXPORT_SYMBOL_GPL(dm_table_set_type);
847
848 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
849                                sector_t start, sector_t len, void *data)
850 {
851         struct request_queue *q = bdev_get_queue(dev->bdev);
852
853         return q && blk_queue_dax(q);
854 }
855
856 static bool dm_table_supports_dax(struct dm_table *t)
857 {
858         struct dm_target *ti;
859         unsigned i = 0;
860
861         /* Ensure that all targets support DAX. */
862         while (i < dm_table_get_num_targets(t)) {
863                 ti = dm_table_get_target(t, i++);
864
865                 if (!ti->type->direct_access)
866                         return false;
867
868                 if (!ti->type->iterate_devices ||
869                     !ti->type->iterate_devices(ti, device_supports_dax, NULL))
870                         return false;
871         }
872
873         return true;
874 }
875
876 static int dm_table_determine_type(struct dm_table *t)
877 {
878         unsigned i;
879         unsigned bio_based = 0, request_based = 0, hybrid = 0;
880         bool verify_blk_mq = false;
881         struct dm_target *tgt;
882         struct dm_dev_internal *dd;
883         struct list_head *devices = dm_table_get_devices(t);
884         unsigned live_md_type = dm_get_md_type(t->md);
885
886         if (t->type != DM_TYPE_NONE) {
887                 /* target already set the table's type */
888                 if (t->type == DM_TYPE_BIO_BASED)
889                         return 0;
890                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
891                 goto verify_rq_based;
892         }
893
894         for (i = 0; i < t->num_targets; i++) {
895                 tgt = t->targets + i;
896                 if (dm_target_hybrid(tgt))
897                         hybrid = 1;
898                 else if (dm_target_request_based(tgt))
899                         request_based = 1;
900                 else
901                         bio_based = 1;
902
903                 if (bio_based && request_based) {
904                         DMWARN("Inconsistent table: different target types"
905                                " can't be mixed up");
906                         return -EINVAL;
907                 }
908         }
909
910         if (hybrid && !bio_based && !request_based) {
911                 /*
912                  * The targets can work either way.
913                  * Determine the type from the live device.
914                  * Default to bio-based if device is new.
915                  */
916                 if (__table_type_request_based(live_md_type))
917                         request_based = 1;
918                 else
919                         bio_based = 1;
920         }
921
922         if (bio_based) {
923                 /* We must use this table as bio-based */
924                 t->type = DM_TYPE_BIO_BASED;
925                 if (dm_table_supports_dax(t) ||
926                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
927                         t->type = DM_TYPE_DAX_BIO_BASED;
928                 return 0;
929         }
930
931         BUG_ON(!request_based); /* No targets in this table */
932
933         if (list_empty(devices) && __table_type_request_based(live_md_type)) {
934                 /* inherit live MD type */
935                 t->type = live_md_type;
936                 return 0;
937         }
938
939         /*
940          * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
941          * having a compatible target use dm_table_set_type.
942          */
943         t->type = DM_TYPE_REQUEST_BASED;
944
945 verify_rq_based:
946         /*
947          * Request-based dm supports only tables that have a single target now.
948          * To support multiple targets, request splitting support is needed,
949          * and that needs lots of changes in the block-layer.
950          * (e.g. request completion process for partial completion.)
