Merge tag 'devicetree-for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[cascardo/linux.git] / drivers / md / dm-verity-target.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_ENV_LENGTH            42
26 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
31
32 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
35
36 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
37
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41
42 struct dm_verity_prefetch_work {
43         struct work_struct work;
44         struct dm_verity *v;
45         sector_t block;
46         unsigned n_blocks;
47 };
48
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62         int hash_verified;
63 };
64
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71
72         aux->hash_verified = 0;
73 }
74
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80         return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90                                          int level)
91 {
92         return block >> (level * v->hash_per_block_bits);
93 }
94
95 /*
96  * Wrapper for crypto_shash_init, which handles verity salting.
97  */
98 static int verity_hash_init(struct dm_verity *v, struct shash_desc *desc)
99 {
100         int r;
101
102         desc->tfm = v->tfm;
103         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
104
105         r = crypto_shash_init(desc);
106
107         if (unlikely(r < 0)) {
108                 DMERR("crypto_shash_init failed: %d", r);
109                 return r;
110         }
111
112         if (likely(v->version >= 1)) {
113                 r = crypto_shash_update(desc, v->salt, v->salt_size);
114
115                 if (unlikely(r < 0)) {
116                         DMERR("crypto_shash_update failed: %d", r);
117                         return r;
118                 }
119         }
120
121         return 0;
122 }
123
124 static int verity_hash_update(struct dm_verity *v, struct shash_desc *desc,
125                               const u8 *data, size_t len)
126 {
127         int r = crypto_shash_update(desc, data, len);
128
129         if (unlikely(r < 0))
130                 DMERR("crypto_shash_update failed: %d", r);
131
132         return r;
133 }
134
135 static int verity_hash_final(struct dm_verity *v, struct shash_desc *desc,
136                              u8 *digest)
137 {
138         int r;
139
140         if (unlikely(!v->version)) {
141                 r = crypto_shash_update(desc, v->salt, v->salt_size);
142
143                 if (r < 0) {
144                         DMERR("crypto_shash_update failed: %d", r);
145                         return r;
146                 }
147         }
148
149         r = crypto_shash_final(desc, digest);
150
151         if (unlikely(r < 0))
152                 DMERR("crypto_shash_final failed: %d", r);
153
154         return r;
155 }
156
157 int verity_hash(struct dm_verity *v, struct shash_desc *desc,
158                 const u8 *data, size_t len, u8 *digest)
159 {
160         int r;
161
162         r = verity_hash_init(v, desc);
163         if (unlikely(r < 0))
164                 return r;
165
166         r = verity_hash_update(v, desc, data, len);
167         if (unlikely(r < 0))
168                 return r;
169
170         return verity_hash_final(v, desc, digest);
171 }
172
173 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
174                                  sector_t *hash_block, unsigned *offset)
175 {
176         sector_t position = verity_position_at_level(v, block, level);
177         unsigned idx;
178
179         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
180
181         if (!offset)
182                 return;
183
184         idx = position & ((1 << v->hash_per_block_bits) - 1);
185         if (!v->version)
186                 *offset = idx * v->digest_size;
187         else
188                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
189 }
190
191 /*
192  * Handle verification errors.
193  */
194 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
195                              unsigned long long block)
196 {
197         char verity_env[DM_VERITY_ENV_LENGTH];
198         char *envp[] = { verity_env, NULL };
199         const char *type_str = "";
200         struct mapped_device *md = dm_table_get_md(v->ti->table);
201
202         /* Corruption should be visible in device status in all modes */
203         v->hash_failed = 1;
204
205         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
206                 goto out;
207
208         v->corrupted_errs++;
209
210         switch (type) {
211         case DM_VERITY_BLOCK_TYPE_DATA:
212                 type_str = "data";
213                 break;
214         case DM_VERITY_BLOCK_TYPE_METADATA:
215                 type_str = "metadata";
216                 break;
217         default:
218                 BUG();
219         }
220
221         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
222                 block);
223
224         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
225                 DMERR("%s: reached maximum errors", v->data_dev->name);
226
227         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
228                 DM_VERITY_ENV_VAR_NAME, type, block);
229
230         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
231
232 out:
233         if (v->mode == DM_VERITY_MODE_LOGGING)
234                 return 0;
235
236         if (v->mode == DM_VERITY_MODE_RESTART)
237                 kernel_restart("dm-verity device corrupted");
238
239         return 1;
240 }
241
242 /*
243  * Verify hash of a metadata block pertaining to the specified data block
244  * ("block" argument) at a specified level ("level" argument).
