x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263         mempool_t *mapping_pool;
264
265         process_bio_fn process_bio;
266         process_bio_fn process_discard;
267
268         process_cell_fn process_cell;
269         process_cell_fn process_discard_cell;
270
271         process_mapping_fn process_prepared_mapping;
272         process_mapping_fn process_prepared_discard;
273         process_mapping_fn process_prepared_discard_pt2;
274
275         struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285         struct dm_target *ti;
286         struct pool *pool;
287         struct dm_dev *data_dev;
288         struct dm_dev *metadata_dev;
289         struct dm_target_callbacks callbacks;
290
291         dm_block_t low_water_blocks;
292         struct pool_features requested_pf; /* Features requested during table load */
293         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300         struct list_head list;
301         struct dm_dev *pool_dev;
302         struct dm_dev *origin_dev;
303         sector_t origin_size;
304         dm_thin_id dev_id;
305
306         struct pool *pool;
307         struct dm_thin_device *td;
308         struct mapped_device *thin_md;
309
310         bool requeue_mode:1;
311         spinlock_t lock;
312         struct list_head deferred_cells;
313         struct bio_list deferred_bio_list;
314         struct bio_list retry_on_resume_list;
315         struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317         /*
318          * Ensures the thin is not destroyed until the worker has finished
319          * iterating the active_thins list.
320          */
321         atomic_t refcount;
322         struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329         return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334         return block_size_is_power_of_two(pool) ?
335                 (b << pool->sectors_per_block_shift) :
336                 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342         struct thin_c *tc;
343         struct blk_plug plug;
344         struct bio *parent_bio;
345         struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350         BUG_ON(!parent);
351
352         op->tc = tc;
353         blk_start_plug(&op->plug);
354         op->parent_bio = parent;
355         op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360         struct thin_c *tc = op->tc;
361         sector_t s = block_to_sectors(tc->pool, data_b);
362         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365                                       GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370         if (op->bio) {
371                 /*
372                  * Even if one of the calls to issue_discard failed, we
373                  * need to wait for the chain to complete.
374                  */
375                 bio_chain(op->bio, op->parent_bio);
376                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377                 submit_bio(op->bio);
378         }
379
380         blk_finish_plug(&op->plug);
381
382         /*
383          * Even if r is set, there could be sub discards in flight that we
384          * need to wait for.
385          */
386         if (r && !op->parent_bio->bi_error)
387                 op->parent_bio->bi_error = r;
388         bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399         queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405                       struct dm_bio_prison_cell **cell_result)
406 {
407         int r;
408         struct dm_bio_prison_cell *cell_prealloc;
409
410         /*
411          * Allocate a cell from the prison's mempool.
412          * This might block but it can't fail.
413          */
414         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417         if (r)
418                 /*
419                  * We reused an old cell; we can get rid of
420                  * the new one.
421                  */
422                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424         return r;
425 }
426
427 static void cell_release(struct pool *pool,
428                          struct dm_bio_prison_cell *cell,
429                          struct bio_list *bios)
430 {
431         dm_cell_release(pool->prison, cell, bios);
432         dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436                                void (*fn)(void *, struct dm_bio_prison_cell *),
437                                void *context,
438                                struct dm_bio_prison_cell *cell)
439 {
440         dm_cell_visit_release(pool->prison, fn, context, cell);
441         dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445                                    struct dm_bio_prison_cell *cell,
446                                    struct bio_list *bios)
447 {
448         dm_cell_release_no_holder(pool->prison, cell, bios);
449         dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453                                  struct dm_bio_prison_cell *cell, int error_code)
454 {
455         dm_cell_error(pool->prison, cell, error_code);
456         dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461         return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466         int error = get_pool_io_error_code(pool);
467
468         cell_error_with_code(pool, cell, error);
469 }
470
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473         cell_error_with_code(pool, cell, 0);
474 }
475
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480
481 /*----------------------------------------------------------------*/
482
483 /*
484  * A global list of pools that uses a struct mapped_device as a key.
485  */
486 static struct dm_thin_pool_table {
487         struct mutex mutex;
488         struct list_head pools;
489 } dm_thin_pool_table;
490
491 static void pool_table_init(void)
492 {
493         mutex_init(&dm_thin_pool_table.mutex);
494         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496
497 static void __pool_table_insert(struct pool *pool)
498 {
499         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500         list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_remove(struct pool *pool)
504 {
505         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506         list_del(&pool->list);
507 }
508
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511         struct pool *pool = NULL, *tmp;
512
513         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514
515         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516                 if (tmp->pool_md == md) {
517                         pool = tmp;
518                         break;
519                 }
520         }
521
522         return pool;
523 }
524
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527         struct pool *pool = NULL, *tmp;
528
529         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530
531         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532                 if (tmp->md_dev == md_dev) {
533                         pool = tmp;
534                         break;
535                 }
536         }
537
538         return pool;
539 }
540
541 /*----------------------------------------------------------------*/
542
543 struct dm_thin_endio_hook {
544         struct thin_c *tc;
545         struct dm_deferred_entry *shared_read_entry;
546         struct dm_deferred_entry *all_io_entry;
547         struct dm_thin_new_mapping *overwrite_mapping;
548         struct rb_node rb_node;
549         struct dm_bio_prison_cell *cell;
550 };
551
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554         bio_list_merge(bios, master);
555         bio_list_init(master);
556 }
557
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560         struct bio *bio;
561
562         while ((bio = bio_list_pop(bios))) {
563                 bio->bi_error = error;
564                 bio_endio(bio);
565         }
566 }
567
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570         struct bio_list bios;
571         unsigned long flags;
572
573         bio_list_init(&bios);
574
575         spin_lock_irqsave(&tc->lock, flags);
576         __merge_bio_list(&bios, master);
577         spin_unlock_irqrestore(&tc->lock, flags);
578
579         error_bio_list(&bios, error);
580 }
581
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584         struct pool *pool = tc->pool;
585         unsigned long flags;
586         struct list_head cells;
587         struct dm_bio_prison_cell *cell, *tmp;
588
589         INIT_LIST_HEAD(&cells);
590
591         spin_lock_irqsave(&tc->lock, flags);
592         list_splice_init(&tc->deferred_cells, &cells);
593         spin_unlock_irqrestore(&tc->lock, flags);
594
595         list_for_each_entry_safe(cell, tmp, &cells, user_list)
596                 cell_requeue(pool, cell);
597 }
598
599 static void requeue_io(struct thin_c *tc)
600 {
601         struct bio_list bios;
602         unsigned long flags;
603
604         bio_list_init(&bios);
605
606         spin_lock_irqsave(&tc->lock, flags);
607         __merge_bio_list(&bios, &tc->deferred_bio_list);
608         __merge_bio_list(&bios, &tc->retry_on_resume_list);
609         spin_unlock_irqrestore(&tc->lock, flags);
610
611         error_bio_list(&bios, DM_ENDIO_REQUEUE);
612         requeue_deferred_cells(tc);
613 }
614
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617         struct thin_c *tc;
618
619         rcu_read_lock();
620         list_for_each_entry_rcu(tc, &pool->active_thins, list)
621                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622         rcu_read_unlock();
623 }
624
625 static void error_retry_list(struct pool *pool)
626 {
627         int error = get_pool_io_error_code(pool);
628
629         error_retry_list_with_code(pool, error);
630 }
631
632 /*
633  * This section of code contains the logic for processing a thin device's IO.
634  * Much of the code depends on pool object resources (lists, workqueues, etc)
635  * but most is exclusively called from the thin target rather than the thin-pool
636  * target.
637  */
638
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641         struct pool *pool = tc->pool;
642         sector_t block_nr = bio->bi_iter.bi_sector;
643
644         if (block_size_is_power_of_two(pool))
645                 block_nr >>= pool->sectors_per_block_shift;
646         else
647                 (void) sector_div(block_nr, pool->sectors_per_block);
648
649         return block_nr;
650 }
651
652 /*
653  * Returns the _complete_ blocks that this bio covers.
654  */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656                                 dm_block_t *begin, dm_block_t *end)
657 {
658         struct pool *pool = tc->pool;
659         sector_t b = bio->bi_iter.bi_sector;
660         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661
662         b += pool->sectors_per_block - 1ull; /* so we round up */
663
664         if (block_size_is_power_of_two(pool)) {
665                 b >>= pool->sectors_per_block_shift;
666                 e >>= pool->sectors_per_block_shift;
667         } else {
668                 (void) sector_div(b, pool->sectors_per_block);
669                 (void) sector_div(e, pool->sectors_per_block);
670         }
671
672         if (e < b)
673                 /* Can happen if the bio is within a single block. */
674                 e = b;
675
676         *begin = b;
677         *end = e;
678 }
679
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682         struct pool *pool = tc->pool;
683         sector_t bi_sector = bio->bi_iter.bi_sector;
684
685         bio->bi_bdev = tc->pool_dev->bdev;
686         if (block_size_is_power_of_two(pool))
687                 bio->bi_iter.bi_sector =
688                         (block << pool->sectors_per_block_shift) |
689                         (bi_sector & (pool->sectors_per_block - 1));
690         else
691                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692                                  sector_div(bi_sector, pool->sectors_per_block);
693 }
694
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697         bio->bi_bdev = tc->origin_dev->bdev;
698 }
699
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702         return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
703                 dm_thin_changed_this_transaction(tc->td);
704 }
705
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708         struct dm_thin_endio_hook *h;
709
710         if (bio_op(bio) == REQ_OP_DISCARD)
711                 return;
712
713         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719         struct pool *pool = tc->pool;
720         unsigned long flags;
721
722         if (!bio_triggers_commit(tc, bio)) {
723                 generic_make_request(bio);
724                 return;
725         }
726
727         /*
728          * Complete bio with an error if earlier I/O caused changes to
729          * the metadata that can't be committed e.g, due to I/O errors
730          * on the metadata device.
731          */
732         if (dm_thin_aborted_changes(tc->td)) {
733                 bio_io_error(bio);
734                 return;
735         }
736
737         /*
738          * Batch together any bios that trigger commits and then issue a
739          * single commit for them in process_deferred_bios().
740          */
741         spin_lock_irqsave(&pool->lock, flags);
742         bio_list_add(&pool->deferred_flush_bios, bio);
743         spin_unlock_irqrestore(&pool->lock, flags);
744 }
745
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748         remap_to_origin(tc, bio);
749         issue(tc, bio);
750 }
751
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753                             dm_block_t block)
754 {
755         remap(tc, bio, block);
756         issue(tc, bio);
757 }
758
759 /*----------------------------------------------------------------*/
760
761 /*
762  * Bio endio functions.
763  */
764 struct dm_thin_new_mapping {
765         struct list_head list;
766
767         bool pass_discard:1;
768         bool maybe_shared:1;
769
770         /*
771          * Track quiescing, copying and zeroing preparation actions.  When this
772          * counter hits zero the block is prepared and can be inserted into the
773          * btree.
774          */
775         atomic_t prepare_actions;
776
777         int err;
778         struct thin_c *tc;
779         dm_block_t virt_begin, virt_end;
780         dm_block_t data_block;
781         struct dm_bio_prison_cell *cell;
782
783         /*
784          * If the bio covers the whole area of a block then we can avoid
785          * zeroing or copying.  Instead this bio is hooked.  The bio will
786          * still be in the cell, so care has to be taken to avoid issuing
787          * the bio twice.
788          */
789         struct bio *bio;
790         bio_end_io_t *saved_bi_end_io;
791 };
792
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795         struct pool *pool = m->tc->pool;
796
797         if (atomic_dec_and_test(&m->prepare_actions)) {
798                 list_add_tail(&m->list, &pool->prepared_mappings);
799                 wake_worker(pool);
800         }
801 }
802
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805         unsigned long flags;
806         struct pool *pool = m->tc->pool;
807
808         spin_lock_irqsave(&pool->lock, flags);
809         __complete_mapping_preparation(m);
810         spin_unlock_irqrestore(&pool->lock, flags);
811 }
812
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815         struct dm_thin_new_mapping *m = context;
816
817         m->err = read_err || write_err ? -EIO : 0;
818         complete_mapping_preparation(m);
819 }
820
821 static void overwrite_endio(struct bio *bio)
822 {
823         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824         struct dm_thin_new_mapping *m = h->overwrite_mapping;
825
826         bio->bi_end_io = m->saved_bi_end_io;
827
828         m->err = bio->bi_error;
829         complete_mapping_preparation(m);
830 }
831
832 /*----------------------------------------------------------------*/
833
834 /*
835  * Workqueue.
836  */
837
838 /*
839  * Prepared mapping jobs.
840  */
841
842 /*
843  * This sends the bios in the cell, except the original holder, back
844  * to the deferred_bios list.
845  */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848         struct pool *pool = tc->pool;
849         unsigned long flags;
850
851         spin_lock_irqsave(&tc->lock, flags);
852         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853         spin_unlock_irqrestore(&tc->lock, flags);
854
855         wake_worker(pool);
856 }
857
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859
860 struct remap_info {
861         struct thin_c *tc;
862         struct bio_list defer_bios;
863         struct bio_list issue_bios;
864 };
865
866 static void __inc_remap_and_issue_cell(void *context,
867                                        struct dm_bio_prison_cell *cell)
868 {
869         struct remap_info *info = context;
870         struct bio *bio;
871
872         while ((bio = bio_list_pop(&cell->bios))) {
873                 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
874                     bio_op(bio) == REQ_OP_DISCARD)
875                         bio_list_add(&info->defer_bios, bio);
876                 else {
877                         inc_all_io_entry(info->tc->pool, bio);
878
879                         /*
880                          * We can't issue the bios with the bio prison lock
881                          * held, so we add them to a list to issue on
882                          * return from this function.
883                          */
884                         bio_list_add(&info->issue_bios, bio);
885                 }
886         }
887 }
888
889 static void inc_remap_and_issue_cell(struct thin_c *tc,
890                                      struct dm_bio_prison_cell *cell,
891                                      dm_block_t block)
892 {
893         struct bio *bio;
894         struct remap_info info;
895
896         info.tc = tc;
897         bio_list_init(&info.defer_bios);
898         bio_list_init(&info.issue_bios);
899
900         /*
901          * We have to be careful to inc any bios we're about to issue
902          * before the cell is released, and avoid a race with new bios
903          * being added to the cell.
