Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99         struct pool_info *pi = data;
100         struct r1bio *r1_bio;
101         struct bio *bio;
102         int need_pages;
103         int i, j;
104
105         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106         if (!r1_bio)
107                 return NULL;
108
109         /*
110          * Allocate bios : 1 for reading, n-1 for writing
111          */
112         for (j = pi->raid_disks ; j-- ; ) {
113                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114                 if (!bio)
115                         goto out_free_bio;
116                 r1_bio->bios[j] = bio;
117         }
118         /*
119          * Allocate RESYNC_PAGES data pages and attach them to
120          * the first bio.
121          * If this is a user-requested check/repair, allocate
122          * RESYNC_PAGES for each bio.
123          */
124         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125                 need_pages = pi->raid_disks;
126         else
127                 need_pages = 1;
128         for (j = 0; j < need_pages; j++) {
129                 bio = r1_bio->bios[j];
130                 bio->bi_vcnt = RESYNC_PAGES;
131
132                 if (bio_alloc_pages(bio, gfp_flags))
133                         goto out_free_pages;
134         }
135         /* If not user-requests, copy the page pointers to all bios */
136         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137                 for (i=0; i<RESYNC_PAGES ; i++)
138                         for (j=1; j<pi->raid_disks; j++)
139                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
141         }
142
143         r1_bio->master_bio = NULL;
144
145         return r1_bio;
146
147 out_free_pages:
148         while (--j >= 0) {
149                 struct bio_vec *bv;
150
151                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152                         __free_page(bv->bv_page);
153         }
154
155 out_free_bio:
156         while (++j < pi->raid_disks)
157                 bio_put(r1_bio->bios[j]);
158         r1bio_pool_free(r1_bio, data);
159         return NULL;
160 }
161
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164         struct pool_info *pi = data;
165         int i,j;
166         struct r1bio *r1bio = __r1_bio;
167
168         for (i = 0; i < RESYNC_PAGES; i++)
169                 for (j = pi->raid_disks; j-- ;) {
170                         if (j == 0 ||
171                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
172                             r1bio->bios[0]->bi_io_vec[i].bv_page)
173                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174                 }
175         for (i=0 ; i < pi->raid_disks; i++)
176                 bio_put(r1bio->bios[i]);
177
178         r1bio_pool_free(r1bio, data);
179 }
180
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183         int i;
184
185         for (i = 0; i < conf->raid_disks * 2; i++) {
186                 struct bio **bio = r1_bio->bios + i;
187                 if (!BIO_SPECIAL(*bio))
188                         bio_put(*bio);
189                 *bio = NULL;
190         }
191 }
192
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195         struct r1conf *conf = r1_bio->mddev->private;
196
197         put_all_bios(conf, r1_bio);
198         mempool_free(r1_bio, conf->r1bio_pool);
199 }
200
201 static void put_buf(struct r1bio *r1_bio)
202 {
203         struct r1conf *conf = r1_bio->mddev->private;
204         int i;
205
206         for (i = 0; i < conf->raid_disks * 2; i++) {
207                 struct bio *bio = r1_bio->bios[i];
208                 if (bio->bi_end_io)
209                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210         }
211
212         mempool_free(r1_bio, conf->r1buf_pool);
213
214         lower_barrier(conf);
215 }
216
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219         unsigned long flags;
220         struct mddev *mddev = r1_bio->mddev;
221         struct r1conf *conf = mddev->private;
222
223         spin_lock_irqsave(&conf->device_lock, flags);
224         list_add(&r1_bio->retry_list, &conf->retry_list);
225         conf->nr_queued ++;
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         wake_up(&conf->wait_barrier);
229         md_wakeup_thread(mddev->thread);
230 }
231
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239         struct bio *bio = r1_bio->master_bio;
240         int done;
241         struct r1conf *conf = r1_bio->mddev->private;
242         sector_t start_next_window = r1_bio->start_next_window;
243         sector_t bi_sector = bio->bi_iter.bi_sector;
244
245         if (bio->bi_phys_segments) {
246                 unsigned long flags;
247                 spin_lock_irqsave(&conf->device_lock, flags);
248                 bio->bi_phys_segments--;
249                 done = (bio->bi_phys_segments == 0);
250                 spin_unlock_irqrestore(&conf->device_lock, flags);
251                 /*
252                  * make_request() might be waiting for
253                  * bi_phys_segments to decrease
254                  */
255                 wake_up(&conf->wait_barrier);
256         } else
257                 done = 1;
258
259         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260                 bio->bi_error = -EIO;
261
262         if (done) {
263                 bio_endio(bio);
264                 /*
265                  * Wake up any possible resync thread that waits for the device
266                  * to go idle.
267                  */
268                 allow_barrier(conf, start_next_window, bi_sector);
269         }
270 }
271
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274         struct bio *bio = r1_bio->master_bio;
275
276         /* if nobody has done the final endio yet, do it now */
277         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
280                          (unsigned long long) bio->bi_iter.bi_sector,
281                          (unsigned long long) bio_end_sector(bio) - 1);
282
283                 call_bio_endio(r1_bio);
284         }
285         free_r1bio(r1_bio);
286 }
287
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293         struct r1conf *conf = r1_bio->mddev->private;
294
295         conf->mirrors[disk].head_position =
296                 r1_bio->sector + (r1_bio->sectors);
297 }
298
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304         int mirror;
305         struct r1conf *conf = r1_bio->mddev->private;
306         int raid_disks = conf->raid_disks;
307
308         for (mirror = 0; mirror < raid_disks * 2; mirror++)
309                 if (r1_bio->bios[mirror] == bio)
310                         break;
311
312         BUG_ON(mirror == raid_disks * 2);
313         update_head_pos(mirror, r1_bio);
314
315         return mirror;
316 }
317
318 static void raid1_end_read_request(struct bio *bio)
319 {
320         int uptodate = !bio->bi_error;
321         struct r1bio *r1_bio = bio->bi_private;
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324
325         mirror = r1_bio->read_disk;
326         /*
327          * this branch is our 'one mirror IO has finished' event handler:
328          */
329         update_head_pos(mirror, r1_bio);
330
331         if (uptodate)
332                 set_bit(R1BIO_Uptodate, &r1_bio->state);
333         else {
334                 /* If all other devices have failed, we want to return
335                  * the error upwards rather than fail the last device.
336                  * Here we redefine "uptodate" to mean "Don't want to retry"
337                  */
338                 unsigned long flags;
339                 spin_lock_irqsave(&conf->device_lock, flags);
340                 if (r1_bio->mddev->degraded == conf->raid_disks ||
341                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343                         uptodate = 1;
344                 spin_unlock_irqrestore(&conf->device_lock, flags);
345         }
346
347         if (uptodate) {
348                 raid_end_bio_io(r1_bio);
349                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350         } else {
351                 /*
352                  * oops, read error:
353                  */
354                 char b[BDEVNAME_SIZE];
355                 printk_ratelimited(
356                         KERN_ERR "md/raid1:%s: %s: "
357                         "rescheduling sector %llu\n",
358                         mdname(conf->mddev),
359                         bdevname(conf->mirrors[mirror].rdev->bdev,
360                                  b),
361                         (unsigned long long)r1_bio->sector);
362                 set_bit(R1BIO_ReadError, &r1_bio->state);
363                 reschedule_retry(r1_bio);
364                 /* don't drop the reference on read_disk yet */
365         }
366 }
367
368 static void close_write(struct r1bio *r1_bio)
369 {
370         /* it really is the end of this request */
371         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372                 /* free extra copy of the data pages */
373                 int i = r1_bio->behind_page_count;
374                 while (i--)
375                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376                 kfree(r1_bio->behind_bvecs);
377                 r1_bio->behind_bvecs = NULL;
378         }
379         /* clear the bitmap if all writes complete successfully */
380         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381                         r1_bio->sectors,
382                         !test_bit(R1BIO_Degraded, &r1_bio->state),
383                         test_bit(R1BIO_BehindIO, &r1_bio->state));
384         md_write_end(r1_bio->mddev);
385 }
386
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389         if (!atomic_dec_and_test(&r1_bio->remaining))
390                 return;
391
392         if (test_bit(R1BIO_WriteError, &r1_bio->state))
393                 reschedule_retry(r1_bio);
394         else {
395                 close_write(r1_bio);
396                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397                         reschedule_retry(r1_bio);
398                 else
399                         raid_end_bio_io(r1_bio);
400         }
401 }
402
403 static void raid1_end_write_request(struct bio *bio)
404 {
405         struct r1bio *r1_bio = bio->bi_private;
406         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407         struct r1conf *conf = r1_bio->mddev->private;
408         struct bio *to_put = NULL;
409
410         mirror = find_bio_disk(r1_bio, bio);
411
412         /*
413          * 'one mirror IO has finished' event handler:
414          */
415         if (bio->bi_error) {
416                 set_bit(WriteErrorSeen,
417                         &conf->mirrors[mirror].rdev->flags);
418                 if (!test_and_set_bit(WantReplacement,
419                                       &conf->mirrors[mirror].rdev->flags))
420                         set_bit(MD_RECOVERY_NEEDED, &
421                                 conf->mddev->recovery);
422
423                 set_bit(R1BIO_WriteError, &r1_bio->state);
424         } else {
425                 /*
426                  * Set R1BIO_Uptodate in our master bio, so that we
427                  * will return a good error code for to the higher
428                  * levels even if IO on some other mirrored buffer
429                  * fails.
430                  *
431                  * The 'master' represents the composite IO operation
432                  * to user-side. So if something waits for IO, then it
433                  * will wait for the 'master' bio.
434                  */
435                 sector_t first_bad;
436                 int bad_sectors;
437
438                 r1_bio->bios[mirror] = NULL;
439                 to_put = bio;
440                 /*
441                  * Do not set R1BIO_Uptodate if the current device is
442                  * rebuilding or Faulty. This is because we cannot use
443                  * such device for properly reading the data back (we could
444                  * potentially use it, if the current write would have felt
445                  * before rdev->recovery_offset, but for simplicity we don't
446                  * check this here.
447                  */
448                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450                         set_bit(R1BIO_Uptodate, &r1_bio->state);
451
452                 /* Maybe we can clear some bad blocks. */
453                 if (is_badblock(conf->mirrors[mirror].rdev,
454                                 r1_bio->sector, r1_bio->sectors,
455                                 &first_bad, &bad_sectors)) {
456                         r1_bio->bios[mirror] = IO_MADE_GOOD;
457                         set_bit(R1BIO_MadeGood, &r1_bio->state);
458                 }
459         }
460
461         if (behind) {
462                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463                         atomic_dec(&r1_bio->behind_remaining);
464
465                 /*
466                  * In behind mode, we ACK the master bio once the I/O
467                  * has safely reached all non-writemostly
468                  * disks. Setting the Returned bit ensures that this
469                  * gets done only once -- we don't ever want to return
470                  * -EIO here, instead we'll wait
471                  */
472                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474                         /* Maybe we can return now */
475                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476                                 struct bio *mbio = r1_bio->master_bio;
477                                 pr_debug("raid1: behind end write sectors"
478                                          " %llu-%llu\n",
479                                          (unsigned long long) mbio->bi_iter.bi_sector,
480                                          (unsigned long long) bio_end_sector(mbio) - 1);
481                                 call_bio_endio(r1_bio);
482                         }
483                 }
484         }
485         if (r1_bio->bios[mirror] == NULL)
486                 rdev_dec_pending(conf->mirrors[mirror].rdev,
487                                  conf->mddev);
488
489         /*
490          * Let's see if all mirrored write operations have finished
491          * already.
492          */
493         r1_bio_write_done(r1_bio);
494
495         if (to_put)
496                 bio_put(to_put);
497 }
498
499 /*
500  * This routine returns the disk from which the requested read should
501  * be done. There is a per-array 'next expected sequential IO' sector
502  * number - if this matches on the next IO then we use the last disk.
503  * There is also a per-disk 'last know head position' sector that is
504  * maintained from IRQ contexts, both the normal and the resync IO
505  * completion handlers update this position correctly. If there is no
506  * perfect sequential match then we pick the disk whose head is closest.
507  *
508  * If there are 2 mirrors in the same 2 devices, performance degrades
509  * because position is mirror, not device based.
510  *
511  * The rdev for the device selected will have nr_pending incremented.