245  *
246  * On successful return, verity_io_want_digest(v, io) contains the hash value
247  * for a lower tree level or for the data block (if we're at the lowest level).
248  *
249  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
250  * If "skip_unverified" is false, unverified buffer is hashed and verified
251  * against current value of verity_io_want_digest(v, io).
252  */
253 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
254                                sector_t block, int level, bool skip_unverified,
255                                u8 *want_digest)
256 {
257         struct dm_buffer *buf;
258         struct buffer_aux *aux;
259         u8 *data;
260         int r;
261         sector_t hash_block;
262         unsigned offset;
263
264         verity_hash_at_level(v, block, level, &hash_block, &offset);
265
266         data = dm_bufio_read(v->bufio, hash_block, &buf);
267         if (IS_ERR(data))
268                 return PTR_ERR(data);
269
270         aux = dm_bufio_get_aux_data(buf);
271
272         if (!aux->hash_verified) {
273                 if (skip_unverified) {
274                         r = 1;
275                         goto release_ret_r;
276                 }
277
278                 r = verity_hash(v, verity_io_hash_desc(v, io),
279                                 data, 1 << v->hash_dev_block_bits,
280                                 verity_io_real_digest(v, io));
281                 if (unlikely(r < 0))
282                         goto release_ret_r;
283
284                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
285                                   v->digest_size) == 0))
286                         aux->hash_verified = 1;
287                 else if (verity_fec_decode(v, io,
288                                            DM_VERITY_BLOCK_TYPE_METADATA,
289                                            hash_block, data, NULL) == 0)
290                         aux->hash_verified = 1;
291                 else if (verity_handle_err(v,
292                                            DM_VERITY_BLOCK_TYPE_METADATA,
293                                            hash_block)) {
294                         r = -EIO;
295                         goto release_ret_r;
296                 }
297         }
298
299         data += offset;
300         memcpy(want_digest, data, v->digest_size);
301         r = 0;
302
303 release_ret_r:
304         dm_bufio_release(buf);
305         return r;
306 }
307
308 /*
309  * Find a hash for a given block, write it to digest and verify the integrity
310  * of the hash tree if necessary.
311  */
312 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
313                           sector_t block, u8 *digest, bool *is_zero)
314 {
315         int r = 0, i;
316
317         if (likely(v->levels)) {
318                 /*
319                  * First, we try to get the requested hash for
320                  * the current block. If the hash block itself is
321                  * verified, zero is returned. If it isn't, this
322                  * function returns 1 and we fall back to whole
323                  * chain verification.
324                  */
325                 r = verity_verify_level(v, io, block, 0, true, digest);
326                 if (likely(r <= 0))
327                         goto out;
328         }
329
330         memcpy(digest, v->root_digest, v->digest_size);
331
332         for (i = v->levels - 1; i >= 0; i--) {
333                 r = verity_verify_level(v, io, block, i, false, digest);
334                 if (unlikely(r))
335                         goto out;
336         }
337 out:
338         if (!r && v->zero_digest)
339                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
340         else
341                 *is_zero = false;
342
343         return r;
344 }
345
346 /*
347  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
348  * starting from iter.