904          */
905         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
906                            &info, cell);
907
908         while ((bio = bio_list_pop(&info.defer_bios)))
909                 thin_defer_bio(tc, bio);
910
911         while ((bio = bio_list_pop(&info.issue_bios)))
912                 remap_and_issue(info.tc, bio, block);
913 }
914
915 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
916 {
917         cell_error(m->tc->pool, m->cell);
918         list_del(&m->list);
919         mempool_free(m, m->tc->pool->mapping_pool);
920 }
921
922 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
923 {
924         struct thin_c *tc = m->tc;
925         struct pool *pool = tc->pool;
926         struct bio *bio = m->bio;
927         int r;
928
929         if (m->err) {
930                 cell_error(pool, m->cell);
931                 goto out;
932         }
933
934         /*
935          * Commit the prepared block into the mapping btree.
936          * Any I/O for this block arriving after this point will get
937          * remapped to it directly.
938          */
939         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
940         if (r) {
941                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
942                 cell_error(pool, m->cell);
943                 goto out;
944         }
945
946         /*
947          * Release any bios held while the block was being provisioned.
948          * If we are processing a write bio that completely covers the block,
949          * we already processed it so can ignore it now when processing
950          * the bios in the cell.
951          */
952         if (bio) {
953                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954                 bio_endio(bio);
955         } else {
956                 inc_all_io_entry(tc->pool, m->cell->holder);
957                 remap_and_issue(tc, m->cell->holder, m->data_block);
958                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959         }
960
961 out:
962         list_del(&m->list);
963         mempool_free(m, pool->mapping_pool);
964 }
965
966 /*----------------------------------------------------------------*/
967
968 static void free_discard_mapping(struct dm_thin_new_mapping *m)
969 {
970         struct thin_c *tc = m->tc;
971         if (m->cell)
972                 cell_defer_no_holder(tc, m->cell);
973         mempool_free(m, tc->pool->mapping_pool);
974 }
975
976 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
977 {
978         bio_io_error(m->bio);
979         free_discard_mapping(m);
980 }
981
982 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
983 {
984         bio_endio(m->bio);
985         free_discard_mapping(m);
986 }
987
988 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
989 {
990         int r;
991         struct thin_c *tc = m->tc;
992
993         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
994         if (r) {
995                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
996                 bio_io_error(m->bio);
997         } else
998                 bio_endio(m->bio);
999
1000         cell_defer_no_holder(tc, m->cell);
1001         mempool_free(m, tc->pool->mapping_pool);
1002 }
1003
1004 /*----------------------------------------------------------------*/
1005
1006 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1007                                                    struct bio *discard_parent)
1008 {
1009         /*
1010          * We've already unmapped this range of blocks, but before we
1011          * passdown we have to check that these blocks are now unused.
1012          */
1013         int r = 0;
1014         bool used = true;
1015         struct thin_c *tc = m->tc;
1016         struct pool *pool = tc->pool;
1017         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1018         struct discard_op op;
1019
1020         begin_discard(&op, tc, discard_parent);
1021         while (b != end) {
1022                 /* find start of unmapped run */
1023                 for (; b < end; b++) {
1024                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1025                         if (r)
1026                                 goto out;
1027
1028                         if (!used)
1029                                 break;
1030                 }
1031
1032                 if (b == end)
1033                         break;
1034
1035                 /* find end of run */
1036                 for (e = b + 1; e != end; e++) {
1037                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1038                         if (r)
1039                                 goto out;
1040
1041                         if (used)
1042                                 break;
1043                 }
1044
1045                 r = issue_discard(&op, b, e);
1046                 if (r)
1047                         goto out;
1048
1049                 b = e;
1050         }
1051 out:
1052         end_discard(&op, r);
1053 }
1054
1055 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1056 {
1057         unsigned long flags;
1058         struct pool *pool = m->tc->pool;
1059
1060         spin_lock_irqsave(&pool->lock, flags);
1061         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1062         spin_unlock_irqrestore(&pool->lock, flags);
1063         wake_worker(pool);
1064 }
1065
1066 static void passdown_endio(struct bio *bio)
1067 {
1068         /*
1069          * It doesn't matter if the passdown discard failed, we still want
1070          * to unmap (we ignore err).
1071          */
1072         queue_passdown_pt2(bio->bi_private);
1073 }
1074
1075 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076 {
1077         int r;
1078         struct thin_c *tc = m->tc;
1079         struct pool *pool = tc->pool;
1080         struct bio *discard_parent;
1081         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083         /*
1084          * Only this thread allocates blocks, so we can be sure that the
1085          * newly unmapped blocks will not be allocated before the end of
1086          * the function.
1087          */
1088         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089         if (r) {
1090                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091                 bio_io_error(m->bio);
1092                 cell_defer_no_holder(tc, m->cell);
1093                 mempool_free(m, pool->mapping_pool);
1094                 return;
1095         }
1096
1097         discard_parent = bio_alloc(GFP_NOIO, 1);
1098         if (!discard_parent) {
1099                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100                        dm_device_name(tc->pool->pool_md));
1101                 queue_passdown_pt2(m);
1102
1103         } else {
1104                 discard_parent->bi_end_io = passdown_endio;
1105                 discard_parent->bi_private = m;
1106
1107                 if (m->maybe_shared)
1108                         passdown_double_checking_shared_status(m, discard_parent);
1109                 else {
1110                         struct discard_op op;
1111
1112                         begin_discard(&op, tc, discard_parent);
1113                         r = issue_discard(&op, m->data_block, data_end);
1114                         end_discard(&op, r);
1115                 }
1116         }
1117
1118         /*
1119          * Increment the unmapped blocks.  This prevents a race between the
1120          * passdown io and reallocation of freed blocks.
1121          */
1122         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123         if (r) {
1124                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125                 bio_io_error(m->bio);
1126                 cell_defer_no_holder(tc, m->cell);
1127                 mempool_free(m, pool->mapping_pool);
1128                 return;
1129         }
1130 }
1131
1132 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133 {
1134         int r;
1135         struct thin_c *tc = m->tc;
1136         struct pool *pool = tc->pool;
1137
1138         /*
1139          * The passdown has completed, so now we can decrement all those
1140          * unmapped blocks.
1141          */
1142         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143                                    m->data_block + (m->virt_end - m->virt_begin));
1144         if (r) {
1145                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146                 bio_io_error(m->bio);
1147         } else
1148                 bio_endio(m->bio);
1149
1150         cell_defer_no_holder(tc, m->cell);
1151         mempool_free(m, pool->mapping_pool);
1152 }
1153
1154 static void process_prepared(struct pool *pool, struct list_head *head,
1155                              process_mapping_fn *fn)
1156 {
1157         unsigned long flags;
1158         struct list_head maps;
1159         struct dm_thin_new_mapping *m, *tmp;
1160
1161         INIT_LIST_HEAD(&maps);
1162         spin_lock_irqsave(&pool->lock, flags);
1163         list_splice_init(head, &maps);
1164         spin_unlock_irqrestore(&pool->lock, flags);
1165
1166         list_for_each_entry_safe(m, tmp, &maps, list)
1167                 (*fn)(m);
1168 }
1169
1170 /*
1171  * Deferred bio jobs.
1172  */
1173 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174 {
1175         return bio->bi_iter.bi_size ==
1176                 (pool->sectors_per_block << SECTOR_SHIFT);
1177 }
1178
1179 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180 {
1181         return (bio_data_dir(bio) == WRITE) &&
1182                 io_overlaps_block(pool, bio);
1183 }
1184
1185 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186                                bio_end_io_t *fn)
1187 {
1188         *save = bio->bi_end_io;
1189         bio->bi_end_io = fn;
1190 }
1191
1192 static int ensure_next_mapping(struct pool *pool)
1193 {
1194         if (pool->next_mapping)
1195                 return 0;
1196
1197         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199         return pool->next_mapping ? 0 : -ENOMEM;
1200 }
1201
1202 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203 {
1204         struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206         BUG_ON(!pool->next_mapping);
1207
1208         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209         INIT_LIST_HEAD(&m->list);
1210         m->bio = NULL;
1211
1212         pool->next_mapping = NULL;
1213
1214         return m;
1215 }
1216
1217 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218                     sector_t begin, sector_t end)
1219 {
1220         int r;
1221         struct dm_io_region to;
1222
1223         to.bdev = tc->pool_dev->bdev;
1224         to.sector = begin;
1225         to.count = end - begin;
1226
1227         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228         if (r < 0) {
1229                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1230                 copy_complete(1, 1, m);
1231         }
1232 }
1233
1234 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235                                       dm_block_t data_begin,
1236                                       struct dm_thin_new_mapping *m)
1237 {
1238         struct pool *pool = tc->pool;
1239         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241         h->overwrite_mapping = m;
1242         m->bio = bio;
1243         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244         inc_all_io_entry(pool, bio);
1245         remap_and_issue(tc, bio, data_begin);
1246 }
1247
1248 /*
1249  * A partial copy also needs to zero the uncopied region.
1250  */
1251 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252                           struct dm_dev *origin, dm_block_t data_origin,
1253                           dm_block_t data_dest,
1254                           struct dm_bio_prison_cell *cell, struct bio *bio,
1255                           sector_t len)
1256 {
1257         int r;
1258         struct pool *pool = tc->pool;
1259         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261         m->tc = tc;
1262         m->virt_begin = virt_block;
1263         m->virt_end = virt_block + 1u;
1264         m->data_block = data_dest;
1265         m->cell = cell;
1266
1267         /*
1268          * quiesce action + copy action + an extra reference held for the
1269          * duration of this function (we may need to inc later for a
1270          * partial zero).
1271          */
1272         atomic_set(&m->prepare_actions, 3);
1273
1274         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275                 complete_mapping_preparation(m); /* already quiesced */
1276
1277         /*
1278          * IO to pool_dev remaps to the pool target's data_dev.
1279          *
1280          * If the whole block of data is being overwritten, we can issue the
1281          * bio immediately. Otherwise we use kcopyd to clone the data first.
1282          */
1283         if (io_overwrites_block(pool, bio))
1284                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1285         else {
1286                 struct dm_io_region from, to;
1287
1288                 from.bdev = origin->bdev;
1289                 from.sector = data_origin * pool->sectors_per_block;
1290                 from.count = len;
1291
1292                 to.bdev = tc->pool_dev->bdev;
1293                 to.sector = data_dest * pool->sectors_per_block;
1294                 to.count = len;
1295
1296                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297                                    0, copy_complete, m);
1298                 if (r < 0) {
1299                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1300                         copy_complete(1, 1, m);
1301
1302                         /*
1303                          * We allow the zero to be issued, to simplify the
1304                          * error path.  Otherwise we'd need to start
1305                          * worrying about decrementing the prepare_actions
1306                          * counter.
1307                          */
1308                 }
1309
1310                 /*
1311                  * Do we need to zero a tail region?
1312                  */
1313                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314                         atomic_inc(&m->prepare_actions);
1315                         ll_zero(tc, m,
1316                                 data_dest * pool->sectors_per_block + len,
1317                                 (data_dest + 1) * pool->sectors_per_block);
1318                 }
1319         }
1320
1321         complete_mapping_preparation(m); /* drop our ref */
1322 }
1323
1324 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325                                    dm_block_t data_origin, dm_block_t data_dest,
1326                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1327 {
1328         schedule_copy(tc, virt_block, tc->pool_dev,
1329                       data_origin, data_dest, cell, bio,
1330                       tc->pool->sectors_per_block);
1331 }
1332
1333 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335                           struct bio *bio)
1336 {
1337         struct pool *pool = tc->pool;
1338         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341         m->tc = tc;
1342         m->virt_begin = virt_block;
1343         m->virt_end = virt_block + 1u;
1344         m->data_block = data_block;
1345         m->cell = cell;
1346
1347         /*
1348          * If the whole block of data is being overwritten or we are not
1349          * zeroing pre-existing data, we can issue the bio immediately.
1350          * Otherwise we use kcopyd to zero the data first.
1351          */
1352         if (pool->pf.zero_new_blocks) {
1353                 if (io_overwrites_block(pool, bio))
1354                         remap_and_issue_overwrite(tc, bio, data_block, m);
1355                 else
1356                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1357                                 (data_block + 1) * pool->sectors_per_block);
1358         } else
1359                 process_prepared_mapping(m);
1360 }
1361
1362 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363                                    dm_block_t data_dest,
1364                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1365 {
1366         struct pool *pool = tc->pool;
1367         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370         if (virt_block_end <= tc->origin_size)
1371                 schedule_copy(tc, virt_block, tc->origin_dev,
1372                               virt_block, data_dest, cell, bio,
1373                               pool->sectors_per_block);
1374
1375         else if (virt_block_begin < tc->origin_size)
1376                 schedule_copy(tc, virt_block, tc->origin_dev,
1377                               virt_block, data_dest, cell, bio,
1378                               tc->origin_size - virt_block_begin);
1379
1380         else
1381                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1382 }
1383
1384 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386 static void check_for_space(struct pool *pool)
1387 {
1388         int r;
1389         dm_block_t nr_free;
1390
1391         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392                 return;
1393
1394         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395         if (r)
1396                 return;
1397
1398         if (nr_free)
1399                 set_pool_mode(pool, PM_WRITE);
1400 }
1401
1402 /*
1403  * A non-zero return indicates read_only or fail_io mode.
1404  * Many callers don't care about the return value.
1405  */
1406 static int commit(struct pool *pool)
1407 {
1408         int r;
1409
1410         if (get_pool_mode(pool) >= PM_READ_ONLY)
1411                 return -EINVAL;
1412
1413         r = dm_pool_commit_metadata(pool->pmd);
1414         if (r)
1415                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416         else
1417                 check_for_space(pool);
1418
1419         return r;
1420 }
1421
1422 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423 {
1424         unsigned long flags;
1425
1426         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427                 DMWARN("%s: reached low water mark for data device: sending event.",
1428                        dm_device_name(pool->pool_md));
1429                 spin_lock_irqsave(&pool->lock, flags);
1430                 pool->low_water_triggered = true;
1431                 spin_unlock_irqrestore(&pool->lock, flags);
1432                 dm_table_event(pool->ti->table);
1433         }
1434 }
1435
1436 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437 {
1438         int r;
1439         dm_block_t free_blocks;
1440         struct pool *pool = tc->pool;
1441
1442         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443                 return -EINVAL;
1444
1445         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446         if (r) {
1447                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448                 return r;
1449         }
1450
1451         check_low_water_mark(pool, free_blocks);
1452
1453         if (!free_blocks) {
1454                 /*
1455                  * Try to commit to see if that will free up some
1456                  * more space.
