Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[cascardo/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/sort.h>
21 #include <linux/rbtree.h>
22
23 #define DM_MSG_PREFIX   "thin"
24
25 /*
26  * Tunable constants
27  */
28 #define ENDIO_HOOK_POOL_SIZE 1024
29 #define MAPPING_POOL_SIZE 1024
30 #define COMMIT_PERIOD HZ
31 #define NO_SPACE_TIMEOUT_SECS 60
32
33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34
35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
36                 "A percentage of time allocated for copy on write");
37
38 /*
39  * The block size of the device holding pool data must be
40  * between 64KB and 1GB.
41  */
42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
44
45 /*
46  * Device id is restricted to 24 bits.
47  */
48 #define MAX_DEV_ID ((1 << 24) - 1)
49
50 /*
51  * How do we handle breaking sharing of data blocks?
52  * =================================================
53  *
54  * We use a standard copy-on-write btree to store the mappings for the
55  * devices (note I'm talking about copy-on-write of the metadata here, not
56  * the data).  When you take an internal snapshot you clone the root node
57  * of the origin btree.  After this there is no concept of an origin or a
58  * snapshot.  They are just two device trees that happen to point to the
59  * same data blocks.
60  *
61  * When we get a write in we decide if it's to a shared data block using
62  * some timestamp magic.  If it is, we have to break sharing.
63  *
64  * Let's say we write to a shared block in what was the origin.  The
65  * steps are:
66  *
67  * i) plug io further to this physical block. (see bio_prison code).
68  *
69  * ii) quiesce any read io to that shared data block.  Obviously
70  * including all devices that share this block.  (see dm_deferred_set code)
71  *
72  * iii) copy the data block to a newly allocate block.  This step can be
73  * missed out if the io covers the block. (schedule_copy).
74  *
75  * iv) insert the new mapping into the origin's btree
76  * (process_prepared_mapping).  This act of inserting breaks some
77  * sharing of btree nodes between the two devices.  Breaking sharing only
78  * effects the btree of that specific device.  Btrees for the other
79  * devices that share the block never change.  The btree for the origin
80  * device as it was after the last commit is untouched, ie. we're using
81  * persistent data structures in the functional programming sense.
82  *
83  * v) unplug io to this physical block, including the io that triggered
84  * the breaking of sharing.
85  *
86  * Steps (ii) and (iii) occur in parallel.
87  *
88  * The metadata _doesn't_ need to be committed before the io continues.  We
89  * get away with this because the io is always written to a _new_ block.
90  * If there's a crash, then:
91  *
92  * - The origin mapping will point to the old origin block (the shared
93  * one).  This will contain the data as it was before the io that triggered
94  * the breaking of sharing came in.
95  *
96  * - The snap mapping still points to the old block.  As it would after
97  * the commit.
98  *
99  * The downside of this scheme is the timestamp magic isn't perfect, and
100  * will continue to think that data block in the snapshot device is shared
101  * even after the write to the origin has broken sharing.  I suspect data
102  * blocks will typically be shared by many different devices, so we're
103  * breaking sharing n + 1 times, rather than n, where n is the number of
104  * devices that reference this data block.  At the moment I think the
105  * benefits far, far outweigh the disadvantages.
106  */
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * Key building.
112  */
113 static void build_data_key(struct dm_thin_device *td,
114                            dm_block_t b, struct dm_cell_key *key)
115 {
116         key->virtual = 0;
117         key->dev = dm_thin_dev_id(td);
118         key->block_begin = b;
119         key->block_end = b + 1ULL;
120 }
121
122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
123                               struct dm_cell_key *key)
124 {
125         key->virtual = 1;
126         key->dev = dm_thin_dev_id(td);
127         key->block_begin = b;
128         key->block_end = b + 1ULL;
129 }
130
131 /*----------------------------------------------------------------*/
132
133 #define THROTTLE_THRESHOLD (1 * HZ)
134
135 struct throttle {
136         struct rw_semaphore lock;
137         unsigned long threshold;
138         bool throttle_applied;
139 };
140
141 static void throttle_init(struct throttle *t)
142 {
143         init_rwsem(&t->lock);
144         t->throttle_applied = false;
145 }
146
147 static void throttle_work_start(struct throttle *t)
148 {
149         t->threshold = jiffies + THROTTLE_THRESHOLD;
150 }
151
152 static void throttle_work_update(struct throttle *t)
153 {
154         if (!t->throttle_applied && jiffies > t->threshold) {
155                 down_write(&t->lock);
156                 t->throttle_applied = true;
157         }
158 }
159
160 static void throttle_work_complete(struct throttle *t)
161 {
162         if (t->throttle_applied) {
163                 t->throttle_applied = false;
164                 up_write(&t->lock);
165         }
166 }
167
168 static void throttle_lock(struct throttle *t)
169 {
170         down_read(&t->lock);
171 }
172
173 static void throttle_unlock(struct throttle *t)
174 {
175         up_read(&t->lock);
176 }
177
178 /*----------------------------------------------------------------*/
179
180 /*
181  * A pool device ties together a metadata device and a data device.  It
182  * also provides the interface for creating and destroying internal
183  * devices.
184  */
185 struct dm_thin_new_mapping;
186
187 /*
188  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
189  */
190 enum pool_mode {
191         PM_WRITE,               /* metadata may be changed */
192         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
193         PM_READ_ONLY,           /* metadata may not be changed */
194         PM_FAIL,                /* all I/O fails */
195 };
196
197 struct pool_features {
198         enum pool_mode mode;
199
200         bool zero_new_blocks:1;
201         bool discard_enabled:1;
202         bool discard_passdown:1;
203         bool error_if_no_space:1;
204 };
205
206 struct thin_c;
207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
210
211 #define CELL_SORT_ARRAY_SIZE 8192
212
213 struct pool {
214         struct list_head list;
215         struct dm_target *ti;   /* Only set if a pool target is bound */
216
217         struct mapped_device *pool_md;
218         struct block_device *md_dev;
219         struct dm_pool_metadata *pmd;
220
221         dm_block_t low_water_blocks;
222         uint32_t sectors_per_block;
223         int sectors_per_block_shift;
224
225         struct pool_features pf;
226         bool low_water_triggered:1;     /* A dm event has been sent */
227         bool suspended:1;
228
229         struct dm_bio_prison *prison;
230         struct dm_kcopyd_client *copier;
231
232         struct workqueue_struct *wq;
233         struct throttle throttle;
234         struct work_struct worker;
235         struct delayed_work waker;
236         struct delayed_work no_space_timeout;
237
238         unsigned long last_commit_jiffies;
239         unsigned ref_count;
240
241         spinlock_t lock;
242         struct bio_list deferred_flush_bios;
243         struct list_head prepared_mappings;
244         struct list_head prepared_discards;
245         struct list_head active_thins;
246
247         struct dm_deferred_set *shared_read_ds;
248         struct dm_deferred_set *all_io_ds;
249
250         struct dm_thin_new_mapping *next_mapping;
251         mempool_t *mapping_pool;
252
253         process_bio_fn process_bio;
254         process_bio_fn process_discard;
255
256         process_cell_fn process_cell;
257         process_cell_fn process_discard_cell;
258
259         process_mapping_fn process_prepared_mapping;
260         process_mapping_fn process_prepared_discard;
261
262         struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
263 };
264
265 static enum pool_mode get_pool_mode(struct pool *pool);
266 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
267
268 /*
269  * Target context for a pool.
270  */
271 struct pool_c {
272         struct dm_target *ti;
273         struct pool *pool;
274         struct dm_dev *data_dev;
275         struct dm_dev *metadata_dev;
276         struct dm_target_callbacks callbacks;
277
278         dm_block_t low_water_blocks;
279         struct pool_features requested_pf; /* Features requested during table load */
280         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
281 };
282
283 /*
284  * Target context for a thin.
285  */
286 struct thin_c {
287         struct list_head list;
288         struct dm_dev *pool_dev;
289         struct dm_dev *origin_dev;
290         sector_t origin_size;
291         dm_thin_id dev_id;
292
293         struct pool *pool;
294         struct dm_thin_device *td;
295         struct mapped_device *thin_md;
296
297         bool requeue_mode:1;
298         spinlock_t lock;
299         struct list_head deferred_cells;
300         struct bio_list deferred_bio_list;
301         struct bio_list retry_on_resume_list;
302         struct rb_root sort_bio_list; /* sorted list of deferred bios */
303
304         /*
305          * Ensures the thin is not destroyed until the worker has finished
306          * iterating the active_thins list.
307          */
308         atomic_t refcount;
309         struct completion can_destroy;
310 };
311
312 /*----------------------------------------------------------------*/
313
314 /*
315  * wake_worker() is used when new work is queued and when pool_resume is
316  * ready to continue deferred IO processing.
317  */
318 static void wake_worker(struct pool *pool)
319 {
320         queue_work(pool->wq, &pool->worker);
321 }
322
323 /*----------------------------------------------------------------*/
324
325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
326                       struct dm_bio_prison_cell **cell_result)
327 {
328         int r;
329         struct dm_bio_prison_cell *cell_prealloc;
330
331         /*
332          * Allocate a cell from the prison's mempool.
333          * This might block but it can't fail.
334          */
335         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
336
337         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
338         if (r)
339                 /*
340                  * We reused an old cell; we can get rid of
341                  * the new one.
342                  */
343                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
344
345         return r;
346 }
347
348 static void cell_release(struct pool *pool,
349                          struct dm_bio_prison_cell *cell,
350                          struct bio_list *bios)
351 {
352         dm_cell_release(pool->prison, cell, bios);
353         dm_bio_prison_free_cell(pool->prison, cell);
354 }
355
356 static void cell_visit_release(struct pool *pool,
357                                void (*fn)(void *, struct dm_bio_prison_cell *),
358                                void *context,
359                                struct dm_bio_prison_cell *cell)
360 {
361         dm_cell_visit_release(pool->prison, fn, context, cell);
362         dm_bio_prison_free_cell(pool->prison, cell);
363 }
364
365 static void cell_release_no_holder(struct pool *pool,
366                                    struct dm_bio_prison_cell *cell,
367                                    struct bio_list *bios)
368 {
369         dm_cell_release_no_holder(pool->prison, cell, bios);
370         dm_bio_prison_free_cell(pool->prison, cell);
371 }
372
373 static void cell_error_with_code(struct pool *pool,
374                                  struct dm_bio_prison_cell *cell, int error_code)
375 {
376         dm_cell_error(pool->prison, cell, error_code);
377         dm_bio_prison_free_cell(pool->prison, cell);
378 }
379
380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
381 {
382         cell_error_with_code(pool, cell, -EIO);
383 }
384
385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
386 {
387         cell_error_with_code(pool, cell, 0);
388 }
389
390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
391 {
392         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
393 }
394
395 /*----------------------------------------------------------------*/
396
397 /*
398  * A global list of pools that uses a struct mapped_device as a key.
399  */
400 static struct dm_thin_pool_table {
401         struct mutex mutex;
402         struct list_head pools;
403 } dm_thin_pool_table;
404
405 static void pool_table_init(void)
406 {
407         mutex_init(&dm_thin_pool_table.mutex);
408         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
409 }
410
411 static void __pool_table_insert(struct pool *pool)
412 {
413         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
414         list_add(&pool->list, &dm_thin_pool_table.pools);
415 }
416
417 static void __pool_table_remove(struct pool *pool)
418 {
419         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
420         list_del(&pool->list);
421 }
422
423 static struct pool *__pool_table_lookup(struct mapped_device *md)
424 {
425         struct pool *pool = NULL, *tmp;
426
427         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
428
429         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
430                 if (tmp->pool_md == md) {
431                         pool = tmp;
432                         break;
433                 }
434         }
435
436         return pool;
437 }
438
439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
440 {
441         struct pool *pool = NULL, *tmp;
442
443         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
444
445         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
446                 if (tmp->md_dev == md_dev) {
447                         pool = tmp;
448                         break;
449                 }
450         }
451
452         return pool;
453 }
454
455 /*----------------------------------------------------------------*/
456
457 struct dm_thin_endio_hook {
458         struct thin_c *tc;
459         struct dm_deferred_entry *shared_read_entry;
460         struct dm_deferred_entry *all_io_entry;
461         struct dm_thin_new_mapping *overwrite_mapping;
462         struct rb_node rb_node;
463 };
464
465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
466 {
467         bio_list_merge(bios, master);
468         bio_list_init(master);
469 }
470
471 static void error_bio_list(struct bio_list *bios, int error)
472 {
473         struct bio *bio;
474
475         while ((bio = bio_list_pop(bios)))
476                 bio_endio(bio, error);
477 }
478
479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
480 {
481         struct bio_list bios;
482         unsigned long flags;
483
484         bio_list_init(&bios);
485
486         spin_lock_irqsave(&tc->lock, flags);
487         __merge_bio_list(&bios, master);
488         spin_unlock_irqrestore(&tc->lock, flags);
489
490         error_bio_list(&bios, error);
491 }
492
493 static void requeue_deferred_cells(struct thin_c *tc)
494 {
495         struct pool *pool = tc->pool;
496         unsigned long flags;
497         struct list_head cells;
498         struct dm_bio_prison_cell *cell, *tmp;
499
500         INIT_LIST_HEAD(&cells);
501
502         spin_lock_irqsave(&tc->lock, flags);
503         list_splice_init(&tc->deferred_cells, &cells);
504         spin_unlock_irqrestore(&tc->lock, flags);
505
506         list_for_each_entry_safe(cell, tmp, &cells, user_list)
507                 cell_requeue(pool, cell);
508 }
509
510 static void requeue_io(struct thin_c *tc)
511 {
512         struct bio_list bios;
513         unsigned long flags;
514
515         bio_list_init(&bios);
516
517         spin_lock_irqsave(&tc->lock, flags);
518         __merge_bio_list(&bios, &tc->deferred_bio_list);
519         __merge_bio_list(&bios, &tc->retry_on_resume_list);
520         spin_unlock_irqrestore(&tc->lock, flags);
521
522         error_bio_list(&bios, DM_ENDIO_REQUEUE);
523         requeue_deferred_cells(tc);
524 }
525
526 static void error_retry_list(struct pool *pool)
527 {
528         struct thin_c *tc;
529
530         rcu_read_lock();
531         list_for_each_entry_rcu(tc, &pool->active_thins, list)
532                 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
533         rcu_read_unlock();
534 }
535
536 /*
537  * This section of code contains the logic for processing a thin device's IO.
538  * Much of the code depends on pool object resources (lists, workqueues, etc)
539  * but most is exclusively called from the thin target rather than the thin-pool
540  * target.
