Merge tag 'pr-20141223-x86-vdso' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/sort.h>
21 #include <linux/rbtree.h>
22
23 #define DM_MSG_PREFIX   "thin"
24
25 /*
26  * Tunable constants
27  */
28 #define ENDIO_HOOK_POOL_SIZE 1024
29 #define MAPPING_POOL_SIZE 1024
30 #define COMMIT_PERIOD HZ
31 #define NO_SPACE_TIMEOUT_SECS 60
32
33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34
35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
36                 "A percentage of time allocated for copy on write");
37
38 /*
39  * The block size of the device holding pool data must be
40  * between 64KB and 1GB.
41  */
42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
44
45 /*
46  * Device id is restricted to 24 bits.
47  */
48 #define MAX_DEV_ID ((1 << 24) - 1)
49
50 /*
51  * How do we handle breaking sharing of data blocks?
52  * =================================================
53  *
54  * We use a standard copy-on-write btree to store the mappings for the
55  * devices (note I'm talking about copy-on-write of the metadata here, not
56  * the data).  When you take an internal snapshot you clone the root node
57  * of the origin btree.  After this there is no concept of an origin or a
58  * snapshot.  They are just two device trees that happen to point to the
59  * same data blocks.
60  *
61  * When we get a write in we decide if it's to a shared data block using
62  * some timestamp magic.  If it is, we have to break sharing.
63  *
64  * Let's say we write to a shared block in what was the origin.  The
65  * steps are:
66  *
67  * i) plug io further to this physical block. (see bio_prison code).
68  *
69  * ii) quiesce any read io to that shared data block.  Obviously
70  * including all devices that share this block.  (see dm_deferred_set code)
71  *
72  * iii) copy the data block to a newly allocate block.  This step can be
73  * missed out if the io covers the block. (schedule_copy).
74  *
75  * iv) insert the new mapping into the origin's btree
76  * (process_prepared_mapping).  This act of inserting breaks some
77  * sharing of btree nodes between the two devices.  Breaking sharing only
78  * effects the btree of that specific device.  Btrees for the other
79  * devices that share the block never change.  The btree for the origin
80  * device as it was after the last commit is untouched, ie. we're using
81  * persistent data structures in the functional programming sense.
82  *
83  * v) unplug io to this physical block, including the io that triggered
84  * the breaking of sharing.
85  *
86  * Steps (ii) and (iii) occur in parallel.
87  *
88  * The metadata _doesn't_ need to be committed before the io continues.  We
89  * get away with this because the io is always written to a _new_ block.
90  * If there's a crash, then:
91  *
92  * - The origin mapping will point to the old origin block (the shared
93  * one).  This will contain the data as it was before the io that triggered
94  * the breaking of sharing came in.
95  *
96  * - The snap mapping still points to the old block.  As it would after
97  * the commit.
98  *
99  * The downside of this scheme is the timestamp magic isn't perfect, and
100  * will continue to think that data block in the snapshot device is shared
101  * even after the write to the origin has broken sharing.  I suspect data
102  * blocks will typically be shared by many different devices, so we're
103  * breaking sharing n + 1 times, rather than n, where n is the number of
104  * devices that reference this data block.  At the moment I think the
105  * benefits far, far outweigh the disadvantages.
106  */
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * Key building.
112  */
113 static void build_data_key(struct dm_thin_device *td,
114                            dm_block_t b, struct dm_cell_key *key)
115 {
116         key->virtual = 0;
117         key->dev = dm_thin_dev_id(td);
118         key->block_begin = b;
119         key->block_end = b + 1ULL;
120 }
121
122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
123                               struct dm_cell_key *key)
124 {
125         key->virtual = 1;
126         key->dev = dm_thin_dev_id(td);
127         key->block_begin = b;
128         key->block_end = b + 1ULL;
129 }
130
131 /*----------------------------------------------------------------*/
132
133 #define THROTTLE_THRESHOLD (1 * HZ)
134
135 struct throttle {
136         struct rw_semaphore lock;
137         unsigned long threshold;
138         bool throttle_applied;
139 };
140
141 static void throttle_init(struct throttle *t)
142 {
143         init_rwsem(&t->lock);
144         t->throttle_applied = false;
145 }
146
147 static void throttle_work_start(struct throttle *t)
148 {
149         t->threshold = jiffies + THROTTLE_THRESHOLD;
150 }
151
152 static void throttle_work_update(struct throttle *t)
153 {
154         if (!t->throttle_applied && jiffies > t->threshold) {
155                 down_write(&t->lock);
156                 t->throttle_applied = true;
157         }
158 }
159
160 static void throttle_work_complete(struct throttle *t)
161 {
162         if (t->throttle_applied) {
163                 t->throttle_applied = false;
164                 up_write(&t->lock);
165         }
166 }
167
168 static void throttle_lock(struct throttle *t)
169 {
170         down_read(&t->lock);
171 }
172
173 static void throttle_unlock(struct throttle *t)
174 {
175         up_read(&t->lock);
176 }
177
178 /*----------------------------------------------------------------*/
179
180 /*
181  * A pool device ties together a metadata device and a data device.  It
182  * also provides the interface for creating and destroying internal
183  * devices.
184  */
185 struct dm_thin_new_mapping;
186
187 /*
188  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
189  */
190 enum pool_mode {
191         PM_WRITE,               /* metadata may be changed */
192         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
193         PM_READ_ONLY,           /* metadata may not be changed */
194         PM_FAIL,                /* all I/O fails */
195 };
196
197 struct pool_features {
198         enum pool_mode mode;
199
200         bool zero_new_blocks:1;
201         bool discard_enabled:1;
202         bool discard_passdown:1;
203         bool error_if_no_space:1;
204 };
205
206 struct thin_c;
207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
210
211 #define CELL_SORT_ARRAY_SIZE 8192
212
213 struct pool {
214         struct list_head list;
215         struct dm_target *ti;   /* Only set if a pool target is bound */
216
217         struct mapped_device *pool_md;
218         struct block_device *md_dev;
219         struct dm_pool_metadata *pmd;
220
221         dm_block_t low_water_blocks;
222         uint32_t sectors_per_block;
223         int sectors_per_block_shift;
224
225         struct pool_features pf;
226         bool low_water_triggered:1;     /* A dm event has been sent */
227         bool suspended:1;
228
229         struct dm_bio_prison *prison;
230         struct dm_kcopyd_client *copier;
231
232         struct workqueue_struct *wq;
233         struct throttle throttle;
234         struct work_struct worker;
235         struct delayed_work waker;
236         struct delayed_work no_space_timeout;
237
238         unsigned long last_commit_jiffies;
239         unsigned ref_count;
240
241         spinlock_t lock;
242         struct bio_list deferred_flush_bios;
243         struct list_head prepared_mappings;
244         struct list_head prepared_discards;
245         struct list_head active_thins;
246
247         struct dm_deferred_set *shared_read_ds;
248         struct dm_deferred_set *all_io_ds;
249
250         struct dm_thin_new_mapping *next_mapping;
251         mempool_t *mapping_pool;
252
253         process_bio_fn process_bio;
254         process_bio_fn process_discard;
255
256         process_cell_fn process_cell;
257         process_cell_fn process_discard_cell;
258
259         process_mapping_fn process_prepared_mapping;
260         process_mapping_fn process_prepared_discard;
261
262         struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
263 };
264
265 static enum pool_mode get_pool_mode(struct pool *pool);
266 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
267
268 /*
269  * Target context for a pool.
270  */
271 struct pool_c {
272         struct dm_target *ti;
273         struct pool *pool;
274         struct dm_dev *data_dev;
275         struct dm_dev *metadata_dev;
276         struct dm_target_callbacks callbacks;
277
278         dm_block_t low_water_blocks;
279         struct pool_features requested_pf; /* Features requested during table load */
280         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
281 };
282
283 /*
284  * Target context for a thin.
285  */
286 struct thin_c {
287         struct list_head list;
288         struct dm_dev *pool_dev;
289         struct dm_dev *origin_dev;
290         sector_t origin_size;
291         dm_thin_id dev_id;
292
293         struct pool *pool;
294         struct dm_thin_device *td;
295         struct mapped_device *thin_md;
296
297         bool requeue_mode:1;
298         spinlock_t lock;
299         struct list_head deferred_cells;
300         struct bio_list deferred_bio_list;
301         struct bio_list retry_on_resume_list;
302         struct rb_root sort_bio_list; /* sorted list of deferred bios */
303
304         /*
305          * Ensures the thin is not destroyed until the worker has finished
306          * iterating the active_thins list.
307          */
308         atomic_t refcount;
309         struct completion can_destroy;
310 };
311
312 /*----------------------------------------------------------------*/
313
314 /*
315  * wake_worker() is used when new work is queued and when pool_resume is
316  * ready to continue deferred IO processing.
317  */
318 static void wake_worker(struct pool *pool)
319 {
320         queue_work(pool->wq, &pool->worker);
321 }
322
323 /*----------------------------------------------------------------*/
324
325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
326                       struct dm_bio_prison_cell **cell_result)
327 {
328         int r;
329         struct dm_bio_prison_cell *cell_prealloc;
330
331         /*
332          * Allocate a cell from the prison's mempool.
333          * This might block but it can't fail.
334          */
335         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
336
337         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
338         if (r)
339                 /*
340                  * We reused an old cell; we can get rid of
341                  * the new one.
342                  */
343                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
344
345         return r;
346 }
347
348 static void cell_release(struct pool *pool,
349                          struct dm_bio_prison_cell *cell,
350                          struct bio_list *bios)
351 {
352         dm_cell_release(pool->prison, cell, bios);
353         dm_bio_prison_free_cell(pool->prison, cell);
354 }
355
356 static void cell_visit_release(struct pool *pool,
357                                void (*fn)(void *, struct dm_bio_prison_cell *),
358                                void *context,
359                                struct dm_bio_prison_cell *cell)
360 {
361         dm_cell_visit_release(pool->prison, fn, context, cell);
362         dm_bio_prison_free_cell(pool->prison, cell);
363 }
364
365 static void cell_release_no_holder(struct pool *pool,
366                                    struct dm_bio_prison_cell *cell,
367                                    struct bio_list *bios)
368 {
369         dm_cell_release_no_holder(pool->prison, cell, bios);
370         dm_bio_prison_free_cell(pool->prison, cell);
371 }
372
373 static void cell_error_with_code(struct pool *pool,
374                                  struct dm_bio_prison_cell *cell, int error_code)
375 {
376         dm_cell_error(pool->prison, cell, error_code);
377         dm_bio_prison_free_cell(pool->prison, cell);
378 }
379
380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
381 {
382         cell_error_with_code(pool, cell, -EIO);
383 }
384
385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
386 {
387         cell_error_with_code(pool, cell, 0);
388 }
389
390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
391 {
392         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
393 }
394
395 /*----------------------------------------------------------------*/
396
397 /*
398  * A global list of pools that uses a struct mapped_device as a key.
399  */
400 static struct dm_thin_pool_table {
401         struct mutex mutex;
402         struct list_head pools;
403 } dm_thin_pool_table;
404
405 static void pool_table_init(void)
406 {
407         mutex_init(&dm_thin_pool_table.mutex);
408         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
409 }
410
411 static void __pool_table_insert(struct pool *pool)
412 {
413         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
414         list_add(&pool->list, &dm_thin_pool_table.pools);
415 }
416
417 static void __pool_table_remove(struct pool *pool)
418 {
419         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
420         list_del(&pool->list);
421 }
422
423 static struct pool *__pool_table_lookup(struct mapped_device *md)
424 {
425         struct pool *pool = NULL, *tmp;
426
427         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
428
429         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
430                 if (tmp->pool_md == md) {
431                         pool = tmp;
432                         break;
433                 }
434         }
435
436         return pool;
437 }
438
439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
440 {
441         struct pool *pool = NULL, *tmp;
442
443         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
444
445         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
446                 if (tmp->md_dev == md_dev) {
447                         pool = tmp;
448                         break;
449                 }
450         }
451
452         return pool;
453 }
454
455 /*----------------------------------------------------------------*/
456
457 struct dm_thin_endio_hook {
458         struct thin_c *tc;
459         struct dm_deferred_entry *shared_read_entry;
460         struct dm_deferred_entry *all_io_entry;
461         struct dm_thin_new_mapping *overwrite_mapping;
462         struct rb_node rb_node;
463 };
464
465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
466 {
467         bio_list_merge(bios, master);
468         bio_list_init(master);
469 }
470
471 static void error_bio_list(struct bio_list *bios, int error)
472 {
473         struct bio *bio;
474
475         while ((bio = bio_list_pop(bios)))
476                 bio_endio(bio, error);
477 }
478
479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
480 {
481         struct bio_list bios;
482         unsigned long flags;
483
484         bio_list_init(&bios);
485
486         spin_lock_irqsave(&tc->lock, flags);
487         __merge_bio_list(&bios, master);
488         spin_unlock_irqrestore(&tc->lock, flags);
489
490         error_bio_list(&bios, error);
491 }
492
493 static void requeue_deferred_cells(struct thin_c *tc)
494 {
495         struct pool *pool = tc->pool;
496         unsigned long flags;
497         struct list_head cells;
498         struct dm_bio_prison_cell *cell, *tmp;
499
500         INIT_LIST_HEAD(&cells);
501
502         spin_lock_irqsave(&tc->lock, flags);
503         list_splice_init(&tc->deferred_cells, &cells);
504         spin_unlock_irqrestore(&tc->lock, flags);
505
506         list_for_each_entry_safe(cell, tmp, &cells, user_list)
507                 cell_requeue(pool, cell);
508 }
509
510 static void requeue_io(struct thin_c *tc)
511 {
512         struct bio_list bios;
513         unsigned long flags;
514
515         bio_list_init(&bios);
516
517         spin_lock_irqsave(&tc->lock, flags);
518         __merge_bio_list(&bios, &tc->deferred_bio_list);
519         __merge_bio_list(&bios, &tc->retry_on_resume_list);
520         spin_unlock_irqrestore(&tc->lock, flags);
521
522         error_bio_list(&bios, DM_ENDIO_REQUEUE);
523         requeue_deferred_cells(tc);
524 }
525
526 static void error_retry_list(struct pool *pool)
527 {
528         struct thin_c *tc;
529
530         rcu_read_lock();
531         list_for_each_entry_rcu(tc, &pool->active_thins, list)
532                 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
533         rcu_read_unlock();
534 }
535
536 /*
537  * This section of code contains the logic for processing a thin device's IO.
538  * Much of the code depends on pool object resources (lists, workqueues, etc)
539  * but most is exclusively called from the thin target rather than the thin-pool
540  * target.
