Merge tag 'xtensa-for-next-20141021-2' of git://github.com/jcmvbkbc/linux-xtensa...
[cascardo/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20
21 #define DM_MSG_PREFIX   "thin"
22
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 /*
131  * A pool device ties together a metadata device and a data device.  It
132  * also provides the interface for creating and destroying internal
133  * devices.
134  */
135 struct dm_thin_new_mapping;
136
137 /*
138  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139  */
140 enum pool_mode {
141         PM_WRITE,               /* metadata may be changed */
142         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
143         PM_READ_ONLY,           /* metadata may not be changed */
144         PM_FAIL,                /* all I/O fails */
145 };
146
147 struct pool_features {
148         enum pool_mode mode;
149
150         bool zero_new_blocks:1;
151         bool discard_enabled:1;
152         bool discard_passdown:1;
153         bool error_if_no_space:1;
154 };
155
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159
160 struct pool {
161         struct list_head list;
162         struct dm_target *ti;   /* Only set if a pool target is bound */
163
164         struct mapped_device *pool_md;
165         struct block_device *md_dev;
166         struct dm_pool_metadata *pmd;
167
168         dm_block_t low_water_blocks;
169         uint32_t sectors_per_block;
170         int sectors_per_block_shift;
171
172         struct pool_features pf;
173         bool low_water_triggered:1;     /* A dm event has been sent */
174
175         struct dm_bio_prison *prison;
176         struct dm_kcopyd_client *copier;
177
178         struct workqueue_struct *wq;
179         struct work_struct worker;
180         struct delayed_work waker;
181         struct delayed_work no_space_timeout;
182
183         unsigned long last_commit_jiffies;
184         unsigned ref_count;
185
186         spinlock_t lock;
187         struct bio_list deferred_flush_bios;
188         struct list_head prepared_mappings;
189         struct list_head prepared_discards;
190         struct list_head active_thins;
191
192         struct dm_deferred_set *shared_read_ds;
193         struct dm_deferred_set *all_io_ds;
194
195         struct dm_thin_new_mapping *next_mapping;
196         mempool_t *mapping_pool;
197
198         process_bio_fn process_bio;
199         process_bio_fn process_discard;
200
201         process_mapping_fn process_prepared_mapping;
202         process_mapping_fn process_prepared_discard;
203 };
204
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207
208 /*
209  * Target context for a pool.
210  */
211 struct pool_c {
212         struct dm_target *ti;
213         struct pool *pool;
214         struct dm_dev *data_dev;
215         struct dm_dev *metadata_dev;
216         struct dm_target_callbacks callbacks;
217
218         dm_block_t low_water_blocks;
219         struct pool_features requested_pf; /* Features requested during table load */
220         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221 };
222
223 /*
224  * Target context for a thin.
225  */
226 struct thin_c {
227         struct list_head list;
228         struct dm_dev *pool_dev;
229         struct dm_dev *origin_dev;
230         sector_t origin_size;
231         dm_thin_id dev_id;
232
233         struct pool *pool;
234         struct dm_thin_device *td;
235         bool requeue_mode:1;
236         spinlock_t lock;
237         struct bio_list deferred_bio_list;
238         struct bio_list retry_on_resume_list;
239         struct rb_root sort_bio_list; /* sorted list of deferred bios */
240
241         /*
242          * Ensures the thin is not destroyed until the worker has finished
243          * iterating the active_thins list.
244          */
245         atomic_t refcount;
246         struct completion can_destroy;
247 };
248
249 /*----------------------------------------------------------------*/
250
251 /*
252  * wake_worker() is used when new work is queued and when pool_resume is
253  * ready to continue deferred IO processing.
254  */
255 static void wake_worker(struct pool *pool)
256 {
257         queue_work(pool->wq, &pool->worker);
258 }
259
260 /*----------------------------------------------------------------*/
261
262 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
263                       struct dm_bio_prison_cell **cell_result)
264 {
265         int r;
266         struct dm_bio_prison_cell *cell_prealloc;
267
268         /*
269          * Allocate a cell from the prison's mempool.
270          * This might block but it can't fail.
271          */
272         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
273
274         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
275         if (r)
276                 /*
277                  * We reused an old cell; we can get rid of
278                  * the new one.
279                  */
280                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
281
282         return r;
283 }
284
285 static void cell_release(struct pool *pool,
286                          struct dm_bio_prison_cell *cell,
287                          struct bio_list *bios)
288 {
289         dm_cell_release(pool->prison, cell, bios);
290         dm_bio_prison_free_cell(pool->prison, cell);
291 }
292
293 static void cell_release_no_holder(struct pool *pool,
294                                    struct dm_bio_prison_cell *cell,
295                                    struct bio_list *bios)
296 {
297         dm_cell_release_no_holder(pool->prison, cell, bios);
298         dm_bio_prison_free_cell(pool->prison, cell);
299 }
300
301 static void cell_defer_no_holder_no_free(struct thin_c *tc,
302                                          struct dm_bio_prison_cell *cell)
303 {
304         struct pool *pool = tc->pool;
305         unsigned long flags;
306
307         spin_lock_irqsave(&tc->lock, flags);
308         dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
309         spin_unlock_irqrestore(&tc->lock, flags);
310
311         wake_worker(pool);
312 }
313
314 static void cell_error_with_code(struct pool *pool,
315                                  struct dm_bio_prison_cell *cell, int error_code)
316 {
317         dm_cell_error(pool->prison, cell, error_code);
318         dm_bio_prison_free_cell(pool->prison, cell);
319 }
320
321 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
322 {
323         cell_error_with_code(pool, cell, -EIO);
324 }
325
326 /*----------------------------------------------------------------*/
327
328 /*
329  * A global list of pools that uses a struct mapped_device as a key.
330  */
331 static struct dm_thin_pool_table {
332         struct mutex mutex;
333         struct list_head pools;
334 } dm_thin_pool_table;
335
336 static void pool_table_init(void)
337 {
338         mutex_init(&dm_thin_pool_table.mutex);
339         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
340 }
341
342 static void __pool_table_insert(struct pool *pool)
343 {
344         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345         list_add(&pool->list, &dm_thin_pool_table.pools);
346 }
347
348 static void __pool_table_remove(struct pool *pool)
349 {
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351         list_del(&pool->list);
352 }
353
354 static struct pool *__pool_table_lookup(struct mapped_device *md)
355 {
356         struct pool *pool = NULL, *tmp;
357
358         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359
360         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
361                 if (tmp->pool_md == md) {
362                         pool = tmp;
363                         break;
364                 }
365         }
366
367         return pool;
368 }
369
370 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
371 {
372         struct pool *pool = NULL, *tmp;
373
374         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
375
376         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
377                 if (tmp->md_dev == md_dev) {
378                         pool = tmp;
379                         break;
380                 }
381         }
382
383         return pool;
384 }
385
386 /*----------------------------------------------------------------*/
387
388 struct dm_thin_endio_hook {
389         struct thin_c *tc;
390         struct dm_deferred_entry *shared_read_entry;
391         struct dm_deferred_entry *all_io_entry;
392         struct dm_thin_new_mapping *overwrite_mapping;
393         struct rb_node rb_node;
394 };
395
396 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
397 {
398         struct bio *bio;
399         struct bio_list bios;
400         unsigned long flags;
401
402         bio_list_init(&bios);
403
404         spin_lock_irqsave(&tc->lock, flags);
405         bio_list_merge(&bios, master);
406         bio_list_init(master);
407         spin_unlock_irqrestore(&tc->lock, flags);
408
409         while ((bio = bio_list_pop(&bios)))
410                 bio_endio(bio, DM_ENDIO_REQUEUE);
411 }
412
413 static void requeue_io(struct thin_c *tc)
414 {
415         requeue_bio_list(tc, &tc->deferred_bio_list);
416         requeue_bio_list(tc, &tc->retry_on_resume_list);
417 }
418
419 static void error_thin_retry_list(struct thin_c *tc)
420 {
421         struct bio *bio;
422         unsigned long flags;
423         struct bio_list bios;
424
425         bio_list_init(&bios);
426
427         spin_lock_irqsave(&tc->lock, flags);
428         bio_list_merge(&bios, &tc->retry_on_resume_list);
429         bio_list_init(&tc->retry_on_resume_list);
430         spin_unlock_irqrestore(&tc->lock, flags);
431
432         while ((bio = bio_list_pop(&bios)))
433                 bio_io_error(bio);
434 }
435
436 static void error_retry_list(struct pool *pool)
437 {
438         struct thin_c *tc;
439
440         rcu_read_lock();
441         list_for_each_entry_rcu(tc, &pool->active_thins, list)
442                 error_thin_retry_list(tc);
443         rcu_read_unlock();
444 }
445
446 /*
447  * This section of code contains the logic for processing a thin device's IO.
448  * Much of the code depends on pool object resources (lists, workqueues, etc)
449  * but most is exclusively called from the thin target rather than the thin-pool
450  * target.
451  */
452
453 static bool block_size_is_power_of_two(struct pool *pool)
454 {
455         return pool->sectors_per_block_shift >= 0;
456 }
457
458 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
459 {
460         struct pool *pool = tc->pool;
461         sector_t block_nr = bio->bi_iter.bi_sector;
462
463         if (block_size_is_power_of_two(pool))
464                 block_nr >>= pool->sectors_per_block_shift;
465         else
466                 (void) sector_div(block_nr, pool->sectors_per_block);
467
468         return block_nr;
469 }
470
471 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
472 {
473         struct pool *pool = tc->pool;
474         sector_t bi_sector = bio->bi_iter.bi_sector;
475
476         bio->bi_bdev = tc->pool_dev->bdev;
477         if (block_size_is_power_of_two(pool))
478                 bio->bi_iter.bi_sector =
479                         (block << pool->sectors_per_block_shift) |
480                         (bi_sector & (pool->sectors_per_block - 1));
481         else
482                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
483                                  sector_div(bi_sector, pool->sectors_per_block);
484 }
485
486 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
487 {
488         bio->bi_bdev = tc->origin_dev->bdev;
489 }
490
491 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
492 {
493         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
494                 dm_thin_changed_this_transaction(tc->td);
495 }
496
497 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
498 {
499         struct dm_thin_endio_hook *h;
500
501         if (bio->bi_rw & REQ_DISCARD)
502                 return;
503
504         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
505         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
506 }
507
508 static void issue(struct thin_c *tc, struct bio *bio)
509 {
510         struct pool *pool = tc->pool;
511         unsigned long flags;
512
513         if (!bio_triggers_commit(tc, bio)) {
514                 generic_make_request(bio);
515                 return;
516         }
517
518         /*
519          * Complete bio with an error if earlier I/O caused changes to
520          * the metadata that can't be committed e.g, due to I/O errors
521          * on the metadata device.
522          */
523         if (dm_thin_aborted_changes(tc->td)) {
524                 bio_io_error(bio);
525                 return;
526         }
527
528         /*
529          * Batch together any bios that trigger commits and then issue a
530          * single commit for them in process_deferred_bios().
531          */
532         spin_lock_irqsave(&pool->lock, flags);
533         bio_list_add(&pool->deferred_flush_bios, bio);
534         spin_unlock_irqrestore(&pool->lock, flags);
535 }
536
537 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
538 {
539         remap_to_origin(tc, bio);
540         issue(tc, bio);
541 }
542
543 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
544                             dm_block_t block)
545 {
546         remap(tc, bio, block);
547         issue(tc, bio);
548 }
549
550 /*----------------------------------------------------------------*/
551
552 /*
553  * Bio endio functions.
554  */
555 struct dm_thin_new_mapping {
556         struct list_head list;
557
558         bool pass_discard:1;
559         bool definitely_not_shared:1;
560
561         /*
562          * Track quiescing, copying and zeroing preparation actions.  When this
563          * counter hits zero the block is prepared and can be inserted into the
564          * btree.
565          */
566         atomic_t prepare_actions;
567
568         int err;
569         struct thin_c *tc;
570         dm_block_t virt_block;
571         dm_block_t data_block;
572         struct dm_bio_prison_cell *cell, *cell2;
573
574         /*
575          * If the bio covers the whole area of a block then we can avoid
576          * zeroing or copying.  Instead this bio is hooked.  The bio will
577          * still be in the cell, so care has to be taken to avoid issuing
578          * the bio twice.