951          */
952         if (t->num_targets > 1) {
953                 DMWARN("Request-based dm doesn't support multiple targets yet");
954                 return -EINVAL;
955         }
956
957         /* Non-request-stackable devices can't be used for request-based dm */
958         list_for_each_entry(dd, devices, list) {
959                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
960
961                 if (!blk_queue_stackable(q)) {
962                         DMERR("table load rejected: including"
963                               " non-request-stackable devices");
964                         return -EINVAL;
965                 }
966
967                 if (q->mq_ops)
968                         verify_blk_mq = true;
969         }
970
971         if (verify_blk_mq) {
972                 /* verify _all_ devices in the table are blk-mq devices */
973                 list_for_each_entry(dd, devices, list)
974                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
975                                 DMERR("table load rejected: not all devices"
976                                       " are blk-mq request-stackable");
977                                 return -EINVAL;
978                         }
979
980                 t->all_blk_mq = true;
981         }
982
983         return 0;
984 }
985
986 unsigned dm_table_get_type(struct dm_table *t)
987 {
988         return t->type;
989 }
990
991 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
992 {
993         return t->immutable_target_type;
994 }
995
996 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
997 {
998         /* Immutable target is implicitly a singleton */
999         if (t->num_targets > 1 ||
1000             !dm_target_is_immutable(t->targets[0].type))
1001                 return NULL;
1002
1003         return t->targets;
1004 }
1005
1006 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1007 {
1008         struct dm_target *uninitialized_var(ti);
1009         unsigned i = 0;
1010
1011         while (i < dm_table_get_num_targets(t)) {
1012                 ti = dm_table_get_target(t, i++);
1013                 if (dm_target_is_wildcard(ti->type))
1014                         return ti;
1015         }
1016
1017         return NULL;
1018 }
1019
1020 bool dm_table_bio_based(struct dm_table *t)
1021 {
1022         return __table_type_bio_based(dm_table_get_type(t));
1023 }
1024
1025 bool dm_table_request_based(struct dm_table *t)
1026 {
1027         return __table_type_request_based(dm_table_get_type(t));
1028 }
1029
1030 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1031 {
1032         return t->all_blk_mq;
1033 }
1034
1035 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1036 {
1037         unsigned type = dm_table_get_type(t);
1038         unsigned per_io_data_size = 0;
1039         struct dm_target *tgt;
1040         unsigned i;
1041
1042         if (unlikely(type == DM_TYPE_NONE)) {
1043                 DMWARN("no table type is set, can't allocate mempools");
1044                 return -EINVAL;
1045         }
1046
1047         if (__table_type_bio_based(type))
1048                 for (i = 0; i < t->num_targets; i++) {
1049                         tgt = t->targets + i;
1050                         per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1051                 }
1052
1053         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1054         if (!t->mempools)
1055                 return -ENOMEM;
1056
1057         return 0;
1058 }
1059
1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062         dm_free_md_mempools(t->mempools);
1063         t->mempools = NULL;
1064 }
1065
1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068         return t->mempools;
1069 }
1070
1071 static int setup_indexes(struct dm_table *t)
1072 {
1073         int i;
1074         unsigned int total = 0;
1075         sector_t *indexes;
1076
1077         /* allocate the space for *all* the indexes */
1078         for (i = t->depth - 2; i >= 0; i--) {
1079                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080                 total += t->counts[i];
1081         }
1082
1083         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084         if (!indexes)
1085                 return -ENOMEM;
1086
1087         /* set up internal nodes, bottom-up */
1088         for (i = t->depth - 2; i >= 0; i--) {
1089                 t->index[i] = indexes;
1090                 indexes += (KEYS_PER_NODE * t->counts[i]);
1091                 setup_btree_index(i, t);
1092         }
1093
1094         return 0;
1095 }
1096
1097 /*
1098  * Builds the btree to index the map.
1099  */
1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102         int r = 0;
1103         unsigned int leaf_nodes;
1104
1105         /* how many indexes will the btree have ? */
1106         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108
1109         /* leaf layer has already been set up */
1110         t->counts[t->depth - 1] = leaf_nodes;
1111         t->index[t->depth - 1] = t->highs;
1112
1113         if (t->depth >= 2)
1114                 r = setup_indexes(t);
1115
1116         return r;
1117 }
1118
1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121         return !!blk_get_integrity(disk);
1122 }
1123
1124 /*
1125  * Get a disk whose integrity profile reflects the table's profile.
1126  * Returns NULL if integrity support was inconsistent or unavailable.