512  */
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515         const sector_t this_sector = r1_bio->sector;
516         int sectors;
517         int best_good_sectors;
518         int best_disk, best_dist_disk, best_pending_disk;
519         int has_nonrot_disk;
520         int disk;
521         sector_t best_dist;
522         unsigned int min_pending;
523         struct md_rdev *rdev;
524         int choose_first;
525         int choose_next_idle;
526
527         rcu_read_lock();
528         /*
529          * Check if we can balance. We can balance on the whole
530          * device if no resync is going on, or below the resync window.
531          * We take the first readable disk when above the resync window.
532          */
533  retry:
534         sectors = r1_bio->sectors;
535         best_disk = -1;
536         best_dist_disk = -1;
537         best_dist = MaxSector;
538         best_pending_disk = -1;
539         min_pending = UINT_MAX;
540         best_good_sectors = 0;
541         has_nonrot_disk = 0;
542         choose_next_idle = 0;
543
544         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545             (mddev_is_clustered(conf->mddev) &&
546             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547                     this_sector + sectors)))
548                 choose_first = 1;
549         else
550                 choose_first = 0;
551
552         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553                 sector_t dist;
554                 sector_t first_bad;
555                 int bad_sectors;
556                 unsigned int pending;
557                 bool nonrot;
558
559                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560                 if (r1_bio->bios[disk] == IO_BLOCKED
561                     || rdev == NULL
562                     || test_bit(Faulty, &rdev->flags))
563                         continue;
564                 if (!test_bit(In_sync, &rdev->flags) &&
565                     rdev->recovery_offset < this_sector + sectors)
566                         continue;
567                 if (test_bit(WriteMostly, &rdev->flags)) {
568                         /* Don't balance among write-mostly, just
569                          * use the first as a last resort */
570                         if (best_dist_disk < 0) {
571                                 if (is_badblock(rdev, this_sector, sectors,
572                                                 &first_bad, &bad_sectors)) {
573                                         if (first_bad <= this_sector)
574                                                 /* Cannot use this */
575                                                 continue;
576                                         best_good_sectors = first_bad - this_sector;
577                                 } else
578                                         best_good_sectors = sectors;
579                                 best_dist_disk = disk;
580                                 best_pending_disk = disk;
581                         }
582                         continue;
583                 }
584                 /* This is a reasonable device to use.  It might
585                  * even be best.
586                  */
587                 if (is_badblock(rdev, this_sector, sectors,
588                                 &first_bad, &bad_sectors)) {
589                         if (best_dist < MaxSector)
590                                 /* already have a better device */
591                                 continue;
592                         if (first_bad <= this_sector) {
593                                 /* cannot read here. If this is the 'primary'
594                                  * device, then we must not read beyond
595                                  * bad_sectors from another device..
596                                  */
597                                 bad_sectors -= (this_sector - first_bad);
598                                 if (choose_first && sectors > bad_sectors)
599                                         sectors = bad_sectors;
600                                 if (best_good_sectors > sectors)
601                                         best_good_sectors = sectors;
602
603                         } else {
604                                 sector_t good_sectors = first_bad - this_sector;
605                                 if (good_sectors > best_good_sectors) {
606                                         best_good_sectors = good_sectors;
607                                         best_disk = disk;
608                                 }
609                                 if (choose_first)
610                                         break;
611                         }
612                         continue;
613                 } else
614                         best_good_sectors = sectors;
615
616                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617                 has_nonrot_disk |= nonrot;
618                 pending = atomic_read(&rdev->nr_pending);
619                 dist = abs(this_sector - conf->mirrors[disk].head_position);
620                 if (choose_first) {
621                         best_disk = disk;
622                         break;
623                 }
624                 /* Don't change to another disk for sequential reads */
625                 if (conf->mirrors[disk].next_seq_sect == this_sector
626                     || dist == 0) {
627                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628                         struct raid1_info *mirror = &conf->mirrors[disk];
629
630                         best_disk = disk;
631                         /*
632                          * If buffered sequential IO size exceeds optimal
633                          * iosize, check if there is idle disk. If yes, choose
634                          * the idle disk. read_balance could already choose an
635                          * idle disk before noticing it's a sequential IO in
636                          * this disk. This doesn't matter because this disk
637                          * will idle, next time it will be utilized after the
638                          * first disk has IO size exceeds optimal iosize. In
639                          * this way, iosize of the first disk will be optimal
640                          * iosize at least. iosize of the second disk might be
641                          * small, but not a big deal since when the second disk
642                          * starts IO, the first disk is likely still busy.
643                          */
644                         if (nonrot && opt_iosize > 0 &&
645                             mirror->seq_start != MaxSector &&
646                             mirror->next_seq_sect > opt_iosize &&
647                             mirror->next_seq_sect - opt_iosize >=
648                             mirror->seq_start) {
649                                 choose_next_idle = 1;
650                                 continue;
651                         }
652                         break;
653                 }
654                 /* If device is idle, use it */
655                 if (pending == 0) {
656                         best_disk = disk;
657                         break;
658                 }
659
660                 if (choose_next_idle)
661                         continue;
662
663                 if (min_pending > pending) {
664                         min_pending = pending;
665                         best_pending_disk = disk;
666                 }
667
668                 if (dist < best_dist) {
669                         best_dist = dist;
670                         best_dist_disk = disk;
671                 }
672         }
673
674         /*
675          * If all disks are rotational, choose the closest disk. If any disk is
676          * non-rotational, choose the disk with less pending request even the
677          * disk is rotational, which might/might not be optimal for raids with
678          * mixed ratation/non-rotational disks depending on workload.
679          */
680         if (best_disk == -1) {
681                 if (has_nonrot_disk)
682                         best_disk = best_pending_disk;
683                 else
684                         best_disk = best_dist_disk;
685         }
686
687         if (best_disk >= 0) {
688                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689                 if (!rdev)
690                         goto retry;
691                 atomic_inc(&rdev->nr_pending);
692                 if (test_bit(Faulty, &rdev->flags)) {
693                         /* cannot risk returning a device that failed
694                          * before we inc'ed nr_pending
695                          */
696                         rdev_dec_pending(rdev, conf->mddev);
697                         goto retry;
698                 }
699                 sectors = best_good_sectors;
700
701                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702                         conf->mirrors[best_disk].seq_start = this_sector;
703
704                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705         }
706         rcu_read_unlock();
707         *max_sectors = sectors;
708
709         return best_disk;
710 }
711
712 static int raid1_congested(struct mddev *mddev, int bits)
713 {
714         struct r1conf *conf = mddev->private;
715         int i, ret = 0;
716
717         if ((bits & (1 << WB_async_congested)) &&
718             conf->pending_count >= max_queued_requests)
719                 return 1;
720
721         rcu_read_lock();
722         for (i = 0; i < conf->raid_disks * 2; i++) {
723                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725                         struct request_queue *q = bdev_get_queue(rdev->bdev);
726
727                         BUG_ON(!q);
728
729                         /* Note the '|| 1' - when read_balance prefers
730                          * non-congested targets, it can be removed
731                          */
732                         if ((bits & (1 << WB_async_congested)) || 1)
733                                 ret |= bdi_congested(&q->backing_dev_info, bits);
734                         else
735                                 ret &= bdi_congested(&q->backing_dev_info, bits);
736                 }
737         }
738         rcu_read_unlock();
739         return ret;
740 }
741
742 static void flush_pending_writes(struct r1conf *conf)
743 {
744         /* Any writes that have been queued but are awaiting
745          * bitmap updates get flushed here.
746          */
747         spin_lock_irq(&conf->device_lock);
748
749         if (conf->pending_bio_list.head) {
750                 struct bio *bio;
751                 bio = bio_list_get(&conf->pending_bio_list);
752                 conf->pending_count = 0;
753                 spin_unlock_irq(&conf->device_lock);
754                 /* flush any pending bitmap writes to
755                  * disk before proceeding w/ I/O */
756                 bitmap_unplug(conf->mddev->bitmap);
757                 wake_up(&conf->wait_barrier);
758
759                 while (bio) { /* submit pending writes */
760                         struct bio *next = bio->bi_next;
761                         bio->bi_next = NULL;
762                         if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
763                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764                                 /* Just ignore it */
765                                 bio_endio(bio);
766                         else
767                                 generic_make_request(bio);
768                         bio = next;
769                 }
770         } else
771                 spin_unlock_irq(&conf->device_lock);
772 }
773
774 /* Barriers....
775  * Sometimes we need to suspend IO while we do something else,
776  * either some resync/recovery, or reconfigure the array.
777  * To do this we raise a 'barrier'.
778  * The 'barrier' is a counter that can be raised multiple times
779  * to count how many activities are happening which preclude
780  * normal IO.
781  * We can only raise the barrier if there is no pending IO.
782  * i.e. if nr_pending == 0.
783  * We choose only to raise the barrier if no-one is waiting for the
784  * barrier to go down.  This means that as soon as an IO request
785  * is ready, no other operations which require a barrier will start
786  * until the IO request has had a chance.
787  *
788  * So: regular IO calls 'wait_barrier'.  When that returns there
789  *    is no backgroup IO happening,  It must arrange to call
790  *    allow_barrier when it has finished its IO.
791  * backgroup IO calls must call raise_barrier.  Once that returns
792  *    there is no normal IO happeing.  It must arrange to call
793  *    lower_barrier when the particular background IO completes.
794  */
795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796 {
797         spin_lock_irq(&conf->resync_lock);
798
799         /* Wait until no block IO is waiting */
800         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801                             conf->resync_lock);
802
803         /* block any new IO from starting */
804         conf->barrier++;
805         conf->next_resync = sector_nr;
806
807         /* For these conditions we must wait:
808          * A: while the array is in frozen state
809          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810          *    the max count which allowed.
811          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812          *    next resync will reach to the window which normal bios are
813          *    handling.
814          * D: while there are any active requests in the current window.
815          */
816         wait_event_lock_irq(conf->wait_barrier,
817                             !conf->array_frozen &&
818                             conf->barrier < RESYNC_DEPTH &&
819                             conf->current_window_requests == 0 &&
820                             (conf->start_next_window >=
821                              conf->next_resync + RESYNC_SECTORS),
822                             conf->resync_lock);
823
824         conf->nr_pending++;
825         spin_unlock_irq(&conf->resync_lock);
826 }
827
828 static void lower_barrier(struct r1conf *conf)
829 {
830         unsigned long flags;
831         BUG_ON(conf->barrier <= 0);
832         spin_lock_irqsave(&conf->resync_lock, flags);
833         conf->barrier--;
834         conf->nr_pending--;
835         spin_unlock_irqrestore(&conf->resync_lock, flags);
836         wake_up(&conf->wait_barrier);
837 }
838
839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840 {
841         bool wait = false;
842
843         if (conf->array_frozen || !bio)
844                 wait = true;
845         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846                 if ((conf->mddev->curr_resync_completed
847                      >= bio_end_sector(bio)) ||
848                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
849                      <= bio->bi_iter.bi_sector))
850                         wait = false;
851                 else
852                         wait = true;
853         }
854
855         return wait;
856 }
857
858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859 {
860         sector_t sector = 0;
861
862         spin_lock_irq(&conf->resync_lock);
863         if (need_to_wait_for_sync(conf, bio)) {
864                 conf->nr_waiting++;
865                 /* Wait for the barrier to drop.
866                  * However if there are already pending
867                  * requests (preventing the barrier from
868                  * rising completely), and the
869                  * per-process bio queue isn't empty,
870                  * then don't wait, as we need to empty
871                  * that queue to allow conf->start_next_window
872                  * to increase.
