block: change ->make_request_fn() and users to return a queue cookie
[cascardo/linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         blk_queue_split(q, &bio, q->bio_split);
261
262         if (mddev == NULL || mddev->pers == NULL
263             || !mddev->ready) {
264                 bio_io_error(bio);
265                 return BLK_QC_T_NONE;
266         }
267         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268                 if (bio_sectors(bio) != 0)
269                         bio->bi_error = -EROFS;
270                 bio_endio(bio);
271                 return BLK_QC_T_NONE;
272         }
273         smp_rmb(); /* Ensure implications of  'active' are visible */
274         rcu_read_lock();
275         if (mddev->suspended) {
276                 DEFINE_WAIT(__wait);
277                 for (;;) {
278                         prepare_to_wait(&mddev->sb_wait, &__wait,
279                                         TASK_UNINTERRUPTIBLE);
280                         if (!mddev->suspended)
281                                 break;
282                         rcu_read_unlock();
283                         schedule();
284                         rcu_read_lock();
285                 }
286                 finish_wait(&mddev->sb_wait, &__wait);
287         }
288         atomic_inc(&mddev->active_io);
289         rcu_read_unlock();
290
291         /*
292          * save the sectors now since our bio can
293          * go away inside make_request
294          */
295         sectors = bio_sectors(bio);
296         mddev->pers->make_request(mddev, bio);
297
298         cpu = part_stat_lock();
299         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301         part_stat_unlock();
302
303         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304                 wake_up(&mddev->sb_wait);
305
306         return BLK_QC_T_NONE;
307 }
308
309 /* mddev_suspend makes sure no new requests are submitted
310  * to the device, and that any requests that have been submitted
311  * are completely handled.
312  * Once mddev_detach() is called and completes, the module will be
313  * completely unused.
314  */
315 void mddev_suspend(struct mddev *mddev)
316 {
317         BUG_ON(mddev->suspended);
318         mddev->suspended = 1;
319         synchronize_rcu();
320         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321         mddev->pers->quiesce(mddev, 1);
322
323         del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326
327 void mddev_resume(struct mddev *mddev)
328 {
329         mddev->suspended = 0;
330         wake_up(&mddev->sb_wait);
331         mddev->pers->quiesce(mddev, 0);
332
333         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
334         md_wakeup_thread(mddev->thread);
335         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
336 }
337 EXPORT_SYMBOL_GPL(mddev_resume);
338
339 int mddev_congested(struct mddev *mddev, int bits)
340 {
341         struct md_personality *pers = mddev->pers;
342         int ret = 0;
343
344         rcu_read_lock();
345         if (mddev->suspended)
346                 ret = 1;
347         else if (pers && pers->congested)
348                 ret = pers->congested(mddev, bits);
349         rcu_read_unlock();
350         return ret;
351 }
352 EXPORT_SYMBOL_GPL(mddev_congested);
353 static int md_congested(void *data, int bits)
354 {
355         struct mddev *mddev = data;
356         return mddev_congested(mddev, bits);
357 }
358
359 /*
360  * Generic flush handling for md
361  */
362
363 static void md_end_flush(struct bio *bio)
364 {
365         struct md_rdev *rdev = bio->bi_private;
366         struct mddev *mddev = rdev->mddev;
367
368         rdev_dec_pending(rdev, mddev);
369
370         if (atomic_dec_and_test(&mddev->flush_pending)) {
371                 /* The pre-request flush has finished */
372                 queue_work(md_wq, &mddev->flush_work);
373         }
374         bio_put(bio);
375 }
376
377 static void md_submit_flush_data(struct work_struct *ws);
378
379 static void submit_flushes(struct work_struct *ws)
380 {
381         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
382         struct md_rdev *rdev;
383
384         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
385         atomic_set(&mddev->flush_pending, 1);
386         rcu_read_lock();
387         rdev_for_each_rcu(rdev, mddev)
388                 if (rdev->raid_disk >= 0 &&
389                     !test_bit(Faulty, &rdev->flags)) {
390                         /* Take two references, one is dropped
391                          * when request finishes, one after
392                          * we reclaim rcu_read_lock
393                          */
394                         struct bio *bi;
395                         atomic_inc(&rdev->nr_pending);
396                         atomic_inc(&rdev->nr_pending);
397                         rcu_read_unlock();
398                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
399                         bi->bi_end_io = md_end_flush;
400                         bi->bi_private = rdev;
401                         bi->bi_bdev = rdev->bdev;
402                         atomic_inc(&mddev->flush_pending);
403                         submit_bio(WRITE_FLUSH, bi);
404                         rcu_read_lock();
405                         rdev_dec_pending(rdev, mddev);
406                 }
407         rcu_read_unlock();
408         if (atomic_dec_and_test(&mddev->flush_pending))
409                 queue_work(md_wq, &mddev->flush_work);
410 }
411
412 static void md_submit_flush_data(struct work_struct *ws)
413 {
414         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
415         struct bio *bio = mddev->flush_bio;
416
417         if (bio->bi_iter.bi_size == 0)
418                 /* an empty barrier - all done */
419                 bio_endio(bio);
420         else {
421                 bio->bi_rw &= ~REQ_FLUSH;
422                 mddev->pers->make_request(mddev, bio);
423         }
424
425         mddev->flush_bio = NULL;
426         wake_up(&mddev->sb_wait);
427 }
428
429 void md_flush_request(struct mddev *mddev, struct bio *bio)
430 {
431         spin_lock_irq(&mddev->lock);
432         wait_event_lock_irq(mddev->sb_wait,
433                             !mddev->flush_bio,
434                             mddev->lock);
435         mddev->flush_bio = bio;
436         spin_unlock_irq(&mddev->lock);
437
438         INIT_WORK(&mddev->flush_work, submit_flushes);
439         queue_work(md_wq, &mddev->flush_work);
440 }
441 EXPORT_SYMBOL(md_flush_request);
442
443 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
444 {
445         struct mddev *mddev = cb->data;
446         md_wakeup_thread(mddev->thread);
447         kfree(cb);
448 }
449 EXPORT_SYMBOL(md_unplug);
450
451 static inline struct mddev *mddev_get(struct mddev *mddev)
452 {
453         atomic_inc(&mddev->active);
454         return mddev;
455 }
456
457 static void mddev_delayed_delete(struct work_struct *ws);
458
459 static void mddev_put(struct mddev *mddev)
460 {
461         struct bio_set *bs = NULL;
462
463         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
464                 return;
465         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
466             mddev->ctime == 0 && !mddev->hold_active) {
467                 /* Array is not configured at all, and not held active,
468                  * so destroy it */
469                 list_del_init(&mddev->all_mddevs);
470                 bs = mddev->bio_set;
471                 mddev->bio_set = NULL;
472                 if (mddev->gendisk) {
473                         /* We did a probe so need to clean up.  Call
474                          * queue_work inside the spinlock so that
475                          * flush_workqueue() after mddev_find will
476                          * succeed in waiting for the work to be done.
477                          */
478                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
479                         queue_work(md_misc_wq, &mddev->del_work);
480                 } else
481                         kfree(mddev);
482         }
483         spin_unlock(&all_mddevs_lock);
484         if (bs)
485                 bioset_free(bs);
486 }
487
488 static void md_safemode_timeout(unsigned long data);
489
490 void mddev_init(struct mddev *mddev)
491 {
492         mutex_init(&mddev->open_mutex);
493         mutex_init(&mddev->reconfig_mutex);
494         mutex_init(&mddev->bitmap_info.mutex);
495         INIT_LIST_HEAD(&mddev->disks);
496         INIT_LIST_HEAD(&mddev->all_mddevs);
497         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
498                     (unsigned long) mddev);
499         atomic_set(&mddev->active, 1);
500         atomic_set(&mddev->openers, 0);
501         atomic_set(&mddev->active_io, 0);
502         spin_lock_init(&mddev->lock);
503         atomic_set(&mddev->flush_pending, 0);
504         init_waitqueue_head(&mddev->sb_wait);
505         init_waitqueue_head(&mddev->recovery_wait);
506         mddev->reshape_position = MaxSector;
507         mddev->reshape_backwards = 0;
508         mddev->last_sync_action = "none";
509         mddev->resync_min = 0;
510         mddev->resync_max = MaxSector;
511         mddev->level = LEVEL_NONE;
512 }
513 EXPORT_SYMBOL_GPL(mddev_init);
514
515 static struct mddev *mddev_find(dev_t unit)
516 {
517         struct mddev *mddev, *new = NULL;
518
519         if (unit && MAJOR(unit) != MD_MAJOR)
520                 unit &= ~((1<<MdpMinorShift)-1);
521
522  retry:
523         spin_lock(&all_mddevs_lock);
524
525         if (unit) {
526                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
527                         if (mddev->unit == unit) {
528                                 mddev_get(mddev);
529                                 spin_unlock(&all_mddevs_lock);
530                                 kfree(new);
531                                 return mddev;
532                         }
533
534                 if (new) {
535                         list_add(&new->all_mddevs, &all_mddevs);
536                         spin_unlock(&all_mddevs_lock);
537                         new->hold_active = UNTIL_IOCTL;
538                         return new;
539                 }
540         } else if (new) {
541                 /* find an unused unit number */
542                 static int next_minor = 512;
543                 int start = next_minor;
544                 int is_free = 0;
545                 int dev = 0;
546                 while (!is_free) {
547                         dev = MKDEV(MD_MAJOR, next_minor);
548                         next_minor++;
549                         if (next_minor > MINORMASK)
550                                 next_minor = 0;
551                         if (next_minor == start) {
552                                 /* Oh dear, all in use. */
553                                 spin_unlock(&all_mddevs_lock);
554                                 kfree(new);
555                                 return NULL;
556                         }
557
558                         is_free = 1;
559                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
560                                 if (mddev->unit == dev) {
561                                         is_free = 0;
562                                         break;
563                                 }
564                 }
565                 new->unit = dev;
566                 new->md_minor = MINOR(dev);
567                 new->hold_active = UNTIL_STOP;
568                 list_add(&new->all_mddevs, &all_mddevs);
569                 spin_unlock(&all_mddevs_lock);
570                 return new;
571         }
572         spin_unlock(&all_mddevs_lock);
573
574         new = kzalloc(sizeof(*new), GFP_KERNEL);
575         if (!new)
576                 return NULL;
577
578         new->unit = unit;
579         if (MAJOR(unit) == MD_MAJOR)
580                 new->md_minor = MINOR(unit);
581         else
582                 new->md_minor = MINOR(unit) >> MdpMinorShift;
583
584         mddev_init(new);
585
586         goto retry;
587 }
588
589 static struct attribute_group md_redundancy_group;
590
591 void mddev_unlock(struct mddev *mddev)
592 {
593         if (mddev->to_remove) {
594                 /* These cannot be removed under reconfig_mutex as
595                  * an access to the files will try to take reconfig_mutex
596                  * while holding the file unremovable, which leads to
597                  * a deadlock.
598                  * So hold set sysfs_active while the remove in happeing,
599                  * and anything else which might set ->to_remove or my
600                  * otherwise change the sysfs namespace will fail with
601                  * -EBUSY if sysfs_active is still set.
602                  * We set sysfs_active under reconfig_mutex and elsewhere
603                  * test it under the same mutex to ensure its correct value
604                  * is seen.
605                  */
606                 struct attribute_group *to_remove = mddev->to_remove;
607                 mddev->to_remove = NULL;
608                 mddev->sysfs_active = 1;
609                 mutex_unlock(&mddev->reconfig_mutex);
610
611                 if (mddev->kobj.sd) {
612                         if (to_remove != &md_redundancy_group)
613                                 sysfs_remove_group(&mddev->kobj, to_remove);
614                         if (mddev->pers == NULL ||
615                             mddev->pers->sync_request == NULL) {
616                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
617                                 if (mddev->sysfs_action)
618                                         sysfs_put(mddev->sysfs_action);
619                                 mddev->sysfs_action = NULL;
620                         }
621                 }
622                 mddev->sysfs_active = 0;
623         } else
624                 mutex_unlock(&mddev->reconfig_mutex);
625
626         /* As we've dropped the mutex we need a spinlock to
627          * make sure the thread doesn't disappear
628          */
629         spin_lock(&pers_lock);
630         md_wakeup_thread(mddev->thread);
631         spin_unlock(&pers_lock);
632 }
633 EXPORT_SYMBOL_GPL(mddev_unlock);
634
635 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
636 {
637         struct md_rdev *rdev;
638
639         rdev_for_each_rcu(rdev, mddev)
640                 if (rdev->desc_nr == nr)
641                         return rdev;
642
643         return NULL;
644 }
645 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
646
647 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
648 {
649         struct md_rdev *rdev;
650
651         rdev_for_each(rdev, mddev)
652                 if (rdev->bdev->bd_dev == dev)
653                         return rdev;
654
655         return NULL;
656 }
657
658 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
659 {
660         struct md_rdev *rdev;
661
662         rdev_for_each_rcu(rdev, mddev)
663                 if (rdev->bdev->bd_dev == dev)
664                         return rdev;
665
666         return NULL;
667 }
668
669 static struct md_personality *find_pers(int level, char *clevel)
670 {
671         struct md_personality *pers;
672         list_for_each_entry(pers, &pers_list, list) {
673                 if (level != LEVEL_NONE && pers->level == level)
674                         return pers;
675                 if (strcmp(pers->name, clevel)==0)
676                         return pers;
677         }
678         return NULL;
679 }
680
681 /* return the offset of the super block in 512byte sectors */
682 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
683 {
684         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
685         return MD_NEW_SIZE_SECTORS(num_sectors);
686 }
687
688 static int alloc_disk_sb(struct md_rdev *rdev)
689 {
690         rdev->sb_page = alloc_page(GFP_KERNEL);
691         if (!rdev->sb_page) {
692                 printk(KERN_ALERT "md: out of memory.\n");
693                 return -ENOMEM;
694         }
695
696         return 0;
697 }
698
699 void md_rdev_clear(struct md_rdev *rdev)
700 {
701         if (rdev->sb_page) {
702                 put_page(rdev->sb_page);
703                 rdev->sb_loaded = 0;
704                 rdev->sb_page = NULL;
705                 rdev->sb_start = 0;
706                 rdev->sectors = 0;
707         }
708         if (rdev->bb_page) {
709                 put_page(rdev->bb_page);
710                 rdev->bb_page = NULL;
711         }
712         kfree(rdev->badblocks.page);
713         rdev->badblocks.page = NULL;
714 }
715 EXPORT_SYMBOL_GPL(md_rdev_clear);
716
717 static void super_written(struct bio *bio)
718 {
719         struct md_rdev *rdev = bio->bi_private;
720         struct mddev *mddev = rdev->mddev;
721
722         if (bio->bi_error) {
723                 printk("md: super_written gets error=%d\n", bio->bi_error);
724                 md_error(mddev, rdev);
725         }
726
727         if (atomic_dec_and_test(&mddev->pending_writes))
728                 wake_up(&mddev->sb_wait);
729         bio_put(bio);
730 }
731
732 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
733                    sector_t sector, int size, struct page *page)
734 {
735         /* write first size bytes of page to sector of rdev
736          * Increment mddev->pending_writes before returning
737          * and decrement it on completion, waking up sb_wait
738          * if zero is reached.
739          * If an error occurred, call md_error
740          */
741         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
742
743         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
744         bio->bi_iter.bi_sector = sector;
745         bio_add_page(bio, page, size, 0);
746         bio->bi_private = rdev;
747         bio->bi_end_io = super_written;
748
749         atomic_inc(&mddev->pending_writes);
750         submit_bio(WRITE_FLUSH_FUA, bio);
751 }
752
753 void md_super_wait(struct mddev *mddev)
754 {
755         /* wait for all superblock writes that were scheduled to complete */
756         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
757 }
758
759 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
760                  struct page *page, int rw, bool metadata_op)
761 {
762         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
763         int ret;
764
765         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
766                 rdev->meta_bdev : rdev->bdev;
767         if (metadata_op)
768                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
769         else if (rdev->mddev->reshape_position != MaxSector &&
770                  (rdev->mddev->reshape_backwards ==
771                   (sector >= rdev->mddev->reshape_position)))
772                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773         else
774                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
775         bio_add_page(bio, page, size, 0);
776         submit_bio_wait(rw, bio);
777
778         ret = !bio->bi_error;
779         bio_put(bio);
780         return ret;
781 }
782 EXPORT_SYMBOL_GPL(sync_page_io);
783
784 static int read_disk_sb(struct md_rdev *rdev, int size)
785 {
786         char b[BDEVNAME_SIZE];
787
788         if (rdev->sb_loaded)
789                 return 0;
790
791         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
792                 goto fail;
793         rdev->sb_loaded = 1;
794         return 0;
795
796 fail:
797         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
798                 bdevname(rdev->bdev,b));
799         return -EINVAL;
800 }
801
802 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
803 {
804         return  sb1->set_uuid0 == sb2->set_uuid0 &&
805                 sb1->set_uuid1 == sb2->set_uuid1 &&
806                 sb1->set_uuid2 == sb2->set_uuid2 &&
807                 sb1->set_uuid3 == sb2->set_uuid3;
808 }
809
810 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
811 {
812         int ret;
813         mdp_super_t *tmp1, *tmp2;
814
815         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
816         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
817
818         if (!tmp1 || !tmp2) {
819                 ret = 0;
820                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
821                 goto abort;
822         }
823
824         *tmp1 = *sb1;
825         *tmp2 = *sb2;
826
827         /*
828          * nr_disks is not constant
829          */
830         tmp1->nr_disks = 0;
831         tmp2->nr_disks = 0;
832
833         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
834 abort:
835         kfree(tmp1);
836         kfree(tmp2);
837         return ret;
838 }
839
840 static u32 md_csum_fold(u32 csum)
841 {
842         csum = (csum & 0xffff) + (csum >> 16);
843         return (csum & 0xffff) + (csum >> 16);
844 }
845
846 static unsigned int calc_sb_csum(mdp_super_t *sb)
847 {
848         u64 newcsum = 0;
849         u32 *sb32 = (u32*)sb;
850         int i;
851         unsigned int disk_csum, csum;
852
853         disk_csum = sb->sb_csum;
854         sb->sb_csum = 0;
855
856         for (i = 0; i < MD_SB_BYTES/4 ; i++)
857                 newcsum += sb32[i];
858         csum = (newcsum & 0xffffffff) + (newcsum>>32);
859
860 #ifdef CONFIG_ALPHA
861         /* This used to use csum_partial, which was wrong for several
862          * reasons including that different results are returned on
863          * different architectures.  It isn't critical that we get exactly
864          * the same return value as before (we always csum_fold before
865          * testing, and that removes any differences).  However as we
866          * know that csum_partial always returned a 16bit value on
867          * alphas, do a fold to maximise conformity to previous behaviour.
868          */
869         sb->sb_csum = md_csum_fold(disk_csum);
870 #else
871         sb->sb_csum = disk_csum;
872 #endif
873         return csum;
874 }
875
876 /*
877  * Handle superblock details.
878  * We want to be able to handle multiple superblock formats
879  * so we have a common interface to them all, and an array of
880  * different handlers.
881  * We rely on user-space to write the initial superblock, and support
882  * reading and updating of superblocks.
883  * Interface methods are:
884  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
885  *      loads and validates a superblock on dev.
886  *      if refdev != NULL, compare superblocks on both devices
887  *    Return:
888  *      0 - dev has a superblock that is compatible with refdev
889  *      1 - dev has a superblock that is compatible and newer than refdev
890  *          so dev should be used as the refdev in future
891  *     -EINVAL superblock incompatible or invalid
892  *     -othererror e.g. -EIO
893  *
894  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
895  *      Verify that dev is acceptable into mddev.
896  *       The first time, mddev->raid_disks will be 0, and data from
897  *       dev should be merged in.  Subsequent calls check that dev
898  *       is new enough.  Return 0 or -EINVAL
899  *
900  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
901  *     Update the superblock for rdev with data in mddev
902  *     This does not write to disc.
903  *
904  */
905
906 struct super_type  {
907         char                *name;
908         struct module       *owner;
909         int                 (*load_super)(struct md_rdev *rdev,
910                                           struct md_rdev *refdev,
911                                           int minor_version);
912         int                 (*validate_super)(struct mddev *mddev,
913                                               struct md_rdev *rdev);
914         void                (*sync_super)(struct mddev *mddev,
915                                           struct md_rdev *rdev);
916         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
917                                                 sector_t num_sectors);
918         int                 (*allow_new_offset)(struct md_rdev *rdev,
919                                                 unsigned long long new_offset);
920 };
921
922 /*
923  * Check that the given mddev has no bitmap.
924  *
925  * This function is called from the run method of all personalities that do not
926  * support bitmaps. It prints an error message and returns non-zero if mddev
927  * has a bitmap. Otherwise, it returns 0.
928  *
929  */
930 int md_check_no_bitmap(struct mddev *mddev)
931 {
932         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
933                 return 0;
934         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
935                 mdname(mddev), mddev->pers->name);
936         return 1;
937 }
938 EXPORT_SYMBOL(md_check_no_bitmap);
939
940 /*
941  * load_super for 0.90.0
942  */
943 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
944 {
945         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
946         mdp_super_t *sb;
947         int ret;
948
949         /*
950          * Calculate the position of the superblock (512byte sectors),
951          * it's at the end of the disk.
952          *
953          * It also happens to be a multiple of 4Kb.
954          */
955         rdev->sb_start = calc_dev_sboffset(rdev);
956
957         ret = read_disk_sb(rdev, MD_SB_BYTES);
958         if (ret) return ret;
959
960         ret = -EINVAL;
961
962         bdevname(rdev->bdev, b);
963         sb = page_address(rdev->sb_page);
964
965         if (sb->md_magic != MD_SB_MAGIC) {
966                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
967                        b);
968                 goto abort;
969         }
970
971         if (sb->major_version != 0 ||
972             sb->minor_version < 90 ||
973             sb->minor_version > 91) {
974                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
975                         sb->major_version, sb->minor_version,
976                         b);
977                 goto abort;
978         }
979
980         if (sb->raid_disks <= 0)
981                 goto abort;
982
983         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
984                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
985                         b);
986                 goto abort;
987         }
988
989         rdev->preferred_minor = sb->md_minor;
990         rdev->data_offset = 0;
991         rdev->new_data_offset = 0;
992         rdev->sb_size = MD_SB_BYTES;
993         rdev->badblocks.shift = -1;
994
995         if (sb->level == LEVEL_MULTIPATH)
996                 rdev->desc_nr = -1;
997         else
998                 rdev->desc_nr = sb->this_disk.number;
999
1000         if (!refdev) {
1001                 ret = 1;
1002         } else {
1003                 __u64 ev1, ev2;
1004                 mdp_super_t *refsb = page_address(refdev->sb_page);
1005                 if (!uuid_equal(refsb, sb)) {
1006                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1007                                 b, bdevname(refdev->bdev,b2));
1008                         goto abort;
1009                 }
1010                 if (!sb_equal(refsb, sb)) {
1011                         printk(KERN_WARNING "md: %s has same UUID"
1012                                " but different superblock to %s\n",
1013                                b, bdevname(refdev->bdev, b2));
1014                         goto abort;
1015                 }
1016                 ev1 = md_event(sb);
1017                 ev2 = md_event(refsb);
1018                 if (ev1 > ev2)
1019                         ret = 1;
1020                 else
1021                         ret = 0;
1022         }
1023         rdev->sectors = rdev->sb_start;
1024         /* Limit to 4TB as metadata cannot record more than that.
1025          * (not needed for Linear and RAID0 as metadata doesn't
1026          * record this size)
1027          */
1028         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1029                 rdev->sectors = (2ULL << 32) - 2;
1030
1031         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1032                 /* "this cannot possibly happen" ... */
1033                 ret = -EINVAL;
1034
1035  abort:
1036         return ret;
1037 }
1038
1039 /*
1040  * validate_super for 0.90.0
1041  */
1042 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1043 {
1044         mdp_disk_t *desc;
1045         mdp_super_t *sb = page_address(rdev->sb_page);
1046         __u64 ev1 = md_event(sb);
1047
1048         rdev->raid_disk = -1;
1049         clear_bit(Faulty, &rdev->flags);
1050         clear_bit(In_sync, &rdev->flags);
1051         clear_bit(Bitmap_sync, &rdev->flags);
1052         clear_bit(WriteMostly, &rdev->flags);
1053
1054         if (mddev->raid_disks == 0) {
1055                 mddev->major_version = 0;
1056                 mddev->minor_version = sb->minor_version;
1057                 mddev->patch_version = sb->patch_version;
1058                 mddev->external = 0;
1059                 mddev->chunk_sectors = sb->chunk_size >> 9;
1060                 mddev->ctime = sb->ctime;
1061                 mddev->utime = sb->utime;
1062                 mddev->level = sb->level;
1063                 mddev->clevel[0] = 0;
1064                 mddev->layout = sb->layout;
1065                 mddev->raid_disks = sb->raid_disks;
1066                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1067                 mddev->events = ev1;
1068                 mddev->bitmap_info.offset = 0;
1069                 mddev->bitmap_info.space = 0;
1070                 /* bitmap can use 60 K after the 4K superblocks */
1071                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1072                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1073                 mddev->reshape_backwards = 0;
1074
1075                 if (mddev->minor_version >= 91) {
1076                         mddev->reshape_position = sb->reshape_position;
1077                         mddev->delta_disks = sb->delta_disks;
1078                         mddev->new_level = sb->new_level;
1079                         mddev->new_layout = sb->new_layout;
1080                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1081                         if (mddev->delta_disks < 0)
1082                                 mddev->reshape_backwards = 1;
1083                 } else {
1084                         mddev->reshape_position = MaxSector;
1085                         mddev->delta_disks = 0;
1086                         mddev->new_level = mddev->level;
1087                         mddev->new_layout = mddev->layout;
1088                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1089                 }
1090
1091                 if (sb->state & (1<<MD_SB_CLEAN))
1092                         mddev->recovery_cp = MaxSector;
1093                 else {
1094                         if (sb->events_hi == sb->cp_events_hi &&
1095                                 sb->events_lo == sb->cp_events_lo) {
1096                                 mddev->recovery_cp = sb->recovery_cp;
1097                         } else
1098                                 mddev->recovery_cp = 0;
1099                 }
1100
1101                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1102                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1103                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1104                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1105
1106                 mddev->max_disks = MD_SB_DISKS;
1107
1108                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1109                     mddev->bitmap_info.file == NULL) {
1110                         mddev->bitmap_info.offset =
1111                                 mddev->bitmap_info.default_offset;
1112                         mddev->bitmap_info.space =
1113                                 mddev->bitmap_info.default_space;
1114                 }
1115
1116         } else if (mddev->pers == NULL) {
1117                 /* Insist on good event counter while assembling, except
1118                  * for spares (which don't need an event count) */
1119                 ++ev1;
1120                 if (sb->disks[rdev->desc_nr].state & (
1121                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1122                         if (ev1 < mddev->events)
1123                                 return -EINVAL;
1124         } else if (mddev->bitmap) {
1125                 /* if adding to array with a bitmap, then we can accept an
1126                  * older device ... but not too old.
1127                  */
1128                 if (ev1 < mddev->bitmap->events_cleared)
1129                         return 0;
1130                 if (ev1 < mddev->events)
1131                         set_bit(Bitmap_sync, &rdev->flags);
1132         } else {
1133                 if (ev1 < mddev->events)
1134                         /* just a hot-add of a new device, leave raid_disk at -1 */
1135                         return 0;
1136         }
1137
1138         if (mddev->level != LEVEL_MULTIPATH) {
1139                 desc = sb->disks + rdev->desc_nr;
1140
1141                 if (desc->state & (1<<MD_DISK_FAULTY))
1142                         set_bit(Faulty, &rdev->flags);
1143                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1144                             desc->raid_disk < mddev->raid_disks */) {
1145                         set_bit(In_sync, &rdev->flags);
1146                         rdev->raid_disk = desc->raid_disk;
1147                         rdev->saved_raid_disk = desc->raid_disk;
1148                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1149                         /* active but not in sync implies recovery up to
1150                          * reshape position.  We don't know exactly where
1151                          * that is, so set to zero for now */
1152                         if (mddev->minor_version >= 91) {
1153                                 rdev->recovery_offset = 0;
1154                                 rdev->raid_disk = desc->raid_disk;
1155                         }
1156                 }
1157                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1158                         set_bit(WriteMostly, &rdev->flags);
1159         } else /* MULTIPATH are always insync */
1160                 set_bit(In_sync, &rdev->flags);
1161         return 0;
1162 }
1163
1164 /*
1165  * sync_super for 0.90.0
1166  */
1167 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1168 {
1169         mdp_super_t *sb;
1170         struct md_rdev *rdev2;
1171         int next_spare = mddev->raid_disks;
1172
1173         /* make rdev->sb match mddev data..
1174          *
1175          * 1/ zero out disks
1176          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1177          * 3/ any empty disks < next_spare become removed
1178          *
1179          * disks[0] gets initialised to REMOVED because
1180          * we cannot be sure from other fields if it has
1181          * been initialised or not.
1182          */
1183         int i;
1184         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1185
1186         rdev->sb_size = MD_SB_BYTES;
1187
1188         sb = page_address(rdev->sb_page);
1189
1190         memset(sb, 0, sizeof(*sb));
1191
1192         sb->md_magic = MD_SB_MAGIC;
1193         sb->major_version = mddev->major_version;
1194         sb->patch_version = mddev->patch_version;
1195         sb->gvalid_words  = 0; /* ignored */
1196         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1197         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1198         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1199         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1200
1201         sb->ctime = mddev->ctime;
1202         sb->level = mddev->level;
1203         sb->size = mddev->dev_sectors / 2;
1204         sb->raid_disks = mddev->raid_disks;
1205         sb->md_minor = mddev->md_minor;
1206         sb->not_persistent = 0;
1207         sb->utime = mddev->utime;
1208         sb->state = 0;
1209         sb->events_hi = (mddev->events>>32);
1210         sb->events_lo = (u32)mddev->events;
1211
1212         if (mddev->reshape_position == MaxSector)
1213                 sb->minor_version = 90;
1214         else {
1215                 sb->minor_version = 91;
1216                 sb->reshape_position = mddev->reshape_position;
1217                 sb->new_level = mddev->new_level;
1218                 sb->delta_disks = mddev->delta_disks;
1219                 sb->new_layout = mddev->new_layout;
1220                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1221         }
1222         mddev->minor_version = sb->minor_version;
1223         if (mddev->in_sync)
1224         {
1225                 sb->recovery_cp = mddev->recovery_cp;
1226                 sb->cp_events_hi = (mddev->events>>32);
1227                 sb->cp_events_lo = (u32)mddev->events;
1228                 if (mddev->recovery_cp == MaxSector)
1229                         sb->state = (1<< MD_SB_CLEAN);
1230         } else
1231                 sb->recovery_cp = 0;
1232
1233         sb->layout = mddev->layout;
1234         sb->chunk_size = mddev->chunk_sectors << 9;
1235
1236         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1237                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1238
1239         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1240         rdev_for_each(rdev2, mddev) {
1241                 mdp_disk_t *d;
1242                 int desc_nr;
1243                 int is_active = test_bit(In_sync, &rdev2->flags);
1244
1245                 if (rdev2->raid_disk >= 0 &&
1246                     sb->minor_version >= 91)
1247                         /* we have nowhere to store the recovery_offset,
1248                          * but if it is not below the reshape_position,
1249                          * we can piggy-back on that.
1250                          */
1251                         is_active = 1;
1252                 if (rdev2->raid_disk < 0 ||
1253                     test_bit(Faulty, &rdev2->flags))
1254                         is_active = 0;
1255                 if (is_active)
1256                         desc_nr = rdev2->raid_disk;
1257                 else
1258                         desc_nr = next_spare++;
1259                 rdev2->desc_nr = desc_nr;
1260                 d = &sb->disks[rdev2->desc_nr];
1261                 nr_disks++;
1262                 d->number = rdev2->desc_nr;
1263                 d->major = MAJOR(rdev2->bdev->bd_dev);
1264                 d->minor = MINOR(rdev2->bdev->bd_dev);
1265                 if (is_active)
1266                         d->raid_disk = rdev2->raid_disk;
1267                 else
1268                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1269                 if (test_bit(Faulty, &rdev2->flags))
1270                         d->state = (1<<MD_DISK_FAULTY);
1271                 else if (is_active) {
1272                         d->state = (1<<MD_DISK_ACTIVE);
1273                         if (test_bit(In_sync, &rdev2->flags))
1274                                 d->state |= (1<<MD_DISK_SYNC);
1275                         active++;
1276                         working++;
1277                 } else {
1278                         d->state = 0;
1279                         spare++;
1280                         working++;
1281                 }
1282                 if (test_bit(WriteMostly, &rdev2->flags))
1283                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1284         }
1285         /* now set the "removed" and "faulty" bits on any missing devices */
1286         for (i=0 ; i < mddev->raid_disks ; i++) {
1287                 mdp_disk_t *d = &sb->disks[i];
1288                 if (d->state == 0 && d->number == 0) {
1289                         d->number = i;
1290                         d->raid_disk = i;
1291                         d->state = (1<<MD_DISK_REMOVED);
1292                         d->state |= (1<<MD_DISK_FAULTY);
1293                         failed++;
1294                 }
1295         }
1296         sb->nr_disks = nr_disks;
1297         sb->active_disks = active;
1298         sb->working_disks = working;
1299         sb->failed_disks = failed;
1300         sb->spare_disks = spare;
1301
1302         sb->this_disk = sb->disks[rdev->desc_nr];
1303         sb->sb_csum = calc_sb_csum(sb);
1304 }
1305
1306 /*
1307  * rdev_size_change for 0.90.0
1308  */
1309 static unsigned long long
1310 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1311 {
1312         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1313                 return 0; /* component must fit device */
1314         if (rdev->mddev->bitmap_info.offset)
1315                 return 0; /* can't move bitmap */
1316         rdev->sb_start = calc_dev_sboffset(rdev);
1317         if (!num_sectors || num_sectors > rdev->sb_start)
1318                 num_sectors = rdev->sb_start;
1319         /* Limit to 4TB as metadata cannot record more than that.
1320          * 4TB == 2^32 KB, or 2*2^32 sectors.
1321          */
1322         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1323                 num_sectors = (2ULL << 32) - 2;
1324         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1325                        rdev->sb_page);
1326         md_super_wait(rdev->mddev);
1327         return num_sectors;
1328 }
1329
1330 static int
1331 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1332 {
1333         /* non-zero offset changes not possible with v0.90 */
1334         return new_offset == 0;
1335 }
1336
1337 /*
1338  * version 1 superblock
1339  */
1340
1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1342 {
1343         __le32 disk_csum;
1344         u32 csum;
1345         unsigned long long newcsum;
1346         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1347         __le32 *isuper = (__le32*)sb;
1348
1349         disk_csum = sb->sb_csum;
1350         sb->sb_csum = 0;
1351         newcsum = 0;
1352         for (; size >= 4; size -= 4)
1353                 newcsum += le32_to_cpu(*isuper++);
1354
1355         if (size == 2)
1356                 newcsum += le16_to_cpu(*(__le16*) isuper);
1357
1358         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359         sb->sb_csum = disk_csum;
1360         return cpu_to_le32(csum);
1361 }
1362
1363 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1364                             int acknowledged);
1365 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1366 {
1367         struct mdp_superblock_1 *sb;
1368         int ret;
1369         sector_t sb_start;
1370         sector_t sectors;
1371         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1372         int bmask;
1373
1374         /*
1375          * Calculate the position of the superblock in 512byte sectors.
1376          * It is always aligned to a 4K boundary and
1377          * depeding on minor_version, it can be:
1378          * 0: At least 8K, but less than 12K, from end of device
1379          * 1: At start of device
1380          * 2: 4K from start of device.