579          */
580         struct bio *bio;
581         bio_end_io_t *saved_bi_end_io;
582 };
583
584 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
585 {
586         struct pool *pool = m->tc->pool;
587
588         if (atomic_dec_and_test(&m->prepare_actions)) {
589                 list_add_tail(&m->list, &pool->prepared_mappings);
590                 wake_worker(pool);
591         }
592 }
593
594 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
595 {
596         unsigned long flags;
597         struct pool *pool = m->tc->pool;
598
599         spin_lock_irqsave(&pool->lock, flags);
600         __complete_mapping_preparation(m);
601         spin_unlock_irqrestore(&pool->lock, flags);
602 }
603
604 static void copy_complete(int read_err, unsigned long write_err, void *context)
605 {
606         struct dm_thin_new_mapping *m = context;
607
608         m->err = read_err || write_err ? -EIO : 0;
609         complete_mapping_preparation(m);
610 }
611
612 static void overwrite_endio(struct bio *bio, int err)
613 {
614         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
615         struct dm_thin_new_mapping *m = h->overwrite_mapping;
616
617         m->err = err;
618         complete_mapping_preparation(m);
619 }
620
621 /*----------------------------------------------------------------*/
622
623 /*
624  * Workqueue.
625  */
626
627 /*
628  * Prepared mapping jobs.
629  */
630
631 /*
632  * This sends the bios in the cell back to the deferred_bios list.
633  */
634 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
635 {
636         struct pool *pool = tc->pool;
637         unsigned long flags;
638
639         spin_lock_irqsave(&tc->lock, flags);
640         cell_release(pool, cell, &tc->deferred_bio_list);
641         spin_unlock_irqrestore(&tc->lock, flags);
642
643         wake_worker(pool);
644 }
645
646 /*
647  * Same as cell_defer above, except it omits the original holder of the cell.
648  */
649 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
650 {
651         struct pool *pool = tc->pool;
652         unsigned long flags;
653
654         spin_lock_irqsave(&tc->lock, flags);
655         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
656         spin_unlock_irqrestore(&tc->lock, flags);
657
658         wake_worker(pool);
659 }
660
661 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
662 {
663         if (m->bio) {
664                 m->bio->bi_end_io = m->saved_bi_end_io;
665                 atomic_inc(&m->bio->bi_remaining);
666         }
667         cell_error(m->tc->pool, m->cell);
668         list_del(&m->list);
669         mempool_free(m, m->tc->pool->mapping_pool);
670 }
671
672 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675         struct pool *pool = tc->pool;
676         struct bio *bio;
677         int r;
678
679         bio = m->bio;
680         if (bio) {
681                 bio->bi_end_io = m->saved_bi_end_io;
682                 atomic_inc(&bio->bi_remaining);
683         }
684
685         if (m->err) {
686                 cell_error(pool, m->cell);
687                 goto out;
688         }
689
690         /*
691          * Commit the prepared block into the mapping btree.
692          * Any I/O for this block arriving after this point will get
693          * remapped to it directly.
694          */
695         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
696         if (r) {
697                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
698                 cell_error(pool, m->cell);
699                 goto out;
700         }
701
702         /*
703          * Release any bios held while the block was being provisioned.
704          * If we are processing a write bio that completely covers the block,
705          * we already processed it so can ignore it now when processing
706          * the bios in the cell.
707          */
708         if (bio) {
709                 cell_defer_no_holder(tc, m->cell);
710                 bio_endio(bio, 0);
711         } else
712                 cell_defer(tc, m->cell);
713
714 out:
715         list_del(&m->list);
716         mempool_free(m, pool->mapping_pool);
717 }
718
719 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
720 {
721         struct thin_c *tc = m->tc;
722
723         bio_io_error(m->bio);
724         cell_defer_no_holder(tc, m->cell);
725         cell_defer_no_holder(tc, m->cell2);
726         mempool_free(m, tc->pool->mapping_pool);
727 }
728
729 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
730 {
731         struct thin_c *tc = m->tc;
732
733         inc_all_io_entry(tc->pool, m->bio);
734         cell_defer_no_holder(tc, m->cell);
735         cell_defer_no_holder(tc, m->cell2);
736
737         if (m->pass_discard)
738                 if (m->definitely_not_shared)
739                         remap_and_issue(tc, m->bio, m->data_block);
740                 else {
741                         bool used = false;
742                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
743                                 bio_endio(m->bio, 0);
744                         else
745                                 remap_and_issue(tc, m->bio, m->data_block);
746                 }
747         else
748                 bio_endio(m->bio, 0);
749
750         mempool_free(m, tc->pool->mapping_pool);
751 }
752
753 static void process_prepared_discard(struct dm_thin_new_mapping *m)
754 {
755         int r;
756         struct thin_c *tc = m->tc;
757
758         r = dm_thin_remove_block(tc->td, m->virt_block);
759         if (r)
760                 DMERR_LIMIT("dm_thin_remove_block() failed");
761
762         process_prepared_discard_passdown(m);
763 }
764
765 static void process_prepared(struct pool *pool, struct list_head *head,
766                              process_mapping_fn *fn)
767 {
768         unsigned long flags;
769         struct list_head maps;
770         struct dm_thin_new_mapping *m, *tmp;
771
772         INIT_LIST_HEAD(&maps);
773         spin_lock_irqsave(&pool->lock, flags);
774         list_splice_init(head, &maps);
775         spin_unlock_irqrestore(&pool->lock, flags);
776
777         list_for_each_entry_safe(m, tmp, &maps, list)
778                 (*fn)(m);
779 }
780
781 /*
782  * Deferred bio jobs.
783  */
784 static int io_overlaps_block(struct pool *pool, struct bio *bio)
785 {
786         return bio->bi_iter.bi_size ==
787                 (pool->sectors_per_block << SECTOR_SHIFT);
788 }
789
790 static int io_overwrites_block(struct pool *pool, struct bio *bio)
791 {
792         return (bio_data_dir(bio) == WRITE) &&
793                 io_overlaps_block(pool, bio);
794 }
795
796 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
797                                bio_end_io_t *fn)
798 {
799         *save = bio->bi_end_io;
800         bio->bi_end_io = fn;
801 }
802
803 static int ensure_next_mapping(struct pool *pool)
804 {
805         if (pool->next_mapping)
806                 return 0;
807
808         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
809
810         return pool->next_mapping ? 0 : -ENOMEM;
811 }
812
813 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
814 {
815         struct dm_thin_new_mapping *m = pool->next_mapping;
816
817         BUG_ON(!pool->next_mapping);
818
819         memset(m, 0, sizeof(struct dm_thin_new_mapping));
820         INIT_LIST_HEAD(&m->list);
821         m->bio = NULL;
822
823         pool->next_mapping = NULL;
824
825         return m;
826 }
827
828 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
829                     sector_t begin, sector_t end)
830 {
831         int r;
832         struct dm_io_region to;
833
834         to.bdev = tc->pool_dev->bdev;
835         to.sector = begin;
836         to.count = end - begin;
837
838         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
839         if (r < 0) {
840                 DMERR_LIMIT("dm_kcopyd_zero() failed");
841                 copy_complete(1, 1, m);
842         }
843 }
844
845 /*
846  * A partial copy also needs to zero the uncopied region.
847  */
848 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
849                           struct dm_dev *origin, dm_block_t data_origin,
850                           dm_block_t data_dest,
851                           struct dm_bio_prison_cell *cell, struct bio *bio,
852                           sector_t len)
853 {
854         int r;
855         struct pool *pool = tc->pool;
856         struct dm_thin_new_mapping *m = get_next_mapping(pool);
857
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_dest;
861         m->cell = cell;
862
863         /*
864          * quiesce action + copy action + an extra reference held for the
865          * duration of this function (we may need to inc later for a
866          * partial zero).
867          */
868         atomic_set(&m->prepare_actions, 3);
869
870         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
871                 complete_mapping_preparation(m); /* already quiesced */
872
873         /*
874          * IO to pool_dev remaps to the pool target's data_dev.
875          *
876          * If the whole block of data is being overwritten, we can issue the
877          * bio immediately. Otherwise we use kcopyd to clone the data first.
878          */
879         if (io_overwrites_block(pool, bio)) {
880                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
881
882                 h->overwrite_mapping = m;
883                 m->bio = bio;
884                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
885                 inc_all_io_entry(pool, bio);
886                 remap_and_issue(tc, bio, data_dest);
887         } else {
888                 struct dm_io_region from, to;
889
890                 from.bdev = origin->bdev;
891                 from.sector = data_origin * pool->sectors_per_block;
892                 from.count = len;
893
894                 to.bdev = tc->pool_dev->bdev;
895                 to.sector = data_dest * pool->sectors_per_block;
896                 to.count = len;
897
898                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
899                                    0, copy_complete, m);
900                 if (r < 0) {
901                         DMERR_LIMIT("dm_kcopyd_copy() failed");
902                         copy_complete(1, 1, m);
903
904                         /*
905                          * We allow the zero to be issued, to simplify the
906                          * error path.  Otherwise we'd need to start
907                          * worrying about decrementing the prepare_actions
908                          * counter.
909                          */
910                 }
911
912                 /*
913                  * Do we need to zero a tail region?
914                  */
915                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
916                         atomic_inc(&m->prepare_actions);
917                         ll_zero(tc, m,
918                                 data_dest * pool->sectors_per_block + len,
919                                 (data_dest + 1) * pool->sectors_per_block);
920                 }
921         }
922
923         complete_mapping_preparation(m); /* drop our ref */
924 }
925
926 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
927                                    dm_block_t data_origin, dm_block_t data_dest,
928                                    struct dm_bio_prison_cell *cell, struct bio *bio)
929 {
930         schedule_copy(tc, virt_block, tc->pool_dev,
931                       data_origin, data_dest, cell, bio,
932                       tc->pool->sectors_per_block);
933 }
934
935 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
936                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
937                           struct bio *bio)
938 {
939         struct pool *pool = tc->pool;
940         struct dm_thin_new_mapping *m = get_next_mapping(pool);
941
942         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
943         m->tc = tc;
944         m->virt_block = virt_block;
945         m->data_block = data_block;
946         m->cell = cell;
947
948         /*
949          * If the whole block of data is being overwritten or we are not
950          * zeroing pre-existing data, we can issue the bio immediately.
951          * Otherwise we use kcopyd to zero the data first.
952          */
953         if (!pool->pf.zero_new_blocks)
954                 process_prepared_mapping(m);
955
956         else if (io_overwrites_block(pool, bio)) {
957                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
958
959                 h->overwrite_mapping = m;
960                 m->bio = bio;
961                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
962                 inc_all_io_entry(pool, bio);
963                 remap_and_issue(tc, bio, data_block);
964
965         } else
966                 ll_zero(tc, m,
967                         data_block * pool->sectors_per_block,
968                         (data_block + 1) * pool->sectors_per_block);
969 }
970
971 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
972                                    dm_block_t data_dest,
973                                    struct dm_bio_prison_cell *cell, struct bio *bio)
974 {
975         struct pool *pool = tc->pool;
976         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
977         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
978
979         if (virt_block_end <= tc->origin_size)
980                 schedule_copy(tc, virt_block, tc->origin_dev,
981                               virt_block, data_dest, cell, bio,
982                               pool->sectors_per_block);
983
984         else if (virt_block_begin < tc->origin_size)
985                 schedule_copy(tc, virt_block, tc->origin_dev,
986                               virt_block, data_dest, cell, bio,
987                               tc->origin_size - virt_block_begin);
988
989         else
990                 schedule_zero(tc, virt_block, data_dest, cell, bio);
991 }
992
993 /*
994  * A non-zero return indicates read_only or fail_io mode.
995  * Many callers don't care about the return value.
996  */
997 static int commit(struct pool *pool)
998 {
999         int r;
1000
1001         if (get_pool_mode(pool) >= PM_READ_ONLY)
1002                 return -EINVAL;
1003
1004         r = dm_pool_commit_metadata(pool->pmd);
1005         if (r)
1006                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1007
1008         return r;
1009 }
1010
1011 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1012 {
1013         unsigned long flags;
1014
1015         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1016                 DMWARN("%s: reached low water mark for data device: sending event.",
1017                        dm_device_name(pool->pool_md));
1018                 spin_lock_irqsave(&pool->lock, flags);
1019                 pool->low_water_triggered = true;
1020                 spin_unlock_irqrestore(&pool->lock, flags);
1021                 dm_table_event(pool->ti->table);
1022         }
1023 }
1024
1025 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1026
1027 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1028 {
1029         int r;
1030         dm_block_t free_blocks;
1031         struct pool *pool = tc->pool;
1032
1033         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1034                 return -EINVAL;
1035
1036         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1037         if (r) {
1038                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1039                 return r;
1040         }
1041
1042         check_low_water_mark(pool, free_blocks);
1043
1044         if (!free_blocks) {
1045                 /*
1046                  * Try to commit to see if that will free up some
1047                  * more space.