1127  */
1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130         struct list_head *devices = dm_table_get_devices(t);
1131         struct dm_dev_internal *dd = NULL;
1132         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133
1134         list_for_each_entry(dd, devices, list) {
1135                 template_disk = dd->dm_dev->bdev->bd_disk;
1136                 if (!integrity_profile_exists(template_disk))
1137                         goto no_integrity;
1138                 else if (prev_disk &&
1139                          blk_integrity_compare(prev_disk, template_disk) < 0)
1140                         goto no_integrity;
1141                 prev_disk = template_disk;
1142         }
1143
1144         return template_disk;
1145
1146 no_integrity:
1147         if (prev_disk)
1148                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1149                        dm_device_name(t->md),
1150                        prev_disk->disk_name,
1151                        template_disk->disk_name);
1152         return NULL;
1153 }
1154
1155 /*
1156  * Register the mapped device for blk_integrity support if the
1157  * underlying devices have an integrity profile.  But all devices may
1158  * not have matching profiles (checking all devices isn't reliable
1159  * during table load because this table may use other DM device(s) which
1160  * must be resumed before they will have an initialized integity
1161  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1162  * profile validation: First pass during table load, final pass during
1163  * resume.
1164  */
1165 static int dm_table_register_integrity(struct dm_table *t)
1166 {
1167         struct mapped_device *md = t->md;
1168         struct gendisk *template_disk = NULL;
1169
1170         template_disk = dm_table_get_integrity_disk(t);
1171         if (!template_disk)
1172                 return 0;
1173
1174         if (!integrity_profile_exists(dm_disk(md))) {
1175                 t->integrity_supported = true;
1176                 /*
1177                  * Register integrity profile during table load; we can do
1178                  * this because the final profile must match during resume.
1179                  */
1180                 blk_integrity_register(dm_disk(md),
1181                                        blk_get_integrity(template_disk));
1182                 return 0;
1183         }
1184
1185         /*
1186          * If DM device already has an initialized integrity
1187          * profile the new profile should not conflict.
1188          */
1189         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1190                 DMWARN("%s: conflict with existing integrity profile: "
1191                        "%s profile mismatch",
1192                        dm_device_name(t->md),
1193                        template_disk->disk_name);
1194                 return 1;
1195         }
1196
1197         /* Preserve existing integrity profile */
1198         t->integrity_supported = true;
1199         return 0;
1200 }
1201
1202 /*
1203  * Prepares the table for use by building the indices,
1204  * setting the type, and allocating mempools.
1205  */
1206 int dm_table_complete(struct dm_table *t)
1207 {
1208         int r;
1209
1210         r = dm_table_determine_type(t);
1211         if (r) {
1212                 DMERR("unable to determine table type");
1213                 return r;
1214         }
1215
1216         r = dm_table_build_index(t);
1217         if (r) {
1218                 DMERR("unable to build btrees");
1219                 return r;
1220         }
1221
1222         r = dm_table_register_integrity(t);
1223         if (r) {
1224                 DMERR("could not register integrity profile.");
1225                 return r;
1226         }
1227
1228         r = dm_table_alloc_md_mempools(t, t->md);
1229         if (r)
1230                 DMERR("unable to allocate mempools");
1231
1232         return r;
1233 }
1234
1235 static DEFINE_MUTEX(_event_lock);
1236 void dm_table_event_callback(struct dm_table *t,
1237                              void (*fn)(void *), void *context)
1238 {
1239         mutex_lock(&_event_lock);
1240         t->event_fn = fn;
1241         t->event_context = context;
1242         mutex_unlock(&_event_lock);
1243 }
1244
1245 void dm_table_event(struct dm_table *t)
1246 {
1247         /*
1248          * You can no longer call dm_table_event() from interrupt
1249          * context, use a bottom half instead.