1457                  */
1458                 r = commit(pool);
1459                 if (r)
1460                         return r;
1461
1462                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463                 if (r) {
1464                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465                         return r;
1466                 }
1467
1468                 if (!free_blocks) {
1469                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470                         return -ENOSPC;
1471                 }
1472         }
1473
1474         r = dm_pool_alloc_data_block(pool->pmd, result);
1475         if (r) {
1476                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477                 return r;
1478         }
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * If we have run out of space, queue bios until the device is
1485  * resumed, presumably after having been reloaded with more space.
1486  */
1487 static void retry_on_resume(struct bio *bio)
1488 {
1489         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490         struct thin_c *tc = h->tc;
1491         unsigned long flags;
1492
1493         spin_lock_irqsave(&tc->lock, flags);
1494         bio_list_add(&tc->retry_on_resume_list, bio);
1495         spin_unlock_irqrestore(&tc->lock, flags);
1496 }
1497
1498 static int should_error_unserviceable_bio(struct pool *pool)
1499 {
1500         enum pool_mode m = get_pool_mode(pool);
1501
1502         switch (m) {
1503         case PM_WRITE:
1504                 /* Shouldn't get here */
1505                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506                 return -EIO;
1507
1508         case PM_OUT_OF_DATA_SPACE:
1509                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
1511         case PM_READ_ONLY:
1512         case PM_FAIL:
1513                 return -EIO;
1514         default:
1515                 /* Shouldn't get here */
1516                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517                 return -EIO;
1518         }
1519 }
1520
1521 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522 {
1523         int error = should_error_unserviceable_bio(pool);
1524
1525         if (error) {
1526                 bio->bi_error = error;
1527                 bio_endio(bio);
1528         } else
1529                 retry_on_resume(bio);
1530 }
1531
1532 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533 {
1534         struct bio *bio;
1535         struct bio_list bios;
1536         int error;
1537
1538         error = should_error_unserviceable_bio(pool);
1539         if (error) {
1540                 cell_error_with_code(pool, cell, error);
1541                 return;
1542         }
1543
1544         bio_list_init(&bios);
1545         cell_release(pool, cell, &bios);
1546
1547         while ((bio = bio_list_pop(&bios)))
1548                 retry_on_resume(bio);
1549 }
1550
1551 static void process_discard_cell_no_passdown(struct thin_c *tc,
1552                                              struct dm_bio_prison_cell *virt_cell)
1553 {
1554         struct pool *pool = tc->pool;
1555         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557         /*
1558          * We don't need to lock the data blocks, since there's no
1559          * passdown.  We only lock data blocks for allocation and breaking sharing.
1560          */
1561         m->tc = tc;
1562         m->virt_begin = virt_cell->key.block_begin;
1563         m->virt_end = virt_cell->key.block_end;
1564         m->cell = virt_cell;
1565         m->bio = virt_cell->holder;
1566
1567         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568                 pool->process_prepared_discard(m);
1569 }
1570
1571 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572                                  struct bio *bio)
1573 {
1574         struct pool *pool = tc->pool;
1575
1576         int r;
1577         bool maybe_shared;
1578         struct dm_cell_key data_key;
1579         struct dm_bio_prison_cell *data_cell;
1580         struct dm_thin_new_mapping *m;
1581         dm_block_t virt_begin, virt_end, data_begin;
1582
1583         while (begin != end) {
1584                 r = ensure_next_mapping(pool);
1585                 if (r)
1586                         /* we did our best */
1587                         return;
1588
1589                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590                                               &data_begin, &maybe_shared);
1591                 if (r)
1592                         /*
1593                          * Silently fail, letting any mappings we've
1594                          * created complete.
1595                          */
1596                         break;
1597
1598                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600                         /* contention, we'll give up with this range */
1601                         begin = virt_end;
1602                         continue;
1603                 }
1604
1605                 /*
1606                  * IO may still be going to the destination block.  We must
1607                  * quiesce before we can do the removal.
1608                  */
1609                 m = get_next_mapping(pool);
1610                 m->tc = tc;
1611                 m->maybe_shared = maybe_shared;
1612                 m->virt_begin = virt_begin;
1613                 m->virt_end = virt_end;
1614                 m->data_block = data_begin;
1615                 m->cell = data_cell;
1616                 m->bio = bio;
1617
1618                 /*
1619                  * The parent bio must not complete before sub discard bios are
1620                  * chained to it (see end_discard's bio_chain)!
1621                  *
1622                  * This per-mapping bi_remaining increment is paired with
1623                  * the implicit decrement that occurs via bio_endio() in
1624                  * end_discard().
1625                  */
1626                 bio_inc_remaining(bio);
1627                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628                         pool->process_prepared_discard(m);
1629
1630                 begin = virt_end;
1631         }
1632 }
1633
1634 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635 {
1636         struct bio *bio = virt_cell->holder;
1637         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639         /*
1640          * The virt_cell will only get freed once the origin bio completes.
1641          * This means it will remain locked while all the individual
1642          * passdown bios are in flight.
1643          */
1644         h->cell = virt_cell;
1645         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647         /*
1648          * We complete the bio now, knowing that the bi_remaining field
1649          * will prevent completion until the sub range discards have
1650          * completed.
1651          */
1652         bio_endio(bio);
1653 }
1654
1655 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656 {
1657         dm_block_t begin, end;
1658         struct dm_cell_key virt_key;
1659         struct dm_bio_prison_cell *virt_cell;
1660
1661         get_bio_block_range(tc, bio, &begin, &end);
1662         if (begin == end) {
1663                 /*
1664                  * The discard covers less than a block.
1665                  */
1666                 bio_endio(bio);
1667                 return;
1668         }
1669
1670         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672                 /*
1673                  * Potential starvation issue: We're relying on the
1674                  * fs/application being well behaved, and not trying to
1675                  * send IO to a region at the same time as discarding it.
1676                  * If they do this persistently then it's possible this
1677                  * cell will never be granted.
1678                  */
1679                 return;
1680
1681         tc->pool->process_discard_cell(tc, virt_cell);
1682 }
1683
1684 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685                           struct dm_cell_key *key,
1686                           struct dm_thin_lookup_result *lookup_result,
1687                           struct dm_bio_prison_cell *cell)
1688 {
1689         int r;
1690         dm_block_t data_block;
1691         struct pool *pool = tc->pool;
1692
1693         r = alloc_data_block(tc, &data_block);
1694         switch (r) {
1695         case 0:
1696                 schedule_internal_copy(tc, block, lookup_result->block,
1697                                        data_block, cell, bio);
1698                 break;
1699
1700         case -ENOSPC:
1701                 retry_bios_on_resume(pool, cell);
1702                 break;
1703
1704         default:
1705                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706                             __func__, r);
1707                 cell_error(pool, cell);
1708                 break;
1709         }
1710 }
1711
1712 static void __remap_and_issue_shared_cell(void *context,
1713                                           struct dm_bio_prison_cell *cell)
1714 {
1715         struct remap_info *info = context;
1716         struct bio *bio;
1717
1718         while ((bio = bio_list_pop(&cell->bios))) {
1719                 if ((bio_data_dir(bio) == WRITE) ||
1720                     (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1721                      bio_op(bio) == REQ_OP_DISCARD))
1722                         bio_list_add(&info->defer_bios, bio);
1723                 else {
1724                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1725
1726                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1727                         inc_all_io_entry(info->tc->pool, bio);
1728                         bio_list_add(&info->issue_bios, bio);
1729                 }
1730         }
1731 }
1732
1733 static void remap_and_issue_shared_cell(struct thin_c *tc,
1734                                         struct dm_bio_prison_cell *cell,
1735                                         dm_block_t block)
1736 {
1737         struct bio *bio;
1738         struct remap_info info;
1739
1740         info.tc = tc;
1741         bio_list_init(&info.defer_bios);
1742         bio_list_init(&info.issue_bios);
1743
1744         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1745                            &info, cell);
1746
1747         while ((bio = bio_list_pop(&info.defer_bios)))
1748                 thin_defer_bio(tc, bio);
1749
1750         while ((bio = bio_list_pop(&info.issue_bios)))
1751                 remap_and_issue(tc, bio, block);
1752 }
1753
1754 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1755                                dm_block_t block,
1756                                struct dm_thin_lookup_result *lookup_result,
1757                                struct dm_bio_prison_cell *virt_cell)
1758 {
1759         struct dm_bio_prison_cell *data_cell;
1760         struct pool *pool = tc->pool;
1761         struct dm_cell_key key;
1762
1763         /*
1764          * If cell is already occupied, then sharing is already in the process
1765          * of being broken so we have nothing further to do here.
1766          */
1767         build_data_key(tc->td, lookup_result->block, &key);
1768         if (bio_detain(pool, &key, bio, &data_cell)) {
1769                 cell_defer_no_holder(tc, virt_cell);
1770                 return;
1771         }
1772
1773         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1774                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1775                 cell_defer_no_holder(tc, virt_cell);
1776         } else {
1777                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1778
1779                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1780                 inc_all_io_entry(pool, bio);
1781                 remap_and_issue(tc, bio, lookup_result->block);
1782
1783                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1784                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1785         }
1786 }
1787
1788 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1789                             struct dm_bio_prison_cell *cell)
1790 {
1791         int r;
1792         dm_block_t data_block;
1793         struct pool *pool = tc->pool;
1794
1795         /*
1796          * Remap empty bios (flushes) immediately, without provisioning.
1797          */
1798         if (!bio->bi_iter.bi_size) {
1799                 inc_all_io_entry(pool, bio);
1800                 cell_defer_no_holder(tc, cell);
1801
1802                 remap_and_issue(tc, bio, 0);
1803                 return;
1804         }
1805
1806         /*
1807          * Fill read bios with zeroes and complete them immediately.
1808          */
1809         if (bio_data_dir(bio) == READ) {
1810                 zero_fill_bio(bio);
1811                 cell_defer_no_holder(tc, cell);
1812                 bio_endio(bio);
1813                 return;
1814         }
1815
1816         r = alloc_data_block(tc, &data_block);
1817         switch (r) {
1818         case 0:
1819                 if (tc->origin_dev)
1820                         schedule_external_copy(tc, block, data_block, cell, bio);
1821                 else
1822                         schedule_zero(tc, block, data_block, cell, bio);
1823                 break;
1824
1825         case -ENOSPC:
1826                 retry_bios_on_resume(pool, cell);
1827                 break;
1828
1829         default:
1830                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1831                             __func__, r);
1832                 cell_error(pool, cell);
1833                 break;
1834         }
1835 }
1836
1837 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1838 {
1839         int r;
1840         struct pool *pool = tc->pool;
1841         struct bio *bio = cell->holder;
1842         dm_block_t block = get_bio_block(tc, bio);
1843         struct dm_thin_lookup_result lookup_result;
1844
1845         if (tc->requeue_mode) {
1846                 cell_requeue(pool, cell);
1847                 return;
1848         }
1849
1850         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1851         switch (r) {
1852         case 0:
1853                 if (lookup_result.shared)
1854                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1855                 else {
1856                         inc_all_io_entry(pool, bio);
1857                         remap_and_issue(tc, bio, lookup_result.block);
1858                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1859                 }
1860                 break;
1861
1862         case -ENODATA:
1863                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1864                         inc_all_io_entry(pool, bio);
1865                         cell_defer_no_holder(tc, cell);
1866
1867                         if (bio_end_sector(bio) <= tc->origin_size)
1868                                 remap_to_origin_and_issue(tc, bio);
1869
1870                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1871                                 zero_fill_bio(bio);
1872                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1873                                 remap_to_origin_and_issue(tc, bio);
1874
1875                         } else {
1876                                 zero_fill_bio(bio);
1877                                 bio_endio(bio);
1878                         }
1879                 } else
1880                         provision_block(tc, bio, block, cell);
1881                 break;
1882
1883         default:
1884                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1885                             __func__, r);
1886                 cell_defer_no_holder(tc, cell);
1887                 bio_io_error(bio);
1888                 break;
1889         }
1890 }
1891
1892 static void process_bio(struct thin_c *tc, struct bio *bio)
1893 {
1894         struct pool *pool = tc->pool;
1895         dm_block_t block = get_bio_block(tc, bio);
1896         struct dm_bio_prison_cell *cell;
1897         struct dm_cell_key key;
1898
1899         /*
1900          * If cell is already occupied, then the block is already
1901          * being provisioned so we have nothing further to do here.
1902          */
1903         build_virtual_key(tc->td, block, &key);
1904         if (bio_detain(pool, &key, bio, &cell))
1905                 return;
1906
1907         process_cell(tc, cell);
1908 }
1909
1910 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1911                                     struct dm_bio_prison_cell *cell)
1912 {
1913         int r;
1914         int rw = bio_data_dir(bio);
1915         dm_block_t block = get_bio_block(tc, bio);
1916         struct dm_thin_lookup_result lookup_result;
1917
1918         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1919         switch (r) {
1920         case 0:
1921                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1922                         handle_unserviceable_bio(tc->pool, bio);
1923                         if (cell)
1924                                 cell_defer_no_holder(tc, cell);
1925                 } else {
1926                         inc_all_io_entry(tc->pool, bio);
1927                         remap_and_issue(tc, bio, lookup_result.block);
1928                         if (cell)
1929                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1930                 }
1931                 break;
1932
1933         case -ENODATA:
1934                 if (cell)
1935                         cell_defer_no_holder(tc, cell);
1936                 if (rw != READ) {
1937                         handle_unserviceable_bio(tc->pool, bio);
1938                         break;
1939                 }
1940
1941                 if (tc->origin_dev) {
1942                         inc_all_io_entry(tc->pool, bio);
1943                         remap_to_origin_and_issue(tc, bio);
1944                         break;
1945                 }
1946
1947                 zero_fill_bio(bio);
1948                 bio_endio(bio);
1949                 break;
1950
1951         default:
1952                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1953                             __func__, r);
1954                 if (cell)
1955                         cell_defer_no_holder(tc, cell);
1956                 bio_io_error(bio);
1957                 break;
1958         }
1959 }
1960
1961 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1962 {
1963         __process_bio_read_only(tc, bio, NULL);
1964 }
1965
1966 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1967 {
1968         __process_bio_read_only(tc, cell->holder, cell);
1969 }
1970
1971 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1972 {
1973         bio_endio(bio);
1974 }
1975
1976 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1977 {
1978         bio_io_error(bio);
1979 }
1980
1981 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1982 {
1983         cell_success(tc->pool, cell);
1984 }
1985
1986 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1987 {
1988         cell_error(tc->pool, cell);
1989 }
1990
1991 /*
1992  * FIXME: should we also commit due to size of transaction, measured in
1993  * metadata blocks?