1048                  */
1049                 r = commit(pool);
1050                 if (r)
1051                         return r;
1052
1053                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1054                 if (r) {
1055                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1056                         return r;
1057                 }
1058
1059                 if (!free_blocks) {
1060                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1061                         return -ENOSPC;
1062                 }
1063         }
1064
1065         r = dm_pool_alloc_data_block(pool->pmd, result);
1066         if (r) {
1067                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1068                 return r;
1069         }
1070
1071         return 0;
1072 }
1073
1074 /*
1075  * If we have run out of space, queue bios until the device is
1076  * resumed, presumably after having been reloaded with more space.
1077  */
1078 static void retry_on_resume(struct bio *bio)
1079 {
1080         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1081         struct thin_c *tc = h->tc;
1082         unsigned long flags;
1083
1084         spin_lock_irqsave(&tc->lock, flags);
1085         bio_list_add(&tc->retry_on_resume_list, bio);
1086         spin_unlock_irqrestore(&tc->lock, flags);
1087 }
1088
1089 static int should_error_unserviceable_bio(struct pool *pool)
1090 {
1091         enum pool_mode m = get_pool_mode(pool);
1092
1093         switch (m) {
1094         case PM_WRITE:
1095                 /* Shouldn't get here */
1096                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1097                 return -EIO;
1098
1099         case PM_OUT_OF_DATA_SPACE:
1100                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1101
1102         case PM_READ_ONLY:
1103         case PM_FAIL:
1104                 return -EIO;
1105         default:
1106                 /* Shouldn't get here */
1107                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1108                 return -EIO;
1109         }
1110 }
1111
1112 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1113 {
1114         int error = should_error_unserviceable_bio(pool);
1115
1116         if (error)
1117                 bio_endio(bio, error);
1118         else
1119                 retry_on_resume(bio);
1120 }
1121
1122 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1123 {
1124         struct bio *bio;
1125         struct bio_list bios;
1126         int error;
1127
1128         error = should_error_unserviceable_bio(pool);
1129         if (error) {
1130                 cell_error_with_code(pool, cell, error);
1131                 return;
1132         }
1133
1134         bio_list_init(&bios);
1135         cell_release(pool, cell, &bios);
1136
1137         error = should_error_unserviceable_bio(pool);
1138         if (error)
1139                 while ((bio = bio_list_pop(&bios)))
1140                         bio_endio(bio, error);
1141         else
1142                 while ((bio = bio_list_pop(&bios)))
1143                         retry_on_resume(bio);
1144 }
1145
1146 static void process_discard(struct thin_c *tc, struct bio *bio)
1147 {
1148         int r;
1149         unsigned long flags;
1150         struct pool *pool = tc->pool;
1151         struct dm_bio_prison_cell *cell, *cell2;
1152         struct dm_cell_key key, key2;
1153         dm_block_t block = get_bio_block(tc, bio);
1154         struct dm_thin_lookup_result lookup_result;
1155         struct dm_thin_new_mapping *m;
1156
1157         build_virtual_key(tc->td, block, &key);
1158         if (bio_detain(tc->pool, &key, bio, &cell))
1159                 return;
1160
1161         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1162         switch (r) {
1163         case 0:
1164                 /*
1165                  * Check nobody is fiddling with this pool block.  This can
1166                  * happen if someone's in the process of breaking sharing
1167                  * on this block.
1168                  */
1169                 build_data_key(tc->td, lookup_result.block, &key2);
1170                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1171                         cell_defer_no_holder(tc, cell);
1172                         break;
1173                 }
1174
1175                 if (io_overlaps_block(pool, bio)) {
1176                         /*
1177                          * IO may still be going to the destination block.  We must
1178                          * quiesce before we can do the removal.
1179                          */
1180                         m = get_next_mapping(pool);
1181                         m->tc = tc;
1182                         m->pass_discard = pool->pf.discard_passdown;
1183                         m->definitely_not_shared = !lookup_result.shared;
1184                         m->virt_block = block;
1185                         m->data_block = lookup_result.block;
1186                         m->cell = cell;
1187                         m->cell2 = cell2;
1188                         m->bio = bio;
1189
1190                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1191                                 spin_lock_irqsave(&pool->lock, flags);
1192                                 list_add_tail(&m->list, &pool->prepared_discards);
1193                                 spin_unlock_irqrestore(&pool->lock, flags);
1194                                 wake_worker(pool);
1195                         }
1196                 } else {
1197                         inc_all_io_entry(pool, bio);
1198                         cell_defer_no_holder(tc, cell);
1199                         cell_defer_no_holder(tc, cell2);
1200
1201                         /*
1202                          * The DM core makes sure that the discard doesn't span
1203                          * a block boundary.  So we submit the discard of a
1204                          * partial block appropriately.
1205                          */
1206                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1207                                 remap_and_issue(tc, bio, lookup_result.block);
1208                         else
1209                                 bio_endio(bio, 0);
1210                 }
1211                 break;
1212
1213         case -ENODATA:
1214                 /*
1215                  * It isn't provisioned, just forget it.
1216                  */
1217                 cell_defer_no_holder(tc, cell);
1218                 bio_endio(bio, 0);
1219                 break;
1220
1221         default:
1222                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1223                             __func__, r);
1224                 cell_defer_no_holder(tc, cell);
1225                 bio_io_error(bio);
1226                 break;
1227         }
1228 }
1229
1230 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1231                           struct dm_cell_key *key,
1232                           struct dm_thin_lookup_result *lookup_result,
1233                           struct dm_bio_prison_cell *cell)
1234 {
1235         int r;
1236         dm_block_t data_block;
1237         struct pool *pool = tc->pool;
1238
1239         r = alloc_data_block(tc, &data_block);
1240         switch (r) {
1241         case 0:
1242                 schedule_internal_copy(tc, block, lookup_result->block,
1243                                        data_block, cell, bio);
1244                 break;
1245
1246         case -ENOSPC:
1247                 retry_bios_on_resume(pool, cell);
1248                 break;
1249
1250         default:
1251                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1252                             __func__, r);
1253                 cell_error(pool, cell);
1254                 break;
1255         }
1256 }
1257
1258 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1259                                dm_block_t block,
1260                                struct dm_thin_lookup_result *lookup_result)
1261 {
1262         struct dm_bio_prison_cell *cell;
1263         struct pool *pool = tc->pool;
1264         struct dm_cell_key key;
1265
1266         /*
1267          * If cell is already occupied, then sharing is already in the process
1268          * of being broken so we have nothing further to do here.
1269          */
1270         build_data_key(tc->td, lookup_result->block, &key);
1271         if (bio_detain(pool, &key, bio, &cell))
1272                 return;
1273
1274         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1275                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1276         else {
1277                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1278
1279                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1280                 inc_all_io_entry(pool, bio);
1281                 cell_defer_no_holder(tc, cell);
1282
1283                 remap_and_issue(tc, bio, lookup_result->block);
1284         }
1285 }
1286
1287 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1288                             struct dm_bio_prison_cell *cell)
1289 {
1290         int r;
1291         dm_block_t data_block;
1292         struct pool *pool = tc->pool;
1293
1294         /*
1295          * Remap empty bios (flushes) immediately, without provisioning.
1296          */
1297         if (!bio->bi_iter.bi_size) {
1298                 inc_all_io_entry(pool, bio);
1299                 cell_defer_no_holder(tc, cell);
1300
1301                 remap_and_issue(tc, bio, 0);
1302                 return;
1303         }
1304
1305         /*
1306          * Fill read bios with zeroes and complete them immediately.
1307          */
1308         if (bio_data_dir(bio) == READ) {
1309                 zero_fill_bio(bio);
1310                 cell_defer_no_holder(tc, cell);
1311                 bio_endio(bio, 0);
1312                 return;
1313         }
1314
1315         r = alloc_data_block(tc, &data_block);
1316         switch (r) {
1317         case 0:
1318                 if (tc->origin_dev)
1319                         schedule_external_copy(tc, block, data_block, cell, bio);
1320                 else
1321                         schedule_zero(tc, block, data_block, cell, bio);
1322                 break;
1323
1324         case -ENOSPC:
1325                 retry_bios_on_resume(pool, cell);
1326                 break;
1327
1328         default:
1329                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1330                             __func__, r);
1331                 cell_error(pool, cell);
1332                 break;
1333         }
1334 }
1335
1336 static void process_bio(struct thin_c *tc, struct bio *bio)
1337 {
1338         int r;
1339         struct pool *pool = tc->pool;
1340         dm_block_t block = get_bio_block(tc, bio);
1341         struct dm_bio_prison_cell *cell;
1342         struct dm_cell_key key;
1343         struct dm_thin_lookup_result lookup_result;
1344
1345         /*
1346          * If cell is already occupied, then the block is already
1347          * being provisioned so we have nothing further to do here.
1348          */
1349         build_virtual_key(tc->td, block, &key);
1350         if (bio_detain(pool, &key, bio, &cell))
1351                 return;
1352
1353         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1354         switch (r) {
1355         case 0:
1356                 if (lookup_result.shared) {
1357                         process_shared_bio(tc, bio, block, &lookup_result);
1358                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1359                 } else {
1360                         inc_all_io_entry(pool, bio);
1361                         cell_defer_no_holder(tc, cell);
1362
1363                         remap_and_issue(tc, bio, lookup_result.block);
1364                 }
1365                 break;
1366
1367         case -ENODATA:
1368                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1369                         inc_all_io_entry(pool, bio);
1370                         cell_defer_no_holder(tc, cell);
1371
1372                         if (bio_end_sector(bio) <= tc->origin_size)
1373                                 remap_to_origin_and_issue(tc, bio);
1374
1375                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1376                                 zero_fill_bio(bio);
1377                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1378                                 remap_to_origin_and_issue(tc, bio);
1379
1380                         } else {
1381                                 zero_fill_bio(bio);
1382                                 bio_endio(bio, 0);
1383                         }
1384                 } else
1385                         provision_block(tc, bio, block, cell);
1386                 break;
1387
1388         default:
1389                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1390                             __func__, r);
1391                 cell_defer_no_holder(tc, cell);
1392                 bio_io_error(bio);
1393                 break;
1394         }
1395 }
1396
1397 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1398 {
1399         int r;
1400         int rw = bio_data_dir(bio);
1401         dm_block_t block = get_bio_block(tc, bio);
1402         struct dm_thin_lookup_result lookup_result;
1403
1404         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1405         switch (r) {
1406         case 0:
1407                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1408                         handle_unserviceable_bio(tc->pool, bio);
1409                 else {
1410                         inc_all_io_entry(tc->pool, bio);
1411                         remap_and_issue(tc, bio, lookup_result.block);
1412                 }
1413                 break;
1414
1415         case -ENODATA:
1416                 if (rw != READ) {
1417                         handle_unserviceable_bio(tc->pool, bio);
1418                         break;
1419                 }
1420
1421                 if (tc->origin_dev) {
1422                         inc_all_io_entry(tc->pool, bio);
1423                         remap_to_origin_and_issue(tc, bio);
1424                         break;
1425                 }
1426
1427                 zero_fill_bio(bio);
1428                 bio_endio(bio, 0);
1429                 break;
1430
1431         default:
1432                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1433                             __func__, r);
1434                 bio_io_error(bio);
1435                 break;
1436         }
1437 }
1438
1439 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1440 {
1441         bio_endio(bio, 0);
1442 }
1443
1444 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1445 {
1446         bio_io_error(bio);
1447 }
1448
1449 /*
1450  * FIXME: should we also commit due to size of transaction, measured in
1451  * metadata blocks?
1452  */
1453 static int need_commit_due_to_time(struct pool *pool)
1454 {
1455         return jiffies < pool->last_commit_jiffies ||
1456                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1457 }
1458
1459 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1460 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1461
1462 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1463 {
1464         struct rb_node **rbp, *parent;
1465         struct dm_thin_endio_hook *pbd;
1466         sector_t bi_sector = bio->bi_iter.bi_sector;
1467
1468         rbp = &tc->sort_bio_list.rb_node;
1469         parent = NULL;
1470         while (*rbp) {
1471                 parent = *rbp;
1472                 pbd = thin_pbd(parent);
1473
1474                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1475                         rbp = &(*rbp)->rb_left;
1476                 else
1477                         rbp = &(*rbp)->rb_right;
1478         }
1479
1480         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1481         rb_link_node(&pbd->rb_node, parent, rbp);
1482         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1483 }
1484
1485 static void __extract_sorted_bios(struct thin_c *tc)
1486 {
1487         struct rb_node *node;
1488         struct dm_thin_endio_hook *pbd;
1489         struct bio *bio;
1490
1491         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1492                 pbd = thin_pbd(node);
1493                 bio = thin_bio(pbd);
1494
1495                 bio_list_add(&tc->deferred_bio_list, bio);
1496                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1497         }
1498
1499         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1500 }
1501
1502 static void __sort_thin_deferred_bios(struct thin_c *tc)
1503 {
1504         struct bio *bio;
1505         struct bio_list bios;
1506
1507         bio_list_init(&bios);
1508         bio_list_merge(&bios, &tc->deferred_bio_list);
1509         bio_list_init(&tc->deferred_bio_list);
1510
1511         /* Sort deferred_bio_list using rb-tree */
1512         while ((bio = bio_list_pop(&bios)))
1513                 __thin_bio_rb_add(tc, bio);
1514
1515         /*
1516          * Transfer the sorted bios in sort_bio_list back to
1517          * deferred_bio_list to allow lockless submission of
1518          * all bios.