541  */
542
543 static bool block_size_is_power_of_two(struct pool *pool)
544 {
545         return pool->sectors_per_block_shift >= 0;
546 }
547
548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
549 {
550         struct pool *pool = tc->pool;
551         sector_t block_nr = bio->bi_iter.bi_sector;
552
553         if (block_size_is_power_of_two(pool))
554                 block_nr >>= pool->sectors_per_block_shift;
555         else
556                 (void) sector_div(block_nr, pool->sectors_per_block);
557
558         return block_nr;
559 }
560
561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
562 {
563         struct pool *pool = tc->pool;
564         sector_t bi_sector = bio->bi_iter.bi_sector;
565
566         bio->bi_bdev = tc->pool_dev->bdev;
567         if (block_size_is_power_of_two(pool))
568                 bio->bi_iter.bi_sector =
569                         (block << pool->sectors_per_block_shift) |
570                         (bi_sector & (pool->sectors_per_block - 1));
571         else
572                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
573                                  sector_div(bi_sector, pool->sectors_per_block);
574 }
575
576 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
577 {
578         bio->bi_bdev = tc->origin_dev->bdev;
579 }
580
581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
582 {
583         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
584                 dm_thin_changed_this_transaction(tc->td);
585 }
586
587 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
588 {
589         struct dm_thin_endio_hook *h;
590
591         if (bio->bi_rw & REQ_DISCARD)
592                 return;
593
594         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
595         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
596 }
597
598 static void issue(struct thin_c *tc, struct bio *bio)
599 {
600         struct pool *pool = tc->pool;
601         unsigned long flags;
602
603         if (!bio_triggers_commit(tc, bio)) {
604                 generic_make_request(bio);
605                 return;
606         }
607
608         /*
609          * Complete bio with an error if earlier I/O caused changes to
610          * the metadata that can't be committed e.g, due to I/O errors
611          * on the metadata device.
612          */
613         if (dm_thin_aborted_changes(tc->td)) {
614                 bio_io_error(bio);
615                 return;
616         }
617
618         /*
619          * Batch together any bios that trigger commits and then issue a
620          * single commit for them in process_deferred_bios().
621          */
622         spin_lock_irqsave(&pool->lock, flags);
623         bio_list_add(&pool->deferred_flush_bios, bio);
624         spin_unlock_irqrestore(&pool->lock, flags);
625 }
626
627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
628 {
629         remap_to_origin(tc, bio);
630         issue(tc, bio);
631 }
632
633 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
634                             dm_block_t block)
635 {
636         remap(tc, bio, block);
637         issue(tc, bio);
638 }
639
640 /*----------------------------------------------------------------*/
641
642 /*
643  * Bio endio functions.
644  */
645 struct dm_thin_new_mapping {
646         struct list_head list;
647
648         bool pass_discard:1;
649         bool definitely_not_shared:1;
650
651         /*
652          * Track quiescing, copying and zeroing preparation actions.  When this
653          * counter hits zero the block is prepared and can be inserted into the
654          * btree.
655          */
656         atomic_t prepare_actions;
657
658         int err;
659         struct thin_c *tc;
660         dm_block_t virt_block;
661         dm_block_t data_block;
662         struct dm_bio_prison_cell *cell, *cell2;
663
664         /*
665          * If the bio covers the whole area of a block then we can avoid
666          * zeroing or copying.  Instead this bio is hooked.  The bio will
667          * still be in the cell, so care has to be taken to avoid issuing
668          * the bio twice.
669          */
670         struct bio *bio;
671         bio_end_io_t *saved_bi_end_io;
672 };
673
674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
675 {
676         struct pool *pool = m->tc->pool;
677
678         if (atomic_dec_and_test(&m->prepare_actions)) {
679                 list_add_tail(&m->list, &pool->prepared_mappings);
680                 wake_worker(pool);
681         }
682 }
683
684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
685 {
686         unsigned long flags;
687         struct pool *pool = m->tc->pool;
688
689         spin_lock_irqsave(&pool->lock, flags);
690         __complete_mapping_preparation(m);
691         spin_unlock_irqrestore(&pool->lock, flags);
692 }
693
694 static void copy_complete(int read_err, unsigned long write_err, void *context)
695 {
696         struct dm_thin_new_mapping *m = context;
697
698         m->err = read_err || write_err ? -EIO : 0;
699         complete_mapping_preparation(m);
700 }
701
702 static void overwrite_endio(struct bio *bio, int err)
703 {
704         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
705         struct dm_thin_new_mapping *m = h->overwrite_mapping;
706
707         m->err = err;
708         complete_mapping_preparation(m);
709 }
710
711 /*----------------------------------------------------------------*/
712
713 /*
714  * Workqueue.
715  */
716
717 /*
718  * Prepared mapping jobs.
719  */
720
721 /*
722  * This sends the bios in the cell, except the original holder, back
723  * to the deferred_bios list.
724  */
725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
726 {
727         struct pool *pool = tc->pool;
728         unsigned long flags;
729
730         spin_lock_irqsave(&tc->lock, flags);
731         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
732         spin_unlock_irqrestore(&tc->lock, flags);
733
734         wake_worker(pool);
735 }
736
737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
738
739 struct remap_info {
740         struct thin_c *tc;
741         struct bio_list defer_bios;
742         struct bio_list issue_bios;
743 };
744
745 static void __inc_remap_and_issue_cell(void *context,
746                                        struct dm_bio_prison_cell *cell)
747 {
748         struct remap_info *info = context;
749         struct bio *bio;
750
751         while ((bio = bio_list_pop(&cell->bios))) {
752                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
753                         bio_list_add(&info->defer_bios, bio);
754                 else {
755                         inc_all_io_entry(info->tc->pool, bio);
756
757                         /*
758                          * We can't issue the bios with the bio prison lock
759                          * held, so we add them to a list to issue on
760                          * return from this function.
761                          */
762                         bio_list_add(&info->issue_bios, bio);
763                 }
764         }
765 }
766
767 static void inc_remap_and_issue_cell(struct thin_c *tc,
768                                      struct dm_bio_prison_cell *cell,
769                                      dm_block_t block)
770 {
771         struct bio *bio;
772         struct remap_info info;
773
774         info.tc = tc;
775         bio_list_init(&info.defer_bios);
776         bio_list_init(&info.issue_bios);
777
778         /*
779          * We have to be careful to inc any bios we're about to issue
780          * before the cell is released, and avoid a race with new bios
781          * being added to the cell.
782          */
783         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
784                            &info, cell);
785
786         while ((bio = bio_list_pop(&info.defer_bios)))
787                 thin_defer_bio(tc, bio);
788
789         while ((bio = bio_list_pop(&info.issue_bios)))
790                 remap_and_issue(info.tc, bio, block);
791 }
792
793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
794 {
795         if (m->bio) {
796                 m->bio->bi_end_io = m->saved_bi_end_io;
797                 atomic_inc(&m->bio->bi_remaining);
798         }
799         cell_error(m->tc->pool, m->cell);
800         list_del(&m->list);
801         mempool_free(m, m->tc->pool->mapping_pool);
802 }
803
804 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
805 {
806         struct thin_c *tc = m->tc;
807         struct pool *pool = tc->pool;
808         struct bio *bio;
809         int r;
810
811         bio = m->bio;
812         if (bio) {
813                 bio->bi_end_io = m->saved_bi_end_io;
814                 atomic_inc(&bio->bi_remaining);
815         }
816
817         if (m->err) {
818                 cell_error(pool, m->cell);
819                 goto out;
820         }
821
822         /*
823          * Commit the prepared block into the mapping btree.
824          * Any I/O for this block arriving after this point will get
825          * remapped to it directly.
826          */
827         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
828         if (r) {
829                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
830                 cell_error(pool, m->cell);
831                 goto out;
832         }
833
834         /*
835          * Release any bios held while the block was being provisioned.
836          * If we are processing a write bio that completely covers the block,
837          * we already processed it so can ignore it now when processing
838          * the bios in the cell.
839          */
840         if (bio) {
841                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
842                 bio_endio(bio, 0);
843         } else {
844                 inc_all_io_entry(tc->pool, m->cell->holder);
845                 remap_and_issue(tc, m->cell->holder, m->data_block);
846                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
847         }
848
849 out:
850         list_del(&m->list);
851         mempool_free(m, pool->mapping_pool);
852 }
853
854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
855 {
856         struct thin_c *tc = m->tc;
857
858         bio_io_error(m->bio);
859         cell_defer_no_holder(tc, m->cell);
860         cell_defer_no_holder(tc, m->cell2);
861         mempool_free(m, tc->pool->mapping_pool);
862 }
863
864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
865 {
866         struct thin_c *tc = m->tc;
867
868         inc_all_io_entry(tc->pool, m->bio);
869         cell_defer_no_holder(tc, m->cell);
870         cell_defer_no_holder(tc, m->cell2);
871
872         if (m->pass_discard)
873                 if (m->definitely_not_shared)
874                         remap_and_issue(tc, m->bio, m->data_block);
875                 else {
876                         bool used = false;
877                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
878                                 bio_endio(m->bio, 0);
879                         else
880                                 remap_and_issue(tc, m->bio, m->data_block);
881                 }
882         else
883                 bio_endio(m->bio, 0);
884
885         mempool_free(m, tc->pool->mapping_pool);
886 }
887
888 static void process_prepared_discard(struct dm_thin_new_mapping *m)
889 {
890         int r;
891         struct thin_c *tc = m->tc;
892
893         r = dm_thin_remove_block(tc->td, m->virt_block);
894         if (r)
895                 DMERR_LIMIT("dm_thin_remove_block() failed");
896
897         process_prepared_discard_passdown(m);
898 }
899
900 static void process_prepared(struct pool *pool, struct list_head *head,
901                              process_mapping_fn *fn)
902 {
903         unsigned long flags;
904         struct list_head maps;
905         struct dm_thin_new_mapping *m, *tmp;
906
907         INIT_LIST_HEAD(&maps);
908         spin_lock_irqsave(&pool->lock, flags);
909         list_splice_init(head, &maps);
910         spin_unlock_irqrestore(&pool->lock, flags);
911
912         list_for_each_entry_safe(m, tmp, &maps, list)
913                 (*fn)(m);
914 }
915
916 /*
917  * Deferred bio jobs.
918  */
919 static int io_overlaps_block(struct pool *pool, struct bio *bio)
920 {
921         return bio->bi_iter.bi_size ==
922                 (pool->sectors_per_block << SECTOR_SHIFT);
923 }
924
925 static int io_overwrites_block(struct pool *pool, struct bio *bio)
926 {
927         return (bio_data_dir(bio) == WRITE) &&
928                 io_overlaps_block(pool, bio);
929 }
930
931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
932                                bio_end_io_t *fn)
933 {
934         *save = bio->bi_end_io;
935         bio->bi_end_io = fn;
936 }
937
938 static int ensure_next_mapping(struct pool *pool)
939 {
940         if (pool->next_mapping)
941                 return 0;
942
943         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
944
945         return pool->next_mapping ? 0 : -ENOMEM;
946 }
947
948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
949 {
950         struct dm_thin_new_mapping *m = pool->next_mapping;
951
952         BUG_ON(!pool->next_mapping);
953
954         memset(m, 0, sizeof(struct dm_thin_new_mapping));
955         INIT_LIST_HEAD(&m->list);
956         m->bio = NULL;
957
958         pool->next_mapping = NULL;
959
960         return m;
961 }
962
963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
964                     sector_t begin, sector_t end)
965 {
966         int r;
967         struct dm_io_region to;
968
969         to.bdev = tc->pool_dev->bdev;
970         to.sector = begin;
971         to.count = end - begin;
972
973         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
974         if (r < 0) {
975                 DMERR_LIMIT("dm_kcopyd_zero() failed");
976                 copy_complete(1, 1, m);
977         }
978 }
979
980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
981                                       dm_block_t data_block,
982                                       struct dm_thin_new_mapping *m)
983 {
984         struct pool *pool = tc->pool;
985         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986
987         h->overwrite_mapping = m;
988         m->bio = bio;
989         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
990         inc_all_io_entry(pool, bio);
991         remap_and_issue(tc, bio, data_block);
992 }
993
994 /*
995  * A partial copy also needs to zero the uncopied region.
996  */
997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
998                           struct dm_dev *origin, dm_block_t data_origin,
999                           dm_block_t data_dest,
1000                           struct dm_bio_prison_cell *cell, struct bio *bio,
1001                           sector_t len)
1002 {
1003         int r;
1004         struct pool *pool = tc->pool;
1005         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1006
1007         m->tc = tc;
1008         m->virt_block = virt_block;
1009         m->data_block = data_dest;
1010         m->cell = cell;
1011
1012         /*
1013          * quiesce action + copy action + an extra reference held for the
1014          * duration of this function (we may need to inc later for a
1015          * partial zero).
1016          */
1017         atomic_set(&m->prepare_actions, 3);
1018
1019         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1020                 complete_mapping_preparation(m); /* already quiesced */
1021
1022         /*
1023          * IO to pool_dev remaps to the pool target's data_dev.
1024          *
1025          * If the whole block of data is being overwritten, we can issue the
1026          * bio immediately. Otherwise we use kcopyd to clone the data first.
1027          */
1028         if (io_overwrites_block(pool, bio))
1029                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1030         else {
1031                 struct dm_io_region from, to;
1032
1033                 from.bdev = origin->bdev;
1034                 from.sector = data_origin * pool->sectors_per_block;
1035                 from.count = len;
1036
1037                 to.bdev = tc->pool_dev->bdev;
1038                 to.sector = data_dest * pool->sectors_per_block;
1039                 to.count = len;
1040
1041                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1042                                    0, copy_complete, m);
1043                 if (r < 0) {
1044                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1045                         copy_complete(1, 1, m);
1046
1047                         /*
1048                          * We allow the zero to be issued, to simplify the
1049                          * error path.  Otherwise we'd need to start
1050                          * worrying about decrementing the prepare_actions
1051                          * counter.
1052                          */
1053                 }
1054
1055                 /*
1056                  * Do we need to zero a tail region?
1057                  */
1058                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1059                         atomic_inc(&m->prepare_actions);
1060                         ll_zero(tc, m,
1061                                 data_dest * pool->sectors_per_block + len,
1062                                 (data_dest + 1) * pool->sectors_per_block);
1063                 }
1064         }
1065
1066         complete_mapping_preparation(m); /* drop our ref */
1067 }
1068
1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1070                                    dm_block_t data_origin, dm_block_t data_dest,
1071                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1072 {
1073         schedule_copy(tc, virt_block, tc->pool_dev,
1074                       data_origin, data_dest, cell, bio,
1075                       tc->pool->sectors_per_block);
1076 }
1077
1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1079                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1080                           struct bio *bio)
1081 {
1082         struct pool *pool = tc->pool;
1083         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1084
1085         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1086         m->tc = tc;
1087         m->virt_block = virt_block;
1088         m->data_block = data_block;
1089         m->cell = cell;
1090
1091         /*
1092          * If the whole block of data is being overwritten or we are not
1093          * zeroing pre-existing data, we can issue the bio immediately.