1381          */
1382         switch(minor_version) {
1383         case 0:
1384                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1385                 sb_start -= 8*2;
1386                 sb_start &= ~(sector_t)(4*2-1);
1387                 break;
1388         case 1:
1389                 sb_start = 0;
1390                 break;
1391         case 2:
1392                 sb_start = 8;
1393                 break;
1394         default:
1395                 return -EINVAL;
1396         }
1397         rdev->sb_start = sb_start;
1398
1399         /* superblock is rarely larger than 1K, but it can be larger,
1400          * and it is safe to read 4k, so we do that
1401          */
1402         ret = read_disk_sb(rdev, 4096);
1403         if (ret) return ret;
1404
1405         sb = page_address(rdev->sb_page);
1406
1407         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1408             sb->major_version != cpu_to_le32(1) ||
1409             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1410             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1411             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1412                 return -EINVAL;
1413
1414         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1415                 printk("md: invalid superblock checksum on %s\n",
1416                         bdevname(rdev->bdev,b));
1417                 return -EINVAL;
1418         }
1419         if (le64_to_cpu(sb->data_size) < 10) {
1420                 printk("md: data_size too small on %s\n",
1421                        bdevname(rdev->bdev,b));
1422                 return -EINVAL;
1423         }
1424         if (sb->pad0 ||
1425             sb->pad3[0] ||
1426             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1427                 /* Some padding is non-zero, might be a new feature */
1428                 return -EINVAL;
1429
1430         rdev->preferred_minor = 0xffff;
1431         rdev->data_offset = le64_to_cpu(sb->data_offset);
1432         rdev->new_data_offset = rdev->data_offset;
1433         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1434             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1435                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1436         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1437
1438         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1439         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1440         if (rdev->sb_size & bmask)
1441                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1442
1443         if (minor_version
1444             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1445                 return -EINVAL;
1446         if (minor_version
1447             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1448                 return -EINVAL;
1449
1450         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1451                 rdev->desc_nr = -1;
1452         else
1453                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1454
1455         if (!rdev->bb_page) {
1456                 rdev->bb_page = alloc_page(GFP_KERNEL);
1457                 if (!rdev->bb_page)
1458                         return -ENOMEM;
1459         }
1460         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1461             rdev->badblocks.count == 0) {
1462                 /* need to load the bad block list.
1463                  * Currently we limit it to one page.
1464                  */
1465                 s32 offset;
1466                 sector_t bb_sector;
1467                 u64 *bbp;
1468                 int i;
1469                 int sectors = le16_to_cpu(sb->bblog_size);
1470                 if (sectors > (PAGE_SIZE / 512))
1471                         return -EINVAL;
1472                 offset = le32_to_cpu(sb->bblog_offset);
1473                 if (offset == 0)
1474                         return -EINVAL;
1475                 bb_sector = (long long)offset;
1476                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1477                                   rdev->bb_page, READ, true))
1478                         return -EIO;
1479                 bbp = (u64 *)page_address(rdev->bb_page);
1480                 rdev->badblocks.shift = sb->bblog_shift;
1481                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1482                         u64 bb = le64_to_cpu(*bbp);
1483                         int count = bb & (0x3ff);
1484                         u64 sector = bb >> 10;
1485                         sector <<= sb->bblog_shift;
1486                         count <<= sb->bblog_shift;
1487                         if (bb + 1 == 0)
1488                                 break;
1489                         if (md_set_badblocks(&rdev->badblocks,
1490                                              sector, count, 1) == 0)
1491                                 return -EINVAL;
1492                 }
1493         } else if (sb->bblog_offset != 0)
1494                 rdev->badblocks.shift = 0;
1495
1496         if (!refdev) {
1497                 ret = 1;
1498         } else {
1499                 __u64 ev1, ev2;
1500                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1501
1502                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1503                     sb->level != refsb->level ||
1504                     sb->layout != refsb->layout ||
1505                     sb->chunksize != refsb->chunksize) {
1506                         printk(KERN_WARNING "md: %s has strangely different"
1507                                 " superblock to %s\n",
1508                                 bdevname(rdev->bdev,b),
1509                                 bdevname(refdev->bdev,b2));
1510                         return -EINVAL;
1511                 }
1512                 ev1 = le64_to_cpu(sb->events);
1513                 ev2 = le64_to_cpu(refsb->events);
1514
1515                 if (ev1 > ev2)
1516                         ret = 1;
1517                 else
1518                         ret = 0;
1519         }
1520         if (minor_version) {
1521                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1522                 sectors -= rdev->data_offset;
1523         } else
1524                 sectors = rdev->sb_start;
1525         if (sectors < le64_to_cpu(sb->data_size))
1526                 return -EINVAL;
1527         rdev->sectors = le64_to_cpu(sb->data_size);
1528         return ret;
1529 }
1530
1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1532 {
1533         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1534         __u64 ev1 = le64_to_cpu(sb->events);
1535
1536         rdev->raid_disk = -1;
1537         clear_bit(Faulty, &rdev->flags);
1538         clear_bit(In_sync, &rdev->flags);
1539         clear_bit(Bitmap_sync, &rdev->flags);
1540         clear_bit(WriteMostly, &rdev->flags);
1541
1542         if (mddev->raid_disks == 0) {
1543                 mddev->major_version = 1;
1544                 mddev->patch_version = 0;
1545                 mddev->external = 0;
1546                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1547                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1548                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1549                 mddev->level = le32_to_cpu(sb->level);
1550                 mddev->clevel[0] = 0;
1551                 mddev->layout = le32_to_cpu(sb->layout);
1552                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1553                 mddev->dev_sectors = le64_to_cpu(sb->size);
1554                 mddev->events = ev1;
1555                 mddev->bitmap_info.offset = 0;
1556                 mddev->bitmap_info.space = 0;
1557                 /* Default location for bitmap is 1K after superblock
1558                  * using 3K - total of 4K
1559                  */
1560                 mddev->bitmap_info.default_offset = 1024 >> 9;
1561                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1562                 mddev->reshape_backwards = 0;
1563
1564                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1565                 memcpy(mddev->uuid, sb->set_uuid, 16);
1566
1567                 mddev->max_disks =  (4096-256)/2;
1568
1569                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1570                     mddev->bitmap_info.file == NULL) {
1571                         mddev->bitmap_info.offset =
1572                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1573                         /* Metadata doesn't record how much space is available.
1574                          * For 1.0, we assume we can use up to the superblock
1575                          * if before, else to 4K beyond superblock.
1576                          * For others, assume no change is possible.
1577                          */
1578                         if (mddev->minor_version > 0)
1579                                 mddev->bitmap_info.space = 0;
1580                         else if (mddev->bitmap_info.offset > 0)
1581                                 mddev->bitmap_info.space =
1582                                         8 - mddev->bitmap_info.offset;
1583                         else
1584                                 mddev->bitmap_info.space =
1585                                         -mddev->bitmap_info.offset;
1586                 }
1587
1588                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1589                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1590                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1591                         mddev->new_level = le32_to_cpu(sb->new_level);
1592                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1593                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1594                         if (mddev->delta_disks < 0 ||
1595                             (mddev->delta_disks == 0 &&
1596                              (le32_to_cpu(sb->feature_map)
1597                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1598                                 mddev->reshape_backwards = 1;
1599                 } else {
1600                         mddev->reshape_position = MaxSector;
1601                         mddev->delta_disks = 0;
1602                         mddev->new_level = mddev->level;
1603                         mddev->new_layout = mddev->layout;
1604                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1605                 }
1606
1607         } else if (mddev->pers == NULL) {
1608                 /* Insist of good event counter while assembling, except for
1609                  * spares (which don't need an event count) */
1610                 ++ev1;
1611                 if (rdev->desc_nr >= 0 &&
1612                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1613                     (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1614                      le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1615                         if (ev1 < mddev->events)
1616                                 return -EINVAL;
1617         } else if (mddev->bitmap) {
1618                 /* If adding to array with a bitmap, then we can accept an
1619                  * older device, but not too old.
1620                  */
1621                 if (ev1 < mddev->bitmap->events_cleared)
1622                         return 0;
1623                 if (ev1 < mddev->events)
1624                         set_bit(Bitmap_sync, &rdev->flags);
1625         } else {
1626                 if (ev1 < mddev->events)
1627                         /* just a hot-add of a new device, leave raid_disk at -1 */
1628                         return 0;
1629         }
1630         if (mddev->level != LEVEL_MULTIPATH) {
1631                 int role;
1632                 if (rdev->desc_nr < 0 ||
1633                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1634                         role = MD_DISK_ROLE_SPARE;
1635                         rdev->desc_nr = -1;
1636                 } else
1637                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1638                 switch(role) {
1639                 case MD_DISK_ROLE_SPARE: /* spare */
1640                         break;
1641                 case MD_DISK_ROLE_FAULTY: /* faulty */
1642                         set_bit(Faulty, &rdev->flags);
1643                         break;
1644                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1645                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1646                                 /* journal device without journal feature */
1647                                 printk(KERN_WARNING
1648                                   "md: journal device provided without journal feature, ignoring the device\n");
1649                                 return -EINVAL;
1650                         }
1651                         set_bit(Journal, &rdev->flags);
1652                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1653                         if (mddev->recovery_cp == MaxSector)
1654                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1655                         rdev->raid_disk = mddev->raid_disks;
1656                         break;
1657                 default:
1658                         rdev->saved_raid_disk = role;
1659                         if ((le32_to_cpu(sb->feature_map) &
1660                              MD_FEATURE_RECOVERY_OFFSET)) {
1661                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1662                                 if (!(le32_to_cpu(sb->feature_map) &
1663                                       MD_FEATURE_RECOVERY_BITMAP))
1664                                         rdev->saved_raid_disk = -1;
1665                         } else
1666                                 set_bit(In_sync, &rdev->flags);
1667                         rdev->raid_disk = role;
1668                         break;
1669                 }
1670                 if (sb->devflags & WriteMostly1)
1671                         set_bit(WriteMostly, &rdev->flags);
1672                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1673                         set_bit(Replacement, &rdev->flags);
1674                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1675                         set_bit(MD_HAS_JOURNAL, &mddev->flags);
1676         } else /* MULTIPATH are always insync */
1677                 set_bit(In_sync, &rdev->flags);
1678
1679         return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct mdp_superblock_1 *sb;
1685         struct md_rdev *rdev2;
1686         int max_dev, i;
1687         /* make rdev->sb match mddev and rdev data. */
1688
1689         sb = page_address(rdev->sb_page);
1690
1691         sb->feature_map = 0;
1692         sb->pad0 = 0;
1693         sb->recovery_offset = cpu_to_le64(0);
1694         memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696         sb->utime = cpu_to_le64((__u64)mddev->utime);
1697         sb->events = cpu_to_le64(mddev->events);
1698         if (mddev->in_sync)
1699                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1701                 sb->resync_offset = cpu_to_le64(MaxSector);
1702         else
1703                 sb->resync_offset = cpu_to_le64(0);
1704
1705         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1706
1707         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1708         sb->size = cpu_to_le64(mddev->dev_sectors);
1709         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1710         sb->level = cpu_to_le32(mddev->level);
1711         sb->layout = cpu_to_le32(mddev->layout);
1712
1713         if (test_bit(WriteMostly, &rdev->flags))
1714                 sb->devflags |= WriteMostly1;
1715         else
1716                 sb->devflags &= ~WriteMostly1;
1717         sb->data_offset = cpu_to_le64(rdev->data_offset);
1718         sb->data_size = cpu_to_le64(rdev->sectors);
1719
1720         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1721                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1722                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1723         }
1724
1725         if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1726             !test_bit(In_sync, &rdev->flags)) {
1727                 sb->feature_map |=
1728                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1729                 sb->recovery_offset =
1730                         cpu_to_le64(rdev->recovery_offset);
1731                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1732                         sb->feature_map |=
1733                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1734         }
1735         /* Note: recovery_offset and journal_tail share space  */
1736         if (test_bit(Journal, &rdev->flags))
1737                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1738         if (test_bit(Replacement, &rdev->flags))
1739                 sb->feature_map |=
1740                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1741
1742         if (mddev->reshape_position != MaxSector) {
1743                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1744                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1745                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1746                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1747                 sb->new_level = cpu_to_le32(mddev->new_level);
1748                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1749                 if (mddev->delta_disks == 0 &&
1750                     mddev->reshape_backwards)
1751                         sb->feature_map
1752                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1753                 if (rdev->new_data_offset != rdev->data_offset) {
1754                         sb->feature_map
1755                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1756                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1757                                                              - rdev->data_offset));
1758                 }
1759         }
1760
1761         if (mddev_is_clustered(mddev))
1762                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1763
1764         if (rdev->badblocks.count == 0)
1765                 /* Nothing to do for bad blocks*/ ;
1766         else if (sb->bblog_offset == 0)
1767                 /* Cannot record bad blocks on this device */
1768                 md_error(mddev, rdev);
1769         else {
1770                 struct badblocks *bb = &rdev->badblocks;
1771                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1772                 u64 *p = bb->page;
1773                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1774                 if (bb->changed) {
1775                         unsigned seq;
1776
1777 retry:
1778                         seq = read_seqbegin(&bb->lock);
1779
1780                         memset(bbp, 0xff, PAGE_SIZE);
1781
1782                         for (i = 0 ; i < bb->count ; i++) {
1783                                 u64 internal_bb = p[i];
1784                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1785                                                 | BB_LEN(internal_bb));
1786                                 bbp[i] = cpu_to_le64(store_bb);
1787                         }
1788                         bb->changed = 0;
1789                         if (read_seqretry(&bb->lock, seq))
1790                                 goto retry;
1791
1792                         bb->sector = (rdev->sb_start +
1793                                       (int)le32_to_cpu(sb->bblog_offset));
1794                         bb->size = le16_to_cpu(sb->bblog_size);
1795                 }
1796         }
1797
1798         max_dev = 0;
1799         rdev_for_each(rdev2, mddev)
1800                 if (rdev2->desc_nr+1 > max_dev)
1801                         max_dev = rdev2->desc_nr+1;
1802
1803         if (max_dev > le32_to_cpu(sb->max_dev)) {
1804                 int bmask;
1805                 sb->max_dev = cpu_to_le32(max_dev);
1806                 rdev->sb_size = max_dev * 2 + 256;
1807                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1808                 if (rdev->sb_size & bmask)
1809                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1810         } else
1811                 max_dev = le32_to_cpu(sb->max_dev);
1812
1813         for (i=0; i<max_dev;i++)
1814                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1815
1816         if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1817                 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1818
1819         rdev_for_each(rdev2, mddev) {
1820                 i = rdev2->desc_nr;
1821                 if (test_bit(Faulty, &rdev2->flags))
1822                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1823                 else if (test_bit(In_sync, &rdev2->flags))
1824                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1825                 else if (test_bit(Journal, &rdev2->flags))
1826                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1827                 else if (rdev2->raid_disk >= 0)
1828                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829                 else
1830                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1831         }
1832
1833         sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835
1836 static unsigned long long
1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1838 {
1839         struct mdp_superblock_1 *sb;
1840         sector_t max_sectors;
1841         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842                 return 0; /* component must fit device */
1843         if (rdev->data_offset != rdev->new_data_offset)
1844                 return 0; /* too confusing */
1845         if (rdev->sb_start < rdev->data_offset) {
1846                 /* minor versions 1 and 2; superblock before data */
1847                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1848                 max_sectors -= rdev->data_offset;
1849                 if (!num_sectors || num_sectors > max_sectors)
1850                         num_sectors = max_sectors;
1851         } else if (rdev->mddev->bitmap_info.offset) {
1852                 /* minor version 0 with bitmap we can't move */
1853                 return 0;
1854         } else {
1855                 /* minor version 0; superblock after data */
1856                 sector_t sb_start;
1857                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1858                 sb_start &= ~(sector_t)(4*2 - 1);
1859                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1860                 if (!num_sectors || num_sectors > max_sectors)
1861                         num_sectors = max_sectors;
1862                 rdev->sb_start = sb_start;
1863         }
1864         sb = page_address(rdev->sb_page);
1865         sb->data_size = cpu_to_le64(num_sectors);
1866         sb->super_offset = rdev->sb_start;
1867         sb->sb_csum = calc_sb_1_csum(sb);
1868         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1869                        rdev->sb_page);
1870         md_super_wait(rdev->mddev);
1871         return num_sectors;
1872
1873 }
1874
1875 static int
1876 super_1_allow_new_offset(struct md_rdev *rdev,
1877                          unsigned long long new_offset)
1878 {
1879         /* All necessary checks on new >= old have been done */
1880         struct bitmap *bitmap;
1881         if (new_offset >= rdev->data_offset)
1882                 return 1;
1883
1884         /* with 1.0 metadata, there is no metadata to tread on
1885          * so we can always move back */
1886         if (rdev->mddev->minor_version == 0)
1887                 return 1;
1888
1889         /* otherwise we must be sure not to step on
1890          * any metadata, so stay:
1891          * 36K beyond start of superblock
1892          * beyond end of badblocks
1893          * beyond write-intent bitmap
1894          */
1895         if (rdev->sb_start + (32+4)*2 > new_offset)
1896                 return 0;
1897         bitmap = rdev->mddev->bitmap;
1898         if (bitmap && !rdev->mddev->bitmap_info.file &&
1899             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1900             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1901                 return 0;
1902         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1903                 return 0;
1904
1905         return 1;
1906 }
1907
1908 static struct super_type super_types[] = {
1909         [0] = {
1910                 .name   = "0.90.0",
1911                 .owner  = THIS_MODULE,
1912                 .load_super         = super_90_load,
1913                 .validate_super     = super_90_validate,
1914                 .sync_super         = super_90_sync,
1915                 .rdev_size_change   = super_90_rdev_size_change,
1916                 .allow_new_offset   = super_90_allow_new_offset,
1917         },
1918         [1] = {
1919                 .name   = "md-1",
1920                 .owner  = THIS_MODULE,
1921                 .load_super         = super_1_load,
1922                 .validate_super     = super_1_validate,
1923                 .sync_super         = super_1_sync,
1924                 .rdev_size_change   = super_1_rdev_size_change,
1925                 .allow_new_offset   = super_1_allow_new_offset,
1926         },
1927 };
1928
1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1930 {
1931         if (mddev->sync_super) {
1932                 mddev->sync_super(mddev, rdev);
1933                 return;
1934         }
1935
1936         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1937
1938         super_types[mddev->major_version].sync_super(mddev, rdev);
1939 }
1940
1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1942 {
1943         struct md_rdev *rdev, *rdev2;
1944
1945         rcu_read_lock();
1946         rdev_for_each_rcu(rdev, mddev1) {
1947                 if (test_bit(Faulty, &rdev->flags) ||
1948                     test_bit(Journal, &rdev->flags) ||
1949                     rdev->raid_disk == -1)
1950                         continue;
1951                 rdev_for_each_rcu(rdev2, mddev2) {
1952                         if (test_bit(Faulty, &rdev2->flags) ||
1953                             test_bit(Journal, &rdev2->flags) ||
1954                             rdev2->raid_disk == -1)
1955                                 continue;
1956                         if (rdev->bdev->bd_contains ==
1957                             rdev2->bdev->bd_contains) {
1958                                 rcu_read_unlock();
1959                                 return 1;
1960                         }
1961                 }
1962         }
1963         rcu_read_unlock();
1964         return 0;
1965 }
1966
1967 static LIST_HEAD(pending_raid_disks);
1968
1969 /*
1970  * Try to register data integrity profile for an mddev
1971  *
1972  * This is called when an array is started and after a disk has been kicked
1973  * from the array. It only succeeds if all working and active component devices
1974  * are integrity capable with matching profiles.
1975  */
1976 int md_integrity_register(struct mddev *mddev)
1977 {
1978         struct md_rdev *rdev, *reference = NULL;
1979
1980         if (list_empty(&mddev->disks))
1981                 return 0; /* nothing to do */
1982         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1983                 return 0; /* shouldn't register, or already is */
1984         rdev_for_each(rdev, mddev) {
1985                 /* skip spares and non-functional disks */
1986                 if (test_bit(Faulty, &rdev->flags))
1987                         continue;
1988                 if (rdev->raid_disk < 0)
1989                         continue;
1990                 if (!reference) {
1991                         /* Use the first rdev as the reference */
1992                         reference = rdev;
1993                         continue;
1994                 }
1995                 /* does this rdev's profile match the reference profile? */
1996                 if (blk_integrity_compare(reference->bdev->bd_disk,
1997                                 rdev->bdev->bd_disk) < 0)
1998                         return -EINVAL;
1999         }
2000         if (!reference || !bdev_get_integrity(reference->bdev))
2001                 return 0;
2002         /*
2003          * All component devices are integrity capable and have matching
2004          * profiles, register the common profile for the md device.
2005          */
2006         blk_integrity_register(mddev->gendisk,
2007                                bdev_get_integrity(reference->bdev));
2008
2009         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2010         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2011                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2012                        mdname(mddev));
2013                 return -EINVAL;
2014         }
2015         return 0;
2016 }
2017 EXPORT_SYMBOL(md_integrity_register);
2018
2019 /* Disable data integrity if non-capable/non-matching disk is being added */
2020 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022         struct blk_integrity *bi_rdev;
2023         struct blk_integrity *bi_mddev;
2024
2025         if (!mddev->gendisk)
2026                 return;
2027
2028         bi_rdev = bdev_get_integrity(rdev->bdev);
2029         bi_mddev = blk_get_integrity(mddev->gendisk);
2030
2031         if (!bi_mddev) /* nothing to do */
2032                 return;
2033         if (rdev->raid_disk < 0) /* skip spares */
2034                 return;
2035         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2036                                              rdev->bdev->bd_disk) >= 0)
2037                 return;
2038         WARN_ON_ONCE(!mddev->suspended);
2039         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2040         blk_integrity_unregister(mddev->gendisk);
2041 }
2042 EXPORT_SYMBOL(md_integrity_add_rdev);
2043
2044 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046         char b[BDEVNAME_SIZE];
2047         struct kobject *ko;
2048         int err;
2049
2050         /* prevent duplicates */
2051         if (find_rdev(mddev, rdev->bdev->bd_dev))
2052                 return -EEXIST;
2053
2054         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2055         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2056                         rdev->sectors < mddev->dev_sectors)) {
2057                 if (mddev->pers) {
2058                         /* Cannot change size, so fail
2059                          * If mddev->level <= 0, then we don't care
2060                          * about aligning sizes (e.g. linear)
2061                          */
2062                         if (mddev->level > 0)
2063                                 return -ENOSPC;
2064                 } else
2065                         mddev->dev_sectors = rdev->sectors;
2066         }
2067
2068         /* Verify rdev->desc_nr is unique.
2069          * If it is -1, assign a free number, else
2070          * check number is not in use
2071          */
2072         rcu_read_lock();
2073         if (rdev->desc_nr < 0) {
2074                 int choice = 0;
2075                 if (mddev->pers)
2076                         choice = mddev->raid_disks;
2077                 while (md_find_rdev_nr_rcu(mddev, choice))
2078                         choice++;
2079                 rdev->desc_nr = choice;
2080         } else {
2081                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2082                         rcu_read_unlock();
2083                         return -EBUSY;
2084                 }
2085         }
2086         rcu_read_unlock();
2087         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2088                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2089                        mdname(mddev), mddev->max_disks);
2090                 return -EBUSY;
2091         }
2092         bdevname(rdev->bdev,b);
2093         strreplace(b, '/', '!');
2094
2095         rdev->mddev = mddev;
2096         printk(KERN_INFO "md: bind<%s>\n", b);
2097
2098         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2099                 goto fail;
2100
2101         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2102         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2103                 /* failure here is OK */;
2104         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2105
2106         list_add_rcu(&rdev->same_set, &mddev->disks);
2107         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2108
2109         /* May as well allow recovery to be retried once */
2110         mddev->recovery_disabled++;
2111
2112         return 0;
2113
2114  fail:
2115         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2116                b, mdname(mddev));
2117         return err;
2118 }
2119
2120 static void md_delayed_delete(struct work_struct *ws)
2121 {
2122         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2123         kobject_del(&rdev->kobj);
2124         kobject_put(&rdev->kobj);
2125 }
2126
2127 static void unbind_rdev_from_array(struct md_rdev *rdev)
2128 {
2129         char b[BDEVNAME_SIZE];
2130
2131         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2132         list_del_rcu(&rdev->same_set);
2133         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2134         rdev->mddev = NULL;
2135         sysfs_remove_link(&rdev->kobj, "block");
2136         sysfs_put(rdev->sysfs_state);
2137         rdev->sysfs_state = NULL;
2138         rdev->badblocks.count = 0;
2139         /* We need to delay this, otherwise we can deadlock when
2140          * writing to 'remove' to "dev/state".  We also need
2141          * to delay it due to rcu usage.
2142          */
2143         synchronize_rcu();
2144         INIT_WORK(&rdev->del_work, md_delayed_delete);
2145         kobject_get(&rdev->kobj);
2146         queue_work(md_misc_wq, &rdev->del_work);
2147 }
2148
2149 /*
2150  * prevent the device from being mounted, repartitioned or
2151  * otherwise reused by a RAID array (or any other kernel
2152  * subsystem), by bd_claiming the device.
2153  */
2154 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2155 {
2156         int err = 0;
2157         struct block_device *bdev;
2158         char b[BDEVNAME_SIZE];
2159
2160         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2161                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2162         if (IS_ERR(bdev)) {
2163                 printk(KERN_ERR "md: could not open %s.\n",
2164                         __bdevname(dev, b));
2165                 return PTR_ERR(bdev);
2166         }
2167         rdev->bdev = bdev;
2168         return err;
2169 }
2170
2171 static void unlock_rdev(struct md_rdev *rdev)
2172 {
2173         struct block_device *bdev = rdev->bdev;
2174         rdev->bdev = NULL;
2175         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2176 }
2177
2178 void md_autodetect_dev(dev_t dev);
2179
2180 static void export_rdev(struct md_rdev *rdev)
2181 {
2182         char b[BDEVNAME_SIZE];
2183
2184         printk(KERN_INFO "md: export_rdev(%s)\n",
2185                 bdevname(rdev->bdev,b));
2186         md_rdev_clear(rdev);
2187 #ifndef MODULE
2188         if (test_bit(AutoDetected, &rdev->flags))
2189                 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191         unlock_rdev(rdev);
2192         kobject_put(&rdev->kobj);
2193 }
2194
2195 void md_kick_rdev_from_array(struct md_rdev *rdev)
2196 {
2197         unbind_rdev_from_array(rdev);
2198         export_rdev(rdev);
2199 }
2200 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2201
2202 static void export_array(struct mddev *mddev)
2203 {
2204         struct md_rdev *rdev;
2205
2206         while (!list_empty(&mddev->disks)) {
2207                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2208                                         same_set);
2209                 md_kick_rdev_from_array(rdev);
2210         }
2211         mddev->raid_disks = 0;
2212         mddev->major_version = 0;
2213 }
2214
2215 static void sync_sbs(struct mddev *mddev, int nospares)
2216 {
2217         /* Update each superblock (in-memory image), but
2218          * if we are allowed to, skip spares which already
2219          * have the right event counter, or have one earlier
2220          * (which would mean they aren't being marked as dirty
2221          * with the rest of the array)
2222          */
2223         struct md_rdev *rdev;
2224         rdev_for_each(rdev, mddev) {
2225                 if (rdev->sb_events == mddev->events ||
2226                     (nospares &&
2227                      rdev->raid_disk < 0 &&
2228                      rdev->sb_events+1 == mddev->events)) {
2229                         /* Don't update this superblock */
2230                         rdev->sb_loaded = 2;
2231                 } else {
2232                         sync_super(mddev, rdev);
2233                         rdev->sb_loaded = 1;
2234                 }
2235         }
2236 }
2237
2238 static bool does_sb_need_changing(struct mddev *mddev)
2239 {
2240         struct md_rdev *rdev;
2241         struct mdp_superblock_1 *sb;
2242         int role;
2243
2244         /* Find a good rdev */
2245         rdev_for_each(rdev, mddev)
2246                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2247                         break;
2248
2249         /* No good device found. */
2250         if (!rdev)
2251                 return false;
2252
2253         sb = page_address(rdev->sb_page);
2254         /* Check if a device has become faulty or a spare become active */
2255         rdev_for_each(rdev, mddev) {
2256                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2257                 /* Device activated? */
2258                 if (role == 0xffff && rdev->raid_disk >=0 &&
2259                     !test_bit(Faulty, &rdev->flags))
2260                         return true;
2261                 /* Device turned faulty? */
2262                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2263                         return true;
2264         }
2265
2266         /* Check if any mddev parameters have changed */
2267         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2268             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2269             (mddev->layout != le64_to_cpu(sb->layout)) ||
2270             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2271             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2272                 return true;
2273
2274         return false;
2275 }
2276
2277 void md_update_sb(struct mddev *mddev, int force_change)
2278 {
2279         struct md_rdev *rdev;
2280         int sync_req;
2281         int nospares = 0;
2282         int any_badblocks_changed = 0;
2283         int ret = -1;
2284
2285         if (mddev->ro) {
2286                 if (force_change)
2287                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2288                 return;
2289         }
2290
2291         if (mddev_is_clustered(mddev)) {
2292                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2293                         force_change = 1;
2294                 ret = md_cluster_ops->metadata_update_start(mddev);
2295                 /* Has someone else has updated the sb */
2296                 if (!does_sb_need_changing(mddev)) {
2297                         if (ret == 0)
2298                                 md_cluster_ops->metadata_update_cancel(mddev);
2299                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2300                         return;
2301                 }
2302         }
2303 repeat:
2304         /* First make sure individual recovery_offsets are correct */
2305         rdev_for_each(rdev, mddev) {
2306                 if (rdev->raid_disk >= 0 &&
2307                     mddev->delta_disks >= 0 &&
2308                     !test_bit(Journal, &rdev->flags) &&
2309                     !test_bit(In_sync, &rdev->flags) &&
2310                     mddev->curr_resync_completed > rdev->recovery_offset)
2311                                 rdev->recovery_offset = mddev->curr_resync_completed;
2312
2313         }
2314         if (!mddev->persistent) {
2315                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2316                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2317                 if (!mddev->external) {
2318                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2319                         rdev_for_each(rdev, mddev) {
2320                                 if (rdev->badblocks.changed) {
2321                                         rdev->badblocks.changed = 0;
2322                                         md_ack_all_badblocks(&rdev->badblocks);
2323                                         md_error(mddev, rdev);
2324                                 }
2325                                 clear_bit(Blocked, &rdev->flags);
2326                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2327                                 wake_up(&rdev->blocked_wait);
2328                         }
2329                 }
2330                 wake_up(&mddev->sb_wait);
2331                 return;
2332         }
2333
2334         spin_lock(&mddev->lock);
2335
2336         mddev->utime = get_seconds();
2337
2338         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2339                 force_change = 1;
2340         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2341                 /* just a clean<-> dirty transition, possibly leave spares alone,
2342                  * though if events isn't the right even/odd, we will have to do
2343                  * spares after all
2344                  */
2345                 nospares = 1;
2346         if (force_change)
2347                 nospares = 0;
2348         if (mddev->degraded)
2349                 /* If the array is degraded, then skipping spares is both
2350                  * dangerous and fairly pointless.
2351                  * Dangerous because a device that was removed from the array
2352                  * might have a event_count that still looks up-to-date,
2353                  * so it can be re-added without a resync.
2354                  * Pointless because if there are any spares to skip,
2355                  * then a recovery will happen and soon that array won't
2356                  * be degraded any more and the spare can go back to sleep then.
2357                  */
2358                 nospares = 0;
2359
2360         sync_req = mddev->in_sync;
2361
2362         /* If this is just a dirty<->clean transition, and the array is clean
2363          * and 'events' is odd, we can roll back to the previous clean state */
2364         if (nospares
2365             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2366             && mddev->can_decrease_events
2367             && mddev->events != 1) {
2368                 mddev->events--;
2369                 mddev->can_decrease_events = 0;
2370         } else {
2371                 /* otherwise we have to go forward and ... */
2372                 mddev->events ++;
2373                 mddev->can_decrease_events = nospares;
2374         }
2375
2376         /*
2377          * This 64-bit counter should never wrap.
2378          * Either we are in around ~1 trillion A.C., assuming
2379          * 1 reboot per second, or we have a bug...
2380          */
2381         WARN_ON(mddev->events == 0);
2382
2383         rdev_for_each(rdev, mddev) {
2384                 if (rdev->badblocks.changed)
2385                         any_badblocks_changed++;
2386                 if (test_bit(Faulty, &rdev->flags))
2387                         set_bit(FaultRecorded, &rdev->flags);
2388         }
2389
2390         sync_sbs(mddev, nospares);
2391         spin_unlock(&mddev->lock);
2392
2393         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2394                  mdname(mddev), mddev->in_sync);
2395
2396         bitmap_update_sb(mddev->bitmap);
2397         rdev_for_each(rdev, mddev) {
2398                 char b[BDEVNAME_SIZE];
2399
2400                 if (rdev->sb_loaded != 1)
2401                         continue; /* no noise on spare devices */
2402
2403                 if (!test_bit(Faulty, &rdev->flags)) {
2404                         md_super_write(mddev,rdev,
2405                                        rdev->sb_start, rdev->sb_size,
2406                                        rdev->sb_page);
2407                         pr_debug("md: (write) %s's sb offset: %llu\n",
2408                                  bdevname(rdev->bdev, b),
2409                                  (unsigned long long)rdev->sb_start);
2410                         rdev->sb_events = mddev->events;
2411                         if (rdev->badblocks.size) {
2412                                 md_super_write(mddev, rdev,
2413                                                rdev->badblocks.sector,
2414                                                rdev->badblocks.size << 9,
2415                                                rdev->bb_page);
2416                                 rdev->badblocks.size = 0;
2417                         }
2418
2419                 } else
2420                         pr_debug("md: %s (skipping faulty)\n",
2421                                  bdevname(rdev->bdev, b));
2422
2423                 if (mddev->level == LEVEL_MULTIPATH)
2424                         /* only need to write one superblock... */
2425                         break;
2426         }
2427         md_super_wait(mddev);
2428         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2429
2430         spin_lock(&mddev->lock);
2431         if (mddev->in_sync != sync_req ||
2432             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2433                 /* have to write it out again */
2434                 spin_unlock(&mddev->lock);
2435                 goto repeat;
2436         }
2437         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2438         spin_unlock(&mddev->lock);
2439         wake_up(&mddev->sb_wait);
2440         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2441                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2442
2443         rdev_for_each(rdev, mddev) {
2444                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2445                         clear_bit(Blocked, &rdev->flags);
2446
2447                 if (any_badblocks_changed)
2448                         md_ack_all_badblocks(&rdev->badblocks);
2449                 clear_bit(BlockedBadBlocks, &rdev->flags);
2450                 wake_up(&rdev->blocked_wait);
2451         }
2452
2453         if (mddev_is_clustered(mddev) && ret == 0)
2454                 md_cluster_ops->metadata_update_finish(mddev);
2455 }
2456 EXPORT_SYMBOL(md_update_sb);
2457
2458 static int add_bound_rdev(struct md_rdev *rdev)
2459 {
2460         struct mddev *mddev = rdev->mddev;
2461         int err = 0;
2462
2463         if (!mddev->pers->hot_remove_disk) {
2464                 /* If there is hot_add_disk but no hot_remove_disk
2465                  * then added disks for geometry changes,
2466                  * and should be added immediately.
2467                  */
2468                 super_types[mddev->major_version].
2469                         validate_super(mddev, rdev);
2470                 err = mddev->pers->hot_add_disk(mddev, rdev);
2471                 if (err) {
2472                         unbind_rdev_from_array(rdev);
2473                         export_rdev(rdev);
2474                         return err;
2475                 }
2476         }
2477         sysfs_notify_dirent_safe(rdev->sysfs_state);
2478
2479         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2480         if (mddev->degraded)
2481                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2482         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2483         md_new_event(mddev);
2484         md_wakeup_thread(mddev->thread);
2485         return 0;
2486 }
2487
2488 /* words written to sysfs files may, or may not, be \n terminated.