1519          */
1520         __extract_sorted_bios(tc);
1521 }
1522
1523 static void process_thin_deferred_bios(struct thin_c *tc)
1524 {
1525         struct pool *pool = tc->pool;
1526         unsigned long flags;
1527         struct bio *bio;
1528         struct bio_list bios;
1529         struct blk_plug plug;
1530
1531         if (tc->requeue_mode) {
1532                 requeue_bio_list(tc, &tc->deferred_bio_list);
1533                 return;
1534         }
1535
1536         bio_list_init(&bios);
1537
1538         spin_lock_irqsave(&tc->lock, flags);
1539
1540         if (bio_list_empty(&tc->deferred_bio_list)) {
1541                 spin_unlock_irqrestore(&tc->lock, flags);
1542                 return;
1543         }
1544
1545         __sort_thin_deferred_bios(tc);
1546
1547         bio_list_merge(&bios, &tc->deferred_bio_list);
1548         bio_list_init(&tc->deferred_bio_list);
1549
1550         spin_unlock_irqrestore(&tc->lock, flags);
1551
1552         blk_start_plug(&plug);
1553         while ((bio = bio_list_pop(&bios))) {
1554                 /*
1555                  * If we've got no free new_mapping structs, and processing
1556                  * this bio might require one, we pause until there are some
1557                  * prepared mappings to process.
1558                  */
1559                 if (ensure_next_mapping(pool)) {
1560                         spin_lock_irqsave(&tc->lock, flags);
1561                         bio_list_add(&tc->deferred_bio_list, bio);
1562                         bio_list_merge(&tc->deferred_bio_list, &bios);
1563                         spin_unlock_irqrestore(&tc->lock, flags);
1564                         break;
1565                 }
1566
1567                 if (bio->bi_rw & REQ_DISCARD)
1568                         pool->process_discard(tc, bio);
1569                 else
1570                         pool->process_bio(tc, bio);
1571         }
1572         blk_finish_plug(&plug);
1573 }
1574
1575 static void thin_get(struct thin_c *tc);
1576 static void thin_put(struct thin_c *tc);
1577
1578 /*
1579  * We can't hold rcu_read_lock() around code that can block.  So we
1580  * find a thin with the rcu lock held; bump a refcount; then drop
1581  * the lock.
1582  */
1583 static struct thin_c *get_first_thin(struct pool *pool)
1584 {
1585         struct thin_c *tc = NULL;
1586
1587         rcu_read_lock();
1588         if (!list_empty(&pool->active_thins)) {
1589                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1590                 thin_get(tc);
1591         }
1592         rcu_read_unlock();
1593
1594         return tc;
1595 }
1596
1597 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1598 {
1599         struct thin_c *old_tc = tc;
1600
1601         rcu_read_lock();
1602         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1603                 thin_get(tc);
1604                 thin_put(old_tc);
1605                 rcu_read_unlock();
1606                 return tc;
1607         }
1608         thin_put(old_tc);
1609         rcu_read_unlock();
1610
1611         return NULL;
1612 }
1613
1614 static void process_deferred_bios(struct pool *pool)
1615 {
1616         unsigned long flags;
1617         struct bio *bio;
1618         struct bio_list bios;
1619         struct thin_c *tc;
1620
1621         tc = get_first_thin(pool);
1622         while (tc) {
1623                 process_thin_deferred_bios(tc);
1624                 tc = get_next_thin(pool, tc);
1625         }
1626
1627         /*
1628          * If there are any deferred flush bios, we must commit
1629          * the metadata before issuing them.
1630          */
1631         bio_list_init(&bios);
1632         spin_lock_irqsave(&pool->lock, flags);
1633         bio_list_merge(&bios, &pool->deferred_flush_bios);
1634         bio_list_init(&pool->deferred_flush_bios);
1635         spin_unlock_irqrestore(&pool->lock, flags);
1636
1637         if (bio_list_empty(&bios) &&
1638             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1639                 return;
1640
1641         if (commit(pool)) {
1642                 while ((bio = bio_list_pop(&bios)))
1643                         bio_io_error(bio);
1644                 return;
1645         }
1646         pool->last_commit_jiffies = jiffies;
1647
1648         while ((bio = bio_list_pop(&bios)))
1649                 generic_make_request(bio);
1650 }
1651
1652 static void do_worker(struct work_struct *ws)
1653 {
1654         struct pool *pool = container_of(ws, struct pool, worker);
1655
1656         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1657         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1658         process_deferred_bios(pool);
1659 }
1660
1661 /*
1662  * We want to commit periodically so that not too much
1663  * unwritten data builds up.
1664  */
1665 static void do_waker(struct work_struct *ws)
1666 {
1667         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1668         wake_worker(pool);
1669         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1670 }
1671
1672 /*
1673  * We're holding onto IO to allow userland time to react.  After the
1674  * timeout either the pool will have been resized (and thus back in
1675  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1676  */
1677 static void do_no_space_timeout(struct work_struct *ws)
1678 {
1679         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1680                                          no_space_timeout);
1681
1682         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1683                 set_pool_mode(pool, PM_READ_ONLY);
1684 }
1685
1686 /*----------------------------------------------------------------*/
1687
1688 struct pool_work {
1689         struct work_struct worker;
1690         struct completion complete;
1691 };
1692
1693 static struct pool_work *to_pool_work(struct work_struct *ws)
1694 {
1695         return container_of(ws, struct pool_work, worker);
1696 }
1697
1698 static void pool_work_complete(struct pool_work *pw)
1699 {
1700         complete(&pw->complete);
1701 }
1702
1703 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1704                            void (*fn)(struct work_struct *))
1705 {
1706         INIT_WORK_ONSTACK(&pw->worker, fn);
1707         init_completion(&pw->complete);
1708         queue_work(pool->wq, &pw->worker);
1709         wait_for_completion(&pw->complete);
1710 }
1711
1712 /*----------------------------------------------------------------*/
1713
1714 struct noflush_work {
1715         struct pool_work pw;
1716         struct thin_c *tc;
1717 };
1718
1719 static struct noflush_work *to_noflush(struct work_struct *ws)
1720 {
1721         return container_of(to_pool_work(ws), struct noflush_work, pw);
1722 }
1723
1724 static void do_noflush_start(struct work_struct *ws)
1725 {
1726         struct noflush_work *w = to_noflush(ws);
1727         w->tc->requeue_mode = true;
1728         requeue_io(w->tc);
1729         pool_work_complete(&w->pw);
1730 }
1731
1732 static void do_noflush_stop(struct work_struct *ws)
1733 {
1734         struct noflush_work *w = to_noflush(ws);
1735         w->tc->requeue_mode = false;
1736         pool_work_complete(&w->pw);
1737 }
1738
1739 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1740 {
1741         struct noflush_work w;
1742
1743         w.tc = tc;
1744         pool_work_wait(&w.pw, tc->pool, fn);
1745 }
1746
1747 /*----------------------------------------------------------------*/
1748
1749 static enum pool_mode get_pool_mode(struct pool *pool)
1750 {
1751         return pool->pf.mode;
1752 }
1753
1754 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1755 {
1756         dm_table_event(pool->ti->table);
1757         DMINFO("%s: switching pool to %s mode",
1758                dm_device_name(pool->pool_md), new_mode);
1759 }
1760
1761 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1762 {
1763         struct pool_c *pt = pool->ti->private;
1764         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1765         enum pool_mode old_mode = get_pool_mode(pool);
1766         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1767
1768         /*
1769          * Never allow the pool to transition to PM_WRITE mode if user
1770          * intervention is required to verify metadata and data consistency.
1771          */
1772         if (new_mode == PM_WRITE && needs_check) {
1773                 DMERR("%s: unable to switch pool to write mode until repaired.",
1774                       dm_device_name(pool->pool_md));
1775                 if (old_mode != new_mode)
1776                         new_mode = old_mode;
1777                 else
1778                         new_mode = PM_READ_ONLY;
1779         }
1780         /*
1781          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1782          * not going to recover without a thin_repair.  So we never let the
1783          * pool move out of the old mode.
1784          */
1785         if (old_mode == PM_FAIL)
1786                 new_mode = old_mode;
1787
1788         switch (new_mode) {
1789         case PM_FAIL:
1790                 if (old_mode != new_mode)
1791                         notify_of_pool_mode_change(pool, "failure");
1792                 dm_pool_metadata_read_only(pool->pmd);
1793                 pool->process_bio = process_bio_fail;
1794                 pool->process_discard = process_bio_fail;
1795                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1796                 pool->process_prepared_discard = process_prepared_discard_fail;
1797
1798                 error_retry_list(pool);
1799                 break;
1800
1801         case PM_READ_ONLY:
1802                 if (old_mode != new_mode)
1803                         notify_of_pool_mode_change(pool, "read-only");
1804                 dm_pool_metadata_read_only(pool->pmd);
1805                 pool->process_bio = process_bio_read_only;
1806                 pool->process_discard = process_bio_success;
1807                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1808                 pool->process_prepared_discard = process_prepared_discard_passdown;
1809
1810                 error_retry_list(pool);
1811                 break;
1812
1813         case PM_OUT_OF_DATA_SPACE:
1814                 /*
1815                  * Ideally we'd never hit this state; the low water mark
1816                  * would trigger userland to extend the pool before we
1817                  * completely run out of data space.  However, many small
1818                  * IOs to unprovisioned space can consume data space at an
1819                  * alarming rate.  Adjust your low water mark if you're
1820                  * frequently seeing this mode.
1821                  */
1822                 if (old_mode != new_mode)
1823                         notify_of_pool_mode_change(pool, "out-of-data-space");
1824                 pool->process_bio = process_bio_read_only;
1825                 pool->process_discard = process_discard;
1826                 pool->process_prepared_mapping = process_prepared_mapping;
1827                 pool->process_prepared_discard = process_prepared_discard_passdown;
1828
1829                 if (!pool->pf.error_if_no_space && no_space_timeout)
1830                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1831                 break;
1832
1833         case PM_WRITE:
1834                 if (old_mode != new_mode)
1835                         notify_of_pool_mode_change(pool, "write");
1836                 dm_pool_metadata_read_write(pool->pmd);
1837                 pool->process_bio = process_bio;
1838                 pool->process_discard = process_discard;
1839                 pool->process_prepared_mapping = process_prepared_mapping;
1840                 pool->process_prepared_discard = process_prepared_discard;
1841                 break;
1842         }
1843
1844         pool->pf.mode = new_mode;
1845         /*
1846          * The pool mode may have changed, sync it so bind_control_target()
1847          * doesn't cause an unexpected mode transition on resume.
1848          */
1849         pt->adjusted_pf.mode = new_mode;
1850 }
1851
1852 static void abort_transaction(struct pool *pool)
1853 {
1854         const char *dev_name = dm_device_name(pool->pool_md);
1855
1856         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1857         if (dm_pool_abort_metadata(pool->pmd)) {
1858                 DMERR("%s: failed to abort metadata transaction", dev_name);
1859                 set_pool_mode(pool, PM_FAIL);
1860         }
1861
1862         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1863                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1864                 set_pool_mode(pool, PM_FAIL);
1865         }
1866 }
1867
1868 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1869 {
1870         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1871                     dm_device_name(pool->pool_md), op, r);
1872
1873         abort_transaction(pool);
1874         set_pool_mode(pool, PM_READ_ONLY);
1875 }
1876
1877 /*----------------------------------------------------------------*/
1878
1879 /*
1880  * Mapping functions.
1881  */
1882
1883 /*
1884  * Called only while mapping a thin bio to hand it over to the workqueue.