1994  */
1995 static int need_commit_due_to_time(struct pool *pool)
1996 {
1997         return !time_in_range(jiffies, pool->last_commit_jiffies,
1998                               pool->last_commit_jiffies + COMMIT_PERIOD);
1999 }
2000
2001 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2002 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2003
2004 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2005 {
2006         struct rb_node **rbp, *parent;
2007         struct dm_thin_endio_hook *pbd;
2008         sector_t bi_sector = bio->bi_iter.bi_sector;
2009
2010         rbp = &tc->sort_bio_list.rb_node;
2011         parent = NULL;
2012         while (*rbp) {
2013                 parent = *rbp;
2014                 pbd = thin_pbd(parent);
2015
2016                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2017                         rbp = &(*rbp)->rb_left;
2018                 else
2019                         rbp = &(*rbp)->rb_right;
2020         }
2021
2022         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2023         rb_link_node(&pbd->rb_node, parent, rbp);
2024         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2025 }
2026
2027 static void __extract_sorted_bios(struct thin_c *tc)
2028 {
2029         struct rb_node *node;
2030         struct dm_thin_endio_hook *pbd;
2031         struct bio *bio;
2032
2033         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2034                 pbd = thin_pbd(node);
2035                 bio = thin_bio(pbd);
2036
2037                 bio_list_add(&tc->deferred_bio_list, bio);
2038                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2039         }
2040
2041         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2042 }
2043
2044 static void __sort_thin_deferred_bios(struct thin_c *tc)
2045 {
2046         struct bio *bio;
2047         struct bio_list bios;
2048
2049         bio_list_init(&bios);
2050         bio_list_merge(&bios, &tc->deferred_bio_list);
2051         bio_list_init(&tc->deferred_bio_list);
2052
2053         /* Sort deferred_bio_list using rb-tree */
2054         while ((bio = bio_list_pop(&bios)))
2055                 __thin_bio_rb_add(tc, bio);
2056
2057         /*
2058          * Transfer the sorted bios in sort_bio_list back to
2059          * deferred_bio_list to allow lockless submission of
2060          * all bios.
2061          */
2062         __extract_sorted_bios(tc);
2063 }
2064
2065 static void process_thin_deferred_bios(struct thin_c *tc)
2066 {
2067         struct pool *pool = tc->pool;
2068         unsigned long flags;
2069         struct bio *bio;
2070         struct bio_list bios;
2071         struct blk_plug plug;
2072         unsigned count = 0;
2073
2074         if (tc->requeue_mode) {
2075                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2076                 return;
2077         }
2078
2079         bio_list_init(&bios);
2080
2081         spin_lock_irqsave(&tc->lock, flags);
2082
2083         if (bio_list_empty(&tc->deferred_bio_list)) {
2084                 spin_unlock_irqrestore(&tc->lock, flags);
2085                 return;
2086         }
2087
2088         __sort_thin_deferred_bios(tc);
2089
2090         bio_list_merge(&bios, &tc->deferred_bio_list);
2091         bio_list_init(&tc->deferred_bio_list);
2092
2093         spin_unlock_irqrestore(&tc->lock, flags);
2094
2095         blk_start_plug(&plug);
2096         while ((bio = bio_list_pop(&bios))) {
2097                 /*
2098                  * If we've got no free new_mapping structs, and processing
2099                  * this bio might require one, we pause until there are some
2100                  * prepared mappings to process.
2101                  */
2102                 if (ensure_next_mapping(pool)) {
2103                         spin_lock_irqsave(&tc->lock, flags);
2104                         bio_list_add(&tc->deferred_bio_list, bio);
2105                         bio_list_merge(&tc->deferred_bio_list, &bios);
2106                         spin_unlock_irqrestore(&tc->lock, flags);
2107                         break;
2108                 }
2109
2110                 if (bio_op(bio) == REQ_OP_DISCARD)
2111                         pool->process_discard(tc, bio);
2112                 else
2113                         pool->process_bio(tc, bio);
2114
2115                 if ((count++ & 127) == 0) {
2116                         throttle_work_update(&pool->throttle);
2117                         dm_pool_issue_prefetches(pool->pmd);
2118                 }
2119         }
2120         blk_finish_plug(&plug);
2121 }
2122
2123 static int cmp_cells(const void *lhs, const void *rhs)
2124 {
2125         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2126         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2127
2128         BUG_ON(!lhs_cell->holder);
2129         BUG_ON(!rhs_cell->holder);
2130
2131         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2132                 return -1;
2133
2134         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2135                 return 1;
2136
2137         return 0;
2138 }
2139
2140 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2141 {
2142         unsigned count = 0;
2143         struct dm_bio_prison_cell *cell, *tmp;
2144
2145         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2146                 if (count >= CELL_SORT_ARRAY_SIZE)
2147                         break;
2148
2149                 pool->cell_sort_array[count++] = cell;
2150                 list_del(&cell->user_list);
2151         }
2152
2153         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2154
2155         return count;
2156 }
2157
2158 static void process_thin_deferred_cells(struct thin_c *tc)
2159 {
2160         struct pool *pool = tc->pool;
2161         unsigned long flags;
2162         struct list_head cells;
2163         struct dm_bio_prison_cell *cell;
2164         unsigned i, j, count;
2165
2166         INIT_LIST_HEAD(&cells);
2167
2168         spin_lock_irqsave(&tc->lock, flags);
2169         list_splice_init(&tc->deferred_cells, &cells);
2170         spin_unlock_irqrestore(&tc->lock, flags);
2171
2172         if (list_empty(&cells))
2173                 return;
2174
2175         do {
2176                 count = sort_cells(tc->pool, &cells);
2177
2178                 for (i = 0; i < count; i++) {
2179                         cell = pool->cell_sort_array[i];
2180                         BUG_ON(!cell->holder);
2181
2182                         /*
2183                          * If we've got no free new_mapping structs, and processing
2184                          * this bio might require one, we pause until there are some
2185                          * prepared mappings to process.
2186                          */
2187                         if (ensure_next_mapping(pool)) {
2188                                 for (j = i; j < count; j++)
2189                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2190
2191                                 spin_lock_irqsave(&tc->lock, flags);
2192                                 list_splice(&cells, &tc->deferred_cells);
2193                                 spin_unlock_irqrestore(&tc->lock, flags);
2194                                 return;
2195                         }
2196
2197                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2198                                 pool->process_discard_cell(tc, cell);
2199                         else
2200                                 pool->process_cell(tc, cell);
2201                 }
2202         } while (!list_empty(&cells));
2203 }
2204
2205 static void thin_get(struct thin_c *tc);
2206 static void thin_put(struct thin_c *tc);
2207
2208 /*
2209  * We can't hold rcu_read_lock() around code that can block.  So we
2210  * find a thin with the rcu lock held; bump a refcount; then drop
2211  * the lock.
2212  */
2213 static struct thin_c *get_first_thin(struct pool *pool)
2214 {
2215         struct thin_c *tc = NULL;
2216
2217         rcu_read_lock();
2218         if (!list_empty(&pool->active_thins)) {
2219                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2220                 thin_get(tc);
2221         }
2222         rcu_read_unlock();
2223
2224         return tc;
2225 }
2226
2227 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2228 {
2229         struct thin_c *old_tc = tc;
2230
2231         rcu_read_lock();
2232         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2233                 thin_get(tc);
2234                 thin_put(old_tc);
2235                 rcu_read_unlock();
2236                 return tc;
2237         }
2238         thin_put(old_tc);
2239         rcu_read_unlock();
2240
2241         return NULL;
2242 }
2243
2244 static void process_deferred_bios(struct pool *pool)
2245 {
2246         unsigned long flags;
2247         struct bio *bio;
2248         struct bio_list bios;
2249         struct thin_c *tc;
2250
2251         tc = get_first_thin(pool);
2252         while (tc) {
2253                 process_thin_deferred_cells(tc);
2254                 process_thin_deferred_bios(tc);
2255                 tc = get_next_thin(pool, tc);
2256         }
2257
2258         /*
2259          * If there are any deferred flush bios, we must commit
2260          * the metadata before issuing them.
2261          */
2262         bio_list_init(&bios);
2263         spin_lock_irqsave(&pool->lock, flags);
2264         bio_list_merge(&bios, &pool->deferred_flush_bios);
2265         bio_list_init(&pool->deferred_flush_bios);
2266         spin_unlock_irqrestore(&pool->lock, flags);
2267
2268         if (bio_list_empty(&bios) &&
2269             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2270                 return;
2271
2272         if (commit(pool)) {
2273                 while ((bio = bio_list_pop(&bios)))
2274                         bio_io_error(bio);
2275                 return;
2276         }
2277         pool->last_commit_jiffies = jiffies;
2278
2279         while ((bio = bio_list_pop(&bios)))
2280                 generic_make_request(bio);
2281 }
2282
2283 static void do_worker(struct work_struct *ws)
2284 {
2285         struct pool *pool = container_of(ws, struct pool, worker);
2286
2287         throttle_work_start(&pool->throttle);
2288         dm_pool_issue_prefetches(pool->pmd);
2289         throttle_work_update(&pool->throttle);
2290         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2291         throttle_work_update(&pool->throttle);
2292         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2293         throttle_work_update(&pool->throttle);
2294         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2295         throttle_work_update(&pool->throttle);
2296         process_deferred_bios(pool);
2297         throttle_work_complete(&pool->throttle);
2298 }
2299
2300 /*
2301  * We want to commit periodically so that not too much
2302  * unwritten data builds up.
2303  */
2304 static void do_waker(struct work_struct *ws)
2305 {
2306         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2307         wake_worker(pool);
2308         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2309 }
2310
2311 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2312
2313 /*
2314  * We're holding onto IO to allow userland time to react.  After the
2315  * timeout either the pool will have been resized (and thus back in
2316  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2317  */
2318 static void do_no_space_timeout(struct work_struct *ws)
2319 {
2320         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2321                                          no_space_timeout);
2322
2323         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2324                 pool->pf.error_if_no_space = true;
2325                 notify_of_pool_mode_change_to_oods(pool);
2326                 error_retry_list_with_code(pool, -ENOSPC);
2327         }
2328 }
2329
2330 /*----------------------------------------------------------------*/
2331
2332 struct pool_work {
2333         struct work_struct worker;
2334         struct completion complete;
2335 };
2336
2337 static struct pool_work *to_pool_work(struct work_struct *ws)
2338 {
2339         return container_of(ws, struct pool_work, worker);
2340 }
2341
2342 static void pool_work_complete(struct pool_work *pw)
2343 {
2344         complete(&pw->complete);
2345 }
2346
2347 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2348                            void (*fn)(struct work_struct *))
2349 {
2350         INIT_WORK_ONSTACK(&pw->worker, fn);
2351         init_completion(&pw->complete);
2352         queue_work(pool->wq, &pw->worker);
2353         wait_for_completion(&pw->complete);
2354 }
2355
2356 /*----------------------------------------------------------------*/
2357
2358 struct noflush_work {
2359         struct pool_work pw;
2360         struct thin_c *tc;
2361 };
2362
2363 static struct noflush_work *to_noflush(struct work_struct *ws)
2364 {
2365         return container_of(to_pool_work(ws), struct noflush_work, pw);
2366 }
2367
2368 static void do_noflush_start(struct work_struct *ws)
2369 {
2370         struct noflush_work *w = to_noflush(ws);
2371         w->tc->requeue_mode = true;
2372         requeue_io(w->tc);
2373         pool_work_complete(&w->pw);
2374 }
2375
2376 static void do_noflush_stop(struct work_struct *ws)
2377 {
2378         struct noflush_work *w = to_noflush(ws);
2379         w->tc->requeue_mode = false;
2380         pool_work_complete(&w->pw);
2381 }
2382
2383 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2384 {
2385         struct noflush_work w;
2386
2387         w.tc = tc;
2388         pool_work_wait(&w.pw, tc->pool, fn);
2389 }
2390
2391 /*----------------------------------------------------------------*/
2392
2393 static enum pool_mode get_pool_mode(struct pool *pool)
2394 {
2395         return pool->pf.mode;
2396 }
2397
2398 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2399 {
2400         dm_table_event(pool->ti->table);
2401         DMINFO("%s: switching pool to %s mode",
2402                dm_device_name(pool->pool_md), new_mode);
2403 }
2404
2405 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2406 {
2407         if (!pool->pf.error_if_no_space)
2408                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2409         else
2410                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2411 }
2412
2413 static bool passdown_enabled(struct pool_c *pt)
2414 {
2415         return pt->adjusted_pf.discard_passdown;
2416 }
2417
2418 static void set_discard_callbacks(struct pool *pool)
2419 {
2420         struct pool_c *pt = pool->ti->private;
2421
2422         if (passdown_enabled(pt)) {
2423                 pool->process_discard_cell = process_discard_cell_passdown;
2424                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2425                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2426         } else {
2427                 pool->process_discard_cell = process_discard_cell_no_passdown;
2428                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2429         }
2430 }
2431
2432 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2433 {
2434         struct pool_c *pt = pool->ti->private;
2435         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2436         enum pool_mode old_mode = get_pool_mode(pool);
2437         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2438
2439         /*
2440          * Never allow the pool to transition to PM_WRITE mode if user
2441          * intervention is required to verify metadata and data consistency.
2442          */
2443         if (new_mode == PM_WRITE && needs_check) {
2444                 DMERR("%s: unable to switch pool to write mode until repaired.",
2445                       dm_device_name(pool->pool_md));
2446                 if (old_mode != new_mode)
2447                         new_mode = old_mode;
2448                 else
2449                         new_mode = PM_READ_ONLY;
2450         }
2451         /*
2452          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2453          * not going to recover without a thin_repair.  So we never let the
2454          * pool move out of the old mode.