2489  * We want to accept with case. For this we use cmd_match.
2490  */
2491 static int cmd_match(const char *cmd, const char *str)
2492 {
2493         /* See if cmd, written into a sysfs file, matches
2494          * str.  They must either be the same, or cmd can
2495          * have a trailing newline
2496          */
2497         while (*cmd && *str && *cmd == *str) {
2498                 cmd++;
2499                 str++;
2500         }
2501         if (*cmd == '\n')
2502                 cmd++;
2503         if (*str || *cmd)
2504                 return 0;
2505         return 1;
2506 }
2507
2508 struct rdev_sysfs_entry {
2509         struct attribute attr;
2510         ssize_t (*show)(struct md_rdev *, char *);
2511         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2512 };
2513
2514 static ssize_t
2515 state_show(struct md_rdev *rdev, char *page)
2516 {
2517         char *sep = "";
2518         size_t len = 0;
2519         unsigned long flags = ACCESS_ONCE(rdev->flags);
2520
2521         if (test_bit(Faulty, &flags) ||
2522             rdev->badblocks.unacked_exist) {
2523                 len+= sprintf(page+len, "%sfaulty",sep);
2524                 sep = ",";
2525         }
2526         if (test_bit(In_sync, &flags)) {
2527                 len += sprintf(page+len, "%sin_sync",sep);
2528                 sep = ",";
2529         }
2530         if (test_bit(Journal, &flags)) {
2531                 len += sprintf(page+len, "%sjournal",sep);
2532                 sep = ",";
2533         }
2534         if (test_bit(WriteMostly, &flags)) {
2535                 len += sprintf(page+len, "%swrite_mostly",sep);
2536                 sep = ",";
2537         }
2538         if (test_bit(Blocked, &flags) ||
2539             (rdev->badblocks.unacked_exist
2540              && !test_bit(Faulty, &flags))) {
2541                 len += sprintf(page+len, "%sblocked", sep);
2542                 sep = ",";
2543         }
2544         if (!test_bit(Faulty, &flags) &&
2545             !test_bit(Journal, &flags) &&
2546             !test_bit(In_sync, &flags)) {
2547                 len += sprintf(page+len, "%sspare", sep);
2548                 sep = ",";
2549         }
2550         if (test_bit(WriteErrorSeen, &flags)) {
2551                 len += sprintf(page+len, "%swrite_error", sep);
2552                 sep = ",";
2553         }
2554         if (test_bit(WantReplacement, &flags)) {
2555                 len += sprintf(page+len, "%swant_replacement", sep);
2556                 sep = ",";
2557         }
2558         if (test_bit(Replacement, &flags)) {
2559                 len += sprintf(page+len, "%sreplacement", sep);
2560                 sep = ",";
2561         }
2562
2563         return len+sprintf(page+len, "\n");
2564 }
2565
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569         /* can write
2570          *  faulty  - simulates an error
2571          *  remove  - disconnects the device
2572          *  writemostly - sets write_mostly
2573          *  -writemostly - clears write_mostly
2574          *  blocked - sets the Blocked flags
2575          *  -blocked - clears the Blocked and possibly simulates an error
2576          *  insync - sets Insync providing device isn't active
2577          *  -insync - clear Insync for a device with a slot assigned,
2578          *            so that it gets rebuilt based on bitmap
2579          *  write_error - sets WriteErrorSeen
2580          *  -write_error - clears WriteErrorSeen
2581          */
2582         int err = -EINVAL;
2583         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584                 md_error(rdev->mddev, rdev);
2585                 if (test_bit(Faulty, &rdev->flags))
2586                         err = 0;
2587                 else
2588                         err = -EBUSY;
2589         } else if (cmd_match(buf, "remove")) {
2590                 if (rdev->raid_disk >= 0)
2591                         err = -EBUSY;
2592                 else {
2593                         struct mddev *mddev = rdev->mddev;
2594                         err = 0;
2595                         if (mddev_is_clustered(mddev))
2596                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2597
2598                         if (err == 0) {
2599                                 md_kick_rdev_from_array(rdev);
2600                                 if (mddev->pers)
2601                                         md_update_sb(mddev, 1);
2602                                 md_new_event(mddev);
2603                         }
2604                 }
2605         } else if (cmd_match(buf, "writemostly")) {
2606                 set_bit(WriteMostly, &rdev->flags);
2607                 err = 0;
2608         } else if (cmd_match(buf, "-writemostly")) {
2609                 clear_bit(WriteMostly, &rdev->flags);
2610                 err = 0;
2611         } else if (cmd_match(buf, "blocked")) {
2612                 set_bit(Blocked, &rdev->flags);
2613                 err = 0;
2614         } else if (cmd_match(buf, "-blocked")) {
2615                 if (!test_bit(Faulty, &rdev->flags) &&
2616                     rdev->badblocks.unacked_exist) {
2617                         /* metadata handler doesn't understand badblocks,
2618                          * so we need to fail the device
2619                          */
2620                         md_error(rdev->mddev, rdev);
2621                 }
2622                 clear_bit(Blocked, &rdev->flags);
2623                 clear_bit(BlockedBadBlocks, &rdev->flags);
2624                 wake_up(&rdev->blocked_wait);
2625                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2626                 md_wakeup_thread(rdev->mddev->thread);
2627
2628                 err = 0;
2629         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2630                 set_bit(In_sync, &rdev->flags);
2631                 err = 0;
2632         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2633                    !test_bit(Journal, &rdev->flags)) {
2634                 if (rdev->mddev->pers == NULL) {
2635                         clear_bit(In_sync, &rdev->flags);
2636                         rdev->saved_raid_disk = rdev->raid_disk;
2637                         rdev->raid_disk = -1;
2638                         err = 0;
2639                 }
2640         } else if (cmd_match(buf, "write_error")) {
2641                 set_bit(WriteErrorSeen, &rdev->flags);
2642                 err = 0;
2643         } else if (cmd_match(buf, "-write_error")) {
2644                 clear_bit(WriteErrorSeen, &rdev->flags);
2645                 err = 0;
2646         } else if (cmd_match(buf, "want_replacement")) {
2647                 /* Any non-spare device that is not a replacement can
2648                  * become want_replacement at any time, but we then need to
2649                  * check if recovery is needed.
2650                  */
2651                 if (rdev->raid_disk >= 0 &&
2652                     !test_bit(Journal, &rdev->flags) &&
2653                     !test_bit(Replacement, &rdev->flags))
2654                         set_bit(WantReplacement, &rdev->flags);
2655                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656                 md_wakeup_thread(rdev->mddev->thread);
2657                 err = 0;
2658         } else if (cmd_match(buf, "-want_replacement")) {
2659                 /* Clearing 'want_replacement' is always allowed.
2660                  * Once replacements starts it is too late though.
2661                  */
2662                 err = 0;
2663                 clear_bit(WantReplacement, &rdev->flags);
2664         } else if (cmd_match(buf, "replacement")) {
2665                 /* Can only set a device as a replacement when array has not
2666                  * yet been started.  Once running, replacement is automatic
2667                  * from spares, or by assigning 'slot'.
2668                  */
2669                 if (rdev->mddev->pers)
2670                         err = -EBUSY;
2671                 else {
2672                         set_bit(Replacement, &rdev->flags);
2673                         err = 0;
2674                 }
2675         } else if (cmd_match(buf, "-replacement")) {
2676                 /* Similarly, can only clear Replacement before start */
2677                 if (rdev->mddev->pers)
2678                         err = -EBUSY;
2679                 else {
2680                         clear_bit(Replacement, &rdev->flags);
2681                         err = 0;
2682                 }
2683         } else if (cmd_match(buf, "re-add")) {
2684                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2685                         /* clear_bit is performed _after_ all the devices
2686                          * have their local Faulty bit cleared. If any writes
2687                          * happen in the meantime in the local node, they
2688                          * will land in the local bitmap, which will be synced
2689                          * by this node eventually
2690                          */
2691                         if (!mddev_is_clustered(rdev->mddev) ||
2692                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2693                                 clear_bit(Faulty, &rdev->flags);
2694                                 err = add_bound_rdev(rdev);
2695                         }
2696                 } else
2697                         err = -EBUSY;
2698         }
2699         if (!err)
2700                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2701         return err ? err : len;
2702 }
2703 static struct rdev_sysfs_entry rdev_state =
2704 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2705
2706 static ssize_t
2707 errors_show(struct md_rdev *rdev, char *page)
2708 {
2709         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2710 }
2711
2712 static ssize_t
2713 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2714 {
2715         unsigned int n;
2716         int rv;
2717
2718         rv = kstrtouint(buf, 10, &n);
2719         if (rv < 0)
2720                 return rv;
2721         atomic_set(&rdev->corrected_errors, n);
2722         return len;
2723 }
2724 static struct rdev_sysfs_entry rdev_errors =
2725 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2726
2727 static ssize_t
2728 slot_show(struct md_rdev *rdev, char *page)
2729 {
2730         if (test_bit(Journal, &rdev->flags))
2731                 return sprintf(page, "journal\n");
2732         else if (rdev->raid_disk < 0)
2733                 return sprintf(page, "none\n");
2734         else
2735                 return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741         int slot;
2742         int err;
2743
2744         if (test_bit(Journal, &rdev->flags))
2745                 return -EBUSY;
2746         if (strncmp(buf, "none", 4)==0)
2747                 slot = -1;
2748         else {
2749                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2750                 if (err < 0)
2751                         return err;
2752         }
2753         if (rdev->mddev->pers && slot == -1) {
2754                 /* Setting 'slot' on an active array requires also
2755                  * updating the 'rd%d' link, and communicating
2756                  * with the personality with ->hot_*_disk.
2757                  * For now we only support removing
2758                  * failed/spare devices.  This normally happens automatically,
2759                  * but not when the metadata is externally managed.
2760                  */
2761                 if (rdev->raid_disk == -1)
2762                         return -EEXIST;
2763                 /* personality does all needed checks */
2764                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2765                         return -EINVAL;
2766                 clear_bit(Blocked, &rdev->flags);
2767                 remove_and_add_spares(rdev->mddev, rdev);
2768                 if (rdev->raid_disk >= 0)
2769                         return -EBUSY;
2770                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771                 md_wakeup_thread(rdev->mddev->thread);
2772         } else if (rdev->mddev->pers) {
2773                 /* Activating a spare .. or possibly reactivating
2774                  * if we ever get bitmaps working here.
2775                  */
2776
2777                 if (rdev->raid_disk != -1)
2778                         return -EBUSY;
2779
2780                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2781                         return -EBUSY;
2782
2783                 if (rdev->mddev->pers->hot_add_disk == NULL)
2784                         return -EINVAL;
2785
2786                 if (slot >= rdev->mddev->raid_disks &&
2787                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788                         return -ENOSPC;
2789
2790                 rdev->raid_disk = slot;
2791                 if (test_bit(In_sync, &rdev->flags))
2792                         rdev->saved_raid_disk = slot;
2793                 else
2794                         rdev->saved_raid_disk = -1;
2795                 clear_bit(In_sync, &rdev->flags);
2796                 clear_bit(Bitmap_sync, &rdev->flags);
2797                 remove_and_add_spares(rdev->mddev, rdev);
2798                 if (rdev->raid_disk == -1)
2799                         return -EBUSY;
2800                 /* don't wakeup anyone, leave that to userspace. */
2801         } else {
2802                 if (slot >= rdev->mddev->raid_disks &&
2803                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804                         return -ENOSPC;
2805                 rdev->raid_disk = slot;
2806                 /* assume it is working */
2807                 clear_bit(Faulty, &rdev->flags);
2808                 clear_bit(WriteMostly, &rdev->flags);
2809                 set_bit(In_sync, &rdev->flags);
2810                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811         }
2812         return len;
2813 }
2814
2815 static struct rdev_sysfs_entry rdev_slot =
2816 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2817
2818 static ssize_t
2819 offset_show(struct md_rdev *rdev, char *page)
2820 {
2821         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2822 }
2823
2824 static ssize_t
2825 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2826 {
2827         unsigned long long offset;
2828         if (kstrtoull(buf, 10, &offset) < 0)
2829                 return -EINVAL;
2830         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2831                 return -EBUSY;
2832         if (rdev->sectors && rdev->mddev->external)
2833                 /* Must set offset before size, so overlap checks
2834                  * can be sane */
2835                 return -EBUSY;
2836         rdev->data_offset = offset;
2837         rdev->new_data_offset = offset;
2838         return len;
2839 }
2840
2841 static struct rdev_sysfs_entry rdev_offset =
2842 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2843
2844 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2845 {
2846         return sprintf(page, "%llu\n",
2847                        (unsigned long long)rdev->new_data_offset);
2848 }
2849
2850 static ssize_t new_offset_store(struct md_rdev *rdev,
2851                                 const char *buf, size_t len)
2852 {
2853         unsigned long long new_offset;
2854         struct mddev *mddev = rdev->mddev;
2855
2856         if (kstrtoull(buf, 10, &new_offset) < 0)
2857                 return -EINVAL;
2858
2859         if (mddev->sync_thread ||
2860             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2861                 return -EBUSY;
2862         if (new_offset == rdev->data_offset)
2863                 /* reset is always permitted */
2864                 ;
2865         else if (new_offset > rdev->data_offset) {
2866                 /* must not push array size beyond rdev_sectors */
2867                 if (new_offset - rdev->data_offset
2868                     + mddev->dev_sectors > rdev->sectors)
2869                                 return -E2BIG;
2870         }
2871         /* Metadata worries about other space details. */
2872
2873         /* decreasing the offset is inconsistent with a backwards
2874          * reshape.
2875          */
2876         if (new_offset < rdev->data_offset &&
2877             mddev->reshape_backwards)
2878                 return -EINVAL;
2879         /* Increasing offset is inconsistent with forwards
2880          * reshape.  reshape_direction should be set to
2881          * 'backwards' first.
2882          */
2883         if (new_offset > rdev->data_offset &&
2884             !mddev->reshape_backwards)
2885                 return -EINVAL;
2886
2887         if (mddev->pers && mddev->persistent &&
2888             !super_types[mddev->major_version]
2889             .allow_new_offset(rdev, new_offset))
2890                 return -E2BIG;
2891         rdev->new_data_offset = new_offset;
2892         if (new_offset > rdev->data_offset)
2893                 mddev->reshape_backwards = 1;
2894         else if (new_offset < rdev->data_offset)
2895                 mddev->reshape_backwards = 0;
2896
2897         return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910         /* check if two start/length pairs overlap */
2911         if (s1+l1 <= s2)
2912                 return 0;
2913         if (s2+l2 <= s1)
2914                 return 0;
2915         return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920         unsigned long long blocks;
2921         sector_t new;
2922
2923         if (kstrtoull(buf, 10, &blocks) < 0)
2924                 return -EINVAL;
2925
2926         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927                 return -EINVAL; /* sector conversion overflow */
2928
2929         new = blocks * 2;
2930         if (new != blocks * 2)
2931                 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933         *sectors = new;
2934         return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940         struct mddev *my_mddev = rdev->mddev;
2941         sector_t oldsectors = rdev->sectors;
2942         sector_t sectors;
2943
2944         if (test_bit(Journal, &rdev->flags))
2945                 return -EBUSY;
2946         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2947                 return -EINVAL;
2948         if (rdev->data_offset != rdev->new_data_offset)
2949                 return -EINVAL; /* too confusing */
2950         if (my_mddev->pers && rdev->raid_disk >= 0) {
2951                 if (my_mddev->persistent) {
2952                         sectors = super_types[my_mddev->major_version].
2953                                 rdev_size_change(rdev, sectors);
2954                         if (!sectors)
2955                                 return -EBUSY;
2956                 } else if (!sectors)
2957                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2958                                 rdev->data_offset;
2959                 if (!my_mddev->pers->resize)
2960                         /* Cannot change size for RAID0 or Linear etc */
2961                         return -EINVAL;
2962         }
2963         if (sectors < my_mddev->dev_sectors)
2964                 return -EINVAL; /* component must fit device */
2965
2966         rdev->sectors = sectors;
2967         if (sectors > oldsectors && my_mddev->external) {
2968                 /* Need to check that all other rdevs with the same
2969                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2970                  * the rdev lists safely.
2971                  * This check does not provide a hard guarantee, it
2972                  * just helps avoid dangerous mistakes.
2973                  */
2974                 struct mddev *mddev;
2975                 int overlap = 0;
2976                 struct list_head *tmp;
2977
2978                 rcu_read_lock();
2979                 for_each_mddev(mddev, tmp) {
2980                         struct md_rdev *rdev2;
2981
2982                         rdev_for_each(rdev2, mddev)
2983                                 if (rdev->bdev == rdev2->bdev &&
2984                                     rdev != rdev2 &&
2985                                     overlaps(rdev->data_offset, rdev->sectors,
2986                                              rdev2->data_offset,
2987                                              rdev2->sectors)) {
2988                                         overlap = 1;
2989                                         break;
2990                                 }
2991                         if (overlap) {
2992                                 mddev_put(mddev);
2993                                 break;
2994                         }
2995                 }
2996                 rcu_read_unlock();
2997                 if (overlap) {
2998                         /* Someone else could have slipped in a size
2999                          * change here, but doing so is just silly.
3000                          * We put oldsectors back because we *know* it is
3001                          * safe, and trust userspace not to race with
3002                          * itself
3003                          */
3004                         rdev->sectors = oldsectors;
3005                         return -EBUSY;
3006                 }
3007         }
3008         return len;
3009 }
3010
3011 static struct rdev_sysfs_entry rdev_size =
3012 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016         unsigned long long recovery_start = rdev->recovery_offset;
3017
3018         if (test_bit(In_sync, &rdev->flags) ||
3019             recovery_start == MaxSector)
3020                 return sprintf(page, "none\n");
3021
3022         return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027         unsigned long long recovery_start;
3028
3029         if (cmd_match(buf, "none"))
3030                 recovery_start = MaxSector;
3031         else if (kstrtoull(buf, 10, &recovery_start))
3032                 return -EINVAL;
3033
3034         if (rdev->mddev->pers &&
3035             rdev->raid_disk >= 0)
3036                 return -EBUSY;
3037
3038         rdev->recovery_offset = recovery_start;
3039         if (recovery_start == MaxSector)
3040                 set_bit(In_sync, &rdev->flags);
3041         else
3042                 clear_bit(In_sync, &rdev->flags);
3043         return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049 static ssize_t
3050 badblocks_show(struct badblocks *bb, char *page, int unack);
3051 static ssize_t
3052 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3053
3054 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3055 {
3056         return badblocks_show(&rdev->badblocks, page, 0);
3057 }
3058 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3059 {
3060         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3061         /* Maybe that ack was all we needed */
3062         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3063                 wake_up(&rdev->blocked_wait);
3064         return rv;
3065 }
3066 static struct rdev_sysfs_entry rdev_bad_blocks =
3067 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3068
3069 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3070 {
3071         return badblocks_show(&rdev->badblocks, page, 1);
3072 }
3073 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3074 {
3075         return badblocks_store(&rdev->badblocks, page, len, 1);
3076 }
3077 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3078 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3079
3080 static struct attribute *rdev_default_attrs[] = {
3081         &rdev_state.attr,
3082         &rdev_errors.attr,
3083         &rdev_slot.attr,
3084         &rdev_offset.attr,
3085         &rdev_new_offset.attr,
3086         &rdev_size.attr,
3087         &rdev_recovery_start.attr,
3088         &rdev_bad_blocks.attr,
3089         &rdev_unack_bad_blocks.attr,
3090         NULL,
3091 };
3092 static ssize_t
3093 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3094 {
3095         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3096         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3097
3098         if (!entry->show)
3099                 return -EIO;
3100         if (!rdev->mddev)
3101                 return -EBUSY;
3102         return entry->show(rdev, page);
3103 }
3104
3105 static ssize_t
3106 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3107               const char *page, size_t length)
3108 {
3109         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3110         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3111         ssize_t rv;
3112         struct mddev *mddev = rdev->mddev;
3113
3114         if (!entry->store)
3115                 return -EIO;
3116         if (!capable(CAP_SYS_ADMIN))
3117                 return -EACCES;
3118         rv = mddev ? mddev_lock(mddev): -EBUSY;
3119         if (!rv) {
3120                 if (rdev->mddev == NULL)
3121                         rv = -EBUSY;
3122                 else
3123                         rv = entry->store(rdev, page, length);
3124                 mddev_unlock(mddev);
3125         }
3126         return rv;
3127 }
3128
3129 static void rdev_free(struct kobject *ko)
3130 {
3131         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3132         kfree(rdev);
3133 }
3134 static const struct sysfs_ops rdev_sysfs_ops = {
3135         .show           = rdev_attr_show,
3136         .store          = rdev_attr_store,
3137 };
3138 static struct kobj_type rdev_ktype = {
3139         .release        = rdev_free,
3140         .sysfs_ops      = &rdev_sysfs_ops,
3141         .default_attrs  = rdev_default_attrs,
3142 };
3143
3144 int md_rdev_init(struct md_rdev *rdev)
3145 {
3146         rdev->desc_nr = -1;
3147         rdev->saved_raid_disk = -1;
3148         rdev->raid_disk = -1;
3149         rdev->flags = 0;
3150         rdev->data_offset = 0;
3151         rdev->new_data_offset = 0;
3152         rdev->sb_events = 0;
3153         rdev->last_read_error.tv_sec  = 0;
3154         rdev->last_read_error.tv_nsec = 0;
3155         rdev->sb_loaded = 0;
3156         rdev->bb_page = NULL;
3157         atomic_set(&rdev->nr_pending, 0);
3158         atomic_set(&rdev->read_errors, 0);
3159         atomic_set(&rdev->corrected_errors, 0);
3160
3161         INIT_LIST_HEAD(&rdev->same_set);
3162         init_waitqueue_head(&rdev->blocked_wait);
3163
3164         /* Add space to store bad block list.
3165          * This reserves the space even on arrays where it cannot
3166          * be used - I wonder if that matters
3167          */
3168         rdev->badblocks.count = 0;
3169         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3170         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3171         seqlock_init(&rdev->badblocks.lock);
3172         if (rdev->badblocks.page == NULL)
3173                 return -ENOMEM;
3174
3175         return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(md_rdev_init);
3178 /*
3179  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3180  *
3181  * mark the device faulty if:
3182  *
3183  *   - the device is nonexistent (zero size)
3184  *   - the device has no valid superblock
3185  *
3186  * a faulty rdev _never_ has rdev->sb set.
3187  */
3188 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3189 {
3190         char b[BDEVNAME_SIZE];
3191         int err;
3192         struct md_rdev *rdev;
3193         sector_t size;
3194
3195         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3196         if (!rdev) {
3197                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3198                 return ERR_PTR(-ENOMEM);
3199         }
3200
3201         err = md_rdev_init(rdev);
3202         if (err)
3203                 goto abort_free;
3204         err = alloc_disk_sb(rdev);
3205         if (err)
3206                 goto abort_free;
3207
3208         err = lock_rdev(rdev, newdev, super_format == -2);
3209         if (err)
3210                 goto abort_free;
3211
3212         kobject_init(&rdev->kobj, &rdev_ktype);
3213
3214         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3215         if (!size) {
3216                 printk(KERN_WARNING
3217                         "md: %s has zero or unknown size, marking faulty!\n",
3218                         bdevname(rdev->bdev,b));
3219                 err = -EINVAL;
3220                 goto abort_free;
3221         }
3222
3223         if (super_format >= 0) {
3224                 err = super_types[super_format].
3225                         load_super(rdev, NULL, super_minor);
3226                 if (err == -EINVAL) {
3227                         printk(KERN_WARNING
3228                                 "md: %s does not have a valid v%d.%d "
3229                                "superblock, not importing!\n",
3230                                 bdevname(rdev->bdev,b),
3231                                super_format, super_minor);
3232                         goto abort_free;
3233                 }
3234                 if (err < 0) {
3235                         printk(KERN_WARNING
3236                                 "md: could not read %s's sb, not importing!\n",
3237                                 bdevname(rdev->bdev,b));
3238                         goto abort_free;
3239                 }
3240         }
3241
3242         return rdev;
3243
3244 abort_free:
3245         if (rdev->bdev)
3246                 unlock_rdev(rdev);
3247         md_rdev_clear(rdev);
3248         kfree(rdev);
3249         return ERR_PTR(err);
3250 }
3251
3252 /*
3253  * Check a full RAID array for plausibility
3254  */
3255
3256 static void analyze_sbs(struct mddev *mddev)
3257 {
3258         int i;
3259         struct md_rdev *rdev, *freshest, *tmp;
3260         char b[BDEVNAME_SIZE];
3261
3262         freshest = NULL;
3263         rdev_for_each_safe(rdev, tmp, mddev)
3264                 switch (super_types[mddev->major_version].
3265                         load_super(rdev, freshest, mddev->minor_version)) {
3266                 case 1:
3267                         freshest = rdev;
3268                         break;
3269                 case 0:
3270                         break;
3271                 default:
3272                         printk( KERN_ERR \
3273                                 "md: fatal superblock inconsistency in %s"
3274                                 " -- removing from array\n",
3275                                 bdevname(rdev->bdev,b));
3276                         md_kick_rdev_from_array(rdev);
3277                 }
3278
3279         super_types[mddev->major_version].
3280                 validate_super(mddev, freshest);
3281
3282         i = 0;
3283         rdev_for_each_safe(rdev, tmp, mddev) {
3284                 if (mddev->max_disks &&
3285                     (rdev->desc_nr >= mddev->max_disks ||
3286                      i > mddev->max_disks)) {
3287                         printk(KERN_WARNING
3288                                "md: %s: %s: only %d devices permitted\n",
3289                                mdname(mddev), bdevname(rdev->bdev, b),
3290                                mddev->max_disks);
3291                         md_kick_rdev_from_array(rdev);
3292                         continue;
3293                 }
3294                 if (rdev != freshest) {
3295                         if (super_types[mddev->major_version].
3296                             validate_super(mddev, rdev)) {
3297                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3298                                         " from array!\n",
3299                                         bdevname(rdev->bdev,b));
3300                                 md_kick_rdev_from_array(rdev);
3301                                 continue;
3302                         }
3303                 }
3304                 if (mddev->level == LEVEL_MULTIPATH) {
3305                         rdev->desc_nr = i++;
3306                         rdev->raid_disk = rdev->desc_nr;
3307                         set_bit(In_sync, &rdev->flags);
3308                 } else if (rdev->raid_disk >=
3309                             (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3310                            !test_bit(Journal, &rdev->flags)) {
3311                         rdev->raid_disk = -1;
3312                         clear_bit(In_sync, &rdev->flags);
3313                 }
3314         }
3315 }
3316
3317 /* Read a fixed-point number.
3318  * Numbers in sysfs attributes should be in "standard" units where
3319  * possible, so time should be in seconds.
3320  * However we internally use a a much smaller unit such as
3321  * milliseconds or jiffies.
3322  * This function takes a decimal number with a possible fractional
3323  * component, and produces an integer which is the result of
3324  * multiplying that number by 10^'scale'.
3325  * all without any floating-point arithmetic.
3326  */
3327 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3328 {
3329         unsigned long result = 0;
3330         long decimals = -1;
3331         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3332                 if (*cp == '.')
3333                         decimals = 0;
3334                 else if (decimals < scale) {
3335                         unsigned int value;
3336                         value = *cp - '0';
3337                         result = result * 10 + value;
3338                         if (decimals >= 0)
3339                                 decimals++;
3340                 }
3341                 cp++;
3342         }
3343         if (*cp == '\n')
3344                 cp++;
3345         if (*cp)
3346                 return -EINVAL;
3347         if (decimals < 0)
3348                 decimals = 0;
3349         while (decimals < scale) {
3350                 result *= 10;
3351                 decimals ++;
3352         }
3353         *res = result;
3354         return 0;
3355 }
3356
3357 static ssize_t
3358 safe_delay_show(struct mddev *mddev, char *page)
3359 {
3360         int msec = (mddev->safemode_delay*1000)/HZ;
3361         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3362 }
3363 static ssize_t
3364 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3365 {
3366         unsigned long msec;
3367
3368         if (mddev_is_clustered(mddev)) {
3369                 pr_info("md: Safemode is disabled for clustered mode\n");
3370                 return -EINVAL;
3371         }
3372
3373         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3374                 return -EINVAL;
3375         if (msec == 0)
3376                 mddev->safemode_delay = 0;
3377         else {
3378                 unsigned long old_delay = mddev->safemode_delay;
3379                 unsigned long new_delay = (msec*HZ)/1000;
3380
3381                 if (new_delay == 0)
3382                         new_delay = 1;
3383                 mddev->safemode_delay = new_delay;
3384                 if (new_delay < old_delay || old_delay == 0)
3385                         mod_timer(&mddev->safemode_timer, jiffies+1);
3386         }
3387         return len;
3388 }
3389 static struct md_sysfs_entry md_safe_delay =
3390 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3391
3392 static ssize_t
3393 level_show(struct mddev *mddev, char *page)
3394 {
3395         struct md_personality *p;
3396         int ret;
3397         spin_lock(&mddev->lock);
3398         p = mddev->pers;
3399         if (p)
3400                 ret = sprintf(page, "%s\n", p->name);
3401         else if (mddev->clevel[0])
3402                 ret = sprintf(page, "%s\n", mddev->clevel);
3403         else if (mddev->level != LEVEL_NONE)
3404                 ret = sprintf(page, "%d\n", mddev->level);
3405         else
3406                 ret = 0;
3407         spin_unlock(&mddev->lock);
3408         return ret;
3409 }
3410
3411 static ssize_t
3412 level_store(struct mddev *mddev, const char *buf, size_t len)
3413 {
3414         char clevel[16];
3415         ssize_t rv;
3416         size_t slen = len;
3417         struct md_personality *pers, *oldpers;
3418         long level;
3419         void *priv, *oldpriv;
3420         struct md_rdev *rdev;
3421
3422         if (slen == 0 || slen >= sizeof(clevel))
3423                 return -EINVAL;
3424
3425         rv = mddev_lock(mddev);
3426         if (rv)
3427                 return rv;
3428
3429         if (mddev->pers == NULL) {
3430                 strncpy(mddev->clevel, buf, slen);
3431                 if (mddev->clevel[slen-1] == '\n')
3432                         slen--;
3433                 mddev->clevel[slen] = 0;
3434                 mddev->level = LEVEL_NONE;
3435                 rv = len;
3436                 goto out_unlock;
3437         }
3438         rv = -EROFS;
3439         if (mddev->ro)
3440                 goto out_unlock;
3441
3442         /* request to change the personality.  Need to ensure:
3443          *  - array is not engaged in resync/recovery/reshape
3444          *  - old personality can be suspended
3445          *  - new personality will access other array.
3446          */
3447
3448         rv = -EBUSY;
3449         if (mddev->sync_thread ||
3450             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3451             mddev->reshape_position != MaxSector ||
3452             mddev->sysfs_active)
3453                 goto out_unlock;
3454
3455         rv = -EINVAL;
3456         if (!mddev->pers->quiesce) {
3457                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3458                        mdname(mddev), mddev->pers->name);
3459                 goto out_unlock;
3460         }
3461
3462         /* Now find the new personality */
3463         strncpy(clevel, buf, slen);
3464         if (clevel[slen-1] == '\n')
3465                 slen--;
3466         clevel[slen] = 0;
3467         if (kstrtol(clevel, 10, &level))
3468                 level = LEVEL_NONE;
3469
3470         if (request_module("md-%s", clevel) != 0)
3471                 request_module("md-level-%s", clevel);
3472         spin_lock(&pers_lock);
3473         pers = find_pers(level, clevel);
3474         if (!pers || !try_module_get(pers->owner)) {
3475                 spin_unlock(&pers_lock);
3476                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3477                 rv = -EINVAL;
3478                 goto out_unlock;
3479         }
3480         spin_unlock(&pers_lock);
3481
3482         if (pers == mddev->pers) {
3483                 /* Nothing to do! */
3484                 module_put(pers->owner);
3485                 rv = len;
3486                 goto out_unlock;
3487         }
3488         if (!pers->takeover) {
3489                 module_put(pers->owner);
3490                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3491                        mdname(mddev), clevel);
3492                 rv = -EINVAL;
3493                 goto out_unlock;
3494         }
3495
3496         rdev_for_each(rdev, mddev)
3497                 rdev->new_raid_disk = rdev->raid_disk;
3498
3499         /* ->takeover must set new_* and/or delta_disks
3500          * if it succeeds, and may set them when it fails.
3501          */
3502         priv = pers->takeover(mddev);
3503         if (IS_ERR(priv)) {
3504                 mddev->new_level = mddev->level;
3505                 mddev->new_layout = mddev->layout;
3506                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3507                 mddev->raid_disks -= mddev->delta_disks;
3508                 mddev->delta_disks = 0;
3509                 mddev->reshape_backwards = 0;
3510                 module_put(pers->owner);
3511                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3512                        mdname(mddev), clevel);
3513                 rv = PTR_ERR(priv);
3514                 goto out_unlock;
3515         }
3516
3517         /* Looks like we have a winner */
3518         mddev_suspend(mddev);
3519         mddev_detach(mddev);
3520
3521         spin_lock(&mddev->lock);
3522         oldpers = mddev->pers;
3523         oldpriv = mddev->private;
3524         mddev->pers = pers;
3525         mddev->private = priv;
3526         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3527         mddev->level = mddev->new_level;
3528         mddev->layout = mddev->new_layout;
3529         mddev->chunk_sectors = mddev->new_chunk_sectors;
3530         mddev->delta_disks = 0;
3531         mddev->reshape_backwards = 0;
3532         mddev->degraded = 0;
3533         spin_unlock(&mddev->lock);
3534
3535         if (oldpers->sync_request == NULL &&
3536             mddev->external) {
3537                 /* We are converting from a no-redundancy array
3538                  * to a redundancy array and metadata is managed
3539                  * externally so we need to be sure that writes
3540                  * won't block due to a need to transition
3541                  *      clean->dirty
3542                  * until external management is started.