349  */
350 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
351                         struct bvec_iter *iter,
352                         int (*process)(struct dm_verity *v,
353                                        struct dm_verity_io *io, u8 *data,
354                                        size_t len))
355 {
356         unsigned todo = 1 << v->data_dev_block_bits;
357         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
358
359         do {
360                 int r;
361                 u8 *page;
362                 unsigned len;
363                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
364
365                 page = kmap_atomic(bv.bv_page);
366                 len = bv.bv_len;
367
368                 if (likely(len >= todo))
369                         len = todo;
370
371                 r = process(v, io, page + bv.bv_offset, len);
372                 kunmap_atomic(page);
373
374                 if (r < 0)
375                         return r;
376
377                 bio_advance_iter(bio, iter, len);
378                 todo -= len;
379         } while (todo);
380
381         return 0;
382 }
383
384 static int verity_bv_hash_update(struct dm_verity *v, struct dm_verity_io *io,
385                                  u8 *data, size_t len)
386 {
387         return verity_hash_update(v, verity_io_hash_desc(v, io), data, len);
388 }
389
390 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
391                           u8 *data, size_t len)
392 {
393         memset(data, 0, len);
394         return 0;
395 }
396
397 /*
398  * Verify one "dm_verity_io" structure.
399  */
400 static int verity_verify_io(struct dm_verity_io *io)
401 {
402         bool is_zero;
403         struct dm_verity *v = io->v;
404         struct bvec_iter start;
405         unsigned b;
406
407         for (b = 0; b < io->n_blocks; b++) {
408                 int r;
409                 struct shash_desc *desc = verity_io_hash_desc(v, io);
410
411                 r = verity_hash_for_block(v, io, io->block + b,
412                                           verity_io_want_digest(v, io),
413                                           &is_zero);
414                 if (unlikely(r < 0))
415                         return r;
416
417                 if (is_zero) {
418                         /*
419                          * If we expect a zero block, don't validate, just
420                          * return zeros.
421                          */
422                         r = verity_for_bv_block(v, io, &io->iter,
423                                                 verity_bv_zero);
424                         if (unlikely(r < 0))
425                                 return r;
426
427                         continue;
428                 }
429
430                 r = verity_hash_init(v, desc);
431                 if (unlikely(r < 0))
432                         return r;
433
434                 start = io->iter;
435                 r = verity_for_bv_block(v, io, &io->iter, verity_bv_hash_update);
436                 if (unlikely(r < 0))
437                         return r;
438
439                 r = verity_hash_final(v, desc, verity_io_real_digest(v, io));
440                 if (unlikely(r < 0))
441                         return r;
442
443                 if (likely(memcmp(verity_io_real_digest(v, io),
444                                   verity_io_want_digest(v, io), v->digest_size) == 0))
445                         continue;
446                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
447                                            io->block + b, NULL, &start) == 0)
448                         continue;
449                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
450                                            io->block + b))
451                         return -EIO;
452         }
453
454         return 0;
455 }
456
457 /*
458  * End one "io" structure with a given error.
459  */
460 static void verity_finish_io(struct dm_verity_io *io, int error)
461 {
462         struct dm_verity *v = io->v;
463         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465         bio->bi_end_io = io->orig_bi_end_io;
466         bio->bi_error = error;
467
468         verity_fec_finish_io(io);
469
470         bio_endio(bio);
471 }
472
473 static void verity_work(struct work_struct *w)
474 {
475         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
476
477         verity_finish_io(io, verity_verify_io(io));
478 }
479
480 static void verity_end_io(struct bio *bio)
481 {
482         struct dm_verity_io *io = bio->bi_private;
483
484         if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
485                 verity_finish_io(io, bio->bi_error);
486                 return;
487         }
488
489         INIT_WORK(&io->work, verity_work);
490         queue_work(io->v->verify_wq, &io->work);
491 }
492
493 /*
494  * Prefetch buffers for the specified io.
495  * The root buffer is not prefetched, it is assumed that it will be cached
496  * all the time.