1885  */
1886 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1887 {
1888         unsigned long flags;
1889         struct pool *pool = tc->pool;
1890
1891         spin_lock_irqsave(&tc->lock, flags);
1892         bio_list_add(&tc->deferred_bio_list, bio);
1893         spin_unlock_irqrestore(&tc->lock, flags);
1894
1895         wake_worker(pool);
1896 }
1897
1898 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1899 {
1900         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1901
1902         h->tc = tc;
1903         h->shared_read_entry = NULL;
1904         h->all_io_entry = NULL;
1905         h->overwrite_mapping = NULL;
1906 }
1907
1908 /*
1909  * Non-blocking function called from the thin target's map function.
1910  */
1911 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1912 {
1913         int r;
1914         struct thin_c *tc = ti->private;
1915         dm_block_t block = get_bio_block(tc, bio);
1916         struct dm_thin_device *td = tc->td;
1917         struct dm_thin_lookup_result result;
1918         struct dm_bio_prison_cell cell1, cell2;
1919         struct dm_bio_prison_cell *cell_result;
1920         struct dm_cell_key key;
1921
1922         thin_hook_bio(tc, bio);
1923
1924         if (tc->requeue_mode) {
1925                 bio_endio(bio, DM_ENDIO_REQUEUE);
1926                 return DM_MAPIO_SUBMITTED;
1927         }
1928
1929         if (get_pool_mode(tc->pool) == PM_FAIL) {
1930                 bio_io_error(bio);
1931                 return DM_MAPIO_SUBMITTED;
1932         }
1933
1934         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1935                 thin_defer_bio(tc, bio);
1936                 return DM_MAPIO_SUBMITTED;
1937         }
1938
1939         r = dm_thin_find_block(td, block, 0, &result);
1940
1941         /*
1942          * Note that we defer readahead too.
1943          */
1944         switch (r) {
1945         case 0:
1946                 if (unlikely(result.shared)) {
1947                         /*
1948                          * We have a race condition here between the
1949                          * result.shared value returned by the lookup and
1950                          * snapshot creation, which may cause new
1951                          * sharing.
1952                          *
1953                          * To avoid this always quiesce the origin before
1954                          * taking the snap.  You want to do this anyway to
1955                          * ensure a consistent application view
1956                          * (i.e. lockfs).
1957                          *
1958                          * More distant ancestors are irrelevant. The
1959                          * shared flag will be set in their case.
1960                          */
1961                         thin_defer_bio(tc, bio);
1962                         return DM_MAPIO_SUBMITTED;
1963                 }
1964
1965                 build_virtual_key(tc->td, block, &key);
1966                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1967                         return DM_MAPIO_SUBMITTED;
1968
1969                 build_data_key(tc->td, result.block, &key);
1970                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1971                         cell_defer_no_holder_no_free(tc, &cell1);
1972                         return DM_MAPIO_SUBMITTED;
1973                 }
1974
1975                 inc_all_io_entry(tc->pool, bio);
1976                 cell_defer_no_holder_no_free(tc, &cell2);
1977                 cell_defer_no_holder_no_free(tc, &cell1);
1978
1979                 remap(tc, bio, result.block);
1980                 return DM_MAPIO_REMAPPED;
1981
1982         case -ENODATA:
1983                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1984                         /*
1985                          * This block isn't provisioned, and we have no way
1986                          * of doing so.
1987                          */
1988                         handle_unserviceable_bio(tc->pool, bio);
1989                         return DM_MAPIO_SUBMITTED;
1990                 }
1991                 /* fall through */
1992
1993         case -EWOULDBLOCK:
1994                 /*
1995                  * In future, the failed dm_thin_find_block above could
1996                  * provide the hint to load the metadata into cache.
1997                  */
1998                 thin_defer_bio(tc, bio);
1999                 return DM_MAPIO_SUBMITTED;
2000
2001         default:
2002                 /*
2003                  * Must always call bio_io_error on failure.
2004                  * dm_thin_find_block can fail with -EINVAL if the
2005                  * pool is switched to fail-io mode.
2006                  */
2007                 bio_io_error(bio);
2008                 return DM_MAPIO_SUBMITTED;
2009         }
2010 }
2011
2012 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2013 {
2014         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2015         struct request_queue *q;
2016
2017         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2018                 return 1;
2019
2020         q = bdev_get_queue(pt->data_dev->bdev);
2021         return bdi_congested(&q->backing_dev_info, bdi_bits);
2022 }
2023
2024 static void requeue_bios(struct pool *pool)
2025 {
2026         unsigned long flags;
2027         struct thin_c *tc;
2028
2029         rcu_read_lock();
2030         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2031                 spin_lock_irqsave(&tc->lock, flags);
2032                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2033                 bio_list_init(&tc->retry_on_resume_list);
2034                 spin_unlock_irqrestore(&tc->lock, flags);
2035         }
2036         rcu_read_unlock();
2037 }
2038
2039 /*----------------------------------------------------------------
2040  * Binding of control targets to a pool object
2041  *--------------------------------------------------------------*/
2042 static bool data_dev_supports_discard(struct pool_c *pt)
2043 {
2044         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2045
2046         return q && blk_queue_discard(q);
2047 }
2048
2049 static bool is_factor(sector_t block_size, uint32_t n)
2050 {
2051         return !sector_div(block_size, n);
2052 }
2053
2054 /*
2055  * If discard_passdown was enabled verify that the data device
2056  * supports discards.  Disable discard_passdown if not.
2057  */
2058 static void disable_passdown_if_not_supported(struct pool_c *pt)
2059 {
2060         struct pool *pool = pt->pool;
2061         struct block_device *data_bdev = pt->data_dev->bdev;
2062         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2063         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2064         const char *reason = NULL;
2065         char buf[BDEVNAME_SIZE];
2066
2067         if (!pt->adjusted_pf.discard_passdown)
2068                 return;
2069
2070         if (!data_dev_supports_discard(pt))
2071                 reason = "discard unsupported";
2072
2073         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2074                 reason = "max discard sectors smaller than a block";
2075
2076         else if (data_limits->discard_granularity > block_size)
2077                 reason = "discard granularity larger than a block";
2078
2079         else if (!is_factor(block_size, data_limits->discard_granularity))
2080                 reason = "discard granularity not a factor of block size";
2081
2082         if (reason) {
2083                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2084                 pt->adjusted_pf.discard_passdown = false;
2085         }
2086 }
2087
2088 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2089 {
2090         struct pool_c *pt = ti->private;
2091
2092         /*
2093          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2094          */
2095         enum pool_mode old_mode = get_pool_mode(pool);
2096         enum pool_mode new_mode = pt->adjusted_pf.mode;
2097
2098         /*
2099          * Don't change the pool's mode until set_pool_mode() below.
2100          * Otherwise the pool's process_* function pointers may
2101          * not match the desired pool mode.
2102          */
2103         pt->adjusted_pf.mode = old_mode;
2104
2105         pool->ti = ti;
2106         pool->pf = pt->adjusted_pf;
2107         pool->low_water_blocks = pt->low_water_blocks;
2108
2109         set_pool_mode(pool, new_mode);
2110
2111         return 0;
2112 }
2113
2114 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2115 {
2116         if (pool->ti == ti)
2117                 pool->ti = NULL;
2118 }
2119
2120 /*----------------------------------------------------------------
2121  * Pool creation
2122  *--------------------------------------------------------------*/
2123 /* Initialize pool features. */
2124 static void pool_features_init(struct pool_features *pf)
2125 {
2126         pf->mode = PM_WRITE;
2127         pf->zero_new_blocks = true;
2128         pf->discard_enabled = true;
2129         pf->discard_passdown = true;
2130         pf->error_if_no_space = false;
2131 }
2132
2133 static void __pool_destroy(struct pool *pool)
2134 {
2135         __pool_table_remove(pool);
2136
2137         if (dm_pool_metadata_close(pool->pmd) < 0)
2138                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2139
2140         dm_bio_prison_destroy(pool->prison);
2141         dm_kcopyd_client_destroy(pool->copier);
2142
2143         if (pool->wq)
2144                 destroy_workqueue(pool->wq);
2145
2146         if (pool->next_mapping)
2147                 mempool_free(pool->next_mapping, pool->mapping_pool);
2148         mempool_destroy(pool->mapping_pool);
2149         dm_deferred_set_destroy(pool->shared_read_ds);
2150         dm_deferred_set_destroy(pool->all_io_ds);
2151         kfree(pool);
2152 }
2153
2154 static struct kmem_cache *_new_mapping_cache;
2155
2156 static struct pool *pool_create(struct mapped_device *pool_md,
2157                                 struct block_device *metadata_dev,
2158                                 unsigned long block_size,
2159                                 int read_only, char **error)
2160 {
2161         int r;
2162         void *err_p;
2163         struct pool *pool;
2164         struct dm_pool_metadata *pmd;
2165         bool format_device = read_only ? false : true;
2166
2167         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2168         if (IS_ERR(pmd)) {
2169                 *error = "Error creating metadata object";
2170                 return (struct pool *)pmd;
2171         }
2172
2173         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2174         if (!pool) {
2175                 *error = "Error allocating memory for pool";
2176                 err_p = ERR_PTR(-ENOMEM);
2177                 goto bad_pool;
2178         }
2179
2180         pool->pmd = pmd;
2181         pool->sectors_per_block = block_size;
2182         if (block_size & (block_size - 1))
2183                 pool->sectors_per_block_shift = -1;
2184         else
2185                 pool->sectors_per_block_shift = __ffs(block_size);
2186         pool->low_water_blocks = 0;
2187         pool_features_init(&pool->pf);
2188         pool->prison = dm_bio_prison_create(PRISON_CELLS);
2189         if (!pool->prison) {
2190                 *error = "Error creating pool's bio prison";
2191                 err_p = ERR_PTR(-ENOMEM);
2192                 goto bad_prison;
2193         }
2194
2195         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2196         if (IS_ERR(pool->copier)) {
2197                 r = PTR_ERR(pool->copier);
2198                 *error = "Error creating pool's kcopyd client";
2199                 err_p = ERR_PTR(r);
2200                 goto bad_kcopyd_client;
2201         }
2202
2203         /*
2204          * Create singlethreaded workqueue that will service all devices
2205          * that use this metadata.
2206          */
2207         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2208         if (!pool->wq) {
2209                 *error = "Error creating pool's workqueue";
2210                 err_p = ERR_PTR(-ENOMEM);
2211                 goto bad_wq;
2212         }
2213
2214         INIT_WORK(&pool->worker, do_worker);
2215         INIT_DELAYED_WORK(&pool->waker, do_waker);
2216         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2217         spin_lock_init(&pool->lock);
2218         bio_list_init(&pool->deferred_flush_bios);
2219         INIT_LIST_HEAD(&pool->prepared_mappings);
2220         INIT_LIST_HEAD(&pool->prepared_discards);
2221         INIT_LIST_HEAD(&pool->active_thins);
2222         pool->low_water_triggered = false;
2223
2224         pool->shared_read_ds = dm_deferred_set_create();
2225         if (!pool->shared_read_ds) {
2226                 *error = "Error creating pool's shared read deferred set";
2227                 err_p = ERR_PTR(-ENOMEM);
2228                 goto bad_shared_read_ds;
2229         }
2230
2231         pool->all_io_ds = dm_deferred_set_create();
2232         if (!pool->all_io_ds) {
2233                 *error = "Error creating pool's all io deferred set";
2234                 err_p = ERR_PTR(-ENOMEM);
2235                 goto bad_all_io_ds;
2236         }
2237
2238         pool->next_mapping = NULL;
2239         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2240                                                       _new_mapping_cache);
2241         if (!pool->mapping_pool) {
2242                 *error = "Error creating pool's mapping mempool";
2243                 err_p = ERR_PTR(-ENOMEM);
2244                 goto bad_mapping_pool;
2245         }
2246
2247         pool->ref_count = 1;
2248         pool->last_commit_jiffies = jiffies;
2249         pool->pool_md = pool_md;
2250         pool->md_dev = metadata_dev;
2251         __pool_table_insert(pool);
2252
2253         return pool;
2254
2255 bad_mapping_pool:
2256         dm_deferred_set_destroy(pool->all_io_ds);
2257 bad_all_io_ds:
2258         dm_deferred_set_destroy(pool->shared_read_ds);
2259 bad_shared_read_ds:
2260         destroy_workqueue(pool->wq);
2261 bad_wq:
2262         dm_kcopyd_client_destroy(pool->copier);
2263 bad_kcopyd_client:
2264         dm_bio_prison_destroy(pool->prison);
2265 bad_prison:
2266         kfree(pool);
2267 bad_pool:
2268         if (dm_pool_metadata_close(pmd))
2269                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2270
2271         return err_p;
2272 }
2273
2274 static void __pool_inc(struct pool *pool)
2275 {
2276         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2277         pool->ref_count++;
2278 }
2279
2280 static void __pool_dec(struct pool *pool)
2281 {
2282         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2283         BUG_ON(!pool->ref_count);
2284         if (!--pool->ref_count)
2285                 __pool_destroy(pool);
2286 }
2287
2288 static struct pool *__pool_find(struct mapped_device *pool_md,
2289                                 struct block_device *metadata_dev,
2290                                 unsigned long block_size, int read_only,
2291                                 char **error, int *created)
2292 {
2293         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2294
2295         if (pool) {
2296                 if (pool->pool_md != pool_md) {
2297                         *error = "metadata device already in use by a pool";
2298                         return ERR_PTR(-EBUSY);
2299                 }
2300                 __pool_inc(pool);
2301
2302         } else {
2303                 pool = __pool_table_lookup(pool_md);
2304                 if (pool) {
2305                         if (pool->md_dev != metadata_dev) {
2306                                 *error = "different pool cannot replace a pool";
2307                                 return ERR_PTR(-EINVAL);
2308                         }
2309                         __pool_inc(pool);
2310
2311                 } else {
2312                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2313                         *created = 1;
2314                 }
2315         }
2316
2317         return pool;
2318 }
2319
2320 /*----------------------------------------------------------------
2321  * Pool target methods
2322  *--------------------------------------------------------------*/
2323 static void pool_dtr(struct dm_target *ti)
2324 {
2325         struct pool_c *pt = ti->private;
2326
2327         mutex_lock(&dm_thin_pool_table.mutex);
2328
2329         unbind_control_target(pt->pool, ti);
2330         __pool_dec(pt->pool);
2331         dm_put_device(ti, pt->metadata_dev);
2332         dm_put_device(ti, pt->data_dev);
2333         kfree(pt);
2334
2335         mutex_unlock(&dm_thin_pool_table.mutex);
2336 }
2337
2338 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2339                                struct dm_target *ti)
2340 {
2341         int r;
2342         unsigned argc;
2343         const char *arg_name;
2344
2345         static struct dm_arg _args[] = {
2346                 {0, 4, "Invalid number of pool feature arguments"},
2347         };
2348
2349         /*
2350          * No feature arguments supplied.