541  */
542
543 static bool block_size_is_power_of_two(struct pool *pool)
544 {
545         return pool->sectors_per_block_shift >= 0;
546 }
547
548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
549 {
550         struct pool *pool = tc->pool;
551         sector_t block_nr = bio->bi_iter.bi_sector;
552
553         if (block_size_is_power_of_two(pool))
554                 block_nr >>= pool->sectors_per_block_shift;
555         else
556                 (void) sector_div(block_nr, pool->sectors_per_block);
557
558         return block_nr;
559 }
560
561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
562 {
563         struct pool *pool = tc->pool;
564         sector_t bi_sector = bio->bi_iter.bi_sector;
565
566         bio->bi_bdev = tc->pool_dev->bdev;
567         if (block_size_is_power_of_two(pool))
568                 bio->bi_iter.bi_sector =
569                         (block << pool->sectors_per_block_shift) |
570                         (bi_sector & (pool->sectors_per_block - 1));
571         else
572                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
573                                  sector_div(bi_sector, pool->sectors_per_block);
574 }
575
576 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
577 {
578         bio->bi_bdev = tc->origin_dev->bdev;
579 }
580
581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
582 {
583         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
584                 dm_thin_changed_this_transaction(tc->td);
585 }
586
587 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
588 {
589         struct dm_thin_endio_hook *h;
590
591         if (bio->bi_rw & REQ_DISCARD)
592                 return;
593
594         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
595         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
596 }
597
598 static void issue(struct thin_c *tc, struct bio *bio)
599 {
600         struct pool *pool = tc->pool;
601         unsigned long flags;
602
603         if (!bio_triggers_commit(tc, bio)) {
604                 generic_make_request(bio);
605                 return;
606         }
607
608         /*
609          * Complete bio with an error if earlier I/O caused changes to
610          * the metadata that can't be committed e.g, due to I/O errors
611          * on the metadata device.
612          */
613         if (dm_thin_aborted_changes(tc->td)) {
614                 bio_io_error(bio);
615                 return;
616         }
617
618         /*
619          * Batch together any bios that trigger commits and then issue a
620          * single commit for them in process_deferred_bios().
621          */
622         spin_lock_irqsave(&pool->lock, flags);
623         bio_list_add(&pool->deferred_flush_bios, bio);
624         spin_unlock_irqrestore(&pool->lock, flags);
625 }
626
627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
628 {
629         remap_to_origin(tc, bio);
630         issue(tc, bio);
631 }
632
633 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
634                             dm_block_t block)
635 {
636         remap(tc, bio, block);
637         issue(tc, bio);
638 }
639
640 /*----------------------------------------------------------------*/
641
642 /*
643  * Bio endio functions.
644  */
645 struct dm_thin_new_mapping {
646         struct list_head list;
647
648         bool pass_discard:1;
649         bool definitely_not_shared:1;
650
651         /*
652          * Track quiescing, copying and zeroing preparation actions.  When this
653          * counter hits zero the block is prepared and can be inserted into the
654          * btree.
655          */
656         atomic_t prepare_actions;
657
658         int err;
659         struct thin_c *tc;
660         dm_block_t virt_block;
661         dm_block_t data_block;
662         struct dm_bio_prison_cell *cell, *cell2;
663
664         /*
665          * If the bio covers the whole area of a block then we can avoid
666          * zeroing or copying.  Instead this bio is hooked.  The bio will
667          * still be in the cell, so care has to be taken to avoid issuing
668          * the bio twice.
669          */
670         struct bio *bio;
671         bio_end_io_t *saved_bi_end_io;
672 };
673
674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
675 {
676         struct pool *pool = m->tc->pool;
677
678         if (atomic_dec_and_test(&m->prepare_actions)) {
679                 list_add_tail(&m->list, &pool->prepared_mappings);
680                 wake_worker(pool);
681         }
682 }
683
684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
685 {
686         unsigned long flags;
687         struct pool *pool = m->tc->pool;
688
689         spin_lock_irqsave(&pool->lock, flags);
690         __complete_mapping_preparation(m);
691         spin_unlock_irqrestore(&pool->lock, flags);
692 }
693
694 static void copy_complete(int read_err, unsigned long write_err, void *context)
695 {
696         struct dm_thin_new_mapping *m = context;
697
698         m->err = read_err || write_err ? -EIO : 0;
699         complete_mapping_preparation(m);
700 }
701
702 static void overwrite_endio(struct bio *bio, int err)
703 {
704         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
705         struct dm_thin_new_mapping *m = h->overwrite_mapping;
706
707         m->err = err;
708         complete_mapping_preparation(m);
709 }
710
711 /*----------------------------------------------------------------*/
712
713 /*
714  * Workqueue.
715  */
716
717 /*
718  * Prepared mapping jobs.
719  */
720
721 /*
722  * This sends the bios in the cell, except the original holder, back
723  * to the deferred_bios list.
724  */
725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
726 {
727         struct pool *pool = tc->pool;
728         unsigned long flags;
729
730         spin_lock_irqsave(&tc->lock, flags);
731         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
732         spin_unlock_irqrestore(&tc->lock, flags);
733
734         wake_worker(pool);
735 }
736
737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
738
739 struct remap_info {
740         struct thin_c *tc;
741         struct bio_list defer_bios;
742         struct bio_list issue_bios;
743 };
744
745 static void __inc_remap_and_issue_cell(void *context,
746                                        struct dm_bio_prison_cell *cell)
747 {
748         struct remap_info *info = context;
749         struct bio *bio;
750
751         while ((bio = bio_list_pop(&cell->bios))) {
752                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
753                         bio_list_add(&info->defer_bios, bio);
754                 else {
755                         inc_all_io_entry(info->tc->pool, bio);
756
757                         /*
758                          * We can't issue the bios with the bio prison lock
759                          * held, so we add them to a list to issue on
760                          * return from this function.
761                          */
762                         bio_list_add(&info->issue_bios, bio);
763                 }
764         }
765 }
766
767 static void inc_remap_and_issue_cell(struct thin_c *tc,
768                                      struct dm_bio_prison_cell *cell,
769                                      dm_block_t block)
770 {
771         struct bio *bio;
772         struct remap_info info;
773
774         info.tc = tc;
775         bio_list_init(&info.defer_bios);
776         bio_list_init(&info.issue_bios);
777
778         /*
779          * We have to be careful to inc any bios we're about to issue
780          * before the cell is released, and avoid a race with new bios
781          * being added to the cell.
782          */
783         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
784                            &info, cell);
785
786         while ((bio = bio_list_pop(&info.defer_bios)))
787                 thin_defer_bio(tc, bio);
788
789         while ((bio = bio_list_pop(&info.issue_bios)))
790                 remap_and_issue(info.tc, bio, block);
791 }
792
793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
794 {
795         if (m->bio) {
796                 m->bio->bi_end_io = m->saved_bi_end_io;
797                 atomic_inc(&m->bio->bi_remaining);
798         }
799         cell_error(m->tc->pool, m->cell);
800         list_del(&m->list);
801         mempool_free(m, m->tc->pool->mapping_pool);
802 }
803
804 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
805 {
806         struct thin_c *tc = m->tc;
807         struct pool *pool = tc->pool;
808         struct bio *bio;
809         int r;
810
811         bio = m->bio;
812         if (bio) {
813                 bio->bi_end_io = m->saved_bi_end_io;
814                 atomic_inc(&bio->bi_remaining);
815         }
816
817         if (m->err) {
818                 cell_error(pool, m->cell);
819                 goto out;
820         }
821
822         /*
823          * Commit the prepared block into the mapping btree.
824          * Any I/O for this block arriving after this point will get
825          * remapped to it directly.
826          */
827         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
828         if (r) {
829                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
830                 cell_error(pool, m->cell);
831                 goto out;
832         }
833
834         /*
835          * Release any bios held while the block was being provisioned.
836          * If we are processing a write bio that completely covers the block,
837          * we already processed it so can ignore it now when processing
838          * the bios in the cell.
839          */
840         if (bio) {
841                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
842                 bio_endio(bio, 0);
843         } else {
844                 inc_all_io_entry(tc->pool, m->cell->holder);
845                 remap_and_issue(tc, m->cell->holder, m->data_block);
846                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
847         }
848
849 out:
850         list_del(&m->list);
851         mempool_free(m, pool->mapping_pool);
852 }
853
854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
855 {
856         struct thin_c *tc = m->tc;
857
858         bio_io_error(m->bio);
859         cell_defer_no_holder(tc, m->cell);
860         cell_defer_no_holder(tc, m->cell2);
861         mempool_free(m, tc->pool->mapping_pool);
862 }
863
864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
865 {
866         struct thin_c *tc = m->tc;
867
868         inc_all_io_entry(tc->pool, m->bio);
869         cell_defer_no_holder(tc, m->cell);
870         cell_defer_no_holder(tc, m->cell2);
871
872         if (m->pass_discard)
873                 if (m->definitely_not_shared)
874                         remap_and_issue(tc, m->bio, m->data_block);
875                 else {
876                         bool used = false;
877                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
878                                 bio_endio(m->bio, 0);
879                         else
880                                 remap_and_issue(tc, m->bio, m->data_block);
881                 }
882         else
883                 bio_endio(m->bio, 0);
884
885         mempool_free(m, tc->pool->mapping_pool);
886 }
887
888 static void process_prepared_discard(struct dm_thin_new_mapping *m)
889 {
890         int r;
891         struct thin_c *tc = m->tc;
892
893         r = dm_thin_remove_block(tc->td, m->virt_block);
894         if (r)
895                 DMERR_LIMIT("dm_thin_remove_block() failed");
896
897         process_prepared_discard_passdown(m);
898 }
899
900 static void process_prepared(struct pool *pool, struct list_head *head,
901                              process_mapping_fn *fn)
902 {
903         unsigned long flags;
904         struct list_head maps;
905         struct dm_thin_new_mapping *m, *tmp;
906
907         INIT_LIST_HEAD(&maps);
908         spin_lock_irqsave(&pool->lock, flags);
909         list_splice_init(head, &maps);
910         spin_unlock_irqrestore(&pool->lock, flags);
911
912         list_for_each_entry_safe(m, tmp, &maps, list)
913                 (*fn)(m);
914 }
915
916 /*
917  * Deferred bio jobs.
918  */
919 static int io_overlaps_block(struct pool *pool, struct bio *bio)
920 {
921         return bio->bi_iter.bi_size ==
922                 (pool->sectors_per_block << SECTOR_SHIFT);
923 }
924
925 static int io_overwrites_block(struct pool *pool, struct bio *bio)
926 {
927         return (bio_data_dir(bio) == WRITE) &&
928                 io_overlaps_block(pool, bio);
929 }
930
931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
932                                bio_end_io_t *fn)
933 {
934         *save = bio->bi_end_io;
935         bio->bi_end_io = fn;
936 }
937
938 static int ensure_next_mapping(struct pool *pool)
939 {
940         if (pool->next_mapping)
941                 return 0;
942
943         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
944
945         return pool->next_mapping ? 0 : -ENOMEM;
946 }
947
948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
949 {
950         struct dm_thin_new_mapping *m = pool->next_mapping;
951
952         BUG_ON(!pool->next_mapping);
953
954         memset(m, 0, sizeof(struct dm_thin_new_mapping));
955         INIT_LIST_HEAD(&m->list);
956         m->bio = NULL;
957
958         pool->next_mapping = NULL;
959
960         return m;
961 }
962
963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
964                     sector_t begin, sector_t end)
965 {
966         int r;
967         struct dm_io_region to;
968
969         to.bdev = tc->pool_dev->bdev;
970         to.sector = begin;
971         to.count = end - begin;
972
973         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
974         if (r < 0) {
975                 DMERR_LIMIT("dm_kcopyd_zero() failed");
976                 copy_complete(1, 1, m);
977         }
978 }
979
980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
981                                       dm_block_t data_block,
982                                       struct dm_thin_new_mapping *m)
983 {
984         struct pool *pool = tc->pool;
985         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986
987         h->overwrite_mapping = m;
988         m->bio = bio;
989         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
990         inc_all_io_entry(pool, bio);
991         remap_and_issue(tc, bio, data_block);
992 }
993
994 /*
995  * A partial copy also needs to zero the uncopied region.
996  */
997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
998                           struct dm_dev *origin, dm_block_t data_origin,
999                           dm_block_t data_dest,
1000                           struct dm_bio_prison_cell *cell, struct bio *bio,
1001                           sector_t len)
1002 {
1003         int r;
1004         struct pool *pool = tc->pool;
1005         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1006
1007         m->tc = tc;
1008         m->virt_block = virt_block;
1009         m->data_block = data_dest;
1010         m->cell = cell;
1011
1012         /*
1013          * quiesce action + copy action + an extra reference held for the
1014          * duration of this function (we may need to inc later for a
1015          * partial zero).
1016          */
1017         atomic_set(&m->prepare_actions, 3);
1018
1019         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1020                 complete_mapping_preparation(m); /* already quiesced */
1021
1022         /*
1023          * IO to pool_dev remaps to the pool target's data_dev.
1024          *
1025          * If the whole block of data is being overwritten, we can issue the
1026          * bio immediately. Otherwise we use kcopyd to clone the data first.
1027          */
1028         if (io_overwrites_block(pool, bio))
1029                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1030         else {
1031                 struct dm_io_region from, to;
1032
1033                 from.bdev = origin->bdev;
1034                 from.sector = data_origin * pool->sectors_per_block;
1035                 from.count = len;
1036
1037                 to.bdev = tc->pool_dev->bdev;
1038                 to.sector = data_dest * pool->sectors_per_block;
1039                 to.count = len;
1040
1041                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1042                                    0, copy_complete, m);
1043                 if (r < 0) {
1044                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1045                         copy_complete(1, 1, m);
1046
1047                         /*
1048                          * We allow the zero to be issued, to simplify the
1049                          * error path.  Otherwise we'd need to start
1050                          * worrying about decrementing the prepare_actions
1051                          * counter.
1052                          */
1053                 }
1054
1055                 /*
1056                  * Do we need to zero a tail region?
1057                  */
1058                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1059                         atomic_inc(&m->prepare_actions);
1060                         ll_zero(tc, m,
1061                                 data_dest * pool->sectors_per_block + len,
1062                                 (data_dest + 1) * pool->sectors_per_block);
1063                 }
1064         }
1065
1066         complete_mapping_preparation(m); /* drop our ref */
1067 }
1068
1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1070                                    dm_block_t data_origin, dm_block_t data_dest,
1071                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1072 {
1073         schedule_copy(tc, virt_block, tc->pool_dev,
1074                       data_origin, data_dest, cell, bio,
1075                       tc->pool->sectors_per_block);
1076 }
1077
1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1079                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1080                           struct bio *bio)
1081 {
1082         struct pool *pool = tc->pool;
1083         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1084
1085         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1086         m->tc = tc;
1087         m->virt_block = virt_block;
1088         m->data_block = data_block;
1089         m->cell = cell;
1090
1091         /*
1092          * If the whole block of data is being overwritten or we are not
1093          * zeroing pre-existing data, we can issue the bio immediately.