497  */
498 static void verity_prefetch_io(struct work_struct *work)
499 {
500         struct dm_verity_prefetch_work *pw =
501                 container_of(work, struct dm_verity_prefetch_work, work);
502         struct dm_verity *v = pw->v;
503         int i;
504
505         for (i = v->levels - 2; i >= 0; i--) {
506                 sector_t hash_block_start;
507                 sector_t hash_block_end;
508                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
509                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
510                 if (!i) {
511                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
512
513                         cluster >>= v->data_dev_block_bits;
514                         if (unlikely(!cluster))
515                                 goto no_prefetch_cluster;
516
517                         if (unlikely(cluster & (cluster - 1)))
518                                 cluster = 1 << __fls(cluster);
519
520                         hash_block_start &= ~(sector_t)(cluster - 1);
521                         hash_block_end |= cluster - 1;
522                         if (unlikely(hash_block_end >= v->hash_blocks))
523                                 hash_block_end = v->hash_blocks - 1;
524                 }
525 no_prefetch_cluster:
526                 dm_bufio_prefetch(v->bufio, hash_block_start,
527                                   hash_block_end - hash_block_start + 1);
528         }
529
530         kfree(pw);
531 }
532
533 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
534 {
535         struct dm_verity_prefetch_work *pw;
536
537         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
538                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
539
540         if (!pw)
541                 return;
542
543         INIT_WORK(&pw->work, verity_prefetch_io);
544         pw->v = v;
545         pw->block = io->block;
546         pw->n_blocks = io->n_blocks;
547         queue_work(v->verify_wq, &pw->work);
548 }
549
550 /*
551  * Bio map function. It allocates dm_verity_io structure and bio vector and
552  * fills them. Then it issues prefetches and the I/O.
553  */
554 static int verity_map(struct dm_target *ti, struct bio *bio)
555 {
556         struct dm_verity *v = ti->private;
557         struct dm_verity_io *io;
558
559         bio->bi_bdev = v->data_dev->bdev;
560         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
561
562         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
563             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
564                 DMERR_LIMIT("unaligned io");
565                 return -EIO;
566         }
567
568         if (bio_end_sector(bio) >>
569             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
570                 DMERR_LIMIT("io out of range");
571                 return -EIO;
572         }
573
574         if (bio_data_dir(bio) == WRITE)
575                 return -EIO;
576
577         io = dm_per_bio_data(bio, ti->per_io_data_size);
578         io->v = v;
579         io->orig_bi_end_io = bio->bi_end_io;
580         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
581         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
582
583         bio->bi_end_io = verity_end_io;
584         bio->bi_private = io;
585         io->iter = bio->bi_iter;
586
587         verity_fec_init_io(io);
588
589         verity_submit_prefetch(v, io);
590
591         generic_make_request(bio);
592
593         return DM_MAPIO_SUBMITTED;
594 }
595
596 /*
597  * Status: V (valid) or C (corruption found)
598  */
599 static void verity_status(struct dm_target *ti, status_type_t type,
600                           unsigned status_flags, char *result, unsigned maxlen)
601 {
602         struct dm_verity *v = ti->private;
603         unsigned args = 0;
604         unsigned sz = 0;
605         unsigned x;
606
607         switch (type) {
608         case STATUSTYPE_INFO:
609                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
610                 break;
611         case STATUSTYPE_TABLE:
612                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
613                         v->version,
614                         v->data_dev->name,
615                         v->hash_dev->name,
616                         1 << v->data_dev_block_bits,
617                         1 << v->hash_dev_block_bits,
618                         (unsigned long long)v->data_blocks,
619                         (unsigned long long)v->hash_start,
620                         v->alg_name
621                         );
622                 for (x = 0; x < v->digest_size; x++)
623                         DMEMIT("%02x", v->root_digest[x]);
624                 DMEMIT(" ");
625                 if (!v->salt_size)
626                         DMEMIT("-");
627                 else
628                         for (x = 0; x < v->salt_size; x++)
629                                 DMEMIT("%02x", v->salt[x]);
630                 if (v->mode != DM_VERITY_MODE_EIO)
631                         args++;
632                 if (verity_fec_is_enabled(v))
633                         args += DM_VERITY_OPTS_FEC;
634                 if (v->zero_digest)
635                         args++;
636                 if (!args)
637                         return;
638                 DMEMIT(" %u", args);