3543                  */
3544                 mddev->in_sync = 0;
3545                 mddev->safemode_delay = 0;
3546                 mddev->safemode = 0;
3547         }
3548
3549         oldpers->free(mddev, oldpriv);
3550
3551         if (oldpers->sync_request == NULL &&
3552             pers->sync_request != NULL) {
3553                 /* need to add the md_redundancy_group */
3554                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555                         printk(KERN_WARNING
3556                                "md: cannot register extra attributes for %s\n",
3557                                mdname(mddev));
3558                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3559         }
3560         if (oldpers->sync_request != NULL &&
3561             pers->sync_request == NULL) {
3562                 /* need to remove the md_redundancy_group */
3563                 if (mddev->to_remove == NULL)
3564                         mddev->to_remove = &md_redundancy_group;
3565         }
3566
3567         rdev_for_each(rdev, mddev) {
3568                 if (rdev->raid_disk < 0)
3569                         continue;
3570                 if (rdev->new_raid_disk >= mddev->raid_disks)
3571                         rdev->new_raid_disk = -1;
3572                 if (rdev->new_raid_disk == rdev->raid_disk)
3573                         continue;
3574                 sysfs_unlink_rdev(mddev, rdev);
3575         }
3576         rdev_for_each(rdev, mddev) {
3577                 if (rdev->raid_disk < 0)
3578                         continue;
3579                 if (rdev->new_raid_disk == rdev->raid_disk)
3580                         continue;
3581                 rdev->raid_disk = rdev->new_raid_disk;
3582                 if (rdev->raid_disk < 0)
3583                         clear_bit(In_sync, &rdev->flags);
3584                 else {
3585                         if (sysfs_link_rdev(mddev, rdev))
3586                                 printk(KERN_WARNING "md: cannot register rd%d"
3587                                        " for %s after level change\n",
3588                                        rdev->raid_disk, mdname(mddev));
3589                 }
3590         }
3591
3592         if (pers->sync_request == NULL) {
3593                 /* this is now an array without redundancy, so
3594                  * it must always be in_sync
3595                  */
3596                 mddev->in_sync = 1;
3597                 del_timer_sync(&mddev->safemode_timer);
3598         }
3599         blk_set_stacking_limits(&mddev->queue->limits);
3600         pers->run(mddev);
3601         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3602         mddev_resume(mddev);
3603         if (!mddev->thread)
3604                 md_update_sb(mddev, 1);
3605         sysfs_notify(&mddev->kobj, NULL, "level");
3606         md_new_event(mddev);
3607         rv = len;
3608 out_unlock:
3609         mddev_unlock(mddev);
3610         return rv;
3611 }
3612
3613 static struct md_sysfs_entry md_level =
3614 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3615
3616 static ssize_t
3617 layout_show(struct mddev *mddev, char *page)
3618 {
3619         /* just a number, not meaningful for all levels */
3620         if (mddev->reshape_position != MaxSector &&
3621             mddev->layout != mddev->new_layout)
3622                 return sprintf(page, "%d (%d)\n",
3623                                mddev->new_layout, mddev->layout);
3624         return sprintf(page, "%d\n", mddev->layout);
3625 }
3626
3627 static ssize_t
3628 layout_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630         unsigned int n;
3631         int err;
3632
3633         err = kstrtouint(buf, 10, &n);
3634         if (err < 0)
3635                 return err;
3636         err = mddev_lock(mddev);
3637         if (err)
3638                 return err;
3639
3640         if (mddev->pers) {
3641                 if (mddev->pers->check_reshape == NULL)
3642                         err = -EBUSY;
3643                 else if (mddev->ro)
3644                         err = -EROFS;
3645                 else {
3646                         mddev->new_layout = n;
3647                         err = mddev->pers->check_reshape(mddev);
3648                         if (err)
3649                                 mddev->new_layout = mddev->layout;
3650                 }
3651         } else {
3652                 mddev->new_layout = n;
3653                 if (mddev->reshape_position == MaxSector)
3654                         mddev->layout = n;
3655         }
3656         mddev_unlock(mddev);
3657         return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_layout =
3660 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3661
3662 static ssize_t
3663 raid_disks_show(struct mddev *mddev, char *page)
3664 {
3665         if (mddev->raid_disks == 0)
3666                 return 0;
3667         if (mddev->reshape_position != MaxSector &&
3668             mddev->delta_disks != 0)
3669                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3670                                mddev->raid_disks - mddev->delta_disks);
3671         return sprintf(page, "%d\n", mddev->raid_disks);
3672 }
3673
3674 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3675
3676 static ssize_t
3677 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3678 {
3679         unsigned int n;
3680         int err;
3681
3682         err = kstrtouint(buf, 10, &n);
3683         if (err < 0)
3684                 return err;
3685
3686         err = mddev_lock(mddev);
3687         if (err)
3688                 return err;
3689         if (mddev->pers)
3690                 err = update_raid_disks(mddev, n);
3691         else if (mddev->reshape_position != MaxSector) {
3692                 struct md_rdev *rdev;
3693                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3694
3695                 err = -EINVAL;
3696                 rdev_for_each(rdev, mddev) {
3697                         if (olddisks < n &&
3698                             rdev->data_offset < rdev->new_data_offset)
3699                                 goto out_unlock;
3700                         if (olddisks > n &&
3701                             rdev->data_offset > rdev->new_data_offset)
3702                                 goto out_unlock;
3703                 }
3704                 err = 0;
3705                 mddev->delta_disks = n - olddisks;
3706                 mddev->raid_disks = n;
3707                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3708         } else
3709                 mddev->raid_disks = n;
3710 out_unlock:
3711         mddev_unlock(mddev);
3712         return err ? err : len;
3713 }
3714 static struct md_sysfs_entry md_raid_disks =
3715 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3716
3717 static ssize_t
3718 chunk_size_show(struct mddev *mddev, char *page)
3719 {
3720         if (mddev->reshape_position != MaxSector &&
3721             mddev->chunk_sectors != mddev->new_chunk_sectors)
3722                 return sprintf(page, "%d (%d)\n",
3723                                mddev->new_chunk_sectors << 9,
3724                                mddev->chunk_sectors << 9);
3725         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3726 }
3727
3728 static ssize_t
3729 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3730 {
3731         unsigned long n;
3732         int err;
3733
3734         err = kstrtoul(buf, 10, &n);
3735         if (err < 0)
3736                 return err;
3737
3738         err = mddev_lock(mddev);
3739         if (err)
3740                 return err;
3741         if (mddev->pers) {
3742                 if (mddev->pers->check_reshape == NULL)
3743                         err = -EBUSY;
3744                 else if (mddev->ro)
3745                         err = -EROFS;
3746                 else {
3747                         mddev->new_chunk_sectors = n >> 9;
3748                         err = mddev->pers->check_reshape(mddev);
3749                         if (err)
3750                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                 }
3752         } else {
3753                 mddev->new_chunk_sectors = n >> 9;
3754                 if (mddev->reshape_position == MaxSector)
3755                         mddev->chunk_sectors = n >> 9;
3756         }
3757         mddev_unlock(mddev);
3758         return err ?: len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         unsigned long long n;
3775         int err;
3776
3777         if (cmd_match(buf, "none"))
3778                 n = MaxSector;
3779         else {
3780                 err = kstrtoull(buf, 10, &n);
3781                 if (err < 0)
3782                         return err;
3783                 if (n != (sector_t)n)
3784                         return -EINVAL;
3785         }
3786
3787         err = mddev_lock(mddev);
3788         if (err)
3789                 return err;
3790         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3791                 err = -EBUSY;
3792
3793         if (!err) {
3794                 mddev->recovery_cp = n;
3795                 if (mddev->pers)
3796                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3797         }
3798         mddev_unlock(mddev);
3799         return err ?: len;
3800 }
3801 static struct md_sysfs_entry md_resync_start =
3802 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3803                 resync_start_show, resync_start_store);
3804
3805 /*
3806  * The array state can be:
3807  *
3808  * clear
3809  *     No devices, no size, no level
3810  *     Equivalent to STOP_ARRAY ioctl
3811  * inactive
3812  *     May have some settings, but array is not active
3813  *        all IO results in error
3814  *     When written, doesn't tear down array, but just stops it
3815  * suspended (not supported yet)
3816  *     All IO requests will block. The array can be reconfigured.
3817  *     Writing this, if accepted, will block until array is quiescent
3818  * readonly
3819  *     no resync can happen.  no superblocks get written.
3820  *     write requests fail
3821  * read-auto
3822  *     like readonly, but behaves like 'clean' on a write request.
3823  *
3824  * clean - no pending writes, but otherwise active.
3825  *     When written to inactive array, starts without resync
3826  *     If a write request arrives then
3827  *       if metadata is known, mark 'dirty' and switch to 'active'.
3828  *       if not known, block and switch to write-pending
3829  *     If written to an active array that has pending writes, then fails.
3830  * active
3831  *     fully active: IO and resync can be happening.
3832  *     When written to inactive array, starts with resync
3833  *
3834  * write-pending
3835  *     clean, but writes are blocked waiting for 'active' to be written.
3836  *
3837  * active-idle
3838  *     like active, but no writes have been seen for a while (100msec).
3839  *
3840  */
3841 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3842                    write_pending, active_idle, bad_word};
3843 static char *array_states[] = {
3844         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3845         "write-pending", "active-idle", NULL };
3846
3847 static int match_word(const char *word, char **list)
3848 {
3849         int n;
3850         for (n=0; list[n]; n++)
3851                 if (cmd_match(word, list[n]))
3852                         break;
3853         return n;
3854 }
3855
3856 static ssize_t
3857 array_state_show(struct mddev *mddev, char *page)
3858 {
3859         enum array_state st = inactive;
3860
3861         if (mddev->pers)
3862                 switch(mddev->ro) {
3863                 case 1:
3864                         st = readonly;
3865                         break;
3866                 case 2:
3867                         st = read_auto;
3868                         break;
3869                 case 0:
3870                         if (mddev->in_sync)
3871                                 st = clean;
3872                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3873                                 st = write_pending;
3874                         else if (mddev->safemode)
3875                                 st = active_idle;
3876                         else
3877                                 st = active;
3878                 }
3879         else {
3880                 if (list_empty(&mddev->disks) &&
3881                     mddev->raid_disks == 0 &&
3882                     mddev->dev_sectors == 0)
3883                         st = clear;
3884                 else
3885                         st = inactive;
3886         }
3887         return sprintf(page, "%s\n", array_states[st]);
3888 }
3889
3890 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3891 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3892 static int do_md_run(struct mddev *mddev);
3893 static int restart_array(struct mddev *mddev);
3894
3895 static ssize_t
3896 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3897 {
3898         int err;
3899         enum array_state st = match_word(buf, array_states);
3900
3901         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3902                 /* don't take reconfig_mutex when toggling between
3903                  * clean and active
3904                  */
3905                 spin_lock(&mddev->lock);
3906                 if (st == active) {
3907                         restart_array(mddev);
3908                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909                         wake_up(&mddev->sb_wait);
3910                         err = 0;
3911                 } else /* st == clean */ {
3912                         restart_array(mddev);
3913                         if (atomic_read(&mddev->writes_pending) == 0) {
3914                                 if (mddev->in_sync == 0) {
3915                                         mddev->in_sync = 1;
3916                                         if (mddev->safemode == 1)
3917                                                 mddev->safemode = 0;
3918                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3919                                 }
3920                                 err = 0;
3921                         } else
3922                                 err = -EBUSY;
3923                 }
3924                 spin_unlock(&mddev->lock);
3925                 return err ?: len;
3926         }
3927         err = mddev_lock(mddev);
3928         if (err)
3929                 return err;
3930         err = -EINVAL;
3931         switch(st) {
3932         case bad_word:
3933                 break;
3934         case clear:
3935                 /* stopping an active array */
3936                 err = do_md_stop(mddev, 0, NULL);
3937                 break;
3938         case inactive:
3939                 /* stopping an active array */
3940                 if (mddev->pers)
3941                         err = do_md_stop(mddev, 2, NULL);
3942                 else
3943                         err = 0; /* already inactive */
3944                 break;
3945         case suspended:
3946                 break; /* not supported yet */
3947         case readonly:
3948                 if (mddev->pers)
3949                         err = md_set_readonly(mddev, NULL);
3950                 else {
3951                         mddev->ro = 1;
3952                         set_disk_ro(mddev->gendisk, 1);
3953                         err = do_md_run(mddev);
3954                 }
3955                 break;
3956         case read_auto:
3957                 if (mddev->pers) {
3958                         if (mddev->ro == 0)
3959                                 err = md_set_readonly(mddev, NULL);
3960                         else if (mddev->ro == 1)
3961                                 err = restart_array(mddev);
3962                         if (err == 0) {
3963                                 mddev->ro = 2;
3964                                 set_disk_ro(mddev->gendisk, 0);
3965                         }
3966                 } else {
3967                         mddev->ro = 2;
3968                         err = do_md_run(mddev);
3969                 }
3970                 break;
3971         case clean:
3972                 if (mddev->pers) {
3973                         err = restart_array(mddev);
3974                         if (err)
3975                                 break;
3976                         spin_lock(&mddev->lock);
3977                         if (atomic_read(&mddev->writes_pending) == 0) {
3978                                 if (mddev->in_sync == 0) {
3979                                         mddev->in_sync = 1;
3980                                         if (mddev->safemode == 1)
3981                                                 mddev->safemode = 0;
3982                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3983                                 }
3984                                 err = 0;
3985                         } else
3986                                 err = -EBUSY;
3987                         spin_unlock(&mddev->lock);
3988                 } else
3989                         err = -EINVAL;
3990                 break;
3991         case active:
3992                 if (mddev->pers) {
3993                         err = restart_array(mddev);
3994                         if (err)
3995                                 break;
3996                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3997                         wake_up(&mddev->sb_wait);
3998                         err = 0;
3999                 } else {
4000                         mddev->ro = 0;
4001                         set_disk_ro(mddev->gendisk, 0);
4002                         err = do_md_run(mddev);
4003                 }
4004                 break;
4005         case write_pending:
4006         case active_idle:
4007                 /* these cannot be set */
4008                 break;
4009         }
4010
4011         if (!err) {
4012                 if (mddev->hold_active == UNTIL_IOCTL)
4013                         mddev->hold_active = 0;
4014                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4015         }
4016         mddev_unlock(mddev);
4017         return err ?: len;
4018 }
4019 static struct md_sysfs_entry md_array_state =
4020 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4021
4022 static ssize_t
4023 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4024         return sprintf(page, "%d\n",
4025                        atomic_read(&mddev->max_corr_read_errors));
4026 }
4027
4028 static ssize_t
4029 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4030 {
4031         unsigned int n;
4032         int rv;
4033
4034         rv = kstrtouint(buf, 10, &n);
4035         if (rv < 0)
4036                 return rv;
4037         atomic_set(&mddev->max_corr_read_errors, n);
4038         return len;
4039 }
4040
4041 static struct md_sysfs_entry max_corr_read_errors =
4042 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4043         max_corrected_read_errors_store);
4044
4045 static ssize_t
4046 null_show(struct mddev *mddev, char *page)
4047 {
4048         return -EINVAL;
4049 }
4050
4051 static ssize_t
4052 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4053 {
4054         /* buf must be %d:%d\n? giving major and minor numbers */
4055         /* The new device is added to the array.
4056          * If the array has a persistent superblock, we read the
4057          * superblock to initialise info and check validity.
4058          * Otherwise, only checking done is that in bind_rdev_to_array,
4059          * which mainly checks size.
4060          */
4061         char *e;
4062         int major = simple_strtoul(buf, &e, 10);
4063         int minor;
4064         dev_t dev;
4065         struct md_rdev *rdev;
4066         int err;
4067
4068         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4069                 return -EINVAL;
4070         minor = simple_strtoul(e+1, &e, 10);
4071         if (*e && *e != '\n')
4072                 return -EINVAL;
4073         dev = MKDEV(major, minor);
4074         if (major != MAJOR(dev) ||
4075             minor != MINOR(dev))
4076                 return -EOVERFLOW;
4077
4078         flush_workqueue(md_misc_wq);
4079
4080         err = mddev_lock(mddev);
4081         if (err)
4082                 return err;
4083         if (mddev->persistent) {
4084                 rdev = md_import_device(dev, mddev->major_version,
4085                                         mddev->minor_version);
4086                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4087                         struct md_rdev *rdev0
4088                                 = list_entry(mddev->disks.next,
4089                                              struct md_rdev, same_set);
4090                         err = super_types[mddev->major_version]
4091                                 .load_super(rdev, rdev0, mddev->minor_version);
4092                         if (err < 0)
4093                                 goto out;
4094                 }
4095         } else if (mddev->external)
4096                 rdev = md_import_device(dev, -2, -1);
4097         else
4098                 rdev = md_import_device(dev, -1, -1);
4099
4100         if (IS_ERR(rdev)) {
4101                 mddev_unlock(mddev);
4102                 return PTR_ERR(rdev);
4103         }
4104         err = bind_rdev_to_array(rdev, mddev);
4105  out:
4106         if (err)
4107                 export_rdev(rdev);
4108         mddev_unlock(mddev);
4109         return err ? err : len;
4110 }
4111
4112 static struct md_sysfs_entry md_new_device =
4113 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4114
4115 static ssize_t
4116 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118         char *end;
4119         unsigned long chunk, end_chunk;
4120         int err;
4121
4122         err = mddev_lock(mddev);
4123         if (err)
4124                 return err;
4125         if (!mddev->bitmap)
4126                 goto out;
4127         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4128         while (*buf) {
4129                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4130                 if (buf == end) break;
4131                 if (*end == '-') { /* range */
4132                         buf = end + 1;
4133                         end_chunk = simple_strtoul(buf, &end, 0);
4134                         if (buf == end) break;
4135                 }
4136                 if (*end && !isspace(*end)) break;
4137                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4138                 buf = skip_spaces(end);
4139         }
4140         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4141 out:
4142         mddev_unlock(mddev);
4143         return len;
4144 }
4145
4146 static struct md_sysfs_entry md_bitmap =
4147 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148
4149 static ssize_t
4150 size_show(struct mddev *mddev, char *page)
4151 {
4152         return sprintf(page, "%llu\n",
4153                 (unsigned long long)mddev->dev_sectors / 2);
4154 }
4155
4156 static int update_size(struct mddev *mddev, sector_t num_sectors);
4157
4158 static ssize_t
4159 size_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161         /* If array is inactive, we can reduce the component size, but
4162          * not increase it (except from 0).
4163          * If array is active, we can try an on-line resize
4164          */
4165         sector_t sectors;
4166         int err = strict_blocks_to_sectors(buf, &sectors);
4167
4168         if (err < 0)
4169                 return err;
4170         err = mddev_lock(mddev);
4171         if (err)
4172                 return err;
4173         if (mddev->pers) {
4174                 err = update_size(mddev, sectors);
4175                 md_update_sb(mddev, 1);
4176         } else {
4177                 if (mddev->dev_sectors == 0 ||
4178                     mddev->dev_sectors > sectors)
4179                         mddev->dev_sectors = sectors;
4180                 else
4181                         err = -ENOSPC;
4182         }
4183         mddev_unlock(mddev);
4184         return err ? err : len;
4185 }
4186
4187 static struct md_sysfs_entry md_size =
4188 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4189
4190 /* Metadata version.
4191  * This is one of
4192  *   'none' for arrays with no metadata (good luck...)
4193  *   'external' for arrays with externally managed metadata,
4194  * or N.M for internally known formats
4195  */
4196 static ssize_t
4197 metadata_show(struct mddev *mddev, char *page)
4198 {
4199         if (mddev->persistent)
4200                 return sprintf(page, "%d.%d\n",
4201                                mddev->major_version, mddev->minor_version);
4202         else if (mddev->external)
4203                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4204         else
4205                 return sprintf(page, "none\n");
4206 }
4207
4208 static ssize_t
4209 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4210 {
4211         int major, minor;
4212         char *e;
4213         int err;
4214         /* Changing the details of 'external' metadata is
4215          * always permitted.  Otherwise there must be
4216          * no devices attached to the array.
4217          */
4218
4219         err = mddev_lock(mddev);
4220         if (err)
4221                 return err;
4222         err = -EBUSY;
4223         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4224                 ;
4225         else if (!list_empty(&mddev->disks))
4226                 goto out_unlock;
4227
4228         err = 0;
4229         if (cmd_match(buf, "none")) {
4230                 mddev->persistent = 0;
4231                 mddev->external = 0;
4232                 mddev->major_version = 0;
4233                 mddev->minor_version = 90;
4234                 goto out_unlock;
4235         }
4236         if (strncmp(buf, "external:", 9) == 0) {
4237                 size_t namelen = len-9;
4238                 if (namelen >= sizeof(mddev->metadata_type))
4239                         namelen = sizeof(mddev->metadata_type)-1;
4240                 strncpy(mddev->metadata_type, buf+9, namelen);
4241                 mddev->metadata_type[namelen] = 0;
4242                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4243                         mddev->metadata_type[--namelen] = 0;
4244                 mddev->persistent = 0;
4245                 mddev->external = 1;
4246                 mddev->major_version = 0;
4247                 mddev->minor_version = 90;
4248                 goto out_unlock;
4249         }
4250         major = simple_strtoul(buf, &e, 10);
4251         err = -EINVAL;
4252         if (e==buf || *e != '.')
4253                 goto out_unlock;
4254         buf = e+1;
4255         minor = simple_strtoul(buf, &e, 10);
4256         if (e==buf || (*e && *e != '\n') )
4257                 goto out_unlock;
4258         err = -ENOENT;
4259         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4260                 goto out_unlock;
4261         mddev->major_version = major;
4262         mddev->minor_version = minor;
4263         mddev->persistent = 1;
4264         mddev->external = 0;
4265         err = 0;
4266 out_unlock:
4267         mddev_unlock(mddev);
4268         return err ?: len;
4269 }
4270
4271 static struct md_sysfs_entry md_metadata =
4272 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4273
4274 static ssize_t
4275 action_show(struct mddev *mddev, char *page)
4276 {
4277         char *type = "idle";
4278         unsigned long recovery = mddev->recovery;
4279         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4280                 type = "frozen";
4281         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4282             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4283                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4284                         type = "reshape";
4285                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4286                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4287                                 type = "resync";
4288                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4289                                 type = "check";
4290                         else
4291                                 type = "repair";
4292                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4293                         type = "recover";
4294                 else if (mddev->reshape_position != MaxSector)
4295                         type = "reshape";
4296         }
4297         return sprintf(page, "%s\n", type);
4298 }
4299
4300 static ssize_t
4301 action_store(struct mddev *mddev, const char *page, size_t len)
4302 {
4303         if (!mddev->pers || !mddev->pers->sync_request)
4304                 return -EINVAL;
4305
4306
4307         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4308                 if (cmd_match(page, "frozen"))
4309                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310                 else
4311                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4312                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4313                     mddev_lock(mddev) == 0) {
4314                         flush_workqueue(md_misc_wq);
4315                         if (mddev->sync_thread) {
4316                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4317                                 md_reap_sync_thread(mddev);
4318                         }
4319                         mddev_unlock(mddev);
4320                 }
4321         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4322                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4323                 return -EBUSY;
4324         else if (cmd_match(page, "resync"))
4325                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326         else if (cmd_match(page, "recover")) {
4327                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4328                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4329         } else if (cmd_match(page, "reshape")) {
4330                 int err;
4331                 if (mddev->pers->start_reshape == NULL)
4332                         return -EINVAL;
4333                 err = mddev_lock(mddev);
4334                 if (!err) {
4335                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336                         err = mddev->pers->start_reshape(mddev);
4337                         mddev_unlock(mddev);
4338                 }
4339                 if (err)
4340                         return err;
4341                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4342         } else {
4343                 if (cmd_match(page, "check"))
4344                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4345                 else if (!cmd_match(page, "repair"))
4346                         return -EINVAL;
4347                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4348                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4349                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4350         }
4351         if (mddev->ro == 2) {
4352                 /* A write to sync_action is enough to justify
4353                  * canceling read-auto mode
4354                  */
4355                 mddev->ro = 0;
4356                 md_wakeup_thread(mddev->sync_thread);
4357         }
4358         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4359         md_wakeup_thread(mddev->thread);
4360         sysfs_notify_dirent_safe(mddev->sysfs_action);
4361         return len;
4362 }
4363
4364 static struct md_sysfs_entry md_scan_mode =
4365 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4366
4367 static ssize_t
4368 last_sync_action_show(struct mddev *mddev, char *page)
4369 {
4370         return sprintf(page, "%s\n", mddev->last_sync_action);
4371 }
4372
4373 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4374
4375 static ssize_t
4376 mismatch_cnt_show(struct mddev *mddev, char *page)
4377 {
4378         return sprintf(page, "%llu\n",
4379                        (unsigned long long)
4380                        atomic64_read(&mddev->resync_mismatches));
4381 }
4382
4383 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4384
4385 static ssize_t
4386 sync_min_show(struct mddev *mddev, char *page)
4387 {
4388         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4389                        mddev->sync_speed_min ? "local": "system");
4390 }
4391
4392 static ssize_t
4393 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4394 {
4395         unsigned int min;
4396         int rv;
4397
4398         if (strncmp(buf, "system", 6)==0) {
4399                 min = 0;
4400         } else {
4401                 rv = kstrtouint(buf, 10, &min);
4402                 if (rv < 0)
4403                         return rv;
4404                 if (min == 0)
4405                         return -EINVAL;
4406         }
4407         mddev->sync_speed_min = min;
4408         return len;
4409 }
4410
4411 static struct md_sysfs_entry md_sync_min =
4412 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4413
4414 static ssize_t
4415 sync_max_show(struct mddev *mddev, char *page)
4416 {
4417         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4418                        mddev->sync_speed_max ? "local": "system");
4419 }
4420
4421 static ssize_t
4422 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424         unsigned int max;
4425         int rv;
4426
4427         if (strncmp(buf, "system", 6)==0) {
4428                 max = 0;
4429         } else {
4430                 rv = kstrtouint(buf, 10, &max);
4431                 if (rv < 0)
4432                         return rv;
4433                 if (max == 0)
4434                         return -EINVAL;
4435         }
4436         mddev->sync_speed_max = max;
4437         return len;
4438 }
4439
4440 static struct md_sysfs_entry md_sync_max =
4441 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4442
4443 static ssize_t
4444 degraded_show(struct mddev *mddev, char *page)
4445 {
4446         return sprintf(page, "%d\n", mddev->degraded);
4447 }
4448 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4449
4450 static ssize_t
4451 sync_force_parallel_show(struct mddev *mddev, char *page)
4452 {
4453         return sprintf(page, "%d\n", mddev->parallel_resync);
4454 }
4455
4456 static ssize_t
4457 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459         long n;
4460
4461         if (kstrtol(buf, 10, &n))
4462                 return -EINVAL;
4463
4464         if (n != 0 && n != 1)
4465                 return -EINVAL;
4466
4467         mddev->parallel_resync = n;
4468
4469         if (mddev->sync_thread)
4470                 wake_up(&resync_wait);
4471
4472         return len;
4473 }
4474
4475 /* force parallel resync, even with shared block devices */
4476 static struct md_sysfs_entry md_sync_force_parallel =
4477 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4478        sync_force_parallel_show, sync_force_parallel_store);
4479
4480 static ssize_t
4481 sync_speed_show(struct mddev *mddev, char *page)
4482 {
4483         unsigned long resync, dt, db;
4484         if (mddev->curr_resync == 0)
4485                 return sprintf(page, "none\n");
4486         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4487         dt = (jiffies - mddev->resync_mark) / HZ;
4488         if (!dt) dt++;
4489         db = resync - mddev->resync_mark_cnt;
4490         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4491 }
4492
4493 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4494
4495 static ssize_t
4496 sync_completed_show(struct mddev *mddev, char *page)
4497 {
4498         unsigned long long max_sectors, resync;
4499
4500         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501                 return sprintf(page, "none\n");
4502
4503         if (mddev->curr_resync == 1 ||
4504             mddev->curr_resync == 2)
4505                 return sprintf(page, "delayed\n");
4506
4507         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4508             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4509                 max_sectors = mddev->resync_max_sectors;
4510         else
4511                 max_sectors = mddev->dev_sectors;
4512
4513         resync = mddev->curr_resync_completed;
4514         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4515 }
4516
4517 static struct md_sysfs_entry md_sync_completed =
4518         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4519
4520 static ssize_t
4521 min_sync_show(struct mddev *mddev, char *page)
4522 {
4523         return sprintf(page, "%llu\n",
4524                        (unsigned long long)mddev->resync_min);
4525 }
4526 static ssize_t
4527 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4528 {
4529         unsigned long long min;
4530         int err;
4531
4532         if (kstrtoull(buf, 10, &min))
4533                 return -EINVAL;
4534
4535         spin_lock(&mddev->lock);
4536         err = -EINVAL;
4537         if (min > mddev->resync_max)
4538                 goto out_unlock;
4539
4540         err = -EBUSY;
4541         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4542                 goto out_unlock;
4543
4544         /* Round down to multiple of 4K for safety */
4545         mddev->resync_min = round_down(min, 8);
4546         err = 0;
4547
4548 out_unlock:
4549         spin_unlock(&mddev->lock);
4550         return err ?: len;
4551 }
4552
4553 static struct md_sysfs_entry md_min_sync =
4554 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4555
4556 static ssize_t
4557 max_sync_show(struct mddev *mddev, char *page)
4558 {
4559         if (mddev->resync_max == MaxSector)
4560                 return sprintf(page, "max\n");
4561         else
4562                 return sprintf(page, "%llu\n",
4563                                (unsigned long long)mddev->resync_max);
4564 }
4565 static ssize_t
4566 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568         int err;
4569         spin_lock(&mddev->lock);
4570         if (strncmp(buf, "max", 3) == 0)
4571                 mddev->resync_max = MaxSector;
4572         else {
4573                 unsigned long long max;
4574                 int chunk;
4575
4576                 err = -EINVAL;
4577                 if (kstrtoull(buf, 10, &max))
4578                         goto out_unlock;
4579                 if (max < mddev->resync_min)
4580                         goto out_unlock;
4581
4582                 err = -EBUSY;
4583                 if (max < mddev->resync_max &&
4584                     mddev->ro == 0 &&
4585                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4586                         goto out_unlock;
4587
4588                 /* Must be a multiple of chunk_size */
4589                 chunk = mddev->chunk_sectors;
4590                 if (chunk) {
4591                         sector_t temp = max;
4592
4593                         err = -EINVAL;
4594                         if (sector_div(temp, chunk))
4595                                 goto out_unlock;
4596                 }
4597                 mddev->resync_max = max;
4598         }
4599         wake_up(&mddev->recovery_wait);
4600         err = 0;
4601 out_unlock:
4602         spin_unlock(&mddev->lock);
4603         return err ?: len;
4604 }
4605
4606 static struct md_sysfs_entry md_max_sync =
4607 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4608
4609 static ssize_t
4610 suspend_lo_show(struct mddev *mddev, char *page)
4611 {
4612         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4613 }
4614
4615 static ssize_t
4616 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4617 {
4618         unsigned long long old, new;
4619         int err;
4620
4621         err = kstrtoull(buf, 10, &new);
4622         if (err < 0)
4623                 return err;
4624         if (new != (sector_t)new)
4625                 return -EINVAL;
4626
4627         err = mddev_lock(mddev);
4628         if (err)
4629                 return err;
4630         err = -EINVAL;
4631         if (mddev->pers == NULL ||
4632             mddev->pers->quiesce == NULL)
4633                 goto unlock;
4634         old = mddev->suspend_lo;
4635         mddev->suspend_lo = new;
4636         if (new >= old)
4637                 /* Shrinking suspended region */
4638                 mddev->pers->quiesce(mddev, 2);
4639         else {
4640                 /* Expanding suspended region - need to wait */
4641                 mddev->pers->quiesce(mddev, 1);
4642                 mddev->pers->quiesce(mddev, 0);
4643         }
4644         err = 0;
4645 unlock:
4646         mddev_unlock(mddev);
4647         return err ?: len;
4648 }
4649 static struct md_sysfs_entry md_suspend_lo =
4650 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4651
4652 static ssize_t
4653 suspend_hi_show(struct mddev *mddev, char *page)
4654 {
4655         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4656 }
4657
4658 static ssize_t
4659 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661         unsigned long long old, new;
4662         int err;
4663
4664         err = kstrtoull(buf, 10, &new);
4665         if (err < 0)
4666                 return err;
4667         if (new != (sector_t)new)
4668                 return -EINVAL;
4669
4670         err = mddev_lock(mddev);
4671         if (err)
4672                 return err;
4673         err = -EINVAL;
4674         if (mddev->pers == NULL ||
4675             mddev->pers->quiesce == NULL)
4676                 goto unlock;
4677         old = mddev->suspend_hi;
4678         mddev->suspend_hi = new;
4679         if (new <= old)
4680                 /* Shrinking suspended region */
4681                 mddev->pers->quiesce(mddev, 2);
4682         else {
4683                 /* Expanding suspended region - need to wait */
4684                 mddev->pers->quiesce(mddev, 1);
4685                 mddev->pers->quiesce(mddev, 0);
4686         }
4687         err = 0;
4688 unlock:
4689         mddev_unlock(mddev);
4690         return err ?: len;
4691 }
4692 static struct md_sysfs_entry md_suspend_hi =
4693 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4694
4695 static ssize_t
4696 reshape_position_show(struct mddev *mddev, char *page)
4697 {
4698         if (mddev->reshape_position != MaxSector)
4699                 return sprintf(page, "%llu\n",
4700                                (unsigned long long)mddev->reshape_position);
4701         strcpy(page, "none\n");
4702         return 5;
4703 }
4704
4705 static ssize_t
4706 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4707 {
4708         struct md_rdev *rdev;
4709         unsigned long long new;
4710         int err;
4711
4712         err = kstrtoull(buf, 10, &new);
4713         if (err < 0)
4714                 return err;
4715         if (new != (sector_t)new)
4716                 return -EINVAL;
4717         err = mddev_lock(mddev);
4718         if (err)
4719                 return err;
4720         err = -EBUSY;
4721         if (mddev->pers)
4722                 goto unlock;
4723         mddev->reshape_position = new;
4724         mddev->delta_disks = 0;
4725         mddev->reshape_backwards = 0;
4726         mddev->new_level = mddev->level;
4727         mddev->new_layout = mddev->layout;
4728         mddev->new_chunk_sectors = mddev->chunk_sectors;
4729         rdev_for_each(rdev, mddev)
4730                 rdev->new_data_offset = rdev->data_offset;
4731         err = 0;
4732 unlock:
4733         mddev_unlock(mddev);
4734         return err ?: len;
4735 }
4736
4737 static struct md_sysfs_entry md_reshape_position =
4738 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4739        reshape_position_store);
4740
4741 static ssize_t
4742 reshape_direction_show(struct mddev *mddev, char *page)
4743 {
4744         return sprintf(page, "%s\n",
4745                        mddev->reshape_backwards ? "backwards" : "forwards");
4746 }
4747
4748 static ssize_t
4749 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751         int backwards = 0;
4752         int err;
4753
4754         if (cmd_match(buf, "forwards"))
4755                 backwards = 0;
4756         else if (cmd_match(buf, "backwards"))
4757                 backwards = 1;
4758         else
4759                 return -EINVAL;
4760         if (mddev->reshape_backwards == backwards)
4761                 return len;
4762
4763         err = mddev_lock(mddev);
4764         if (err)
4765                 return err;
4766         /* check if we are allowed to change */
4767         if (mddev->delta_disks)
4768                 err = -EBUSY;
4769         else if (mddev->persistent &&
4770             mddev->major_version == 0)
4771                 err =  -EINVAL;
4772         else
4773                 mddev->reshape_backwards = backwards;
4774         mddev_unlock(mddev);
4775         return err ?: len;
4776 }
4777
4778 static struct md_sysfs_entry md_reshape_direction =
4779 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4780        reshape_direction_store);
4781
4782 static ssize_t
4783 array_size_show(struct mddev *mddev, char *page)
4784 {
4785         if (mddev->external_size)
4786                 return sprintf(page, "%llu\n",
4787                                (unsigned long long)mddev->array_sectors/2);
4788         else
4789                 return sprintf(page, "default\n");
4790 }
4791
4792 static ssize_t
4793 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4794 {
4795         sector_t sectors;
4796         int err;
4797
4798         err = mddev_lock(mddev);
4799         if (err)
4800                 return err;
4801
4802         if (strncmp(buf, "default", 7) == 0) {
4803                 if (mddev->pers)
4804                         sectors = mddev->pers->size(mddev, 0, 0);
4805                 else
4806                         sectors = mddev->array_sectors;
4807
4808                 mddev->external_size = 0;
4809         } else {
4810                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4811                         err = -EINVAL;
4812                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4813                         err = -E2BIG;
4814                 else
4815                         mddev->external_size = 1;
4816         }
4817
4818         if (!err) {
4819                 mddev->array_sectors = sectors;
4820                 if (mddev->pers) {
4821                         set_capacity(mddev->gendisk, mddev->array_sectors);
4822                         revalidate_disk(mddev->gendisk);
4823                 }
4824         }
4825         mddev_unlock(mddev);
4826         return err ?: len;
4827 }
4828
4829 static struct md_sysfs_entry md_array_size =
4830 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4831        array_size_store);
4832
4833 static struct attribute *md_default_attrs[] = {
4834         &md_level.attr,
4835         &md_layout.attr,
4836         &md_raid_disks.attr,
4837         &md_chunk_size.attr,
4838         &md_size.attr,
4839         &md_resync_start.attr,
4840         &md_metadata.attr,
4841         &md_new_device.attr,
4842         &md_safe_delay.attr,
4843         &md_array_state.attr,
4844         &md_reshape_position.attr,
4845         &md_reshape_direction.attr,
4846         &md_array_size.attr,
4847         &max_corr_read_errors.attr,
4848         NULL,
4849 };
4850
4851 static struct attribute *md_redundancy_attrs[] = {
4852         &md_scan_mode.attr,
4853         &md_last_scan_mode.attr,
4854         &md_mismatches.attr,
4855         &md_sync_min.attr,
4856         &md_sync_max.attr,
4857         &md_sync_speed.attr,
4858         &md_sync_force_parallel.attr,
4859         &md_sync_completed.attr,
4860         &md_min_sync.attr,
4861         &md_max_sync.attr,
4862         &md_suspend_lo.attr,
4863         &md_suspend_hi.attr,
4864         &md_bitmap.attr,
4865         &md_degraded.attr,
4866         NULL,
4867 };
4868 static struct attribute_group md_redundancy_group = {
4869         .name = NULL,
4870         .attrs = md_redundancy_attrs,
4871 };
4872
4873 static ssize_t
4874 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4875 {
4876         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4877         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4878         ssize_t rv;
4879
4880         if (!entry->show)
4881                 return -EIO;
4882         spin_lock(&all_mddevs_lock);
4883         if (list_empty(&mddev->all_mddevs)) {
4884                 spin_unlock(&all_mddevs_lock);
4885                 return -EBUSY;
4886         }
4887         mddev_get(mddev);
4888         spin_unlock(&all_mddevs_lock);
4889
4890         rv = entry->show(mddev, page);
4891         mddev_put(mddev);
4892         return rv;
4893 }
4894
4895 static ssize_t
4896 md_attr_store(struct kobject *kobj, struct attribute *attr,
4897               const char *page, size_t length)
4898 {
4899         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4900         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4901         ssize_t rv;
4902
4903         if (!entry->store)
4904                 return -EIO;
4905         if (!capable(CAP_SYS_ADMIN))
4906                 return -EACCES;
4907         spin_lock(&all_mddevs_lock);
4908         if (list_empty(&mddev->all_mddevs)) {
4909                 spin_unlock(&all_mddevs_lock);
4910                 return -EBUSY;
4911         }
4912         mddev_get(mddev);
4913         spin_unlock(&all_mddevs_lock);
4914         rv = entry->store(mddev, page, length);
4915         mddev_put(mddev);
4916         return rv;
4917 }
4918
4919 static void md_free(struct kobject *ko)
4920 {
4921         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4922
4923         if (mddev->sysfs_state)
4924                 sysfs_put(mddev->sysfs_state);
4925
4926         if (mddev->queue)
4927                 blk_cleanup_queue(mddev->queue);
4928         if (mddev->gendisk) {
4929                 del_gendisk(mddev->gendisk);
4930                 put_disk(mddev->gendisk);
4931         }
4932
4933         kfree(mddev);
4934 }
4935
4936 static const struct sysfs_ops md_sysfs_ops = {
4937         .show   = md_attr_show,
4938         .store  = md_attr_store,
4939 };
4940 static struct kobj_type md_ktype = {
4941         .release        = md_free,
4942         .sysfs_ops      = &md_sysfs_ops,
4943         .default_attrs  = md_default_attrs,
4944 };
4945
4946 int mdp_major = 0;
4947
4948 static void mddev_delayed_delete(struct work_struct *ws)
4949 {
4950         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4951
4952         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4953         kobject_del(&mddev->kobj);
4954         kobject_put(&mddev->kobj);
4955 }
4956
4957 static int md_alloc(dev_t dev, char *name)
4958 {
4959         static DEFINE_MUTEX(disks_mutex);
4960         struct mddev *mddev = mddev_find(dev);
4961         struct gendisk *disk;
4962         int partitioned;
4963         int shift;
4964         int unit;
4965         int error;
4966
4967         if (!mddev)
4968                 return -ENODEV;
4969
4970         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4971         shift = partitioned ? MdpMinorShift : 0;
4972         unit = MINOR(mddev->unit) >> shift;
4973
4974         /* wait for any previous instance of this device to be
4975          * completely removed (mddev_delayed_delete).