1094          * Otherwise we use kcopyd to zero the data first.
1095          */
1096         if (!pool->pf.zero_new_blocks)
1097                 process_prepared_mapping(m);
1098
1099         else if (io_overwrites_block(pool, bio))
1100                 remap_and_issue_overwrite(tc, bio, data_block, m);
1101
1102         else
1103                 ll_zero(tc, m,
1104                         data_block * pool->sectors_per_block,
1105                         (data_block + 1) * pool->sectors_per_block);
1106 }
1107
1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1109                                    dm_block_t data_dest,
1110                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1111 {
1112         struct pool *pool = tc->pool;
1113         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1114         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1115
1116         if (virt_block_end <= tc->origin_size)
1117                 schedule_copy(tc, virt_block, tc->origin_dev,
1118                               virt_block, data_dest, cell, bio,
1119                               pool->sectors_per_block);
1120
1121         else if (virt_block_begin < tc->origin_size)
1122                 schedule_copy(tc, virt_block, tc->origin_dev,
1123                               virt_block, data_dest, cell, bio,
1124                               tc->origin_size - virt_block_begin);
1125
1126         else
1127                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1128 }
1129
1130 /*
1131  * A non-zero return indicates read_only or fail_io mode.
1132  * Many callers don't care about the return value.
1133  */
1134 static int commit(struct pool *pool)
1135 {
1136         int r;
1137
1138         if (get_pool_mode(pool) >= PM_READ_ONLY)
1139                 return -EINVAL;
1140
1141         r = dm_pool_commit_metadata(pool->pmd);
1142         if (r)
1143                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1144
1145         return r;
1146 }
1147
1148 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1149 {
1150         unsigned long flags;
1151
1152         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1153                 DMWARN("%s: reached low water mark for data device: sending event.",
1154                        dm_device_name(pool->pool_md));
1155                 spin_lock_irqsave(&pool->lock, flags);
1156                 pool->low_water_triggered = true;
1157                 spin_unlock_irqrestore(&pool->lock, flags);
1158                 dm_table_event(pool->ti->table);
1159         }
1160 }
1161
1162 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1163
1164 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1165 {
1166         int r;
1167         dm_block_t free_blocks;
1168         struct pool *pool = tc->pool;
1169
1170         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1171                 return -EINVAL;
1172
1173         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1176                 return r;
1177         }
1178
1179         check_low_water_mark(pool, free_blocks);
1180
1181         if (!free_blocks) {
1182                 /*
1183                  * Try to commit to see if that will free up some
1184                  * more space.
1185                  */
1186                 r = commit(pool);
1187                 if (r)
1188                         return r;
1189
1190                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1191                 if (r) {
1192                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1193                         return r;
1194                 }
1195
1196                 if (!free_blocks) {
1197                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1198                         return -ENOSPC;
1199                 }
1200         }
1201
1202         r = dm_pool_alloc_data_block(pool->pmd, result);
1203         if (r) {
1204                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1205                 return r;
1206         }
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * If we have run out of space, queue bios until the device is
1213  * resumed, presumably after having been reloaded with more space.
1214  */
1215 static void retry_on_resume(struct bio *bio)
1216 {
1217         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1218         struct thin_c *tc = h->tc;
1219         unsigned long flags;
1220
1221         spin_lock_irqsave(&tc->lock, flags);
1222         bio_list_add(&tc->retry_on_resume_list, bio);
1223         spin_unlock_irqrestore(&tc->lock, flags);
1224 }
1225
1226 static int should_error_unserviceable_bio(struct pool *pool)
1227 {
1228         enum pool_mode m = get_pool_mode(pool);
1229
1230         switch (m) {
1231         case PM_WRITE:
1232                 /* Shouldn't get here */
1233                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1234                 return -EIO;
1235
1236         case PM_OUT_OF_DATA_SPACE:
1237                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1238
1239         case PM_READ_ONLY:
1240         case PM_FAIL:
1241                 return -EIO;
1242         default:
1243                 /* Shouldn't get here */
1244                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1245                 return -EIO;
1246         }
1247 }
1248
1249 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1250 {
1251         int error = should_error_unserviceable_bio(pool);
1252
1253         if (error)
1254                 bio_endio(bio, error);
1255         else
1256                 retry_on_resume(bio);
1257 }
1258
1259 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1260 {
1261         struct bio *bio;
1262         struct bio_list bios;
1263         int error;
1264
1265         error = should_error_unserviceable_bio(pool);
1266         if (error) {
1267                 cell_error_with_code(pool, cell, error);
1268                 return;
1269         }
1270
1271         bio_list_init(&bios);
1272         cell_release(pool, cell, &bios);
1273
1274         while ((bio = bio_list_pop(&bios)))
1275                 retry_on_resume(bio);
1276 }
1277
1278 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1279 {
1280         int r;
1281         struct bio *bio = cell->holder;
1282         struct pool *pool = tc->pool;
1283         struct dm_bio_prison_cell *cell2;
1284         struct dm_cell_key key2;
1285         dm_block_t block = get_bio_block(tc, bio);
1286         struct dm_thin_lookup_result lookup_result;
1287         struct dm_thin_new_mapping *m;
1288
1289         if (tc->requeue_mode) {
1290                 cell_requeue(pool, cell);
1291                 return;
1292         }
1293
1294         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1295         switch (r) {
1296         case 0:
1297                 /*
1298                  * Check nobody is fiddling with this pool block.  This can
1299                  * happen if someone's in the process of breaking sharing
1300                  * on this block.
1301                  */
1302                 build_data_key(tc->td, lookup_result.block, &key2);
1303                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1304                         cell_defer_no_holder(tc, cell);
1305                         break;
1306                 }
1307
1308                 if (io_overlaps_block(pool, bio)) {
1309                         /*
1310                          * IO may still be going to the destination block.  We must
1311                          * quiesce before we can do the removal.
1312                          */
1313                         m = get_next_mapping(pool);
1314                         m->tc = tc;
1315                         m->pass_discard = pool->pf.discard_passdown;
1316                         m->definitely_not_shared = !lookup_result.shared;
1317                         m->virt_block = block;
1318                         m->data_block = lookup_result.block;
1319                         m->cell = cell;
1320                         m->cell2 = cell2;
1321                         m->bio = bio;
1322
1323                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1324                                 pool->process_prepared_discard(m);
1325
1326                 } else {
1327                         inc_all_io_entry(pool, bio);
1328                         cell_defer_no_holder(tc, cell);
1329                         cell_defer_no_holder(tc, cell2);
1330
1331                         /*
1332                          * The DM core makes sure that the discard doesn't span
1333                          * a block boundary.  So we submit the discard of a
1334                          * partial block appropriately.
1335                          */
1336                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1337                                 remap_and_issue(tc, bio, lookup_result.block);
1338                         else
1339                                 bio_endio(bio, 0);
1340                 }
1341                 break;
1342
1343         case -ENODATA:
1344                 /*
1345                  * It isn't provisioned, just forget it.
1346                  */
1347                 cell_defer_no_holder(tc, cell);
1348                 bio_endio(bio, 0);
1349                 break;
1350
1351         default:
1352                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1353                             __func__, r);
1354                 cell_defer_no_holder(tc, cell);
1355                 bio_io_error(bio);
1356                 break;
1357         }
1358 }
1359
1360 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1361 {
1362         struct dm_bio_prison_cell *cell;
1363         struct dm_cell_key key;
1364         dm_block_t block = get_bio_block(tc, bio);
1365
1366         build_virtual_key(tc->td, block, &key);
1367         if (bio_detain(tc->pool, &key, bio, &cell))
1368                 return;
1369
1370         process_discard_cell(tc, cell);
1371 }
1372
1373 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1374                           struct dm_cell_key *key,
1375                           struct dm_thin_lookup_result *lookup_result,
1376                           struct dm_bio_prison_cell *cell)
1377 {
1378         int r;
1379         dm_block_t data_block;
1380         struct pool *pool = tc->pool;
1381
1382         r = alloc_data_block(tc, &data_block);
1383         switch (r) {
1384         case 0:
1385                 schedule_internal_copy(tc, block, lookup_result->block,
1386                                        data_block, cell, bio);
1387                 break;
1388
1389         case -ENOSPC:
1390                 retry_bios_on_resume(pool, cell);
1391                 break;
1392
1393         default:
1394                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1395                             __func__, r);
1396                 cell_error(pool, cell);
1397                 break;
1398         }
1399 }
1400
1401 static void __remap_and_issue_shared_cell(void *context,
1402                                           struct dm_bio_prison_cell *cell)
1403 {
1404         struct remap_info *info = context;
1405         struct bio *bio;
1406
1407         while ((bio = bio_list_pop(&cell->bios))) {
1408                 if ((bio_data_dir(bio) == WRITE) ||
1409                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1410                         bio_list_add(&info->defer_bios, bio);
1411                 else {
1412                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1413
1414                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1415                         inc_all_io_entry(info->tc->pool, bio);
1416                         bio_list_add(&info->issue_bios, bio);
1417                 }
1418         }
1419 }
1420
1421 static void remap_and_issue_shared_cell(struct thin_c *tc,
1422                                         struct dm_bio_prison_cell *cell,
1423                                         dm_block_t block)
1424 {
1425         struct bio *bio;
1426         struct remap_info info;
1427
1428         info.tc = tc;
1429         bio_list_init(&info.defer_bios);
1430         bio_list_init(&info.issue_bios);
1431
1432         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1433                            &info, cell);
1434
1435         while ((bio = bio_list_pop(&info.defer_bios)))
1436                 thin_defer_bio(tc, bio);
1437
1438         while ((bio = bio_list_pop(&info.issue_bios)))
1439                 remap_and_issue(tc, bio, block);
1440 }
1441
1442 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1443                                dm_block_t block,
1444                                struct dm_thin_lookup_result *lookup_result,
1445                                struct dm_bio_prison_cell *virt_cell)
1446 {
1447         struct dm_bio_prison_cell *data_cell;
1448         struct pool *pool = tc->pool;
1449         struct dm_cell_key key;
1450
1451         /*
1452          * If cell is already occupied, then sharing is already in the process
1453          * of being broken so we have nothing further to do here.
1454          */
1455         build_data_key(tc->td, lookup_result->block, &key);
1456         if (bio_detain(pool, &key, bio, &data_cell)) {
1457                 cell_defer_no_holder(tc, virt_cell);
1458                 return;
1459         }
1460
1461         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1462                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1463                 cell_defer_no_holder(tc, virt_cell);
1464         } else {
1465                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1466
1467                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1468                 inc_all_io_entry(pool, bio);
1469                 remap_and_issue(tc, bio, lookup_result->block);
1470
1471                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1472                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1473         }
1474 }
1475
1476 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1477                             struct dm_bio_prison_cell *cell)
1478 {
1479         int r;
1480         dm_block_t data_block;
1481         struct pool *pool = tc->pool;
1482
1483         /*
1484          * Remap empty bios (flushes) immediately, without provisioning.
1485          */
1486         if (!bio->bi_iter.bi_size) {
1487                 inc_all_io_entry(pool, bio);
1488                 cell_defer_no_holder(tc, cell);
1489
1490                 remap_and_issue(tc, bio, 0);
1491                 return;
1492         }
1493
1494         /*
1495          * Fill read bios with zeroes and complete them immediately.
1496          */
1497         if (bio_data_dir(bio) == READ) {
1498                 zero_fill_bio(bio);
1499                 cell_defer_no_holder(tc, cell);
1500                 bio_endio(bio, 0);
1501                 return;
1502         }
1503
1504         r = alloc_data_block(tc, &data_block);
1505         switch (r) {
1506         case 0:
1507                 if (tc->origin_dev)
1508                         schedule_external_copy(tc, block, data_block, cell, bio);
1509                 else
1510                         schedule_zero(tc, block, data_block, cell, bio);
1511                 break;
1512
1513         case -ENOSPC:
1514                 retry_bios_on_resume(pool, cell);
1515                 break;
1516
1517         default:
1518                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1519                             __func__, r);
1520                 cell_error(pool, cell);
1521                 break;
1522         }
1523 }
1524
1525 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1526 {
1527         int r;
1528         struct pool *pool = tc->pool;
1529         struct bio *bio = cell->holder;
1530         dm_block_t block = get_bio_block(tc, bio);
1531         struct dm_thin_lookup_result lookup_result;
1532
1533         if (tc->requeue_mode) {
1534                 cell_requeue(pool, cell);
1535                 return;
1536         }
1537
1538         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1539         switch (r) {
1540         case 0:
1541                 if (lookup_result.shared)
1542                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1543                 else {
1544                         inc_all_io_entry(pool, bio);
1545                         remap_and_issue(tc, bio, lookup_result.block);
1546                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1547                 }
1548                 break;
1549
1550         case -ENODATA:
1551                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1552                         inc_all_io_entry(pool, bio);
1553                         cell_defer_no_holder(tc, cell);
1554
1555                         if (bio_end_sector(bio) <= tc->origin_size)
1556                                 remap_to_origin_and_issue(tc, bio);
1557
1558                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1559                                 zero_fill_bio(bio);
1560                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1561                                 remap_to_origin_and_issue(tc, bio);
1562
1563                         } else {
1564                                 zero_fill_bio(bio);
1565                                 bio_endio(bio, 0);
1566                         }
1567                 } else
1568                         provision_block(tc, bio, block, cell);
1569                 break;
1570
1571         default:
1572                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1573                             __func__, r);
1574                 cell_defer_no_holder(tc, cell);
1575                 bio_io_error(bio);
1576                 break;
1577         }
1578 }
1579
1580 static void process_bio(struct thin_c *tc, struct bio *bio)
1581 {
1582         struct pool *pool = tc->pool;
1583         dm_block_t block = get_bio_block(tc, bio);
1584         struct dm_bio_prison_cell *cell;
1585         struct dm_cell_key key;
1586
1587         /*
1588          * If cell is already occupied, then the block is already
1589          * being provisioned so we have nothing further to do here.