2351          */
2352         if (!as->argc)
2353                 return 0;
2354
2355         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2356         if (r)
2357                 return -EINVAL;
2358
2359         while (argc && !r) {
2360                 arg_name = dm_shift_arg(as);
2361                 argc--;
2362
2363                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2364                         pf->zero_new_blocks = false;
2365
2366                 else if (!strcasecmp(arg_name, "ignore_discard"))
2367                         pf->discard_enabled = false;
2368
2369                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2370                         pf->discard_passdown = false;
2371
2372                 else if (!strcasecmp(arg_name, "read_only"))
2373                         pf->mode = PM_READ_ONLY;
2374
2375                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2376                         pf->error_if_no_space = true;
2377
2378                 else {
2379                         ti->error = "Unrecognised pool feature requested";
2380                         r = -EINVAL;
2381                         break;
2382                 }
2383         }
2384
2385         return r;
2386 }
2387
2388 static void metadata_low_callback(void *context)
2389 {
2390         struct pool *pool = context;
2391
2392         DMWARN("%s: reached low water mark for metadata device: sending event.",
2393                dm_device_name(pool->pool_md));
2394
2395         dm_table_event(pool->ti->table);
2396 }
2397
2398 static sector_t get_dev_size(struct block_device *bdev)
2399 {
2400         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2401 }
2402
2403 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2404 {
2405         sector_t metadata_dev_size = get_dev_size(bdev);
2406         char buffer[BDEVNAME_SIZE];
2407
2408         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2409                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2410                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2411 }
2412
2413 static sector_t get_metadata_dev_size(struct block_device *bdev)
2414 {
2415         sector_t metadata_dev_size = get_dev_size(bdev);
2416
2417         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2418                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2419
2420         return metadata_dev_size;
2421 }
2422
2423 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2424 {
2425         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2426
2427         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2428
2429         return metadata_dev_size;
2430 }
2431
2432 /*
2433  * When a metadata threshold is crossed a dm event is triggered, and
2434  * userland should respond by growing the metadata device.  We could let
2435  * userland set the threshold, like we do with the data threshold, but I'm
2436  * not sure they know enough to do this well.
2437  */
2438 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2439 {
2440         /*
2441          * 4M is ample for all ops with the possible exception of thin
2442          * device deletion which is harmless if it fails (just retry the
2443          * delete after you've grown the device).
2444          */
2445         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2446         return min((dm_block_t)1024ULL /* 4M */, quarter);
2447 }
2448
2449 /*
2450  * thin-pool <metadata dev> <data dev>
2451  *           <data block size (sectors)>
2452  *           <low water mark (blocks)>
2453  *           [<#feature args> [<arg>]*]
2454  *
2455  * Optional feature arguments are:
2456  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2457  *           ignore_discard: disable discard
2458  *           no_discard_passdown: don't pass discards down to the data device
2459  *           read_only: Don't allow any changes to be made to the pool metadata.
2460  *           error_if_no_space: error IOs, instead of queueing, if no space.
2461  */
2462 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2463 {
2464         int r, pool_created = 0;
2465         struct pool_c *pt;
2466         struct pool *pool;
2467         struct pool_features pf;
2468         struct dm_arg_set as;
2469         struct dm_dev *data_dev;
2470         unsigned long block_size;
2471         dm_block_t low_water_blocks;
2472         struct dm_dev *metadata_dev;
2473         fmode_t metadata_mode;
2474
2475         /*
2476          * FIXME Remove validation from scope of lock.
2477          */
2478         mutex_lock(&dm_thin_pool_table.mutex);
2479
2480         if (argc < 4) {
2481                 ti->error = "Invalid argument count";
2482                 r = -EINVAL;
2483                 goto out_unlock;
2484         }
2485
2486         as.argc = argc;
2487         as.argv = argv;
2488
2489         /*
2490          * Set default pool features.
2491          */
2492         pool_features_init(&pf);
2493
2494         dm_consume_args(&as, 4);
2495         r = parse_pool_features(&as, &pf, ti);
2496         if (r)
2497                 goto out_unlock;
2498
2499         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2500         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2501         if (r) {
2502                 ti->error = "Error opening metadata block device";
2503                 goto out_unlock;
2504         }
2505         warn_if_metadata_device_too_big(metadata_dev->bdev);
2506
2507         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2508         if (r) {
2509                 ti->error = "Error getting data device";
2510                 goto out_metadata;
2511         }
2512
2513         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2514             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2515             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2516             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2517                 ti->error = "Invalid block size";
2518                 r = -EINVAL;
2519                 goto out;
2520         }
2521
2522         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2523                 ti->error = "Invalid low water mark";
2524                 r = -EINVAL;
2525                 goto out;
2526         }
2527
2528         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2529         if (!pt) {
2530                 r = -ENOMEM;
2531                 goto out;
2532         }
2533
2534         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2535                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2536         if (IS_ERR(pool)) {
2537                 r = PTR_ERR(pool);
2538                 goto out_free_pt;
2539         }
2540
2541         /*
2542          * 'pool_created' reflects whether this is the first table load.
2543          * Top level discard support is not allowed to be changed after
2544          * initial load.  This would require a pool reload to trigger thin
2545          * device changes.
2546          */
2547         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2548                 ti->error = "Discard support cannot be disabled once enabled";
2549                 r = -EINVAL;
2550                 goto out_flags_changed;
2551         }
2552
2553         pt->pool = pool;
2554         pt->ti = ti;
2555         pt->metadata_dev = metadata_dev;
2556         pt->data_dev = data_dev;
2557         pt->low_water_blocks = low_water_blocks;
2558         pt->adjusted_pf = pt->requested_pf = pf;
2559         ti->num_flush_bios = 1;
2560
2561         /*
2562          * Only need to enable discards if the pool should pass
2563          * them down to the data device.  The thin device's discard
2564          * processing will cause mappings to be removed from the btree.
2565          */
2566         ti->discard_zeroes_data_unsupported = true;
2567         if (pf.discard_enabled && pf.discard_passdown) {
2568                 ti->num_discard_bios = 1;
2569
2570                 /*
2571                  * Setting 'discards_supported' circumvents the normal
2572                  * stacking of discard limits (this keeps the pool and
2573                  * thin devices' discard limits consistent).
2574                  */
2575                 ti->discards_supported = true;
2576         }
2577         ti->private = pt;
2578
2579         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2580                                                 calc_metadata_threshold(pt),
2581                                                 metadata_low_callback,
2582                                                 pool);
2583         if (r)
2584                 goto out_free_pt;
2585
2586         pt->callbacks.congested_fn = pool_is_congested;
2587         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2588
2589         mutex_unlock(&dm_thin_pool_table.mutex);
2590
2591         return 0;
2592
2593 out_flags_changed:
2594         __pool_dec(pool);
2595 out_free_pt:
2596         kfree(pt);
2597 out:
2598         dm_put_device(ti, data_dev);
2599 out_metadata:
2600         dm_put_device(ti, metadata_dev);
2601 out_unlock:
2602         mutex_unlock(&dm_thin_pool_table.mutex);
2603
2604         return r;
2605 }
2606
2607 static int pool_map(struct dm_target *ti, struct bio *bio)
2608 {
2609         int r;
2610         struct pool_c *pt = ti->private;
2611         struct pool *pool = pt->pool;
2612         unsigned long flags;
2613
2614         /*
2615          * As this is a singleton target, ti->begin is always zero.
2616          */
2617         spin_lock_irqsave(&pool->lock, flags);
2618         bio->bi_bdev = pt->data_dev->bdev;
2619         r = DM_MAPIO_REMAPPED;
2620         spin_unlock_irqrestore(&pool->lock, flags);
2621
2622         return r;
2623 }
2624
2625 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2626 {
2627         int r;
2628         struct pool_c *pt = ti->private;
2629         struct pool *pool = pt->pool;
2630         sector_t data_size = ti->len;
2631         dm_block_t sb_data_size;
2632
2633         *need_commit = false;
2634
2635         (void) sector_div(data_size, pool->sectors_per_block);
2636
2637         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2638         if (r) {
2639                 DMERR("%s: failed to retrieve data device size",
2640                       dm_device_name(pool->pool_md));
2641                 return r;
2642         }
2643
2644         if (data_size < sb_data_size) {
2645                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2646                       dm_device_name(pool->pool_md),
2647                       (unsigned long long)data_size, sb_data_size);
2648                 return -EINVAL;
2649
2650         } else if (data_size > sb_data_size) {
2651                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2652                         DMERR("%s: unable to grow the data device until repaired.",
2653                               dm_device_name(pool->pool_md));
2654                         return 0;
2655                 }
2656
2657                 if (sb_data_size)
2658                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2659                                dm_device_name(pool->pool_md),
2660                                sb_data_size, (unsigned long long)data_size);
2661                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2662                 if (r) {
2663                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2664                         return r;
2665                 }
2666
2667                 *need_commit = true;
2668         }
2669
2670         return 0;
2671 }
2672
2673 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2674 {
2675         int r;
2676         struct pool_c *pt = ti->private;
2677         struct pool *pool = pt->pool;
2678         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2679
2680         *need_commit = false;
2681
2682         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2683
2684         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2685         if (r) {
2686                 DMERR("%s: failed to retrieve metadata device size",
2687                       dm_device_name(pool->pool_md));
2688                 return r;
2689         }
2690
2691         if (metadata_dev_size < sb_metadata_dev_size) {
2692                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2693                       dm_device_name(pool->pool_md),
2694                       metadata_dev_size, sb_metadata_dev_size);
2695                 return -EINVAL;
2696
2697         } else if (metadata_dev_size > sb_metadata_dev_size) {
2698                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2699                         DMERR("%s: unable to grow the metadata device until repaired.",
2700                               dm_device_name(pool->pool_md));
2701                         return 0;
2702                 }
2703
2704                 warn_if_metadata_device_too_big(pool->md_dev);
2705                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2706                        dm_device_name(pool->pool_md),
2707                        sb_metadata_dev_size, metadata_dev_size);
2708                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2709                 if (r) {
2710                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2711                         return r;
2712                 }
2713
2714                 *need_commit = true;
2715         }
2716
2717         return 0;
2718 }
2719
2720 /*
2721  * Retrieves the number of blocks of the data device from
2722  * the superblock and compares it to the actual device size,
2723  * thus resizing the data device in case it has grown.
2724  *
2725  * This both copes with opening preallocated data devices in the ctr
2726  * being followed by a resume
2727  * -and-
2728  * calling the resume method individually after userspace has
2729  * grown the data device in reaction to a table event.