1250          */
1251         BUG_ON(in_interrupt());
1252
1253         mutex_lock(&_event_lock);
1254         if (t->event_fn)
1255                 t->event_fn(t->event_context);
1256         mutex_unlock(&_event_lock);
1257 }
1258 EXPORT_SYMBOL(dm_table_event);
1259
1260 sector_t dm_table_get_size(struct dm_table *t)
1261 {
1262         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1263 }
1264 EXPORT_SYMBOL(dm_table_get_size);
1265
1266 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1267 {
1268         if (index >= t->num_targets)
1269                 return NULL;
1270
1271         return t->targets + index;
1272 }
1273
1274 /*
1275  * Search the btree for the correct target.
1276  *
1277  * Caller should check returned pointer with dm_target_is_valid()
1278  * to trap I/O beyond end of device.
1279  */
1280 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1281 {
1282         unsigned int l, n = 0, k = 0;
1283         sector_t *node;
1284
1285         for (l = 0; l < t->depth; l++) {
1286                 n = get_child(n, k);
1287                 node = get_node(t, l, n);
1288
1289                 for (k = 0; k < KEYS_PER_NODE; k++)
1290                         if (node[k] >= sector)
1291                                 break;
1292         }
1293
1294         return &t->targets[(KEYS_PER_NODE * n) + k];
1295 }
1296
1297 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1298                         sector_t start, sector_t len, void *data)
1299 {
1300         unsigned *num_devices = data;
1301
1302         (*num_devices)++;
1303
1304         return 0;
1305 }
1306
1307 /*
1308  * Check whether a table has no data devices attached using each
1309  * target's iterate_devices method.
1310  * Returns false if the result is unknown because a target doesn't
1311  * support iterate_devices.
1312  */
1313 bool dm_table_has_no_data_devices(struct dm_table *table)
1314 {
1315         struct dm_target *uninitialized_var(ti);
1316         unsigned i = 0, num_devices = 0;
1317
1318         while (i < dm_table_get_num_targets(table)) {
1319                 ti = dm_table_get_target(table, i++);
1320
1321                 if (!ti->type->iterate_devices)
1322                         return false;
1323
1324                 ti->type->iterate_devices(ti, count_device, &num_devices);
1325                 if (num_devices)
1326                         return false;
1327         }
1328
1329         return true;
1330 }
1331
1332 /*
1333  * Establish the new table's queue_limits and validate them.
1334  */
1335 int dm_calculate_queue_limits(struct dm_table *table,
1336                               struct queue_limits *limits)
1337 {
1338         struct dm_target *uninitialized_var(ti);
1339         struct queue_limits ti_limits;
1340         unsigned i = 0;
1341
1342         blk_set_stacking_limits(limits);
1343
1344         while (i < dm_table_get_num_targets(table)) {
1345                 blk_set_stacking_limits(&ti_limits);
1346
1347                 ti = dm_table_get_target(table, i++);
1348
1349                 if (!ti->type->iterate_devices)
1350                         goto combine_limits;
1351
1352                 /*
1353                  * Combine queue limits of all the devices this target uses.
1354                  */
1355                 ti->type->iterate_devices(ti, dm_set_device_limits,
1356                                           &ti_limits);
1357
1358                 /* Set I/O hints portion of queue limits */
1359                 if (ti->type->io_hints)
1360                         ti->type->io_hints(ti, &ti_limits);
1361
1362                 /*
1363                  * Check each device area is consistent with the target's
1364                  * overall queue limits.
1365                  */
1366                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1367                                               &ti_limits))
1368                         return -EINVAL;
1369
1370 combine_limits:
1371                 /*
1372                  * Merge this target's queue limits into the overall limits
1373                  * for the table.