1590          */
1591         build_virtual_key(tc->td, block, &key);
1592         if (bio_detain(pool, &key, bio, &cell))
1593                 return;
1594
1595         process_cell(tc, cell);
1596 }
1597
1598 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1599                                     struct dm_bio_prison_cell *cell)
1600 {
1601         int r;
1602         int rw = bio_data_dir(bio);
1603         dm_block_t block = get_bio_block(tc, bio);
1604         struct dm_thin_lookup_result lookup_result;
1605
1606         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1607         switch (r) {
1608         case 0:
1609                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1610                         handle_unserviceable_bio(tc->pool, bio);
1611                         if (cell)
1612                                 cell_defer_no_holder(tc, cell);
1613                 } else {
1614                         inc_all_io_entry(tc->pool, bio);
1615                         remap_and_issue(tc, bio, lookup_result.block);
1616                         if (cell)
1617                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1618                 }
1619                 break;
1620
1621         case -ENODATA:
1622                 if (cell)
1623                         cell_defer_no_holder(tc, cell);
1624                 if (rw != READ) {
1625                         handle_unserviceable_bio(tc->pool, bio);
1626                         break;
1627                 }
1628
1629                 if (tc->origin_dev) {
1630                         inc_all_io_entry(tc->pool, bio);
1631                         remap_to_origin_and_issue(tc, bio);
1632                         break;
1633                 }
1634
1635                 zero_fill_bio(bio);
1636                 bio_endio(bio, 0);
1637                 break;
1638
1639         default:
1640                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1641                             __func__, r);
1642                 if (cell)
1643                         cell_defer_no_holder(tc, cell);
1644                 bio_io_error(bio);
1645                 break;
1646         }
1647 }
1648
1649 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1650 {
1651         __process_bio_read_only(tc, bio, NULL);
1652 }
1653
1654 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1655 {
1656         __process_bio_read_only(tc, cell->holder, cell);
1657 }
1658
1659 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1660 {
1661         bio_endio(bio, 0);
1662 }
1663
1664 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1665 {
1666         bio_io_error(bio);
1667 }
1668
1669 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1670 {
1671         cell_success(tc->pool, cell);
1672 }
1673
1674 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1675 {
1676         cell_error(tc->pool, cell);
1677 }
1678
1679 /*
1680  * FIXME: should we also commit due to size of transaction, measured in
1681  * metadata blocks?
1682  */
1683 static int need_commit_due_to_time(struct pool *pool)
1684 {
1685         return jiffies < pool->last_commit_jiffies ||
1686                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1687 }
1688
1689 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1690 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1691
1692 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1693 {
1694         struct rb_node **rbp, *parent;
1695         struct dm_thin_endio_hook *pbd;
1696         sector_t bi_sector = bio->bi_iter.bi_sector;
1697
1698         rbp = &tc->sort_bio_list.rb_node;
1699         parent = NULL;
1700         while (*rbp) {
1701                 parent = *rbp;
1702                 pbd = thin_pbd(parent);
1703
1704                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1705                         rbp = &(*rbp)->rb_left;
1706                 else
1707                         rbp = &(*rbp)->rb_right;
1708         }
1709
1710         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1711         rb_link_node(&pbd->rb_node, parent, rbp);
1712         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1713 }
1714
1715 static void __extract_sorted_bios(struct thin_c *tc)
1716 {
1717         struct rb_node *node;
1718         struct dm_thin_endio_hook *pbd;
1719         struct bio *bio;
1720
1721         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1722                 pbd = thin_pbd(node);
1723                 bio = thin_bio(pbd);
1724
1725                 bio_list_add(&tc->deferred_bio_list, bio);
1726                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1727         }
1728
1729         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1730 }
1731
1732 static void __sort_thin_deferred_bios(struct thin_c *tc)
1733 {
1734         struct bio *bio;
1735         struct bio_list bios;
1736
1737         bio_list_init(&bios);
1738         bio_list_merge(&bios, &tc->deferred_bio_list);
1739         bio_list_init(&tc->deferred_bio_list);
1740
1741         /* Sort deferred_bio_list using rb-tree */
1742         while ((bio = bio_list_pop(&bios)))
1743                 __thin_bio_rb_add(tc, bio);
1744
1745         /*
1746          * Transfer the sorted bios in sort_bio_list back to
1747          * deferred_bio_list to allow lockless submission of
1748          * all bios.
1749          */
1750         __extract_sorted_bios(tc);
1751 }
1752
1753 static void process_thin_deferred_bios(struct thin_c *tc)
1754 {
1755         struct pool *pool = tc->pool;
1756         unsigned long flags;
1757         struct bio *bio;
1758         struct bio_list bios;
1759         struct blk_plug plug;
1760         unsigned count = 0;
1761
1762         if (tc->requeue_mode) {
1763                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1764                 return;
1765         }
1766
1767         bio_list_init(&bios);
1768
1769         spin_lock_irqsave(&tc->lock, flags);
1770
1771         if (bio_list_empty(&tc->deferred_bio_list)) {
1772                 spin_unlock_irqrestore(&tc->lock, flags);
1773                 return;
1774         }
1775
1776         __sort_thin_deferred_bios(tc);
1777
1778         bio_list_merge(&bios, &tc->deferred_bio_list);
1779         bio_list_init(&tc->deferred_bio_list);
1780
1781         spin_unlock_irqrestore(&tc->lock, flags);
1782
1783         blk_start_plug(&plug);
1784         while ((bio = bio_list_pop(&bios))) {
1785                 /*
1786                  * If we've got no free new_mapping structs, and processing
1787                  * this bio might require one, we pause until there are some
1788                  * prepared mappings to process.
1789                  */
1790                 if (ensure_next_mapping(pool)) {
1791                         spin_lock_irqsave(&tc->lock, flags);
1792                         bio_list_add(&tc->deferred_bio_list, bio);
1793                         bio_list_merge(&tc->deferred_bio_list, &bios);
1794                         spin_unlock_irqrestore(&tc->lock, flags);
1795                         break;
1796                 }
1797
1798                 if (bio->bi_rw & REQ_DISCARD)
1799                         pool->process_discard(tc, bio);
1800                 else
1801                         pool->process_bio(tc, bio);
1802
1803                 if ((count++ & 127) == 0) {
1804                         throttle_work_update(&pool->throttle);
1805                         dm_pool_issue_prefetches(pool->pmd);
1806                 }
1807         }
1808         blk_finish_plug(&plug);
1809 }
1810
1811 static int cmp_cells(const void *lhs, const void *rhs)
1812 {
1813         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1814         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1815
1816         BUG_ON(!lhs_cell->holder);
1817         BUG_ON(!rhs_cell->holder);
1818
1819         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1820                 return -1;
1821
1822         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1823                 return 1;
1824
1825         return 0;
1826 }
1827
1828 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1829 {
1830         unsigned count = 0;
1831         struct dm_bio_prison_cell *cell, *tmp;
1832
1833         list_for_each_entry_safe(cell, tmp, cells, user_list) {
1834                 if (count >= CELL_SORT_ARRAY_SIZE)
1835                         break;
1836
1837                 pool->cell_sort_array[count++] = cell;
1838                 list_del(&cell->user_list);
1839         }
1840
1841         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1842
1843         return count;
1844 }
1845
1846 static void process_thin_deferred_cells(struct thin_c *tc)
1847 {
1848         struct pool *pool = tc->pool;
1849         unsigned long flags;
1850         struct list_head cells;
1851         struct dm_bio_prison_cell *cell;
1852         unsigned i, j, count;
1853
1854         INIT_LIST_HEAD(&cells);
1855
1856         spin_lock_irqsave(&tc->lock, flags);
1857         list_splice_init(&tc->deferred_cells, &cells);
1858         spin_unlock_irqrestore(&tc->lock, flags);
1859
1860         if (list_empty(&cells))
1861                 return;
1862
1863         do {
1864                 count = sort_cells(tc->pool, &cells);
1865
1866                 for (i = 0; i < count; i++) {
1867                         cell = pool->cell_sort_array[i];
1868                         BUG_ON(!cell->holder);
1869
1870                         /*
1871                          * If we've got no free new_mapping structs, and processing
1872                          * this bio might require one, we pause until there are some
1873                          * prepared mappings to process.
1874                          */
1875                         if (ensure_next_mapping(pool)) {
1876                                 for (j = i; j < count; j++)
1877                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
1878
1879                                 spin_lock_irqsave(&tc->lock, flags);
1880                                 list_splice(&cells, &tc->deferred_cells);
1881                                 spin_unlock_irqrestore(&tc->lock, flags);
1882                                 return;
1883                         }
1884
1885                         if (cell->holder->bi_rw & REQ_DISCARD)
1886                                 pool->process_discard_cell(tc, cell);
1887                         else
1888                                 pool->process_cell(tc, cell);
1889                 }
1890         } while (!list_empty(&cells));
1891 }
1892
1893 static void thin_get(struct thin_c *tc);
1894 static void thin_put(struct thin_c *tc);
1895
1896 /*
1897  * We can't hold rcu_read_lock() around code that can block.  So we
1898  * find a thin with the rcu lock held; bump a refcount; then drop
1899  * the lock.
1900  */
1901 static struct thin_c *get_first_thin(struct pool *pool)
1902 {
1903         struct thin_c *tc = NULL;
1904
1905         rcu_read_lock();
1906         if (!list_empty(&pool->active_thins)) {
1907                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1908                 thin_get(tc);
1909         }
1910         rcu_read_unlock();
1911
1912         return tc;
1913 }
1914
1915 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1916 {
1917         struct thin_c *old_tc = tc;
1918
1919         rcu_read_lock();
1920         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1921                 thin_get(tc);
1922                 thin_put(old_tc);
1923                 rcu_read_unlock();
1924                 return tc;
1925         }
1926         thin_put(old_tc);
1927         rcu_read_unlock();
1928
1929         return NULL;
1930 }
1931
1932 static void process_deferred_bios(struct pool *pool)
1933 {
1934         unsigned long flags;
1935         struct bio *bio;
1936         struct bio_list bios;
1937         struct thin_c *tc;
1938
1939         tc = get_first_thin(pool);
1940         while (tc) {
1941                 process_thin_deferred_cells(tc);
1942                 process_thin_deferred_bios(tc);
1943                 tc = get_next_thin(pool, tc);
1944         }
1945
1946         /*
1947          * If there are any deferred flush bios, we must commit
1948          * the metadata before issuing them.
1949          */
1950         bio_list_init(&bios);
1951         spin_lock_irqsave(&pool->lock, flags);
1952         bio_list_merge(&bios, &pool->deferred_flush_bios);
1953         bio_list_init(&pool->deferred_flush_bios);
1954         spin_unlock_irqrestore(&pool->lock, flags);
1955
1956         if (bio_list_empty(&bios) &&
1957             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1958                 return;
1959
1960         if (commit(pool)) {
1961                 while ((bio = bio_list_pop(&bios)))
1962                         bio_io_error(bio);
1963                 return;
1964         }
1965         pool->last_commit_jiffies = jiffies;
1966
1967         while ((bio = bio_list_pop(&bios)))
1968                 generic_make_request(bio);
1969 }
1970
1971 static void do_worker(struct work_struct *ws)
1972 {
1973         struct pool *pool = container_of(ws, struct pool, worker);
1974
1975         throttle_work_start(&pool->throttle);
1976         dm_pool_issue_prefetches(pool->pmd);
1977         throttle_work_update(&pool->throttle);
1978         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1979         throttle_work_update(&pool->throttle);
1980         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1981         throttle_work_update(&pool->throttle);
1982         process_deferred_bios(pool);
1983         throttle_work_complete(&pool->throttle);
1984 }
1985
1986 /*
1987  * We want to commit periodically so that not too much
1988  * unwritten data builds up.
1989  */
1990 static void do_waker(struct work_struct *ws)
1991 {
1992         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1993         wake_worker(pool);
1994         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1995 }
1996
1997 /*
1998  * We're holding onto IO to allow userland time to react.  After the
1999  * timeout either the pool will have been resized (and thus back in
2000  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2001  */
2002 static void do_no_space_timeout(struct work_struct *ws)
2003 {
2004         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2005                                          no_space_timeout);
2006
2007         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2008                 set_pool_mode(pool, PM_READ_ONLY);
2009 }
2010
2011 /*----------------------------------------------------------------*/
2012
2013 struct pool_work {
2014         struct work_struct worker;
2015         struct completion complete;
2016 };
2017
2018 static struct pool_work *to_pool_work(struct work_struct *ws)
2019 {
2020         return container_of(ws, struct pool_work, worker);
2021 }
2022
2023 static void pool_work_complete(struct pool_work *pw)
2024 {
2025         complete(&pw->complete);
2026 }
2027
2028 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2029                            void (*fn)(struct work_struct *))
2030 {
2031         INIT_WORK_ONSTACK(&pw->worker, fn);
2032         init_completion(&pw->complete);
2033         queue_work(pool->wq, &pw->worker);
2034         wait_for_completion(&pw->complete);
2035 }
2036
2037 /*----------------------------------------------------------------*/
2038
2039 struct noflush_work {
2040         struct pool_work pw;
2041         struct thin_c *tc;
2042 };
2043
2044 static struct noflush_work *to_noflush(struct work_struct *ws)
2045 {
2046         return container_of(to_pool_work(ws), struct noflush_work, pw);
2047 }
2048
2049 static void do_noflush_start(struct work_struct *ws)
2050 {
2051         struct noflush_work *w = to_noflush(ws);
2052         w->tc->requeue_mode = true;
2053         requeue_io(w->tc);
2054         pool_work_complete(&w->pw);
2055 }
2056
2057 static void do_noflush_stop(struct work_struct *ws)
2058 {
2059         struct noflush_work *w = to_noflush(ws);
2060         w->tc->requeue_mode = false;
2061         pool_work_complete(&w->pw);
2062 }
2063
2064 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2065 {
2066         struct noflush_work w;
2067
2068         w.tc = tc;
2069         pool_work_wait(&w.pw, tc->pool, fn);
2070 }
2071
2072 /*----------------------------------------------------------------*/
2073
2074 static enum pool_mode get_pool_mode(struct pool *pool)
2075 {
2076         return pool->pf.mode;
2077 }
2078
2079 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2080 {
2081         dm_table_event(pool->ti->table);
2082         DMINFO("%s: switching pool to %s mode",
2083                dm_device_name(pool->pool_md), new_mode);
2084 }
2085
2086 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2087 {
2088         struct pool_c *pt = pool->ti->private;
2089         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2090         enum pool_mode old_mode = get_pool_mode(pool);
2091         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2092
2093         /*
2094          * Never allow the pool to transition to PM_WRITE mode if user
2095          * intervention is required to verify metadata and data consistency.
2096          */
2097         if (new_mode == PM_WRITE && needs_check) {
2098                 DMERR("%s: unable to switch pool to write mode until repaired.",
2099                       dm_device_name(pool->pool_md));
2100                 if (old_mode != new_mode)
2101                         new_mode = old_mode;
2102                 else
2103                         new_mode = PM_READ_ONLY;
2104         }
2105         /*
2106          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2107          * not going to recover without a thin_repair.  So we never let the
2108          * pool move out of the old mode.