1094          * Otherwise we use kcopyd to zero the data first.
1095          */
1096         if (!pool->pf.zero_new_blocks)
1097                 process_prepared_mapping(m);
1098
1099         else if (io_overwrites_block(pool, bio))
1100                 remap_and_issue_overwrite(tc, bio, data_block, m);
1101
1102         else
1103                 ll_zero(tc, m,
1104                         data_block * pool->sectors_per_block,
1105                         (data_block + 1) * pool->sectors_per_block);
1106 }
1107
1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1109                                    dm_block_t data_dest,
1110                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1111 {
1112         struct pool *pool = tc->pool;
1113         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1114         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1115
1116         if (virt_block_end <= tc->origin_size)
1117                 schedule_copy(tc, virt_block, tc->origin_dev,
1118                               virt_block, data_dest, cell, bio,
1119                               pool->sectors_per_block);
1120
1121         else if (virt_block_begin < tc->origin_size)
1122                 schedule_copy(tc, virt_block, tc->origin_dev,
1123                               virt_block, data_dest, cell, bio,
1124                               tc->origin_size - virt_block_begin);
1125
1126         else
1127                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1128 }
1129
1130 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1131
1132 static void check_for_space(struct pool *pool)
1133 {
1134         int r;
1135         dm_block_t nr_free;
1136
1137         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1138                 return;
1139
1140         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1141         if (r)
1142                 return;
1143
1144         if (nr_free)
1145                 set_pool_mode(pool, PM_WRITE);
1146 }
1147
1148 /*
1149  * A non-zero return indicates read_only or fail_io mode.
1150  * Many callers don't care about the return value.
1151  */
1152 static int commit(struct pool *pool)
1153 {
1154         int r;
1155
1156         if (get_pool_mode(pool) >= PM_READ_ONLY)
1157                 return -EINVAL;
1158
1159         r = dm_pool_commit_metadata(pool->pmd);
1160         if (r)
1161                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1162         else
1163                 check_for_space(pool);
1164
1165         return r;
1166 }
1167
1168 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1169 {
1170         unsigned long flags;
1171
1172         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1173                 DMWARN("%s: reached low water mark for data device: sending event.",
1174                        dm_device_name(pool->pool_md));
1175                 spin_lock_irqsave(&pool->lock, flags);
1176                 pool->low_water_triggered = true;
1177                 spin_unlock_irqrestore(&pool->lock, flags);
1178                 dm_table_event(pool->ti->table);
1179         }
1180 }
1181
1182 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1183 {
1184         int r;
1185         dm_block_t free_blocks;
1186         struct pool *pool = tc->pool;
1187
1188         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1189                 return -EINVAL;
1190
1191         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1192         if (r) {
1193                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1194                 return r;
1195         }
1196
1197         check_low_water_mark(pool, free_blocks);
1198
1199         if (!free_blocks) {
1200                 /*
1201                  * Try to commit to see if that will free up some
1202                  * more space.
1203                  */
1204                 r = commit(pool);
1205                 if (r)
1206                         return r;
1207
1208                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209                 if (r) {
1210                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1211                         return r;
1212                 }
1213
1214                 if (!free_blocks) {
1215                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1216                         return -ENOSPC;
1217                 }
1218         }
1219
1220         r = dm_pool_alloc_data_block(pool->pmd, result);
1221         if (r) {
1222                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1223                 return r;
1224         }
1225
1226         return 0;
1227 }
1228
1229 /*
1230  * If we have run out of space, queue bios until the device is
1231  * resumed, presumably after having been reloaded with more space.
1232  */
1233 static void retry_on_resume(struct bio *bio)
1234 {
1235         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1236         struct thin_c *tc = h->tc;
1237         unsigned long flags;
1238
1239         spin_lock_irqsave(&tc->lock, flags);
1240         bio_list_add(&tc->retry_on_resume_list, bio);
1241         spin_unlock_irqrestore(&tc->lock, flags);
1242 }
1243
1244 static int should_error_unserviceable_bio(struct pool *pool)
1245 {
1246         enum pool_mode m = get_pool_mode(pool);
1247
1248         switch (m) {
1249         case PM_WRITE:
1250                 /* Shouldn't get here */
1251                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1252                 return -EIO;
1253
1254         case PM_OUT_OF_DATA_SPACE:
1255                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1256
1257         case PM_READ_ONLY:
1258         case PM_FAIL:
1259                 return -EIO;
1260         default:
1261                 /* Shouldn't get here */
1262                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1263                 return -EIO;
1264         }
1265 }
1266
1267 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1268 {
1269         int error = should_error_unserviceable_bio(pool);
1270
1271         if (error)
1272                 bio_endio(bio, error);
1273         else
1274                 retry_on_resume(bio);
1275 }
1276
1277 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1278 {
1279         struct bio *bio;
1280         struct bio_list bios;
1281         int error;
1282
1283         error = should_error_unserviceable_bio(pool);
1284         if (error) {
1285                 cell_error_with_code(pool, cell, error);
1286                 return;
1287         }
1288
1289         bio_list_init(&bios);
1290         cell_release(pool, cell, &bios);
1291
1292         while ((bio = bio_list_pop(&bios)))
1293                 retry_on_resume(bio);
1294 }
1295
1296 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1297 {
1298         int r;
1299         struct bio *bio = cell->holder;
1300         struct pool *pool = tc->pool;
1301         struct dm_bio_prison_cell *cell2;
1302         struct dm_cell_key key2;
1303         dm_block_t block = get_bio_block(tc, bio);
1304         struct dm_thin_lookup_result lookup_result;
1305         struct dm_thin_new_mapping *m;
1306
1307         if (tc->requeue_mode) {
1308                 cell_requeue(pool, cell);
1309                 return;
1310         }
1311
1312         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1313         switch (r) {
1314         case 0:
1315                 /*
1316                  * Check nobody is fiddling with this pool block.  This can
1317                  * happen if someone's in the process of breaking sharing
1318                  * on this block.
1319                  */
1320                 build_data_key(tc->td, lookup_result.block, &key2);
1321                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1322                         cell_defer_no_holder(tc, cell);
1323                         break;
1324                 }
1325
1326                 if (io_overlaps_block(pool, bio)) {
1327                         /*
1328                          * IO may still be going to the destination block.  We must
1329                          * quiesce before we can do the removal.
1330                          */
1331                         m = get_next_mapping(pool);
1332                         m->tc = tc;
1333                         m->pass_discard = pool->pf.discard_passdown;
1334                         m->definitely_not_shared = !lookup_result.shared;
1335                         m->virt_block = block;
1336                         m->data_block = lookup_result.block;
1337                         m->cell = cell;
1338                         m->cell2 = cell2;
1339                         m->bio = bio;
1340
1341                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1342                                 pool->process_prepared_discard(m);
1343
1344                 } else {
1345                         inc_all_io_entry(pool, bio);
1346                         cell_defer_no_holder(tc, cell);
1347                         cell_defer_no_holder(tc, cell2);
1348
1349                         /*
1350                          * The DM core makes sure that the discard doesn't span
1351                          * a block boundary.  So we submit the discard of a
1352                          * partial block appropriately.
1353                          */
1354                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1355                                 remap_and_issue(tc, bio, lookup_result.block);
1356                         else
1357                                 bio_endio(bio, 0);
1358                 }
1359                 break;
1360
1361         case -ENODATA:
1362                 /*
1363                  * It isn't provisioned, just forget it.
1364                  */
1365                 cell_defer_no_holder(tc, cell);
1366                 bio_endio(bio, 0);
1367                 break;
1368
1369         default:
1370                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1371                             __func__, r);
1372                 cell_defer_no_holder(tc, cell);
1373                 bio_io_error(bio);
1374                 break;
1375         }
1376 }
1377
1378 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1379 {
1380         struct dm_bio_prison_cell *cell;
1381         struct dm_cell_key key;
1382         dm_block_t block = get_bio_block(tc, bio);
1383
1384         build_virtual_key(tc->td, block, &key);
1385         if (bio_detain(tc->pool, &key, bio, &cell))
1386                 return;
1387
1388         process_discard_cell(tc, cell);
1389 }
1390
1391 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1392                           struct dm_cell_key *key,
1393                           struct dm_thin_lookup_result *lookup_result,
1394                           struct dm_bio_prison_cell *cell)
1395 {
1396         int r;
1397         dm_block_t data_block;
1398         struct pool *pool = tc->pool;
1399
1400         r = alloc_data_block(tc, &data_block);
1401         switch (r) {
1402         case 0:
1403                 schedule_internal_copy(tc, block, lookup_result->block,
1404                                        data_block, cell, bio);
1405                 break;
1406
1407         case -ENOSPC:
1408                 retry_bios_on_resume(pool, cell);
1409                 break;
1410
1411         default:
1412                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1413                             __func__, r);
1414                 cell_error(pool, cell);
1415                 break;
1416         }
1417 }
1418
1419 static void __remap_and_issue_shared_cell(void *context,
1420                                           struct dm_bio_prison_cell *cell)
1421 {
1422         struct remap_info *info = context;
1423         struct bio *bio;
1424
1425         while ((bio = bio_list_pop(&cell->bios))) {
1426                 if ((bio_data_dir(bio) == WRITE) ||
1427                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1428                         bio_list_add(&info->defer_bios, bio);
1429                 else {
1430                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1431
1432                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1433                         inc_all_io_entry(info->tc->pool, bio);
1434                         bio_list_add(&info->issue_bios, bio);
1435                 }
1436         }
1437 }
1438
1439 static void remap_and_issue_shared_cell(struct thin_c *tc,
1440                                         struct dm_bio_prison_cell *cell,
1441                                         dm_block_t block)
1442 {
1443         struct bio *bio;
1444         struct remap_info info;
1445
1446         info.tc = tc;
1447         bio_list_init(&info.defer_bios);
1448         bio_list_init(&info.issue_bios);
1449
1450         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1451                            &info, cell);
1452
1453         while ((bio = bio_list_pop(&info.defer_bios)))
1454                 thin_defer_bio(tc, bio);
1455
1456         while ((bio = bio_list_pop(&info.issue_bios)))
1457                 remap_and_issue(tc, bio, block);
1458 }
1459
1460 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1461                                dm_block_t block,
1462                                struct dm_thin_lookup_result *lookup_result,
1463                                struct dm_bio_prison_cell *virt_cell)
1464 {
1465         struct dm_bio_prison_cell *data_cell;
1466         struct pool *pool = tc->pool;
1467         struct dm_cell_key key;
1468
1469         /*
1470          * If cell is already occupied, then sharing is already in the process
1471          * of being broken so we have nothing further to do here.
1472          */
1473         build_data_key(tc->td, lookup_result->block, &key);
1474         if (bio_detain(pool, &key, bio, &data_cell)) {
1475                 cell_defer_no_holder(tc, virt_cell);
1476                 return;
1477         }
1478
1479         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1480                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1481                 cell_defer_no_holder(tc, virt_cell);
1482         } else {
1483                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1484
1485                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1486                 inc_all_io_entry(pool, bio);
1487                 remap_and_issue(tc, bio, lookup_result->block);
1488
1489                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1490                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1491         }
1492 }
1493
1494 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1495                             struct dm_bio_prison_cell *cell)
1496 {
1497         int r;
1498         dm_block_t data_block;
1499         struct pool *pool = tc->pool;
1500
1501         /*
1502          * Remap empty bios (flushes) immediately, without provisioning.
1503          */
1504         if (!bio->bi_iter.bi_size) {
1505                 inc_all_io_entry(pool, bio);
1506                 cell_defer_no_holder(tc, cell);
1507
1508                 remap_and_issue(tc, bio, 0);
1509                 return;
1510         }
1511
1512         /*
1513          * Fill read bios with zeroes and complete them immediately.
1514          */
1515         if (bio_data_dir(bio) == READ) {
1516                 zero_fill_bio(bio);
1517                 cell_defer_no_holder(tc, cell);
1518                 bio_endio(bio, 0);
1519                 return;
1520         }
1521
1522         r = alloc_data_block(tc, &data_block);
1523         switch (r) {
1524         case 0:
1525                 if (tc->origin_dev)
1526                         schedule_external_copy(tc, block, data_block, cell, bio);
1527                 else
1528                         schedule_zero(tc, block, data_block, cell, bio);
1529                 break;
1530
1531         case -ENOSPC:
1532                 retry_bios_on_resume(pool, cell);
1533                 break;
1534
1535         default:
1536                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1537                             __func__, r);
1538                 cell_error(pool, cell);
1539                 break;
1540         }
1541 }
1542
1543 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1544 {
1545         int r;
1546         struct pool *pool = tc->pool;
1547         struct bio *bio = cell->holder;
1548         dm_block_t block = get_bio_block(tc, bio);
1549         struct dm_thin_lookup_result lookup_result;
1550
1551         if (tc->requeue_mode) {
1552                 cell_requeue(pool, cell);
1553                 return;
1554         }
1555
1556         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1557         switch (r) {
1558         case 0:
1559                 if (lookup_result.shared)
1560                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1561                 else {
1562                         inc_all_io_entry(pool, bio);
1563                         remap_and_issue(tc, bio, lookup_result.block);
1564                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1565                 }
1566                 break;
1567
1568         case -ENODATA:
1569                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1570                         inc_all_io_entry(pool, bio);
1571                         cell_defer_no_holder(tc, cell);
1572
1573                         if (bio_end_sector(bio) <= tc->origin_size)
1574                                 remap_to_origin_and_issue(tc, bio);
1575
1576                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1577                                 zero_fill_bio(bio);
1578                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1579                                 remap_to_origin_and_issue(tc, bio);
1580
1581                         } else {
1582                                 zero_fill_bio(bio);
1583                                 bio_endio(bio, 0);
1584                         }
1585                 } else
1586                         provision_block(tc, bio, block, cell);
1587                 break;
1588
1589         default:
1590                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1591                             __func__, r);
1592                 cell_defer_no_holder(tc, cell);
1593                 bio_io_error(bio);
1594                 break;
1595         }
1596 }
1597
1598 static void process_bio(struct thin_c *tc, struct bio *bio)
1599 {
1600         struct pool *pool = tc->pool;
1601         dm_block_t block = get_bio_block(tc, bio);
1602         struct dm_bio_prison_cell *cell;
1603         struct dm_cell_key key;
1604
1605         /*
1606          * If cell is already occupied, then the block is already
1607          * being provisioned so we have nothing further to do here.