4976          */
4977         flush_workqueue(md_misc_wq);
4978
4979         mutex_lock(&disks_mutex);
4980         error = -EEXIST;
4981         if (mddev->gendisk)
4982                 goto abort;
4983
4984         if (name) {
4985                 /* Need to ensure that 'name' is not a duplicate.
4986                  */
4987                 struct mddev *mddev2;
4988                 spin_lock(&all_mddevs_lock);
4989
4990                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4991                         if (mddev2->gendisk &&
4992                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4993                                 spin_unlock(&all_mddevs_lock);
4994                                 goto abort;
4995                         }
4996                 spin_unlock(&all_mddevs_lock);
4997         }
4998
4999         error = -ENOMEM;
5000         mddev->queue = blk_alloc_queue(GFP_KERNEL);
5001         if (!mddev->queue)
5002                 goto abort;
5003         mddev->queue->queuedata = mddev;
5004
5005         blk_queue_make_request(mddev->queue, md_make_request);
5006         blk_set_stacking_limits(&mddev->queue->limits);
5007
5008         disk = alloc_disk(1 << shift);
5009         if (!disk) {
5010                 blk_cleanup_queue(mddev->queue);
5011                 mddev->queue = NULL;
5012                 goto abort;
5013         }
5014         disk->major = MAJOR(mddev->unit);
5015         disk->first_minor = unit << shift;
5016         if (name)
5017                 strcpy(disk->disk_name, name);
5018         else if (partitioned)
5019                 sprintf(disk->disk_name, "md_d%d", unit);
5020         else
5021                 sprintf(disk->disk_name, "md%d", unit);
5022         disk->fops = &md_fops;
5023         disk->private_data = mddev;
5024         disk->queue = mddev->queue;
5025         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5026         /* Allow extended partitions.  This makes the
5027          * 'mdp' device redundant, but we can't really
5028          * remove it now.
5029          */
5030         disk->flags |= GENHD_FL_EXT_DEVT;
5031         mddev->gendisk = disk;
5032         /* As soon as we call add_disk(), another thread could get
5033          * through to md_open, so make sure it doesn't get too far
5034          */
5035         mutex_lock(&mddev->open_mutex);
5036         add_disk(disk);
5037
5038         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5039                                      &disk_to_dev(disk)->kobj, "%s", "md");
5040         if (error) {
5041                 /* This isn't possible, but as kobject_init_and_add is marked
5042                  * __must_check, we must do something with the result
5043                  */
5044                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5045                        disk->disk_name);
5046                 error = 0;
5047         }
5048         if (mddev->kobj.sd &&
5049             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5050                 printk(KERN_DEBUG "pointless warning\n");
5051         mutex_unlock(&mddev->open_mutex);
5052  abort:
5053         mutex_unlock(&disks_mutex);
5054         if (!error && mddev->kobj.sd) {
5055                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5056                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5057         }
5058         mddev_put(mddev);
5059         return error;
5060 }
5061
5062 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5063 {
5064         md_alloc(dev, NULL);
5065         return NULL;
5066 }
5067
5068 static int add_named_array(const char *val, struct kernel_param *kp)
5069 {
5070         /* val must be "md_*" where * is not all digits.
5071          * We allocate an array with a large free minor number, and
5072          * set the name to val.  val must not already be an active name.
5073          */
5074         int len = strlen(val);
5075         char buf[DISK_NAME_LEN];
5076
5077         while (len && val[len-1] == '\n')
5078                 len--;
5079         if (len >= DISK_NAME_LEN)
5080                 return -E2BIG;
5081         strlcpy(buf, val, len+1);
5082         if (strncmp(buf, "md_", 3) != 0)
5083                 return -EINVAL;
5084         return md_alloc(0, buf);
5085 }
5086
5087 static void md_safemode_timeout(unsigned long data)
5088 {
5089         struct mddev *mddev = (struct mddev *) data;
5090
5091         if (!atomic_read(&mddev->writes_pending)) {
5092                 mddev->safemode = 1;
5093                 if (mddev->external)
5094                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5095         }
5096         md_wakeup_thread(mddev->thread);
5097 }
5098
5099 static int start_dirty_degraded;
5100
5101 int md_run(struct mddev *mddev)
5102 {
5103         int err;
5104         struct md_rdev *rdev;
5105         struct md_personality *pers;
5106
5107         if (list_empty(&mddev->disks))
5108                 /* cannot run an array with no devices.. */
5109                 return -EINVAL;
5110
5111         if (mddev->pers)
5112                 return -EBUSY;
5113         /* Cannot run until previous stop completes properly */
5114         if (mddev->sysfs_active)
5115                 return -EBUSY;
5116
5117         /*
5118          * Analyze all RAID superblock(s)
5119          */
5120         if (!mddev->raid_disks) {
5121                 if (!mddev->persistent)
5122                         return -EINVAL;
5123                 analyze_sbs(mddev);
5124         }
5125
5126         if (mddev->level != LEVEL_NONE)
5127                 request_module("md-level-%d", mddev->level);
5128         else if (mddev->clevel[0])
5129                 request_module("md-%s", mddev->clevel);
5130
5131         /*
5132          * Drop all container device buffers, from now on
5133          * the only valid external interface is through the md
5134          * device.
5135          */
5136         rdev_for_each(rdev, mddev) {
5137                 if (test_bit(Faulty, &rdev->flags))
5138                         continue;
5139                 sync_blockdev(rdev->bdev);
5140                 invalidate_bdev(rdev->bdev);
5141
5142                 /* perform some consistency tests on the device.
5143                  * We don't want the data to overlap the metadata,
5144                  * Internal Bitmap issues have been handled elsewhere.
5145                  */
5146                 if (rdev->meta_bdev) {
5147                         /* Nothing to check */;
5148                 } else if (rdev->data_offset < rdev->sb_start) {
5149                         if (mddev->dev_sectors &&
5150                             rdev->data_offset + mddev->dev_sectors
5151                             > rdev->sb_start) {
5152                                 printk("md: %s: data overlaps metadata\n",
5153                                        mdname(mddev));
5154                                 return -EINVAL;
5155                         }
5156                 } else {
5157                         if (rdev->sb_start + rdev->sb_size/512
5158                             > rdev->data_offset) {
5159                                 printk("md: %s: metadata overlaps data\n",
5160                                        mdname(mddev));
5161                                 return -EINVAL;
5162                         }
5163                 }
5164                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5165         }
5166
5167         if (mddev->bio_set == NULL)
5168                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5169
5170         spin_lock(&pers_lock);
5171         pers = find_pers(mddev->level, mddev->clevel);
5172         if (!pers || !try_module_get(pers->owner)) {
5173                 spin_unlock(&pers_lock);
5174                 if (mddev->level != LEVEL_NONE)
5175                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5176                                mddev->level);
5177                 else
5178                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5179                                mddev->clevel);
5180                 return -EINVAL;
5181         }
5182         spin_unlock(&pers_lock);
5183         if (mddev->level != pers->level) {
5184                 mddev->level = pers->level;
5185                 mddev->new_level = pers->level;
5186         }
5187         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5188
5189         if (mddev->reshape_position != MaxSector &&
5190             pers->start_reshape == NULL) {
5191                 /* This personality cannot handle reshaping... */
5192                 module_put(pers->owner);
5193                 return -EINVAL;
5194         }
5195
5196         if (pers->sync_request) {
5197                 /* Warn if this is a potentially silly
5198                  * configuration.
5199                  */
5200                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5201                 struct md_rdev *rdev2;
5202                 int warned = 0;
5203
5204                 rdev_for_each(rdev, mddev)
5205                         rdev_for_each(rdev2, mddev) {
5206                                 if (rdev < rdev2 &&
5207                                     rdev->bdev->bd_contains ==
5208                                     rdev2->bdev->bd_contains) {
5209                                         printk(KERN_WARNING
5210                                                "%s: WARNING: %s appears to be"
5211                                                " on the same physical disk as"
5212                                                " %s.\n",
5213                                                mdname(mddev),
5214                                                bdevname(rdev->bdev,b),
5215                                                bdevname(rdev2->bdev,b2));
5216                                         warned = 1;
5217                                 }
5218                         }
5219
5220                 if (warned)
5221                         printk(KERN_WARNING
5222                                "True protection against single-disk"
5223                                " failure might be compromised.\n");
5224         }
5225
5226         mddev->recovery = 0;
5227         /* may be over-ridden by personality */
5228         mddev->resync_max_sectors = mddev->dev_sectors;
5229
5230         mddev->ok_start_degraded = start_dirty_degraded;
5231
5232         if (start_readonly && mddev->ro == 0)
5233                 mddev->ro = 2; /* read-only, but switch on first write */
5234
5235         err = pers->run(mddev);
5236         if (err)
5237                 printk(KERN_ERR "md: pers->run() failed ...\n");
5238         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5239                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5240                           " but 'external_size' not in effect?\n", __func__);
5241                 printk(KERN_ERR
5242                        "md: invalid array_size %llu > default size %llu\n",
5243                        (unsigned long long)mddev->array_sectors / 2,
5244                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5245                 err = -EINVAL;
5246         }
5247         if (err == 0 && pers->sync_request &&
5248             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5249                 struct bitmap *bitmap;
5250
5251                 bitmap = bitmap_create(mddev, -1);
5252                 if (IS_ERR(bitmap)) {
5253                         err = PTR_ERR(bitmap);
5254                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5255                                mdname(mddev), err);
5256                 } else
5257                         mddev->bitmap = bitmap;
5258
5259         }
5260         if (err) {
5261                 mddev_detach(mddev);
5262                 if (mddev->private)
5263                         pers->free(mddev, mddev->private);
5264                 mddev->private = NULL;
5265                 module_put(pers->owner);
5266                 bitmap_destroy(mddev);
5267                 return err;
5268         }
5269         if (mddev->queue) {
5270                 mddev->queue->backing_dev_info.congested_data = mddev;
5271                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5272         }
5273         if (pers->sync_request) {
5274                 if (mddev->kobj.sd &&
5275                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5276                         printk(KERN_WARNING
5277                                "md: cannot register extra attributes for %s\n",
5278                                mdname(mddev));
5279                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5280         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5281                 mddev->ro = 0;
5282
5283         atomic_set(&mddev->writes_pending,0);
5284         atomic_set(&mddev->max_corr_read_errors,
5285                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5286         mddev->safemode = 0;
5287         if (mddev_is_clustered(mddev))
5288                 mddev->safemode_delay = 0;
5289         else
5290                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5291         mddev->in_sync = 1;
5292         smp_wmb();
5293         spin_lock(&mddev->lock);
5294         mddev->pers = pers;
5295         mddev->ready = 1;
5296         spin_unlock(&mddev->lock);
5297         rdev_for_each(rdev, mddev)
5298                 if (rdev->raid_disk >= 0)
5299                         if (sysfs_link_rdev(mddev, rdev))
5300                                 /* failure here is OK */;
5301
5302         if (mddev->degraded && !mddev->ro)
5303                 /* This ensures that recovering status is reported immediately
5304                  * via sysfs - until a lack of spares is confirmed.
5305                  */
5306                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5307         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5308
5309         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5310                 md_update_sb(mddev, 0);
5311
5312         md_new_event(mddev);
5313         sysfs_notify_dirent_safe(mddev->sysfs_state);
5314         sysfs_notify_dirent_safe(mddev->sysfs_action);
5315         sysfs_notify(&mddev->kobj, NULL, "degraded");
5316         return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(md_run);
5319
5320 static int do_md_run(struct mddev *mddev)
5321 {
5322         int err;
5323
5324         err = md_run(mddev);
5325         if (err)
5326                 goto out;
5327         err = bitmap_load(mddev);
5328         if (err) {
5329                 bitmap_destroy(mddev);
5330                 goto out;
5331         }
5332
5333         if (mddev_is_clustered(mddev))
5334                 md_allow_write(mddev);
5335
5336         md_wakeup_thread(mddev->thread);
5337         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5338
5339         set_capacity(mddev->gendisk, mddev->array_sectors);
5340         revalidate_disk(mddev->gendisk);
5341         mddev->changed = 1;
5342         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5343 out:
5344         return err;
5345 }
5346
5347 static int restart_array(struct mddev *mddev)
5348 {
5349         struct gendisk *disk = mddev->gendisk;
5350
5351         /* Complain if it has no devices */
5352         if (list_empty(&mddev->disks))
5353                 return -ENXIO;
5354         if (!mddev->pers)
5355                 return -EINVAL;
5356         if (!mddev->ro)
5357                 return -EBUSY;
5358         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5359                 struct md_rdev *rdev;
5360                 bool has_journal = false;
5361
5362                 rcu_read_lock();
5363                 rdev_for_each_rcu(rdev, mddev) {
5364                         if (test_bit(Journal, &rdev->flags) &&
5365                             !test_bit(Faulty, &rdev->flags)) {
5366                                 has_journal = true;
5367                                 break;
5368                         }
5369                 }
5370                 rcu_read_unlock();
5371
5372                 /* Don't restart rw with journal missing/faulty */
5373                 if (!has_journal)
5374                         return -EINVAL;
5375         }
5376
5377         mddev->safemode = 0;
5378         mddev->ro = 0;
5379         set_disk_ro(disk, 0);
5380         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5381                 mdname(mddev));
5382         /* Kick recovery or resync if necessary */
5383         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5384         md_wakeup_thread(mddev->thread);
5385         md_wakeup_thread(mddev->sync_thread);
5386         sysfs_notify_dirent_safe(mddev->sysfs_state);
5387         return 0;
5388 }
5389
5390 static void md_clean(struct mddev *mddev)
5391 {
5392         mddev->array_sectors = 0;
5393         mddev->external_size = 0;
5394         mddev->dev_sectors = 0;
5395         mddev->raid_disks = 0;
5396         mddev->recovery_cp = 0;
5397         mddev->resync_min = 0;
5398         mddev->resync_max = MaxSector;
5399         mddev->reshape_position = MaxSector;
5400         mddev->external = 0;
5401         mddev->persistent = 0;
5402         mddev->level = LEVEL_NONE;
5403         mddev->clevel[0] = 0;
5404         mddev->flags = 0;
5405         mddev->ro = 0;
5406         mddev->metadata_type[0] = 0;
5407         mddev->chunk_sectors = 0;
5408         mddev->ctime = mddev->utime = 0;
5409         mddev->layout = 0;
5410         mddev->max_disks = 0;
5411         mddev->events = 0;
5412         mddev->can_decrease_events = 0;
5413         mddev->delta_disks = 0;
5414         mddev->reshape_backwards = 0;
5415         mddev->new_level = LEVEL_NONE;
5416         mddev->new_layout = 0;
5417         mddev->new_chunk_sectors = 0;
5418         mddev->curr_resync = 0;
5419         atomic64_set(&mddev->resync_mismatches, 0);
5420         mddev->suspend_lo = mddev->suspend_hi = 0;
5421         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5422         mddev->recovery = 0;
5423         mddev->in_sync = 0;
5424         mddev->changed = 0;
5425         mddev->degraded = 0;
5426         mddev->safemode = 0;
5427         mddev->private = NULL;
5428         mddev->bitmap_info.offset = 0;
5429         mddev->bitmap_info.default_offset = 0;
5430         mddev->bitmap_info.default_space = 0;
5431         mddev->bitmap_info.chunksize = 0;
5432         mddev->bitmap_info.daemon_sleep = 0;
5433         mddev->bitmap_info.max_write_behind = 0;
5434 }
5435
5436 static void __md_stop_writes(struct mddev *mddev)
5437 {
5438         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5439         flush_workqueue(md_misc_wq);
5440         if (mddev->sync_thread) {
5441                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5442                 md_reap_sync_thread(mddev);
5443         }
5444
5445         del_timer_sync(&mddev->safemode_timer);
5446
5447         bitmap_flush(mddev);
5448         md_super_wait(mddev);
5449
5450         if (mddev->ro == 0 &&
5451             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5452              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5453                 /* mark array as shutdown cleanly */
5454                 if (!mddev_is_clustered(mddev))
5455                         mddev->in_sync = 1;
5456                 md_update_sb(mddev, 1);
5457         }
5458 }
5459
5460 void md_stop_writes(struct mddev *mddev)
5461 {
5462         mddev_lock_nointr(mddev);
5463         __md_stop_writes(mddev);
5464         mddev_unlock(mddev);
5465 }
5466 EXPORT_SYMBOL_GPL(md_stop_writes);
5467
5468 static void mddev_detach(struct mddev *mddev)
5469 {
5470         struct bitmap *bitmap = mddev->bitmap;
5471         /* wait for behind writes to complete */
5472         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5473                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5474                        mdname(mddev));
5475                 /* need to kick something here to make sure I/O goes? */
5476                 wait_event(bitmap->behind_wait,
5477                            atomic_read(&bitmap->behind_writes) == 0);
5478         }
5479         if (mddev->pers && mddev->pers->quiesce) {
5480                 mddev->pers->quiesce(mddev, 1);
5481                 mddev->pers->quiesce(mddev, 0);
5482         }
5483         md_unregister_thread(&mddev->thread);
5484         if (mddev->queue)
5485                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5486 }
5487
5488 static void __md_stop(struct mddev *mddev)
5489 {
5490         struct md_personality *pers = mddev->pers;
5491         mddev_detach(mddev);
5492         /* Ensure ->event_work is done */
5493         flush_workqueue(md_misc_wq);
5494         spin_lock(&mddev->lock);
5495         mddev->ready = 0;
5496         mddev->pers = NULL;
5497         spin_unlock(&mddev->lock);
5498         pers->free(mddev, mddev->private);
5499         mddev->private = NULL;
5500         if (pers->sync_request && mddev->to_remove == NULL)
5501                 mddev->to_remove = &md_redundancy_group;
5502         module_put(pers->owner);
5503         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 }
5505
5506 void md_stop(struct mddev *mddev)
5507 {
5508         /* stop the array and free an attached data structures.
5509          * This is called from dm-raid
5510          */
5511         __md_stop(mddev);
5512         bitmap_destroy(mddev);
5513         if (mddev->bio_set)
5514                 bioset_free(mddev->bio_set);
5515 }
5516
5517 EXPORT_SYMBOL_GPL(md_stop);
5518
5519 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5520 {
5521         int err = 0;
5522         int did_freeze = 0;
5523
5524         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5525                 did_freeze = 1;
5526                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5527                 md_wakeup_thread(mddev->thread);
5528         }
5529         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5530                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5531         if (mddev->sync_thread)
5532                 /* Thread might be blocked waiting for metadata update
5533                  * which will now never happen */
5534                 wake_up_process(mddev->sync_thread->tsk);
5535
5536         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5537                 return -EBUSY;
5538         mddev_unlock(mddev);
5539         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5540                                           &mddev->recovery));
5541         wait_event(mddev->sb_wait,
5542                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5543         mddev_lock_nointr(mddev);
5544
5545         mutex_lock(&mddev->open_mutex);
5546         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5547             mddev->sync_thread ||
5548             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5549             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5550                 printk("md: %s still in use.\n",mdname(mddev));
5551                 if (did_freeze) {
5552                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5553                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5554                         md_wakeup_thread(mddev->thread);
5555                 }
5556                 err = -EBUSY;
5557                 goto out;
5558         }
5559         if (mddev->pers) {
5560                 __md_stop_writes(mddev);
5561
5562                 err  = -ENXIO;
5563                 if (mddev->ro==1)
5564                         goto out;
5565                 mddev->ro = 1;
5566                 set_disk_ro(mddev->gendisk, 1);
5567                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5568                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5569                 md_wakeup_thread(mddev->thread);
5570                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5571                 err = 0;
5572         }
5573 out:
5574         mutex_unlock(&mddev->open_mutex);
5575         return err;
5576 }
5577
5578 /* mode:
5579  *   0 - completely stop and dis-assemble array
5580  *   2 - stop but do not disassemble array
5581  */
5582 static int do_md_stop(struct mddev *mddev, int mode,
5583                       struct block_device *bdev)
5584 {
5585         struct gendisk *disk = mddev->gendisk;
5586         struct md_rdev *rdev;
5587         int did_freeze = 0;
5588
5589         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5590                 did_freeze = 1;
5591                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5592                 md_wakeup_thread(mddev->thread);
5593         }
5594         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5595                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5596         if (mddev->sync_thread)
5597                 /* Thread might be blocked waiting for metadata update
5598                  * which will now never happen */
5599                 wake_up_process(mddev->sync_thread->tsk);
5600
5601         mddev_unlock(mddev);
5602         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5603                                  !test_bit(MD_RECOVERY_RUNNING,
5604                                            &mddev->recovery)));
5605         mddev_lock_nointr(mddev);
5606
5607         mutex_lock(&mddev->open_mutex);
5608         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5609             mddev->sysfs_active ||
5610             mddev->sync_thread ||
5611             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5612             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5613                 printk("md: %s still in use.\n",mdname(mddev));
5614                 mutex_unlock(&mddev->open_mutex);
5615                 if (did_freeze) {
5616                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5617                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5618                         md_wakeup_thread(mddev->thread);
5619                 }
5620                 return -EBUSY;
5621         }
5622         if (mddev->pers) {
5623                 if (mddev->ro)
5624                         set_disk_ro(disk, 0);
5625
5626                 __md_stop_writes(mddev);
5627                 __md_stop(mddev);
5628                 mddev->queue->backing_dev_info.congested_fn = NULL;
5629
5630                 /* tell userspace to handle 'inactive' */
5631                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5632
5633                 rdev_for_each(rdev, mddev)
5634                         if (rdev->raid_disk >= 0)
5635                                 sysfs_unlink_rdev(mddev, rdev);
5636
5637                 set_capacity(disk, 0);
5638                 mutex_unlock(&mddev->open_mutex);
5639                 mddev->changed = 1;
5640                 revalidate_disk(disk);
5641
5642                 if (mddev->ro)
5643                         mddev->ro = 0;
5644         } else
5645                 mutex_unlock(&mddev->open_mutex);
5646         /*
5647          * Free resources if final stop
5648          */
5649         if (mode == 0) {
5650                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5651
5652                 bitmap_destroy(mddev);
5653                 if (mddev->bitmap_info.file) {
5654                         struct file *f = mddev->bitmap_info.file;
5655                         spin_lock(&mddev->lock);
5656                         mddev->bitmap_info.file = NULL;
5657                         spin_unlock(&mddev->lock);
5658                         fput(f);
5659                 }
5660                 mddev->bitmap_info.offset = 0;
5661
5662                 export_array(mddev);
5663
5664                 md_clean(mddev);
5665                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5666                 if (mddev->hold_active == UNTIL_STOP)
5667                         mddev->hold_active = 0;
5668         }
5669         md_new_event(mddev);
5670         sysfs_notify_dirent_safe(mddev->sysfs_state);
5671         return 0;
5672 }
5673
5674 #ifndef MODULE
5675 static void autorun_array(struct mddev *mddev)
5676 {
5677         struct md_rdev *rdev;
5678         int err;
5679
5680         if (list_empty(&mddev->disks))
5681                 return;
5682
5683         printk(KERN_INFO "md: running: ");
5684
5685         rdev_for_each(rdev, mddev) {
5686                 char b[BDEVNAME_SIZE];
5687                 printk("<%s>", bdevname(rdev->bdev,b));
5688         }
5689         printk("\n");
5690
5691         err = do_md_run(mddev);
5692         if (err) {
5693                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5694                 do_md_stop(mddev, 0, NULL);
5695         }
5696 }
5697
5698 /*
5699  * lets try to run arrays based on all disks that have arrived
5700  * until now. (those are in pending_raid_disks)
5701  *
5702  * the method: pick the first pending disk, collect all disks with
5703  * the same UUID, remove all from the pending list and put them into
5704  * the 'same_array' list. Then order this list based on superblock
5705  * update time (freshest comes first), kick out 'old' disks and
5706  * compare superblocks. If everything's fine then run it.
5707  *
5708  * If "unit" is allocated, then bump its reference count
5709  */
5710 static void autorun_devices(int part)
5711 {
5712         struct md_rdev *rdev0, *rdev, *tmp;
5713         struct mddev *mddev;
5714         char b[BDEVNAME_SIZE];
5715
5716         printk(KERN_INFO "md: autorun ...\n");
5717         while (!list_empty(&pending_raid_disks)) {
5718                 int unit;
5719                 dev_t dev;
5720                 LIST_HEAD(candidates);
5721                 rdev0 = list_entry(pending_raid_disks.next,
5722                                          struct md_rdev, same_set);
5723
5724                 printk(KERN_INFO "md: considering %s ...\n",
5725                         bdevname(rdev0->bdev,b));
5726                 INIT_LIST_HEAD(&candidates);
5727                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5728                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5729                                 printk(KERN_INFO "md:  adding %s ...\n",
5730                                         bdevname(rdev->bdev,b));
5731                                 list_move(&rdev->same_set, &candidates);
5732                         }
5733                 /*
5734                  * now we have a set of devices, with all of them having
5735                  * mostly sane superblocks. It's time to allocate the
5736                  * mddev.
5737                  */
5738                 if (part) {
5739                         dev = MKDEV(mdp_major,
5740                                     rdev0->preferred_minor << MdpMinorShift);
5741                         unit = MINOR(dev) >> MdpMinorShift;
5742                 } else {
5743                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5744                         unit = MINOR(dev);
5745                 }
5746                 if (rdev0->preferred_minor != unit) {
5747                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5748                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5749                         break;
5750                 }
5751
5752                 md_probe(dev, NULL, NULL);
5753                 mddev = mddev_find(dev);
5754                 if (!mddev || !mddev->gendisk) {
5755                         if (mddev)
5756                                 mddev_put(mddev);
5757                         printk(KERN_ERR
5758                                 "md: cannot allocate memory for md drive.\n");
5759                         break;
5760                 }
5761                 if (mddev_lock(mddev))
5762                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5763                                mdname(mddev));
5764                 else if (mddev->raid_disks || mddev->major_version
5765                          || !list_empty(&mddev->disks)) {
5766                         printk(KERN_WARNING
5767                                 "md: %s already running, cannot run %s\n",
5768                                 mdname(mddev), bdevname(rdev0->bdev,b));
5769                         mddev_unlock(mddev);
5770                 } else {
5771                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5772                         mddev->persistent = 1;
5773                         rdev_for_each_list(rdev, tmp, &candidates) {
5774                                 list_del_init(&rdev->same_set);
5775                                 if (bind_rdev_to_array(rdev, mddev))
5776                                         export_rdev(rdev);
5777                         }
5778                         autorun_array(mddev);
5779                         mddev_unlock(mddev);
5780                 }
5781                 /* on success, candidates will be empty, on error
5782                  * it won't...
5783                  */
5784                 rdev_for_each_list(rdev, tmp, &candidates) {
5785                         list_del_init(&rdev->same_set);
5786                         export_rdev(rdev);
5787                 }
5788                 mddev_put(mddev);
5789         }
5790         printk(KERN_INFO "md: ... autorun DONE.\n");
5791 }
5792 #endif /* !MODULE */
5793
5794 static int get_version(void __user *arg)
5795 {
5796         mdu_version_t ver;
5797
5798         ver.major = MD_MAJOR_VERSION;
5799         ver.minor = MD_MINOR_VERSION;
5800         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5801
5802         if (copy_to_user(arg, &ver, sizeof(ver)))
5803                 return -EFAULT;
5804
5805         return 0;
5806 }
5807
5808 static int get_array_info(struct mddev *mddev, void __user *arg)
5809 {
5810         mdu_array_info_t info;
5811         int nr,working,insync,failed,spare;
5812         struct md_rdev *rdev;
5813
5814         nr = working = insync = failed = spare = 0;
5815         rcu_read_lock();
5816         rdev_for_each_rcu(rdev, mddev) {
5817                 nr++;
5818                 if (test_bit(Faulty, &rdev->flags))
5819                         failed++;
5820                 else {
5821                         working++;
5822                         if (test_bit(In_sync, &rdev->flags))
5823                                 insync++;
5824                         else
5825                                 spare++;
5826                 }
5827         }
5828         rcu_read_unlock();
5829
5830         info.major_version = mddev->major_version;
5831         info.minor_version = mddev->minor_version;
5832         info.patch_version = MD_PATCHLEVEL_VERSION;
5833         info.ctime         = mddev->ctime;
5834         info.level         = mddev->level;
5835         info.size          = mddev->dev_sectors / 2;
5836         if (info.size != mddev->dev_sectors / 2) /* overflow */
5837                 info.size = -1;
5838         info.nr_disks      = nr;
5839         info.raid_disks    = mddev->raid_disks;
5840         info.md_minor      = mddev->md_minor;
5841         info.not_persistent= !mddev->persistent;
5842
5843         info.utime         = mddev->utime;
5844         info.state         = 0;
5845         if (mddev->in_sync)
5846                 info.state = (1<<MD_SB_CLEAN);
5847         if (mddev->bitmap && mddev->bitmap_info.offset)
5848                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5849         if (mddev_is_clustered(mddev))
5850                 info.state |= (1<<MD_SB_CLUSTERED);
5851         info.active_disks  = insync;
5852         info.working_disks = working;
5853         info.failed_disks  = failed;
5854         info.spare_disks   = spare;
5855
5856         info.layout        = mddev->layout;
5857         info.chunk_size    = mddev->chunk_sectors << 9;
5858
5859         if (copy_to_user(arg, &info, sizeof(info)))
5860                 return -EFAULT;
5861
5862         return 0;
5863 }
5864
5865 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5866 {
5867         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5868         char *ptr;
5869         int err;
5870
5871         file = kzalloc(sizeof(*file), GFP_NOIO);
5872         if (!file)
5873                 return -ENOMEM;
5874
5875         err = 0;
5876         spin_lock(&mddev->lock);
5877         /* bitmap enabled */
5878         if (mddev->bitmap_info.file) {
5879                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5880                                 sizeof(file->pathname));
5881                 if (IS_ERR(ptr))
5882                         err = PTR_ERR(ptr);
5883                 else
5884                         memmove(file->pathname, ptr,
5885                                 sizeof(file->pathname)-(ptr-file->pathname));
5886         }
5887         spin_unlock(&mddev->lock);
5888
5889         if (err == 0 &&
5890             copy_to_user(arg, file, sizeof(*file)))
5891                 err = -EFAULT;
5892
5893         kfree(file);
5894         return err;
5895 }
5896
5897 static int get_disk_info(struct mddev *mddev, void __user * arg)
5898 {
5899         mdu_disk_info_t info;
5900         struct md_rdev *rdev;
5901
5902         if (copy_from_user(&info, arg, sizeof(info)))
5903                 return -EFAULT;
5904
5905         rcu_read_lock();
5906         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5907         if (rdev) {
5908                 info.major = MAJOR(rdev->bdev->bd_dev);
5909                 info.minor = MINOR(rdev->bdev->bd_dev);
5910                 info.raid_disk = rdev->raid_disk;
5911                 info.state = 0;
5912                 if (test_bit(Faulty, &rdev->flags))
5913                         info.state |= (1<<MD_DISK_FAULTY);
5914                 else if (test_bit(In_sync, &rdev->flags)) {
5915                         info.state |= (1<<MD_DISK_ACTIVE);
5916                         info.state |= (1<<MD_DISK_SYNC);
5917                 }
5918                 if (test_bit(Journal, &rdev->flags))
5919                         info.state |= (1<<MD_DISK_JOURNAL);
5920                 if (test_bit(WriteMostly, &rdev->flags))
5921                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5922         } else {
5923                 info.major = info.minor = 0;
5924                 info.raid_disk = -1;
5925                 info.state = (1<<MD_DISK_REMOVED);
5926         }
5927         rcu_read_unlock();
5928
5929         if (copy_to_user(arg, &info, sizeof(info)))
5930                 return -EFAULT;
5931
5932         return 0;
5933 }
5934
5935 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5936 {
5937         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5938         struct md_rdev *rdev;
5939         dev_t dev = MKDEV(info->major,info->minor);
5940
5941         if (mddev_is_clustered(mddev) &&
5942                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5943                 pr_err("%s: Cannot add to clustered mddev.\n",
5944                                mdname(mddev));
5945                 return -EINVAL;
5946         }
5947
5948         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5949                 return -EOVERFLOW;
5950
5951         if (!mddev->raid_disks) {
5952                 int err;
5953                 /* expecting a device which has a superblock */
5954                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5955                 if (IS_ERR(rdev)) {
5956                         printk(KERN_WARNING
5957                                 "md: md_import_device returned %ld\n",
5958                                 PTR_ERR(rdev));
5959                         return PTR_ERR(rdev);
5960                 }
5961                 if (!list_empty(&mddev->disks)) {
5962                         struct md_rdev *rdev0
5963                                 = list_entry(mddev->disks.next,
5964                                              struct md_rdev, same_set);
5965                         err = super_types[mddev->major_version]
5966                                 .load_super(rdev, rdev0, mddev->minor_version);
5967                         if (err < 0) {
5968                                 printk(KERN_WARNING
5969                                         "md: %s has different UUID to %s\n",
5970                                         bdevname(rdev->bdev,b),
5971                                         bdevname(rdev0->bdev,b2));
5972                                 export_rdev(rdev);
5973                                 return -EINVAL;
5974                         }
5975                 }
5976                 err = bind_rdev_to_array(rdev, mddev);
5977                 if (err)
5978                         export_rdev(rdev);
5979                 return err;
5980         }
5981
5982         /*
5983          * add_new_disk can be used once the array is assembled
5984          * to add "hot spares".  They must already have a superblock
5985          * written
5986          */
5987         if (mddev->pers) {
5988                 int err;
5989                 if (!mddev->pers->hot_add_disk) {
5990                         printk(KERN_WARNING
5991                                 "%s: personality does not support diskops!\n",
5992                                mdname(mddev));
5993                         return -EINVAL;
5994                 }
5995                 if (mddev->persistent)
5996                         rdev = md_import_device(dev, mddev->major_version,
5997                                                 mddev->minor_version);
5998                 else
5999                         rdev = md_import_device(dev, -1, -1);
6000                 if (IS_ERR(rdev)) {
6001                         printk(KERN_WARNING
6002                                 "md: md_import_device returned %ld\n",
6003                                 PTR_ERR(rdev));
6004                         return PTR_ERR(rdev);
6005                 }
6006                 /* set saved_raid_disk if appropriate */
6007                 if (!mddev->persistent) {
6008                         if (info->state & (1<<MD_DISK_SYNC)  &&
6009                             info->raid_disk < mddev->raid_disks) {
6010                                 rdev->raid_disk = info->raid_disk;
6011                                 set_bit(In_sync, &rdev->flags);
6012                                 clear_bit(Bitmap_sync, &rdev->flags);
6013                         } else
6014                                 rdev->raid_disk = -1;
6015                         rdev->saved_raid_disk = rdev->raid_disk;
6016                 } else
6017                         super_types[mddev->major_version].