2109          */
2110         if (old_mode == PM_FAIL)
2111                 new_mode = old_mode;
2112
2113         switch (new_mode) {
2114         case PM_FAIL:
2115                 if (old_mode != new_mode)
2116                         notify_of_pool_mode_change(pool, "failure");
2117                 dm_pool_metadata_read_only(pool->pmd);
2118                 pool->process_bio = process_bio_fail;
2119                 pool->process_discard = process_bio_fail;
2120                 pool->process_cell = process_cell_fail;
2121                 pool->process_discard_cell = process_cell_fail;
2122                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2123                 pool->process_prepared_discard = process_prepared_discard_fail;
2124
2125                 error_retry_list(pool);
2126                 break;
2127
2128         case PM_READ_ONLY:
2129                 if (old_mode != new_mode)
2130                         notify_of_pool_mode_change(pool, "read-only");
2131                 dm_pool_metadata_read_only(pool->pmd);
2132                 pool->process_bio = process_bio_read_only;
2133                 pool->process_discard = process_bio_success;
2134                 pool->process_cell = process_cell_read_only;
2135                 pool->process_discard_cell = process_cell_success;
2136                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2137                 pool->process_prepared_discard = process_prepared_discard_passdown;
2138
2139                 error_retry_list(pool);
2140                 break;
2141
2142         case PM_OUT_OF_DATA_SPACE:
2143                 /*
2144                  * Ideally we'd never hit this state; the low water mark
2145                  * would trigger userland to extend the pool before we
2146                  * completely run out of data space.  However, many small
2147                  * IOs to unprovisioned space can consume data space at an
2148                  * alarming rate.  Adjust your low water mark if you're
2149                  * frequently seeing this mode.
2150                  */
2151                 if (old_mode != new_mode)
2152                         notify_of_pool_mode_change(pool, "out-of-data-space");
2153                 pool->process_bio = process_bio_read_only;
2154                 pool->process_discard = process_discard_bio;
2155                 pool->process_cell = process_cell_read_only;
2156                 pool->process_discard_cell = process_discard_cell;
2157                 pool->process_prepared_mapping = process_prepared_mapping;
2158                 pool->process_prepared_discard = process_prepared_discard_passdown;
2159
2160                 if (!pool->pf.error_if_no_space && no_space_timeout)
2161                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2162                 break;
2163
2164         case PM_WRITE:
2165                 if (old_mode != new_mode)
2166                         notify_of_pool_mode_change(pool, "write");
2167                 dm_pool_metadata_read_write(pool->pmd);
2168                 pool->process_bio = process_bio;
2169                 pool->process_discard = process_discard_bio;
2170                 pool->process_cell = process_cell;
2171                 pool->process_discard_cell = process_discard_cell;
2172                 pool->process_prepared_mapping = process_prepared_mapping;
2173                 pool->process_prepared_discard = process_prepared_discard;
2174                 break;
2175         }
2176
2177         pool->pf.mode = new_mode;
2178         /*
2179          * The pool mode may have changed, sync it so bind_control_target()
2180          * doesn't cause an unexpected mode transition on resume.
2181          */
2182         pt->adjusted_pf.mode = new_mode;
2183 }
2184
2185 static void abort_transaction(struct pool *pool)
2186 {
2187         const char *dev_name = dm_device_name(pool->pool_md);
2188
2189         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2190         if (dm_pool_abort_metadata(pool->pmd)) {
2191                 DMERR("%s: failed to abort metadata transaction", dev_name);
2192                 set_pool_mode(pool, PM_FAIL);
2193         }
2194
2195         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2196                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2197                 set_pool_mode(pool, PM_FAIL);
2198         }
2199 }
2200
2201 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2202 {
2203         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2204                     dm_device_name(pool->pool_md), op, r);
2205
2206         abort_transaction(pool);
2207         set_pool_mode(pool, PM_READ_ONLY);
2208 }
2209
2210 /*----------------------------------------------------------------*/
2211
2212 /*
2213  * Mapping functions.
2214  */
2215
2216 /*
2217  * Called only while mapping a thin bio to hand it over to the workqueue.
2218  */
2219 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2220 {
2221         unsigned long flags;
2222         struct pool *pool = tc->pool;
2223
2224         spin_lock_irqsave(&tc->lock, flags);
2225         bio_list_add(&tc->deferred_bio_list, bio);
2226         spin_unlock_irqrestore(&tc->lock, flags);
2227
2228         wake_worker(pool);
2229 }
2230
2231 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2232 {
2233         struct pool *pool = tc->pool;
2234
2235         throttle_lock(&pool->throttle);
2236         thin_defer_bio(tc, bio);
2237         throttle_unlock(&pool->throttle);
2238 }
2239
2240 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2241 {
2242         unsigned long flags;
2243         struct pool *pool = tc->pool;
2244
2245         throttle_lock(&pool->throttle);
2246         spin_lock_irqsave(&tc->lock, flags);
2247         list_add_tail(&cell->user_list, &tc->deferred_cells);
2248         spin_unlock_irqrestore(&tc->lock, flags);
2249         throttle_unlock(&pool->throttle);
2250
2251         wake_worker(pool);
2252 }
2253
2254 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2255 {
2256         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2257
2258         h->tc = tc;
2259         h->shared_read_entry = NULL;
2260         h->all_io_entry = NULL;
2261         h->overwrite_mapping = NULL;
2262 }
2263
2264 /*
2265  * Non-blocking function called from the thin target's map function.
2266  */
2267 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2268 {
2269         int r;
2270         struct thin_c *tc = ti->private;
2271         dm_block_t block = get_bio_block(tc, bio);
2272         struct dm_thin_device *td = tc->td;
2273         struct dm_thin_lookup_result result;
2274         struct dm_bio_prison_cell *virt_cell, *data_cell;
2275         struct dm_cell_key key;
2276
2277         thin_hook_bio(tc, bio);
2278
2279         if (tc->requeue_mode) {
2280                 bio_endio(bio, DM_ENDIO_REQUEUE);
2281                 return DM_MAPIO_SUBMITTED;
2282         }
2283
2284         if (get_pool_mode(tc->pool) == PM_FAIL) {
2285                 bio_io_error(bio);
2286                 return DM_MAPIO_SUBMITTED;
2287         }
2288
2289         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2290                 thin_defer_bio_with_throttle(tc, bio);
2291                 return DM_MAPIO_SUBMITTED;
2292         }
2293
2294         /*
2295          * We must hold the virtual cell before doing the lookup, otherwise
2296          * there's a race with discard.
2297          */
2298         build_virtual_key(tc->td, block, &key);
2299         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2300                 return DM_MAPIO_SUBMITTED;
2301
2302         r = dm_thin_find_block(td, block, 0, &result);
2303
2304         /*
2305          * Note that we defer readahead too.
2306          */
2307         switch (r) {
2308         case 0:
2309                 if (unlikely(result.shared)) {
2310                         /*
2311                          * We have a race condition here between the
2312                          * result.shared value returned by the lookup and
2313                          * snapshot creation, which may cause new
2314                          * sharing.
2315                          *
2316                          * To avoid this always quiesce the origin before
2317                          * taking the snap.  You want to do this anyway to
2318                          * ensure a consistent application view
2319                          * (i.e. lockfs).
2320                          *
2321                          * More distant ancestors are irrelevant. The
2322                          * shared flag will be set in their case.
2323                          */
2324                         thin_defer_cell(tc, virt_cell);
2325                         return DM_MAPIO_SUBMITTED;
2326                 }
2327
2328                 build_data_key(tc->td, result.block, &key);
2329                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2330                         cell_defer_no_holder(tc, virt_cell);
2331                         return DM_MAPIO_SUBMITTED;
2332                 }
2333
2334                 inc_all_io_entry(tc->pool, bio);
2335                 cell_defer_no_holder(tc, data_cell);
2336                 cell_defer_no_holder(tc, virt_cell);
2337
2338                 remap(tc, bio, result.block);
2339                 return DM_MAPIO_REMAPPED;
2340
2341         case -ENODATA:
2342                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2343                         /*
2344                          * This block isn't provisioned, and we have no way
2345                          * of doing so.
2346                          */
2347                         handle_unserviceable_bio(tc->pool, bio);
2348                         cell_defer_no_holder(tc, virt_cell);
2349                         return DM_MAPIO_SUBMITTED;
2350                 }
2351                 /* fall through */
2352
2353         case -EWOULDBLOCK:
2354                 thin_defer_cell(tc, virt_cell);
2355                 return DM_MAPIO_SUBMITTED;
2356
2357         default:
2358                 /*
2359                  * Must always call bio_io_error on failure.
2360                  * dm_thin_find_block can fail with -EINVAL if the
2361                  * pool is switched to fail-io mode.
2362                  */
2363                 bio_io_error(bio);
2364                 cell_defer_no_holder(tc, virt_cell);
2365                 return DM_MAPIO_SUBMITTED;
2366         }
2367 }
2368
2369 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2370 {
2371         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2372         struct request_queue *q;
2373
2374         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2375                 return 1;
2376
2377         q = bdev_get_queue(pt->data_dev->bdev);
2378         return bdi_congested(&q->backing_dev_info, bdi_bits);
2379 }
2380
2381 static void requeue_bios(struct pool *pool)
2382 {
2383         unsigned long flags;
2384         struct thin_c *tc;
2385
2386         rcu_read_lock();
2387         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2388                 spin_lock_irqsave(&tc->lock, flags);
2389                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2390                 bio_list_init(&tc->retry_on_resume_list);
2391                 spin_unlock_irqrestore(&tc->lock, flags);
2392         }
2393         rcu_read_unlock();
2394 }
2395
2396 /*----------------------------------------------------------------
2397  * Binding of control targets to a pool object
2398  *--------------------------------------------------------------*/
2399 static bool data_dev_supports_discard(struct pool_c *pt)
2400 {
2401         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2402
2403         return q && blk_queue_discard(q);
2404 }
2405
2406 static bool is_factor(sector_t block_size, uint32_t n)
2407 {
2408         return !sector_div(block_size, n);
2409 }
2410
2411 /*
2412  * If discard_passdown was enabled verify that the data device
2413  * supports discards.  Disable discard_passdown if not.
2414  */
2415 static void disable_passdown_if_not_supported(struct pool_c *pt)
2416 {
2417         struct pool *pool = pt->pool;
2418         struct block_device *data_bdev = pt->data_dev->bdev;
2419         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2420         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2421         const char *reason = NULL;
2422         char buf[BDEVNAME_SIZE];
2423
2424         if (!pt->adjusted_pf.discard_passdown)
2425                 return;
2426
2427         if (!data_dev_supports_discard(pt))
2428                 reason = "discard unsupported";
2429
2430         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2431                 reason = "max discard sectors smaller than a block";
2432
2433         else if (data_limits->discard_granularity > block_size)
2434                 reason = "discard granularity larger than a block";
2435
2436         else if (!is_factor(block_size, data_limits->discard_granularity))
2437                 reason = "discard granularity not a factor of block size";
2438
2439         if (reason) {
2440                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2441                 pt->adjusted_pf.discard_passdown = false;
2442         }
2443 }
2444
2445 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2446 {
2447         struct pool_c *pt = ti->private;
2448
2449         /*
2450          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2451          */
2452         enum pool_mode old_mode = get_pool_mode(pool);
2453         enum pool_mode new_mode = pt->adjusted_pf.mode;
2454
2455         /*
2456          * Don't change the pool's mode until set_pool_mode() below.
2457          * Otherwise the pool's process_* function pointers may
2458          * not match the desired pool mode.
2459          */
2460         pt->adjusted_pf.mode = old_mode;
2461
2462         pool->ti = ti;
2463         pool->pf = pt->adjusted_pf;
2464         pool->low_water_blocks = pt->low_water_blocks;
2465
2466         set_pool_mode(pool, new_mode);
2467
2468         return 0;
2469 }
2470
2471 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2472 {
2473         if (pool->ti == ti)
2474                 pool->ti = NULL;
2475 }
2476
2477 /*----------------------------------------------------------------
2478  * Pool creation
2479  *--------------------------------------------------------------*/
2480 /* Initialize pool features. */
2481 static void pool_features_init(struct pool_features *pf)
2482 {
2483         pf->mode = PM_WRITE;
2484         pf->zero_new_blocks = true;
2485         pf->discard_enabled = true;
2486         pf->discard_passdown = true;
2487         pf->error_if_no_space = false;
2488 }
2489
2490 static void __pool_destroy(struct pool *pool)
2491 {
2492         __pool_table_remove(pool);
2493
2494         if (dm_pool_metadata_close(pool->pmd) < 0)
2495                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2496
2497         dm_bio_prison_destroy(pool->prison);
2498         dm_kcopyd_client_destroy(pool->copier);
2499
2500         if (pool->wq)
2501                 destroy_workqueue(pool->wq);
2502
2503         if (pool->next_mapping)
2504                 mempool_free(pool->next_mapping, pool->mapping_pool);
2505         mempool_destroy(pool->mapping_pool);
2506         dm_deferred_set_destroy(pool->shared_read_ds);
2507         dm_deferred_set_destroy(pool->all_io_ds);
2508         kfree(pool);
2509 }
2510
2511 static struct kmem_cache *_new_mapping_cache;
2512
2513 static struct pool *pool_create(struct mapped_device *pool_md,
2514                                 struct block_device *metadata_dev,
2515                                 unsigned long block_size,
2516                                 int read_only, char **error)
2517 {
2518         int r;
2519         void *err_p;
2520         struct pool *pool;
2521         struct dm_pool_metadata *pmd;
2522         bool format_device = read_only ? false : true;
2523
2524         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2525         if (IS_ERR(pmd)) {
2526                 *error = "Error creating metadata object";
2527                 return (struct pool *)pmd;
2528         }
2529
2530         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2531         if (!pool) {
2532                 *error = "Error allocating memory for pool";
2533                 err_p = ERR_PTR(-ENOMEM);
2534                 goto bad_pool;
2535         }
2536
2537         pool->pmd = pmd;
2538         pool->sectors_per_block = block_size;
2539         if (block_size & (block_size - 1))
2540                 pool->sectors_per_block_shift = -1;
2541         else
2542                 pool->sectors_per_block_shift = __ffs(block_size);
2543         pool->low_water_blocks = 0;
2544         pool_features_init(&pool->pf);
2545         pool->prison = dm_bio_prison_create();
2546         if (!pool->prison) {
2547                 *error = "Error creating pool's bio prison";
2548                 err_p = ERR_PTR(-ENOMEM);
2549                 goto bad_prison;
2550         }
2551
2552         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2553         if (IS_ERR(pool->copier)) {
2554                 r = PTR_ERR(pool->copier);
2555                 *error = "Error creating pool's kcopyd client";
2556                 err_p = ERR_PTR(r);
2557                 goto bad_kcopyd_client;
2558         }
2559
2560         /*
2561          * Create singlethreaded workqueue that will service all devices
2562          * that use this metadata.