2455          */
2456         if (old_mode == PM_FAIL)
2457                 new_mode = old_mode;
2458
2459         switch (new_mode) {
2460         case PM_FAIL:
2461                 if (old_mode != new_mode)
2462                         notify_of_pool_mode_change(pool, "failure");
2463                 dm_pool_metadata_read_only(pool->pmd);
2464                 pool->process_bio = process_bio_fail;
2465                 pool->process_discard = process_bio_fail;
2466                 pool->process_cell = process_cell_fail;
2467                 pool->process_discard_cell = process_cell_fail;
2468                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2469                 pool->process_prepared_discard = process_prepared_discard_fail;
2470
2471                 error_retry_list(pool);
2472                 break;
2473
2474         case PM_READ_ONLY:
2475                 if (old_mode != new_mode)
2476                         notify_of_pool_mode_change(pool, "read-only");
2477                 dm_pool_metadata_read_only(pool->pmd);
2478                 pool->process_bio = process_bio_read_only;
2479                 pool->process_discard = process_bio_success;
2480                 pool->process_cell = process_cell_read_only;
2481                 pool->process_discard_cell = process_cell_success;
2482                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2483                 pool->process_prepared_discard = process_prepared_discard_success;
2484
2485                 error_retry_list(pool);
2486                 break;
2487
2488         case PM_OUT_OF_DATA_SPACE:
2489                 /*
2490                  * Ideally we'd never hit this state; the low water mark
2491                  * would trigger userland to extend the pool before we
2492                  * completely run out of data space.  However, many small
2493                  * IOs to unprovisioned space can consume data space at an
2494                  * alarming rate.  Adjust your low water mark if you're
2495                  * frequently seeing this mode.
2496                  */
2497                 if (old_mode != new_mode)
2498                         notify_of_pool_mode_change_to_oods(pool);
2499                 pool->out_of_data_space = true;
2500                 pool->process_bio = process_bio_read_only;
2501                 pool->process_discard = process_discard_bio;
2502                 pool->process_cell = process_cell_read_only;
2503                 pool->process_prepared_mapping = process_prepared_mapping;
2504                 set_discard_callbacks(pool);
2505
2506                 if (!pool->pf.error_if_no_space && no_space_timeout)
2507                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2508                 break;
2509
2510         case PM_WRITE:
2511                 if (old_mode != new_mode)
2512                         notify_of_pool_mode_change(pool, "write");
2513                 pool->out_of_data_space = false;
2514                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2515                 dm_pool_metadata_read_write(pool->pmd);
2516                 pool->process_bio = process_bio;
2517                 pool->process_discard = process_discard_bio;
2518                 pool->process_cell = process_cell;
2519                 pool->process_prepared_mapping = process_prepared_mapping;
2520                 set_discard_callbacks(pool);
2521                 break;
2522         }
2523
2524         pool->pf.mode = new_mode;
2525         /*
2526          * The pool mode may have changed, sync it so bind_control_target()
2527          * doesn't cause an unexpected mode transition on resume.
2528          */
2529         pt->adjusted_pf.mode = new_mode;
2530 }
2531
2532 static void abort_transaction(struct pool *pool)
2533 {
2534         const char *dev_name = dm_device_name(pool->pool_md);
2535
2536         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2537         if (dm_pool_abort_metadata(pool->pmd)) {
2538                 DMERR("%s: failed to abort metadata transaction", dev_name);
2539                 set_pool_mode(pool, PM_FAIL);
2540         }
2541
2542         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2543                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2544                 set_pool_mode(pool, PM_FAIL);
2545         }
2546 }
2547
2548 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2549 {
2550         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2551                     dm_device_name(pool->pool_md), op, r);
2552
2553         abort_transaction(pool);
2554         set_pool_mode(pool, PM_READ_ONLY);
2555 }
2556
2557 /*----------------------------------------------------------------*/
2558
2559 /*
2560  * Mapping functions.
2561  */
2562
2563 /*
2564  * Called only while mapping a thin bio to hand it over to the workqueue.
2565  */
2566 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2567 {
2568         unsigned long flags;
2569         struct pool *pool = tc->pool;
2570
2571         spin_lock_irqsave(&tc->lock, flags);
2572         bio_list_add(&tc->deferred_bio_list, bio);
2573         spin_unlock_irqrestore(&tc->lock, flags);
2574
2575         wake_worker(pool);
2576 }
2577
2578 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2579 {
2580         struct pool *pool = tc->pool;
2581
2582         throttle_lock(&pool->throttle);
2583         thin_defer_bio(tc, bio);
2584         throttle_unlock(&pool->throttle);
2585 }
2586
2587 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2588 {
2589         unsigned long flags;
2590         struct pool *pool = tc->pool;
2591
2592         throttle_lock(&pool->throttle);
2593         spin_lock_irqsave(&tc->lock, flags);
2594         list_add_tail(&cell->user_list, &tc->deferred_cells);
2595         spin_unlock_irqrestore(&tc->lock, flags);
2596         throttle_unlock(&pool->throttle);
2597
2598         wake_worker(pool);
2599 }
2600
2601 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2602 {
2603         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2604
2605         h->tc = tc;
2606         h->shared_read_entry = NULL;
2607         h->all_io_entry = NULL;
2608         h->overwrite_mapping = NULL;
2609         h->cell = NULL;
2610 }
2611
2612 /*
2613  * Non-blocking function called from the thin target's map function.
2614  */
2615 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2616 {
2617         int r;
2618         struct thin_c *tc = ti->private;
2619         dm_block_t block = get_bio_block(tc, bio);
2620         struct dm_thin_device *td = tc->td;
2621         struct dm_thin_lookup_result result;
2622         struct dm_bio_prison_cell *virt_cell, *data_cell;
2623         struct dm_cell_key key;
2624
2625         thin_hook_bio(tc, bio);
2626
2627         if (tc->requeue_mode) {
2628                 bio->bi_error = DM_ENDIO_REQUEUE;
2629                 bio_endio(bio);
2630                 return DM_MAPIO_SUBMITTED;
2631         }
2632
2633         if (get_pool_mode(tc->pool) == PM_FAIL) {
2634                 bio_io_error(bio);
2635                 return DM_MAPIO_SUBMITTED;
2636         }
2637
2638         if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2639             bio_op(bio) == REQ_OP_DISCARD) {
2640                 thin_defer_bio_with_throttle(tc, bio);
2641                 return DM_MAPIO_SUBMITTED;
2642         }
2643
2644         /*
2645          * We must hold the virtual cell before doing the lookup, otherwise
2646          * there's a race with discard.
2647          */
2648         build_virtual_key(tc->td, block, &key);
2649         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2650                 return DM_MAPIO_SUBMITTED;
2651
2652         r = dm_thin_find_block(td, block, 0, &result);
2653
2654         /*
2655          * Note that we defer readahead too.
2656          */
2657         switch (r) {
2658         case 0:
2659                 if (unlikely(result.shared)) {
2660                         /*
2661                          * We have a race condition here between the
2662                          * result.shared value returned by the lookup and
2663                          * snapshot creation, which may cause new
2664                          * sharing.
2665                          *
2666                          * To avoid this always quiesce the origin before
2667                          * taking the snap.  You want to do this anyway to
2668                          * ensure a consistent application view
2669                          * (i.e. lockfs).
2670                          *
2671                          * More distant ancestors are irrelevant. The
2672                          * shared flag will be set in their case.
2673                          */
2674                         thin_defer_cell(tc, virt_cell);
2675                         return DM_MAPIO_SUBMITTED;
2676                 }
2677
2678                 build_data_key(tc->td, result.block, &key);
2679                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2680                         cell_defer_no_holder(tc, virt_cell);
2681                         return DM_MAPIO_SUBMITTED;
2682                 }
2683
2684                 inc_all_io_entry(tc->pool, bio);
2685                 cell_defer_no_holder(tc, data_cell);
2686                 cell_defer_no_holder(tc, virt_cell);
2687
2688                 remap(tc, bio, result.block);
2689                 return DM_MAPIO_REMAPPED;
2690
2691         case -ENODATA:
2692         case -EWOULDBLOCK:
2693                 thin_defer_cell(tc, virt_cell);
2694                 return DM_MAPIO_SUBMITTED;
2695
2696         default:
2697                 /*
2698                  * Must always call bio_io_error on failure.
2699                  * dm_thin_find_block can fail with -EINVAL if the
2700                  * pool is switched to fail-io mode.
2701                  */
2702                 bio_io_error(bio);
2703                 cell_defer_no_holder(tc, virt_cell);
2704                 return DM_MAPIO_SUBMITTED;
2705         }
2706 }
2707
2708 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2709 {
2710         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2711         struct request_queue *q;
2712
2713         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2714                 return 1;
2715
2716         q = bdev_get_queue(pt->data_dev->bdev);
2717         return bdi_congested(&q->backing_dev_info, bdi_bits);
2718 }
2719
2720 static void requeue_bios(struct pool *pool)
2721 {
2722         unsigned long flags;
2723         struct thin_c *tc;
2724
2725         rcu_read_lock();
2726         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2727                 spin_lock_irqsave(&tc->lock, flags);
2728                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2729                 bio_list_init(&tc->retry_on_resume_list);
2730                 spin_unlock_irqrestore(&tc->lock, flags);
2731         }
2732         rcu_read_unlock();
2733 }
2734
2735 /*----------------------------------------------------------------
2736  * Binding of control targets to a pool object
2737  *--------------------------------------------------------------*/
2738 static bool data_dev_supports_discard(struct pool_c *pt)
2739 {
2740         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2741
2742         return q && blk_queue_discard(q);
2743 }
2744
2745 static bool is_factor(sector_t block_size, uint32_t n)
2746 {
2747         return !sector_div(block_size, n);
2748 }
2749
2750 /*
2751  * If discard_passdown was enabled verify that the data device
2752  * supports discards.  Disable discard_passdown if not.
2753  */
2754 static void disable_passdown_if_not_supported(struct pool_c *pt)
2755 {
2756         struct pool *pool = pt->pool;
2757         struct block_device *data_bdev = pt->data_dev->bdev;
2758         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2759         const char *reason = NULL;
2760         char buf[BDEVNAME_SIZE];
2761
2762         if (!pt->adjusted_pf.discard_passdown)
2763                 return;
2764
2765         if (!data_dev_supports_discard(pt))
2766                 reason = "discard unsupported";
2767
2768         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2769                 reason = "max discard sectors smaller than a block";
2770
2771         if (reason) {
2772                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2773                 pt->adjusted_pf.discard_passdown = false;
2774         }
2775 }
2776
2777 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2778 {
2779         struct pool_c *pt = ti->private;
2780
2781         /*
2782          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2783          */
2784         enum pool_mode old_mode = get_pool_mode(pool);
2785         enum pool_mode new_mode = pt->adjusted_pf.mode;
2786
2787         /*
2788          * Don't change the pool's mode until set_pool_mode() below.
2789          * Otherwise the pool's process_* function pointers may
2790          * not match the desired pool mode.
2791          */
2792         pt->adjusted_pf.mode = old_mode;
2793
2794         pool->ti = ti;
2795         pool->pf = pt->adjusted_pf;
2796         pool->low_water_blocks = pt->low_water_blocks;
2797
2798         set_pool_mode(pool, new_mode);
2799
2800         return 0;
2801 }
2802
2803 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2804 {
2805         if (pool->ti == ti)
2806                 pool->ti = NULL;
2807 }
2808
2809 /*----------------------------------------------------------------
2810  * Pool creation
2811  *--------------------------------------------------------------*/
2812 /* Initialize pool features. */
2813 static void pool_features_init(struct pool_features *pf)
2814 {
2815         pf->mode = PM_WRITE;
2816         pf->zero_new_blocks = true;
2817         pf->discard_enabled = true;
2818         pf->discard_passdown = true;
2819         pf->error_if_no_space = false;
2820 }
2821
2822 static void __pool_destroy(struct pool *pool)
2823 {
2824         __pool_table_remove(pool);
2825
2826         vfree(pool->cell_sort_array);
2827         if (dm_pool_metadata_close(pool->pmd) < 0)
2828                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2829
2830         dm_bio_prison_destroy(pool->prison);
2831         dm_kcopyd_client_destroy(pool->copier);
2832
2833         if (pool->wq)
2834                 destroy_workqueue(pool->wq);
2835
2836         if (pool->next_mapping)
2837                 mempool_free(pool->next_mapping, pool->mapping_pool);
2838         mempool_destroy(pool->mapping_pool);
2839         dm_deferred_set_destroy(pool->shared_read_ds);
2840         dm_deferred_set_destroy(pool->all_io_ds);
2841         kfree(pool);
2842 }
2843
2844 static struct kmem_cache *_new_mapping_cache;
2845
2846 static struct pool *pool_create(struct mapped_device *pool_md,
2847                                 struct block_device *metadata_dev,
2848                                 unsigned long block_size,
2849                                 int read_only, char **error)
2850 {
2851         int r;
2852         void *err_p;
2853         struct pool *pool;
2854         struct dm_pool_metadata *pmd;
2855         bool format_device = read_only ? false : true;
2856
2857         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2858         if (IS_ERR(pmd)) {
2859                 *error = "Error creating metadata object";
2860                 return (struct pool *)pmd;
2861         }
2862
2863         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2864         if (!pool) {
2865                 *error = "Error allocating memory for pool";
2866                 err_p = ERR_PTR(-ENOMEM);
2867                 goto bad_pool;
2868         }
2869
2870         pool->pmd = pmd;
2871         pool->sectors_per_block = block_size;
2872         if (block_size & (block_size - 1))
2873                 pool->sectors_per_block_shift = -1;
2874         else
2875                 pool->sectors_per_block_shift = __ffs(block_size);
2876         pool->low_water_blocks = 0;
2877         pool_features_init(&pool->pf);
2878         pool->prison = dm_bio_prison_create();
2879         if (!pool->prison) {
2880                 *error = "Error creating pool's bio prison";
2881                 err_p = ERR_PTR(-ENOMEM);
2882                 goto bad_prison;
2883         }
2884
2885         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2886         if (IS_ERR(pool->copier)) {
2887                 r = PTR_ERR(pool->copier);
2888                 *error = "Error creating pool's kcopyd client";
2889                 err_p = ERR_PTR(r);
2890                 goto bad_kcopyd_client;
2891         }
2892
2893         /*
2894          * Create singlethreaded workqueue that will service all devices
2895          * that use this metadata.