6018                                 validate_super(mddev, rdev);
6019                 if ((info->state & (1<<MD_DISK_SYNC)) &&
6020                      rdev->raid_disk != info->raid_disk) {
6021                         /* This was a hot-add request, but events doesn't
6022                          * match, so reject it.
6023                          */
6024                         export_rdev(rdev);
6025                         return -EINVAL;
6026                 }
6027
6028                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6029                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6030                         set_bit(WriteMostly, &rdev->flags);
6031                 else
6032                         clear_bit(WriteMostly, &rdev->flags);
6033
6034                 if (info->state & (1<<MD_DISK_JOURNAL))
6035                         set_bit(Journal, &rdev->flags);
6036                 /*
6037                  * check whether the device shows up in other nodes
6038                  */
6039                 if (mddev_is_clustered(mddev)) {
6040                         if (info->state & (1 << MD_DISK_CANDIDATE))
6041                                 set_bit(Candidate, &rdev->flags);
6042                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6043                                 /* --add initiated by this node */
6044                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6045                                 if (err) {
6046                                         export_rdev(rdev);
6047                                         return err;
6048                                 }
6049                         }
6050                 }
6051
6052                 rdev->raid_disk = -1;
6053                 err = bind_rdev_to_array(rdev, mddev);
6054
6055                 if (err)
6056                         export_rdev(rdev);
6057
6058                 if (mddev_is_clustered(mddev)) {
6059                         if (info->state & (1 << MD_DISK_CANDIDATE))
6060                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6061                         else {
6062                                 if (err)
6063                                         md_cluster_ops->add_new_disk_cancel(mddev);
6064                                 else
6065                                         err = add_bound_rdev(rdev);
6066                         }
6067
6068                 } else if (!err)
6069                         err = add_bound_rdev(rdev);
6070
6071                 return err;
6072         }
6073
6074         /* otherwise, add_new_disk is only allowed
6075          * for major_version==0 superblocks
6076          */
6077         if (mddev->major_version != 0) {
6078                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6079                        mdname(mddev));
6080                 return -EINVAL;
6081         }
6082
6083         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6084                 int err;
6085                 rdev = md_import_device(dev, -1, 0);
6086                 if (IS_ERR(rdev)) {
6087                         printk(KERN_WARNING
6088                                 "md: error, md_import_device() returned %ld\n",
6089                                 PTR_ERR(rdev));
6090                         return PTR_ERR(rdev);
6091                 }
6092                 rdev->desc_nr = info->number;
6093                 if (info->raid_disk < mddev->raid_disks)
6094                         rdev->raid_disk = info->raid_disk;
6095                 else
6096                         rdev->raid_disk = -1;
6097
6098                 if (rdev->raid_disk < mddev->raid_disks)
6099                         if (info->state & (1<<MD_DISK_SYNC))
6100                                 set_bit(In_sync, &rdev->flags);
6101
6102                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6103                         set_bit(WriteMostly, &rdev->flags);
6104
6105                 if (!mddev->persistent) {
6106                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6107                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6108                 } else
6109                         rdev->sb_start = calc_dev_sboffset(rdev);
6110                 rdev->sectors = rdev->sb_start;
6111
6112                 err = bind_rdev_to_array(rdev, mddev);
6113                 if (err) {
6114                         export_rdev(rdev);
6115                         return err;
6116                 }
6117         }
6118
6119         return 0;
6120 }
6121
6122 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6123 {
6124         char b[BDEVNAME_SIZE];
6125         struct md_rdev *rdev;
6126         int ret = -1;
6127
6128         rdev = find_rdev(mddev, dev);
6129         if (!rdev)
6130                 return -ENXIO;
6131
6132         if (mddev_is_clustered(mddev))
6133                 ret = md_cluster_ops->metadata_update_start(mddev);
6134
6135         if (rdev->raid_disk < 0)
6136                 goto kick_rdev;
6137
6138         clear_bit(Blocked, &rdev->flags);
6139         remove_and_add_spares(mddev, rdev);
6140
6141         if (rdev->raid_disk >= 0)
6142                 goto busy;
6143
6144 kick_rdev:
6145         if (mddev_is_clustered(mddev) && ret == 0)
6146                 md_cluster_ops->remove_disk(mddev, rdev);
6147
6148         md_kick_rdev_from_array(rdev);
6149         md_update_sb(mddev, 1);
6150         md_new_event(mddev);
6151
6152         return 0;
6153 busy:
6154         if (mddev_is_clustered(mddev) && ret == 0)
6155                 md_cluster_ops->metadata_update_cancel(mddev);
6156
6157         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6158                 bdevname(rdev->bdev,b), mdname(mddev));
6159         return -EBUSY;
6160 }
6161
6162 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6163 {
6164         char b[BDEVNAME_SIZE];
6165         int err;
6166         struct md_rdev *rdev;
6167
6168         if (!mddev->pers)
6169                 return -ENODEV;
6170
6171         if (mddev->major_version != 0) {
6172                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6173                         " version-0 superblocks.\n",
6174                         mdname(mddev));
6175                 return -EINVAL;
6176         }
6177         if (!mddev->pers->hot_add_disk) {
6178                 printk(KERN_WARNING
6179                         "%s: personality does not support diskops!\n",
6180                         mdname(mddev));
6181                 return -EINVAL;
6182         }
6183
6184         rdev = md_import_device(dev, -1, 0);
6185         if (IS_ERR(rdev)) {
6186                 printk(KERN_WARNING
6187                         "md: error, md_import_device() returned %ld\n",
6188                         PTR_ERR(rdev));
6189                 return -EINVAL;
6190         }
6191
6192         if (mddev->persistent)
6193                 rdev->sb_start = calc_dev_sboffset(rdev);
6194         else
6195                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6196
6197         rdev->sectors = rdev->sb_start;
6198
6199         if (test_bit(Faulty, &rdev->flags)) {
6200                 printk(KERN_WARNING
6201                         "md: can not hot-add faulty %s disk to %s!\n",
6202                         bdevname(rdev->bdev,b), mdname(mddev));
6203                 err = -EINVAL;
6204                 goto abort_export;
6205         }
6206
6207         clear_bit(In_sync, &rdev->flags);
6208         rdev->desc_nr = -1;
6209         rdev->saved_raid_disk = -1;
6210         err = bind_rdev_to_array(rdev, mddev);
6211         if (err)
6212                 goto abort_export;
6213
6214         /*
6215          * The rest should better be atomic, we can have disk failures
6216          * noticed in interrupt contexts ...
6217          */
6218
6219         rdev->raid_disk = -1;
6220
6221         md_update_sb(mddev, 1);
6222         /*
6223          * Kick recovery, maybe this spare has to be added to the
6224          * array immediately.
6225          */
6226         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6227         md_wakeup_thread(mddev->thread);
6228         md_new_event(mddev);
6229         return 0;
6230
6231 abort_export:
6232         export_rdev(rdev);
6233         return err;
6234 }
6235
6236 static int set_bitmap_file(struct mddev *mddev, int fd)
6237 {
6238         int err = 0;
6239
6240         if (mddev->pers) {
6241                 if (!mddev->pers->quiesce || !mddev->thread)
6242                         return -EBUSY;
6243                 if (mddev->recovery || mddev->sync_thread)
6244                         return -EBUSY;
6245                 /* we should be able to change the bitmap.. */
6246         }
6247
6248         if (fd >= 0) {
6249                 struct inode *inode;
6250                 struct file *f;
6251
6252                 if (mddev->bitmap || mddev->bitmap_info.file)
6253                         return -EEXIST; /* cannot add when bitmap is present */
6254                 f = fget(fd);
6255
6256                 if (f == NULL) {
6257                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6258                                mdname(mddev));
6259                         return -EBADF;
6260                 }
6261
6262                 inode = f->f_mapping->host;
6263                 if (!S_ISREG(inode->i_mode)) {
6264                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6265                                mdname(mddev));
6266                         err = -EBADF;
6267                 } else if (!(f->f_mode & FMODE_WRITE)) {
6268                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6269                                mdname(mddev));
6270                         err = -EBADF;
6271                 } else if (atomic_read(&inode->i_writecount) != 1) {
6272                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6273                                mdname(mddev));
6274                         err = -EBUSY;
6275                 }
6276                 if (err) {
6277                         fput(f);
6278                         return err;
6279                 }
6280                 mddev->bitmap_info.file = f;
6281                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6282         } else if (mddev->bitmap == NULL)
6283                 return -ENOENT; /* cannot remove what isn't there */
6284         err = 0;
6285         if (mddev->pers) {
6286                 mddev->pers->quiesce(mddev, 1);
6287                 if (fd >= 0) {
6288                         struct bitmap *bitmap;
6289
6290                         bitmap = bitmap_create(mddev, -1);
6291                         if (!IS_ERR(bitmap)) {
6292                                 mddev->bitmap = bitmap;
6293                                 err = bitmap_load(mddev);
6294                         } else
6295                                 err = PTR_ERR(bitmap);
6296                 }
6297                 if (fd < 0 || err) {
6298                         bitmap_destroy(mddev);
6299                         fd = -1; /* make sure to put the file */
6300                 }
6301                 mddev->pers->quiesce(mddev, 0);
6302         }
6303         if (fd < 0) {
6304                 struct file *f = mddev->bitmap_info.file;
6305                 if (f) {
6306                         spin_lock(&mddev->lock);
6307                         mddev->bitmap_info.file = NULL;
6308                         spin_unlock(&mddev->lock);
6309                         fput(f);
6310                 }
6311         }
6312
6313         return err;
6314 }
6315
6316 /*
6317  * set_array_info is used two different ways
6318  * The original usage is when creating a new array.
6319  * In this usage, raid_disks is > 0 and it together with
6320  *  level, size, not_persistent,layout,chunksize determine the
6321  *  shape of the array.
6322  *  This will always create an array with a type-0.90.0 superblock.
6323  * The newer usage is when assembling an array.
6324  *  In this case raid_disks will be 0, and the major_version field is
6325  *  use to determine which style super-blocks are to be found on the devices.
6326  *  The minor and patch _version numbers are also kept incase the
6327  *  super_block handler wishes to interpret them.
6328  */
6329 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6330 {
6331
6332         if (info->raid_disks == 0) {
6333                 /* just setting version number for superblock loading */
6334                 if (info->major_version < 0 ||
6335                     info->major_version >= ARRAY_SIZE(super_types) ||
6336                     super_types[info->major_version].name == NULL) {
6337                         /* maybe try to auto-load a module? */
6338                         printk(KERN_INFO
6339                                 "md: superblock version %d not known\n",
6340                                 info->major_version);
6341                         return -EINVAL;
6342                 }
6343                 mddev->major_version = info->major_version;
6344                 mddev->minor_version = info->minor_version;
6345                 mddev->patch_version = info->patch_version;
6346                 mddev->persistent = !info->not_persistent;
6347                 /* ensure mddev_put doesn't delete this now that there
6348                  * is some minimal configuration.
6349                  */
6350                 mddev->ctime         = get_seconds();
6351                 return 0;
6352         }
6353         mddev->major_version = MD_MAJOR_VERSION;
6354         mddev->minor_version = MD_MINOR_VERSION;
6355         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6356         mddev->ctime         = get_seconds();
6357
6358         mddev->level         = info->level;
6359         mddev->clevel[0]     = 0;
6360         mddev->dev_sectors   = 2 * (sector_t)info->size;
6361         mddev->raid_disks    = info->raid_disks;
6362         /* don't set md_minor, it is determined by which /dev/md* was
6363          * openned
6364          */
6365         if (info->state & (1<<MD_SB_CLEAN))
6366                 mddev->recovery_cp = MaxSector;
6367         else
6368                 mddev->recovery_cp = 0;
6369         mddev->persistent    = ! info->not_persistent;
6370         mddev->external      = 0;
6371
6372         mddev->layout        = info->layout;
6373         mddev->chunk_sectors = info->chunk_size >> 9;
6374
6375         mddev->max_disks     = MD_SB_DISKS;
6376
6377         if (mddev->persistent)
6378                 mddev->flags         = 0;
6379         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6380
6381         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6382         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6383         mddev->bitmap_info.offset = 0;
6384
6385         mddev->reshape_position = MaxSector;
6386
6387         /*
6388          * Generate a 128 bit UUID
6389          */
6390         get_random_bytes(mddev->uuid, 16);
6391
6392         mddev->new_level = mddev->level;
6393         mddev->new_chunk_sectors = mddev->chunk_sectors;
6394         mddev->new_layout = mddev->layout;
6395         mddev->delta_disks = 0;
6396         mddev->reshape_backwards = 0;
6397
6398         return 0;
6399 }
6400
6401 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6402 {
6403         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6404
6405         if (mddev->external_size)
6406                 return;
6407
6408         mddev->array_sectors = array_sectors;
6409 }
6410 EXPORT_SYMBOL(md_set_array_sectors);
6411
6412 static int update_size(struct mddev *mddev, sector_t num_sectors)
6413 {
6414         struct md_rdev *rdev;
6415         int rv;
6416         int fit = (num_sectors == 0);
6417
6418         if (mddev->pers->resize == NULL)
6419                 return -EINVAL;
6420         /* The "num_sectors" is the number of sectors of each device that
6421          * is used.  This can only make sense for arrays with redundancy.
6422          * linear and raid0 always use whatever space is available. We can only
6423          * consider changing this number if no resync or reconstruction is
6424          * happening, and if the new size is acceptable. It must fit before the
6425          * sb_start or, if that is <data_offset, it must fit before the size
6426          * of each device.  If num_sectors is zero, we find the largest size
6427          * that fits.
6428          */
6429         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6430             mddev->sync_thread)
6431                 return -EBUSY;
6432         if (mddev->ro)
6433                 return -EROFS;
6434
6435         rdev_for_each(rdev, mddev) {
6436                 sector_t avail = rdev->sectors;
6437
6438                 if (fit && (num_sectors == 0 || num_sectors > avail))
6439                         num_sectors = avail;
6440                 if (avail < num_sectors)
6441                         return -ENOSPC;
6442         }
6443         rv = mddev->pers->resize(mddev, num_sectors);
6444         if (!rv)
6445                 revalidate_disk(mddev->gendisk);
6446         return rv;
6447 }
6448
6449 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6450 {
6451         int rv;
6452         struct md_rdev *rdev;
6453         /* change the number of raid disks */
6454         if (mddev->pers->check_reshape == NULL)
6455                 return -EINVAL;
6456         if (mddev->ro)
6457                 return -EROFS;
6458         if (raid_disks <= 0 ||
6459             (mddev->max_disks && raid_disks >= mddev->max_disks))
6460                 return -EINVAL;
6461         if (mddev->sync_thread ||
6462             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6463             mddev->reshape_position != MaxSector)
6464                 return -EBUSY;
6465
6466         rdev_for_each(rdev, mddev) {
6467                 if (mddev->raid_disks < raid_disks &&
6468                     rdev->data_offset < rdev->new_data_offset)
6469                         return -EINVAL;
6470                 if (mddev->raid_disks > raid_disks &&
6471                     rdev->data_offset > rdev->new_data_offset)
6472                         return -EINVAL;
6473         }
6474
6475         mddev->delta_disks = raid_disks - mddev->raid_disks;
6476         if (mddev->delta_disks < 0)
6477                 mddev->reshape_backwards = 1;
6478         else if (mddev->delta_disks > 0)
6479                 mddev->reshape_backwards = 0;
6480
6481         rv = mddev->pers->check_reshape(mddev);
6482         if (rv < 0) {
6483                 mddev->delta_disks = 0;
6484                 mddev->reshape_backwards = 0;
6485         }
6486         return rv;
6487 }
6488
6489 /*
6490  * update_array_info is used to change the configuration of an
6491  * on-line array.
6492  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6493  * fields in the info are checked against the array.
6494  * Any differences that cannot be handled will cause an error.
6495  * Normally, only one change can be managed at a time.
6496  */
6497 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6498 {
6499         int rv = 0;
6500         int cnt = 0;
6501         int state = 0;
6502
6503         /* calculate expected state,ignoring low bits */
6504         if (mddev->bitmap && mddev->bitmap_info.offset)
6505                 state |= (1 << MD_SB_BITMAP_PRESENT);
6506
6507         if (mddev->major_version != info->major_version ||
6508             mddev->minor_version != info->minor_version ||
6509 /*          mddev->patch_version != info->patch_version || */
6510             mddev->ctime         != info->ctime         ||
6511             mddev->level         != info->level         ||
6512 /*          mddev->layout        != info->layout        || */
6513             mddev->persistent    != !info->not_persistent ||
6514             mddev->chunk_sectors != info->chunk_size >> 9 ||
6515             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6516             ((state^info->state) & 0xfffffe00)
6517                 )
6518                 return -EINVAL;
6519         /* Check there is only one change */
6520         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6521                 cnt++;
6522         if (mddev->raid_disks != info->raid_disks)
6523                 cnt++;
6524         if (mddev->layout != info->layout)
6525                 cnt++;
6526         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6527                 cnt++;
6528         if (cnt == 0)
6529                 return 0;
6530         if (cnt > 1)
6531                 return -EINVAL;
6532
6533         if (mddev->layout != info->layout) {
6534                 /* Change layout
6535                  * we don't need to do anything at the md level, the
6536                  * personality will take care of it all.
6537                  */
6538                 if (mddev->pers->check_reshape == NULL)
6539                         return -EINVAL;
6540                 else {
6541                         mddev->new_layout = info->layout;
6542                         rv = mddev->pers->check_reshape(mddev);
6543                         if (rv)
6544                                 mddev->new_layout = mddev->layout;
6545                         return rv;
6546                 }
6547         }
6548         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6549                 rv = update_size(mddev, (sector_t)info->size * 2);
6550
6551         if (mddev->raid_disks    != info->raid_disks)
6552                 rv = update_raid_disks(mddev, info->raid_disks);
6553
6554         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6555                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6556                         rv = -EINVAL;
6557                         goto err;
6558                 }
6559                 if (mddev->recovery || mddev->sync_thread) {
6560                         rv = -EBUSY;
6561                         goto err;
6562                 }
6563                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6564                         struct bitmap *bitmap;
6565                         /* add the bitmap */
6566                         if (mddev->bitmap) {
6567                                 rv = -EEXIST;
6568                                 goto err;
6569                         }
6570                         if (mddev->bitmap_info.default_offset == 0) {
6571                                 rv = -EINVAL;
6572                                 goto err;
6573                         }
6574                         mddev->bitmap_info.offset =
6575                                 mddev->bitmap_info.default_offset;
6576                         mddev->bitmap_info.space =
6577                                 mddev->bitmap_info.default_space;
6578                         mddev->pers->quiesce(mddev, 1);
6579                         bitmap = bitmap_create(mddev, -1);
6580                         if (!IS_ERR(bitmap)) {
6581                                 mddev->bitmap = bitmap;
6582                                 rv = bitmap_load(mddev);
6583                         } else
6584                                 rv = PTR_ERR(bitmap);
6585                         if (rv)
6586                                 bitmap_destroy(mddev);
6587                         mddev->pers->quiesce(mddev, 0);
6588                 } else {
6589                         /* remove the bitmap */
6590                         if (!mddev->bitmap) {
6591                                 rv = -ENOENT;
6592                                 goto err;
6593                         }
6594                         if (mddev->bitmap->storage.file) {
6595                                 rv = -EINVAL;
6596                                 goto err;
6597                         }
6598                         mddev->pers->quiesce(mddev, 1);
6599                         bitmap_destroy(mddev);
6600                         mddev->pers->quiesce(mddev, 0);
6601                         mddev->bitmap_info.offset = 0;
6602                 }
6603         }
6604         md_update_sb(mddev, 1);
6605         return rv;
6606 err:
6607         return rv;
6608 }
6609
6610 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6611 {
6612         struct md_rdev *rdev;
6613         int err = 0;
6614
6615         if (mddev->pers == NULL)
6616                 return -ENODEV;
6617
6618         rcu_read_lock();
6619         rdev = find_rdev_rcu(mddev, dev);
6620         if (!rdev)
6621                 err =  -ENODEV;
6622         else {
6623                 md_error(mddev, rdev);
6624                 if (!test_bit(Faulty, &rdev->flags))
6625                         err = -EBUSY;
6626         }
6627         rcu_read_unlock();
6628         return err;
6629 }
6630
6631 /*
6632  * We have a problem here : there is no easy way to give a CHS
6633  * virtual geometry. We currently pretend that we have a 2 heads
6634  * 4 sectors (with a BIG number of cylinders...). This drives
6635  * dosfs just mad... ;-)
6636  */
6637 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6638 {
6639         struct mddev *mddev = bdev->bd_disk->private_data;
6640
6641         geo->heads = 2;
6642         geo->sectors = 4;
6643         geo->cylinders = mddev->array_sectors / 8;
6644         return 0;
6645 }
6646
6647 static inline bool md_ioctl_valid(unsigned int cmd)
6648 {
6649         switch (cmd) {
6650         case ADD_NEW_DISK:
6651         case BLKROSET:
6652         case GET_ARRAY_INFO:
6653         case GET_BITMAP_FILE:
6654         case GET_DISK_INFO:
6655         case HOT_ADD_DISK:
6656         case HOT_REMOVE_DISK:
6657         case RAID_AUTORUN:
6658         case RAID_VERSION:
6659         case RESTART_ARRAY_RW:
6660         case RUN_ARRAY:
6661         case SET_ARRAY_INFO:
6662         case SET_BITMAP_FILE:
6663         case SET_DISK_FAULTY:
6664         case STOP_ARRAY:
6665         case STOP_ARRAY_RO:
6666         case CLUSTERED_DISK_NACK:
6667                 return true;
6668         default:
6669                 return false;
6670         }
6671 }
6672
6673 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6674                         unsigned int cmd, unsigned long arg)
6675 {
6676         int err = 0;
6677         void __user *argp = (void __user *)arg;
6678         struct mddev *mddev = NULL;
6679         int ro;
6680
6681         if (!md_ioctl_valid(cmd))
6682                 return -ENOTTY;
6683
6684         switch (cmd) {
6685         case RAID_VERSION:
6686         case GET_ARRAY_INFO:
6687         case GET_DISK_INFO:
6688                 break;
6689         default:
6690                 if (!capable(CAP_SYS_ADMIN))
6691                         return -EACCES;
6692         }
6693
6694         /*
6695          * Commands dealing with the RAID driver but not any
6696          * particular array:
6697          */
6698         switch (cmd) {
6699         case RAID_VERSION:
6700                 err = get_version(argp);
6701                 goto out;
6702
6703 #ifndef MODULE
6704         case RAID_AUTORUN:
6705                 err = 0;
6706                 autostart_arrays(arg);
6707                 goto out;
6708 #endif
6709         default:;
6710         }
6711
6712         /*
6713          * Commands creating/starting a new array:
6714          */
6715
6716         mddev = bdev->bd_disk->private_data;
6717
6718         if (!mddev) {
6719                 BUG();
6720                 goto out;
6721         }
6722
6723         /* Some actions do not requires the mutex */
6724         switch (cmd) {
6725         case GET_ARRAY_INFO:
6726                 if (!mddev->raid_disks && !mddev->external)
6727                         err = -ENODEV;
6728                 else
6729                         err = get_array_info(mddev, argp);
6730                 goto out;
6731
6732         case GET_DISK_INFO:
6733                 if (!mddev->raid_disks && !mddev->external)
6734                         err = -ENODEV;
6735                 else
6736                         err = get_disk_info(mddev, argp);
6737                 goto out;
6738
6739         case SET_DISK_FAULTY:
6740                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6741                 goto out;
6742
6743         case GET_BITMAP_FILE:
6744                 err = get_bitmap_file(mddev, argp);
6745                 goto out;
6746
6747         }
6748
6749         if (cmd == ADD_NEW_DISK)
6750                 /* need to ensure md_delayed_delete() has completed */
6751                 flush_workqueue(md_misc_wq);
6752
6753         if (cmd == HOT_REMOVE_DISK)
6754                 /* need to ensure recovery thread has run */
6755                 wait_event_interruptible_timeout(mddev->sb_wait,
6756                                                  !test_bit(MD_RECOVERY_NEEDED,
6757                                                            &mddev->flags),
6758                                                  msecs_to_jiffies(5000));
6759         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6760                 /* Need to flush page cache, and ensure no-one else opens
6761                  * and writes
6762                  */
6763                 mutex_lock(&mddev->open_mutex);
6764                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6765                         mutex_unlock(&mddev->open_mutex);
6766                         err = -EBUSY;
6767                         goto out;
6768                 }
6769                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6770                 mutex_unlock(&mddev->open_mutex);
6771                 sync_blockdev(bdev);
6772         }
6773         err = mddev_lock(mddev);
6774         if (err) {
6775                 printk(KERN_INFO
6776                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6777                         err, cmd);
6778                 goto out;
6779         }
6780
6781         if (cmd == SET_ARRAY_INFO) {
6782                 mdu_array_info_t info;
6783                 if (!arg)
6784                         memset(&info, 0, sizeof(info));
6785                 else if (copy_from_user(&info, argp, sizeof(info))) {
6786                         err = -EFAULT;
6787                         goto unlock;
6788                 }
6789                 if (mddev->pers) {
6790                         err = update_array_info(mddev, &info);
6791                         if (err) {
6792                                 printk(KERN_WARNING "md: couldn't update"
6793                                        " array info. %d\n", err);
6794                                 goto unlock;
6795                         }
6796                         goto unlock;
6797                 }
6798                 if (!list_empty(&mddev->disks)) {
6799                         printk(KERN_WARNING
6800                                "md: array %s already has disks!\n",
6801                                mdname(mddev));
6802                         err = -EBUSY;
6803                         goto unlock;
6804                 }
6805                 if (mddev->raid_disks) {
6806                         printk(KERN_WARNING
6807                                "md: array %s already initialised!\n",
6808                                mdname(mddev));
6809                         err = -EBUSY;
6810                         goto unlock;
6811                 }
6812                 err = set_array_info(mddev, &info);
6813                 if (err) {
6814                         printk(KERN_WARNING "md: couldn't set"
6815                                " array info. %d\n", err);
6816                         goto unlock;
6817                 }
6818                 goto unlock;
6819         }
6820
6821         /*
6822          * Commands querying/configuring an existing array:
6823          */
6824         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6825          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6826         if ((!mddev->raid_disks && !mddev->external)
6827             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6828             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6829             && cmd != GET_BITMAP_FILE) {
6830                 err = -ENODEV;
6831                 goto unlock;
6832         }
6833
6834         /*
6835          * Commands even a read-only array can execute:
6836          */
6837         switch (cmd) {
6838         case RESTART_ARRAY_RW:
6839                 err = restart_array(mddev);
6840                 goto unlock;
6841
6842         case STOP_ARRAY:
6843                 err = do_md_stop(mddev, 0, bdev);
6844                 goto unlock;
6845
6846         case STOP_ARRAY_RO:
6847                 err = md_set_readonly(mddev, bdev);
6848                 goto unlock;
6849
6850         case HOT_REMOVE_DISK:
6851                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6852                 goto unlock;
6853
6854         case ADD_NEW_DISK:
6855                 /* We can support ADD_NEW_DISK on read-only arrays
6856                  * on if we are re-adding a preexisting device.
6857                  * So require mddev->pers and MD_DISK_SYNC.
6858                  */
6859                 if (mddev->pers) {
6860                         mdu_disk_info_t info;
6861                         if (copy_from_user(&info, argp, sizeof(info)))
6862                                 err = -EFAULT;
6863                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6864                                 /* Need to clear read-only for this */
6865                                 break;
6866                         else
6867                                 err = add_new_disk(mddev, &info);
6868                         goto unlock;
6869                 }
6870                 break;
6871
6872         case BLKROSET:
6873                 if (get_user(ro, (int __user *)(arg))) {
6874                         err = -EFAULT;
6875                         goto unlock;
6876                 }
6877                 err = -EINVAL;
6878
6879                 /* if the bdev is going readonly the value of mddev->ro
6880                  * does not matter, no writes are coming
6881                  */
6882                 if (ro)
6883                         goto unlock;
6884
6885                 /* are we are already prepared for writes? */
6886                 if (mddev->ro != 1)
6887                         goto unlock;
6888
6889                 /* transitioning to readauto need only happen for
6890                  * arrays that call md_write_start
6891                  */
6892                 if (mddev->pers) {
6893                         err = restart_array(mddev);
6894                         if (err == 0) {
6895                                 mddev->ro = 2;
6896                                 set_disk_ro(mddev->gendisk, 0);
6897                         }
6898                 }
6899                 goto unlock;
6900         }
6901
6902         /*
6903          * The remaining ioctls are changing the state of the
6904          * superblock, so we do not allow them on read-only arrays.
6905          */
6906         if (mddev->ro && mddev->pers) {
6907                 if (mddev->ro == 2) {
6908                         mddev->ro = 0;
6909                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6910                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6911                         /* mddev_unlock will wake thread */
6912                         /* If a device failed while we were read-only, we
6913                          * need to make sure the metadata is updated now.
6914                          */
6915                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6916                                 mddev_unlock(mddev);
6917                                 wait_event(mddev->sb_wait,
6918                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6919                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6920                                 mddev_lock_nointr(mddev);
6921                         }
6922                 } else {
6923                         err = -EROFS;
6924                         goto unlock;
6925                 }
6926         }
6927
6928         switch (cmd) {
6929         case ADD_NEW_DISK:
6930         {
6931                 mdu_disk_info_t info;
6932                 if (copy_from_user(&info, argp, sizeof(info)))
6933                         err = -EFAULT;
6934                 else
6935                         err = add_new_disk(mddev, &info);
6936                 goto unlock;
6937         }
6938
6939         case CLUSTERED_DISK_NACK:
6940                 if (mddev_is_clustered(mddev))
6941                         md_cluster_ops->new_disk_ack(mddev, false);
6942                 else
6943                         err = -EINVAL;
6944                 goto unlock;
6945
6946         case HOT_ADD_DISK:
6947                 err = hot_add_disk(mddev, new_decode_dev(arg));
6948                 goto unlock;
6949
6950         case RUN_ARRAY:
6951                 err = do_md_run(mddev);
6952                 goto unlock;
6953
6954         case SET_BITMAP_FILE:
6955                 err = set_bitmap_file(mddev, (int)arg);
6956                 goto unlock;
6957
6958         default:
6959                 err = -EINVAL;
6960                 goto unlock;
6961         }
6962
6963 unlock:
6964         if (mddev->hold_active == UNTIL_IOCTL &&
6965             err != -EINVAL)
6966                 mddev->hold_active = 0;
6967         mddev_unlock(mddev);
6968 out:
6969         return err;
6970 }
6971 #ifdef CONFIG_COMPAT
6972 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6973                     unsigned int cmd, unsigned long arg)
6974 {
6975         switch (cmd) {
6976         case HOT_REMOVE_DISK:
6977         case HOT_ADD_DISK:
6978         case SET_DISK_FAULTY:
6979         case SET_BITMAP_FILE:
6980                 /* These take in integer arg, do not convert */
6981                 break;
6982         default:
6983                 arg = (unsigned long)compat_ptr(arg);
6984                 break;
6985         }
6986
6987         return md_ioctl(bdev, mode, cmd, arg);
6988 }
6989 #endif /* CONFIG_COMPAT */
6990
6991 static int md_open(struct block_device *bdev, fmode_t mode)
6992 {
6993         /*
6994          * Succeed if we can lock the mddev, which confirms that
6995          * it isn't being stopped right now.
6996          */
6997         struct mddev *mddev = mddev_find(bdev->bd_dev);
6998         int err;
6999
7000         if (!mddev)
7001                 return -ENODEV;
7002
7003         if (mddev->gendisk != bdev->bd_disk) {
7004                 /* we are racing with mddev_put which is discarding this
7005                  * bd_disk.