873                  */
874                 wait_event_lock_irq(conf->wait_barrier,
875                                     !conf->array_frozen &&
876                                     (!conf->barrier ||
877                                      ((conf->start_next_window <
878                                        conf->next_resync + RESYNC_SECTORS) &&
879                                       current->bio_list &&
880                                       !bio_list_empty(current->bio_list))),
881                                     conf->resync_lock);
882                 conf->nr_waiting--;
883         }
884
885         if (bio && bio_data_dir(bio) == WRITE) {
886                 if (bio->bi_iter.bi_sector >= conf->next_resync) {
887                         if (conf->start_next_window == MaxSector)
888                                 conf->start_next_window =
889                                         conf->next_resync +
890                                         NEXT_NORMALIO_DISTANCE;
891
892                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
893                             <= bio->bi_iter.bi_sector)
894                                 conf->next_window_requests++;
895                         else
896                                 conf->current_window_requests++;
897                         sector = conf->start_next_window;
898                 }
899         }
900
901         conf->nr_pending++;
902         spin_unlock_irq(&conf->resync_lock);
903         return sector;
904 }
905
906 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907                           sector_t bi_sector)
908 {
909         unsigned long flags;
910
911         spin_lock_irqsave(&conf->resync_lock, flags);
912         conf->nr_pending--;
913         if (start_next_window) {
914                 if (start_next_window == conf->start_next_window) {
915                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916                             <= bi_sector)
917                                 conf->next_window_requests--;
918                         else
919                                 conf->current_window_requests--;
920                 } else
921                         conf->current_window_requests--;
922
923                 if (!conf->current_window_requests) {
924                         if (conf->next_window_requests) {
925                                 conf->current_window_requests =
926                                         conf->next_window_requests;
927                                 conf->next_window_requests = 0;
928                                 conf->start_next_window +=
929                                         NEXT_NORMALIO_DISTANCE;
930                         } else
931                                 conf->start_next_window = MaxSector;
932                 }
933         }
934         spin_unlock_irqrestore(&conf->resync_lock, flags);
935         wake_up(&conf->wait_barrier);
936 }
937
938 static void freeze_array(struct r1conf *conf, int extra)
939 {
940         /* stop syncio and normal IO and wait for everything to
941          * go quite.
942          * We wait until nr_pending match nr_queued+extra
943          * This is called in the context of one normal IO request
944          * that has failed. Thus any sync request that might be pending
945          * will be blocked by nr_pending, and we need to wait for
946          * pending IO requests to complete or be queued for re-try.
947          * Thus the number queued (nr_queued) plus this request (extra)
948          * must match the number of pending IOs (nr_pending) before
949          * we continue.
950          */
951         spin_lock_irq(&conf->resync_lock);
952         conf->array_frozen = 1;
953         wait_event_lock_irq_cmd(conf->wait_barrier,
954                                 conf->nr_pending == conf->nr_queued+extra,
955                                 conf->resync_lock,
956                                 flush_pending_writes(conf));
957         spin_unlock_irq(&conf->resync_lock);
958 }
959 static void unfreeze_array(struct r1conf *conf)
960 {
961         /* reverse the effect of the freeze */
962         spin_lock_irq(&conf->resync_lock);
963         conf->array_frozen = 0;
964         wake_up(&conf->wait_barrier);
965         spin_unlock_irq(&conf->resync_lock);
966 }
967
968 /* duplicate the data pages for behind I/O
969  */
970 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
971 {
972         int i;
973         struct bio_vec *bvec;
974         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
975                                         GFP_NOIO);
976         if (unlikely(!bvecs))
977                 return;
978
979         bio_for_each_segment_all(bvec, bio, i) {
980                 bvecs[i] = *bvec;
981                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
982                 if (unlikely(!bvecs[i].bv_page))
983                         goto do_sync_io;
984                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986                 kunmap(bvecs[i].bv_page);
987                 kunmap(bvec->bv_page);
988         }
989         r1_bio->behind_bvecs = bvecs;
990         r1_bio->behind_page_count = bio->bi_vcnt;
991         set_bit(R1BIO_BehindIO, &r1_bio->state);
992         return;
993
994 do_sync_io:
995         for (i = 0; i < bio->bi_vcnt; i++)
996                 if (bvecs[i].bv_page)
997                         put_page(bvecs[i].bv_page);
998         kfree(bvecs);
999         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000                  bio->bi_iter.bi_size);
1001 }
1002
1003 struct raid1_plug_cb {
1004         struct blk_plug_cb      cb;
1005         struct bio_list         pending;
1006         int                     pending_cnt;
1007 };
1008
1009 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010 {
1011         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012                                                   cb);
1013         struct mddev *mddev = plug->cb.data;
1014         struct r1conf *conf = mddev->private;
1015         struct bio *bio;
1016
1017         if (from_schedule || current->bio_list) {
1018                 spin_lock_irq(&conf->device_lock);
1019                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020                 conf->pending_count += plug->pending_cnt;
1021                 spin_unlock_irq(&conf->device_lock);
1022                 wake_up(&conf->wait_barrier);
1023                 md_wakeup_thread(mddev->thread);
1024                 kfree(plug);
1025                 return;
1026         }
1027
1028         /* we aren't scheduling, so we can do the write-out directly. */
1029         bio = bio_list_get(&plug->pending);
1030         bitmap_unplug(mddev->bitmap);
1031         wake_up(&conf->wait_barrier);
1032
1033         while (bio) { /* submit pending writes */
1034                 struct bio *next = bio->bi_next;
1035                 bio->bi_next = NULL;
1036                 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1037                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038                         /* Just ignore it */
1039                         bio_endio(bio);
1040                 else
1041                         generic_make_request(bio);
1042                 bio = next;
1043         }
1044         kfree(plug);
1045 }
1046
1047 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048 {
1049         struct r1conf *conf = mddev->private;
1050         struct raid1_info *mirror;
1051         struct r1bio *r1_bio;
1052         struct bio *read_bio;
1053         int i, disks;
1054         struct bitmap *bitmap;
1055         unsigned long flags;
1056         const int op = bio_op(bio);
1057         const int rw = bio_data_dir(bio);
1058         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059         const unsigned long do_flush_fua = (bio->bi_rw &
1060                                                 (REQ_PREFLUSH | REQ_FUA));
1061         struct md_rdev *blocked_rdev;
1062         struct blk_plug_cb *cb;
1063         struct raid1_plug_cb *plug = NULL;
1064         int first_clone;
1065         int sectors_handled;
1066         int max_sectors;
1067         sector_t start_next_window;
1068
1069         /*
1070          * Register the new request and wait if the reconstruction
1071          * thread has put up a bar for new requests.
1072          * Continue immediately if no resync is active currently.
1073          */
1074
1075         md_write_start(mddev, bio); /* wait on superblock update early */
1076
1077         if (bio_data_dir(bio) == WRITE &&
1078             ((bio_end_sector(bio) > mddev->suspend_lo &&
1079             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1080             (mddev_is_clustered(mddev) &&
1081              md_cluster_ops->area_resyncing(mddev, WRITE,
1082                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1083                 /* As the suspend_* range is controlled by
1084                  * userspace, we want an interruptible
1085                  * wait.
1086                  */
1087                 DEFINE_WAIT(w);
1088                 for (;;) {
1089                         flush_signals(current);
1090                         prepare_to_wait(&conf->wait_barrier,
1091                                         &w, TASK_INTERRUPTIBLE);
1092                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1093                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1094                             (mddev_is_clustered(mddev) &&
1095                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1096                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1097                                 break;
1098                         schedule();
1099                 }
1100                 finish_wait(&conf->wait_barrier, &w);
1101         }
1102
1103         start_next_window = wait_barrier(conf, bio);
1104
1105         bitmap = mddev->bitmap;
1106
1107         /*
1108          * make_request() can abort the operation when read-ahead is being
1109          * used and no empty request is available.
1110          *
1111          */
1112         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1113
1114         r1_bio->master_bio = bio;
1115         r1_bio->sectors = bio_sectors(bio);
1116         r1_bio->state = 0;
1117         r1_bio->mddev = mddev;
1118         r1_bio->sector = bio->bi_iter.bi_sector;
1119
1120         /* We might need to issue multiple reads to different
1121          * devices if there are bad blocks around, so we keep
1122          * track of the number of reads in bio->bi_phys_segments.
1123          * If this is 0, there is only one r1_bio and no locking
1124          * will be needed when requests complete.  If it is
1125          * non-zero, then it is the number of not-completed requests.
1126          */
1127         bio->bi_phys_segments = 0;
1128         bio_clear_flag(bio, BIO_SEG_VALID);
1129
1130         if (rw == READ) {
1131                 /*
1132                  * read balancing logic:
1133                  */
1134                 int rdisk;
1135
1136 read_again:
1137                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1138
1139                 if (rdisk < 0) {
1140                         /* couldn't find anywhere to read from */
1141                         raid_end_bio_io(r1_bio);
1142                         return;
1143                 }
1144                 mirror = conf->mirrors + rdisk;
1145
1146                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1147                     bitmap) {
1148                         /* Reading from a write-mostly device must
1149                          * take care not to over-take any writes
1150                          * that are 'behind'
1151                          */
1152                         wait_event(bitmap->behind_wait,
1153                                    atomic_read(&bitmap->behind_writes) == 0);
1154                 }
1155                 r1_bio->read_disk = rdisk;
1156                 r1_bio->start_next_window = 0;
1157
1158                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1159                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1160                          max_sectors);
1161
1162                 r1_bio->bios[rdisk] = read_bio;
1163
1164                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1165                         mirror->rdev->data_offset;
1166                 read_bio->bi_bdev = mirror->rdev->bdev;
1167                 read_bio->bi_end_io = raid1_end_read_request;
1168                 bio_set_op_attrs(read_bio, op, do_sync);
1169                 read_bio->bi_private = r1_bio;
1170
1171                 if (max_sectors < r1_bio->sectors) {
1172                         /* could not read all from this device, so we will
1173                          * need another r1_bio.
1174                          */
1175
1176                         sectors_handled = (r1_bio->sector + max_sectors
1177                                            - bio->bi_iter.bi_sector);
1178                         r1_bio->sectors = max_sectors;
1179                         spin_lock_irq(&conf->device_lock);
1180                         if (bio->bi_phys_segments == 0)
1181                                 bio->bi_phys_segments = 2;
1182                         else
1183                                 bio->bi_phys_segments++;
1184                         spin_unlock_irq(&conf->device_lock);
1185                         /* Cannot call generic_make_request directly
1186                          * as that will be queued in __make_request
1187                          * and subsequent mempool_alloc might block waiting
1188                          * for it.  So hand bio over to raid1d.
1189                          */
1190                         reschedule_retry(r1_bio);
1191
1192                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1193
1194                         r1_bio->master_bio = bio;
1195                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1196                         r1_bio->state = 0;
1197                         r1_bio->mddev = mddev;
1198                         r1_bio->sector = bio->bi_iter.bi_sector +
1199                                 sectors_handled;
1200                         goto read_again;
1201                 } else
1202                         generic_make_request(read_bio);
1203                 return;
1204         }
1205
1206         /*
1207          * WRITE:
1208          */
1209         if (conf->pending_count >= max_queued_requests) {
1210                 md_wakeup_thread(mddev->thread);
1211                 wait_event(conf->wait_barrier,
1212                            conf->pending_count < max_queued_requests);
1213         }
1214         /* first select target devices under rcu_lock and
1215          * inc refcount on their rdev.  Record them by setting
1216          * bios[x] to bio
1217          * If there are known/acknowledged bad blocks on any device on
1218          * which we have seen a write error, we want to avoid writing those
1219          * blocks.
1220          * This potentially requires several writes to write around
1221          * the bad blocks.  Each set of writes gets it's own r1bio
1222          * with a set of bios attached.
1223          */
1224
1225         disks = conf->raid_disks * 2;
1226  retry_write:
1227         r1_bio->start_next_window = start_next_window;
1228         blocked_rdev = NULL;
1229         rcu_read_lock();
1230         max_sectors = r1_bio->sectors;
1231         for (i = 0;  i < disks; i++) {
1232                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1233                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234                         atomic_inc(&rdev->nr_pending);
1235                         blocked_rdev = rdev;
1236                         break;
1237                 }
1238                 r1_bio->bios[i] = NULL;
1239                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1240                         if (i < conf->raid_disks)
1241                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1242                         continue;
1243                 }
1244
1245                 atomic_inc(&rdev->nr_pending);
1246                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1247                         sector_t first_bad;
1248                         int bad_sectors;
1249                         int is_bad;
1250
1251                         is_bad = is_badblock(rdev, r1_bio->sector,
1252                                              max_sectors,
1253                                              &first_bad, &bad_sectors);
1254                         if (is_bad < 0) {
1255                                 /* mustn't write here until the bad block is
1256                                  * acknowledged*/
1257                                 set_bit(BlockedBadBlocks, &rdev->flags);
1258                                 blocked_rdev = rdev;
1259                                 break;
1260                         }
1261                         if (is_bad && first_bad <= r1_bio->sector) {
1262                                 /* Cannot write here at all */
1263                                 bad_sectors -= (r1_bio->sector - first_bad);
1264                                 if (bad_sectors < max_sectors)
1265                                         /* mustn't write more than bad_sectors
1266                                          * to other devices yet
1267                                          */
1268                                         max_sectors = bad_sectors;
1269                                 rdev_dec_pending(rdev, mddev);
1270                                 /* We don't set R1BIO_Degraded as that
1271                                  * only applies if the disk is
1272                                  * missing, so it might be re-added,
1273                                  * and we want to know to recover this
1274                                  * chunk.