1608          */
1609         build_virtual_key(tc->td, block, &key);
1610         if (bio_detain(pool, &key, bio, &cell))
1611                 return;
1612
1613         process_cell(tc, cell);
1614 }
1615
1616 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1617                                     struct dm_bio_prison_cell *cell)
1618 {
1619         int r;
1620         int rw = bio_data_dir(bio);
1621         dm_block_t block = get_bio_block(tc, bio);
1622         struct dm_thin_lookup_result lookup_result;
1623
1624         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1625         switch (r) {
1626         case 0:
1627                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1628                         handle_unserviceable_bio(tc->pool, bio);
1629                         if (cell)
1630                                 cell_defer_no_holder(tc, cell);
1631                 } else {
1632                         inc_all_io_entry(tc->pool, bio);
1633                         remap_and_issue(tc, bio, lookup_result.block);
1634                         if (cell)
1635                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1636                 }
1637                 break;
1638
1639         case -ENODATA:
1640                 if (cell)
1641                         cell_defer_no_holder(tc, cell);
1642                 if (rw != READ) {
1643                         handle_unserviceable_bio(tc->pool, bio);
1644                         break;
1645                 }
1646
1647                 if (tc->origin_dev) {
1648                         inc_all_io_entry(tc->pool, bio);
1649                         remap_to_origin_and_issue(tc, bio);
1650                         break;
1651                 }
1652
1653                 zero_fill_bio(bio);
1654                 bio_endio(bio, 0);
1655                 break;
1656
1657         default:
1658                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1659                             __func__, r);
1660                 if (cell)
1661                         cell_defer_no_holder(tc, cell);
1662                 bio_io_error(bio);
1663                 break;
1664         }
1665 }
1666
1667 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1668 {
1669         __process_bio_read_only(tc, bio, NULL);
1670 }
1671
1672 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1673 {
1674         __process_bio_read_only(tc, cell->holder, cell);
1675 }
1676
1677 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1678 {
1679         bio_endio(bio, 0);
1680 }
1681
1682 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1683 {
1684         bio_io_error(bio);
1685 }
1686
1687 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1688 {
1689         cell_success(tc->pool, cell);
1690 }
1691
1692 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1693 {
1694         cell_error(tc->pool, cell);
1695 }
1696
1697 /*
1698  * FIXME: should we also commit due to size of transaction, measured in
1699  * metadata blocks?
1700  */
1701 static int need_commit_due_to_time(struct pool *pool)
1702 {
1703         return jiffies < pool->last_commit_jiffies ||
1704                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1705 }
1706
1707 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1708 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1709
1710 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1711 {
1712         struct rb_node **rbp, *parent;
1713         struct dm_thin_endio_hook *pbd;
1714         sector_t bi_sector = bio->bi_iter.bi_sector;
1715
1716         rbp = &tc->sort_bio_list.rb_node;
1717         parent = NULL;
1718         while (*rbp) {
1719                 parent = *rbp;
1720                 pbd = thin_pbd(parent);
1721
1722                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1723                         rbp = &(*rbp)->rb_left;
1724                 else
1725                         rbp = &(*rbp)->rb_right;
1726         }
1727
1728         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1729         rb_link_node(&pbd->rb_node, parent, rbp);
1730         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1731 }
1732
1733 static void __extract_sorted_bios(struct thin_c *tc)
1734 {
1735         struct rb_node *node;
1736         struct dm_thin_endio_hook *pbd;
1737         struct bio *bio;
1738
1739         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1740                 pbd = thin_pbd(node);
1741                 bio = thin_bio(pbd);
1742
1743                 bio_list_add(&tc->deferred_bio_list, bio);
1744                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1745         }
1746
1747         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1748 }
1749
1750 static void __sort_thin_deferred_bios(struct thin_c *tc)
1751 {
1752         struct bio *bio;
1753         struct bio_list bios;
1754
1755         bio_list_init(&bios);
1756         bio_list_merge(&bios, &tc->deferred_bio_list);
1757         bio_list_init(&tc->deferred_bio_list);
1758
1759         /* Sort deferred_bio_list using rb-tree */
1760         while ((bio = bio_list_pop(&bios)))
1761                 __thin_bio_rb_add(tc, bio);
1762
1763         /*
1764          * Transfer the sorted bios in sort_bio_list back to
1765          * deferred_bio_list to allow lockless submission of
1766          * all bios.
1767          */
1768         __extract_sorted_bios(tc);
1769 }
1770
1771 static void process_thin_deferred_bios(struct thin_c *tc)
1772 {
1773         struct pool *pool = tc->pool;
1774         unsigned long flags;
1775         struct bio *bio;
1776         struct bio_list bios;
1777         struct blk_plug plug;
1778         unsigned count = 0;
1779
1780         if (tc->requeue_mode) {
1781                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1782                 return;
1783         }
1784
1785         bio_list_init(&bios);
1786
1787         spin_lock_irqsave(&tc->lock, flags);
1788
1789         if (bio_list_empty(&tc->deferred_bio_list)) {
1790                 spin_unlock_irqrestore(&tc->lock, flags);
1791                 return;
1792         }
1793
1794         __sort_thin_deferred_bios(tc);
1795
1796         bio_list_merge(&bios, &tc->deferred_bio_list);
1797         bio_list_init(&tc->deferred_bio_list);
1798
1799         spin_unlock_irqrestore(&tc->lock, flags);
1800
1801         blk_start_plug(&plug);
1802         while ((bio = bio_list_pop(&bios))) {
1803                 /*
1804                  * If we've got no free new_mapping structs, and processing
1805                  * this bio might require one, we pause until there are some
1806                  * prepared mappings to process.
1807                  */
1808                 if (ensure_next_mapping(pool)) {
1809                         spin_lock_irqsave(&tc->lock, flags);
1810                         bio_list_add(&tc->deferred_bio_list, bio);
1811                         bio_list_merge(&tc->deferred_bio_list, &bios);
1812                         spin_unlock_irqrestore(&tc->lock, flags);
1813                         break;
1814                 }
1815
1816                 if (bio->bi_rw & REQ_DISCARD)
1817                         pool->process_discard(tc, bio);
1818                 else
1819                         pool->process_bio(tc, bio);
1820
1821                 if ((count++ & 127) == 0) {
1822                         throttle_work_update(&pool->throttle);
1823                         dm_pool_issue_prefetches(pool->pmd);
1824                 }
1825         }
1826         blk_finish_plug(&plug);
1827 }
1828
1829 static int cmp_cells(const void *lhs, const void *rhs)
1830 {
1831         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1832         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1833
1834         BUG_ON(!lhs_cell->holder);
1835         BUG_ON(!rhs_cell->holder);
1836
1837         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1838                 return -1;
1839
1840         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1841                 return 1;
1842
1843         return 0;
1844 }
1845
1846 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1847 {
1848         unsigned count = 0;
1849         struct dm_bio_prison_cell *cell, *tmp;
1850
1851         list_for_each_entry_safe(cell, tmp, cells, user_list) {
1852                 if (count >= CELL_SORT_ARRAY_SIZE)
1853                         break;
1854
1855                 pool->cell_sort_array[count++] = cell;
1856                 list_del(&cell->user_list);
1857         }
1858
1859         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1860
1861         return count;
1862 }
1863
1864 static void process_thin_deferred_cells(struct thin_c *tc)
1865 {
1866         struct pool *pool = tc->pool;
1867         unsigned long flags;
1868         struct list_head cells;
1869         struct dm_bio_prison_cell *cell;
1870         unsigned i, j, count;
1871
1872         INIT_LIST_HEAD(&cells);
1873
1874         spin_lock_irqsave(&tc->lock, flags);
1875         list_splice_init(&tc->deferred_cells, &cells);
1876         spin_unlock_irqrestore(&tc->lock, flags);
1877
1878         if (list_empty(&cells))
1879                 return;
1880
1881         do {
1882                 count = sort_cells(tc->pool, &cells);
1883
1884                 for (i = 0; i < count; i++) {
1885                         cell = pool->cell_sort_array[i];
1886                         BUG_ON(!cell->holder);
1887
1888                         /*
1889                          * If we've got no free new_mapping structs, and processing
1890                          * this bio might require one, we pause until there are some
1891                          * prepared mappings to process.
1892                          */
1893                         if (ensure_next_mapping(pool)) {
1894                                 for (j = i; j < count; j++)
1895                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
1896
1897                                 spin_lock_irqsave(&tc->lock, flags);
1898                                 list_splice(&cells, &tc->deferred_cells);
1899                                 spin_unlock_irqrestore(&tc->lock, flags);
1900                                 return;
1901                         }
1902
1903                         if (cell->holder->bi_rw & REQ_DISCARD)
1904                                 pool->process_discard_cell(tc, cell);
1905                         else
1906                                 pool->process_cell(tc, cell);
1907                 }
1908         } while (!list_empty(&cells));
1909 }
1910
1911 static void thin_get(struct thin_c *tc);
1912 static void thin_put(struct thin_c *tc);
1913
1914 /*
1915  * We can't hold rcu_read_lock() around code that can block.  So we
1916  * find a thin with the rcu lock held; bump a refcount; then drop
1917  * the lock.
1918  */
1919 static struct thin_c *get_first_thin(struct pool *pool)
1920 {
1921         struct thin_c *tc = NULL;
1922
1923         rcu_read_lock();
1924         if (!list_empty(&pool->active_thins)) {
1925                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1926                 thin_get(tc);
1927         }
1928         rcu_read_unlock();
1929
1930         return tc;
1931 }
1932
1933 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1934 {
1935         struct thin_c *old_tc = tc;
1936
1937         rcu_read_lock();
1938         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1939                 thin_get(tc);
1940                 thin_put(old_tc);
1941                 rcu_read_unlock();
1942                 return tc;
1943         }
1944         thin_put(old_tc);
1945         rcu_read_unlock();
1946
1947         return NULL;
1948 }
1949
1950 static void process_deferred_bios(struct pool *pool)
1951 {
1952         unsigned long flags;
1953         struct bio *bio;
1954         struct bio_list bios;
1955         struct thin_c *tc;
1956
1957         tc = get_first_thin(pool);
1958         while (tc) {
1959                 process_thin_deferred_cells(tc);
1960                 process_thin_deferred_bios(tc);
1961                 tc = get_next_thin(pool, tc);
1962         }
1963
1964         /*
1965          * If there are any deferred flush bios, we must commit
1966          * the metadata before issuing them.
1967          */
1968         bio_list_init(&bios);
1969         spin_lock_irqsave(&pool->lock, flags);
1970         bio_list_merge(&bios, &pool->deferred_flush_bios);
1971         bio_list_init(&pool->deferred_flush_bios);
1972         spin_unlock_irqrestore(&pool->lock, flags);
1973
1974         if (bio_list_empty(&bios) &&
1975             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1976                 return;
1977
1978         if (commit(pool)) {
1979                 while ((bio = bio_list_pop(&bios)))
1980                         bio_io_error(bio);
1981                 return;
1982         }
1983         pool->last_commit_jiffies = jiffies;
1984
1985         while ((bio = bio_list_pop(&bios)))
1986                 generic_make_request(bio);
1987 }
1988
1989 static void do_worker(struct work_struct *ws)
1990 {
1991         struct pool *pool = container_of(ws, struct pool, worker);
1992
1993         throttle_work_start(&pool->throttle);
1994         dm_pool_issue_prefetches(pool->pmd);
1995         throttle_work_update(&pool->throttle);
1996         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1997         throttle_work_update(&pool->throttle);
1998         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1999         throttle_work_update(&pool->throttle);
2000         process_deferred_bios(pool);
2001         throttle_work_complete(&pool->throttle);
2002 }
2003
2004 /*
2005  * We want to commit periodically so that not too much
2006  * unwritten data builds up.
2007  */
2008 static void do_waker(struct work_struct *ws)
2009 {
2010         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2011         wake_worker(pool);
2012         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2013 }
2014
2015 /*
2016  * We're holding onto IO to allow userland time to react.  After the
2017  * timeout either the pool will have been resized (and thus back in
2018  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2019  */
2020 static void do_no_space_timeout(struct work_struct *ws)
2021 {
2022         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2023                                          no_space_timeout);
2024
2025         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2026                 set_pool_mode(pool, PM_READ_ONLY);
2027 }
2028
2029 /*----------------------------------------------------------------*/
2030
2031 struct pool_work {
2032         struct work_struct worker;
2033         struct completion complete;
2034 };
2035
2036 static struct pool_work *to_pool_work(struct work_struct *ws)
2037 {
2038         return container_of(ws, struct pool_work, worker);
2039 }
2040
2041 static void pool_work_complete(struct pool_work *pw)
2042 {
2043         complete(&pw->complete);
2044 }
2045
2046 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2047                            void (*fn)(struct work_struct *))
2048 {
2049         INIT_WORK_ONSTACK(&pw->worker, fn);
2050         init_completion(&pw->complete);
2051         queue_work(pool->wq, &pw->worker);
2052         wait_for_completion(&pw->complete);
2053 }
2054
2055 /*----------------------------------------------------------------*/
2056
2057 struct noflush_work {
2058         struct pool_work pw;
2059         struct thin_c *tc;
2060 };
2061
2062 static struct noflush_work *to_noflush(struct work_struct *ws)
2063 {
2064         return container_of(to_pool_work(ws), struct noflush_work, pw);
2065 }
2066
2067 static void do_noflush_start(struct work_struct *ws)
2068 {
2069         struct noflush_work *w = to_noflush(ws);
2070         w->tc->requeue_mode = true;
2071         requeue_io(w->tc);
2072         pool_work_complete(&w->pw);
2073 }
2074
2075 static void do_noflush_stop(struct work_struct *ws)
2076 {
2077         struct noflush_work *w = to_noflush(ws);
2078         w->tc->requeue_mode = false;
2079         pool_work_complete(&w->pw);
2080 }
2081
2082 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2083 {
2084         struct noflush_work w;
2085
2086         w.tc = tc;
2087         pool_work_wait(&w.pw, tc->pool, fn);
2088 }
2089
2090 /*----------------------------------------------------------------*/
2091
2092 static enum pool_mode get_pool_mode(struct pool *pool)
2093 {
2094         return pool->pf.mode;
2095 }
2096
2097 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2098 {
2099         dm_table_event(pool->ti->table);
2100         DMINFO("%s: switching pool to %s mode",
2101                dm_device_name(pool->pool_md), new_mode);
2102 }
2103
2104 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2105 {
2106         struct pool_c *pt = pool->ti->private;
2107         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2108         enum pool_mode old_mode = get_pool_mode(pool);
2109         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2110
2111         /*
2112          * Never allow the pool to transition to PM_WRITE mode if user
2113          * intervention is required to verify metadata and data consistency.