2896          */
2897         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898         if (!pool->wq) {
2899                 *error = "Error creating pool's workqueue";
2900                 err_p = ERR_PTR(-ENOMEM);
2901                 goto bad_wq;
2902         }
2903
2904         throttle_init(&pool->throttle);
2905         INIT_WORK(&pool->worker, do_worker);
2906         INIT_DELAYED_WORK(&pool->waker, do_waker);
2907         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2908         spin_lock_init(&pool->lock);
2909         bio_list_init(&pool->deferred_flush_bios);
2910         INIT_LIST_HEAD(&pool->prepared_mappings);
2911         INIT_LIST_HEAD(&pool->prepared_discards);
2912         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2913         INIT_LIST_HEAD(&pool->active_thins);
2914         pool->low_water_triggered = false;
2915         pool->suspended = true;
2916         pool->out_of_data_space = false;
2917
2918         pool->shared_read_ds = dm_deferred_set_create();
2919         if (!pool->shared_read_ds) {
2920                 *error = "Error creating pool's shared read deferred set";
2921                 err_p = ERR_PTR(-ENOMEM);
2922                 goto bad_shared_read_ds;
2923         }
2924
2925         pool->all_io_ds = dm_deferred_set_create();
2926         if (!pool->all_io_ds) {
2927                 *error = "Error creating pool's all io deferred set";
2928                 err_p = ERR_PTR(-ENOMEM);
2929                 goto bad_all_io_ds;
2930         }
2931
2932         pool->next_mapping = NULL;
2933         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2934                                                       _new_mapping_cache);
2935         if (!pool->mapping_pool) {
2936                 *error = "Error creating pool's mapping mempool";
2937                 err_p = ERR_PTR(-ENOMEM);
2938                 goto bad_mapping_pool;
2939         }
2940
2941         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2942         if (!pool->cell_sort_array) {
2943                 *error = "Error allocating cell sort array";
2944                 err_p = ERR_PTR(-ENOMEM);
2945                 goto bad_sort_array;
2946         }
2947
2948         pool->ref_count = 1;
2949         pool->last_commit_jiffies = jiffies;
2950         pool->pool_md = pool_md;
2951         pool->md_dev = metadata_dev;
2952         __pool_table_insert(pool);
2953
2954         return pool;
2955
2956 bad_sort_array:
2957         mempool_destroy(pool->mapping_pool);
2958 bad_mapping_pool:
2959         dm_deferred_set_destroy(pool->all_io_ds);
2960 bad_all_io_ds:
2961         dm_deferred_set_destroy(pool->shared_read_ds);
2962 bad_shared_read_ds:
2963         destroy_workqueue(pool->wq);
2964 bad_wq:
2965         dm_kcopyd_client_destroy(pool->copier);
2966 bad_kcopyd_client:
2967         dm_bio_prison_destroy(pool->prison);
2968 bad_prison:
2969         kfree(pool);
2970 bad_pool:
2971         if (dm_pool_metadata_close(pmd))
2972                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2973
2974         return err_p;
2975 }
2976
2977 static void __pool_inc(struct pool *pool)
2978 {
2979         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2980         pool->ref_count++;
2981 }
2982
2983 static void __pool_dec(struct pool *pool)
2984 {
2985         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2986         BUG_ON(!pool->ref_count);
2987         if (!--pool->ref_count)
2988                 __pool_destroy(pool);
2989 }
2990
2991 static struct pool *__pool_find(struct mapped_device *pool_md,
2992                                 struct block_device *metadata_dev,
2993                                 unsigned long block_size, int read_only,
2994                                 char **error, int *created)
2995 {
2996         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2997
2998         if (pool) {
2999                 if (pool->pool_md != pool_md) {
3000                         *error = "metadata device already in use by a pool";
3001                         return ERR_PTR(-EBUSY);
3002                 }
3003                 __pool_inc(pool);
3004
3005         } else {
3006                 pool = __pool_table_lookup(pool_md);
3007                 if (pool) {
3008                         if (pool->md_dev != metadata_dev) {
3009                                 *error = "different pool cannot replace a pool";
3010                                 return ERR_PTR(-EINVAL);
3011                         }
3012                         __pool_inc(pool);
3013
3014                 } else {
3015                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3016                         *created = 1;
3017                 }
3018         }
3019
3020         return pool;
3021 }
3022
3023 /*----------------------------------------------------------------
3024  * Pool target methods
3025  *--------------------------------------------------------------*/
3026 static void pool_dtr(struct dm_target *ti)
3027 {
3028         struct pool_c *pt = ti->private;
3029
3030         mutex_lock(&dm_thin_pool_table.mutex);
3031
3032         unbind_control_target(pt->pool, ti);
3033         __pool_dec(pt->pool);
3034         dm_put_device(ti, pt->metadata_dev);
3035         dm_put_device(ti, pt->data_dev);
3036         kfree(pt);
3037
3038         mutex_unlock(&dm_thin_pool_table.mutex);
3039 }
3040
3041 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3042                                struct dm_target *ti)
3043 {
3044         int r;
3045         unsigned argc;
3046         const char *arg_name;
3047
3048         static struct dm_arg _args[] = {
3049                 {0, 4, "Invalid number of pool feature arguments"},
3050         };
3051
3052         /*
3053          * No feature arguments supplied.
3054          */
3055         if (!as->argc)
3056                 return 0;
3057
3058         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3059         if (r)
3060                 return -EINVAL;
3061
3062         while (argc && !r) {
3063                 arg_name = dm_shift_arg(as);
3064                 argc--;
3065
3066                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3067                         pf->zero_new_blocks = false;
3068
3069                 else if (!strcasecmp(arg_name, "ignore_discard"))
3070                         pf->discard_enabled = false;
3071
3072                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3073                         pf->discard_passdown = false;
3074
3075                 else if (!strcasecmp(arg_name, "read_only"))
3076                         pf->mode = PM_READ_ONLY;
3077
3078                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3079                         pf->error_if_no_space = true;
3080
3081                 else {
3082                         ti->error = "Unrecognised pool feature requested";
3083                         r = -EINVAL;
3084                         break;
3085                 }
3086         }
3087
3088         return r;
3089 }
3090
3091 static void metadata_low_callback(void *context)
3092 {
3093         struct pool *pool = context;
3094
3095         DMWARN("%s: reached low water mark for metadata device: sending event.",
3096                dm_device_name(pool->pool_md));
3097
3098         dm_table_event(pool->ti->table);
3099 }
3100
3101 static sector_t get_dev_size(struct block_device *bdev)
3102 {
3103         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3104 }
3105
3106 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3107 {
3108         sector_t metadata_dev_size = get_dev_size(bdev);
3109         char buffer[BDEVNAME_SIZE];
3110
3111         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3112                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3113                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3114 }
3115
3116 static sector_t get_metadata_dev_size(struct block_device *bdev)
3117 {
3118         sector_t metadata_dev_size = get_dev_size(bdev);
3119
3120         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3121                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3122
3123         return metadata_dev_size;
3124 }
3125
3126 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3127 {
3128         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3129
3130         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3131
3132         return metadata_dev_size;
3133 }
3134
3135 /*
3136  * When a metadata threshold is crossed a dm event is triggered, and
3137  * userland should respond by growing the metadata device.  We could let
3138  * userland set the threshold, like we do with the data threshold, but I'm
3139  * not sure they know enough to do this well.
3140  */
3141 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3142 {
3143         /*
3144          * 4M is ample for all ops with the possible exception of thin
3145          * device deletion which is harmless if it fails (just retry the
3146          * delete after you've grown the device).
3147          */
3148         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3149         return min((dm_block_t)1024ULL /* 4M */, quarter);
3150 }
3151
3152 /*
3153  * thin-pool <metadata dev> <data dev>
3154  *           <data block size (sectors)>
3155  *           <low water mark (blocks)>
3156  *           [<#feature args> [<arg>]*]
3157  *
3158  * Optional feature arguments are:
3159  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3160  *           ignore_discard: disable discard
3161  *           no_discard_passdown: don't pass discards down to the data device
3162  *           read_only: Don't allow any changes to be made to the pool metadata.
3163  *           error_if_no_space: error IOs, instead of queueing, if no space.
3164  */
3165 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3166 {
3167         int r, pool_created = 0;
3168         struct pool_c *pt;
3169         struct pool *pool;
3170         struct pool_features pf;
3171         struct dm_arg_set as;
3172         struct dm_dev *data_dev;
3173         unsigned long block_size;
3174         dm_block_t low_water_blocks;
3175         struct dm_dev *metadata_dev;
3176         fmode_t metadata_mode;
3177
3178         /*
3179          * FIXME Remove validation from scope of lock.
3180          */
3181         mutex_lock(&dm_thin_pool_table.mutex);
3182
3183         if (argc < 4) {
3184                 ti->error = "Invalid argument count";
3185                 r = -EINVAL;
3186                 goto out_unlock;
3187         }
3188
3189         as.argc = argc;
3190         as.argv = argv;
3191
3192         /*
3193          * Set default pool features.
3194          */
3195         pool_features_init(&pf);
3196
3197         dm_consume_args(&as, 4);
3198         r = parse_pool_features(&as, &pf, ti);
3199         if (r)
3200                 goto out_unlock;
3201
3202         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3203         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3204         if (r) {
3205                 ti->error = "Error opening metadata block device";
3206                 goto out_unlock;
3207         }
3208         warn_if_metadata_device_too_big(metadata_dev->bdev);
3209
3210         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3211         if (r) {
3212                 ti->error = "Error getting data device";
3213                 goto out_metadata;
3214         }
3215
3216         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3217             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3218             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3219             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3220                 ti->error = "Invalid block size";
3221                 r = -EINVAL;
3222                 goto out;
3223         }
3224
3225         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3226                 ti->error = "Invalid low water mark";
3227                 r = -EINVAL;
3228                 goto out;
3229         }
3230
3231         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3232         if (!pt) {
3233                 r = -ENOMEM;
3234                 goto out;
3235         }
3236
3237         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3238                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3239         if (IS_ERR(pool)) {
3240                 r = PTR_ERR(pool);
3241                 goto out_free_pt;
3242         }
3243
3244         /*
3245          * 'pool_created' reflects whether this is the first table load.
3246          * Top level discard support is not allowed to be changed after
3247          * initial load.  This would require a pool reload to trigger thin
3248          * device changes.
3249          */
3250         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3251                 ti->error = "Discard support cannot be disabled once enabled";
3252                 r = -EINVAL;
3253                 goto out_flags_changed;
3254         }
3255
3256         pt->pool = pool;
3257         pt->ti = ti;
3258         pt->metadata_dev = metadata_dev;
3259         pt->data_dev = data_dev;
3260         pt->low_water_blocks = low_water_blocks;
3261         pt->adjusted_pf = pt->requested_pf = pf;
3262         ti->num_flush_bios = 1;
3263
3264         /*
3265          * Only need to enable discards if the pool should pass
3266          * them down to the data device.  The thin device's discard
3267          * processing will cause mappings to be removed from the btree.
3268          */
3269         ti->discard_zeroes_data_unsupported = true;
3270         if (pf.discard_enabled && pf.discard_passdown) {
3271                 ti->num_discard_bios = 1;
3272
3273                 /*
3274                  * Setting 'discards_supported' circumvents the normal
3275                  * stacking of discard limits (this keeps the pool and
3276                  * thin devices' discard limits consistent).
3277                  */
3278                 ti->discards_supported = true;
3279         }
3280         ti->private = pt;
3281
3282         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283                                                 calc_metadata_threshold(pt),
3284                                                 metadata_low_callback,
3285                                                 pool);
3286         if (r)
3287                 goto out_flags_changed;
3288
3289         pt->callbacks.congested_fn = pool_is_congested;
3290         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292         mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294         return 0;
3295
3296 out_flags_changed:
3297         __pool_dec(pool);
3298 out_free_pt:
3299         kfree(pt);
3300 out:
3301         dm_put_device(ti, data_dev);
3302 out_metadata:
3303         dm_put_device(ti, metadata_dev);
3304 out_unlock:
3305         mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307         return r;
3308 }
3309
3310 static int pool_map(struct dm_target *ti, struct bio *bio)
3311 {
3312         int r;
3313         struct pool_c *pt = ti->private;
3314         struct pool *pool = pt->pool;
3315         unsigned long flags;
3316
3317         /*
3318          * As this is a singleton target, ti->begin is always zero.
3319          */
3320         spin_lock_irqsave(&pool->lock, flags);
3321         bio->bi_bdev = pt->data_dev->bdev;
3322         r = DM_MAPIO_REMAPPED;
3323         spin_unlock_irqrestore(&pool->lock, flags);
3324
3325         return r;
3326 }
3327
3328 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329 {
3330         int r;
3331         struct pool_c *pt = ti->private;
3332         struct pool *pool = pt->pool;
3333         sector_t data_size = ti->len;
3334         dm_block_t sb_data_size;
3335
3336         *need_commit = false;
3337
3338         (void) sector_div(data_size, pool->sectors_per_block);
3339
3340         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341         if (r) {
3342                 DMERR("%s: failed to retrieve data device size",
3343                       dm_device_name(pool->pool_md));
3344                 return r;
3345         }
3346
3347         if (data_size < sb_data_size) {
3348                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349                       dm_device_name(pool->pool_md),
3350                       (unsigned long long)data_size, sb_data_size);
3351                 return -EINVAL;
3352
3353         } else if (data_size > sb_data_size) {
3354                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3355                         DMERR("%s: unable to grow the data device until repaired.",
3356                               dm_device_name(pool->pool_md));
3357                         return 0;
3358                 }
3359
3360                 if (sb_data_size)
3361                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3362                                dm_device_name(pool->pool_md),
3363                                sb_data_size, (unsigned long long)data_size);
3364                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365                 if (r) {
3366                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367                         return r;
3368                 }
3369
3370                 *need_commit = true;
3371         }
3372
3373         return 0;
3374 }
3375
3376 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377 {
3378         int r;
3379         struct pool_c *pt = ti->private;
3380         struct pool *pool = pt->pool;
3381         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383         *need_commit = false;
3384
3385         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388         if (r) {
3389                 DMERR("%s: failed to retrieve metadata device size",
3390                       dm_device_name(pool->pool_md));
3391                 return r;
3392         }
3393
3394         if (metadata_dev_size < sb_metadata_dev_size) {
3395                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396                       dm_device_name(pool->pool_md),
3397                       metadata_dev_size, sb_metadata_dev_size);
3398                 return -EINVAL;
3399
3400         } else if (metadata_dev_size > sb_metadata_dev_size) {
3401                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3402                         DMERR("%s: unable to grow the metadata device until repaired.",
3403                               dm_device_name(pool->pool_md));
3404                         return 0;
3405                 }
3406
3407                 warn_if_metadata_device_too_big(pool->md_dev);
3408                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409                        dm_device_name(pool->pool_md),
3410                        sb_metadata_dev_size, metadata_dev_size);
3411                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412                 if (r) {
3413                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414                         return r;
3415                 }
3416
3417                 *need_commit = true;
3418         }
3419
3420         return 0;
3421 }
3422
3423 /*
3424  * Retrieves the number of blocks of the data device from
3425  * the superblock and compares it to the actual device size,
3426  * thus resizing the data device in case it has grown.