1374                  */
1375                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1376                         DMWARN("%s: adding target device "
1377                                "(start sect %llu len %llu) "
1378                                "caused an alignment inconsistency",
1379                                dm_device_name(table->md),
1380                                (unsigned long long) ti->begin,
1381                                (unsigned long long) ti->len);
1382         }
1383
1384         return validate_hardware_logical_block_alignment(table, limits);
1385 }
1386
1387 /*
1388  * Verify that all devices have an integrity profile that matches the
1389  * DM device's registered integrity profile.  If the profiles don't
1390  * match then unregister the DM device's integrity profile.
1391  */
1392 static void dm_table_verify_integrity(struct dm_table *t)
1393 {
1394         struct gendisk *template_disk = NULL;
1395
1396         if (t->integrity_supported) {
1397                 /*
1398                  * Verify that the original integrity profile
1399                  * matches all the devices in this table.
1400                  */
1401                 template_disk = dm_table_get_integrity_disk(t);
1402                 if (template_disk &&
1403                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1404                         return;
1405         }
1406
1407         if (integrity_profile_exists(dm_disk(t->md))) {
1408                 DMWARN("%s: unable to establish an integrity profile",
1409                        dm_device_name(t->md));
1410                 blk_integrity_unregister(dm_disk(t->md));
1411         }
1412 }
1413
1414 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1415                                 sector_t start, sector_t len, void *data)
1416 {
1417         unsigned long flush = (unsigned long) data;
1418         struct request_queue *q = bdev_get_queue(dev->bdev);
1419
1420         return q && (q->queue_flags & flush);
1421 }
1422
1423 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1424 {
1425         struct dm_target *ti;
1426         unsigned i = 0;
1427
1428         /*
1429          * Require at least one underlying device to support flushes.
1430          * t->devices includes internal dm devices such as mirror logs
1431          * so we need to use iterate_devices here, which targets
1432          * supporting flushes must provide.
1433          */
1434         while (i < dm_table_get_num_targets(t)) {
1435                 ti = dm_table_get_target(t, i++);
1436
1437                 if (!ti->num_flush_bios)
1438                         continue;
1439
1440                 if (ti->flush_supported)
1441                         return true;
1442
1443                 if (ti->type->iterate_devices &&
1444                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1445                         return true;
1446         }
1447
1448         return false;
1449 }
1450
1451 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1452 {
1453         struct dm_target *ti;
1454         unsigned i = 0;
1455
1456         /* Ensure that all targets supports discard_zeroes_data. */
1457         while (i < dm_table_get_num_targets(t)) {
1458                 ti = dm_table_get_target(t, i++);
1459
1460                 if (ti->discard_zeroes_data_unsupported)
1461                         return false;
1462         }
1463
1464         return true;
1465 }
1466
1467 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1468                             sector_t start, sector_t len, void *data)
1469 {
1470         struct request_queue *q = bdev_get_queue(dev->bdev);
1471
1472         return q && blk_queue_nonrot(q);
1473 }
1474
1475 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1476                              sector_t start, sector_t len, void *data)
1477 {
1478         struct request_queue *q = bdev_get_queue(dev->bdev);
1479
1480         return q && !blk_queue_add_random(q);
1481 }
1482
1483 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1484                                    sector_t start, sector_t len, void *data)
1485 {
1486         struct request_queue *q = bdev_get_queue(dev->bdev);
1487
1488         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1489 }
1490
1491 static bool dm_table_all_devices_attribute(struct dm_table *t,
1492                                            iterate_devices_callout_fn func)
1493 {
1494         struct dm_target *ti;
1495         unsigned i = 0;
1496
1497         while (i < dm_table_get_num_targets(t)) {
1498                 ti = dm_table_get_target(t, i++);
1499
1500                 if (!ti->type->iterate_devices ||
1501                     !ti->type->iterate_devices(ti, func, NULL))
1502                         return false;
1503         }
1504
1505         return true;
1506 }
1507
1508 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1509                                          sector_t start, sector_t len, void *data)
1510 {
1511         struct request_queue *q = bdev_get_queue(dev->bdev);
1512
1513         return q && !q->limits.max_write_same_sectors;
1514 }
1515
1516 static bool dm_table_supports_write_same(struct dm_table *t)
1517 {
1518         struct dm_target *ti;
1519         unsigned i = 0;
1520
1521         while (i < dm_table_get_num_targets(t)) {
1522                 ti = dm_table_get_target(t, i++);
1523
1524                 if (!ti->num_write_same_bios)
1525                         return false;
1526
1527                 if (!ti->type->iterate_devices ||
1528                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1529                         return false;
1530         }
1531
1532         return true;
1533 }
1534
1535 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1536                                   sector_t start, sector_t len, void *data)
1537 {
1538         struct request_queue *q = bdev_get_queue(dev->bdev);
1539
1540         return q && blk_queue_discard(q);
1541 }
1542
1543 static bool dm_table_supports_discards(struct dm_table *t)
1544 {
1545         struct dm_target *ti;
1546         unsigned i = 0;
1547
1548         /*
1549          * Unless any target used by the table set discards_supported,
1550          * require at least one underlying device to support discards.