2114          */
2115         if (new_mode == PM_WRITE && needs_check) {
2116                 DMERR("%s: unable to switch pool to write mode until repaired.",
2117                       dm_device_name(pool->pool_md));
2118                 if (old_mode != new_mode)
2119                         new_mode = old_mode;
2120                 else
2121                         new_mode = PM_READ_ONLY;
2122         }
2123         /*
2124          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2125          * not going to recover without a thin_repair.  So we never let the
2126          * pool move out of the old mode.
2127          */
2128         if (old_mode == PM_FAIL)
2129                 new_mode = old_mode;
2130
2131         switch (new_mode) {
2132         case PM_FAIL:
2133                 if (old_mode != new_mode)
2134                         notify_of_pool_mode_change(pool, "failure");
2135                 dm_pool_metadata_read_only(pool->pmd);
2136                 pool->process_bio = process_bio_fail;
2137                 pool->process_discard = process_bio_fail;
2138                 pool->process_cell = process_cell_fail;
2139                 pool->process_discard_cell = process_cell_fail;
2140                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2141                 pool->process_prepared_discard = process_prepared_discard_fail;
2142
2143                 error_retry_list(pool);
2144                 break;
2145
2146         case PM_READ_ONLY:
2147                 if (old_mode != new_mode)
2148                         notify_of_pool_mode_change(pool, "read-only");
2149                 dm_pool_metadata_read_only(pool->pmd);
2150                 pool->process_bio = process_bio_read_only;
2151                 pool->process_discard = process_bio_success;
2152                 pool->process_cell = process_cell_read_only;
2153                 pool->process_discard_cell = process_cell_success;
2154                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2155                 pool->process_prepared_discard = process_prepared_discard_passdown;
2156
2157                 error_retry_list(pool);
2158                 break;
2159
2160         case PM_OUT_OF_DATA_SPACE:
2161                 /*
2162                  * Ideally we'd never hit this state; the low water mark
2163                  * would trigger userland to extend the pool before we
2164                  * completely run out of data space.  However, many small
2165                  * IOs to unprovisioned space can consume data space at an
2166                  * alarming rate.  Adjust your low water mark if you're
2167                  * frequently seeing this mode.
2168                  */
2169                 if (old_mode != new_mode)
2170                         notify_of_pool_mode_change(pool, "out-of-data-space");
2171                 pool->process_bio = process_bio_read_only;
2172                 pool->process_discard = process_discard_bio;
2173                 pool->process_cell = process_cell_read_only;
2174                 pool->process_discard_cell = process_discard_cell;
2175                 pool->process_prepared_mapping = process_prepared_mapping;
2176                 pool->process_prepared_discard = process_prepared_discard;
2177
2178                 if (!pool->pf.error_if_no_space && no_space_timeout)
2179                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2180                 break;
2181
2182         case PM_WRITE:
2183                 if (old_mode != new_mode)
2184                         notify_of_pool_mode_change(pool, "write");
2185                 dm_pool_metadata_read_write(pool->pmd);
2186                 pool->process_bio = process_bio;
2187                 pool->process_discard = process_discard_bio;
2188                 pool->process_cell = process_cell;
2189                 pool->process_discard_cell = process_discard_cell;
2190                 pool->process_prepared_mapping = process_prepared_mapping;
2191                 pool->process_prepared_discard = process_prepared_discard;
2192                 break;
2193         }
2194
2195         pool->pf.mode = new_mode;
2196         /*
2197          * The pool mode may have changed, sync it so bind_control_target()
2198          * doesn't cause an unexpected mode transition on resume.
2199          */
2200         pt->adjusted_pf.mode = new_mode;
2201 }
2202
2203 static void abort_transaction(struct pool *pool)
2204 {
2205         const char *dev_name = dm_device_name(pool->pool_md);
2206
2207         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2208         if (dm_pool_abort_metadata(pool->pmd)) {
2209                 DMERR("%s: failed to abort metadata transaction", dev_name);
2210                 set_pool_mode(pool, PM_FAIL);
2211         }
2212
2213         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2214                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2215                 set_pool_mode(pool, PM_FAIL);
2216         }
2217 }
2218
2219 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2220 {
2221         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2222                     dm_device_name(pool->pool_md), op, r);
2223
2224         abort_transaction(pool);
2225         set_pool_mode(pool, PM_READ_ONLY);
2226 }
2227
2228 /*----------------------------------------------------------------*/
2229
2230 /*
2231  * Mapping functions.
2232  */
2233
2234 /*
2235  * Called only while mapping a thin bio to hand it over to the workqueue.
2236  */
2237 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2238 {
2239         unsigned long flags;
2240         struct pool *pool = tc->pool;
2241
2242         spin_lock_irqsave(&tc->lock, flags);
2243         bio_list_add(&tc->deferred_bio_list, bio);
2244         spin_unlock_irqrestore(&tc->lock, flags);
2245
2246         wake_worker(pool);
2247 }
2248
2249 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2250 {
2251         struct pool *pool = tc->pool;
2252
2253         throttle_lock(&pool->throttle);
2254         thin_defer_bio(tc, bio);
2255         throttle_unlock(&pool->throttle);
2256 }
2257
2258 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2259 {
2260         unsigned long flags;
2261         struct pool *pool = tc->pool;
2262
2263         throttle_lock(&pool->throttle);
2264         spin_lock_irqsave(&tc->lock, flags);
2265         list_add_tail(&cell->user_list, &tc->deferred_cells);
2266         spin_unlock_irqrestore(&tc->lock, flags);
2267         throttle_unlock(&pool->throttle);
2268
2269         wake_worker(pool);
2270 }
2271
2272 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2273 {
2274         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2275
2276         h->tc = tc;
2277         h->shared_read_entry = NULL;
2278         h->all_io_entry = NULL;
2279         h->overwrite_mapping = NULL;
2280 }
2281
2282 /*
2283  * Non-blocking function called from the thin target's map function.
2284  */
2285 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2286 {
2287         int r;
2288         struct thin_c *tc = ti->private;
2289         dm_block_t block = get_bio_block(tc, bio);
2290         struct dm_thin_device *td = tc->td;
2291         struct dm_thin_lookup_result result;
2292         struct dm_bio_prison_cell *virt_cell, *data_cell;
2293         struct dm_cell_key key;
2294
2295         thin_hook_bio(tc, bio);
2296
2297         if (tc->requeue_mode) {
2298                 bio_endio(bio, DM_ENDIO_REQUEUE);
2299                 return DM_MAPIO_SUBMITTED;
2300         }
2301
2302         if (get_pool_mode(tc->pool) == PM_FAIL) {
2303                 bio_io_error(bio);
2304                 return DM_MAPIO_SUBMITTED;
2305         }
2306
2307         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2308                 thin_defer_bio_with_throttle(tc, bio);
2309                 return DM_MAPIO_SUBMITTED;
2310         }
2311
2312         /*
2313          * We must hold the virtual cell before doing the lookup, otherwise
2314          * there's a race with discard.
2315          */
2316         build_virtual_key(tc->td, block, &key);
2317         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2318                 return DM_MAPIO_SUBMITTED;
2319
2320         r = dm_thin_find_block(td, block, 0, &result);
2321
2322         /*
2323          * Note that we defer readahead too.
2324          */
2325         switch (r) {
2326         case 0:
2327                 if (unlikely(result.shared)) {
2328                         /*
2329                          * We have a race condition here between the
2330                          * result.shared value returned by the lookup and
2331                          * snapshot creation, which may cause new
2332                          * sharing.
2333                          *
2334                          * To avoid this always quiesce the origin before
2335                          * taking the snap.  You want to do this anyway to
2336                          * ensure a consistent application view
2337                          * (i.e. lockfs).
2338                          *
2339                          * More distant ancestors are irrelevant. The
2340                          * shared flag will be set in their case.
2341                          */
2342                         thin_defer_cell(tc, virt_cell);
2343                         return DM_MAPIO_SUBMITTED;
2344                 }
2345
2346                 build_data_key(tc->td, result.block, &key);
2347                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2348                         cell_defer_no_holder(tc, virt_cell);
2349                         return DM_MAPIO_SUBMITTED;
2350                 }
2351
2352                 inc_all_io_entry(tc->pool, bio);
2353                 cell_defer_no_holder(tc, data_cell);
2354                 cell_defer_no_holder(tc, virt_cell);
2355
2356                 remap(tc, bio, result.block);
2357                 return DM_MAPIO_REMAPPED;
2358
2359         case -ENODATA:
2360                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2361                         /*
2362                          * This block isn't provisioned, and we have no way
2363                          * of doing so.
2364                          */
2365                         handle_unserviceable_bio(tc->pool, bio);
2366                         cell_defer_no_holder(tc, virt_cell);
2367                         return DM_MAPIO_SUBMITTED;
2368                 }
2369                 /* fall through */
2370
2371         case -EWOULDBLOCK:
2372                 thin_defer_cell(tc, virt_cell);
2373                 return DM_MAPIO_SUBMITTED;
2374
2375         default:
2376                 /*
2377                  * Must always call bio_io_error on failure.
2378                  * dm_thin_find_block can fail with -EINVAL if the
2379                  * pool is switched to fail-io mode.
2380                  */
2381                 bio_io_error(bio);
2382                 cell_defer_no_holder(tc, virt_cell);
2383                 return DM_MAPIO_SUBMITTED;
2384         }
2385 }
2386
2387 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2388 {
2389         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2390         struct request_queue *q;
2391
2392         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2393                 return 1;
2394
2395         q = bdev_get_queue(pt->data_dev->bdev);
2396         return bdi_congested(&q->backing_dev_info, bdi_bits);
2397 }
2398
2399 static void requeue_bios(struct pool *pool)
2400 {
2401         unsigned long flags;
2402         struct thin_c *tc;
2403
2404         rcu_read_lock();
2405         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2406                 spin_lock_irqsave(&tc->lock, flags);
2407                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2408                 bio_list_init(&tc->retry_on_resume_list);
2409                 spin_unlock_irqrestore(&tc->lock, flags);
2410         }
2411         rcu_read_unlock();
2412 }
2413
2414 /*----------------------------------------------------------------
2415  * Binding of control targets to a pool object
2416  *--------------------------------------------------------------*/
2417 static bool data_dev_supports_discard(struct pool_c *pt)
2418 {
2419         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2420
2421         return q && blk_queue_discard(q);
2422 }
2423
2424 static bool is_factor(sector_t block_size, uint32_t n)
2425 {
2426         return !sector_div(block_size, n);
2427 }
2428
2429 /*
2430  * If discard_passdown was enabled verify that the data device
2431  * supports discards.  Disable discard_passdown if not.
2432  */
2433 static void disable_passdown_if_not_supported(struct pool_c *pt)
2434 {
2435         struct pool *pool = pt->pool;
2436         struct block_device *data_bdev = pt->data_dev->bdev;
2437         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2438         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2439         const char *reason = NULL;
2440         char buf[BDEVNAME_SIZE];
2441
2442         if (!pt->adjusted_pf.discard_passdown)
2443                 return;
2444
2445         if (!data_dev_supports_discard(pt))
2446                 reason = "discard unsupported";
2447
2448         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2449                 reason = "max discard sectors smaller than a block";
2450
2451         else if (data_limits->discard_granularity > block_size)
2452                 reason = "discard granularity larger than a block";
2453
2454         else if (!is_factor(block_size, data_limits->discard_granularity))
2455                 reason = "discard granularity not a factor of block size";
2456
2457         if (reason) {
2458                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2459                 pt->adjusted_pf.discard_passdown = false;
2460         }
2461 }
2462
2463 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2464 {
2465         struct pool_c *pt = ti->private;
2466
2467         /*
2468          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2469          */
2470         enum pool_mode old_mode = get_pool_mode(pool);
2471         enum pool_mode new_mode = pt->adjusted_pf.mode;
2472
2473         /*
2474          * Don't change the pool's mode until set_pool_mode() below.
2475          * Otherwise the pool's process_* function pointers may
2476          * not match the desired pool mode.
2477          */
2478         pt->adjusted_pf.mode = old_mode;
2479
2480         pool->ti = ti;
2481         pool->pf = pt->adjusted_pf;
2482         pool->low_water_blocks = pt->low_water_blocks;
2483
2484         set_pool_mode(pool, new_mode);
2485
2486         return 0;
2487 }
2488
2489 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2490 {
2491         if (pool->ti == ti)
2492                 pool->ti = NULL;
2493 }
2494
2495 /*----------------------------------------------------------------
2496  * Pool creation
2497  *--------------------------------------------------------------*/
2498 /* Initialize pool features. */
2499 static void pool_features_init(struct pool_features *pf)
2500 {
2501         pf->mode = PM_WRITE;
2502         pf->zero_new_blocks = true;
2503         pf->discard_enabled = true;
2504         pf->discard_passdown = true;
2505         pf->error_if_no_space = false;
2506 }
2507
2508 static void __pool_destroy(struct pool *pool)
2509 {
2510         __pool_table_remove(pool);
2511
2512         if (dm_pool_metadata_close(pool->pmd) < 0)
2513                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2514
2515         dm_bio_prison_destroy(pool->prison);
2516         dm_kcopyd_client_destroy(pool->copier);
2517
2518         if (pool->wq)
2519                 destroy_workqueue(pool->wq);
2520
2521         if (pool->next_mapping)
2522                 mempool_free(pool->next_mapping, pool->mapping_pool);
2523         mempool_destroy(pool->mapping_pool);
2524         dm_deferred_set_destroy(pool->shared_read_ds);
2525         dm_deferred_set_destroy(pool->all_io_ds);
2526         kfree(pool);
2527 }
2528
2529 static struct kmem_cache *_new_mapping_cache;
2530
2531 static struct pool *pool_create(struct mapped_device *pool_md,
2532                                 struct block_device *metadata_dev,
2533                                 unsigned long block_size,
2534                                 int read_only, char **error)
2535 {
2536         int r;
2537         void *err_p;
2538         struct pool *pool;
2539         struct dm_pool_metadata *pmd;
2540         bool format_device = read_only ? false : true;
2541
2542         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2543         if (IS_ERR(pmd)) {
2544                 *error = "Error creating metadata object";
2545                 return (struct pool *)pmd;
2546         }
2547
2548         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2549         if (!pool) {
2550                 *error = "Error allocating memory for pool";
2551                 err_p = ERR_PTR(-ENOMEM);
2552                 goto bad_pool;
2553         }
2554
2555         pool->pmd = pmd;
2556         pool->sectors_per_block = block_size;
2557         if (block_size & (block_size - 1))
2558                 pool->sectors_per_block_shift = -1;
2559         else
2560                 pool->sectors_per_block_shift = __ffs(block_size);
2561         pool->low_water_blocks = 0;
2562         pool_features_init(&pool->pf);
2563         pool->prison = dm_bio_prison_create();
2564         if (!pool->prison) {
2565                 *error = "Error creating pool's bio prison";
2566                 err_p = ERR_PTR(-ENOMEM);
2567                 goto bad_prison;
2568         }
2569
2570         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2571         if (IS_ERR(pool->copier)) {
2572                 r = PTR_ERR(pool->copier);
2573                 *error = "Error creating pool's kcopyd client";
2574                 err_p = ERR_PTR(r);
2575                 goto bad_kcopyd_client;
2576         }
2577
2578         /*
2579          * Create singlethreaded workqueue that will service all devices
2580          * that use this metadata.