3427  *
3428  * This both copes with opening preallocated data devices in the ctr
3429  * being followed by a resume
3430  * -and-
3431  * calling the resume method individually after userspace has
3432  * grown the data device in reaction to a table event.
3433  */
3434 static int pool_preresume(struct dm_target *ti)
3435 {
3436         int r;
3437         bool need_commit1, need_commit2;
3438         struct pool_c *pt = ti->private;
3439         struct pool *pool = pt->pool;
3440
3441         /*
3442          * Take control of the pool object.
3443          */
3444         r = bind_control_target(pool, ti);
3445         if (r)
3446                 return r;
3447
3448         r = maybe_resize_data_dev(ti, &need_commit1);
3449         if (r)
3450                 return r;
3451
3452         r = maybe_resize_metadata_dev(ti, &need_commit2);
3453         if (r)
3454                 return r;
3455
3456         if (need_commit1 || need_commit2)
3457                 (void) commit(pool);
3458
3459         return 0;
3460 }
3461
3462 static void pool_suspend_active_thins(struct pool *pool)
3463 {
3464         struct thin_c *tc;
3465
3466         /* Suspend all active thin devices */
3467         tc = get_first_thin(pool);
3468         while (tc) {
3469                 dm_internal_suspend_noflush(tc->thin_md);
3470                 tc = get_next_thin(pool, tc);
3471         }
3472 }
3473
3474 static void pool_resume_active_thins(struct pool *pool)
3475 {
3476         struct thin_c *tc;
3477
3478         /* Resume all active thin devices */
3479         tc = get_first_thin(pool);
3480         while (tc) {
3481                 dm_internal_resume(tc->thin_md);
3482                 tc = get_next_thin(pool, tc);
3483         }
3484 }
3485
3486 static void pool_resume(struct dm_target *ti)
3487 {
3488         struct pool_c *pt = ti->private;
3489         struct pool *pool = pt->pool;
3490         unsigned long flags;
3491
3492         /*
3493          * Must requeue active_thins' bios and then resume
3494          * active_thins _before_ clearing 'suspend' flag.
3495          */
3496         requeue_bios(pool);
3497         pool_resume_active_thins(pool);
3498
3499         spin_lock_irqsave(&pool->lock, flags);
3500         pool->low_water_triggered = false;
3501         pool->suspended = false;
3502         spin_unlock_irqrestore(&pool->lock, flags);
3503
3504         do_waker(&pool->waker.work);
3505 }
3506
3507 static void pool_presuspend(struct dm_target *ti)
3508 {
3509         struct pool_c *pt = ti->private;
3510         struct pool *pool = pt->pool;
3511         unsigned long flags;
3512
3513         spin_lock_irqsave(&pool->lock, flags);
3514         pool->suspended = true;
3515         spin_unlock_irqrestore(&pool->lock, flags);
3516
3517         pool_suspend_active_thins(pool);
3518 }
3519
3520 static void pool_presuspend_undo(struct dm_target *ti)
3521 {
3522         struct pool_c *pt = ti->private;
3523         struct pool *pool = pt->pool;
3524         unsigned long flags;
3525
3526         pool_resume_active_thins(pool);
3527
3528         spin_lock_irqsave(&pool->lock, flags);
3529         pool->suspended = false;
3530         spin_unlock_irqrestore(&pool->lock, flags);
3531 }
3532
3533 static void pool_postsuspend(struct dm_target *ti)
3534 {
3535         struct pool_c *pt = ti->private;
3536         struct pool *pool = pt->pool;
3537
3538         cancel_delayed_work_sync(&pool->waker);
3539         cancel_delayed_work_sync(&pool->no_space_timeout);
3540         flush_workqueue(pool->wq);
3541         (void) commit(pool);
3542 }
3543
3544 static int check_arg_count(unsigned argc, unsigned args_required)
3545 {
3546         if (argc != args_required) {
3547                 DMWARN("Message received with %u arguments instead of %u.",
3548                        argc, args_required);
3549                 return -EINVAL;
3550         }
3551
3552         return 0;
3553 }
3554
3555 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556 {
3557         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558             *dev_id <= MAX_DEV_ID)
3559                 return 0;
3560
3561         if (warning)
3562                 DMWARN("Message received with invalid device id: %s", arg);
3563
3564         return -EINVAL;
3565 }
3566
3567 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568 {
3569         dm_thin_id dev_id;
3570         int r;
3571
3572         r = check_arg_count(argc, 2);
3573         if (r)
3574                 return r;
3575
3576         r = read_dev_id(argv[1], &dev_id, 1);
3577         if (r)
3578                 return r;
3579
3580         r = dm_pool_create_thin(pool->pmd, dev_id);
3581         if (r) {
3582                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583                        argv[1]);
3584                 return r;
3585         }
3586
3587         return 0;
3588 }
3589
3590 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591 {
3592         dm_thin_id dev_id;
3593         dm_thin_id origin_dev_id;
3594         int r;
3595
3596         r = check_arg_count(argc, 3);
3597         if (r)
3598                 return r;
3599
3600         r = read_dev_id(argv[1], &dev_id, 1);
3601         if (r)
3602                 return r;
3603
3604         r = read_dev_id(argv[2], &origin_dev_id, 1);
3605         if (r)
3606                 return r;
3607
3608         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609         if (r) {
3610                 DMWARN("Creation of new snapshot %s of device %s failed.",
3611                        argv[1], argv[2]);
3612                 return r;
3613         }
3614
3615         return 0;
3616 }
3617
3618 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619 {
3620         dm_thin_id dev_id;
3621         int r;
3622
3623         r = check_arg_count(argc, 2);
3624         if (r)
3625                 return r;
3626
3627         r = read_dev_id(argv[1], &dev_id, 1);
3628         if (r)
3629                 return r;
3630
3631         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632         if (r)
3633                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635         return r;
3636 }
3637
3638 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639 {
3640         dm_thin_id old_id, new_id;
3641         int r;
3642
3643         r = check_arg_count(argc, 3);
3644         if (r)
3645                 return r;
3646
3647         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649                 return -EINVAL;
3650         }
3651
3652         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654                 return -EINVAL;
3655         }
3656
3657         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658         if (r) {
3659                 DMWARN("Failed to change transaction id from %s to %s.",
3660                        argv[1], argv[2]);
3661                 return r;
3662         }
3663
3664         return 0;
3665 }
3666
3667 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668 {
3669         int r;
3670
3671         r = check_arg_count(argc, 1);
3672         if (r)
3673                 return r;
3674
3675         (void) commit(pool);
3676
3677         r = dm_pool_reserve_metadata_snap(pool->pmd);
3678         if (r)
3679                 DMWARN("reserve_metadata_snap message failed.");
3680
3681         return r;
3682 }
3683
3684 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686         int r;
3687
3688         r = check_arg_count(argc, 1);
3689         if (r)
3690                 return r;
3691
3692         r = dm_pool_release_metadata_snap(pool->pmd);
3693         if (r)
3694                 DMWARN("release_metadata_snap message failed.");
3695
3696         return r;
3697 }
3698
3699 /*
3700  * Messages supported:
3701  *   create_thin        <dev_id>
3702  *   create_snap        <dev_id> <origin_id>
3703  *   delete             <dev_id>
3704  *   set_transaction_id <current_trans_id> <new_trans_id>
3705  *   reserve_metadata_snap
3706  *   release_metadata_snap
3707  */
3708 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3709 {
3710         int r = -EINVAL;
3711         struct pool_c *pt = ti->private;
3712         struct pool *pool = pt->pool;
3713
3714         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716                       dm_device_name(pool->pool_md));
3717                 return -EOPNOTSUPP;
3718         }
3719
3720         if (!strcasecmp(argv[0], "create_thin"))
3721                 r = process_create_thin_mesg(argc, argv, pool);
3722
3723         else if (!strcasecmp(argv[0], "create_snap"))
3724                 r = process_create_snap_mesg(argc, argv, pool);
3725
3726         else if (!strcasecmp(argv[0], "delete"))
3727                 r = process_delete_mesg(argc, argv, pool);
3728
3729         else if (!strcasecmp(argv[0], "set_transaction_id"))
3730                 r = process_set_transaction_id_mesg(argc, argv, pool);
3731
3732         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3734
3735         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3737
3738         else
3739                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3740
3741         if (!r)
3742                 (void) commit(pool);
3743
3744         return r;
3745 }
3746
3747 static void emit_flags(struct pool_features *pf, char *result,
3748                        unsigned sz, unsigned maxlen)
3749 {
3750         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752                 pf->error_if_no_space;
3753         DMEMIT("%u ", count);
3754
3755         if (!pf->zero_new_blocks)
3756                 DMEMIT("skip_block_zeroing ");
3757
3758         if (!pf->discard_enabled)
3759                 DMEMIT("ignore_discard ");
3760
3761         if (!pf->discard_passdown)
3762                 DMEMIT("no_discard_passdown ");
3763
3764         if (pf->mode == PM_READ_ONLY)
3765                 DMEMIT("read_only ");
3766
3767         if (pf->error_if_no_space)
3768                 DMEMIT("error_if_no_space ");
3769 }
3770
3771 /*
3772  * Status line is:
3773  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3774  *    <used data sectors>/<total data sectors> <held metadata root>
3775  *    <pool mode> <discard config> <no space config> <needs_check>
3776  */
3777 static void pool_status(struct dm_target *ti, status_type_t type,
3778                         unsigned status_flags, char *result, unsigned maxlen)
3779 {
3780         int r;
3781         unsigned sz = 0;
3782         uint64_t transaction_id;
3783         dm_block_t nr_free_blocks_data;
3784         dm_block_t nr_free_blocks_metadata;
3785         dm_block_t nr_blocks_data;
3786         dm_block_t nr_blocks_metadata;
3787         dm_block_t held_root;
3788         char buf[BDEVNAME_SIZE];
3789         char buf2[BDEVNAME_SIZE];
3790         struct pool_c *pt = ti->private;
3791         struct pool *pool = pt->pool;
3792
3793         switch (type) {
3794         case STATUSTYPE_INFO:
3795                 if (get_pool_mode(pool) == PM_FAIL) {
3796                         DMEMIT("Fail");
3797                         break;
3798                 }
3799
3800                 /* Commit to ensure statistics aren't out-of-date */
3801                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802                         (void) commit(pool);
3803
3804                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805                 if (r) {
3806                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807                               dm_device_name(pool->pool_md), r);
3808                         goto err;
3809                 }
3810
3811                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812                 if (r) {
3813                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814                               dm_device_name(pool->pool_md), r);
3815                         goto err;
3816                 }
3817
3818                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819                 if (r) {
3820                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821                               dm_device_name(pool->pool_md), r);
3822                         goto err;
3823                 }
3824
3825                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826                 if (r) {
3827                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3828                               dm_device_name(pool->pool_md), r);
3829                         goto err;
3830                 }
3831
3832                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833                 if (r) {
3834                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835                               dm_device_name(pool->pool_md), r);
3836                         goto err;
3837                 }
3838
3839                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840                 if (r) {
3841                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842                               dm_device_name(pool->pool_md), r);
3843                         goto err;
3844                 }
3845
3846                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3847                        (unsigned long long)transaction_id,
3848                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849                        (unsigned long long)nr_blocks_metadata,
3850                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851                        (unsigned long long)nr_blocks_data);
3852
3853                 if (held_root)
3854                         DMEMIT("%llu ", held_root);
3855                 else
3856                         DMEMIT("- ");
3857
3858                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3859                         DMEMIT("out_of_data_space ");
3860                 else if (pool->pf.mode == PM_READ_ONLY)
3861                         DMEMIT("ro ");
3862                 else
3863                         DMEMIT("rw ");
3864
3865                 if (!pool->pf.discard_enabled)
3866                         DMEMIT("ignore_discard ");
3867                 else if (pool->pf.discard_passdown)
3868                         DMEMIT("discard_passdown ");
3869                 else
3870                         DMEMIT("no_discard_passdown ");
3871
3872                 if (pool->pf.error_if_no_space)
3873                         DMEMIT("error_if_no_space ");
3874                 else
3875                         DMEMIT("queue_if_no_space ");
3876
3877                 if (dm_pool_metadata_needs_check(pool->pmd))
3878                         DMEMIT("needs_check ");
3879                 else
3880                         DMEMIT("- ");
3881
3882                 break;
3883
3884         case STATUSTYPE_TABLE:
3885                 DMEMIT("%s %s %lu %llu ",
3886                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888                        (unsigned long)pool->sectors_per_block,
3889                        (unsigned long long)pt->low_water_blocks);
3890                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3891                 break;
3892         }
3893         return;
3894
3895 err:
3896         DMEMIT("Error");
3897 }
3898
3899 static int pool_iterate_devices(struct dm_target *ti,
3900                                 iterate_devices_callout_fn fn, void *data)
3901 {
3902         struct pool_c *pt = ti->private;
3903
3904         return fn(ti, pt->data_dev, 0, ti->len, data);
3905 }
3906
3907 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3908 {
3909         struct pool_c *pt = ti->private;
3910         struct pool *pool = pt->pool;
3911         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912
3913         /*
3914          * If max_sectors is smaller than pool->sectors_per_block adjust it
3915          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916          * This is especially beneficial when the pool's data device is a RAID
3917          * device that has a full stripe width that matches pool->sectors_per_block
3918          * -- because even though partial RAID stripe-sized IOs will be issued to a
3919          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3920          *    boundary.. which avoids additional partial RAID stripe writes cascading
3921          */
3922         if (limits->max_sectors < pool->sectors_per_block) {
3923                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925                                 limits->max_sectors--;
3926                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3927                 }
3928         }
3929
3930         /*
3931          * If the system-determined stacked limits are compatible with the
3932          * pool's blocksize (io_opt is a factor) do not override them.