1551          * t->devices includes internal dm devices such as mirror logs
1552          * so we need to use iterate_devices here, which targets
1553          * supporting discard selectively must provide.
1554          */
1555         while (i < dm_table_get_num_targets(t)) {
1556                 ti = dm_table_get_target(t, i++);
1557
1558                 if (!ti->num_discard_bios)
1559                         continue;
1560
1561                 if (ti->discards_supported)
1562                         return true;
1563
1564                 if (ti->type->iterate_devices &&
1565                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1566                         return true;
1567         }
1568
1569         return false;
1570 }
1571
1572 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1573                                struct queue_limits *limits)
1574 {
1575         bool wc = false, fua = false;
1576
1577         /*
1578          * Copy table's limits to the DM device's request_queue
1579          */
1580         q->limits = *limits;
1581
1582         if (!dm_table_supports_discards(t))
1583                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1584         else
1585                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1586
1587         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1588                 wc = true;
1589                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1590                         fua = true;
1591         }
1592         blk_queue_write_cache(q, wc, fua);
1593
1594         if (!dm_table_discard_zeroes_data(t))
1595                 q->limits.discard_zeroes_data = 0;
1596
1597         /* Ensure that all underlying devices are non-rotational. */
1598         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1599                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1600         else
1601                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1602
1603         if (!dm_table_supports_write_same(t))
1604                 q->limits.max_write_same_sectors = 0;
1605
1606         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1607                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1608         else
1609                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1610
1611         dm_table_verify_integrity(t);
1612
1613         /*
1614          * Determine whether or not this queue's I/O timings contribute
1615          * to the entropy pool, Only request-based targets use this.
1616          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1617          * have it set.
1618          */
1619         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1620                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1621
1622         /*
1623          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1624          * visible to other CPUs because, once the flag is set, incoming bios
1625          * are processed by request-based dm, which refers to the queue
1626          * settings.
1627          * Until the flag set, bios are passed to bio-based dm and queued to
1628          * md->deferred where queue settings are not needed yet.
1629          * Those bios are passed to request-based dm at the resume time.