7006                  */
7007                 mddev_put(mddev);
7008                 /* Wait until bdev->bd_disk is definitely gone */
7009                 flush_workqueue(md_misc_wq);
7010                 /* Then retry the open from the top */
7011                 return -ERESTARTSYS;
7012         }
7013         BUG_ON(mddev != bdev->bd_disk->private_data);
7014
7015         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7016                 goto out;
7017
7018         err = 0;
7019         atomic_inc(&mddev->openers);
7020         clear_bit(MD_STILL_CLOSED, &mddev->flags);
7021         mutex_unlock(&mddev->open_mutex);
7022
7023         check_disk_change(bdev);
7024  out:
7025         return err;
7026 }
7027
7028 static void md_release(struct gendisk *disk, fmode_t mode)
7029 {
7030         struct mddev *mddev = disk->private_data;
7031
7032         BUG_ON(!mddev);
7033         atomic_dec(&mddev->openers);
7034         mddev_put(mddev);
7035 }
7036
7037 static int md_media_changed(struct gendisk *disk)
7038 {
7039         struct mddev *mddev = disk->private_data;
7040
7041         return mddev->changed;
7042 }
7043
7044 static int md_revalidate(struct gendisk *disk)
7045 {
7046         struct mddev *mddev = disk->private_data;
7047
7048         mddev->changed = 0;
7049         return 0;
7050 }
7051 static const struct block_device_operations md_fops =
7052 {
7053         .owner          = THIS_MODULE,
7054         .open           = md_open,
7055         .release        = md_release,
7056         .ioctl          = md_ioctl,
7057 #ifdef CONFIG_COMPAT
7058         .compat_ioctl   = md_compat_ioctl,
7059 #endif
7060         .getgeo         = md_getgeo,
7061         .media_changed  = md_media_changed,
7062         .revalidate_disk= md_revalidate,
7063 };
7064
7065 static int md_thread(void *arg)
7066 {
7067         struct md_thread *thread = arg;
7068
7069         /*
7070          * md_thread is a 'system-thread', it's priority should be very
7071          * high. We avoid resource deadlocks individually in each
7072          * raid personality. (RAID5 does preallocation) We also use RR and
7073          * the very same RT priority as kswapd, thus we will never get
7074          * into a priority inversion deadlock.
7075          *
7076          * we definitely have to have equal or higher priority than
7077          * bdflush, otherwise bdflush will deadlock if there are too
7078          * many dirty RAID5 blocks.
7079          */
7080
7081         allow_signal(SIGKILL);
7082         while (!kthread_should_stop()) {
7083
7084                 /* We need to wait INTERRUPTIBLE so that
7085                  * we don't add to the load-average.
7086                  * That means we need to be sure no signals are
7087                  * pending
7088                  */
7089                 if (signal_pending(current))
7090                         flush_signals(current);
7091
7092                 wait_event_interruptible_timeout
7093                         (thread->wqueue,
7094                          test_bit(THREAD_WAKEUP, &thread->flags)
7095                          || kthread_should_stop(),
7096                          thread->timeout);
7097
7098                 clear_bit(THREAD_WAKEUP, &thread->flags);
7099                 if (!kthread_should_stop())
7100                         thread->run(thread);
7101         }
7102
7103         return 0;
7104 }
7105
7106 void md_wakeup_thread(struct md_thread *thread)
7107 {
7108         if (thread) {
7109                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7110                 set_bit(THREAD_WAKEUP, &thread->flags);
7111                 wake_up(&thread->wqueue);
7112         }
7113 }
7114 EXPORT_SYMBOL(md_wakeup_thread);
7115
7116 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7117                 struct mddev *mddev, const char *name)
7118 {
7119         struct md_thread *thread;
7120
7121         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7122         if (!thread)
7123                 return NULL;
7124
7125         init_waitqueue_head(&thread->wqueue);
7126
7127         thread->run = run;
7128         thread->mddev = mddev;
7129         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7130         thread->tsk = kthread_run(md_thread, thread,
7131                                   "%s_%s",
7132                                   mdname(thread->mddev),
7133                                   name);
7134         if (IS_ERR(thread->tsk)) {
7135                 kfree(thread);
7136                 return NULL;
7137         }
7138         return thread;
7139 }
7140 EXPORT_SYMBOL(md_register_thread);
7141
7142 void md_unregister_thread(struct md_thread **threadp)
7143 {
7144         struct md_thread *thread = *threadp;
7145         if (!thread)
7146                 return;
7147         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7148         /* Locking ensures that mddev_unlock does not wake_up a
7149          * non-existent thread
7150          */
7151         spin_lock(&pers_lock);
7152         *threadp = NULL;
7153         spin_unlock(&pers_lock);
7154
7155         kthread_stop(thread->tsk);
7156         kfree(thread);
7157 }
7158 EXPORT_SYMBOL(md_unregister_thread);
7159
7160 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7161 {
7162         if (!rdev || test_bit(Faulty, &rdev->flags))
7163                 return;
7164
7165         if (!mddev->pers || !mddev->pers->error_handler)
7166                 return;
7167         mddev->pers->error_handler(mddev,rdev);
7168         if (mddev->degraded)
7169                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7170         sysfs_notify_dirent_safe(rdev->sysfs_state);
7171         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7172         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7173         md_wakeup_thread(mddev->thread);
7174         if (mddev->event_work.func)
7175                 queue_work(md_misc_wq, &mddev->event_work);
7176         md_new_event_inintr(mddev);
7177 }
7178 EXPORT_SYMBOL(md_error);
7179
7180 /* seq_file implementation /proc/mdstat */
7181
7182 static void status_unused(struct seq_file *seq)
7183 {
7184         int i = 0;
7185         struct md_rdev *rdev;
7186
7187         seq_printf(seq, "unused devices: ");
7188
7189         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7190                 char b[BDEVNAME_SIZE];
7191                 i++;
7192                 seq_printf(seq, "%s ",
7193                               bdevname(rdev->bdev,b));
7194         }
7195         if (!i)
7196                 seq_printf(seq, "<none>");
7197
7198         seq_printf(seq, "\n");
7199 }
7200
7201 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7202 {
7203         sector_t max_sectors, resync, res;
7204         unsigned long dt, db;
7205         sector_t rt;
7206         int scale;
7207         unsigned int per_milli;
7208
7209         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7210             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7211                 max_sectors = mddev->resync_max_sectors;
7212         else
7213                 max_sectors = mddev->dev_sectors;
7214
7215         resync = mddev->curr_resync;
7216         if (resync <= 3) {
7217                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7218                         /* Still cleaning up */
7219                         resync = max_sectors;
7220         } else
7221                 resync -= atomic_read(&mddev->recovery_active);
7222
7223         if (resync == 0) {
7224                 if (mddev->recovery_cp < MaxSector) {
7225                         seq_printf(seq, "\tresync=PENDING");
7226                         return 1;
7227                 }
7228                 return 0;
7229         }
7230         if (resync < 3) {
7231                 seq_printf(seq, "\tresync=DELAYED");
7232                 return 1;
7233         }
7234
7235         WARN_ON(max_sectors == 0);
7236         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7237          * in a sector_t, and (max_sectors>>scale) will fit in a
7238          * u32, as those are the requirements for sector_div.
7239          * Thus 'scale' must be at least 10
7240          */
7241         scale = 10;
7242         if (sizeof(sector_t) > sizeof(unsigned long)) {
7243                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7244                         scale++;
7245         }
7246         res = (resync>>scale)*1000;
7247         sector_div(res, (u32)((max_sectors>>scale)+1));
7248
7249         per_milli = res;
7250         {
7251                 int i, x = per_milli/50, y = 20-x;
7252                 seq_printf(seq, "[");
7253                 for (i = 0; i < x; i++)
7254                         seq_printf(seq, "=");
7255                 seq_printf(seq, ">");
7256                 for (i = 0; i < y; i++)
7257                         seq_printf(seq, ".");
7258                 seq_printf(seq, "] ");
7259         }
7260         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7261                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7262                     "reshape" :
7263                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7264                      "check" :
7265                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7266                       "resync" : "recovery"))),
7267                    per_milli/10, per_milli % 10,
7268                    (unsigned long long) resync/2,
7269                    (unsigned long long) max_sectors/2);
7270
7271         /*
7272          * dt: time from mark until now
7273          * db: blocks written from mark until now
7274          * rt: remaining time
7275          *
7276          * rt is a sector_t, so could be 32bit or 64bit.
7277          * So we divide before multiply in case it is 32bit and close
7278          * to the limit.
7279          * We scale the divisor (db) by 32 to avoid losing precision
7280          * near the end of resync when the number of remaining sectors
7281          * is close to 'db'.
7282          * We then divide rt by 32 after multiplying by db to compensate.
7283          * The '+1' avoids division by zero if db is very small.
7284          */
7285         dt = ((jiffies - mddev->resync_mark) / HZ);
7286         if (!dt) dt++;
7287         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7288                 - mddev->resync_mark_cnt;
7289
7290         rt = max_sectors - resync;    /* number of remaining sectors */
7291         sector_div(rt, db/32+1);
7292         rt *= dt;
7293         rt >>= 5;
7294
7295         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7296                    ((unsigned long)rt % 60)/6);
7297
7298         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7299         return 1;
7300 }
7301
7302 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7303 {
7304         struct list_head *tmp;
7305         loff_t l = *pos;
7306         struct mddev *mddev;
7307
7308         if (l >= 0x10000)
7309                 return NULL;
7310         if (!l--)
7311                 /* header */
7312                 return (void*)1;
7313
7314         spin_lock(&all_mddevs_lock);
7315         list_for_each(tmp,&all_mddevs)
7316                 if (!l--) {
7317                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7318                         mddev_get(mddev);
7319                         spin_unlock(&all_mddevs_lock);
7320                         return mddev;
7321                 }
7322         spin_unlock(&all_mddevs_lock);
7323         if (!l--)
7324                 return (void*)2;/* tail */
7325         return NULL;
7326 }
7327
7328 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7329 {
7330         struct list_head *tmp;
7331         struct mddev *next_mddev, *mddev = v;
7332
7333         ++*pos;
7334         if (v == (void*)2)
7335                 return NULL;
7336
7337         spin_lock(&all_mddevs_lock);
7338         if (v == (void*)1)
7339                 tmp = all_mddevs.next;
7340         else
7341                 tmp = mddev->all_mddevs.next;
7342         if (tmp != &all_mddevs)
7343                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7344         else {
7345                 next_mddev = (void*)2;
7346                 *pos = 0x10000;
7347         }
7348         spin_unlock(&all_mddevs_lock);
7349
7350         if (v != (void*)1)
7351                 mddev_put(mddev);
7352         return next_mddev;
7353
7354 }
7355
7356 static void md_seq_stop(struct seq_file *seq, void *v)
7357 {
7358         struct mddev *mddev = v;
7359
7360         if (mddev && v != (void*)1 && v != (void*)2)
7361                 mddev_put(mddev);
7362 }
7363
7364 static int md_seq_show(struct seq_file *seq, void *v)
7365 {
7366         struct mddev *mddev = v;
7367         sector_t sectors;
7368         struct md_rdev *rdev;
7369
7370         if (v == (void*)1) {
7371                 struct md_personality *pers;
7372                 seq_printf(seq, "Personalities : ");
7373                 spin_lock(&pers_lock);
7374                 list_for_each_entry(pers, &pers_list, list)
7375                         seq_printf(seq, "[%s] ", pers->name);
7376
7377                 spin_unlock(&pers_lock);
7378                 seq_printf(seq, "\n");
7379                 seq->poll_event = atomic_read(&md_event_count);
7380                 return 0;
7381         }
7382         if (v == (void*)2) {
7383                 status_unused(seq);
7384                 return 0;
7385         }
7386
7387         spin_lock(&mddev->lock);
7388         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7389                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7390                                                 mddev->pers ? "" : "in");
7391                 if (mddev->pers) {
7392                         if (mddev->ro==1)
7393                                 seq_printf(seq, " (read-only)");
7394                         if (mddev->ro==2)
7395                                 seq_printf(seq, " (auto-read-only)");
7396                         seq_printf(seq, " %s", mddev->pers->name);
7397                 }
7398
7399                 sectors = 0;
7400                 rcu_read_lock();
7401                 rdev_for_each_rcu(rdev, mddev) {
7402                         char b[BDEVNAME_SIZE];
7403                         seq_printf(seq, " %s[%d]",
7404                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7405                         if (test_bit(WriteMostly, &rdev->flags))
7406                                 seq_printf(seq, "(W)");
7407                         if (test_bit(Journal, &rdev->flags))
7408                                 seq_printf(seq, "(J)");
7409                         if (test_bit(Faulty, &rdev->flags)) {
7410                                 seq_printf(seq, "(F)");
7411                                 continue;
7412                         }
7413                         if (rdev->raid_disk < 0)
7414                                 seq_printf(seq, "(S)"); /* spare */
7415                         if (test_bit(Replacement, &rdev->flags))
7416                                 seq_printf(seq, "(R)");
7417                         sectors += rdev->sectors;
7418                 }
7419                 rcu_read_unlock();
7420
7421                 if (!list_empty(&mddev->disks)) {
7422                         if (mddev->pers)
7423                                 seq_printf(seq, "\n      %llu blocks",
7424                                            (unsigned long long)
7425                                            mddev->array_sectors / 2);
7426                         else
7427                                 seq_printf(seq, "\n      %llu blocks",
7428                                            (unsigned long long)sectors / 2);
7429                 }
7430                 if (mddev->persistent) {
7431                         if (mddev->major_version != 0 ||
7432                             mddev->minor_version != 90) {
7433                                 seq_printf(seq," super %d.%d",
7434                                            mddev->major_version,
7435                                            mddev->minor_version);
7436                         }
7437                 } else if (mddev->external)
7438                         seq_printf(seq, " super external:%s",
7439                                    mddev->metadata_type);
7440                 else
7441                         seq_printf(seq, " super non-persistent");
7442
7443                 if (mddev->pers) {
7444                         mddev->pers->status(seq, mddev);
7445                         seq_printf(seq, "\n      ");
7446                         if (mddev->pers->sync_request) {
7447                                 if (status_resync(seq, mddev))
7448                                         seq_printf(seq, "\n      ");
7449                         }
7450                 } else
7451                         seq_printf(seq, "\n       ");
7452
7453                 bitmap_status(seq, mddev->bitmap);
7454
7455                 seq_printf(seq, "\n");
7456         }
7457         spin_unlock(&mddev->lock);
7458
7459         return 0;
7460 }
7461
7462 static const struct seq_operations md_seq_ops = {
7463         .start  = md_seq_start,
7464         .next   = md_seq_next,
7465         .stop   = md_seq_stop,
7466         .show   = md_seq_show,
7467 };
7468
7469 static int md_seq_open(struct inode *inode, struct file *file)
7470 {
7471         struct seq_file *seq;
7472         int error;
7473
7474         error = seq_open(file, &md_seq_ops);
7475         if (error)
7476                 return error;
7477
7478         seq = file->private_data;
7479         seq->poll_event = atomic_read(&md_event_count);
7480         return error;
7481 }
7482
7483 static int md_unloading;
7484 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7485 {
7486         struct seq_file *seq = filp->private_data;
7487         int mask;
7488
7489         if (md_unloading)
7490                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7491         poll_wait(filp, &md_event_waiters, wait);
7492
7493         /* always allow read */
7494         mask = POLLIN | POLLRDNORM;
7495
7496         if (seq->poll_event != atomic_read(&md_event_count))
7497                 mask |= POLLERR | POLLPRI;
7498         return mask;
7499 }
7500
7501 static const struct file_operations md_seq_fops = {
7502         .owner          = THIS_MODULE,
7503         .open           = md_seq_open,
7504         .read           = seq_read,
7505         .llseek         = seq_lseek,
7506         .release        = seq_release_private,
7507         .poll           = mdstat_poll,
7508 };
7509
7510 int register_md_personality(struct md_personality *p)
7511 {
7512         printk(KERN_INFO "md: %s personality registered for level %d\n",
7513                                                 p->name, p->level);
7514         spin_lock(&pers_lock);
7515         list_add_tail(&p->list, &pers_list);
7516         spin_unlock(&pers_lock);
7517         return 0;
7518 }
7519 EXPORT_SYMBOL(register_md_personality);
7520
7521 int unregister_md_personality(struct md_personality *p)
7522 {
7523         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7524         spin_lock(&pers_lock);
7525         list_del_init(&p->list);
7526         spin_unlock(&pers_lock);
7527         return 0;
7528 }
7529 EXPORT_SYMBOL(unregister_md_personality);
7530
7531 int register_md_cluster_operations(struct md_cluster_operations *ops,
7532                                    struct module *module)
7533 {
7534         int ret = 0;
7535         spin_lock(&pers_lock);
7536         if (md_cluster_ops != NULL)
7537                 ret = -EALREADY;
7538         else {
7539                 md_cluster_ops = ops;
7540                 md_cluster_mod = module;
7541         }
7542         spin_unlock(&pers_lock);
7543         return ret;
7544 }
7545 EXPORT_SYMBOL(register_md_cluster_operations);
7546
7547 int unregister_md_cluster_operations(void)
7548 {
7549         spin_lock(&pers_lock);
7550         md_cluster_ops = NULL;
7551         spin_unlock(&pers_lock);
7552         return 0;
7553 }
7554 EXPORT_SYMBOL(unregister_md_cluster_operations);
7555
7556 int md_setup_cluster(struct mddev *mddev, int nodes)
7557 {
7558         int err;
7559
7560         err = request_module("md-cluster");
7561         if (err) {
7562                 pr_err("md-cluster module not found.\n");
7563                 return -ENOENT;
7564         }
7565
7566         spin_lock(&pers_lock);
7567         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7568                 spin_unlock(&pers_lock);
7569                 return -ENOENT;
7570         }
7571         spin_unlock(&pers_lock);
7572
7573         return md_cluster_ops->join(mddev, nodes);
7574 }
7575
7576 void md_cluster_stop(struct mddev *mddev)
7577 {
7578         if (!md_cluster_ops)
7579                 return;
7580         md_cluster_ops->leave(mddev);
7581         module_put(md_cluster_mod);
7582 }
7583
7584 static int is_mddev_idle(struct mddev *mddev, int init)
7585 {
7586         struct md_rdev *rdev;
7587         int idle;
7588         int curr_events;
7589
7590         idle = 1;
7591         rcu_read_lock();
7592         rdev_for_each_rcu(rdev, mddev) {
7593                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7594                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7595                               (int)part_stat_read(&disk->part0, sectors[1]) -
7596                               atomic_read(&disk->sync_io);
7597                 /* sync IO will cause sync_io to increase before the disk_stats
7598                  * as sync_io is counted when a request starts, and
7599                  * disk_stats is counted when it completes.
7600                  * So resync activity will cause curr_events to be smaller than
7601                  * when there was no such activity.
7602                  * non-sync IO will cause disk_stat to increase without
7603                  * increasing sync_io so curr_events will (eventually)
7604                  * be larger than it was before.  Once it becomes
7605                  * substantially larger, the test below will cause
7606                  * the array to appear non-idle, and resync will slow
7607                  * down.
7608                  * If there is a lot of outstanding resync activity when
7609                  * we set last_event to curr_events, then all that activity
7610                  * completing might cause the array to appear non-idle
7611                  * and resync will be slowed down even though there might
7612                  * not have been non-resync activity.  This will only
7613                  * happen once though.  'last_events' will soon reflect
7614                  * the state where there is little or no outstanding
7615                  * resync requests, and further resync activity will
7616                  * always make curr_events less than last_events.
7617                  *
7618                  */
7619                 if (init || curr_events - rdev->last_events > 64) {
7620                         rdev->last_events = curr_events;
7621                         idle = 0;
7622                 }
7623         }
7624         rcu_read_unlock();
7625         return idle;
7626 }
7627
7628 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7629 {
7630         /* another "blocks" (512byte) blocks have been synced */
7631         atomic_sub(blocks, &mddev->recovery_active);
7632         wake_up(&mddev->recovery_wait);
7633         if (!ok) {
7634                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7635                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7636                 md_wakeup_thread(mddev->thread);
7637                 // stop recovery, signal do_sync ....
7638         }
7639 }
7640 EXPORT_SYMBOL(md_done_sync);
7641
7642 /* md_write_start(mddev, bi)
7643  * If we need to update some array metadata (e.g. 'active' flag
7644  * in superblock) before writing, schedule a superblock update
7645  * and wait for it to complete.
7646  */
7647 void md_write_start(struct mddev *mddev, struct bio *bi)
7648 {
7649         int did_change = 0;
7650         if (bio_data_dir(bi) != WRITE)
7651                 return;
7652
7653         BUG_ON(mddev->ro == 1);
7654         if (mddev->ro == 2) {
7655                 /* need to switch to read/write */
7656                 mddev->ro = 0;
7657                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7658                 md_wakeup_thread(mddev->thread);
7659                 md_wakeup_thread(mddev->sync_thread);
7660                 did_change = 1;
7661         }
7662         atomic_inc(&mddev->writes_pending);
7663         if (mddev->safemode == 1)
7664                 mddev->safemode = 0;
7665         if (mddev->in_sync) {
7666                 spin_lock(&mddev->lock);
7667                 if (mddev->in_sync) {
7668                         mddev->in_sync = 0;
7669                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7670                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7671                         md_wakeup_thread(mddev->thread);
7672                         did_change = 1;
7673                 }
7674                 spin_unlock(&mddev->lock);
7675         }
7676         if (did_change)
7677                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7678         wait_event(mddev->sb_wait,
7679                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7680 }
7681 EXPORT_SYMBOL(md_write_start);
7682
7683 void md_write_end(struct mddev *mddev)
7684 {
7685         if (atomic_dec_and_test(&mddev->writes_pending)) {
7686                 if (mddev->safemode == 2)
7687                         md_wakeup_thread(mddev->thread);
7688                 else if (mddev->safemode_delay)
7689                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7690         }
7691 }
7692 EXPORT_SYMBOL(md_write_end);
7693
7694 /* md_allow_write(mddev)
7695  * Calling this ensures that the array is marked 'active' so that writes
7696  * may proceed without blocking.  It is important to call this before
7697  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7698  * Must be called with mddev_lock held.
7699  *
7700  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7701  * is dropped, so return -EAGAIN after notifying userspace.
7702  */
7703 int md_allow_write(struct mddev *mddev)
7704 {
7705         if (!mddev->pers)
7706                 return 0;
7707         if (mddev->ro)
7708                 return 0;
7709         if (!mddev->pers->sync_request)
7710                 return 0;
7711
7712         spin_lock(&mddev->lock);
7713         if (mddev->in_sync) {
7714                 mddev->in_sync = 0;
7715                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7716                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7717                 if (mddev->safemode_delay &&
7718                     mddev->safemode == 0)
7719                         mddev->safemode = 1;
7720                 spin_unlock(&mddev->lock);
7721                 md_update_sb(mddev, 0);
7722                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7723         } else
7724                 spin_unlock(&mddev->lock);
7725
7726         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7727                 return -EAGAIN;
7728         else
7729                 return 0;
7730 }
7731 EXPORT_SYMBOL_GPL(md_allow_write);
7732
7733 #define SYNC_MARKS      10
7734 #define SYNC_MARK_STEP  (3*HZ)
7735 #define UPDATE_FREQUENCY (5*60*HZ)
7736 void md_do_sync(struct md_thread *thread)
7737 {
7738         struct mddev *mddev = thread->mddev;
7739         struct mddev *mddev2;
7740         unsigned int currspeed = 0,
7741                  window;
7742         sector_t max_sectors,j, io_sectors, recovery_done;
7743         unsigned long mark[SYNC_MARKS];
7744         unsigned long update_time;
7745         sector_t mark_cnt[SYNC_MARKS];
7746         int last_mark,m;
7747         struct list_head *tmp;
7748         sector_t last_check;
7749         int skipped = 0;
7750         struct md_rdev *rdev;
7751         char *desc, *action = NULL;
7752         struct blk_plug plug;
7753         bool cluster_resync_finished = false;
7754
7755         /* just incase thread restarts... */
7756         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7757                 return;
7758         if (mddev->ro) {/* never try to sync a read-only array */
7759                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7760                 return;
7761         }
7762
7763         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7764                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7765                         desc = "data-check";
7766                         action = "check";
7767                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7768                         desc = "requested-resync";
7769                         action = "repair";
7770                 } else
7771                         desc = "resync";
7772         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7773                 desc = "reshape";
7774         else
7775                 desc = "recovery";
7776
7777         mddev->last_sync_action = action ?: desc;
7778
7779         /* we overload curr_resync somewhat here.
7780          * 0 == not engaged in resync at all
7781          * 2 == checking that there is no conflict with another sync
7782          * 1 == like 2, but have yielded to allow conflicting resync to
7783          *              commense
7784          * other == active in resync - this many blocks
7785          *
7786          * Before starting a resync we must have set curr_resync to
7787          * 2, and then checked that every "conflicting" array has curr_resync
7788          * less than ours.  When we find one that is the same or higher
7789          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7790          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7791          * This will mean we have to start checking from the beginning again.
7792          *
7793          */
7794
7795         do {
7796                 mddev->curr_resync = 2;
7797
7798         try_again:
7799                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7800                         goto skip;
7801                 for_each_mddev(mddev2, tmp) {
7802                         if (mddev2 == mddev)
7803                                 continue;
7804                         if (!mddev->parallel_resync
7805                         &&  mddev2->curr_resync
7806                         &&  match_mddev_units(mddev, mddev2)) {
7807                                 DEFINE_WAIT(wq);
7808                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7809                                         /* arbitrarily yield */
7810                                         mddev->curr_resync = 1;
7811                                         wake_up(&resync_wait);
7812                                 }
7813                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7814                                         /* no need to wait here, we can wait the next
7815                                          * time 'round when curr_resync == 2
7816                                          */
7817                                         continue;
7818                                 /* We need to wait 'interruptible' so as not to
7819                                  * contribute to the load average, and not to
7820                                  * be caught by 'softlockup'
7821                                  */
7822                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7823                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7824                                     mddev2->curr_resync >= mddev->curr_resync) {
7825                                         printk(KERN_INFO "md: delaying %s of %s"
7826                                                " until %s has finished (they"
7827                                                " share one or more physical units)\n",
7828                                                desc, mdname(mddev), mdname(mddev2));
7829                                         mddev_put(mddev2);
7830                                         if (signal_pending(current))
7831                                                 flush_signals(current);
7832                                         schedule();
7833                                         finish_wait(&resync_wait, &wq);
7834                                         goto try_again;
7835                                 }
7836                                 finish_wait(&resync_wait, &wq);
7837                         }
7838                 }
7839         } while (mddev->curr_resync < 2);
7840
7841         j = 0;
7842         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7843                 /* resync follows the size requested by the personality,
7844                  * which defaults to physical size, but can be virtual size
7845                  */
7846                 max_sectors = mddev->resync_max_sectors;
7847                 atomic64_set(&mddev->resync_mismatches, 0);
7848                 /* we don't use the checkpoint if there's a bitmap */
7849                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7850                         j = mddev->resync_min;
7851                 else if (!mddev->bitmap)
7852                         j = mddev->recovery_cp;
7853
7854         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7855                 max_sectors = mddev->resync_max_sectors;
7856         else {
7857                 /* recovery follows the physical size of devices */
7858                 max_sectors = mddev->dev_sectors;
7859                 j = MaxSector;
7860                 rcu_read_lock();
7861                 rdev_for_each_rcu(rdev, mddev)
7862                         if (rdev->raid_disk >= 0 &&
7863                             !test_bit(Journal, &rdev->flags) &&
7864                             !test_bit(Faulty, &rdev->flags) &&
7865                             !test_bit(In_sync, &rdev->flags) &&
7866                             rdev->recovery_offset < j)
7867                                 j = rdev->recovery_offset;
7868                 rcu_read_unlock();
7869
7870                 /* If there is a bitmap, we need to make sure all
7871                  * writes that started before we added a spare
7872                  * complete before we start doing a recovery.
7873                  * Otherwise the write might complete and (via
7874                  * bitmap_endwrite) set a bit in the bitmap after the
7875                  * recovery has checked that bit and skipped that
7876                  * region.
7877                  */
7878                 if (mddev->bitmap) {
7879                         mddev->pers->quiesce(mddev, 1);
7880                         mddev->pers->quiesce(mddev, 0);
7881                 }
7882         }
7883
7884         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7885         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7886                 " %d KB/sec/disk.\n", speed_min(mddev));
7887         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7888                "(but not more than %d KB/sec) for %s.\n",
7889                speed_max(mddev), desc);
7890
7891         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7892
7893         io_sectors = 0;
7894         for (m = 0; m < SYNC_MARKS; m++) {
7895                 mark[m] = jiffies;
7896                 mark_cnt[m] = io_sectors;
7897         }
7898         last_mark = 0;
7899         mddev->resync_mark = mark[last_mark];
7900         mddev->resync_mark_cnt = mark_cnt[last_mark];
7901
7902         /*
7903          * Tune reconstruction:
7904          */
7905         window = 32*(PAGE_SIZE/512);
7906         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7907                 window/2, (unsigned long long)max_sectors/2);
7908
7909         atomic_set(&mddev->recovery_active, 0);
7910         last_check = 0;
7911
7912         if (j>2) {
7913                 printk(KERN_INFO
7914                        "md: resuming %s of %s from checkpoint.\n",
7915                        desc, mdname(mddev));
7916                 mddev->curr_resync = j;
7917         } else
7918                 mddev->curr_resync = 3; /* no longer delayed */
7919         mddev->curr_resync_completed = j;
7920         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7921         md_new_event(mddev);
7922         update_time = jiffies;
7923
7924         blk_start_plug(&plug);
7925         while (j < max_sectors) {
7926                 sector_t sectors;
7927
7928                 skipped = 0;
7929
7930                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7931                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7932                       (mddev->curr_resync - mddev->curr_resync_completed)
7933                       > (max_sectors >> 4)) ||
7934                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7935                      (j - mddev->curr_resync_completed)*2
7936                      >= mddev->resync_max - mddev->curr_resync_completed ||
7937                      mddev->curr_resync_completed > mddev->resync_max
7938                             )) {
7939                         /* time to update curr_resync_completed */
7940                         wait_event(mddev->recovery_wait,
7941                                    atomic_read(&mddev->recovery_active) == 0);
7942                         mddev->curr_resync_completed = j;
7943                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7944                             j > mddev->recovery_cp)
7945                                 mddev->recovery_cp = j;
7946                         update_time = jiffies;
7947                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7948                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7949                 }
7950
7951                 while (j >= mddev->resync_max &&
7952                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7953                         /* As this condition is controlled by user-space,
7954                          * we can block indefinitely, so use '_interruptible'
7955                          * to avoid triggering warnings.
7956                          */
7957                         flush_signals(current); /* just in case */
7958                         wait_event_interruptible(mddev->recovery_wait,
7959                                                  mddev->resync_max > j
7960                                                  || test_bit(MD_RECOVERY_INTR,
7961                                                              &mddev->recovery));
7962                 }
7963
7964                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7965                         break;
7966
7967                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7968                 if (sectors == 0) {
7969                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7970                         break;
7971                 }
7972
7973                 if (!skipped) { /* actual IO requested */
7974                         io_sectors += sectors;
7975                         atomic_add(sectors, &mddev->recovery_active);
7976                 }
7977
7978                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7979                         break;
7980
7981                 j += sectors;
7982                 if (j > max_sectors)
7983                         /* when skipping, extra large numbers can be returned. */
7984                         j = max_sectors;
7985                 if (j > 2)
7986                         mddev->curr_resync = j;
7987                 mddev->curr_mark_cnt = io_sectors;
7988                 if (last_check == 0)
7989                         /* this is the earliest that rebuild will be
7990                          * visible in /proc/mdstat
7991                          */
7992                         md_new_event(mddev);
7993
7994                 if (last_check + window > io_sectors || j == max_sectors)
7995                         continue;
7996
7997                 last_check = io_sectors;
7998         repeat:
7999                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8000                         /* step marks */
8001                         int next = (last_mark+1) % SYNC_MARKS;
8002
8003                         mddev->resync_mark = mark[next];
8004                         mddev->resync_mark_cnt = mark_cnt[next];
8005                         mark[next] = jiffies;
8006                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8007                         last_mark = next;
8008                 }
8009
8010                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8011                         break;
8012
8013                 /*
8014                  * this loop exits only if either when we are slower than
8015                  * the 'hard' speed limit, or the system was IO-idle for
8016                  * a jiffy.
8017                  * the system might be non-idle CPU-wise, but we only care
8018                  * about not overloading the IO subsystem. (things like an
8019                  * e2fsck being done on the RAID array should execute fast)
8020                  */
8021                 cond_resched();
8022
8023                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8024                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8025                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
8026
8027                 if (currspeed > speed_min(mddev)) {
8028                         if (currspeed > speed_max(mddev)) {
8029                                 msleep(500);
8030                                 goto repeat;
8031                         }
8032                         if (!is_mddev_idle(mddev, 0)) {
8033                                 /*
8034                                  * Give other IO more of a chance.
8035                                  * The faster the devices, the less we wait.
8036                                  */
8037                                 wait_event(mddev->recovery_wait,
8038                                            !atomic_read(&mddev->recovery_active));
8039                         }
8040                 }
8041         }
8042         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8043                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8044                ? "interrupted" : "done");
8045         /*
8046          * this also signals 'finished resyncing' to md_stop
8047          */
8048         blk_finish_plug(&plug);
8049         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8050
8051         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8052             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8053             mddev->curr_resync > 2) {
8054                 mddev->curr_resync_completed = mddev->curr_resync;
8055                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8056         }
8057         /* tell personality and other nodes that we are finished */
8058         if (mddev_is_clustered(mddev)) {
8059                 md_cluster_ops->resync_finish(mddev);
8060                 cluster_resync_finished = true;
8061         }
8062         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8063
8064         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8065             mddev->curr_resync > 2) {
8066                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8067                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8068                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8069                                         printk(KERN_INFO
8070                                                "md: checkpointing %s of %s.\n",
8071                                                desc, mdname(mddev));
8072                                         if (test_bit(MD_RECOVERY_ERROR,
8073                                                 &mddev->recovery))
8074                                                 mddev->recovery_cp =
8075                                                         mddev->curr_resync_completed;
8076                                         else
8077                                                 mddev->recovery_cp =
8078                                                         mddev->curr_resync;
8079                                 }
8080                         } else
8081                                 mddev->recovery_cp = MaxSector;
8082                 } else {
8083                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8084                                 mddev->curr_resync = MaxSector;
8085                         rcu_read_lock();
8086                         rdev_for_each_rcu(rdev, mddev)
8087                                 if (rdev->raid_disk >= 0 &&
8088                                     mddev->delta_disks >= 0 &&
8089                                     !test_bit(Journal, &rdev->flags) &&
8090                                     !test_bit(Faulty, &rdev->flags) &&
8091                                     !test_bit(In_sync, &rdev->flags) &&
8092                                     rdev->recovery_offset < mddev->curr_resync)
8093                                         rdev->recovery_offset = mddev->curr_resync;
8094                         rcu_read_unlock();
8095                 }
8096         }
8097  skip:
8098         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8099
8100         if (mddev_is_clustered(mddev) &&
8101             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8102             !cluster_resync_finished)
8103                 md_cluster_ops->resync_finish(mddev);
8104
8105         spin_lock(&mddev->lock);
8106         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8107                 /* We completed so min/max setting can be forgotten if used. */
8108                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8109                         mddev->resync_min = 0;
8110                 mddev->resync_max = MaxSector;
8111         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8112                 mddev->resync_min = mddev->curr_resync_completed;
8113         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8114         mddev->curr_resync = 0;
8115         spin_unlock(&mddev->lock);
8116
8117         wake_up(&resync_wait);
8118         md_wakeup_thread(mddev->thread);
8119         return;
8120 }
8121 EXPORT_SYMBOL_GPL(md_do_sync);
8122
8123 static int remove_and_add_spares(struct mddev *mddev,
8124                                  struct md_rdev *this)
8125 {
8126         struct md_rdev *rdev;
8127         int spares = 0;
8128         int removed = 0;
8129
8130         rdev_for_each(rdev, mddev)
8131                 if ((this == NULL || rdev == this) &&
8132                     rdev->raid_disk >= 0 &&
8133                     !test_bit(Blocked, &rdev->flags) &&
8134                     (test_bit(Faulty, &rdev->flags) ||
8135                      (!test_bit(In_sync, &rdev->flags) &&
8136                       !test_bit(Journal, &rdev->flags))) &&
8137                     atomic_read(&rdev->nr_pending)==0) {
8138                         if (mddev->pers->hot_remove_disk(
8139                                     mddev, rdev) == 0) {
8140                                 sysfs_unlink_rdev(mddev, rdev);
8141                                 rdev->raid_disk = -1;
8142                                 removed++;
8143                         }
8144                 }
8145         if (removed && mddev->kobj.sd)
8146                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8147
8148         if (this && removed)
8149                 goto no_add;
8150
8151         rdev_for_each(rdev, mddev) {
8152                 if (this && this != rdev)
8153                         continue;
8154                 if (test_bit(Candidate, &rdev->flags))
8155                         continue;
8156                 if (rdev->raid_disk >= 0 &&
8157                     !test_bit(In_sync, &rdev->flags) &&
8158                     !test_bit(Journal, &rdev->flags) &&
8159                     !test_bit(Faulty, &rdev->flags))
8160                         spares++;
8161                 if (rdev->raid_disk >= 0)
8162                         continue;
8163                 if (test_bit(Faulty, &rdev->flags))
8164                         continue;
8165                 if (test_bit(Journal, &rdev->flags))
8166                         continue;
8167                 if (mddev->ro &&
8168                     ! (rdev->saved_raid_disk >= 0 &&
8169                        !test_bit(Bitmap_sync, &rdev->flags)))
8170                         continue;
8171
8172                 rdev->recovery_offset = 0;
8173                 if (mddev->pers->
8174                     hot_add_disk(mddev, rdev) == 0) {
8175                         if (sysfs_link_rdev(mddev, rdev))
8176                                 /* failure here is OK */;
8177                         spares++;
8178                         md_new_event(mddev);
8179                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8180                 }
8181         }
8182 no_add:
8183         if (removed)
8184                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8185         return spares;
8186 }
8187
8188 static void md_start_sync(struct work_struct *ws)
8189 {
8190         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8191         int ret = 0;
8192
8193         if (mddev_is_clustered(mddev)) {
8194                 ret = md_cluster_ops->resync_start(mddev);
8195                 if (ret) {
8196                         mddev->sync_thread = NULL;
8197                         goto out;
8198                 }
8199         }
8200
8201         mddev->sync_thread = md_register_thread(md_do_sync,
8202                                                 mddev,
8203                                                 "resync");
8204 out:
8205         if (!mddev->sync_thread) {
8206                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8207                         printk(KERN_ERR "%s: could not start resync"
8208                                " thread...\n",
8209                                mdname(mddev));
8210                 /* leave the spares where they are, it shouldn't hurt */
8211                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8212                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8213                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8214                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8215                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8216                 wake_up(&resync_wait);
8217                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8218                                        &mddev->recovery))
8219                         if (mddev->sysfs_action)
8220                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8221         } else
8222                 md_wakeup_thread(mddev->sync_thread);
8223         sysfs_notify_dirent_safe(mddev->sysfs_action);
8224         md_new_event(mddev);
8225 }
8226
8227 /*
8228  * This routine is regularly called by all per-raid-array threads to
8229  * deal with generic issues like resync and super-block update.