1275                                  * In this case the device is here,
1276                                  * and the fact that this chunk is not
1277                                  * in-sync is recorded in the bad
1278                                  * block log
1279                                  */
1280                                 continue;
1281                         }
1282                         if (is_bad) {
1283                                 int good_sectors = first_bad - r1_bio->sector;
1284                                 if (good_sectors < max_sectors)
1285                                         max_sectors = good_sectors;
1286                         }
1287                 }
1288                 r1_bio->bios[i] = bio;
1289         }
1290         rcu_read_unlock();
1291
1292         if (unlikely(blocked_rdev)) {
1293                 /* Wait for this device to become unblocked */
1294                 int j;
1295                 sector_t old = start_next_window;
1296
1297                 for (j = 0; j < i; j++)
1298                         if (r1_bio->bios[j])
1299                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1300                 r1_bio->state = 0;
1301                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1302                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1303                 start_next_window = wait_barrier(conf, bio);
1304                 /*
1305                  * We must make sure the multi r1bios of bio have
1306                  * the same value of bi_phys_segments
1307                  */
1308                 if (bio->bi_phys_segments && old &&
1309                     old != start_next_window)
1310                         /* Wait for the former r1bio(s) to complete */
1311                         wait_event(conf->wait_barrier,
1312                                    bio->bi_phys_segments == 1);
1313                 goto retry_write;
1314         }
1315
1316         if (max_sectors < r1_bio->sectors) {
1317                 /* We are splitting this write into multiple parts, so
1318                  * we need to prepare for allocating another r1_bio.
1319                  */
1320                 r1_bio->sectors = max_sectors;
1321                 spin_lock_irq(&conf->device_lock);
1322                 if (bio->bi_phys_segments == 0)
1323                         bio->bi_phys_segments = 2;
1324                 else
1325                         bio->bi_phys_segments++;
1326                 spin_unlock_irq(&conf->device_lock);
1327         }
1328         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1329
1330         atomic_set(&r1_bio->remaining, 1);
1331         atomic_set(&r1_bio->behind_remaining, 0);
1332
1333         first_clone = 1;
1334         for (i = 0; i < disks; i++) {
1335                 struct bio *mbio;
1336                 if (!r1_bio->bios[i])
1337                         continue;
1338
1339                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1340                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1341
1342                 if (first_clone) {
1343                         /* do behind I/O ?
1344                          * Not if there are too many, or cannot
1345                          * allocate memory, or a reader on WriteMostly
1346                          * is waiting for behind writes to flush */
1347                         if (bitmap &&
1348                             (atomic_read(&bitmap->behind_writes)
1349                              < mddev->bitmap_info.max_write_behind) &&
1350                             !waitqueue_active(&bitmap->behind_wait))
1351                                 alloc_behind_pages(mbio, r1_bio);
1352
1353                         bitmap_startwrite(bitmap, r1_bio->sector,
1354                                           r1_bio->sectors,
1355                                           test_bit(R1BIO_BehindIO,
1356                                                    &r1_bio->state));
1357                         first_clone = 0;
1358                 }
1359                 if (r1_bio->behind_bvecs) {
1360                         struct bio_vec *bvec;
1361                         int j;
1362
1363                         /*
1364                          * We trimmed the bio, so _all is legit
1365                          */
1366                         bio_for_each_segment_all(bvec, mbio, j)
1367                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1368                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1369                                 atomic_inc(&r1_bio->behind_remaining);
1370                 }
1371
1372                 r1_bio->bios[i] = mbio;
1373
1374                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1375                                    conf->mirrors[i].rdev->data_offset);
1376                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1377                 mbio->bi_end_io = raid1_end_write_request;
1378                 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1379                 mbio->bi_private = r1_bio;
1380
1381                 atomic_inc(&r1_bio->remaining);
1382
1383                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384                 if (cb)
1385                         plug = container_of(cb, struct raid1_plug_cb, cb);
1386                 else
1387                         plug = NULL;
1388                 spin_lock_irqsave(&conf->device_lock, flags);
1389                 if (plug) {
1390                         bio_list_add(&plug->pending, mbio);
1391                         plug->pending_cnt++;
1392                 } else {
1393                         bio_list_add(&conf->pending_bio_list, mbio);
1394                         conf->pending_count++;
1395                 }
1396                 spin_unlock_irqrestore(&conf->device_lock, flags);
1397                 if (!plug)
1398                         md_wakeup_thread(mddev->thread);
1399         }
1400         /* Mustn't call r1_bio_write_done before this next test,
1401          * as it could result in the bio being freed.
1402          */
1403         if (sectors_handled < bio_sectors(bio)) {
1404                 r1_bio_write_done(r1_bio);
1405                 /* We need another r1_bio.  It has already been counted
1406                  * in bio->bi_phys_segments
1407                  */
1408                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409                 r1_bio->master_bio = bio;
1410                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1411                 r1_bio->state = 0;
1412                 r1_bio->mddev = mddev;
1413                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1414                 goto retry_write;
1415         }
1416
1417         r1_bio_write_done(r1_bio);
1418
1419         /* In case raid1d snuck in to freeze_array */
1420         wake_up(&conf->wait_barrier);
1421 }
1422
1423 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1424 {
1425         struct r1conf *conf = mddev->private;
1426         int i;
1427
1428         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1429                    conf->raid_disks - mddev->degraded);
1430         rcu_read_lock();
1431         for (i = 0; i < conf->raid_disks; i++) {
1432                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1433                 seq_printf(seq, "%s",
1434                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435         }
1436         rcu_read_unlock();
1437         seq_printf(seq, "]");
1438 }
1439
1440 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1441 {
1442         char b[BDEVNAME_SIZE];
1443         struct r1conf *conf = mddev->private;
1444         unsigned long flags;
1445
1446         /*
1447          * If it is not operational, then we have already marked it as dead
1448          * else if it is the last working disks, ignore the error, let the
1449          * next level up know.
1450          * else mark the drive as failed
1451          */
1452         if (test_bit(In_sync, &rdev->flags)
1453             && (conf->raid_disks - mddev->degraded) == 1) {
1454                 /*
1455                  * Don't fail the drive, act as though we were just a
1456                  * normal single drive.
1457                  * However don't try a recovery from this drive as
1458                  * it is very likely to fail.
1459                  */
1460                 conf->recovery_disabled = mddev->recovery_disabled;
1461                 return;
1462         }
1463         set_bit(Blocked, &rdev->flags);
1464         spin_lock_irqsave(&conf->device_lock, flags);
1465         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1466                 mddev->degraded++;
1467                 set_bit(Faulty, &rdev->flags);
1468         } else
1469                 set_bit(Faulty, &rdev->flags);
1470         spin_unlock_irqrestore(&conf->device_lock, flags);
1471         /*
1472          * if recovery is running, make sure it aborts.
1473          */
1474         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1475         set_mask_bits(&mddev->flags, 0,
1476                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1477         printk(KERN_ALERT
1478                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479                "md/raid1:%s: Operation continuing on %d devices.\n",
1480                mdname(mddev), bdevname(rdev->bdev, b),
1481                mdname(mddev), conf->raid_disks - mddev->degraded);
1482 }
1483
1484 static void print_conf(struct r1conf *conf)
1485 {
1486         int i;
1487
1488         printk(KERN_DEBUG "RAID1 conf printout:\n");
1489         if (!conf) {
1490                 printk(KERN_DEBUG "(!conf)\n");
1491                 return;
1492         }
1493         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494                 conf->raid_disks);
1495
1496         rcu_read_lock();
1497         for (i = 0; i < conf->raid_disks; i++) {
1498                 char b[BDEVNAME_SIZE];
1499                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500                 if (rdev)
1501                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502                                i, !test_bit(In_sync, &rdev->flags),
1503                                !test_bit(Faulty, &rdev->flags),
1504                                bdevname(rdev->bdev,b));
1505         }
1506         rcu_read_unlock();
1507 }
1508
1509 static void close_sync(struct r1conf *conf)
1510 {
1511         wait_barrier(conf, NULL);
1512         allow_barrier(conf, 0, 0);
1513
1514         mempool_destroy(conf->r1buf_pool);
1515         conf->r1buf_pool = NULL;
1516
1517         spin_lock_irq(&conf->resync_lock);
1518         conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1519         conf->start_next_window = MaxSector;
1520         conf->current_window_requests +=
1521                 conf->next_window_requests;
1522         conf->next_window_requests = 0;
1523         spin_unlock_irq(&conf->resync_lock);
1524 }
1525
1526 static int raid1_spare_active(struct mddev *mddev)
1527 {
1528         int i;
1529         struct r1conf *conf = mddev->private;
1530         int count = 0;
1531         unsigned long flags;
1532
1533         /*
1534          * Find all failed disks within the RAID1 configuration
1535          * and mark them readable.
1536          * Called under mddev lock, so rcu protection not needed.
1537          * device_lock used to avoid races with raid1_end_read_request
1538          * which expects 'In_sync' flags and ->degraded to be consistent.
1539          */
1540         spin_lock_irqsave(&conf->device_lock, flags);
1541         for (i = 0; i < conf->raid_disks; i++) {
1542                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1543                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544                 if (repl
1545                     && !test_bit(Candidate, &repl->flags)
1546                     && repl->recovery_offset == MaxSector
1547                     && !test_bit(Faulty, &repl->flags)
1548                     && !test_and_set_bit(In_sync, &repl->flags)) {
1549                         /* replacement has just become active */
1550                         if (!rdev ||
1551                             !test_and_clear_bit(In_sync, &rdev->flags))
1552                                 count++;
1553                         if (rdev) {
1554                                 /* Replaced device not technically
1555                                  * faulty, but we need to be sure
1556                                  * it gets removed and never re-added
1557                                  */
1558                                 set_bit(Faulty, &rdev->flags);
1559                                 sysfs_notify_dirent_safe(
1560                                         rdev->sysfs_state);
1561                         }
1562                 }
1563                 if (rdev
1564                     && rdev->recovery_offset == MaxSector
1565                     && !test_bit(Faulty, &rdev->flags)
1566                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1567                         count++;
1568                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1569                 }
1570         }
1571         mddev->degraded -= count;
1572         spin_unlock_irqrestore(&conf->device_lock, flags);
1573
1574         print_conf(conf);
1575         return count;
1576 }
1577
1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579 {
1580         struct r1conf *conf = mddev->private;
1581         int err = -EEXIST;
1582         int mirror = 0;
1583         struct raid1_info *p;
1584         int first = 0;
1585         int last = conf->raid_disks - 1;
1586
1587         if (mddev->recovery_disabled == conf->recovery_disabled)
1588                 return -EBUSY;
1589
1590         if (md_integrity_add_rdev(rdev, mddev))
1591                 return -ENXIO;
1592
1593         if (rdev->raid_disk >= 0)
1594                 first = last = rdev->raid_disk;
1595
1596         /*
1597          * find the disk ... but prefer rdev->saved_raid_disk
1598          * if possible.
1599          */
1600         if (rdev->saved_raid_disk >= 0 &&
1601             rdev->saved_raid_disk >= first &&
1602             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1603                 first = last = rdev->saved_raid_disk;
1604
1605         for (mirror = first; mirror <= last; mirror++) {
1606                 p = conf->mirrors+mirror;
1607                 if (!p->rdev) {
1608
1609                         if (mddev->gendisk)
1610                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1611                                                   rdev->data_offset << 9);
1612
1613                         p->head_position = 0;
1614                         rdev->raid_disk = mirror;
1615                         err = 0;
1616                         /* As all devices are equivalent, we don't need a full recovery
1617                          * if this was recently any drive of the array
1618                          */
1619                         if (rdev->saved_raid_disk < 0)
1620                                 conf->fullsync = 1;
1621                         rcu_assign_pointer(p->rdev, rdev);
1622                         break;
1623                 }
1624                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1625                     p[conf->raid_disks].rdev == NULL) {
1626                         /* Add this device as a replacement */
1627                         clear_bit(In_sync, &rdev->flags);
1628                         set_bit(Replacement, &rdev->flags);
1629                         rdev->raid_disk = mirror;
1630                         err = 0;
1631                         conf->fullsync = 1;
1632                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1633                         break;
1634                 }
1635         }
1636         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1637                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1638         print_conf(conf);
1639         return err;
1640 }
1641
1642 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1643 {
1644         struct r1conf *conf = mddev->private;
1645         int err = 0;
1646         int number = rdev->raid_disk;
1647         struct raid1_info *p = conf->mirrors + number;
1648
1649         if (rdev != p->rdev)
1650                 p = conf->mirrors + conf->raid_disks + number;
1651
1652         print_conf(conf);
1653         if (rdev == p->rdev) {
1654                 if (test_bit(In_sync, &rdev->flags) ||
1655                     atomic_read(&rdev->nr_pending)) {
1656                         err = -EBUSY;
1657                         goto abort;
1658                 }
1659                 /* Only remove non-faulty devices if recovery
1660                  * is not possible.