2581          */
2582         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2583         if (!pool->wq) {
2584                 *error = "Error creating pool's workqueue";
2585                 err_p = ERR_PTR(-ENOMEM);
2586                 goto bad_wq;
2587         }
2588
2589         throttle_init(&pool->throttle);
2590         INIT_WORK(&pool->worker, do_worker);
2591         INIT_DELAYED_WORK(&pool->waker, do_waker);
2592         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2593         spin_lock_init(&pool->lock);
2594         bio_list_init(&pool->deferred_flush_bios);
2595         INIT_LIST_HEAD(&pool->prepared_mappings);
2596         INIT_LIST_HEAD(&pool->prepared_discards);
2597         INIT_LIST_HEAD(&pool->active_thins);
2598         pool->low_water_triggered = false;
2599         pool->suspended = true;
2600
2601         pool->shared_read_ds = dm_deferred_set_create();
2602         if (!pool->shared_read_ds) {
2603                 *error = "Error creating pool's shared read deferred set";
2604                 err_p = ERR_PTR(-ENOMEM);
2605                 goto bad_shared_read_ds;
2606         }
2607
2608         pool->all_io_ds = dm_deferred_set_create();
2609         if (!pool->all_io_ds) {
2610                 *error = "Error creating pool's all io deferred set";
2611                 err_p = ERR_PTR(-ENOMEM);
2612                 goto bad_all_io_ds;
2613         }
2614
2615         pool->next_mapping = NULL;
2616         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2617                                                       _new_mapping_cache);
2618         if (!pool->mapping_pool) {
2619                 *error = "Error creating pool's mapping mempool";
2620                 err_p = ERR_PTR(-ENOMEM);
2621                 goto bad_mapping_pool;
2622         }
2623
2624         pool->ref_count = 1;
2625         pool->last_commit_jiffies = jiffies;
2626         pool->pool_md = pool_md;
2627         pool->md_dev = metadata_dev;
2628         __pool_table_insert(pool);
2629
2630         return pool;
2631
2632 bad_mapping_pool:
2633         dm_deferred_set_destroy(pool->all_io_ds);
2634 bad_all_io_ds:
2635         dm_deferred_set_destroy(pool->shared_read_ds);
2636 bad_shared_read_ds:
2637         destroy_workqueue(pool->wq);
2638 bad_wq:
2639         dm_kcopyd_client_destroy(pool->copier);
2640 bad_kcopyd_client:
2641         dm_bio_prison_destroy(pool->prison);
2642 bad_prison:
2643         kfree(pool);
2644 bad_pool:
2645         if (dm_pool_metadata_close(pmd))
2646                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2647
2648         return err_p;
2649 }
2650
2651 static void __pool_inc(struct pool *pool)
2652 {
2653         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2654         pool->ref_count++;
2655 }
2656
2657 static void __pool_dec(struct pool *pool)
2658 {
2659         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2660         BUG_ON(!pool->ref_count);
2661         if (!--pool->ref_count)
2662                 __pool_destroy(pool);
2663 }
2664
2665 static struct pool *__pool_find(struct mapped_device *pool_md,
2666                                 struct block_device *metadata_dev,
2667                                 unsigned long block_size, int read_only,
2668                                 char **error, int *created)
2669 {
2670         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2671
2672         if (pool) {
2673                 if (pool->pool_md != pool_md) {
2674                         *error = "metadata device already in use by a pool";
2675                         return ERR_PTR(-EBUSY);
2676                 }
2677                 __pool_inc(pool);
2678
2679         } else {
2680                 pool = __pool_table_lookup(pool_md);
2681                 if (pool) {
2682                         if (pool->md_dev != metadata_dev) {
2683                                 *error = "different pool cannot replace a pool";
2684                                 return ERR_PTR(-EINVAL);
2685                         }
2686                         __pool_inc(pool);
2687
2688                 } else {
2689                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2690                         *created = 1;
2691                 }
2692         }
2693
2694         return pool;
2695 }
2696
2697 /*----------------------------------------------------------------
2698  * Pool target methods
2699  *--------------------------------------------------------------*/
2700 static void pool_dtr(struct dm_target *ti)
2701 {
2702         struct pool_c *pt = ti->private;
2703
2704         mutex_lock(&dm_thin_pool_table.mutex);
2705
2706         unbind_control_target(pt->pool, ti);
2707         __pool_dec(pt->pool);
2708         dm_put_device(ti, pt->metadata_dev);
2709         dm_put_device(ti, pt->data_dev);
2710         kfree(pt);
2711
2712         mutex_unlock(&dm_thin_pool_table.mutex);
2713 }
2714
2715 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2716                                struct dm_target *ti)
2717 {
2718         int r;
2719         unsigned argc;
2720         const char *arg_name;
2721
2722         static struct dm_arg _args[] = {
2723                 {0, 4, "Invalid number of pool feature arguments"},
2724         };
2725
2726         /*
2727          * No feature arguments supplied.
2728          */
2729         if (!as->argc)
2730                 return 0;
2731
2732         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2733         if (r)
2734                 return -EINVAL;
2735
2736         while (argc && !r) {
2737                 arg_name = dm_shift_arg(as);
2738                 argc--;
2739
2740                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2741                         pf->zero_new_blocks = false;
2742
2743                 else if (!strcasecmp(arg_name, "ignore_discard"))
2744                         pf->discard_enabled = false;
2745
2746                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2747                         pf->discard_passdown = false;
2748
2749                 else if (!strcasecmp(arg_name, "read_only"))
2750                         pf->mode = PM_READ_ONLY;
2751
2752                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2753                         pf->error_if_no_space = true;
2754
2755                 else {
2756                         ti->error = "Unrecognised pool feature requested";
2757                         r = -EINVAL;
2758                         break;
2759                 }
2760         }
2761
2762         return r;
2763 }
2764
2765 static void metadata_low_callback(void *context)
2766 {
2767         struct pool *pool = context;
2768
2769         DMWARN("%s: reached low water mark for metadata device: sending event.",
2770                dm_device_name(pool->pool_md));
2771
2772         dm_table_event(pool->ti->table);
2773 }
2774
2775 static sector_t get_dev_size(struct block_device *bdev)
2776 {
2777         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2778 }
2779
2780 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2781 {
2782         sector_t metadata_dev_size = get_dev_size(bdev);
2783         char buffer[BDEVNAME_SIZE];
2784
2785         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2786                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2787                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2788 }
2789
2790 static sector_t get_metadata_dev_size(struct block_device *bdev)
2791 {
2792         sector_t metadata_dev_size = get_dev_size(bdev);
2793
2794         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2795                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2796
2797         return metadata_dev_size;
2798 }
2799
2800 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2801 {
2802         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2803
2804         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2805
2806         return metadata_dev_size;
2807 }
2808
2809 /*
2810  * When a metadata threshold is crossed a dm event is triggered, and
2811  * userland should respond by growing the metadata device.  We could let
2812  * userland set the threshold, like we do with the data threshold, but I'm
2813  * not sure they know enough to do this well.
2814  */
2815 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2816 {
2817         /*
2818          * 4M is ample for all ops with the possible exception of thin
2819          * device deletion which is harmless if it fails (just retry the
2820          * delete after you've grown the device).
2821          */
2822         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2823         return min((dm_block_t)1024ULL /* 4M */, quarter);
2824 }
2825
2826 /*
2827  * thin-pool <metadata dev> <data dev>
2828  *           <data block size (sectors)>
2829  *           <low water mark (blocks)>
2830  *           [<#feature args> [<arg>]*]
2831  *
2832  * Optional feature arguments are:
2833  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2834  *           ignore_discard: disable discard
2835  *           no_discard_passdown: don't pass discards down to the data device
2836  *           read_only: Don't allow any changes to be made to the pool metadata.
2837  *           error_if_no_space: error IOs, instead of queueing, if no space.
2838  */
2839 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2840 {
2841         int r, pool_created = 0;
2842         struct pool_c *pt;
2843         struct pool *pool;
2844         struct pool_features pf;
2845         struct dm_arg_set as;
2846         struct dm_dev *data_dev;
2847         unsigned long block_size;
2848         dm_block_t low_water_blocks;
2849         struct dm_dev *metadata_dev;
2850         fmode_t metadata_mode;
2851
2852         /*
2853          * FIXME Remove validation from scope of lock.
2854          */
2855         mutex_lock(&dm_thin_pool_table.mutex);
2856
2857         if (argc < 4) {
2858                 ti->error = "Invalid argument count";
2859                 r = -EINVAL;
2860                 goto out_unlock;
2861         }
2862
2863         as.argc = argc;
2864         as.argv = argv;
2865
2866         /*
2867          * Set default pool features.
2868          */
2869         pool_features_init(&pf);
2870
2871         dm_consume_args(&as, 4);
2872         r = parse_pool_features(&as, &pf, ti);
2873         if (r)
2874                 goto out_unlock;
2875
2876         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2877         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2878         if (r) {
2879                 ti->error = "Error opening metadata block device";
2880                 goto out_unlock;
2881         }
2882         warn_if_metadata_device_too_big(metadata_dev->bdev);
2883
2884         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2885         if (r) {
2886                 ti->error = "Error getting data device";
2887                 goto out_metadata;
2888         }
2889
2890         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2891             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2892             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2893             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2894                 ti->error = "Invalid block size";
2895                 r = -EINVAL;
2896                 goto out;
2897         }
2898
2899         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2900                 ti->error = "Invalid low water mark";
2901                 r = -EINVAL;
2902                 goto out;
2903         }
2904
2905         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2906         if (!pt) {
2907                 r = -ENOMEM;
2908                 goto out;
2909         }
2910
2911         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2912                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2913         if (IS_ERR(pool)) {
2914                 r = PTR_ERR(pool);
2915                 goto out_free_pt;
2916         }
2917
2918         /*
2919          * 'pool_created' reflects whether this is the first table load.
2920          * Top level discard support is not allowed to be changed after
2921          * initial load.  This would require a pool reload to trigger thin
2922          * device changes.
2923          */
2924         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2925                 ti->error = "Discard support cannot be disabled once enabled";
2926                 r = -EINVAL;
2927                 goto out_flags_changed;
2928         }
2929
2930         pt->pool = pool;
2931         pt->ti = ti;
2932         pt->metadata_dev = metadata_dev;
2933         pt->data_dev = data_dev;
2934         pt->low_water_blocks = low_water_blocks;
2935         pt->adjusted_pf = pt->requested_pf = pf;
2936         ti->num_flush_bios = 1;
2937
2938         /*
2939          * Only need to enable discards if the pool should pass
2940          * them down to the data device.  The thin device's discard
2941          * processing will cause mappings to be removed from the btree.
2942          */
2943         ti->discard_zeroes_data_unsupported = true;
2944         if (pf.discard_enabled && pf.discard_passdown) {
2945                 ti->num_discard_bios = 1;
2946
2947                 /*
2948                  * Setting 'discards_supported' circumvents the normal
2949                  * stacking of discard limits (this keeps the pool and
2950                  * thin devices' discard limits consistent).
2951                  */
2952                 ti->discards_supported = true;
2953         }
2954         ti->private = pt;
2955
2956         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2957                                                 calc_metadata_threshold(pt),
2958                                                 metadata_low_callback,
2959                                                 pool);
2960         if (r)
2961                 goto out_free_pt;
2962
2963         pt->callbacks.congested_fn = pool_is_congested;
2964         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2965
2966         mutex_unlock(&dm_thin_pool_table.mutex);
2967
2968         return 0;
2969
2970 out_flags_changed:
2971         __pool_dec(pool);
2972 out_free_pt:
2973         kfree(pt);
2974 out:
2975         dm_put_device(ti, data_dev);
2976 out_metadata:
2977         dm_put_device(ti, metadata_dev);
2978 out_unlock:
2979         mutex_unlock(&dm_thin_pool_table.mutex);
2980
2981         return r;
2982 }
2983
2984 static int pool_map(struct dm_target *ti, struct bio *bio)
2985 {
2986         int r;
2987         struct pool_c *pt = ti->private;
2988         struct pool *pool = pt->pool;
2989         unsigned long flags;
2990
2991         /*
2992          * As this is a singleton target, ti->begin is always zero.
2993          */
2994         spin_lock_irqsave(&pool->lock, flags);
2995         bio->bi_bdev = pt->data_dev->bdev;
2996         r = DM_MAPIO_REMAPPED;
2997         spin_unlock_irqrestore(&pool->lock, flags);
2998
2999         return r;
3000 }
3001
3002 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3003 {
3004         int r;
3005         struct pool_c *pt = ti->private;
3006         struct pool *pool = pt->pool;
3007         sector_t data_size = ti->len;
3008         dm_block_t sb_data_size;
3009
3010         *need_commit = false;
3011
3012         (void) sector_div(data_size, pool->sectors_per_block);
3013
3014         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3015         if (r) {
3016                 DMERR("%s: failed to retrieve data device size",
3017                       dm_device_name(pool->pool_md));
3018                 return r;
3019         }
3020
3021         if (data_size < sb_data_size) {
3022                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3023                       dm_device_name(pool->pool_md),
3024                       (unsigned long long)data_size, sb_data_size);
3025                 return -EINVAL;
3026
3027         } else if (data_size > sb_data_size) {
3028                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3029                         DMERR("%s: unable to grow the data device until repaired.",
3030                               dm_device_name(pool->pool_md));
3031                         return 0;
3032                 }
3033
3034                 if (sb_data_size)
3035                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3036                                dm_device_name(pool->pool_md),
3037                                sb_data_size, (unsigned long long)data_size);
3038                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3039                 if (r) {
3040                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3041                         return r;
3042                 }
3043
3044                 *need_commit = true;
3045         }
3046
3047         return 0;
3048 }
3049
3050 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3051 {
3052         int r;
3053         struct pool_c *pt = ti->private;
3054         struct pool *pool = pt->pool;
3055         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3056
3057         *need_commit = false;
3058
3059         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3060
3061         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3062         if (r) {
3063                 DMERR("%s: failed to retrieve metadata device size",
3064                       dm_device_name(pool->pool_md));
3065                 return r;
3066         }
3067
3068         if (metadata_dev_size < sb_metadata_dev_size) {
3069                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3070                       dm_device_name(pool->pool_md),
3071                       metadata_dev_size, sb_metadata_dev_size);
3072                 return -EINVAL;
3073
3074         } else if (metadata_dev_size > sb_metadata_dev_size) {
3075                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3076                         DMERR("%s: unable to grow the metadata device until repaired.",
3077                               dm_device_name(pool->pool_md));
3078                         return 0;
3079                 }
3080
3081                 warn_if_metadata_device_too_big(pool->md_dev);
3082                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3083                        dm_device_name(pool->pool_md),
3084                        sb_metadata_dev_size, metadata_dev_size);
3085                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3086                 if (r) {
3087                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3088                         return r;
3089                 }
3090
3091                 *need_commit = true;
3092         }
3093
3094         return 0;
3095 }
3096
3097 /*
3098  * Retrieves the number of blocks of the data device from
3099  * the superblock and compares it to the actual device size,
3100  * thus resizing the data device in case it has grown.