2730  */
2731 static int pool_preresume(struct dm_target *ti)
2732 {
2733         int r;
2734         bool need_commit1, need_commit2;
2735         struct pool_c *pt = ti->private;
2736         struct pool *pool = pt->pool;
2737
2738         /*
2739          * Take control of the pool object.
2740          */
2741         r = bind_control_target(pool, ti);
2742         if (r)
2743                 return r;
2744
2745         r = maybe_resize_data_dev(ti, &need_commit1);
2746         if (r)
2747                 return r;
2748
2749         r = maybe_resize_metadata_dev(ti, &need_commit2);
2750         if (r)
2751                 return r;
2752
2753         if (need_commit1 || need_commit2)
2754                 (void) commit(pool);
2755
2756         return 0;
2757 }
2758
2759 static void pool_resume(struct dm_target *ti)
2760 {
2761         struct pool_c *pt = ti->private;
2762         struct pool *pool = pt->pool;
2763         unsigned long flags;
2764
2765         spin_lock_irqsave(&pool->lock, flags);
2766         pool->low_water_triggered = false;
2767         spin_unlock_irqrestore(&pool->lock, flags);
2768         requeue_bios(pool);
2769
2770         do_waker(&pool->waker.work);
2771 }
2772
2773 static void pool_postsuspend(struct dm_target *ti)
2774 {
2775         struct pool_c *pt = ti->private;
2776         struct pool *pool = pt->pool;
2777
2778         cancel_delayed_work(&pool->waker);
2779         cancel_delayed_work(&pool->no_space_timeout);
2780         flush_workqueue(pool->wq);
2781         (void) commit(pool);
2782 }
2783
2784 static int check_arg_count(unsigned argc, unsigned args_required)
2785 {
2786         if (argc != args_required) {
2787                 DMWARN("Message received with %u arguments instead of %u.",
2788                        argc, args_required);
2789                 return -EINVAL;
2790         }
2791
2792         return 0;
2793 }
2794
2795 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2796 {
2797         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2798             *dev_id <= MAX_DEV_ID)
2799                 return 0;
2800
2801         if (warning)
2802                 DMWARN("Message received with invalid device id: %s", arg);
2803
2804         return -EINVAL;
2805 }
2806
2807 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2808 {
2809         dm_thin_id dev_id;
2810         int r;
2811
2812         r = check_arg_count(argc, 2);
2813         if (r)
2814                 return r;
2815
2816         r = read_dev_id(argv[1], &dev_id, 1);
2817         if (r)
2818                 return r;
2819
2820         r = dm_pool_create_thin(pool->pmd, dev_id);
2821         if (r) {
2822                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2823                        argv[1]);
2824                 return r;
2825         }
2826
2827         return 0;
2828 }
2829
2830 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2831 {
2832         dm_thin_id dev_id;
2833         dm_thin_id origin_dev_id;
2834         int r;
2835
2836         r = check_arg_count(argc, 3);
2837         if (r)
2838                 return r;
2839
2840         r = read_dev_id(argv[1], &dev_id, 1);
2841         if (r)
2842                 return r;
2843
2844         r = read_dev_id(argv[2], &origin_dev_id, 1);
2845         if (r)
2846                 return r;
2847
2848         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2849         if (r) {
2850                 DMWARN("Creation of new snapshot %s of device %s failed.",
2851                        argv[1], argv[2]);
2852                 return r;
2853         }
2854
2855         return 0;
2856 }
2857
2858 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2859 {
2860         dm_thin_id dev_id;
2861         int r;
2862
2863         r = check_arg_count(argc, 2);
2864         if (r)
2865                 return r;
2866
2867         r = read_dev_id(argv[1], &dev_id, 1);
2868         if (r)
2869                 return r;
2870
2871         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2872         if (r)
2873                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2874
2875         return r;
2876 }
2877
2878 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2879 {
2880         dm_thin_id old_id, new_id;
2881         int r;
2882
2883         r = check_arg_count(argc, 3);
2884         if (r)
2885                 return r;
2886
2887         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2888                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2889                 return -EINVAL;
2890         }
2891
2892         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2893                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2894                 return -EINVAL;
2895         }
2896
2897         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2898         if (r) {
2899                 DMWARN("Failed to change transaction id from %s to %s.",
2900                        argv[1], argv[2]);
2901                 return r;
2902         }
2903
2904         return 0;
2905 }
2906
2907 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2908 {
2909         int r;
2910
2911         r = check_arg_count(argc, 1);
2912         if (r)
2913                 return r;
2914
2915         (void) commit(pool);
2916
2917         r = dm_pool_reserve_metadata_snap(pool->pmd);
2918         if (r)
2919                 DMWARN("reserve_metadata_snap message failed.");
2920
2921         return r;
2922 }
2923
2924 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2925 {
2926         int r;
2927
2928         r = check_arg_count(argc, 1);
2929         if (r)
2930                 return r;
2931
2932         r = dm_pool_release_metadata_snap(pool->pmd);
2933         if (r)
2934                 DMWARN("release_metadata_snap message failed.");
2935
2936         return r;
2937 }
2938
2939 /*
2940  * Messages supported:
2941  *   create_thin        <dev_id>
2942  *   create_snap        <dev_id> <origin_id>
2943  *   delete             <dev_id>
2944  *   trim               <dev_id> <new_size_in_sectors>
2945  *   set_transaction_id <current_trans_id> <new_trans_id>
2946  *   reserve_metadata_snap
2947  *   release_metadata_snap
2948  */
2949 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2950 {
2951         int r = -EINVAL;
2952         struct pool_c *pt = ti->private;
2953         struct pool *pool = pt->pool;
2954
2955         if (!strcasecmp(argv[0], "create_thin"))
2956                 r = process_create_thin_mesg(argc, argv, pool);
2957
2958         else if (!strcasecmp(argv[0], "create_snap"))
2959                 r = process_create_snap_mesg(argc, argv, pool);
2960
2961         else if (!strcasecmp(argv[0], "delete"))
2962                 r = process_delete_mesg(argc, argv, pool);
2963
2964         else if (!strcasecmp(argv[0], "set_transaction_id"))
2965                 r = process_set_transaction_id_mesg(argc, argv, pool);
2966
2967         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2968                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2969
2970         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2971                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2972
2973         else
2974                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2975
2976         if (!r)
2977                 (void) commit(pool);
2978
2979         return r;
2980 }
2981
2982 static void emit_flags(struct pool_features *pf, char *result,
2983                        unsigned sz, unsigned maxlen)
2984 {
2985         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2986                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2987                 pf->error_if_no_space;
2988         DMEMIT("%u ", count);
2989
2990         if (!pf->zero_new_blocks)
2991                 DMEMIT("skip_block_zeroing ");
2992
2993         if (!pf->discard_enabled)
2994                 DMEMIT("ignore_discard ");
2995
2996         if (!pf->discard_passdown)
2997                 DMEMIT("no_discard_passdown ");
2998
2999         if (pf->mode == PM_READ_ONLY)
3000                 DMEMIT("read_only ");
3001
3002         if (pf->error_if_no_space)
3003                 DMEMIT("error_if_no_space ");
3004 }
3005
3006 /*
3007  * Status line is:
3008  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3009  *    <used data sectors>/<total data sectors> <held metadata root>
3010  */
3011 static void pool_status(struct dm_target *ti, status_type_t type,
3012                         unsigned status_flags, char *result, unsigned maxlen)
3013 {
3014         int r;
3015         unsigned sz = 0;
3016         uint64_t transaction_id;
3017         dm_block_t nr_free_blocks_data;
3018         dm_block_t nr_free_blocks_metadata;
3019         dm_block_t nr_blocks_data;
3020         dm_block_t nr_blocks_metadata;
3021         dm_block_t held_root;
3022         char buf[BDEVNAME_SIZE];
3023         char buf2[BDEVNAME_SIZE];
3024         struct pool_c *pt = ti->private;
3025         struct pool *pool = pt->pool;
3026
3027         switch (type) {
3028         case STATUSTYPE_INFO:
3029                 if (get_pool_mode(pool) == PM_FAIL) {
3030                         DMEMIT("Fail");
3031                         break;
3032                 }
3033
3034                 /* Commit to ensure statistics aren't out-of-date */
3035                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3036                         (void) commit(pool);
3037
3038                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3039                 if (r) {
3040                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3041                               dm_device_name(pool->pool_md), r);
3042                         goto err;
3043                 }
3044
3045                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3046                 if (r) {
3047                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3048                               dm_device_name(pool->pool_md), r);
3049                         goto err;
3050                 }
3051
3052                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3053                 if (r) {
3054                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3055                               dm_device_name(pool->pool_md), r);
3056                         goto err;
3057                 }
3058
3059                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3060                 if (r) {
3061                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3062                               dm_device_name(pool->pool_md), r);
3063                         goto err;
3064                 }
3065
3066                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3067                 if (r) {
3068                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3069                               dm_device_name(pool->pool_md), r);
3070                         goto err;
3071                 }
3072
3073                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3074                 if (r) {
3075                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3076                               dm_device_name(pool->pool_md), r);
3077                         goto err;
3078                 }
3079
3080                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3081                        (unsigned long long)transaction_id,
3082                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3083                        (unsigned long long)nr_blocks_metadata,
3084                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3085                        (unsigned long long)nr_blocks_data);
3086
3087                 if (held_root)
3088                         DMEMIT("%llu ", held_root);
3089                 else
3090                         DMEMIT("- ");
3091
3092                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3093                         DMEMIT("out_of_data_space ");
3094                 else if (pool->pf.mode == PM_READ_ONLY)
3095                         DMEMIT("ro ");
3096                 else
3097                         DMEMIT("rw ");
3098
3099                 if (!pool->pf.discard_enabled)
3100                         DMEMIT("ignore_discard ");
3101                 else if (pool->pf.discard_passdown)
3102                         DMEMIT("discard_passdown ");
3103                 else
3104                         DMEMIT("no_discard_passdown ");
3105
3106                 if (pool->pf.error_if_no_space)
3107                         DMEMIT("error_if_no_space ");
3108                 else
3109                         DMEMIT("queue_if_no_space ");
3110
3111                 break;
3112
3113         case STATUSTYPE_TABLE:
3114                 DMEMIT("%s %s %lu %llu ",
3115                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3116                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3117                        (unsigned long)pool->sectors_per_block,
3118                        (unsigned long long)pt->low_water_blocks);
3119                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3120                 break;
3121         }
3122         return;
3123
3124 err:
3125         DMEMIT("Error");
3126 }
3127
3128 static int pool_iterate_devices(struct dm_target *ti,
3129                                 iterate_devices_callout_fn fn, void *data)
3130 {
3131         struct pool_c *pt = ti->private;
3132
3133         return fn(ti, pt->data_dev, 0, ti->len, data);
3134 }
3135
3136 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3137                       struct bio_vec *biovec, int max_size)
3138 {
3139         struct pool_c *pt = ti->private;
3140         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3141
3142         if (!q->merge_bvec_fn)
3143                 return max_size;
3144
3145         bvm->bi_bdev = pt->data_dev->bdev;
3146
3147         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3148 }
3149
3150 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3151 {
3152         struct pool *pool = pt->pool;
3153         struct queue_limits *data_limits;
3154
3155         limits->max_discard_sectors = pool->sectors_per_block;
3156
3157         /*
3158          * discard_granularity is just a hint, and not enforced.
3159          */
3160         if (pt->adjusted_pf.discard_passdown) {
3161                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3162                 limits->discard_granularity = max(data_limits->discard_granularity,
3163                                                   pool->sectors_per_block << SECTOR_SHIFT);
3164         } else
3165                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3166 }
3167
3168 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3169 {
3170         struct pool_c *pt = ti->private;
3171         struct pool *pool = pt->pool;
3172         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3173
3174         /*
3175          * If the system-determined stacked limits are compatible with the
3176          * pool's blocksize (io_opt is a factor) do not override them.
3177          */
3178         if (io_opt_sectors < pool->sectors_per_block ||
3179             do_div(io_opt_sectors, pool->sectors_per_block)) {
3180                 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3181                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3182         }
3183
3184         /*
3185          * pt->adjusted_pf is a staging area for the actual features to use.
3186          * They get transferred to the live pool in bind_control_target()
3187          * called from pool_preresume().
3188          */
3189         if (!pt->adjusted_pf.discard_enabled) {
3190                 /*
3191                  * Must explicitly disallow stacking discard limits otherwise the
3192                  * block layer will stack them if pool's data device has support.
3193                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3194                  * user to see that, so make sure to set all discard limits to 0.