1630          */
1631         smp_mb();
1632         if (dm_table_request_based(t))
1633                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1634 }
1635
1636 unsigned int dm_table_get_num_targets(struct dm_table *t)
1637 {
1638         return t->num_targets;
1639 }
1640
1641 struct list_head *dm_table_get_devices(struct dm_table *t)
1642 {
1643         return &t->devices;
1644 }
1645
1646 fmode_t dm_table_get_mode(struct dm_table *t)
1647 {
1648         return t->mode;
1649 }
1650 EXPORT_SYMBOL(dm_table_get_mode);
1651
1652 enum suspend_mode {
1653         PRESUSPEND,
1654         PRESUSPEND_UNDO,
1655         POSTSUSPEND,
1656 };
1657
1658 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1659 {
1660         int i = t->num_targets;
1661         struct dm_target *ti = t->targets;
1662
1663         while (i--) {
1664                 switch (mode) {
1665                 case PRESUSPEND:
1666                         if (ti->type->presuspend)
1667                                 ti->type->presuspend(ti);
1668                         break;
1669                 case PRESUSPEND_UNDO:
1670                         if (ti->type->presuspend_undo)
1671                                 ti->type->presuspend_undo(ti);
1672                         break;
1673                 case POSTSUSPEND:
1674                         if (ti->type->postsuspend)
1675                                 ti->type->postsuspend(ti);
1676                         break;
1677                 }
1678                 ti++;
1679         }
1680 }
1681
1682 void dm_table_presuspend_targets(struct dm_table *t)
1683 {
1684         if (!t)
1685                 return;
1686
1687         suspend_targets(t, PRESUSPEND);
1688 }
1689
1690 void dm_table_presuspend_undo_targets(struct dm_table *t)
1691 {
1692         if (!t)
1693                 return;
1694
1695         suspend_targets(t, PRESUSPEND_UNDO);
1696 }
1697
1698 void dm_table_postsuspend_targets(struct dm_table *t)
1699 {
1700         if (!t)
1701                 return;
1702
1703         suspend_targets(t, POSTSUSPEND);
1704 }
1705
1706 int dm_table_resume_targets(struct dm_table *t)
1707 {
1708         int i, r = 0;
1709
1710         for (i = 0; i < t->num_targets; i++) {
1711                 struct dm_target *ti = t->targets + i;
1712
1713                 if (!ti->type->preresume)
1714                         continue;
1715
1716                 r = ti->type->preresume(ti);
1717                 if (r) {
1718                         DMERR("%s: %s: preresume failed, error = %d",
1719                               dm_device_name(t->md), ti->type->name, r);
1720                         return r;
1721                 }
1722         }
1723
1724         for (i = 0; i < t->num_targets; i++) {
1725                 struct dm_target *ti = t->targets + i;
1726
1727                 if (ti->type->resume)
1728                         ti->type->resume(ti);
1729         }
1730
1731         return 0;
1732 }
1733
1734 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1735 {
1736         list_add(&cb->list, &t->target_callbacks);
1737 }
1738 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1739
1740 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1741 {
1742         struct dm_dev_internal *dd;
1743         struct list_head *devices = dm_table_get_devices(t);
1744         struct dm_target_callbacks *cb;
1745         int r = 0;
1746
1747         list_for_each_entry(dd, devices, list) {
1748                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1749                 char b[BDEVNAME_SIZE];
1750
1751                 if (likely(q))
1752                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1753                 else
1754                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1755                                      dm_device_name(t->md),
1756                                      bdevname(dd->dm_dev->bdev, b));
1757         }
1758
1759         list_for_each_entry(cb, &t->target_callbacks, list)
1760                 if (cb->congested_fn)
1761                         r |= cb->congested_fn(cb, bdi_bits);
1762
1763         return r;
1764 }
1765
1766 struct mapped_device *dm_table_get_md(struct dm_table *t)
1767 {
1768         return t->md;
1769 }
1770 EXPORT_SYMBOL(dm_table_get_md);
1771
1772 void dm_table_run_md_queue_async(struct dm_table *t)
1773 {
1774         struct mapped_device *md;
1775         struct request_queue *queue;
1776         unsigned long flags;
1777
1778         if (!dm_table_request_based(t))
1779                 return;
1780
1781         md = dm_table_get_md(t);
1782         queue = dm_get_md_queue(md);
1783         if (queue) {
1784                 if (queue->mq_ops)
1785                         blk_mq_run_hw_queues(queue, true);
1786                 else {
1787                         spin_lock_irqsave(queue->queue_lock, flags);
1788                         blk_run_queue_async(queue);
1789                         spin_unlock_irqrestore(queue->queue_lock, flags);
1790                 }
1791         }
1792 }
1793 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1794