1661                  */
1662                 if (!test_bit(Faulty, &rdev->flags) &&
1663                     mddev->recovery_disabled != conf->recovery_disabled &&
1664                     mddev->degraded < conf->raid_disks) {
1665                         err = -EBUSY;
1666                         goto abort;
1667                 }
1668                 p->rdev = NULL;
1669                 synchronize_rcu();
1670                 if (atomic_read(&rdev->nr_pending)) {
1671                         /* lost the race, try later */
1672                         err = -EBUSY;
1673                         p->rdev = rdev;
1674                         goto abort;
1675                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1676                         /* We just removed a device that is being replaced.
1677                          * Move down the replacement.  We drain all IO before
1678                          * doing this to avoid confusion.
1679                          */
1680                         struct md_rdev *repl =
1681                                 conf->mirrors[conf->raid_disks + number].rdev;
1682                         freeze_array(conf, 0);
1683                         clear_bit(Replacement, &repl->flags);
1684                         p->rdev = repl;
1685                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1686                         unfreeze_array(conf);
1687                         clear_bit(WantReplacement, &rdev->flags);
1688                 } else
1689                         clear_bit(WantReplacement, &rdev->flags);
1690                 err = md_integrity_register(mddev);
1691         }
1692 abort:
1693
1694         print_conf(conf);
1695         return err;
1696 }
1697
1698 static void end_sync_read(struct bio *bio)
1699 {
1700         struct r1bio *r1_bio = bio->bi_private;
1701
1702         update_head_pos(r1_bio->read_disk, r1_bio);
1703
1704         /*
1705          * we have read a block, now it needs to be re-written,
1706          * or re-read if the read failed.
1707          * We don't do much here, just schedule handling by raid1d
1708          */
1709         if (!bio->bi_error)
1710                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1711
1712         if (atomic_dec_and_test(&r1_bio->remaining))
1713                 reschedule_retry(r1_bio);
1714 }
1715
1716 static void end_sync_write(struct bio *bio)
1717 {
1718         int uptodate = !bio->bi_error;
1719         struct r1bio *r1_bio = bio->bi_private;
1720         struct mddev *mddev = r1_bio->mddev;
1721         struct r1conf *conf = mddev->private;
1722         int mirror=0;
1723         sector_t first_bad;
1724         int bad_sectors;
1725
1726         mirror = find_bio_disk(r1_bio, bio);
1727
1728         if (!uptodate) {
1729                 sector_t sync_blocks = 0;
1730                 sector_t s = r1_bio->sector;
1731                 long sectors_to_go = r1_bio->sectors;
1732                 /* make sure these bits doesn't get cleared. */
1733                 do {
1734                         bitmap_end_sync(mddev->bitmap, s,
1735                                         &sync_blocks, 1);
1736                         s += sync_blocks;
1737                         sectors_to_go -= sync_blocks;
1738                 } while (sectors_to_go > 0);
1739                 set_bit(WriteErrorSeen,
1740                         &conf->mirrors[mirror].rdev->flags);
1741                 if (!test_and_set_bit(WantReplacement,
1742                                       &conf->mirrors[mirror].rdev->flags))
1743                         set_bit(MD_RECOVERY_NEEDED, &
1744                                 mddev->recovery);
1745                 set_bit(R1BIO_WriteError, &r1_bio->state);
1746         } else if (is_badblock(conf->mirrors[mirror].rdev,
1747                                r1_bio->sector,
1748                                r1_bio->sectors,
1749                                &first_bad, &bad_sectors) &&
1750                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1751                                 r1_bio->sector,
1752                                 r1_bio->sectors,
1753                                 &first_bad, &bad_sectors)
1754                 )
1755                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1756
1757         if (atomic_dec_and_test(&r1_bio->remaining)) {
1758                 int s = r1_bio->sectors;
1759                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1760                     test_bit(R1BIO_WriteError, &r1_bio->state))
1761                         reschedule_retry(r1_bio);
1762                 else {
1763                         put_buf(r1_bio);
1764                         md_done_sync(mddev, s, uptodate);
1765                 }
1766         }
1767 }
1768
1769 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1770                             int sectors, struct page *page, int rw)
1771 {
1772         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1773                 /* success */
1774                 return 1;
1775         if (rw == WRITE) {
1776                 set_bit(WriteErrorSeen, &rdev->flags);
1777                 if (!test_and_set_bit(WantReplacement,
1778                                       &rdev->flags))
1779                         set_bit(MD_RECOVERY_NEEDED, &
1780                                 rdev->mddev->recovery);
1781         }
1782         /* need to record an error - either for the block or the device */
1783         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1784                 md_error(rdev->mddev, rdev);
1785         return 0;
1786 }
1787
1788 static int fix_sync_read_error(struct r1bio *r1_bio)
1789 {
1790         /* Try some synchronous reads of other devices to get
1791          * good data, much like with normal read errors.  Only
1792          * read into the pages we already have so we don't
1793          * need to re-issue the read request.
1794          * We don't need to freeze the array, because being in an
1795          * active sync request, there is no normal IO, and
1796          * no overlapping syncs.
1797          * We don't need to check is_badblock() again as we
1798          * made sure that anything with a bad block in range
1799          * will have bi_end_io clear.
1800          */
1801         struct mddev *mddev = r1_bio->mddev;
1802         struct r1conf *conf = mddev->private;
1803         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1804         sector_t sect = r1_bio->sector;
1805         int sectors = r1_bio->sectors;
1806         int idx = 0;
1807
1808         while(sectors) {
1809                 int s = sectors;
1810                 int d = r1_bio->read_disk;
1811                 int success = 0;
1812                 struct md_rdev *rdev;
1813                 int start;
1814
1815                 if (s > (PAGE_SIZE>>9))
1816                         s = PAGE_SIZE >> 9;
1817                 do {
1818                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1819                                 /* No rcu protection needed here devices
1820                                  * can only be removed when no resync is
1821                                  * active, and resync is currently active
1822                                  */
1823                                 rdev = conf->mirrors[d].rdev;
1824                                 if (sync_page_io(rdev, sect, s<<9,
1825                                                  bio->bi_io_vec[idx].bv_page,
1826                                                  REQ_OP_READ, 0, false)) {
1827                                         success = 1;
1828                                         break;
1829                                 }
1830                         }
1831                         d++;
1832                         if (d == conf->raid_disks * 2)
1833                                 d = 0;
1834                 } while (!success && d != r1_bio->read_disk);
1835
1836                 if (!success) {
1837                         char b[BDEVNAME_SIZE];
1838                         int abort = 0;
1839                         /* Cannot read from anywhere, this block is lost.
1840                          * Record a bad block on each device.  If that doesn't
1841                          * work just disable and interrupt the recovery.
1842                          * Don't fail devices as that won't really help.
1843                          */
1844                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1845                                " for block %llu\n",
1846                                mdname(mddev),
1847                                bdevname(bio->bi_bdev, b),
1848                                (unsigned long long)r1_bio->sector);
1849                         for (d = 0; d < conf->raid_disks * 2; d++) {
1850                                 rdev = conf->mirrors[d].rdev;
1851                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1852                                         continue;
1853                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1854                                         abort = 1;
1855                         }
1856                         if (abort) {
1857                                 conf->recovery_disabled =
1858                                         mddev->recovery_disabled;
1859                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1860                                 md_done_sync(mddev, r1_bio->sectors, 0);
1861                                 put_buf(r1_bio);
1862                                 return 0;
1863                         }
1864                         /* Try next page */
1865                         sectors -= s;
1866                         sect += s;
1867                         idx++;
1868                         continue;
1869                 }
1870
1871                 start = d;
1872                 /* write it back and re-read */
1873                 while (d != r1_bio->read_disk) {
1874                         if (d == 0)
1875                                 d = conf->raid_disks * 2;
1876                         d--;
1877                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1878                                 continue;
1879                         rdev = conf->mirrors[d].rdev;
1880                         if (r1_sync_page_io(rdev, sect, s,
1881                                             bio->bi_io_vec[idx].bv_page,
1882                                             WRITE) == 0) {
1883                                 r1_bio->bios[d]->bi_end_io = NULL;
1884                                 rdev_dec_pending(rdev, mddev);
1885                         }
1886                 }
1887                 d = start;
1888                 while (d != r1_bio->read_disk) {
1889                         if (d == 0)
1890                                 d = conf->raid_disks * 2;
1891                         d--;
1892                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1893                                 continue;
1894                         rdev = conf->mirrors[d].rdev;
1895                         if (r1_sync_page_io(rdev, sect, s,
1896                                             bio->bi_io_vec[idx].bv_page,
1897                                             READ) != 0)
1898                                 atomic_add(s, &rdev->corrected_errors);
1899                 }
1900                 sectors -= s;
1901                 sect += s;
1902                 idx ++;
1903         }
1904         set_bit(R1BIO_Uptodate, &r1_bio->state);
1905         bio->bi_error = 0;
1906         return 1;
1907 }
1908
1909 static void process_checks(struct r1bio *r1_bio)
1910 {
1911         /* We have read all readable devices.  If we haven't
1912          * got the block, then there is no hope left.
1913          * If we have, then we want to do a comparison
1914          * and skip the write if everything is the same.