2563          */
2564         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2565         if (!pool->wq) {
2566                 *error = "Error creating pool's workqueue";
2567                 err_p = ERR_PTR(-ENOMEM);
2568                 goto bad_wq;
2569         }
2570
2571         throttle_init(&pool->throttle);
2572         INIT_WORK(&pool->worker, do_worker);
2573         INIT_DELAYED_WORK(&pool->waker, do_waker);
2574         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2575         spin_lock_init(&pool->lock);
2576         bio_list_init(&pool->deferred_flush_bios);
2577         INIT_LIST_HEAD(&pool->prepared_mappings);
2578         INIT_LIST_HEAD(&pool->prepared_discards);
2579         INIT_LIST_HEAD(&pool->active_thins);
2580         pool->low_water_triggered = false;
2581         pool->suspended = true;
2582
2583         pool->shared_read_ds = dm_deferred_set_create();
2584         if (!pool->shared_read_ds) {
2585                 *error = "Error creating pool's shared read deferred set";
2586                 err_p = ERR_PTR(-ENOMEM);
2587                 goto bad_shared_read_ds;
2588         }
2589
2590         pool->all_io_ds = dm_deferred_set_create();
2591         if (!pool->all_io_ds) {
2592                 *error = "Error creating pool's all io deferred set";
2593                 err_p = ERR_PTR(-ENOMEM);
2594                 goto bad_all_io_ds;
2595         }
2596
2597         pool->next_mapping = NULL;
2598         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2599                                                       _new_mapping_cache);
2600         if (!pool->mapping_pool) {
2601                 *error = "Error creating pool's mapping mempool";
2602                 err_p = ERR_PTR(-ENOMEM);
2603                 goto bad_mapping_pool;
2604         }
2605
2606         pool->ref_count = 1;
2607         pool->last_commit_jiffies = jiffies;
2608         pool->pool_md = pool_md;
2609         pool->md_dev = metadata_dev;
2610         __pool_table_insert(pool);
2611
2612         return pool;
2613
2614 bad_mapping_pool:
2615         dm_deferred_set_destroy(pool->all_io_ds);
2616 bad_all_io_ds:
2617         dm_deferred_set_destroy(pool->shared_read_ds);
2618 bad_shared_read_ds:
2619         destroy_workqueue(pool->wq);
2620 bad_wq:
2621         dm_kcopyd_client_destroy(pool->copier);
2622 bad_kcopyd_client:
2623         dm_bio_prison_destroy(pool->prison);
2624 bad_prison:
2625         kfree(pool);
2626 bad_pool:
2627         if (dm_pool_metadata_close(pmd))
2628                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2629
2630         return err_p;
2631 }
2632
2633 static void __pool_inc(struct pool *pool)
2634 {
2635         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2636         pool->ref_count++;
2637 }
2638
2639 static void __pool_dec(struct pool *pool)
2640 {
2641         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2642         BUG_ON(!pool->ref_count);
2643         if (!--pool->ref_count)
2644                 __pool_destroy(pool);
2645 }
2646
2647 static struct pool *__pool_find(struct mapped_device *pool_md,
2648                                 struct block_device *metadata_dev,
2649                                 unsigned long block_size, int read_only,
2650                                 char **error, int *created)
2651 {
2652         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2653
2654         if (pool) {
2655                 if (pool->pool_md != pool_md) {
2656                         *error = "metadata device already in use by a pool";
2657                         return ERR_PTR(-EBUSY);
2658                 }
2659                 __pool_inc(pool);
2660
2661         } else {
2662                 pool = __pool_table_lookup(pool_md);
2663                 if (pool) {
2664                         if (pool->md_dev != metadata_dev) {
2665                                 *error = "different pool cannot replace a pool";
2666                                 return ERR_PTR(-EINVAL);
2667                         }
2668                         __pool_inc(pool);
2669
2670                 } else {
2671                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2672                         *created = 1;
2673                 }
2674         }
2675
2676         return pool;
2677 }
2678
2679 /*----------------------------------------------------------------
2680  * Pool target methods
2681  *--------------------------------------------------------------*/
2682 static void pool_dtr(struct dm_target *ti)
2683 {
2684         struct pool_c *pt = ti->private;
2685
2686         mutex_lock(&dm_thin_pool_table.mutex);
2687
2688         unbind_control_target(pt->pool, ti);
2689         __pool_dec(pt->pool);
2690         dm_put_device(ti, pt->metadata_dev);
2691         dm_put_device(ti, pt->data_dev);
2692         kfree(pt);
2693
2694         mutex_unlock(&dm_thin_pool_table.mutex);
2695 }
2696
2697 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2698                                struct dm_target *ti)
2699 {
2700         int r;
2701         unsigned argc;
2702         const char *arg_name;
2703
2704         static struct dm_arg _args[] = {
2705                 {0, 4, "Invalid number of pool feature arguments"},
2706         };
2707
2708         /*
2709          * No feature arguments supplied.
2710          */
2711         if (!as->argc)
2712                 return 0;
2713
2714         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2715         if (r)
2716                 return -EINVAL;
2717
2718         while (argc && !r) {
2719                 arg_name = dm_shift_arg(as);
2720                 argc--;
2721
2722                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2723                         pf->zero_new_blocks = false;
2724
2725                 else if (!strcasecmp(arg_name, "ignore_discard"))
2726                         pf->discard_enabled = false;
2727
2728                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2729                         pf->discard_passdown = false;
2730
2731                 else if (!strcasecmp(arg_name, "read_only"))
2732                         pf->mode = PM_READ_ONLY;
2733
2734                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2735                         pf->error_if_no_space = true;
2736
2737                 else {
2738                         ti->error = "Unrecognised pool feature requested";
2739                         r = -EINVAL;
2740                         break;
2741                 }
2742         }
2743
2744         return r;
2745 }
2746
2747 static void metadata_low_callback(void *context)
2748 {
2749         struct pool *pool = context;
2750
2751         DMWARN("%s: reached low water mark for metadata device: sending event.",
2752                dm_device_name(pool->pool_md));
2753
2754         dm_table_event(pool->ti->table);
2755 }
2756
2757 static sector_t get_dev_size(struct block_device *bdev)
2758 {
2759         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2760 }
2761
2762 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2763 {
2764         sector_t metadata_dev_size = get_dev_size(bdev);
2765         char buffer[BDEVNAME_SIZE];
2766
2767         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2768                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2769                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2770 }
2771
2772 static sector_t get_metadata_dev_size(struct block_device *bdev)
2773 {
2774         sector_t metadata_dev_size = get_dev_size(bdev);
2775
2776         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2777                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2778
2779         return metadata_dev_size;
2780 }
2781
2782 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2783 {
2784         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2785
2786         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2787
2788         return metadata_dev_size;
2789 }
2790
2791 /*
2792  * When a metadata threshold is crossed a dm event is triggered, and
2793  * userland should respond by growing the metadata device.  We could let
2794  * userland set the threshold, like we do with the data threshold, but I'm
2795  * not sure they know enough to do this well.
2796  */
2797 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2798 {
2799         /*
2800          * 4M is ample for all ops with the possible exception of thin
2801          * device deletion which is harmless if it fails (just retry the
2802          * delete after you've grown the device).
2803          */
2804         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2805         return min((dm_block_t)1024ULL /* 4M */, quarter);
2806 }
2807
2808 /*
2809  * thin-pool <metadata dev> <data dev>
2810  *           <data block size (sectors)>
2811  *           <low water mark (blocks)>
2812  *           [<#feature args> [<arg>]*]
2813  *
2814  * Optional feature arguments are:
2815  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2816  *           ignore_discard: disable discard
2817  *           no_discard_passdown: don't pass discards down to the data device
2818  *           read_only: Don't allow any changes to be made to the pool metadata.
2819  *           error_if_no_space: error IOs, instead of queueing, if no space.
2820  */
2821 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2822 {
2823         int r, pool_created = 0;
2824         struct pool_c *pt;
2825         struct pool *pool;
2826         struct pool_features pf;
2827         struct dm_arg_set as;
2828         struct dm_dev *data_dev;
2829         unsigned long block_size;
2830         dm_block_t low_water_blocks;
2831         struct dm_dev *metadata_dev;
2832         fmode_t metadata_mode;
2833
2834         /*
2835          * FIXME Remove validation from scope of lock.
2836          */
2837         mutex_lock(&dm_thin_pool_table.mutex);
2838
2839         if (argc < 4) {
2840                 ti->error = "Invalid argument count";
2841                 r = -EINVAL;
2842                 goto out_unlock;
2843         }
2844
2845         as.argc = argc;
2846         as.argv = argv;
2847
2848         /*
2849          * Set default pool features.
2850          */
2851         pool_features_init(&pf);
2852
2853         dm_consume_args(&as, 4);
2854         r = parse_pool_features(&as, &pf, ti);
2855         if (r)
2856                 goto out_unlock;
2857
2858         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2859         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2860         if (r) {
2861                 ti->error = "Error opening metadata block device";
2862                 goto out_unlock;
2863         }
2864         warn_if_metadata_device_too_big(metadata_dev->bdev);
2865
2866         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2867         if (r) {
2868                 ti->error = "Error getting data device";
2869                 goto out_metadata;
2870         }
2871
2872         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2873             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2874             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2875             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2876                 ti->error = "Invalid block size";
2877                 r = -EINVAL;
2878                 goto out;
2879         }
2880
2881         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2882                 ti->error = "Invalid low water mark";
2883                 r = -EINVAL;
2884                 goto out;
2885         }
2886
2887         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2888         if (!pt) {
2889                 r = -ENOMEM;
2890                 goto out;
2891         }
2892
2893         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2894                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2895         if (IS_ERR(pool)) {
2896                 r = PTR_ERR(pool);
2897                 goto out_free_pt;
2898         }
2899
2900         /*
2901          * 'pool_created' reflects whether this is the first table load.
2902          * Top level discard support is not allowed to be changed after
2903          * initial load.  This would require a pool reload to trigger thin
2904          * device changes.
2905          */
2906         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2907                 ti->error = "Discard support cannot be disabled once enabled";
2908                 r = -EINVAL;
2909                 goto out_flags_changed;
2910         }
2911
2912         pt->pool = pool;
2913         pt->ti = ti;
2914         pt->metadata_dev = metadata_dev;
2915         pt->data_dev = data_dev;
2916         pt->low_water_blocks = low_water_blocks;
2917         pt->adjusted_pf = pt->requested_pf = pf;
2918         ti->num_flush_bios = 1;
2919
2920         /*
2921          * Only need to enable discards if the pool should pass
2922          * them down to the data device.  The thin device's discard
2923          * processing will cause mappings to be removed from the btree.
2924          */
2925         ti->discard_zeroes_data_unsupported = true;
2926         if (pf.discard_enabled && pf.discard_passdown) {
2927                 ti->num_discard_bios = 1;
2928
2929                 /*
2930                  * Setting 'discards_supported' circumvents the normal
2931                  * stacking of discard limits (this keeps the pool and
2932                  * thin devices' discard limits consistent).
2933                  */
2934                 ti->discards_supported = true;
2935         }
2936         ti->private = pt;
2937
2938         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2939                                                 calc_metadata_threshold(pt),
2940                                                 metadata_low_callback,
2941                                                 pool);
2942         if (r)
2943                 goto out_free_pt;
2944
2945         pt->callbacks.congested_fn = pool_is_congested;
2946         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2947
2948         mutex_unlock(&dm_thin_pool_table.mutex);
2949
2950         return 0;
2951
2952 out_flags_changed:
2953         __pool_dec(pool);
2954 out_free_pt:
2955         kfree(pt);
2956 out:
2957         dm_put_device(ti, data_dev);
2958 out_metadata:
2959         dm_put_device(ti, metadata_dev);
2960 out_unlock:
2961         mutex_unlock(&dm_thin_pool_table.mutex);
2962
2963         return r;
2964 }
2965
2966 static int pool_map(struct dm_target *ti, struct bio *bio)
2967 {
2968         int r;
2969         struct pool_c *pt = ti->private;
2970         struct pool *pool = pt->pool;
2971         unsigned long flags;
2972
2973         /*
2974          * As this is a singleton target, ti->begin is always zero.
2975          */
2976         spin_lock_irqsave(&pool->lock, flags);
2977         bio->bi_bdev = pt->data_dev->bdev;
2978         r = DM_MAPIO_REMAPPED;
2979         spin_unlock_irqrestore(&pool->lock, flags);
2980
2981         return r;
2982 }
2983
2984 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2985 {
2986         int r;
2987         struct pool_c *pt = ti->private;
2988         struct pool *pool = pt->pool;
2989         sector_t data_size = ti->len;
2990         dm_block_t sb_data_size;
2991
2992         *need_commit = false;
2993
2994         (void) sector_div(data_size, pool->sectors_per_block);
2995
2996         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2997         if (r) {
2998                 DMERR("%s: failed to retrieve data device size",
2999                       dm_device_name(pool->pool_md));
3000                 return r;
3001         }
3002
3003         if (data_size < sb_data_size) {
3004                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3005                       dm_device_name(pool->pool_md),
3006                       (unsigned long long)data_size, sb_data_size);
3007                 return -EINVAL;
3008
3009         } else if (data_size > sb_data_size) {
3010                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3011                         DMERR("%s: unable to grow the data device until repaired.",
3012                               dm_device_name(pool->pool_md));
3013                         return 0;
3014                 }
3015
3016                 if (sb_data_size)
3017                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3018                                dm_device_name(pool->pool_md),
3019                                sb_data_size, (unsigned long long)data_size);
3020                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3021                 if (r) {
3022                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3023                         return r;
3024                 }
3025
3026                 *need_commit = true;
3027         }
3028
3029         return 0;
3030 }
3031
3032 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3033 {
3034         int r;
3035         struct pool_c *pt = ti->private;
3036         struct pool *pool = pt->pool;
3037         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3038
3039         *need_commit = false;
3040
3041         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3042
3043         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3044         if (r) {
3045                 DMERR("%s: failed to retrieve metadata device size",
3046                       dm_device_name(pool->pool_md));
3047                 return r;
3048         }
3049
3050         if (metadata_dev_size < sb_metadata_dev_size) {
3051                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3052                       dm_device_name(pool->pool_md),
3053                       metadata_dev_size, sb_metadata_dev_size);
3054                 return -EINVAL;
3055
3056         } else if (metadata_dev_size > sb_metadata_dev_size) {
3057                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3058                         DMERR("%s: unable to grow the metadata device until repaired.",
3059                               dm_device_name(pool->pool_md));
3060                         return 0;
3061                 }
3062
3063                 warn_if_metadata_device_too_big(pool->md_dev);
3064                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3065                        dm_device_name(pool->pool_md),
3066                        sb_metadata_dev_size, metadata_dev_size);
3067                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3068                 if (r) {
3069                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3070                         return r;
3071                 }
3072
3073                 *need_commit = true;
3074         }
3075
3076         return 0;
3077 }
3078
3079 /*
3080  * Retrieves the number of blocks of the data device from
3081  * the superblock and compares it to the actual device size,
3082  * thus resizing the data device in case it has grown.