639                 if (v->mode != DM_VERITY_MODE_EIO) {
640                         DMEMIT(" ");
641                         switch (v->mode) {
642                         case DM_VERITY_MODE_LOGGING:
643                                 DMEMIT(DM_VERITY_OPT_LOGGING);
644                                 break;
645                         case DM_VERITY_MODE_RESTART:
646                                 DMEMIT(DM_VERITY_OPT_RESTART);
647                                 break;
648                         default:
649                                 BUG();
650                         }
651                 }
652                 if (v->zero_digest)
653                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
654                 sz = verity_fec_status_table(v, sz, result, maxlen);
655                 break;
656         }
657 }
658
659 static int verity_prepare_ioctl(struct dm_target *ti,
660                 struct block_device **bdev, fmode_t *mode)
661 {
662         struct dm_verity *v = ti->private;
663
664         *bdev = v->data_dev->bdev;
665
666         if (v->data_start ||
667             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
668                 return 1;
669         return 0;
670 }
671
672 static int verity_iterate_devices(struct dm_target *ti,
673                                   iterate_devices_callout_fn fn, void *data)
674 {
675         struct dm_verity *v = ti->private;
676
677         return fn(ti, v->data_dev, v->data_start, ti->len, data);
678 }
679
680 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
681 {
682         struct dm_verity *v = ti->private;
683
684         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
685                 limits->logical_block_size = 1 << v->data_dev_block_bits;
686
687         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
688                 limits->physical_block_size = 1 << v->data_dev_block_bits;
689
690         blk_limits_io_min(limits, limits->logical_block_size);
691 }
692
693 static void verity_dtr(struct dm_target *ti)
694 {
695         struct dm_verity *v = ti->private;
696
697         if (v->verify_wq)
698                 destroy_workqueue(v->verify_wq);
699
700         if (v->bufio)
701                 dm_bufio_client_destroy(v->bufio);
702
703         kfree(v->salt);
704         kfree(v->root_digest);
705         kfree(v->zero_digest);
706
707         if (v->tfm)
708                 crypto_free_shash(v->tfm);
709
710         kfree(v->alg_name);
711
712         if (v->hash_dev)
713                 dm_put_device(ti, v->hash_dev);
714
715         if (v->data_dev)
716                 dm_put_device(ti, v->data_dev);
717
718         verity_fec_dtr(v);
719
720         kfree(v);
721 }
722
723 static int verity_alloc_zero_digest(struct dm_verity *v)
724 {
725         int r = -ENOMEM;
726         struct shash_desc *desc;
727         u8 *zero_data;
728
729         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
730
731         if (!v->zero_digest)
732                 return r;
733
734         desc = kmalloc(v->shash_descsize, GFP_KERNEL);
735
736         if (!desc)
737                 return r; /* verity_dtr will free zero_digest */
738
739         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
740
741         if (!zero_data)
742                 goto out;
743
744         r = verity_hash(v, desc, zero_data, 1 << v->data_dev_block_bits,
745                         v->zero_digest);
746
747 out:
748         kfree(desc);
749         kfree(zero_data);
750
751         return r;
752 }
753
754 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
755 {
756         int r;
757         unsigned argc;
758         struct dm_target *ti = v->ti;
759         const char *arg_name;
760
761         static struct dm_arg _args[] = {
762                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
763         };
764
765         r = dm_read_arg_group(_args, as, &argc, &ti->error);
766         if (r)
767                 return -EINVAL;
768
769         if (!argc)
770                 return 0;
771
772         do {
773                 arg_name = dm_shift_arg(as);
774                 argc--;
775
776                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
777                         v->mode = DM_VERITY_MODE_LOGGING;
778                         continue;
779
780                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
781                         v->mode = DM_VERITY_MODE_RESTART;
782                         continue;
783
784                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
785                         r = verity_alloc_zero_digest(v);
786                         if (r) {
787                                 ti->error = "Cannot allocate zero digest";
788                                 return r;
789                         }
790                         continue;
791
792                 } else if (verity_is_fec_opt_arg(arg_name)) {
793                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
794                         if (r)
795                                 return r;
796                         continue;
797                 }
798
799                 ti->error = "Unrecognized verity feature request";
800                 return -EINVAL;
801         } while (argc && !r);
802
803         return r;
804 }
805
806 /*
807  * Target parameters:
808  *      <version>       The current format is version 1.