3101  *
3102  * This both copes with opening preallocated data devices in the ctr
3103  * being followed by a resume
3104  * -and-
3105  * calling the resume method individually after userspace has
3106  * grown the data device in reaction to a table event.
3107  */
3108 static int pool_preresume(struct dm_target *ti)
3109 {
3110         int r;
3111         bool need_commit1, need_commit2;
3112         struct pool_c *pt = ti->private;
3113         struct pool *pool = pt->pool;
3114
3115         /*
3116          * Take control of the pool object.
3117          */
3118         r = bind_control_target(pool, ti);
3119         if (r)
3120                 return r;
3121
3122         r = maybe_resize_data_dev(ti, &need_commit1);
3123         if (r)
3124                 return r;
3125
3126         r = maybe_resize_metadata_dev(ti, &need_commit2);
3127         if (r)
3128                 return r;
3129
3130         if (need_commit1 || need_commit2)
3131                 (void) commit(pool);
3132
3133         return 0;
3134 }
3135
3136 static void pool_suspend_active_thins(struct pool *pool)
3137 {
3138         struct thin_c *tc;
3139
3140         /* Suspend all active thin devices */
3141         tc = get_first_thin(pool);
3142         while (tc) {
3143                 dm_internal_suspend_noflush(tc->thin_md);
3144                 tc = get_next_thin(pool, tc);
3145         }
3146 }
3147
3148 static void pool_resume_active_thins(struct pool *pool)
3149 {
3150         struct thin_c *tc;
3151
3152         /* Resume all active thin devices */
3153         tc = get_first_thin(pool);
3154         while (tc) {
3155                 dm_internal_resume(tc->thin_md);
3156                 tc = get_next_thin(pool, tc);
3157         }
3158 }
3159
3160 static void pool_resume(struct dm_target *ti)
3161 {
3162         struct pool_c *pt = ti->private;
3163         struct pool *pool = pt->pool;
3164         unsigned long flags;
3165
3166         /*
3167          * Must requeue active_thins' bios and then resume
3168          * active_thins _before_ clearing 'suspend' flag.
3169          */
3170         requeue_bios(pool);
3171         pool_resume_active_thins(pool);
3172
3173         spin_lock_irqsave(&pool->lock, flags);
3174         pool->low_water_triggered = false;
3175         pool->suspended = false;
3176         spin_unlock_irqrestore(&pool->lock, flags);
3177
3178         do_waker(&pool->waker.work);
3179 }
3180
3181 static void pool_presuspend(struct dm_target *ti)
3182 {
3183         struct pool_c *pt = ti->private;
3184         struct pool *pool = pt->pool;
3185         unsigned long flags;
3186
3187         spin_lock_irqsave(&pool->lock, flags);
3188         pool->suspended = true;
3189         spin_unlock_irqrestore(&pool->lock, flags);
3190
3191         pool_suspend_active_thins(pool);
3192 }
3193
3194 static void pool_presuspend_undo(struct dm_target *ti)
3195 {
3196         struct pool_c *pt = ti->private;
3197         struct pool *pool = pt->pool;
3198         unsigned long flags;
3199
3200         pool_resume_active_thins(pool);
3201
3202         spin_lock_irqsave(&pool->lock, flags);
3203         pool->suspended = false;
3204         spin_unlock_irqrestore(&pool->lock, flags);
3205 }
3206
3207 static void pool_postsuspend(struct dm_target *ti)
3208 {
3209         struct pool_c *pt = ti->private;
3210         struct pool *pool = pt->pool;
3211
3212         cancel_delayed_work(&pool->waker);
3213         cancel_delayed_work(&pool->no_space_timeout);
3214         flush_workqueue(pool->wq);
3215         (void) commit(pool);
3216 }
3217
3218 static int check_arg_count(unsigned argc, unsigned args_required)
3219 {
3220         if (argc != args_required) {
3221                 DMWARN("Message received with %u arguments instead of %u.",
3222                        argc, args_required);
3223                 return -EINVAL;
3224         }
3225
3226         return 0;
3227 }
3228
3229 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3230 {
3231         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3232             *dev_id <= MAX_DEV_ID)
3233                 return 0;
3234
3235         if (warning)
3236                 DMWARN("Message received with invalid device id: %s", arg);
3237
3238         return -EINVAL;
3239 }
3240
3241 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3242 {
3243         dm_thin_id dev_id;
3244         int r;
3245
3246         r = check_arg_count(argc, 2);
3247         if (r)
3248                 return r;
3249
3250         r = read_dev_id(argv[1], &dev_id, 1);
3251         if (r)
3252                 return r;
3253
3254         r = dm_pool_create_thin(pool->pmd, dev_id);
3255         if (r) {
3256                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3257                        argv[1]);
3258                 return r;
3259         }
3260
3261         return 0;
3262 }
3263
3264 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3265 {
3266         dm_thin_id dev_id;
3267         dm_thin_id origin_dev_id;
3268         int r;
3269
3270         r = check_arg_count(argc, 3);
3271         if (r)
3272                 return r;
3273
3274         r = read_dev_id(argv[1], &dev_id, 1);
3275         if (r)
3276                 return r;
3277
3278         r = read_dev_id(argv[2], &origin_dev_id, 1);
3279         if (r)
3280                 return r;
3281
3282         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3283         if (r) {
3284                 DMWARN("Creation of new snapshot %s of device %s failed.",
3285                        argv[1], argv[2]);
3286                 return r;
3287         }
3288
3289         return 0;
3290 }
3291
3292 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3293 {
3294         dm_thin_id dev_id;
3295         int r;
3296
3297         r = check_arg_count(argc, 2);
3298         if (r)
3299                 return r;
3300
3301         r = read_dev_id(argv[1], &dev_id, 1);
3302         if (r)
3303                 return r;
3304
3305         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3306         if (r)
3307                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3308
3309         return r;
3310 }
3311
3312 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3313 {
3314         dm_thin_id old_id, new_id;
3315         int r;
3316
3317         r = check_arg_count(argc, 3);
3318         if (r)
3319                 return r;
3320
3321         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3322                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3323                 return -EINVAL;
3324         }
3325
3326         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3327                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3328                 return -EINVAL;
3329         }
3330
3331         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3332         if (r) {
3333                 DMWARN("Failed to change transaction id from %s to %s.",
3334                        argv[1], argv[2]);
3335                 return r;
3336         }
3337
3338         return 0;
3339 }
3340
3341 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3342 {
3343         int r;
3344
3345         r = check_arg_count(argc, 1);
3346         if (r)
3347                 return r;
3348
3349         (void) commit(pool);
3350
3351         r = dm_pool_reserve_metadata_snap(pool->pmd);
3352         if (r)
3353                 DMWARN("reserve_metadata_snap message failed.");
3354
3355         return r;
3356 }
3357
3358 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3359 {
3360         int r;
3361
3362         r = check_arg_count(argc, 1);
3363         if (r)
3364                 return r;
3365
3366         r = dm_pool_release_metadata_snap(pool->pmd);
3367         if (r)
3368                 DMWARN("release_metadata_snap message failed.");
3369
3370         return r;
3371 }
3372
3373 /*
3374  * Messages supported:
3375  *   create_thin        <dev_id>
3376  *   create_snap        <dev_id> <origin_id>
3377  *   delete             <dev_id>
3378  *   set_transaction_id <current_trans_id> <new_trans_id>
3379  *   reserve_metadata_snap
3380  *   release_metadata_snap
3381  */
3382 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3383 {
3384         int r = -EINVAL;
3385         struct pool_c *pt = ti->private;
3386         struct pool *pool = pt->pool;
3387
3388         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3389                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3390                       dm_device_name(pool->pool_md));
3391                 return -EINVAL;
3392         }
3393
3394         if (!strcasecmp(argv[0], "create_thin"))
3395                 r = process_create_thin_mesg(argc, argv, pool);
3396
3397         else if (!strcasecmp(argv[0], "create_snap"))
3398                 r = process_create_snap_mesg(argc, argv, pool);
3399
3400         else if (!strcasecmp(argv[0], "delete"))
3401                 r = process_delete_mesg(argc, argv, pool);
3402
3403         else if (!strcasecmp(argv[0], "set_transaction_id"))
3404                 r = process_set_transaction_id_mesg(argc, argv, pool);
3405
3406         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3407                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3408
3409         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3410                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3411
3412         else
3413                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3414
3415         if (!r)
3416                 (void) commit(pool);
3417
3418         return r;
3419 }
3420
3421 static void emit_flags(struct pool_features *pf, char *result,
3422                        unsigned sz, unsigned maxlen)
3423 {
3424         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3425                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3426                 pf->error_if_no_space;
3427         DMEMIT("%u ", count);
3428
3429         if (!pf->zero_new_blocks)
3430                 DMEMIT("skip_block_zeroing ");
3431
3432         if (!pf->discard_enabled)
3433                 DMEMIT("ignore_discard ");
3434
3435         if (!pf->discard_passdown)
3436                 DMEMIT("no_discard_passdown ");
3437
3438         if (pf->mode == PM_READ_ONLY)
3439                 DMEMIT("read_only ");
3440
3441         if (pf->error_if_no_space)
3442                 DMEMIT("error_if_no_space ");
3443 }
3444
3445 /*
3446  * Status line is:
3447  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3448  *    <used data sectors>/<total data sectors> <held metadata root>
3449  */
3450 static void pool_status(struct dm_target *ti, status_type_t type,
3451                         unsigned status_flags, char *result, unsigned maxlen)
3452 {
3453         int r;
3454         unsigned sz = 0;
3455         uint64_t transaction_id;
3456         dm_block_t nr_free_blocks_data;
3457         dm_block_t nr_free_blocks_metadata;
3458         dm_block_t nr_blocks_data;
3459         dm_block_t nr_blocks_metadata;
3460         dm_block_t held_root;
3461         char buf[BDEVNAME_SIZE];
3462         char buf2[BDEVNAME_SIZE];
3463         struct pool_c *pt = ti->private;
3464         struct pool *pool = pt->pool;
3465
3466         switch (type) {
3467         case STATUSTYPE_INFO:
3468                 if (get_pool_mode(pool) == PM_FAIL) {
3469                         DMEMIT("Fail");
3470                         break;
3471                 }
3472
3473                 /* Commit to ensure statistics aren't out-of-date */
3474                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3475                         (void) commit(pool);
3476
3477                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3478                 if (r) {
3479                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3480                               dm_device_name(pool->pool_md), r);
3481                         goto err;
3482                 }
3483
3484                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3485                 if (r) {
3486                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3487                               dm_device_name(pool->pool_md), r);
3488                         goto err;
3489                 }
3490
3491                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3492                 if (r) {
3493                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3494                               dm_device_name(pool->pool_md), r);
3495                         goto err;
3496                 }
3497
3498                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3499                 if (r) {
3500                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3501                               dm_device_name(pool->pool_md), r);
3502                         goto err;
3503                 }
3504
3505                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3506                 if (r) {
3507                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3508                               dm_device_name(pool->pool_md), r);
3509                         goto err;
3510                 }
3511
3512                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3513                 if (r) {
3514                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3515                               dm_device_name(pool->pool_md), r);
3516                         goto err;
3517                 }
3518
3519                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3520                        (unsigned long long)transaction_id,
3521                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3522                        (unsigned long long)nr_blocks_metadata,
3523                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3524                        (unsigned long long)nr_blocks_data);
3525
3526                 if (held_root)
3527                         DMEMIT("%llu ", held_root);
3528                 else
3529                         DMEMIT("- ");
3530
3531                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3532                         DMEMIT("out_of_data_space ");
3533                 else if (pool->pf.mode == PM_READ_ONLY)
3534                         DMEMIT("ro ");
3535                 else
3536                         DMEMIT("rw ");
3537
3538                 if (!pool->pf.discard_enabled)
3539                         DMEMIT("ignore_discard ");
3540                 else if (pool->pf.discard_passdown)
3541                         DMEMIT("discard_passdown ");
3542                 else
3543                         DMEMIT("no_discard_passdown ");
3544
3545                 if (pool->pf.error_if_no_space)
3546                         DMEMIT("error_if_no_space ");
3547                 else
3548                         DMEMIT("queue_if_no_space ");
3549
3550                 break;
3551
3552         case STATUSTYPE_TABLE:
3553                 DMEMIT("%s %s %lu %llu ",
3554                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3555                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3556                        (unsigned long)pool->sectors_per_block,
3557                        (unsigned long long)pt->low_water_blocks);
3558                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3559                 break;
3560         }
3561         return;
3562
3563 err:
3564         DMEMIT("Error");
3565 }
3566
3567 static int pool_iterate_devices(struct dm_target *ti,
3568                                 iterate_devices_callout_fn fn, void *data)
3569 {
3570         struct pool_c *pt = ti->private;
3571
3572         return fn(ti, pt->data_dev, 0, ti->len, data);
3573 }
3574
3575 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3576                       struct bio_vec *biovec, int max_size)
3577 {
3578         struct pool_c *pt = ti->private;
3579         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3580
3581         if (!q->merge_bvec_fn)
3582                 return max_size;
3583
3584         bvm->bi_bdev = pt->data_dev->bdev;
3585
3586         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3587 }
3588
3589 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3590 {
3591         struct pool *pool = pt->pool;
3592         struct queue_limits *data_limits;
3593
3594         limits->max_discard_sectors = pool->sectors_per_block;
3595
3596         /*
3597          * discard_granularity is just a hint, and not enforced.