3083  *
3084  * This both copes with opening preallocated data devices in the ctr
3085  * being followed by a resume
3086  * -and-
3087  * calling the resume method individually after userspace has
3088  * grown the data device in reaction to a table event.
3089  */
3090 static int pool_preresume(struct dm_target *ti)
3091 {
3092         int r;
3093         bool need_commit1, need_commit2;
3094         struct pool_c *pt = ti->private;
3095         struct pool *pool = pt->pool;
3096
3097         /*
3098          * Take control of the pool object.
3099          */
3100         r = bind_control_target(pool, ti);
3101         if (r)
3102                 return r;
3103
3104         r = maybe_resize_data_dev(ti, &need_commit1);
3105         if (r)
3106                 return r;
3107
3108         r = maybe_resize_metadata_dev(ti, &need_commit2);
3109         if (r)
3110                 return r;
3111
3112         if (need_commit1 || need_commit2)
3113                 (void) commit(pool);
3114
3115         return 0;
3116 }
3117
3118 static void pool_suspend_active_thins(struct pool *pool)
3119 {
3120         struct thin_c *tc;
3121
3122         /* Suspend all active thin devices */
3123         tc = get_first_thin(pool);
3124         while (tc) {
3125                 dm_internal_suspend_noflush(tc->thin_md);
3126                 tc = get_next_thin(pool, tc);
3127         }
3128 }
3129
3130 static void pool_resume_active_thins(struct pool *pool)
3131 {
3132         struct thin_c *tc;
3133
3134         /* Resume all active thin devices */
3135         tc = get_first_thin(pool);
3136         while (tc) {
3137                 dm_internal_resume(tc->thin_md);
3138                 tc = get_next_thin(pool, tc);
3139         }
3140 }
3141
3142 static void pool_resume(struct dm_target *ti)
3143 {
3144         struct pool_c *pt = ti->private;
3145         struct pool *pool = pt->pool;
3146         unsigned long flags;
3147
3148         /*
3149          * Must requeue active_thins' bios and then resume
3150          * active_thins _before_ clearing 'suspend' flag.
3151          */
3152         requeue_bios(pool);
3153         pool_resume_active_thins(pool);
3154
3155         spin_lock_irqsave(&pool->lock, flags);
3156         pool->low_water_triggered = false;
3157         pool->suspended = false;
3158         spin_unlock_irqrestore(&pool->lock, flags);
3159
3160         do_waker(&pool->waker.work);
3161 }
3162
3163 static void pool_presuspend(struct dm_target *ti)
3164 {
3165         struct pool_c *pt = ti->private;
3166         struct pool *pool = pt->pool;
3167         unsigned long flags;
3168
3169         spin_lock_irqsave(&pool->lock, flags);
3170         pool->suspended = true;
3171         spin_unlock_irqrestore(&pool->lock, flags);
3172
3173         pool_suspend_active_thins(pool);
3174 }
3175
3176 static void pool_presuspend_undo(struct dm_target *ti)
3177 {
3178         struct pool_c *pt = ti->private;
3179         struct pool *pool = pt->pool;
3180         unsigned long flags;
3181
3182         pool_resume_active_thins(pool);
3183
3184         spin_lock_irqsave(&pool->lock, flags);
3185         pool->suspended = false;
3186         spin_unlock_irqrestore(&pool->lock, flags);
3187 }
3188
3189 static void pool_postsuspend(struct dm_target *ti)
3190 {
3191         struct pool_c *pt = ti->private;
3192         struct pool *pool = pt->pool;
3193
3194         cancel_delayed_work(&pool->waker);
3195         cancel_delayed_work(&pool->no_space_timeout);
3196         flush_workqueue(pool->wq);
3197         (void) commit(pool);
3198 }
3199
3200 static int check_arg_count(unsigned argc, unsigned args_required)
3201 {
3202         if (argc != args_required) {
3203                 DMWARN("Message received with %u arguments instead of %u.",
3204                        argc, args_required);
3205                 return -EINVAL;
3206         }
3207
3208         return 0;
3209 }
3210
3211 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3212 {
3213         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3214             *dev_id <= MAX_DEV_ID)
3215                 return 0;
3216
3217         if (warning)
3218                 DMWARN("Message received with invalid device id: %s", arg);
3219
3220         return -EINVAL;
3221 }
3222
3223 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3224 {
3225         dm_thin_id dev_id;
3226         int r;
3227
3228         r = check_arg_count(argc, 2);
3229         if (r)
3230                 return r;
3231
3232         r = read_dev_id(argv[1], &dev_id, 1);
3233         if (r)
3234                 return r;
3235
3236         r = dm_pool_create_thin(pool->pmd, dev_id);
3237         if (r) {
3238                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3239                        argv[1]);
3240                 return r;
3241         }
3242
3243         return 0;
3244 }
3245
3246 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3247 {
3248         dm_thin_id dev_id;
3249         dm_thin_id origin_dev_id;
3250         int r;
3251
3252         r = check_arg_count(argc, 3);
3253         if (r)
3254                 return r;
3255
3256         r = read_dev_id(argv[1], &dev_id, 1);
3257         if (r)
3258                 return r;
3259
3260         r = read_dev_id(argv[2], &origin_dev_id, 1);
3261         if (r)
3262                 return r;
3263
3264         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3265         if (r) {
3266                 DMWARN("Creation of new snapshot %s of device %s failed.",
3267                        argv[1], argv[2]);
3268                 return r;
3269         }
3270
3271         return 0;
3272 }
3273
3274 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3275 {
3276         dm_thin_id dev_id;
3277         int r;
3278
3279         r = check_arg_count(argc, 2);
3280         if (r)
3281                 return r;
3282
3283         r = read_dev_id(argv[1], &dev_id, 1);
3284         if (r)
3285                 return r;
3286
3287         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3288         if (r)
3289                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3290
3291         return r;
3292 }
3293
3294 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3295 {
3296         dm_thin_id old_id, new_id;
3297         int r;
3298
3299         r = check_arg_count(argc, 3);
3300         if (r)
3301                 return r;
3302
3303         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3304                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3305                 return -EINVAL;
3306         }
3307
3308         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3309                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3310                 return -EINVAL;
3311         }
3312
3313         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3314         if (r) {
3315                 DMWARN("Failed to change transaction id from %s to %s.",
3316                        argv[1], argv[2]);
3317                 return r;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3324 {
3325         int r;
3326
3327         r = check_arg_count(argc, 1);
3328         if (r)
3329                 return r;
3330
3331         (void) commit(pool);
3332
3333         r = dm_pool_reserve_metadata_snap(pool->pmd);
3334         if (r)
3335                 DMWARN("reserve_metadata_snap message failed.");
3336
3337         return r;
3338 }
3339
3340 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3341 {
3342         int r;
3343
3344         r = check_arg_count(argc, 1);
3345         if (r)
3346                 return r;
3347
3348         r = dm_pool_release_metadata_snap(pool->pmd);
3349         if (r)
3350                 DMWARN("release_metadata_snap message failed.");
3351
3352         return r;
3353 }
3354
3355 /*
3356  * Messages supported:
3357  *   create_thin        <dev_id>
3358  *   create_snap        <dev_id> <origin_id>
3359  *   delete             <dev_id>
3360  *   set_transaction_id <current_trans_id> <new_trans_id>
3361  *   reserve_metadata_snap
3362  *   release_metadata_snap
3363  */
3364 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3365 {
3366         int r = -EINVAL;
3367         struct pool_c *pt = ti->private;
3368         struct pool *pool = pt->pool;
3369
3370         if (!strcasecmp(argv[0], "create_thin"))
3371                 r = process_create_thin_mesg(argc, argv, pool);
3372
3373         else if (!strcasecmp(argv[0], "create_snap"))
3374                 r = process_create_snap_mesg(argc, argv, pool);
3375
3376         else if (!strcasecmp(argv[0], "delete"))
3377                 r = process_delete_mesg(argc, argv, pool);
3378
3379         else if (!strcasecmp(argv[0], "set_transaction_id"))
3380                 r = process_set_transaction_id_mesg(argc, argv, pool);
3381
3382         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3383                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3384
3385         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3386                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3387
3388         else
3389                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3390
3391         if (!r)
3392                 (void) commit(pool);
3393
3394         return r;
3395 }
3396
3397 static void emit_flags(struct pool_features *pf, char *result,
3398                        unsigned sz, unsigned maxlen)
3399 {
3400         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3401                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3402                 pf->error_if_no_space;
3403         DMEMIT("%u ", count);
3404
3405         if (!pf->zero_new_blocks)
3406                 DMEMIT("skip_block_zeroing ");
3407
3408         if (!pf->discard_enabled)
3409                 DMEMIT("ignore_discard ");
3410
3411         if (!pf->discard_passdown)
3412                 DMEMIT("no_discard_passdown ");
3413
3414         if (pf->mode == PM_READ_ONLY)
3415                 DMEMIT("read_only ");
3416
3417         if (pf->error_if_no_space)
3418                 DMEMIT("error_if_no_space ");
3419 }
3420
3421 /*
3422  * Status line is:
3423  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3424  *    <used data sectors>/<total data sectors> <held metadata root>
3425  */
3426 static void pool_status(struct dm_target *ti, status_type_t type,
3427                         unsigned status_flags, char *result, unsigned maxlen)
3428 {
3429         int r;
3430         unsigned sz = 0;
3431         uint64_t transaction_id;
3432         dm_block_t nr_free_blocks_data;
3433         dm_block_t nr_free_blocks_metadata;
3434         dm_block_t nr_blocks_data;
3435         dm_block_t nr_blocks_metadata;
3436         dm_block_t held_root;
3437         char buf[BDEVNAME_SIZE];
3438         char buf2[BDEVNAME_SIZE];
3439         struct pool_c *pt = ti->private;
3440         struct pool *pool = pt->pool;
3441
3442         switch (type) {
3443         case STATUSTYPE_INFO:
3444                 if (get_pool_mode(pool) == PM_FAIL) {
3445                         DMEMIT("Fail");
3446                         break;
3447                 }
3448
3449                 /* Commit to ensure statistics aren't out-of-date */
3450                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3451                         (void) commit(pool);
3452
3453                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3454                 if (r) {
3455                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3456                               dm_device_name(pool->pool_md), r);
3457                         goto err;
3458                 }
3459
3460                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3461                 if (r) {
3462                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3463                               dm_device_name(pool->pool_md), r);
3464                         goto err;
3465                 }
3466
3467                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3468                 if (r) {
3469                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3470                               dm_device_name(pool->pool_md), r);
3471                         goto err;
3472                 }
3473
3474                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3475                 if (r) {
3476                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3477                               dm_device_name(pool->pool_md), r);
3478                         goto err;
3479                 }
3480
3481                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3482                 if (r) {
3483                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3484                               dm_device_name(pool->pool_md), r);
3485                         goto err;
3486                 }
3487
3488                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3489                 if (r) {
3490                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3491                               dm_device_name(pool->pool_md), r);
3492                         goto err;
3493                 }
3494
3495                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3496                        (unsigned long long)transaction_id,
3497                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3498                        (unsigned long long)nr_blocks_metadata,
3499                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3500                        (unsigned long long)nr_blocks_data);
3501
3502                 if (held_root)
3503                         DMEMIT("%llu ", held_root);
3504                 else
3505                         DMEMIT("- ");
3506
3507                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3508                         DMEMIT("out_of_data_space ");
3509                 else if (pool->pf.mode == PM_READ_ONLY)
3510                         DMEMIT("ro ");
3511                 else
3512                         DMEMIT("rw ");
3513
3514                 if (!pool->pf.discard_enabled)
3515                         DMEMIT("ignore_discard ");
3516                 else if (pool->pf.discard_passdown)
3517                         DMEMIT("discard_passdown ");
3518                 else
3519                         DMEMIT("no_discard_passdown ");
3520
3521                 if (pool->pf.error_if_no_space)
3522                         DMEMIT("error_if_no_space ");
3523                 else
3524                         DMEMIT("queue_if_no_space ");
3525
3526                 break;
3527
3528         case STATUSTYPE_TABLE:
3529                 DMEMIT("%s %s %lu %llu ",
3530                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3531                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3532                        (unsigned long)pool->sectors_per_block,
3533                        (unsigned long long)pt->low_water_blocks);
3534                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3535                 break;
3536         }
3537         return;
3538
3539 err:
3540         DMEMIT("Error");
3541 }
3542
3543 static int pool_iterate_devices(struct dm_target *ti,
3544                                 iterate_devices_callout_fn fn, void *data)
3545 {
3546         struct pool_c *pt = ti->private;
3547
3548         return fn(ti, pt->data_dev, 0, ti->len, data);
3549 }
3550
3551 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3552                       struct bio_vec *biovec, int max_size)
3553 {
3554         struct pool_c *pt = ti->private;
3555         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3556
3557         if (!q->merge_bvec_fn)
3558                 return max_size;
3559
3560         bvm->bi_bdev = pt->data_dev->bdev;
3561
3562         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3563 }
3564
3565 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3566 {
3567         struct pool *pool = pt->pool;
3568         struct queue_limits *data_limits;
3569
3570         limits->max_discard_sectors = pool->sectors_per_block;
3571
3572         /*
3573          * discard_granularity is just a hint, and not enforced.
3574          */
3575         if (pt->adjusted_pf.discard_passdown) {
3576                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3577                 limits->discard_granularity = max(data_limits->discard_granularity,
3578                                                   pool->sectors_per_block << SECTOR_SHIFT);
3579         } else
3580                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3581 }
3582
3583 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3584 {
3585         struct pool_c *pt = ti->private;
3586         struct pool *pool = pt->pool;
3587         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3588
3589         /*
3590          * If max_sectors is smaller than pool->sectors_per_block adjust it
3591          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3592          * This is especially beneficial when the pool's data device is a RAID
3593          * device that has a full stripe width that matches pool->sectors_per_block
3594          * -- because even though partial RAID stripe-sized IOs will be issued to a
3595          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3596          *    boundary.. which avoids additional partial RAID stripe writes cascading
3597          */
3598         if (limits->max_sectors < pool->sectors_per_block) {
3599                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3600                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3601                                 limits->max_sectors--;
3602                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3603                 }
3604         }
3605
3606         /*
3607          * If the system-determined stacked limits are compatible with the
3608          * pool's blocksize (io_opt is a factor) do not override them.