809  *                      Vsn 0 is compatible with original Chromium OS releases.
810  *      <data device>
811  *      <hash device>
812  *      <data block size>
813  *      <hash block size>
814  *      <the number of data blocks>
815  *      <hash start block>
816  *      <algorithm>
817  *      <digest>
818  *      <salt>          Hex string or "-" if no salt.
819  */
820 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
821 {
822         struct dm_verity *v;
823         struct dm_arg_set as;
824         unsigned int num;
825         unsigned long long num_ll;
826         int r;
827         int i;
828         sector_t hash_position;
829         char dummy;
830
831         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
832         if (!v) {
833                 ti->error = "Cannot allocate verity structure";
834                 return -ENOMEM;
835         }
836         ti->private = v;
837         v->ti = ti;
838
839         r = verity_fec_ctr_alloc(v);
840         if (r)
841                 goto bad;
842
843         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
844                 ti->error = "Device must be readonly";
845                 r = -EINVAL;
846                 goto bad;
847         }
848
849         if (argc < 10) {
850                 ti->error = "Not enough arguments";
851                 r = -EINVAL;
852                 goto bad;
853         }
854
855         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
856             num > 1) {
857                 ti->error = "Invalid version";
858                 r = -EINVAL;
859                 goto bad;
860         }
861         v->version = num;
862
863         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
864         if (r) {
865                 ti->error = "Data device lookup failed";
866                 goto bad;
867         }
868
869         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
870         if (r) {
871                 ti->error = "Data device lookup failed";
872                 goto bad;
873         }
874
875         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
876             !num || (num & (num - 1)) ||
877             num < bdev_logical_block_size(v->data_dev->bdev) ||
878             num > PAGE_SIZE) {
879                 ti->error = "Invalid data device block size";
880                 r = -EINVAL;
881                 goto bad;
882         }
883         v->data_dev_block_bits = __ffs(num);
884
885         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
886             !num || (num & (num - 1)) ||
887             num < bdev_logical_block_size(v->hash_dev->bdev) ||
888             num > INT_MAX) {
889                 ti->error = "Invalid hash device block size";
890                 r = -EINVAL;
891                 goto bad;
892         }
893         v->hash_dev_block_bits = __ffs(num);
894
895         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
896             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
897             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
898                 ti->error = "Invalid data blocks";
899                 r = -EINVAL;
900                 goto bad;
901         }
902         v->data_blocks = num_ll;
903
904         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
905                 ti->error = "Data device is too small";
906                 r = -EINVAL;
907                 goto bad;
908         }
909
910         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
911             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
912             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
913                 ti->error = "Invalid hash start";
914                 r = -EINVAL;
915                 goto bad;
916         }
917         v->hash_start = num_ll;
918
919         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
920         if (!v->alg_name) {
921                 ti->error = "Cannot allocate algorithm name";
922                 r = -ENOMEM;
923                 goto bad;
924         }
925
926         v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
927         if (IS_ERR(v->tfm)) {
928                 ti->error = "Cannot initialize hash function";
929                 r = PTR_ERR(v->tfm);
930                 v->tfm = NULL;
931                 goto bad;
932         }
933         v->digest_size = crypto_shash_digestsize(v->tfm);
934         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
935                 ti->error = "Digest size too big";
936                 r = -EINVAL;
937                 goto bad;
938         }
939         v->shash_descsize =
940                 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
941
942         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
943         if (!v->root_digest) {
944                 ti->error = "Cannot allocate root digest";
945                 r = -ENOMEM;
946                 goto bad;
947         }
948         if (strlen(argv[8]) != v->digest_size * 2 ||
949             hex2bin(v->root_digest, argv[8], v->digest_size)) {