1915          * If any blocks failed to read, then we need to
1916          * attempt an over-write
1917          */
1918         struct mddev *mddev = r1_bio->mddev;
1919         struct r1conf *conf = mddev->private;
1920         int primary;
1921         int i;
1922         int vcnt;
1923
1924         /* Fix variable parts of all bios */
1925         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1926         for (i = 0; i < conf->raid_disks * 2; i++) {
1927                 int j;
1928                 int size;
1929                 int error;
1930                 struct bio *b = r1_bio->bios[i];
1931                 if (b->bi_end_io != end_sync_read)
1932                         continue;
1933                 /* fixup the bio for reuse, but preserve errno */
1934                 error = b->bi_error;
1935                 bio_reset(b);
1936                 b->bi_error = error;
1937                 b->bi_vcnt = vcnt;
1938                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1939                 b->bi_iter.bi_sector = r1_bio->sector +
1940                         conf->mirrors[i].rdev->data_offset;
1941                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1942                 b->bi_end_io = end_sync_read;
1943                 b->bi_private = r1_bio;
1944
1945                 size = b->bi_iter.bi_size;
1946                 for (j = 0; j < vcnt ; j++) {
1947                         struct bio_vec *bi;
1948                         bi = &b->bi_io_vec[j];
1949                         bi->bv_offset = 0;
1950                         if (size > PAGE_SIZE)
1951                                 bi->bv_len = PAGE_SIZE;
1952                         else
1953                                 bi->bv_len = size;
1954                         size -= PAGE_SIZE;
1955                 }
1956         }
1957         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1958                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1959                     !r1_bio->bios[primary]->bi_error) {
1960                         r1_bio->bios[primary]->bi_end_io = NULL;
1961                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1962                         break;
1963                 }
1964         r1_bio->read_disk = primary;
1965         for (i = 0; i < conf->raid_disks * 2; i++) {
1966                 int j;
1967                 struct bio *pbio = r1_bio->bios[primary];
1968                 struct bio *sbio = r1_bio->bios[i];
1969                 int error = sbio->bi_error;
1970
1971                 if (sbio->bi_end_io != end_sync_read)
1972                         continue;
1973                 /* Now we can 'fixup' the error value */
1974                 sbio->bi_error = 0;
1975
1976                 if (!error) {
1977                         for (j = vcnt; j-- ; ) {
1978                                 struct page *p, *s;
1979                                 p = pbio->bi_io_vec[j].bv_page;
1980                                 s = sbio->bi_io_vec[j].bv_page;
1981                                 if (memcmp(page_address(p),
1982                                            page_address(s),
1983                                            sbio->bi_io_vec[j].bv_len))
1984                                         break;
1985                         }
1986                 } else
1987                         j = 0;
1988                 if (j >= 0)
1989                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1990                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1991                               && !error)) {
1992                         /* No need to write to this device. */
1993                         sbio->bi_end_io = NULL;
1994                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1995                         continue;
1996                 }
1997
1998                 bio_copy_data(sbio, pbio);
1999         }
2000 }
2001
2002 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2003 {
2004         struct r1conf *conf = mddev->private;
2005         int i;
2006         int disks = conf->raid_disks * 2;
2007         struct bio *bio, *wbio;
2008
2009         bio = r1_bio->bios[r1_bio->read_disk];
2010
2011         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2012                 /* ouch - failed to read all of that. */
2013                 if (!fix_sync_read_error(r1_bio))
2014                         return;
2015
2016         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2017                 process_checks(r1_bio);
2018
2019         /*
2020          * schedule writes
2021          */
2022         atomic_set(&r1_bio->remaining, 1);
2023         for (i = 0; i < disks ; i++) {
2024                 wbio = r1_bio->bios[i];
2025                 if (wbio->bi_end_io == NULL ||
2026                     (wbio->bi_end_io == end_sync_read &&
2027                      (i == r1_bio->read_disk ||
2028                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2029                         continue;
2030
2031                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2032                 wbio->bi_end_io = end_sync_write;
2033                 atomic_inc(&r1_bio->remaining);
2034                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2035
2036                 generic_make_request(wbio);
2037         }
2038
2039         if (atomic_dec_and_test(&r1_bio->remaining)) {
2040                 /* if we're here, all write(s) have completed, so clean up */
2041                 int s = r1_bio->sectors;
2042                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2043                     test_bit(R1BIO_WriteError, &r1_bio->state))
2044                         reschedule_retry(r1_bio);
2045                 else {
2046                         put_buf(r1_bio);
2047                         md_done_sync(mddev, s, 1);
2048                 }
2049         }
2050 }
2051
2052 /*
2053  * This is a kernel thread which:
2054  *
2055  *      1.      Retries failed read operations on working mirrors.
2056  *      2.      Updates the raid superblock when problems encounter.
2057  *      3.      Performs writes following reads for array synchronising.
2058  */
2059
2060 static void fix_read_error(struct r1conf *conf, int read_disk,
2061                            sector_t sect, int sectors)
2062 {
2063         struct mddev *mddev = conf->mddev;
2064         while(sectors) {
2065                 int s = sectors;
2066                 int d = read_disk;
2067                 int success = 0;
2068                 int start;
2069                 struct md_rdev *rdev;
2070
2071                 if (s > (PAGE_SIZE>>9))
2072                         s = PAGE_SIZE >> 9;
2073
2074                 do {
2075                         /* Note: no rcu protection needed here
2076                          * as this is synchronous in the raid1d thread
2077                          * which is the thread that might remove
2078                          * a device.  If raid1d ever becomes multi-threaded....
2079                          */
2080                         sector_t first_bad;
2081                         int bad_sectors;
2082
2083                         rdev = conf->mirrors[d].rdev;
2084                         if (rdev &&
2085                             (test_bit(In_sync, &rdev->flags) ||
2086                              (!test_bit(Faulty, &rdev->flags) &&
2087                               rdev->recovery_offset >= sect + s)) &&
2088                             is_badblock(rdev, sect, s,
2089                                         &first_bad, &bad_sectors) == 0 &&
2090                             sync_page_io(rdev, sect, s<<9,
2091                                          conf->tmppage, REQ_OP_READ, 0, false))
2092                                 success = 1;
2093                         else {
2094                                 d++;
2095                                 if (d == conf->raid_disks * 2)
2096                                         d = 0;
2097                         }
2098                 } while (!success && d != read_disk);
2099
2100                 if (!success) {
2101                         /* Cannot read from anywhere - mark it bad */
2102                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2103                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2104                                 md_error(mddev, rdev);
2105                         break;
2106                 }
2107                 /* write it back and re-read */
2108                 start = d;
2109                 while (d != read_disk) {
2110                         if (d==0)
2111                                 d = conf->raid_disks * 2;
2112                         d--;
2113                         rdev = conf->mirrors[d].rdev;
2114                         if (rdev &&
2115                             !test_bit(Faulty, &rdev->flags))
2116                                 r1_sync_page_io(rdev, sect, s,
2117                                                 conf->tmppage, WRITE);
2118                 }
2119                 d = start;
2120                 while (d != read_disk) {
2121                         char b[BDEVNAME_SIZE];
2122                         if (d==0)
2123                                 d = conf->raid_disks * 2;
2124                         d--;
2125                         rdev = conf->mirrors[d].rdev;
2126                         if (rdev &&
2127                             !test_bit(Faulty, &rdev->flags)) {
2128                                 if (r1_sync_page_io(rdev, sect, s,
2129                                                     conf->tmppage, READ)) {
2130                                         atomic_add(s, &rdev->corrected_errors);
2131                                         printk(KERN_INFO
2132                                                "md/raid1:%s: read error corrected "
2133                                                "(%d sectors at %llu on %s)\n",
2134                                                mdname(mddev), s,
2135                                                (unsigned long long)(sect +
2136                                                    rdev->data_offset),
2137                                                bdevname(rdev->bdev, b));
2138                                 }
2139                         }
2140                 }
2141                 sectors -= s;
2142                 sect += s;
2143         }
2144 }
2145
2146 static int narrow_write_error(struct r1bio *r1_bio, int i)
2147 {
2148         struct mddev *mddev = r1_bio->mddev;
2149         struct r1conf *conf = mddev->private;
2150         struct md_rdev *rdev = conf->mirrors[i].rdev;
2151
2152         /* bio has the data to be written to device 'i' where
2153          * we just recently had a write error.
2154          * We repeatedly clone the bio and trim down to one block,
2155          * then try the write.  Where the write fails we record
2156          * a bad block.
2157          * It is conceivable that the bio doesn't exactly align with
2158          * blocks.  We must handle this somehow.
2159          *
2160          * We currently own a reference on the rdev.
2161          */
2162
2163         int block_sectors;
2164         sector_t sector;
2165         int sectors;
2166         int sect_to_write = r1_bio->sectors;
2167         int ok = 1;
2168
2169         if (rdev->badblocks.shift < 0)
2170                 return 0;
2171
2172         block_sectors = roundup(1 << rdev->badblocks.shift,
2173                                 bdev_logical_block_size(rdev->bdev) >> 9);
2174         sector = r1_bio->sector;
2175         sectors = ((sector + block_sectors)
2176                    & ~(sector_t)(block_sectors - 1))
2177                 - sector;
2178
2179         while (sect_to_write) {
2180                 struct bio *wbio;
2181                 if (sectors > sect_to_write)
2182                         sectors = sect_to_write;
2183                 /* Write at 'sector' for 'sectors'*/
2184
2185                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2186                         unsigned vcnt = r1_bio->behind_page_count;
2187                         struct bio_vec *vec = r1_bio->behind_bvecs;
2188
2189                         while (!vec->bv_page) {
2190                                 vec++;
2191                                 vcnt--;
2192                         }
2193
2194                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2195                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2196
2197                         wbio->bi_vcnt = vcnt;
2198                 } else {
2199                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2200                 }
2201
2202                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2203                 wbio->bi_iter.bi_sector = r1_bio->sector;
2204                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2205
2206                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2207                 wbio->bi_iter.bi_sector += rdev->data_offset;
2208                 wbio->bi_bdev = rdev->bdev;
2209
2210                 if (submit_bio_wait(wbio) < 0)
2211                         /* failure! */
2212                         ok = rdev_set_badblocks(rdev, sector,
2213                                                 sectors, 0)
2214                                 && ok;
2215
2216                 bio_put(wbio);
2217                 sect_to_write -= sectors;
2218                 sector += sectors;
2219                 sectors = block_sectors;
2220         }
2221         return ok;
2222 }
2223
2224 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2225 {
2226         int m;
2227         int s = r1_bio->sectors;
2228         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2229                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2230                 struct bio *bio = r1_bio->bios[m];
2231                 if (bio->bi_end_io == NULL)
2232                         continue;
2233                 if (!bio->bi_error &&
2234                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2235                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2236                 }
2237                 if (bio->bi_error &&
2238                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2239                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2240                                 md_error(conf->mddev, rdev);
2241                 }
2242         }
2243         put_buf(r1_bio);
2244         md_done_sync(conf->mddev, s, 1);
2245 }
2246
2247 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2248 {
2249         int m;
2250         bool fail = false;
2251         for (m = 0; m < conf->raid_disks * 2 ; m++)
2252                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2253                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2254                         rdev_clear_badblocks(rdev,
2255                                              r1_bio->sector,
2256                                              r1_bio->sectors, 0);
2257                         rdev_dec_pending(rdev, conf->mddev);
2258                 } else if (r1_bio->bios[m] != NULL) {
2259                         /* This drive got a write error.  We need to
2260                          * narrow down and record precise write
2261                          * errors.
2262                          */
2263                         fail = true;
2264                         if (!narrow_write_error(r1_bio, m)) {
2265                                 md_error(conf->mddev,
2266                                          conf->mirrors[m].rdev);
2267                                 /* an I/O failed, we can't clear the bitmap */
2268                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2269                         }
2270                         rdev_dec_pending(conf->mirrors[m].rdev,
2271                                          conf->mddev);
2272                 }
2273         if (fail) {
2274                 spin_lock_irq(&conf->device_lock);
2275                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2276                 conf->nr_queued++;
2277                 spin_unlock_irq(&conf->device_lock);
2278                 md_wakeup_thread(conf->mddev->thread);
2279         } else {
2280                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2281                         close_write(r1_bio);
2282                 raid_end_bio_io(r1_bio);
2283         }
2284 }
2285
2286 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2287 {
2288         int disk;
2289         int max_sectors;
2290         struct mddev *mddev = conf->mddev;
2291         struct bio *bio;
2292         char b[BDEVNAME_SIZE];
2293         struct md_rdev *rdev;
2294
2295         clear_bit(R1BIO_ReadError, &r1_bio->state);
2296         /* we got a read error. Maybe the drive is bad.  Maybe just
2297          * the block and we can fix it.
2298          * We freeze all other IO, and try reading the block from
2299          * other devices.  When we find one, we re-write
2300          * and check it that fixes the read error.