3195                  */
3196                 limits->discard_granularity = 0;
3197                 return;
3198         }
3199
3200         disable_passdown_if_not_supported(pt);
3201
3202         set_discard_limits(pt, limits);
3203 }
3204
3205 static struct target_type pool_target = {
3206         .name = "thin-pool",
3207         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3208                     DM_TARGET_IMMUTABLE,
3209         .version = {1, 13, 0},
3210         .module = THIS_MODULE,
3211         .ctr = pool_ctr,
3212         .dtr = pool_dtr,
3213         .map = pool_map,
3214         .postsuspend = pool_postsuspend,
3215         .preresume = pool_preresume,
3216         .resume = pool_resume,
3217         .message = pool_message,
3218         .status = pool_status,
3219         .merge = pool_merge,
3220         .iterate_devices = pool_iterate_devices,
3221         .io_hints = pool_io_hints,
3222 };
3223
3224 /*----------------------------------------------------------------
3225  * Thin target methods
3226  *--------------------------------------------------------------*/
3227 static void thin_get(struct thin_c *tc)
3228 {
3229         atomic_inc(&tc->refcount);
3230 }
3231
3232 static void thin_put(struct thin_c *tc)
3233 {
3234         if (atomic_dec_and_test(&tc->refcount))
3235                 complete(&tc->can_destroy);
3236 }
3237
3238 static void thin_dtr(struct dm_target *ti)
3239 {
3240         struct thin_c *tc = ti->private;
3241         unsigned long flags;
3242
3243         thin_put(tc);
3244         wait_for_completion(&tc->can_destroy);
3245
3246         spin_lock_irqsave(&tc->pool->lock, flags);
3247         list_del_rcu(&tc->list);
3248         spin_unlock_irqrestore(&tc->pool->lock, flags);
3249         synchronize_rcu();
3250
3251         mutex_lock(&dm_thin_pool_table.mutex);
3252
3253         __pool_dec(tc->pool);
3254         dm_pool_close_thin_device(tc->td);
3255         dm_put_device(ti, tc->pool_dev);
3256         if (tc->origin_dev)
3257                 dm_put_device(ti, tc->origin_dev);
3258         kfree(tc);
3259
3260         mutex_unlock(&dm_thin_pool_table.mutex);
3261 }
3262
3263 /*
3264  * Thin target parameters:
3265  *
3266  * <pool_dev> <dev_id> [origin_dev]
3267  *
3268  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3269  * dev_id: the internal device identifier
3270  * origin_dev: a device external to the pool that should act as the origin
3271  *
3272  * If the pool device has discards disabled, they get disabled for the thin
3273  * device as well.
3274  */
3275 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3276 {
3277         int r;
3278         struct thin_c *tc;
3279         struct dm_dev *pool_dev, *origin_dev;
3280         struct mapped_device *pool_md;
3281         unsigned long flags;
3282
3283         mutex_lock(&dm_thin_pool_table.mutex);
3284
3285         if (argc != 2 && argc != 3) {
3286                 ti->error = "Invalid argument count";
3287                 r = -EINVAL;
3288                 goto out_unlock;
3289         }
3290
3291         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3292         if (!tc) {
3293                 ti->error = "Out of memory";
3294                 r = -ENOMEM;
3295                 goto out_unlock;
3296         }
3297         spin_lock_init(&tc->lock);
3298         bio_list_init(&tc->deferred_bio_list);
3299         bio_list_init(&tc->retry_on_resume_list);
3300         tc->sort_bio_list = RB_ROOT;
3301
3302         if (argc == 3) {
3303                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3304                 if (r) {
3305                         ti->error = "Error opening origin device";
3306                         goto bad_origin_dev;
3307                 }
3308                 tc->origin_dev = origin_dev;
3309         }
3310
3311         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3312         if (r) {
3313                 ti->error = "Error opening pool device";
3314                 goto bad_pool_dev;
3315         }
3316         tc->pool_dev = pool_dev;
3317
3318         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3319                 ti->error = "Invalid device id";
3320                 r = -EINVAL;
3321                 goto bad_common;
3322         }
3323
3324         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3325         if (!pool_md) {
3326                 ti->error = "Couldn't get pool mapped device";
3327                 r = -EINVAL;
3328                 goto bad_common;
3329         }
3330
3331         tc->pool = __pool_table_lookup(pool_md);
3332         if (!tc->pool) {
3333                 ti->error = "Couldn't find pool object";
3334                 r = -EINVAL;
3335                 goto bad_pool_lookup;
3336         }
3337         __pool_inc(tc->pool);
3338
3339         if (get_pool_mode(tc->pool) == PM_FAIL) {
3340                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3341                 r = -EINVAL;
3342                 goto bad_thin_open;
3343         }
3344
3345         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3346         if (r) {
3347                 ti->error = "Couldn't open thin internal device";
3348                 goto bad_thin_open;
3349         }
3350
3351         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3352         if (r)
3353                 goto bad_target_max_io_len;
3354
3355         ti->num_flush_bios = 1;
3356         ti->flush_supported = true;
3357         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3358
3359         /* In case the pool supports discards, pass them on. */
3360         ti->discard_zeroes_data_unsupported = true;
3361         if (tc->pool->pf.discard_enabled) {
3362                 ti->discards_supported = true;
3363                 ti->num_discard_bios = 1;
3364                 /* Discard bios must be split on a block boundary */
3365                 ti->split_discard_bios = true;
3366         }
3367
3368         dm_put(pool_md);
3369
3370         mutex_unlock(&dm_thin_pool_table.mutex);
3371
3372         atomic_set(&tc->refcount, 1);
3373         init_completion(&tc->can_destroy);
3374
3375         spin_lock_irqsave(&tc->pool->lock, flags);
3376         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3377         spin_unlock_irqrestore(&tc->pool->lock, flags);
3378         /*
3379          * This synchronize_rcu() call is needed here otherwise we risk a
3380          * wake_worker() call finding no bios to process (because the newly
3381          * added tc isn't yet visible).  So this reduces latency since we
3382          * aren't then dependent on the periodic commit to wake_worker().
3383          */
3384         synchronize_rcu();
3385
3386         return 0;
3387
3388 bad_target_max_io_len:
3389         dm_pool_close_thin_device(tc->td);
3390 bad_thin_open:
3391         __pool_dec(tc->pool);
3392 bad_pool_lookup:
3393         dm_put(pool_md);
3394 bad_common:
3395         dm_put_device(ti, tc->pool_dev);
3396 bad_pool_dev:
3397         if (tc->origin_dev)
3398                 dm_put_device(ti, tc->origin_dev);
3399 bad_origin_dev:
3400         kfree(tc);
3401 out_unlock:
3402         mutex_unlock(&dm_thin_pool_table.mutex);
3403
3404         return r;
3405 }
3406
3407 static int thin_map(struct dm_target *ti, struct bio *bio)
3408 {
3409         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3410
3411         return thin_bio_map(ti, bio);
3412 }
3413
3414 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3415 {
3416         unsigned long flags;
3417         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3418         struct list_head work;
3419         struct dm_thin_new_mapping *m, *tmp;
3420         struct pool *pool = h->tc->pool;
3421
3422         if (h->shared_read_entry) {
3423                 INIT_LIST_HEAD(&work);
3424                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3425
3426                 spin_lock_irqsave(&pool->lock, flags);
3427                 list_for_each_entry_safe(m, tmp, &work, list) {
3428                         list_del(&m->list);
3429                         __complete_mapping_preparation(m);
3430                 }
3431                 spin_unlock_irqrestore(&pool->lock, flags);
3432         }
3433
3434         if (h->all_io_entry) {
3435                 INIT_LIST_HEAD(&work);
3436                 dm_deferred_entry_dec(h->all_io_entry, &work);
3437                 if (!list_empty(&work)) {
3438                         spin_lock_irqsave(&pool->lock, flags);
3439                         list_for_each_entry_safe(m, tmp, &work, list)
3440                                 list_add_tail(&m->list, &pool->prepared_discards);
3441                         spin_unlock_irqrestore(&pool->lock, flags);
3442                         wake_worker(pool);
3443                 }
3444         }
3445
3446         return 0;
3447 }
3448
3449 static void thin_presuspend(struct dm_target *ti)
3450 {
3451         struct thin_c *tc = ti->private;
3452
3453         if (dm_noflush_suspending(ti))
3454                 noflush_work(tc, do_noflush_start);
3455 }
3456
3457 static void thin_postsuspend(struct dm_target *ti)
3458 {
3459         struct thin_c *tc = ti->private;
3460
3461         /*
3462          * The dm_noflush_suspending flag has been cleared by now, so
3463          * unfortunately we must always run this.
3464          */
3465         noflush_work(tc, do_noflush_stop);
3466 }
3467
3468 static int thin_preresume(struct dm_target *ti)
3469 {
3470         struct thin_c *tc = ti->private;
3471
3472         if (tc->origin_dev)
3473                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3474
3475         return 0;
3476 }
3477
3478 /*
3479  * <nr mapped sectors> <highest mapped sector>
3480  */
3481 static void thin_status(struct dm_target *ti, status_type_t type,
3482                         unsigned status_flags, char *result, unsigned maxlen)
3483 {
3484         int r;
3485         ssize_t sz = 0;
3486         dm_block_t mapped, highest;
3487         char buf[BDEVNAME_SIZE];
3488         struct thin_c *tc = ti->private;
3489
3490         if (get_pool_mode(tc->pool) == PM_FAIL) {
3491                 DMEMIT("Fail");
3492                 return;
3493         }
3494
3495         if (!tc->td)
3496                 DMEMIT("-");
3497         else {
3498                 switch (type) {
3499                 case STATUSTYPE_INFO:
3500                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3501                         if (r) {
3502                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3503                                 goto err;
3504                         }
3505
3506                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3507                         if (r < 0) {
3508                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3509                                 goto err;
3510                         }
3511
3512                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3513                         if (r)
3514                                 DMEMIT("%llu", ((highest + 1) *
3515                                                 tc->pool->sectors_per_block) - 1);
3516                         else
3517                                 DMEMIT("-");
3518                         break;
3519
3520                 case STATUSTYPE_TABLE:
3521                         DMEMIT("%s %lu",
3522                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3523                                (unsigned long) tc->dev_id);
3524                         if (tc->origin_dev)
3525                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3526                         break;
3527                 }
3528         }
3529
3530         return;
3531
3532 err:
3533         DMEMIT("Error");
3534 }
3535
3536 static int thin_iterate_devices(struct dm_target *ti,
3537                                 iterate_devices_callout_fn fn, void *data)
3538 {
3539         sector_t blocks;
3540         struct thin_c *tc = ti->private;
3541         struct pool *pool = tc->pool;
3542
3543         /*
3544          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3545          * we follow a more convoluted path through to the pool's target.
3546          */
3547         if (!pool->ti)
3548                 return 0;       /* nothing is bound */
3549
3550         blocks = pool->ti->len;
3551         (void) sector_div(blocks, pool->sectors_per_block);
3552         if (blocks)
3553                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3554
3555         return 0;
3556 }
3557
3558 static struct target_type thin_target = {
3559         .name = "thin",
3560         .version = {1, 13, 0},
3561         .module = THIS_MODULE,
3562         .ctr = thin_ctr,
3563         .dtr = thin_dtr,
3564         .map = thin_map,
3565         .end_io = thin_endio,
3566         .preresume = thin_preresume,
3567         .presuspend = thin_presuspend,
3568         .postsuspend = thin_postsuspend,
3569         .status = thin_status,
3570         .iterate_devices = thin_iterate_devices,
3571 };
3572
3573 /*----------------------------------------------------------------*/
3574
3575 static int __init dm_thin_init(void)
3576 {
3577         int r;
3578
3579         pool_table_init();
3580
3581         r = dm_register_target(&thin_target);
3582         if (r)
3583                 return r;
3584
3585         r = dm_register_target(&pool_target);
3586         if (r)
3587                 goto bad_pool_target;
3588
3589         r = -ENOMEM;
3590
3591         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3592         if (!_new_mapping_cache)
3593                 goto bad_new_mapping_cache;
3594
3595         return 0;
3596
3597 bad_new_mapping_cache:
3598         dm_unregister_target(&pool_target);
3599 bad_pool_target:
3600         dm_unregister_target(&thin_target);
3601
3602         return r;
3603 }
3604
3605 static void dm_thin_exit(void)
3606 {
3607         dm_unregister_target(&thin_target);
3608         dm_unregister_target(&pool_target);
3609
3610         kmem_cache_destroy(_new_mapping_cache);
3611 }
3612
3613 module_init(dm_thin_init);
3614 module_exit(dm_thin_exit);
3615
3616 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3617 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3618
3619 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3620 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3621 MODULE_LICENSE("GPL");