3609          */
3610         if (io_opt_sectors < pool->sectors_per_block ||
3611             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3612                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3613                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3614                 else
3615                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3616                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3617         }
3618
3619         /*
3620          * pt->adjusted_pf is a staging area for the actual features to use.
3621          * They get transferred to the live pool in bind_control_target()
3622          * called from pool_preresume().
3623          */
3624         if (!pt->adjusted_pf.discard_enabled) {
3625                 /*
3626                  * Must explicitly disallow stacking discard limits otherwise the
3627                  * block layer will stack them if pool's data device has support.
3628                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3629                  * user to see that, so make sure to set all discard limits to 0.
3630                  */
3631                 limits->discard_granularity = 0;
3632                 return;
3633         }
3634
3635         disable_passdown_if_not_supported(pt);
3636
3637         set_discard_limits(pt, limits);
3638 }
3639
3640 static struct target_type pool_target = {
3641         .name = "thin-pool",
3642         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3643                     DM_TARGET_IMMUTABLE,
3644         .version = {1, 14, 0},
3645         .module = THIS_MODULE,
3646         .ctr = pool_ctr,
3647         .dtr = pool_dtr,
3648         .map = pool_map,
3649         .presuspend = pool_presuspend,
3650         .presuspend_undo = pool_presuspend_undo,
3651         .postsuspend = pool_postsuspend,
3652         .preresume = pool_preresume,
3653         .resume = pool_resume,
3654         .message = pool_message,
3655         .status = pool_status,
3656         .merge = pool_merge,
3657         .iterate_devices = pool_iterate_devices,
3658         .io_hints = pool_io_hints,
3659 };
3660
3661 /*----------------------------------------------------------------
3662  * Thin target methods
3663  *--------------------------------------------------------------*/
3664 static void thin_get(struct thin_c *tc)
3665 {
3666         atomic_inc(&tc->refcount);
3667 }
3668
3669 static void thin_put(struct thin_c *tc)
3670 {
3671         if (atomic_dec_and_test(&tc->refcount))
3672                 complete(&tc->can_destroy);
3673 }
3674
3675 static void thin_dtr(struct dm_target *ti)
3676 {
3677         struct thin_c *tc = ti->private;
3678         unsigned long flags;
3679
3680         spin_lock_irqsave(&tc->pool->lock, flags);
3681         list_del_rcu(&tc->list);
3682         spin_unlock_irqrestore(&tc->pool->lock, flags);
3683         synchronize_rcu();
3684
3685         thin_put(tc);
3686         wait_for_completion(&tc->can_destroy);
3687
3688         mutex_lock(&dm_thin_pool_table.mutex);
3689
3690         __pool_dec(tc->pool);
3691         dm_pool_close_thin_device(tc->td);
3692         dm_put_device(ti, tc->pool_dev);
3693         if (tc->origin_dev)
3694                 dm_put_device(ti, tc->origin_dev);
3695         kfree(tc);
3696
3697         mutex_unlock(&dm_thin_pool_table.mutex);
3698 }
3699
3700 /*
3701  * Thin target parameters:
3702  *
3703  * <pool_dev> <dev_id> [origin_dev]
3704  *
3705  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3706  * dev_id: the internal device identifier
3707  * origin_dev: a device external to the pool that should act as the origin
3708  *
3709  * If the pool device has discards disabled, they get disabled for the thin
3710  * device as well.
3711  */
3712 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3713 {
3714         int r;
3715         struct thin_c *tc;
3716         struct dm_dev *pool_dev, *origin_dev;
3717         struct mapped_device *pool_md;
3718         unsigned long flags;
3719
3720         mutex_lock(&dm_thin_pool_table.mutex);
3721
3722         if (argc != 2 && argc != 3) {
3723                 ti->error = "Invalid argument count";
3724                 r = -EINVAL;
3725                 goto out_unlock;
3726         }
3727
3728         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3729         if (!tc) {
3730                 ti->error = "Out of memory";
3731                 r = -ENOMEM;
3732                 goto out_unlock;
3733         }
3734         tc->thin_md = dm_table_get_md(ti->table);
3735         spin_lock_init(&tc->lock);
3736         INIT_LIST_HEAD(&tc->deferred_cells);
3737         bio_list_init(&tc->deferred_bio_list);
3738         bio_list_init(&tc->retry_on_resume_list);
3739         tc->sort_bio_list = RB_ROOT;
3740
3741         if (argc == 3) {
3742                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3743                 if (r) {
3744                         ti->error = "Error opening origin device";
3745                         goto bad_origin_dev;
3746                 }
3747                 tc->origin_dev = origin_dev;
3748         }
3749
3750         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3751         if (r) {
3752                 ti->error = "Error opening pool device";
3753                 goto bad_pool_dev;
3754         }
3755         tc->pool_dev = pool_dev;
3756
3757         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3758                 ti->error = "Invalid device id";
3759                 r = -EINVAL;
3760                 goto bad_common;
3761         }
3762
3763         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3764         if (!pool_md) {
3765                 ti->error = "Couldn't get pool mapped device";
3766                 r = -EINVAL;
3767                 goto bad_common;
3768         }
3769
3770         tc->pool = __pool_table_lookup(pool_md);
3771         if (!tc->pool) {
3772                 ti->error = "Couldn't find pool object";
3773                 r = -EINVAL;
3774                 goto bad_pool_lookup;
3775         }
3776         __pool_inc(tc->pool);
3777
3778         if (get_pool_mode(tc->pool) == PM_FAIL) {
3779                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3780                 r = -EINVAL;
3781                 goto bad_pool;
3782         }
3783
3784         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3785         if (r) {
3786                 ti->error = "Couldn't open thin internal device";
3787                 goto bad_pool;
3788         }
3789
3790         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3791         if (r)
3792                 goto bad;
3793
3794         ti->num_flush_bios = 1;
3795         ti->flush_supported = true;
3796         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3797
3798         /* In case the pool supports discards, pass them on. */
3799         ti->discard_zeroes_data_unsupported = true;
3800         if (tc->pool->pf.discard_enabled) {
3801                 ti->discards_supported = true;
3802                 ti->num_discard_bios = 1;
3803                 /* Discard bios must be split on a block boundary */
3804                 ti->split_discard_bios = true;
3805         }
3806
3807         mutex_unlock(&dm_thin_pool_table.mutex);
3808
3809         spin_lock_irqsave(&tc->pool->lock, flags);
3810         if (tc->pool->suspended) {
3811                 spin_unlock_irqrestore(&tc->pool->lock, flags);
3812                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3813                 ti->error = "Unable to activate thin device while pool is suspended";
3814                 r = -EINVAL;
3815                 goto bad;
3816         }
3817         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3818         spin_unlock_irqrestore(&tc->pool->lock, flags);
3819         /*
3820          * This synchronize_rcu() call is needed here otherwise we risk a
3821          * wake_worker() call finding no bios to process (because the newly
3822          * added tc isn't yet visible).  So this reduces latency since we
3823          * aren't then dependent on the periodic commit to wake_worker().
3824          */
3825         synchronize_rcu();
3826
3827         dm_put(pool_md);
3828
3829         atomic_set(&tc->refcount, 1);
3830         init_completion(&tc->can_destroy);
3831
3832         return 0;
3833
3834 bad:
3835         dm_pool_close_thin_device(tc->td);
3836 bad_pool:
3837         __pool_dec(tc->pool);
3838 bad_pool_lookup:
3839         dm_put(pool_md);
3840 bad_common:
3841         dm_put_device(ti, tc->pool_dev);
3842 bad_pool_dev:
3843         if (tc->origin_dev)
3844                 dm_put_device(ti, tc->origin_dev);
3845 bad_origin_dev:
3846         kfree(tc);
3847 out_unlock:
3848         mutex_unlock(&dm_thin_pool_table.mutex);
3849
3850         return r;
3851 }
3852
3853 static int thin_map(struct dm_target *ti, struct bio *bio)
3854 {
3855         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3856
3857         return thin_bio_map(ti, bio);
3858 }
3859
3860 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3861 {
3862         unsigned long flags;
3863         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3864         struct list_head work;
3865         struct dm_thin_new_mapping *m, *tmp;
3866         struct pool *pool = h->tc->pool;
3867
3868         if (h->shared_read_entry) {
3869                 INIT_LIST_HEAD(&work);
3870                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3871
3872                 spin_lock_irqsave(&pool->lock, flags);
3873                 list_for_each_entry_safe(m, tmp, &work, list) {
3874                         list_del(&m->list);
3875                         __complete_mapping_preparation(m);
3876                 }
3877                 spin_unlock_irqrestore(&pool->lock, flags);
3878         }
3879
3880         if (h->all_io_entry) {
3881                 INIT_LIST_HEAD(&work);
3882                 dm_deferred_entry_dec(h->all_io_entry, &work);
3883                 if (!list_empty(&work)) {
3884                         spin_lock_irqsave(&pool->lock, flags);
3885                         list_for_each_entry_safe(m, tmp, &work, list)
3886                                 list_add_tail(&m->list, &pool->prepared_discards);
3887                         spin_unlock_irqrestore(&pool->lock, flags);
3888                         wake_worker(pool);
3889                 }
3890         }
3891
3892         return 0;
3893 }
3894
3895 static void thin_presuspend(struct dm_target *ti)
3896 {
3897         struct thin_c *tc = ti->private;
3898
3899         if (dm_noflush_suspending(ti))
3900                 noflush_work(tc, do_noflush_start);
3901 }
3902
3903 static void thin_postsuspend(struct dm_target *ti)
3904 {
3905         struct thin_c *tc = ti->private;
3906
3907         /*
3908          * The dm_noflush_suspending flag has been cleared by now, so
3909          * unfortunately we must always run this.
3910          */
3911         noflush_work(tc, do_noflush_stop);
3912 }
3913
3914 static int thin_preresume(struct dm_target *ti)
3915 {
3916         struct thin_c *tc = ti->private;
3917
3918         if (tc->origin_dev)
3919                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3920
3921         return 0;
3922 }
3923
3924 /*
3925  * <nr mapped sectors> <highest mapped sector>
3926  */
3927 static void thin_status(struct dm_target *ti, status_type_t type,
3928                         unsigned status_flags, char *result, unsigned maxlen)
3929 {
3930         int r;
3931         ssize_t sz = 0;
3932         dm_block_t mapped, highest;
3933         char buf[BDEVNAME_SIZE];
3934         struct thin_c *tc = ti->private;
3935
3936         if (get_pool_mode(tc->pool) == PM_FAIL) {
3937                 DMEMIT("Fail");
3938                 return;
3939         }
3940
3941         if (!tc->td)
3942                 DMEMIT("-");
3943         else {
3944                 switch (type) {
3945                 case STATUSTYPE_INFO:
3946                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3947                         if (r) {
3948                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3949                                 goto err;
3950                         }
3951
3952                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3953                         if (r < 0) {
3954                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3955                                 goto err;
3956                         }
3957
3958                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3959                         if (r)
3960                                 DMEMIT("%llu", ((highest + 1) *
3961                                                 tc->pool->sectors_per_block) - 1);
3962                         else
3963                                 DMEMIT("-");
3964                         break;
3965
3966                 case STATUSTYPE_TABLE:
3967                         DMEMIT("%s %lu",
3968                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3969                                (unsigned long) tc->dev_id);
3970                         if (tc->origin_dev)
3971                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3972                         break;
3973                 }
3974         }
3975
3976         return;
3977
3978 err:
3979         DMEMIT("Error");
3980 }
3981
3982 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3983                       struct bio_vec *biovec, int max_size)
3984 {
3985         struct thin_c *tc = ti->private;
3986         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3987
3988         if (!q->merge_bvec_fn)
3989                 return max_size;
3990
3991         bvm->bi_bdev = tc->pool_dev->bdev;
3992         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3993
3994         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3995 }
3996
3997 static int thin_iterate_devices(struct dm_target *ti,
3998                                 iterate_devices_callout_fn fn, void *data)
3999 {
4000         sector_t blocks;
4001         struct thin_c *tc = ti->private;
4002         struct pool *pool = tc->pool;
4003
4004         /*
4005          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4006          * we follow a more convoluted path through to the pool's target.
4007          */
4008         if (!pool->ti)
4009                 return 0;       /* nothing is bound */
4010
4011         blocks = pool->ti->len;
4012         (void) sector_div(blocks, pool->sectors_per_block);
4013         if (blocks)
4014                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4015
4016         return 0;
4017 }
4018
4019 static struct target_type thin_target = {
4020         .name = "thin",
4021         .version = {1, 14, 0},
4022         .module = THIS_MODULE,
4023         .ctr = thin_ctr,
4024         .dtr = thin_dtr,
4025         .map = thin_map,
4026         .end_io = thin_endio,
4027         .preresume = thin_preresume,
4028         .presuspend = thin_presuspend,
4029         .postsuspend = thin_postsuspend,
4030         .status = thin_status,
4031         .merge = thin_merge,
4032         .iterate_devices = thin_iterate_devices,
4033 };
4034
4035 /*----------------------------------------------------------------*/
4036
4037 static int __init dm_thin_init(void)
4038 {
4039         int r;
4040
4041         pool_table_init();
4042
4043         r = dm_register_target(&thin_target);
4044         if (r)
4045                 return r;
4046
4047         r = dm_register_target(&pool_target);
4048         if (r)
4049                 goto bad_pool_target;
4050
4051         r = -ENOMEM;
4052
4053         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4054         if (!_new_mapping_cache)
4055                 goto bad_new_mapping_cache;
4056
4057         return 0;
4058
4059 bad_new_mapping_cache:
4060         dm_unregister_target(&pool_target);
4061 bad_pool_target:
4062         dm_unregister_target(&thin_target);
4063
4064         return r;
4065 }
4066
4067 static void dm_thin_exit(void)
4068 {
4069         dm_unregister_target(&thin_target);
4070         dm_unregister_target(&pool_target);
4071
4072         kmem_cache_destroy(_new_mapping_cache);
4073 }
4074
4075 module_init(dm_thin_init);
4076 module_exit(dm_thin_exit);
4077
4078 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4079 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4080
4081 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4082 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4083 MODULE_LICENSE("GPL");