2301          * This is all done synchronously while the array is
2302          * frozen
2303          */
2304         if (mddev->ro == 0) {
2305                 freeze_array(conf, 1);
2306                 fix_read_error(conf, r1_bio->read_disk,
2307                                r1_bio->sector, r1_bio->sectors);
2308                 unfreeze_array(conf);
2309         } else
2310                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2311         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2312
2313         bio = r1_bio->bios[r1_bio->read_disk];
2314         bdevname(bio->bi_bdev, b);
2315 read_more:
2316         disk = read_balance(conf, r1_bio, &max_sectors);
2317         if (disk == -1) {
2318                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2319                        " read error for block %llu\n",
2320                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2321                 raid_end_bio_io(r1_bio);
2322         } else {
2323                 const unsigned long do_sync
2324                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2325                 if (bio) {
2326                         r1_bio->bios[r1_bio->read_disk] =
2327                                 mddev->ro ? IO_BLOCKED : NULL;
2328                         bio_put(bio);
2329                 }
2330                 r1_bio->read_disk = disk;
2331                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333                          max_sectors);
2334                 r1_bio->bios[r1_bio->read_disk] = bio;
2335                 rdev = conf->mirrors[disk].rdev;
2336                 printk_ratelimited(KERN_ERR
2337                                    "md/raid1:%s: redirecting sector %llu"
2338                                    " to other mirror: %s\n",
2339                                    mdname(mddev),
2340                                    (unsigned long long)r1_bio->sector,
2341                                    bdevname(rdev->bdev, b));
2342                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343                 bio->bi_bdev = rdev->bdev;
2344                 bio->bi_end_io = raid1_end_read_request;
2345                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2346                 bio->bi_private = r1_bio;
2347                 if (max_sectors < r1_bio->sectors) {
2348                         /* Drat - have to split this up more */
2349                         struct bio *mbio = r1_bio->master_bio;
2350                         int sectors_handled = (r1_bio->sector + max_sectors
2351                                                - mbio->bi_iter.bi_sector);
2352                         r1_bio->sectors = max_sectors;
2353                         spin_lock_irq(&conf->device_lock);
2354                         if (mbio->bi_phys_segments == 0)
2355                                 mbio->bi_phys_segments = 2;
2356                         else
2357                                 mbio->bi_phys_segments++;
2358                         spin_unlock_irq(&conf->device_lock);
2359                         generic_make_request(bio);
2360                         bio = NULL;
2361
2362                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2363
2364                         r1_bio->master_bio = mbio;
2365                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366                         r1_bio->state = 0;
2367                         set_bit(R1BIO_ReadError, &r1_bio->state);
2368                         r1_bio->mddev = mddev;
2369                         r1_bio->sector = mbio->bi_iter.bi_sector +
2370                                 sectors_handled;
2371
2372                         goto read_more;
2373                 } else
2374                         generic_make_request(bio);
2375         }
2376 }
2377
2378 static void raid1d(struct md_thread *thread)
2379 {
2380         struct mddev *mddev = thread->mddev;
2381         struct r1bio *r1_bio;
2382         unsigned long flags;
2383         struct r1conf *conf = mddev->private;
2384         struct list_head *head = &conf->retry_list;
2385         struct blk_plug plug;
2386
2387         md_check_recovery(mddev);
2388
2389         if (!list_empty_careful(&conf->bio_end_io_list) &&
2390             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391                 LIST_HEAD(tmp);
2392                 spin_lock_irqsave(&conf->device_lock, flags);
2393                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394                         while (!list_empty(&conf->bio_end_io_list)) {
2395                                 list_move(conf->bio_end_io_list.prev, &tmp);
2396                                 conf->nr_queued--;
2397                         }
2398                 }
2399                 spin_unlock_irqrestore(&conf->device_lock, flags);
2400                 while (!list_empty(&tmp)) {
2401                         r1_bio = list_first_entry(&tmp, struct r1bio,
2402                                                   retry_list);
2403                         list_del(&r1_bio->retry_list);
2404                         if (mddev->degraded)
2405                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2406                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2407                                 close_write(r1_bio);
2408                         raid_end_bio_io(r1_bio);
2409                 }
2410         }
2411
2412         blk_start_plug(&plug);
2413         for (;;) {
2414
2415                 flush_pending_writes(conf);
2416
2417                 spin_lock_irqsave(&conf->device_lock, flags);
2418                 if (list_empty(head)) {
2419                         spin_unlock_irqrestore(&conf->device_lock, flags);
2420                         break;
2421                 }
2422                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2423                 list_del(head->prev);
2424                 conf->nr_queued--;
2425                 spin_unlock_irqrestore(&conf->device_lock, flags);
2426
2427                 mddev = r1_bio->mddev;
2428                 conf = mddev->private;
2429                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2430                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2431                             test_bit(R1BIO_WriteError, &r1_bio->state))
2432                                 handle_sync_write_finished(conf, r1_bio);
2433                         else
2434                                 sync_request_write(mddev, r1_bio);
2435                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436                            test_bit(R1BIO_WriteError, &r1_bio->state))
2437                         handle_write_finished(conf, r1_bio);
2438                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2439                         handle_read_error(conf, r1_bio);
2440                 else
2441                         /* just a partial read to be scheduled from separate
2442                          * context
2443                          */
2444                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2445
2446                 cond_resched();
2447                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2448                         md_check_recovery(mddev);
2449         }
2450         blk_finish_plug(&plug);
2451 }
2452
2453 static int init_resync(struct r1conf *conf)
2454 {
2455         int buffs;
2456
2457         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2458         BUG_ON(conf->r1buf_pool);
2459         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2460                                           conf->poolinfo);
2461         if (!conf->r1buf_pool)
2462                 return -ENOMEM;
2463         conf->next_resync = 0;
2464         return 0;
2465 }
2466
2467 /*
2468  * perform a "sync" on one "block"
2469  *
2470  * We need to make sure that no normal I/O request - particularly write
2471  * requests - conflict with active sync requests.
2472  *
2473  * This is achieved by tracking pending requests and a 'barrier' concept
2474  * that can be installed to exclude normal IO requests.
2475  */
2476
2477 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2478                                    int *skipped)
2479 {
2480         struct r1conf *conf = mddev->private;
2481         struct r1bio *r1_bio;
2482         struct bio *bio;
2483         sector_t max_sector, nr_sectors;
2484         int disk = -1;
2485         int i;
2486         int wonly = -1;
2487         int write_targets = 0, read_targets = 0;
2488         sector_t sync_blocks;
2489         int still_degraded = 0;
2490         int good_sectors = RESYNC_SECTORS;
2491         int min_bad = 0; /* number of sectors that are bad in all devices */
2492
2493         if (!conf->r1buf_pool)
2494                 if (init_resync(conf))
2495                         return 0;
2496
2497         max_sector = mddev->dev_sectors;
2498         if (sector_nr >= max_sector) {
2499                 /* If we aborted, we need to abort the
2500                  * sync on the 'current' bitmap chunk (there will
2501                  * only be one in raid1 resync.
2502                  * We can find the current addess in mddev->curr_resync
2503                  */
2504                 if (mddev->curr_resync < max_sector) /* aborted */
2505                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2506                                                 &sync_blocks, 1);
2507                 else /* completed sync */
2508                         conf->fullsync = 0;
2509
2510                 bitmap_close_sync(mddev->bitmap);
2511                 close_sync(conf);
2512
2513                 if (mddev_is_clustered(mddev)) {
2514                         conf->cluster_sync_low = 0;
2515                         conf->cluster_sync_high = 0;
2516                 }
2517                 return 0;
2518         }
2519
2520         if (mddev->bitmap == NULL &&
2521             mddev->recovery_cp == MaxSector &&
2522             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2523             conf->fullsync == 0) {
2524                 *skipped = 1;
2525                 return max_sector - sector_nr;
2526         }
2527         /* before building a request, check if we can skip these blocks..
2528          * This call the bitmap_start_sync doesn't actually record anything
2529          */
2530         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2531             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2532                 /* We can skip this block, and probably several more */
2533                 *skipped = 1;
2534                 return sync_blocks;
2535         }
2536
2537         /* we are incrementing sector_nr below. To be safe, we check against
2538          * sector_nr + two times RESYNC_SECTORS
2539          */
2540
2541         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2542                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2543         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544
2545         raise_barrier(conf, sector_nr);
2546
2547         rcu_read_lock();
2548         /*
2549          * If we get a correctably read error during resync or recovery,
2550          * we might want to read from a different device.  So we
2551          * flag all drives that could conceivably be read from for READ,
2552          * and any others (which will be non-In_sync devices) for WRITE.
2553          * If a read fails, we try reading from something else for which READ
2554          * is OK.
2555          */
2556
2557         r1_bio->mddev = mddev;
2558         r1_bio->sector = sector_nr;
2559         r1_bio->state = 0;
2560         set_bit(R1BIO_IsSync, &r1_bio->state);
2561
2562         for (i = 0; i < conf->raid_disks * 2; i++) {
2563                 struct md_rdev *rdev;
2564                 bio = r1_bio->bios[i];
2565                 bio_reset(bio);
2566
2567                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2568                 if (rdev == NULL ||
2569                     test_bit(Faulty, &rdev->flags)) {
2570                         if (i < conf->raid_disks)
2571                                 still_degraded = 1;
2572                 } else if (!test_bit(In_sync, &rdev->flags)) {
2573                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2574                         bio->bi_end_io = end_sync_write;
2575                         write_targets ++;
2576                 } else {
2577                         /* may need to read from here */
2578                         sector_t first_bad = MaxSector;
2579                         int bad_sectors;
2580
2581                         if (is_badblock(rdev, sector_nr, good_sectors,
2582                                         &first_bad, &bad_sectors)) {
2583                                 if (first_bad > sector_nr)
2584                                         good_sectors = first_bad - sector_nr;
2585                                 else {
2586                                         bad_sectors -= (sector_nr - first_bad);
2587                                         if (min_bad == 0 ||
2588                                             min_bad > bad_sectors)
2589                                                 min_bad = bad_sectors;
2590                                 }
2591                         }
2592                         if (sector_nr < first_bad) {
2593                                 if (test_bit(WriteMostly, &rdev->flags)) {
2594                                         if (wonly < 0)
2595                                                 wonly = i;
2596                                 } else {
2597                                         if (disk < 0)
2598                                                 disk = i;
2599                                 }
2600                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2601                                 bio->bi_end_io = end_sync_read;
2602                                 read_targets++;
2603                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606                                 /*
2607                                  * The device is suitable for reading (InSync),
2608                                  * but has bad block(s) here. Let's try to correct them,
2609                                  * if we are doing resync or repair. Otherwise, leave
2610                                  * this device alone for this sync request.
2611                                  */
2612                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2613                                 bio->bi_end_io = end_sync_write;
2614                                 write_targets++;
2615                         }
2616                 }
2617                 if (bio->bi_end_io) {
2618                         atomic_inc(&rdev->nr_pending);
2619                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620                         bio->bi_bdev = rdev->bdev;
2621                         bio->bi_private = r1_bio;
2622                 }
2623         }
2624         rcu_read_unlock();
2625         if (disk < 0)
2626                 disk = wonly;
2627         r1_bio->read_disk = disk;
2628
2629         if (read_targets == 0 && min_bad > 0) {
2630                 /* These sectors are bad on all InSync devices, so we
2631                  * need to mark them bad on all write targets
2632                  */
2633                 int ok = 1;
2634                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2637                                 ok = rdev_set_badblocks(rdev, sector_nr,
2638                                                         min_bad, 0
2639                                         ) && ok;
2640                         }
2641                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642                 *skipped = 1;
2643                 put_buf(r1_bio);
2644
2645                 if (!ok) {
2646                         /* Cannot record the badblocks, so need to
2647                          * abort the resync.
2648                          * If there are multiple read targets, could just
2649                          * fail the really bad ones ???