8230  * Raid personalities that don't have a thread (linear/raid0) do not
8231  * need this as they never do any recovery or update the superblock.
8232  *
8233  * It does not do any resync itself, but rather "forks" off other threads
8234  * to do that as needed.
8235  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8236  * "->recovery" and create a thread at ->sync_thread.
8237  * When the thread finishes it sets MD_RECOVERY_DONE
8238  * and wakeups up this thread which will reap the thread and finish up.
8239  * This thread also removes any faulty devices (with nr_pending == 0).
8240  *
8241  * The overall approach is:
8242  *  1/ if the superblock needs updating, update it.
8243  *  2/ If a recovery thread is running, don't do anything else.
8244  *  3/ If recovery has finished, clean up, possibly marking spares active.
8245  *  4/ If there are any faulty devices, remove them.
8246  *  5/ If array is degraded, try to add spares devices
8247  *  6/ If array has spares or is not in-sync, start a resync thread.
8248  */
8249 void md_check_recovery(struct mddev *mddev)
8250 {
8251         if (mddev->suspended)
8252                 return;
8253
8254         if (mddev->bitmap)
8255                 bitmap_daemon_work(mddev);
8256
8257         if (signal_pending(current)) {
8258                 if (mddev->pers->sync_request && !mddev->external) {
8259                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8260                                mdname(mddev));
8261                         mddev->safemode = 2;
8262                 }
8263                 flush_signals(current);
8264         }
8265
8266         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8267                 return;
8268         if ( ! (
8269                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8270                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8271                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8272                 (mddev->external == 0 && mddev->safemode == 1) ||
8273                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8274                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8275                 ))
8276                 return;
8277
8278         if (mddev_trylock(mddev)) {
8279                 int spares = 0;
8280
8281                 if (mddev->ro) {
8282                         struct md_rdev *rdev;
8283                         if (!mddev->external && mddev->in_sync)
8284                                 /* 'Blocked' flag not needed as failed devices
8285                                  * will be recorded if array switched to read/write.
8286                                  * Leaving it set will prevent the device
8287                                  * from being removed.
8288                                  */
8289                                 rdev_for_each(rdev, mddev)
8290                                         clear_bit(Blocked, &rdev->flags);
8291                         /* On a read-only array we can:
8292                          * - remove failed devices
8293                          * - add already-in_sync devices if the array itself
8294                          *   is in-sync.
8295                          * As we only add devices that are already in-sync,
8296                          * we can activate the spares immediately.
8297                          */
8298                         remove_and_add_spares(mddev, NULL);
8299                         /* There is no thread, but we need to call
8300                          * ->spare_active and clear saved_raid_disk
8301                          */
8302                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8303                         md_reap_sync_thread(mddev);
8304                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8305                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8306                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8307                         goto unlock;
8308                 }
8309
8310                 if (!mddev->external) {
8311                         int did_change = 0;
8312                         spin_lock(&mddev->lock);
8313                         if (mddev->safemode &&
8314                             !atomic_read(&mddev->writes_pending) &&
8315                             !mddev->in_sync &&
8316                             mddev->recovery_cp == MaxSector) {
8317                                 mddev->in_sync = 1;
8318                                 did_change = 1;
8319                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8320                         }
8321                         if (mddev->safemode == 1)
8322                                 mddev->safemode = 0;
8323                         spin_unlock(&mddev->lock);
8324                         if (did_change)
8325                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8326                 }
8327
8328                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8329                         md_update_sb(mddev, 0);
8330
8331                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8332                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8333                         /* resync/recovery still happening */
8334                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8335                         goto unlock;
8336                 }
8337                 if (mddev->sync_thread) {
8338                         md_reap_sync_thread(mddev);
8339                         goto unlock;
8340                 }
8341                 /* Set RUNNING before clearing NEEDED to avoid
8342                  * any transients in the value of "sync_action".
8343                  */
8344                 mddev->curr_resync_completed = 0;
8345                 spin_lock(&mddev->lock);
8346                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8347                 spin_unlock(&mddev->lock);
8348                 /* Clear some bits that don't mean anything, but
8349                  * might be left set
8350                  */
8351                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8352                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8353
8354                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8355                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8356                         goto not_running;
8357                 /* no recovery is running.
8358                  * remove any failed drives, then
8359                  * add spares if possible.
8360                  * Spares are also removed and re-added, to allow
8361                  * the personality to fail the re-add.
8362                  */
8363
8364                 if (mddev->reshape_position != MaxSector) {
8365                         if (mddev->pers->check_reshape == NULL ||
8366                             mddev->pers->check_reshape(mddev) != 0)
8367                                 /* Cannot proceed */
8368                                 goto not_running;
8369                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8370                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8371                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8372                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8373                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8374                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8375                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8376                 } else if (mddev->recovery_cp < MaxSector) {
8377                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8378                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8379                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8380                         /* nothing to be done ... */
8381                         goto not_running;
8382
8383                 if (mddev->pers->sync_request) {
8384                         if (spares) {
8385                                 /* We are adding a device or devices to an array
8386                                  * which has the bitmap stored on all devices.
8387                                  * So make sure all bitmap pages get written
8388                                  */
8389                                 bitmap_write_all(mddev->bitmap);
8390                         }
8391                         INIT_WORK(&mddev->del_work, md_start_sync);
8392                         queue_work(md_misc_wq, &mddev->del_work);
8393                         goto unlock;
8394                 }
8395         not_running:
8396                 if (!mddev->sync_thread) {
8397                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8398                         wake_up(&resync_wait);
8399                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8400                                                &mddev->recovery))
8401                                 if (mddev->sysfs_action)
8402                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8403                 }
8404         unlock:
8405                 wake_up(&mddev->sb_wait);
8406                 mddev_unlock(mddev);
8407         }
8408 }
8409 EXPORT_SYMBOL(md_check_recovery);
8410
8411 void md_reap_sync_thread(struct mddev *mddev)
8412 {
8413         struct md_rdev *rdev;
8414
8415         /* resync has finished, collect result */
8416         md_unregister_thread(&mddev->sync_thread);
8417         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8418             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8419                 /* success...*/
8420                 /* activate any spares */
8421                 if (mddev->pers->spare_active(mddev)) {
8422                         sysfs_notify(&mddev->kobj, NULL,
8423                                      "degraded");
8424                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8425                 }
8426         }
8427         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8428             mddev->pers->finish_reshape)
8429                 mddev->pers->finish_reshape(mddev);
8430
8431         /* If array is no-longer degraded, then any saved_raid_disk
8432          * information must be scrapped.
8433          */
8434         if (!mddev->degraded)
8435                 rdev_for_each(rdev, mddev)
8436                         rdev->saved_raid_disk = -1;
8437
8438         md_update_sb(mddev, 1);
8439         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8440         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8441         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8442         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8443         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8444         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8445         wake_up(&resync_wait);
8446         /* flag recovery needed just to double check */
8447         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8448         sysfs_notify_dirent_safe(mddev->sysfs_action);
8449         md_new_event(mddev);
8450         if (mddev->event_work.func)
8451                 queue_work(md_misc_wq, &mddev->event_work);
8452 }
8453 EXPORT_SYMBOL(md_reap_sync_thread);
8454
8455 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8456 {
8457         sysfs_notify_dirent_safe(rdev->sysfs_state);
8458         wait_event_timeout(rdev->blocked_wait,
8459                            !test_bit(Blocked, &rdev->flags) &&
8460                            !test_bit(BlockedBadBlocks, &rdev->flags),
8461                            msecs_to_jiffies(5000));
8462         rdev_dec_pending(rdev, mddev);
8463 }
8464 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8465
8466 void md_finish_reshape(struct mddev *mddev)
8467 {
8468         /* called be personality module when reshape completes. */
8469         struct md_rdev *rdev;
8470
8471         rdev_for_each(rdev, mddev) {
8472                 if (rdev->data_offset > rdev->new_data_offset)
8473                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8474                 else
8475                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8476                 rdev->data_offset = rdev->new_data_offset;
8477         }
8478 }
8479 EXPORT_SYMBOL(md_finish_reshape);
8480
8481 /* Bad block management.
8482  * We can record which blocks on each device are 'bad' and so just
8483  * fail those blocks, or that stripe, rather than the whole device.
8484  * Entries in the bad-block table are 64bits wide.  This comprises:
8485  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8486  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8487  *  A 'shift' can be set so that larger blocks are tracked and
8488  *  consequently larger devices can be covered.
8489  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8490  *
8491  * Locking of the bad-block table uses a seqlock so md_is_badblock
8492  * might need to retry if it is very unlucky.
8493  * We will sometimes want to check for bad blocks in a bi_end_io function,
8494  * so we use the write_seqlock_irq variant.
8495  *
8496  * When looking for a bad block we specify a range and want to
8497  * know if any block in the range is bad.  So we binary-search
8498  * to the last range that starts at-or-before the given endpoint,
8499  * (or "before the sector after the target range")
8500  * then see if it ends after the given start.
8501  * We return
8502  *  0 if there are no known bad blocks in the range
8503  *  1 if there are known bad block which are all acknowledged
8504  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8505  * plus the start/length of the first bad section we overlap.
8506  */
8507 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8508                    sector_t *first_bad, int *bad_sectors)
8509 {
8510         int hi;
8511         int lo;
8512         u64 *p = bb->page;
8513         int rv;
8514         sector_t target = s + sectors;
8515         unsigned seq;
8516
8517         if (bb->shift > 0) {
8518                 /* round the start down, and the end up */
8519                 s >>= bb->shift;
8520                 target += (1<<bb->shift) - 1;
8521                 target >>= bb->shift;
8522                 sectors = target - s;
8523         }
8524         /* 'target' is now the first block after the bad range */
8525
8526 retry:
8527         seq = read_seqbegin(&bb->lock);
8528         lo = 0;
8529         rv = 0;
8530         hi = bb->count;
8531
8532         /* Binary search between lo and hi for 'target'
8533          * i.e. for the last range that starts before 'target'
8534          */
8535         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8536          * are known not to be the last range before target.
8537          * VARIANT: hi-lo is the number of possible
8538          * ranges, and decreases until it reaches 1
8539          */
8540         while (hi - lo > 1) {
8541                 int mid = (lo + hi) / 2;
8542                 sector_t a = BB_OFFSET(p[mid]);
8543                 if (a < target)
8544                         /* This could still be the one, earlier ranges
8545                          * could not. */
8546                         lo = mid;
8547                 else
8548                         /* This and later ranges are definitely out. */
8549                         hi = mid;
8550         }
8551         /* 'lo' might be the last that started before target, but 'hi' isn't */
8552         if (hi > lo) {
8553                 /* need to check all range that end after 's' to see if
8554                  * any are unacknowledged.
8555                  */
8556                 while (lo >= 0 &&
8557                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8558                         if (BB_OFFSET(p[lo]) < target) {
8559                                 /* starts before the end, and finishes after
8560                                  * the start, so they must overlap
8561                                  */
8562                                 if (rv != -1 && BB_ACK(p[lo]))
8563                                         rv = 1;
8564                                 else
8565                                         rv = -1;
8566                                 *first_bad = BB_OFFSET(p[lo]);
8567                                 *bad_sectors = BB_LEN(p[lo]);
8568                         }
8569                         lo--;
8570                 }
8571         }
8572
8573         if (read_seqretry(&bb->lock, seq))
8574                 goto retry;
8575
8576         return rv;
8577 }
8578 EXPORT_SYMBOL_GPL(md_is_badblock);
8579
8580 /*
8581  * Add a range of bad blocks to the table.
8582  * This might extend the table, or might contract it
8583  * if two adjacent ranges can be merged.
8584  * We binary-search to find the 'insertion' point, then
8585  * decide how best to handle it.
8586  */
8587 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8588                             int acknowledged)
8589 {
8590         u64 *p;
8591         int lo, hi;
8592         int rv = 1;
8593         unsigned long flags;
8594
8595         if (bb->shift < 0)
8596                 /* badblocks are disabled */
8597                 return 0;
8598
8599         if (bb->shift) {
8600                 /* round the start down, and the end up */
8601                 sector_t next = s + sectors;
8602                 s >>= bb->shift;
8603                 next += (1<<bb->shift) - 1;
8604                 next >>= bb->shift;
8605                 sectors = next - s;
8606         }
8607
8608         write_seqlock_irqsave(&bb->lock, flags);
8609
8610         p = bb->page;
8611         lo = 0;
8612         hi = bb->count;
8613         /* Find the last range that starts at-or-before 's' */
8614         while (hi - lo > 1) {
8615                 int mid = (lo + hi) / 2;
8616                 sector_t a = BB_OFFSET(p[mid]);
8617                 if (a <= s)
8618                         lo = mid;
8619                 else
8620                         hi = mid;
8621         }
8622         if (hi > lo && BB_OFFSET(p[lo]) > s)
8623                 hi = lo;
8624
8625         if (hi > lo) {
8626                 /* we found a range that might merge with the start
8627                  * of our new range
8628                  */
8629                 sector_t a = BB_OFFSET(p[lo]);
8630                 sector_t e = a + BB_LEN(p[lo]);
8631                 int ack = BB_ACK(p[lo]);
8632                 if (e >= s) {
8633                         /* Yes, we can merge with a previous range */
8634                         if (s == a && s + sectors >= e)
8635                                 /* new range covers old */
8636                                 ack = acknowledged;
8637                         else
8638                                 ack = ack && acknowledged;
8639
8640                         if (e < s + sectors)
8641                                 e = s + sectors;
8642                         if (e - a <= BB_MAX_LEN) {
8643                                 p[lo] = BB_MAKE(a, e-a, ack);
8644                                 s = e;
8645                         } else {
8646                                 /* does not all fit in one range,
8647                                  * make p[lo] maximal
8648                                  */
8649                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8650                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8651                                 s = a + BB_MAX_LEN;
8652                         }
8653                         sectors = e - s;
8654                 }
8655         }
8656         if (sectors && hi < bb->count) {
8657                 /* 'hi' points to the first range that starts after 's'.
8658                  * Maybe we can merge with the start of that range */
8659                 sector_t a = BB_OFFSET(p[hi]);
8660                 sector_t e = a + BB_LEN(p[hi]);
8661                 int ack = BB_ACK(p[hi]);
8662                 if (a <= s + sectors) {
8663                         /* merging is possible */
8664                         if (e <= s + sectors) {
8665                                 /* full overlap */
8666                                 e = s + sectors;
8667                                 ack = acknowledged;
8668                         } else
8669                                 ack = ack && acknowledged;
8670
8671                         a = s;
8672                         if (e - a <= BB_MAX_LEN) {
8673                                 p[hi] = BB_MAKE(a, e-a, ack);
8674                                 s = e;
8675                         } else {
8676                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8677                                 s = a + BB_MAX_LEN;
8678                         }
8679                         sectors = e - s;
8680                         lo = hi;
8681                         hi++;
8682                 }
8683         }
8684         if (sectors == 0 && hi < bb->count) {
8685                 /* we might be able to combine lo and hi */
8686                 /* Note: 's' is at the end of 'lo' */
8687                 sector_t a = BB_OFFSET(p[hi]);
8688                 int lolen = BB_LEN(p[lo]);
8689                 int hilen = BB_LEN(p[hi]);
8690                 int newlen = lolen + hilen - (s - a);
8691                 if (s >= a && newlen < BB_MAX_LEN) {
8692                         /* yes, we can combine them */
8693                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8694                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8695                         memmove(p + hi, p + hi + 1,
8696                                 (bb->count - hi - 1) * 8);
8697                         bb->count--;
8698                 }
8699         }
8700         while (sectors) {
8701                 /* didn't merge (it all).
8702                  * Need to add a range just before 'hi' */
8703                 if (bb->count >= MD_MAX_BADBLOCKS) {
8704                         /* No room for more */
8705                         rv = 0;
8706                         break;
8707                 } else {
8708                         int this_sectors = sectors;
8709                         memmove(p + hi + 1, p + hi,
8710                                 (bb->count - hi) * 8);
8711                         bb->count++;
8712
8713                         if (this_sectors > BB_MAX_LEN)
8714                                 this_sectors = BB_MAX_LEN;
8715                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8716                         sectors -= this_sectors;
8717                         s += this_sectors;
8718                 }
8719         }
8720
8721         bb->changed = 1;
8722         if (!acknowledged)
8723                 bb->unacked_exist = 1;
8724         write_sequnlock_irqrestore(&bb->lock, flags);
8725
8726         return rv;
8727 }
8728
8729 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8730                        int is_new)
8731 {
8732         int rv;
8733         if (is_new)
8734                 s += rdev->new_data_offset;
8735         else
8736                 s += rdev->data_offset;
8737         rv = md_set_badblocks(&rdev->badblocks,
8738                               s, sectors, 0);
8739         if (rv) {
8740                 /* Make sure they get written out promptly */
8741                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8742                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8743                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8744                 md_wakeup_thread(rdev->mddev->thread);
8745         }
8746         return rv;
8747 }
8748 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8749
8750 /*
8751  * Remove a range of bad blocks from the table.
8752  * This may involve extending the table if we spilt a region,
8753  * but it must not fail.  So if the table becomes full, we just
8754  * drop the remove request.
8755  */
8756 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8757 {
8758         u64 *p;
8759         int lo, hi;
8760         sector_t target = s + sectors;
8761         int rv = 0;
8762
8763         if (bb->shift > 0) {
8764                 /* When clearing we round the start up and the end down.
8765                  * This should not matter as the shift should align with
8766                  * the block size and no rounding should ever be needed.
8767                  * However it is better the think a block is bad when it
8768                  * isn't than to think a block is not bad when it is.
8769                  */
8770                 s += (1<<bb->shift) - 1;
8771                 s >>= bb->shift;
8772                 target >>= bb->shift;
8773                 sectors = target - s;
8774         }
8775
8776         write_seqlock_irq(&bb->lock);
8777
8778         p = bb->page;
8779         lo = 0;
8780         hi = bb->count;
8781         /* Find the last range that starts before 'target' */
8782         while (hi - lo > 1) {
8783                 int mid = (lo + hi) / 2;
8784                 sector_t a = BB_OFFSET(p[mid]);
8785                 if (a < target)
8786                         lo = mid;
8787                 else
8788                         hi = mid;
8789         }
8790         if (hi > lo) {
8791                 /* p[lo] is the last range that could overlap the
8792                  * current range.  Earlier ranges could also overlap,
8793                  * but only this one can overlap the end of the range.
8794                  */
8795                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8796                         /* Partial overlap, leave the tail of this range */
8797                         int ack = BB_ACK(p[lo]);
8798                         sector_t a = BB_OFFSET(p[lo]);
8799                         sector_t end = a + BB_LEN(p[lo]);
8800
8801                         if (a < s) {
8802                                 /* we need to split this range */
8803                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8804                                         rv = -ENOSPC;
8805                                         goto out;
8806                                 }
8807                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8808                                 bb->count++;
8809                                 p[lo] = BB_MAKE(a, s-a, ack);
8810                                 lo++;
8811                         }
8812                         p[lo] = BB_MAKE(target, end - target, ack);
8813                         /* there is no longer an overlap */
8814                         hi = lo;
8815                         lo--;
8816                 }
8817                 while (lo >= 0 &&
8818                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8819                         /* This range does overlap */
8820                         if (BB_OFFSET(p[lo]) < s) {
8821                                 /* Keep the early parts of this range. */
8822                                 int ack = BB_ACK(p[lo]);
8823                                 sector_t start = BB_OFFSET(p[lo]);
8824                                 p[lo] = BB_MAKE(start, s - start, ack);
8825                                 /* now low doesn't overlap, so.. */
8826                                 break;
8827                         }
8828                         lo--;
8829                 }
8830                 /* 'lo' is strictly before, 'hi' is strictly after,
8831                  * anything between needs to be discarded
8832                  */
8833                 if (hi - lo > 1) {
8834                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8835                         bb->count -= (hi - lo - 1);
8836                 }
8837         }
8838
8839         bb->changed = 1;
8840 out:
8841         write_sequnlock_irq(&bb->lock);
8842         return rv;
8843 }
8844
8845 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8846                          int is_new)
8847 {
8848         if (is_new)
8849                 s += rdev->new_data_offset;
8850         else
8851                 s += rdev->data_offset;
8852         return md_clear_badblocks(&rdev->badblocks,
8853                                   s, sectors);
8854 }
8855 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8856
8857 /*
8858  * Acknowledge all bad blocks in a list.
8859  * This only succeeds if ->changed is clear.  It is used by
8860  * in-kernel metadata updates
8861  */
8862 void md_ack_all_badblocks(struct badblocks *bb)
8863 {
8864         if (bb->page == NULL || bb->changed)
8865                 /* no point even trying */
8866                 return;
8867         write_seqlock_irq(&bb->lock);
8868
8869         if (bb->changed == 0 && bb->unacked_exist) {
8870                 u64 *p = bb->page;
8871                 int i;
8872                 for (i = 0; i < bb->count ; i++) {
8873                         if (!BB_ACK(p[i])) {
8874                                 sector_t start = BB_OFFSET(p[i]);
8875                                 int len = BB_LEN(p[i]);
8876                                 p[i] = BB_MAKE(start, len, 1);
8877                         }
8878                 }
8879                 bb->unacked_exist = 0;
8880         }
8881         write_sequnlock_irq(&bb->lock);
8882 }
8883 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8884
8885 /* sysfs access to bad-blocks list.
8886  * We present two files.
8887  * 'bad-blocks' lists sector numbers and lengths of ranges that
8888  *    are recorded as bad.  The list is truncated to fit within
8889  *    the one-page limit of sysfs.
8890  *    Writing "sector length" to this file adds an acknowledged
8891  *    bad block list.
8892  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8893  *    been acknowledged.  Writing to this file adds bad blocks
8894  *    without acknowledging them.  This is largely for testing.
8895  */
8896
8897 static ssize_t
8898 badblocks_show(struct badblocks *bb, char *page, int unack)
8899 {
8900         size_t len;
8901         int i;
8902         u64 *p = bb->page;
8903         unsigned seq;
8904
8905         if (bb->shift < 0)
8906                 return 0;
8907
8908 retry:
8909         seq = read_seqbegin(&bb->lock);
8910
8911         len = 0;
8912         i = 0;
8913
8914         while (len < PAGE_SIZE && i < bb->count) {
8915                 sector_t s = BB_OFFSET(p[i]);
8916                 unsigned int length = BB_LEN(p[i]);
8917                 int ack = BB_ACK(p[i]);
8918                 i++;
8919
8920                 if (unack && ack)
8921                         continue;
8922
8923                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8924                                 (unsigned long long)s << bb->shift,
8925                                 length << bb->shift);
8926         }
8927         if (unack && len == 0)
8928                 bb->unacked_exist = 0;
8929
8930         if (read_seqretry(&bb->lock, seq))
8931                 goto retry;
8932
8933         return len;
8934 }
8935
8936 #define DO_DEBUG 1
8937
8938 static ssize_t
8939 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8940 {
8941         unsigned long long sector;
8942         int length;
8943         char newline;
8944 #ifdef DO_DEBUG
8945         /* Allow clearing via sysfs *only* for testing/debugging.
8946          * Normally only a successful write may clear a badblock
8947          */
8948         int clear = 0;
8949         if (page[0] == '-') {
8950                 clear = 1;
8951                 page++;
8952         }
8953 #endif /* DO_DEBUG */
8954
8955         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8956         case 3:
8957                 if (newline != '\n')
8958                         return -EINVAL;
8959         case 2:
8960                 if (length <= 0)
8961                         return -EINVAL;
8962                 break;
8963         default:
8964                 return -EINVAL;
8965         }
8966
8967 #ifdef DO_DEBUG
8968         if (clear) {
8969                 md_clear_badblocks(bb, sector, length);
8970                 return len;
8971         }
8972 #endif /* DO_DEBUG */
8973         if (md_set_badblocks(bb, sector, length, !unack))
8974                 return len;
8975         else
8976                 return -ENOSPC;
8977 }
8978
8979 static int md_notify_reboot(struct notifier_block *this,
8980                             unsigned long code, void *x)
8981 {
8982         struct list_head *tmp;
8983         struct mddev *mddev;
8984         int need_delay = 0;
8985
8986         for_each_mddev(mddev, tmp) {
8987                 if (mddev_trylock(mddev)) {
8988                         if (mddev->pers)
8989                                 __md_stop_writes(mddev);
8990                         if (mddev->persistent)
8991                                 mddev->safemode = 2;
8992                         mddev_unlock(mddev);
8993                 }
8994                 need_delay = 1;
8995         }
8996         /*
8997          * certain more exotic SCSI devices are known to be
8998          * volatile wrt too early system reboots. While the
8999          * right place to handle this issue is the given
9000          * driver, we do want to have a safe RAID driver ...
9001          */
9002         if (need_delay)
9003                 mdelay(1000*1);
9004
9005         return NOTIFY_DONE;
9006 }
9007
9008 static struct notifier_block md_notifier = {
9009         .notifier_call  = md_notify_reboot,
9010         .next           = NULL,
9011         .priority       = INT_MAX, /* before any real devices */
9012 };
9013
9014 static void md_geninit(void)
9015 {
9016         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9017
9018         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9019 }
9020
9021 static int __init md_init(void)
9022 {
9023         int ret = -ENOMEM;
9024
9025         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9026         if (!md_wq)
9027                 goto err_wq;
9028
9029         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9030         if (!md_misc_wq)
9031                 goto err_misc_wq;
9032
9033         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9034                 goto err_md;
9035
9036         if ((ret = register_blkdev(0, "mdp")) < 0)
9037                 goto err_mdp;
9038         mdp_major = ret;
9039
9040         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9041                             md_probe, NULL, NULL);
9042         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9043                             md_probe, NULL, NULL);
9044
9045         register_reboot_notifier(&md_notifier);
9046         raid_table_header = register_sysctl_table(raid_root_table);
9047
9048         md_geninit();
9049         return 0;
9050
9051 err_mdp:
9052         unregister_blkdev(MD_MAJOR, "md");
9053 err_md:
9054         destroy_workqueue(md_misc_wq);
9055 err_misc_wq:
9056         destroy_workqueue(md_wq);
9057 err_wq:
9058         return ret;
9059 }
9060
9061 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9062 {
9063         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9064         struct md_rdev *rdev2;
9065         int role, ret;
9066         char b[BDEVNAME_SIZE];
9067
9068         /* Check for change of roles in the active devices */
9069         rdev_for_each(rdev2, mddev) {
9070                 if (test_bit(Faulty, &rdev2->flags))
9071                         continue;
9072
9073                 /* Check if the roles changed */
9074                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9075
9076                 if (test_bit(Candidate, &rdev2->flags)) {
9077                         if (role == 0xfffe) {
9078                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9079                                 md_kick_rdev_from_array(rdev2);
9080                                 continue;
9081                         }
9082                         else
9083                                 clear_bit(Candidate, &rdev2->flags);
9084                 }
9085
9086                 if (role != rdev2->raid_disk) {
9087                         /* got activated */
9088                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9089                                 rdev2->saved_raid_disk = role;
9090                                 ret = remove_and_add_spares(mddev, rdev2);
9091                                 pr_info("Activated spare: %s\n",
9092                                                 bdevname(rdev2->bdev,b));
9093                                 continue;
9094                         }
9095                         /* device faulty
9096                          * We just want to do the minimum to mark the disk
9097                          * as faulty. The recovery is performed by the
9098                          * one who initiated the error.
9099                          */
9100                         if ((role == 0xfffe) || (role == 0xfffd)) {
9101                                 md_error(mddev, rdev2);
9102                                 clear_bit(Blocked, &rdev2->flags);
9103                         }
9104                 }
9105         }
9106
9107         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9108                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9109
9110         /* Finally set the event to be up to date */
9111         mddev->events = le64_to_cpu(sb->events);
9112 }
9113
9114 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9115 {
9116         int err;
9117         struct page *swapout = rdev->sb_page;
9118         struct mdp_superblock_1 *sb;
9119
9120         /* Store the sb page of the rdev in the swapout temporary
9121          * variable in case we err in the future
9122          */
9123         rdev->sb_page = NULL;
9124         alloc_disk_sb(rdev);
9125         ClearPageUptodate(rdev->sb_page);
9126         rdev->sb_loaded = 0;
9127         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9128
9129         if (err < 0) {
9130                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9131                                 __func__, __LINE__, rdev->desc_nr, err);
9132                 put_page(rdev->sb_page);
9133                 rdev->sb_page = swapout;
9134                 rdev->sb_loaded = 1;
9135                 return err;
9136         }
9137
9138         sb = page_address(rdev->sb_page);
9139         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9140          * is not set
9141          */
9142
9143         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9144                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9145
9146         /* The other node finished recovery, call spare_active to set
9147          * device In_sync and mddev->degraded
9148          */
9149         if (rdev->recovery_offset == MaxSector &&
9150             !test_bit(In_sync, &rdev->flags) &&
9151             mddev->pers->spare_active(mddev))
9152                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9153
9154         put_page(swapout);
9155         return 0;
9156 }
9157
9158 void md_reload_sb(struct mddev *mddev, int nr)
9159 {
9160         struct md_rdev *rdev;
9161         int err;
9162
9163         /* Find the rdev */
9164         rdev_for_each_rcu(rdev, mddev) {
9165                 if (rdev->desc_nr == nr)
9166                         break;
9167         }
9168
9169         if (!rdev || rdev->desc_nr != nr) {
9170                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9171                 return;
9172         }
9173
9174         err = read_rdev(mddev, rdev);
9175         if (err < 0)
9176                 return;
9177
9178         check_sb_changes(mddev, rdev);
9179
9180         /* Read all rdev's to update recovery_offset */
9181         rdev_for_each_rcu(rdev, mddev)
9182                 read_rdev(mddev, rdev);
9183 }
9184 EXPORT_SYMBOL(md_reload_sb);
9185
9186 #ifndef MODULE
9187
9188 /*
9189  * Searches all registered partitions for autorun RAID arrays
9190  * at boot time.
9191  */
9192
9193 static LIST_HEAD(all_detected_devices);
9194 struct detected_devices_node {
9195         struct list_head list;
9196         dev_t dev;
9197 };
9198
9199 void md_autodetect_dev(dev_t dev)
9200 {
9201         struct detected_devices_node *node_detected_dev;
9202
9203         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9204         if (node_detected_dev) {
9205                 node_detected_dev->dev = dev;
9206                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9207         } else {
9208                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9209                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9210         }
9211 }
9212
9213 static void autostart_arrays(int part)
9214 {
9215         struct md_rdev *rdev;
9216         struct detected_devices_node *node_detected_dev;
9217         dev_t dev;
9218         int i_scanned, i_passed;
9219
9220         i_scanned = 0;
9221         i_passed = 0;
9222
9223         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9224
9225         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9226                 i_scanned++;
9227                 node_detected_dev = list_entry(all_detected_devices.next,
9228                                         struct detected_devices_node, list);
9229                 list_del(&node_detected_dev->list);
9230                 dev = node_detected_dev->dev;
9231                 kfree(node_detected_dev);
9232                 rdev = md_import_device(dev,0, 90);
9233                 if (IS_ERR(rdev))
9234                         continue;
9235
9236                 if (test_bit(Faulty, &rdev->flags))
9237                         continue;
9238
9239                 set_bit(AutoDetected, &rdev->flags);
9240                 list_add(&rdev->same_set, &pending_raid_disks);
9241                 i_passed++;
9242         }
9243
9244         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9245                                                 i_scanned, i_passed);
9246
9247         autorun_devices(part);
9248 }
9249
9250 #endif /* !MODULE */
9251
9252 static __exit void md_exit(void)
9253 {
9254         struct mddev *mddev;
9255         struct list_head *tmp;
9256         int delay = 1;
9257
9258         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9259         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9260
9261         unregister_blkdev(MD_MAJOR,"md");
9262         unregister_blkdev(mdp_major, "mdp");
9263         unregister_reboot_notifier(&md_notifier);
9264         unregister_sysctl_table(raid_table_header);
9265
9266         /* We cannot unload the modules while some process is
9267          * waiting for us in select() or poll() - wake them up
9268          */
9269         md_unloading = 1;
9270         while (waitqueue_active(&md_event_waiters)) {
9271                 /* not safe to leave yet */
9272                 wake_up(&md_event_waiters);
9273                 msleep(delay);
9274                 delay += delay;
9275         }
9276         remove_proc_entry("mdstat", NULL);
9277
9278         for_each_mddev(mddev, tmp) {
9279                 export_array(mddev);
9280                 mddev->hold_active = 0;
9281         }
9282         destroy_workqueue(md_misc_wq);
9283         destroy_workqueue(md_wq);
9284 }
9285
9286 subsys_initcall(md_init);
9287 module_exit(md_exit)
9288
9289 static int get_ro(char *buffer, struct kernel_param *kp)
9290 {
9291         return sprintf(buffer, "%d", start_readonly);
9292 }
9293 static int set_ro(const char *val, struct kernel_param *kp)
9294 {
9295         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9296 }
9297
9298 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9299 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9300 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9301
9302 MODULE_LICENSE("GPL");
9303 MODULE_DESCRIPTION("MD RAID framework");
9304 MODULE_ALIAS("md");
9305 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);