3933          */
3934         if (io_opt_sectors < pool->sectors_per_block ||
3935             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938                 else
3939                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941         }
3942
3943         /*
3944          * pt->adjusted_pf is a staging area for the actual features to use.
3945          * They get transferred to the live pool in bind_control_target()
3946          * called from pool_preresume().
3947          */
3948         if (!pt->adjusted_pf.discard_enabled) {
3949                 /*
3950                  * Must explicitly disallow stacking discard limits otherwise the
3951                  * block layer will stack them if pool's data device has support.
3952                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953                  * user to see that, so make sure to set all discard limits to 0.
3954                  */
3955                 limits->discard_granularity = 0;
3956                 return;
3957         }
3958
3959         disable_passdown_if_not_supported(pt);
3960
3961         /*
3962          * The pool uses the same discard limits as the underlying data
3963          * device.  DM core has already set this up.
3964          */
3965 }
3966
3967 static struct target_type pool_target = {
3968         .name = "thin-pool",
3969         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970                     DM_TARGET_IMMUTABLE,
3971         .version = {1, 19, 0},
3972         .module = THIS_MODULE,
3973         .ctr = pool_ctr,
3974         .dtr = pool_dtr,
3975         .map = pool_map,
3976         .presuspend = pool_presuspend,
3977         .presuspend_undo = pool_presuspend_undo,
3978         .postsuspend = pool_postsuspend,
3979         .preresume = pool_preresume,
3980         .resume = pool_resume,
3981         .message = pool_message,
3982         .status = pool_status,
3983         .iterate_devices = pool_iterate_devices,
3984         .io_hints = pool_io_hints,
3985 };
3986
3987 /*----------------------------------------------------------------
3988  * Thin target methods
3989  *--------------------------------------------------------------*/
3990 static void thin_get(struct thin_c *tc)
3991 {
3992         atomic_inc(&tc->refcount);
3993 }
3994
3995 static void thin_put(struct thin_c *tc)
3996 {
3997         if (atomic_dec_and_test(&tc->refcount))
3998                 complete(&tc->can_destroy);
3999 }
4000
4001 static void thin_dtr(struct dm_target *ti)
4002 {
4003         struct thin_c *tc = ti->private;
4004         unsigned long flags;
4005
4006         spin_lock_irqsave(&tc->pool->lock, flags);
4007         list_del_rcu(&tc->list);
4008         spin_unlock_irqrestore(&tc->pool->lock, flags);
4009         synchronize_rcu();
4010
4011         thin_put(tc);
4012         wait_for_completion(&tc->can_destroy);
4013
4014         mutex_lock(&dm_thin_pool_table.mutex);
4015
4016         __pool_dec(tc->pool);
4017         dm_pool_close_thin_device(tc->td);
4018         dm_put_device(ti, tc->pool_dev);
4019         if (tc->origin_dev)
4020                 dm_put_device(ti, tc->origin_dev);
4021         kfree(tc);
4022
4023         mutex_unlock(&dm_thin_pool_table.mutex);
4024 }
4025
4026 /*
4027  * Thin target parameters:
4028  *
4029  * <pool_dev> <dev_id> [origin_dev]
4030  *
4031  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032  * dev_id: the internal device identifier
4033  * origin_dev: a device external to the pool that should act as the origin
4034  *
4035  * If the pool device has discards disabled, they get disabled for the thin
4036  * device as well.
4037  */
4038 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4039 {
4040         int r;
4041         struct thin_c *tc;
4042         struct dm_dev *pool_dev, *origin_dev;
4043         struct mapped_device *pool_md;
4044         unsigned long flags;
4045
4046         mutex_lock(&dm_thin_pool_table.mutex);
4047
4048         if (argc != 2 && argc != 3) {
4049                 ti->error = "Invalid argument count";
4050                 r = -EINVAL;
4051                 goto out_unlock;
4052         }
4053
4054         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055         if (!tc) {
4056                 ti->error = "Out of memory";
4057                 r = -ENOMEM;
4058                 goto out_unlock;
4059         }
4060         tc->thin_md = dm_table_get_md(ti->table);
4061         spin_lock_init(&tc->lock);
4062         INIT_LIST_HEAD(&tc->deferred_cells);
4063         bio_list_init(&tc->deferred_bio_list);
4064         bio_list_init(&tc->retry_on_resume_list);
4065         tc->sort_bio_list = RB_ROOT;
4066
4067         if (argc == 3) {
4068                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069                 if (r) {
4070                         ti->error = "Error opening origin device";
4071                         goto bad_origin_dev;
4072                 }
4073                 tc->origin_dev = origin_dev;
4074         }
4075
4076         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077         if (r) {
4078                 ti->error = "Error opening pool device";
4079                 goto bad_pool_dev;
4080         }
4081         tc->pool_dev = pool_dev;
4082
4083         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084                 ti->error = "Invalid device id";
4085                 r = -EINVAL;
4086                 goto bad_common;
4087         }
4088
4089         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090         if (!pool_md) {
4091                 ti->error = "Couldn't get pool mapped device";
4092                 r = -EINVAL;
4093                 goto bad_common;
4094         }
4095
4096         tc->pool = __pool_table_lookup(pool_md);
4097         if (!tc->pool) {
4098                 ti->error = "Couldn't find pool object";
4099                 r = -EINVAL;
4100                 goto bad_pool_lookup;
4101         }
4102         __pool_inc(tc->pool);
4103
4104         if (get_pool_mode(tc->pool) == PM_FAIL) {
4105                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4106                 r = -EINVAL;
4107                 goto bad_pool;
4108         }
4109
4110         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111         if (r) {
4112                 ti->error = "Couldn't open thin internal device";
4113                 goto bad_pool;
4114         }
4115
4116         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117         if (r)
4118                 goto bad;
4119
4120         ti->num_flush_bios = 1;
4121         ti->flush_supported = true;
4122         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4123
4124         /* In case the pool supports discards, pass them on. */
4125         ti->discard_zeroes_data_unsupported = true;
4126         if (tc->pool->pf.discard_enabled) {
4127                 ti->discards_supported = true;
4128                 ti->num_discard_bios = 1;
4129                 ti->split_discard_bios = false;
4130         }
4131
4132         mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134         spin_lock_irqsave(&tc->pool->lock, flags);
4135         if (tc->pool->suspended) {
4136                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4137                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138                 ti->error = "Unable to activate thin device while pool is suspended";
4139                 r = -EINVAL;
4140                 goto bad;
4141         }
4142         atomic_set(&tc->refcount, 1);
4143         init_completion(&tc->can_destroy);
4144         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145         spin_unlock_irqrestore(&tc->pool->lock, flags);
4146         /*
4147          * This synchronize_rcu() call is needed here otherwise we risk a
4148          * wake_worker() call finding no bios to process (because the newly
4149          * added tc isn't yet visible).  So this reduces latency since we
4150          * aren't then dependent on the periodic commit to wake_worker().
4151          */
4152         synchronize_rcu();
4153
4154         dm_put(pool_md);
4155
4156         return 0;
4157
4158 bad:
4159         dm_pool_close_thin_device(tc->td);
4160 bad_pool:
4161         __pool_dec(tc->pool);
4162 bad_pool_lookup:
4163         dm_put(pool_md);
4164 bad_common:
4165         dm_put_device(ti, tc->pool_dev);
4166 bad_pool_dev:
4167         if (tc->origin_dev)
4168                 dm_put_device(ti, tc->origin_dev);
4169 bad_origin_dev:
4170         kfree(tc);
4171 out_unlock:
4172         mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174         return r;
4175 }
4176
4177 static int thin_map(struct dm_target *ti, struct bio *bio)
4178 {
4179         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181         return thin_bio_map(ti, bio);
4182 }
4183
4184 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4185 {
4186         unsigned long flags;
4187         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188         struct list_head work;
4189         struct dm_thin_new_mapping *m, *tmp;
4190         struct pool *pool = h->tc->pool;
4191
4192         if (h->shared_read_entry) {
4193                 INIT_LIST_HEAD(&work);
4194                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4195
4196                 spin_lock_irqsave(&pool->lock, flags);
4197                 list_for_each_entry_safe(m, tmp, &work, list) {
4198                         list_del(&m->list);
4199                         __complete_mapping_preparation(m);
4200                 }
4201                 spin_unlock_irqrestore(&pool->lock, flags);
4202         }
4203
4204         if (h->all_io_entry) {
4205                 INIT_LIST_HEAD(&work);
4206                 dm_deferred_entry_dec(h->all_io_entry, &work);
4207                 if (!list_empty(&work)) {
4208                         spin_lock_irqsave(&pool->lock, flags);
4209                         list_for_each_entry_safe(m, tmp, &work, list)
4210                                 list_add_tail(&m->list, &pool->prepared_discards);
4211                         spin_unlock_irqrestore(&pool->lock, flags);
4212                         wake_worker(pool);
4213                 }
4214         }
4215
4216         if (h->cell)
4217                 cell_defer_no_holder(h->tc, h->cell);
4218
4219         return 0;
4220 }
4221
4222 static void thin_presuspend(struct dm_target *ti)
4223 {
4224         struct thin_c *tc = ti->private;
4225
4226         if (dm_noflush_suspending(ti))
4227                 noflush_work(tc, do_noflush_start);
4228 }
4229
4230 static void thin_postsuspend(struct dm_target *ti)
4231 {
4232         struct thin_c *tc = ti->private;
4233
4234         /*
4235          * The dm_noflush_suspending flag has been cleared by now, so
4236          * unfortunately we must always run this.
4237          */
4238         noflush_work(tc, do_noflush_stop);
4239 }
4240
4241 static int thin_preresume(struct dm_target *ti)
4242 {
4243         struct thin_c *tc = ti->private;
4244
4245         if (tc->origin_dev)
4246                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4247
4248         return 0;
4249 }
4250
4251 /*
4252  * <nr mapped sectors> <highest mapped sector>
4253  */
4254 static void thin_status(struct dm_target *ti, status_type_t type,
4255                         unsigned status_flags, char *result, unsigned maxlen)
4256 {
4257         int r;
4258         ssize_t sz = 0;
4259         dm_block_t mapped, highest;
4260         char buf[BDEVNAME_SIZE];
4261         struct thin_c *tc = ti->private;
4262
4263         if (get_pool_mode(tc->pool) == PM_FAIL) {
4264                 DMEMIT("Fail");
4265                 return;
4266         }
4267
4268         if (!tc->td)
4269                 DMEMIT("-");
4270         else {
4271                 switch (type) {
4272                 case STATUSTYPE_INFO:
4273                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4274                         if (r) {
4275                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4276                                 goto err;
4277                         }
4278
4279                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280                         if (r < 0) {
4281                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282                                 goto err;
4283                         }
4284
4285                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286                         if (r)
4287                                 DMEMIT("%llu", ((highest + 1) *
4288                                                 tc->pool->sectors_per_block) - 1);
4289                         else
4290                                 DMEMIT("-");
4291                         break;
4292
4293                 case STATUSTYPE_TABLE:
4294                         DMEMIT("%s %lu",
4295                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296                                (unsigned long) tc->dev_id);
4297                         if (tc->origin_dev)
4298                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299                         break;
4300                 }
4301         }
4302
4303         return;
4304
4305 err:
4306         DMEMIT("Error");
4307 }
4308
4309 static int thin_iterate_devices(struct dm_target *ti,
4310                                 iterate_devices_callout_fn fn, void *data)
4311 {
4312         sector_t blocks;
4313         struct thin_c *tc = ti->private;
4314         struct pool *pool = tc->pool;
4315
4316         /*
4317          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4318          * we follow a more convoluted path through to the pool's target.
4319          */
4320         if (!pool->ti)
4321                 return 0;       /* nothing is bound */
4322
4323         blocks = pool->ti->len;
4324         (void) sector_div(blocks, pool->sectors_per_block);
4325         if (blocks)
4326                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4327
4328         return 0;
4329 }
4330
4331 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4332 {
4333         struct thin_c *tc = ti->private;
4334         struct pool *pool = tc->pool;
4335
4336         if (!pool->pf.discard_enabled)
4337                 return;
4338
4339         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341 }
4342
4343 static struct target_type thin_target = {
4344         .name = "thin",
4345         .version = {1, 19, 0},
4346         .module = THIS_MODULE,
4347         .ctr = thin_ctr,
4348         .dtr = thin_dtr,
4349         .map = thin_map,
4350         .end_io = thin_endio,
4351         .preresume = thin_preresume,
4352         .presuspend = thin_presuspend,
4353         .postsuspend = thin_postsuspend,
4354         .status = thin_status,
4355         .iterate_devices = thin_iterate_devices,
4356         .io_hints = thin_io_hints,
4357 };
4358
4359 /*----------------------------------------------------------------*/
4360
4361 static int __init dm_thin_init(void)
4362 {
4363         int r;
4364
4365         pool_table_init();
4366
4367         r = dm_register_target(&thin_target);
4368         if (r)
4369                 return r;
4370
4371         r = dm_register_target(&pool_target);
4372         if (r)
4373                 goto bad_pool_target;
4374
4375         r = -ENOMEM;
4376
4377         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4378         if (!_new_mapping_cache)
4379                 goto bad_new_mapping_cache;
4380
4381         return 0;
4382
4383 bad_new_mapping_cache:
4384         dm_unregister_target(&pool_target);
4385 bad_pool_target:
4386         dm_unregister_target(&thin_target);
4387
4388         return r;
4389 }
4390
4391 static void dm_thin_exit(void)
4392 {
4393         dm_unregister_target(&thin_target);
4394         dm_unregister_target(&pool_target);
4395
4396         kmem_cache_destroy(_new_mapping_cache);
4397 }
4398
4399 module_init(dm_thin_init);
4400 module_exit(dm_thin_exit);
4401
4402 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404
4405 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407 MODULE_LICENSE("GPL");