950                 ti->error = "Invalid root digest";
951                 r = -EINVAL;
952                 goto bad;
953         }
954
955         if (strcmp(argv[9], "-")) {
956                 v->salt_size = strlen(argv[9]) / 2;
957                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
958                 if (!v->salt) {
959                         ti->error = "Cannot allocate salt";
960                         r = -ENOMEM;
961                         goto bad;
962                 }
963                 if (strlen(argv[9]) != v->salt_size * 2 ||
964                     hex2bin(v->salt, argv[9], v->salt_size)) {
965                         ti->error = "Invalid salt";
966                         r = -EINVAL;
967                         goto bad;
968                 }
969         }
970
971         argv += 10;
972         argc -= 10;
973
974         /* Optional parameters */
975         if (argc) {
976                 as.argc = argc;
977                 as.argv = argv;
978
979                 r = verity_parse_opt_args(&as, v);
980                 if (r < 0)
981                         goto bad;
982         }
983
984         v->hash_per_block_bits =
985                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
986
987         v->levels = 0;
988         if (v->data_blocks)
989                 while (v->hash_per_block_bits * v->levels < 64 &&
990                        (unsigned long long)(v->data_blocks - 1) >>
991                        (v->hash_per_block_bits * v->levels))
992                         v->levels++;
993
994         if (v->levels > DM_VERITY_MAX_LEVELS) {
995                 ti->error = "Too many tree levels";
996                 r = -E2BIG;
997                 goto bad;
998         }
999
1000         hash_position = v->hash_start;
1001         for (i = v->levels - 1; i >= 0; i--) {
1002                 sector_t s;
1003                 v->hash_level_block[i] = hash_position;
1004                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1005                                         >> ((i + 1) * v->hash_per_block_bits);
1006                 if (hash_position + s < hash_position) {
1007                         ti->error = "Hash device offset overflow";
1008                         r = -E2BIG;
1009                         goto bad;
1010                 }
1011                 hash_position += s;
1012         }
1013         v->hash_blocks = hash_position;
1014
1015         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1016                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1017                 dm_bufio_alloc_callback, NULL);
1018         if (IS_ERR(v->bufio)) {
1019                 ti->error = "Cannot initialize dm-bufio";
1020                 r = PTR_ERR(v->bufio);
1021                 v->bufio = NULL;
1022                 goto bad;
1023         }
1024
1025         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1026                 ti->error = "Hash device is too small";
1027                 r = -E2BIG;
1028                 goto bad;
1029         }
1030
1031         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1032         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1033         if (!v->verify_wq) {
1034                 ti->error = "Cannot allocate workqueue";
1035                 r = -ENOMEM;
1036                 goto bad;
1037         }
1038
1039         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1040                                 v->shash_descsize + v->digest_size * 2;
1041
1042         r = verity_fec_ctr(v);
1043         if (r)
1044                 goto bad;
1045
1046         ti->per_io_data_size = roundup(ti->per_io_data_size,
1047                                        __alignof__(struct dm_verity_io));
1048
1049         return 0;
1050
1051 bad:
1052         verity_dtr(ti);
1053
1054         return r;
1055 }
1056
1057 static struct target_type verity_target = {
1058         .name           = "verity",
1059         .version        = {1, 3, 0},
1060         .module         = THIS_MODULE,
1061         .ctr            = verity_ctr,
1062         .dtr            = verity_dtr,
1063         .map            = verity_map,
1064         .status         = verity_status,
1065         .prepare_ioctl  = verity_prepare_ioctl,
1066         .iterate_devices = verity_iterate_devices,
1067         .io_hints       = verity_io_hints,
1068 };
1069
1070 static int __init dm_verity_init(void)
1071 {
1072         int r;
1073
1074         r = dm_register_target(&verity_target);
1075         if (r < 0)
1076                 DMERR("register failed %d", r);
1077
1078         return r;
1079 }
1080
1081 static void __exit dm_verity_exit(void)
1082 {
1083         dm_unregister_target(&verity_target);
1084 }
1085
1086 module_init(dm_verity_init);
1087 module_exit(dm_verity_exit);
1088
1089 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1090 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1091 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1092 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1093 MODULE_LICENSE("GPL");