3598          */
3599         if (pt->adjusted_pf.discard_passdown) {
3600                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3601                 limits->discard_granularity = max(data_limits->discard_granularity,
3602                                                   pool->sectors_per_block << SECTOR_SHIFT);
3603         } else
3604                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3605 }
3606
3607 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3608 {
3609         struct pool_c *pt = ti->private;
3610         struct pool *pool = pt->pool;
3611         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3612
3613         /*
3614          * If max_sectors is smaller than pool->sectors_per_block adjust it
3615          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3616          * This is especially beneficial when the pool's data device is a RAID
3617          * device that has a full stripe width that matches pool->sectors_per_block
3618          * -- because even though partial RAID stripe-sized IOs will be issued to a
3619          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3620          *    boundary.. which avoids additional partial RAID stripe writes cascading
3621          */
3622         if (limits->max_sectors < pool->sectors_per_block) {
3623                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3624                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3625                                 limits->max_sectors--;
3626                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3627                 }
3628         }
3629
3630         /*
3631          * If the system-determined stacked limits are compatible with the
3632          * pool's blocksize (io_opt is a factor) do not override them.
3633          */
3634         if (io_opt_sectors < pool->sectors_per_block ||
3635             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3636                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3637                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3638                 else
3639                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3640                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3641         }
3642
3643         /*
3644          * pt->adjusted_pf is a staging area for the actual features to use.
3645          * They get transferred to the live pool in bind_control_target()
3646          * called from pool_preresume().
3647          */
3648         if (!pt->adjusted_pf.discard_enabled) {
3649                 /*
3650                  * Must explicitly disallow stacking discard limits otherwise the
3651                  * block layer will stack them if pool's data device has support.
3652                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3653                  * user to see that, so make sure to set all discard limits to 0.
3654                  */
3655                 limits->discard_granularity = 0;
3656                 return;
3657         }
3658
3659         disable_passdown_if_not_supported(pt);
3660
3661         set_discard_limits(pt, limits);
3662 }
3663
3664 static struct target_type pool_target = {
3665         .name = "thin-pool",
3666         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3667                     DM_TARGET_IMMUTABLE,
3668         .version = {1, 14, 0},
3669         .module = THIS_MODULE,
3670         .ctr = pool_ctr,
3671         .dtr = pool_dtr,
3672         .map = pool_map,
3673         .presuspend = pool_presuspend,
3674         .presuspend_undo = pool_presuspend_undo,
3675         .postsuspend = pool_postsuspend,
3676         .preresume = pool_preresume,
3677         .resume = pool_resume,
3678         .message = pool_message,
3679         .status = pool_status,
3680         .merge = pool_merge,
3681         .iterate_devices = pool_iterate_devices,
3682         .io_hints = pool_io_hints,
3683 };
3684
3685 /*----------------------------------------------------------------
3686  * Thin target methods
3687  *--------------------------------------------------------------*/
3688 static void thin_get(struct thin_c *tc)
3689 {
3690         atomic_inc(&tc->refcount);
3691 }
3692
3693 static void thin_put(struct thin_c *tc)
3694 {
3695         if (atomic_dec_and_test(&tc->refcount))
3696                 complete(&tc->can_destroy);
3697 }
3698
3699 static void thin_dtr(struct dm_target *ti)
3700 {
3701         struct thin_c *tc = ti->private;
3702         unsigned long flags;
3703
3704         spin_lock_irqsave(&tc->pool->lock, flags);
3705         list_del_rcu(&tc->list);
3706         spin_unlock_irqrestore(&tc->pool->lock, flags);
3707         synchronize_rcu();
3708
3709         thin_put(tc);
3710         wait_for_completion(&tc->can_destroy);
3711
3712         mutex_lock(&dm_thin_pool_table.mutex);
3713
3714         __pool_dec(tc->pool);
3715         dm_pool_close_thin_device(tc->td);
3716         dm_put_device(ti, tc->pool_dev);
3717         if (tc->origin_dev)
3718                 dm_put_device(ti, tc->origin_dev);
3719         kfree(tc);
3720
3721         mutex_unlock(&dm_thin_pool_table.mutex);
3722 }
3723
3724 /*
3725  * Thin target parameters:
3726  *
3727  * <pool_dev> <dev_id> [origin_dev]
3728  *
3729  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3730  * dev_id: the internal device identifier
3731  * origin_dev: a device external to the pool that should act as the origin
3732  *
3733  * If the pool device has discards disabled, they get disabled for the thin
3734  * device as well.
3735  */
3736 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3737 {
3738         int r;
3739         struct thin_c *tc;
3740         struct dm_dev *pool_dev, *origin_dev;
3741         struct mapped_device *pool_md;
3742         unsigned long flags;
3743
3744         mutex_lock(&dm_thin_pool_table.mutex);
3745
3746         if (argc != 2 && argc != 3) {
3747                 ti->error = "Invalid argument count";
3748                 r = -EINVAL;
3749                 goto out_unlock;
3750         }
3751
3752         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3753         if (!tc) {
3754                 ti->error = "Out of memory";
3755                 r = -ENOMEM;
3756                 goto out_unlock;
3757         }
3758         tc->thin_md = dm_table_get_md(ti->table);
3759         spin_lock_init(&tc->lock);
3760         INIT_LIST_HEAD(&tc->deferred_cells);
3761         bio_list_init(&tc->deferred_bio_list);
3762         bio_list_init(&tc->retry_on_resume_list);
3763         tc->sort_bio_list = RB_ROOT;
3764
3765         if (argc == 3) {
3766                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3767                 if (r) {
3768                         ti->error = "Error opening origin device";
3769                         goto bad_origin_dev;
3770                 }
3771                 tc->origin_dev = origin_dev;
3772         }
3773
3774         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3775         if (r) {
3776                 ti->error = "Error opening pool device";
3777                 goto bad_pool_dev;
3778         }
3779         tc->pool_dev = pool_dev;
3780
3781         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3782                 ti->error = "Invalid device id";
3783                 r = -EINVAL;
3784                 goto bad_common;
3785         }
3786
3787         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3788         if (!pool_md) {
3789                 ti->error = "Couldn't get pool mapped device";
3790                 r = -EINVAL;
3791                 goto bad_common;
3792         }
3793
3794         tc->pool = __pool_table_lookup(pool_md);
3795         if (!tc->pool) {
3796                 ti->error = "Couldn't find pool object";
3797                 r = -EINVAL;
3798                 goto bad_pool_lookup;
3799         }
3800         __pool_inc(tc->pool);
3801
3802         if (get_pool_mode(tc->pool) == PM_FAIL) {
3803                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3804                 r = -EINVAL;
3805                 goto bad_pool;
3806         }
3807
3808         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3809         if (r) {
3810                 ti->error = "Couldn't open thin internal device";
3811                 goto bad_pool;
3812         }
3813
3814         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3815         if (r)
3816                 goto bad;
3817
3818         ti->num_flush_bios = 1;
3819         ti->flush_supported = true;
3820         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3821
3822         /* In case the pool supports discards, pass them on. */
3823         ti->discard_zeroes_data_unsupported = true;
3824         if (tc->pool->pf.discard_enabled) {
3825                 ti->discards_supported = true;
3826                 ti->num_discard_bios = 1;
3827                 /* Discard bios must be split on a block boundary */
3828                 ti->split_discard_bios = true;
3829         }
3830
3831         mutex_unlock(&dm_thin_pool_table.mutex);
3832
3833         spin_lock_irqsave(&tc->pool->lock, flags);
3834         if (tc->pool->suspended) {
3835                 spin_unlock_irqrestore(&tc->pool->lock, flags);
3836                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3837                 ti->error = "Unable to activate thin device while pool is suspended";
3838                 r = -EINVAL;
3839                 goto bad;
3840         }
3841         atomic_set(&tc->refcount, 1);
3842         init_completion(&tc->can_destroy);
3843         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3844         spin_unlock_irqrestore(&tc->pool->lock, flags);
3845         /*
3846          * This synchronize_rcu() call is needed here otherwise we risk a
3847          * wake_worker() call finding no bios to process (because the newly
3848          * added tc isn't yet visible).  So this reduces latency since we
3849          * aren't then dependent on the periodic commit to wake_worker().
3850          */
3851         synchronize_rcu();
3852
3853         dm_put(pool_md);
3854
3855         return 0;
3856
3857 bad:
3858         dm_pool_close_thin_device(tc->td);
3859 bad_pool:
3860         __pool_dec(tc->pool);
3861 bad_pool_lookup:
3862         dm_put(pool_md);
3863 bad_common:
3864         dm_put_device(ti, tc->pool_dev);
3865 bad_pool_dev:
3866         if (tc->origin_dev)
3867                 dm_put_device(ti, tc->origin_dev);
3868 bad_origin_dev:
3869         kfree(tc);
3870 out_unlock:
3871         mutex_unlock(&dm_thin_pool_table.mutex);
3872
3873         return r;
3874 }
3875
3876 static int thin_map(struct dm_target *ti, struct bio *bio)
3877 {
3878         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3879
3880         return thin_bio_map(ti, bio);
3881 }
3882
3883 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3884 {
3885         unsigned long flags;
3886         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3887         struct list_head work;
3888         struct dm_thin_new_mapping *m, *tmp;
3889         struct pool *pool = h->tc->pool;
3890
3891         if (h->shared_read_entry) {
3892                 INIT_LIST_HEAD(&work);
3893                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3894
3895                 spin_lock_irqsave(&pool->lock, flags);
3896                 list_for_each_entry_safe(m, tmp, &work, list) {
3897                         list_del(&m->list);
3898                         __complete_mapping_preparation(m);
3899                 }
3900                 spin_unlock_irqrestore(&pool->lock, flags);
3901         }
3902
3903         if (h->all_io_entry) {
3904                 INIT_LIST_HEAD(&work);
3905                 dm_deferred_entry_dec(h->all_io_entry, &work);
3906                 if (!list_empty(&work)) {
3907                         spin_lock_irqsave(&pool->lock, flags);
3908                         list_for_each_entry_safe(m, tmp, &work, list)
3909                                 list_add_tail(&m->list, &pool->prepared_discards);
3910                         spin_unlock_irqrestore(&pool->lock, flags);
3911                         wake_worker(pool);
3912                 }
3913         }
3914
3915         return 0;
3916 }
3917
3918 static void thin_presuspend(struct dm_target *ti)
3919 {
3920         struct thin_c *tc = ti->private;
3921
3922         if (dm_noflush_suspending(ti))
3923                 noflush_work(tc, do_noflush_start);
3924 }
3925
3926 static void thin_postsuspend(struct dm_target *ti)
3927 {
3928         struct thin_c *tc = ti->private;
3929
3930         /*
3931          * The dm_noflush_suspending flag has been cleared by now, so
3932          * unfortunately we must always run this.
3933          */
3934         noflush_work(tc, do_noflush_stop);
3935 }
3936
3937 static int thin_preresume(struct dm_target *ti)
3938 {
3939         struct thin_c *tc = ti->private;
3940
3941         if (tc->origin_dev)
3942                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3943
3944         return 0;
3945 }
3946
3947 /*
3948  * <nr mapped sectors> <highest mapped sector>
3949  */
3950 static void thin_status(struct dm_target *ti, status_type_t type,
3951                         unsigned status_flags, char *result, unsigned maxlen)
3952 {
3953         int r;
3954         ssize_t sz = 0;
3955         dm_block_t mapped, highest;
3956         char buf[BDEVNAME_SIZE];
3957         struct thin_c *tc = ti->private;
3958
3959         if (get_pool_mode(tc->pool) == PM_FAIL) {
3960                 DMEMIT("Fail");
3961                 return;
3962         }
3963
3964         if (!tc->td)
3965                 DMEMIT("-");
3966         else {
3967                 switch (type) {
3968                 case STATUSTYPE_INFO:
3969                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3970                         if (r) {
3971                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3972                                 goto err;
3973                         }
3974
3975                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3976                         if (r < 0) {
3977                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3978                                 goto err;
3979                         }
3980
3981                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3982                         if (r)
3983                                 DMEMIT("%llu", ((highest + 1) *
3984                                                 tc->pool->sectors_per_block) - 1);
3985                         else
3986                                 DMEMIT("-");
3987                         break;
3988
3989                 case STATUSTYPE_TABLE:
3990                         DMEMIT("%s %lu",
3991                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3992                                (unsigned long) tc->dev_id);
3993                         if (tc->origin_dev)
3994                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3995                         break;
3996                 }
3997         }
3998
3999         return;
4000
4001 err:
4002         DMEMIT("Error");
4003 }
4004
4005 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4006                       struct bio_vec *biovec, int max_size)
4007 {
4008         struct thin_c *tc = ti->private;
4009         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4010
4011         if (!q->merge_bvec_fn)
4012                 return max_size;
4013
4014         bvm->bi_bdev = tc->pool_dev->bdev;
4015         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4016
4017         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4018 }
4019
4020 static int thin_iterate_devices(struct dm_target *ti,
4021                                 iterate_devices_callout_fn fn, void *data)
4022 {
4023         sector_t blocks;
4024         struct thin_c *tc = ti->private;
4025         struct pool *pool = tc->pool;
4026
4027         /*
4028          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4029          * we follow a more convoluted path through to the pool's target.
4030          */
4031         if (!pool->ti)
4032                 return 0;       /* nothing is bound */
4033
4034         blocks = pool->ti->len;
4035         (void) sector_div(blocks, pool->sectors_per_block);
4036         if (blocks)
4037                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4038
4039         return 0;
4040 }
4041
4042 static struct target_type thin_target = {
4043         .name = "thin",
4044         .version = {1, 14, 0},
4045         .module = THIS_MODULE,
4046         .ctr = thin_ctr,
4047         .dtr = thin_dtr,
4048         .map = thin_map,
4049         .end_io = thin_endio,
4050         .preresume = thin_preresume,
4051         .presuspend = thin_presuspend,
4052         .postsuspend = thin_postsuspend,
4053         .status = thin_status,
4054         .merge = thin_merge,
4055         .iterate_devices = thin_iterate_devices,
4056 };
4057
4058 /*----------------------------------------------------------------*/
4059
4060 static int __init dm_thin_init(void)
4061 {
4062         int r;
4063
4064         pool_table_init();
4065
4066         r = dm_register_target(&thin_target);
4067         if (r)
4068                 return r;
4069
4070         r = dm_register_target(&pool_target);
4071         if (r)
4072                 goto bad_pool_target;
4073
4074         r = -ENOMEM;
4075
4076         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4077         if (!_new_mapping_cache)
4078                 goto bad_new_mapping_cache;
4079
4080         return 0;
4081
4082 bad_new_mapping_cache:
4083         dm_unregister_target(&pool_target);
4084 bad_pool_target:
4085         dm_unregister_target(&thin_target);
4086
4087         return r;
4088 }
4089
4090 static void dm_thin_exit(void)
4091 {
4092         dm_unregister_target(&thin_target);
4093         dm_unregister_target(&pool_target);
4094
4095         kmem_cache_destroy(_new_mapping_cache);
4096 }
4097
4098 module_init(dm_thin_init);
4099 module_exit(dm_thin_exit);
4100
4101 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4102 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4103
4104 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4105 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4106 MODULE_LICENSE("GPL");