2650                          */
2651                         conf->recovery_disabled = mddev->recovery_disabled;
2652                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653                         return 0;
2654                 } else
2655                         return min_bad;
2656
2657         }
2658         if (min_bad > 0 && min_bad < good_sectors) {
2659                 /* only resync enough to reach the next bad->good
2660                  * transition */
2661                 good_sectors = min_bad;
2662         }
2663
2664         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665                 /* extra read targets are also write targets */
2666                 write_targets += read_targets-1;
2667
2668         if (write_targets == 0 || read_targets == 0) {
2669                 /* There is nowhere to write, so all non-sync
2670                  * drives must be failed - so we are finished
2671                  */
2672                 sector_t rv;
2673                 if (min_bad > 0)
2674                         max_sector = sector_nr + min_bad;
2675                 rv = max_sector - sector_nr;
2676                 *skipped = 1;
2677                 put_buf(r1_bio);
2678                 return rv;
2679         }
2680
2681         if (max_sector > mddev->resync_max)
2682                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683         if (max_sector > sector_nr + good_sectors)
2684                 max_sector = sector_nr + good_sectors;
2685         nr_sectors = 0;
2686         sync_blocks = 0;
2687         do {
2688                 struct page *page;
2689                 int len = PAGE_SIZE;
2690                 if (sector_nr + (len>>9) > max_sector)
2691                         len = (max_sector - sector_nr) << 9;
2692                 if (len == 0)
2693                         break;
2694                 if (sync_blocks == 0) {
2695                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696                                                &sync_blocks, still_degraded) &&
2697                             !conf->fullsync &&
2698                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699                                 break;
2700                         if ((len >> 9) > sync_blocks)
2701                                 len = sync_blocks<<9;
2702                 }
2703
2704                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2705                         bio = r1_bio->bios[i];
2706                         if (bio->bi_end_io) {
2707                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2708                                 if (bio_add_page(bio, page, len, 0) == 0) {
2709                                         /* stop here */
2710                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2711                                         while (i > 0) {
2712                                                 i--;
2713                                                 bio = r1_bio->bios[i];
2714                                                 if (bio->bi_end_io==NULL)
2715                                                         continue;
2716                                                 /* remove last page from this bio */
2717                                                 bio->bi_vcnt--;
2718                                                 bio->bi_iter.bi_size -= len;
2719                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2720                                         }
2721                                         goto bio_full;
2722                                 }
2723                         }
2724                 }
2725                 nr_sectors += len>>9;
2726                 sector_nr += len>>9;
2727                 sync_blocks -= (len>>9);
2728         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2729  bio_full:
2730         r1_bio->sectors = nr_sectors;
2731
2732         if (mddev_is_clustered(mddev) &&
2733                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2734                 conf->cluster_sync_low = mddev->curr_resync_completed;
2735                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2736                 /* Send resync message */
2737                 md_cluster_ops->resync_info_update(mddev,
2738                                 conf->cluster_sync_low,
2739                                 conf->cluster_sync_high);
2740         }
2741
2742         /* For a user-requested sync, we read all readable devices and do a
2743          * compare
2744          */
2745         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2746                 atomic_set(&r1_bio->remaining, read_targets);
2747                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2748                         bio = r1_bio->bios[i];
2749                         if (bio->bi_end_io == end_sync_read) {
2750                                 read_targets--;
2751                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2752                                 generic_make_request(bio);
2753                         }
2754                 }
2755         } else {
2756                 atomic_set(&r1_bio->remaining, 1);
2757                 bio = r1_bio->bios[r1_bio->read_disk];
2758                 md_sync_acct(bio->bi_bdev, nr_sectors);
2759                 generic_make_request(bio);
2760
2761         }
2762         return nr_sectors;
2763 }
2764
2765 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2766 {
2767         if (sectors)
2768                 return sectors;
2769
2770         return mddev->dev_sectors;
2771 }
2772
2773 static struct r1conf *setup_conf(struct mddev *mddev)
2774 {
2775         struct r1conf *conf;
2776         int i;
2777         struct raid1_info *disk;
2778         struct md_rdev *rdev;
2779         int err = -ENOMEM;
2780
2781         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2782         if (!conf)
2783                 goto abort;
2784
2785         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2786                                 * mddev->raid_disks * 2,
2787                                  GFP_KERNEL);
2788         if (!conf->mirrors)
2789                 goto abort;
2790
2791         conf->tmppage = alloc_page(GFP_KERNEL);
2792         if (!conf->tmppage)
2793                 goto abort;
2794
2795         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2796         if (!conf->poolinfo)
2797                 goto abort;
2798         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2799         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2800                                           r1bio_pool_free,
2801                                           conf->poolinfo);
2802         if (!conf->r1bio_pool)
2803                 goto abort;
2804
2805         conf->poolinfo->mddev = mddev;
2806
2807         err = -EINVAL;
2808         spin_lock_init(&conf->device_lock);
2809         rdev_for_each(rdev, mddev) {
2810                 struct request_queue *q;
2811                 int disk_idx = rdev->raid_disk;
2812                 if (disk_idx >= mddev->raid_disks
2813                     || disk_idx < 0)
2814                         continue;
2815                 if (test_bit(Replacement, &rdev->flags))
2816                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2817                 else
2818                         disk = conf->mirrors + disk_idx;
2819
2820                 if (disk->rdev)
2821                         goto abort;
2822                 disk->rdev = rdev;
2823                 q = bdev_get_queue(rdev->bdev);
2824
2825                 disk->head_position = 0;
2826                 disk->seq_start = MaxSector;
2827         }
2828         conf->raid_disks = mddev->raid_disks;
2829         conf->mddev = mddev;
2830         INIT_LIST_HEAD(&conf->retry_list);
2831         INIT_LIST_HEAD(&conf->bio_end_io_list);
2832
2833         spin_lock_init(&conf->resync_lock);
2834         init_waitqueue_head(&conf->wait_barrier);
2835
2836         bio_list_init(&conf->pending_bio_list);
2837         conf->pending_count = 0;
2838         conf->recovery_disabled = mddev->recovery_disabled - 1;
2839
2840         conf->start_next_window = MaxSector;
2841         conf->current_window_requests = conf->next_window_requests = 0;
2842
2843         err = -EIO;
2844         for (i = 0; i < conf->raid_disks * 2; i++) {
2845
2846                 disk = conf->mirrors + i;
2847
2848                 if (i < conf->raid_disks &&
2849                     disk[conf->raid_disks].rdev) {
2850                         /* This slot has a replacement. */
2851                         if (!disk->rdev) {
2852                                 /* No original, just make the replacement
2853                                  * a recovering spare
2854                                  */
2855                                 disk->rdev =
2856                                         disk[conf->raid_disks].rdev;
2857                                 disk[conf->raid_disks].rdev = NULL;
2858                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2859                                 /* Original is not in_sync - bad */
2860                                 goto abort;
2861                 }
2862
2863                 if (!disk->rdev ||
2864                     !test_bit(In_sync, &disk->rdev->flags)) {
2865                         disk->head_position = 0;
2866                         if (disk->rdev &&
2867                             (disk->rdev->saved_raid_disk < 0))
2868                                 conf->fullsync = 1;
2869                 }
2870         }
2871
2872         err = -ENOMEM;
2873         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2874         if (!conf->thread) {
2875                 printk(KERN_ERR
2876                        "md/raid1:%s: couldn't allocate thread\n",
2877                        mdname(mddev));
2878                 goto abort;
2879         }
2880
2881         return conf;
2882
2883  abort:
2884         if (conf) {
2885                 mempool_destroy(conf->r1bio_pool);
2886                 kfree(conf->mirrors);
2887                 safe_put_page(conf->tmppage);
2888                 kfree(conf->poolinfo);
2889                 kfree(conf);
2890         }
2891         return ERR_PTR(err);
2892 }
2893
2894 static void raid1_free(struct mddev *mddev, void *priv);
2895 static int raid1_run(struct mddev *mddev)
2896 {
2897         struct r1conf *conf;
2898         int i;
2899         struct md_rdev *rdev;
2900         int ret;
2901         bool discard_supported = false;
2902
2903         if (mddev->level != 1) {
2904                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2905                        mdname(mddev), mddev->level);
2906                 return -EIO;
2907         }
2908         if (mddev->reshape_position != MaxSector) {
2909                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2910                        mdname(mddev));
2911                 return -EIO;
2912         }
2913         /*
2914          * copy the already verified devices into our private RAID1
2915          * bookkeeping area. [whatever we allocate in run(),
2916          * should be freed in raid1_free()]
2917          */
2918         if (mddev->private == NULL)
2919                 conf = setup_conf(mddev);
2920         else
2921                 conf = mddev->private;
2922
2923         if (IS_ERR(conf))
2924                 return PTR_ERR(conf);
2925
2926         if (mddev->queue)
2927                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2928
2929         rdev_for_each(rdev, mddev) {
2930                 if (!mddev->gendisk)
2931                         continue;
2932                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2933                                   rdev->data_offset << 9);
2934                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935                         discard_supported = true;
2936         }
2937
2938         mddev->degraded = 0;
2939         for (i=0; i < conf->raid_disks; i++)
2940                 if (conf->mirrors[i].rdev == NULL ||
2941                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943                         mddev->degraded++;
2944
2945         if (conf->raid_disks - mddev->degraded == 1)
2946                 mddev->recovery_cp = MaxSector;
2947
2948         if (mddev->recovery_cp != MaxSector)
2949                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2950                        " -- starting background reconstruction\n",
2951                        mdname(mddev));
2952         printk(KERN_INFO
2953                 "md/raid1:%s: active with %d out of %d mirrors\n",
2954                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2955                 mddev->raid_disks);
2956
2957         /*
2958          * Ok, everything is just fine now
2959          */
2960         mddev->thread = conf->thread;
2961         conf->thread = NULL;
2962         mddev->private = conf;
2963
2964         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2965
2966         if (mddev->queue) {
2967                 if (discard_supported)
2968                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2969                                                 mddev->queue);
2970                 else
2971                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2972                                                   mddev->queue);
2973         }
2974
2975         ret =  md_integrity_register(mddev);
2976         if (ret) {
2977                 md_unregister_thread(&mddev->thread);
2978                 raid1_free(mddev, conf);
2979         }
2980         return ret;
2981 }
2982
2983 static void raid1_free(struct mddev *mddev, void *priv)
2984 {
2985         struct r1conf *conf = priv;
2986
2987         mempool_destroy(conf->r1bio_pool);
2988         kfree(conf->mirrors);
2989         safe_put_page(conf->tmppage);
2990         kfree(conf->poolinfo);
2991         kfree(conf);
2992 }
2993
2994 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2995 {
2996         /* no resync is happening, and there is enough space
2997          * on all devices, so we can resize.
2998          * We need to make sure resync covers any new space.
2999          * If the array is shrinking we should possibly wait until
3000          * any io in the removed space completes, but it hardly seems
3001          * worth it.
3002          */
3003         sector_t newsize = raid1_size(mddev, sectors, 0);
3004         if (mddev->external_size &&
3005             mddev->array_sectors > newsize)
3006                 return -EINVAL;
3007         if (mddev->bitmap) {
3008                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3009                 if (ret)
3010                         return ret;
3011         }
3012         md_set_array_sectors(mddev, newsize);
3013         set_capacity(mddev->gendisk, mddev->array_sectors);
3014         revalidate_disk(mddev->gendisk);
3015         if (sectors > mddev->dev_sectors &&
3016             mddev->recovery_cp > mddev->dev_sectors) {
3017                 mddev->recovery_cp = mddev->dev_sectors;
3018                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3019         }
3020         mddev->dev_sectors = sectors;
3021         mddev->resync_max_sectors = sectors;
3022         return 0;
3023 }
3024
3025 static int raid1_reshape(struct mddev *mddev)
3026 {
3027         /* We need to:
3028          * 1/ resize the r1bio_pool
3029          * 2/ resize conf->mirrors
3030          *
3031          * We allocate a new r1bio_pool if we can.
3032          * Then raise a device barrier and wait until all IO stops.
3033          * Then resize conf->mirrors and swap in the new r1bio pool.
3034          *
3035          * At the same time, we "pack" the devices so that all the missing
3036          * devices have the higher raid_disk numbers.
3037          */
3038         mempool_t *newpool, *oldpool;
3039         struct pool_info *newpoolinfo;
3040         struct raid1_info *newmirrors;
3041         struct r1conf *conf = mddev->private;
3042         int cnt, raid_disks;
3043         unsigned long flags;
3044         int d, d2, err;
3045
3046         /* Cannot change chunk_size, layout, or level */
3047         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3048             mddev->layout != mddev->new_layout ||
3049             mddev->level != mddev->new_level) {
3050                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3051                 mddev->new_layout = mddev->layout;
3052                 mddev->new_level = mddev->level;
3053                 return -EINVAL;
3054         }
3055
3056         if (!mddev_is_clustered(mddev)) {
3057                 err = md_allow_write(mddev);
3058                 if (err)
3059                         return err;
3060         }
3061
3062         raid_disks = mddev->raid_disks + mddev->delta_disks;
3063
3064         if (raid_disks < conf->raid_disks) {
3065                 cnt=0;
3066                 for (d= 0; d < conf->raid_disks; d++)
3067                         if (conf->mirrors[d].rdev)
3068                                 cnt++;
3069                 if (cnt > raid_disks)
3070                         return -EBUSY;
3071         }
3072
3073         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3074         if (!newpoolinfo)
3075                 return -ENOMEM;
3076         newpoolinfo->mddev = mddev;
3077         newpoolinfo->raid_disks = raid_disks * 2;
3078
3079         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3080                                  r1bio_pool_free, newpoolinfo);
3081         if (!newpool) {
3082                 kfree(newpoolinfo);
3083                 return -ENOMEM;
3084         }
3085         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3086                              GFP_KERNEL);
3087         if (!newmirrors) {
3088                 kfree(newpoolinfo);
3089                 mempool_destroy(newpool);
3090                 return -ENOMEM;
3091         }
3092
3093         freeze_array(conf, 0);
3094
3095         /* ok, everything is stopped */
3096         oldpool = conf->r1bio_pool;
3097         conf->r1bio_pool = newpool;
3098
3099         for (d = d2 = 0; d < conf->raid_disks; d++) {
3100                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3101                 if (rdev && rdev->raid_disk != d2) {
3102                         sysfs_unlink_rdev(mddev, rdev);
3103                         rdev->raid_disk = d2;
3104                         sysfs_unlink_rdev(mddev, rdev);
3105                         if (sysfs_link_rdev(mddev, rdev))
3106                                 printk(KERN_WARNING
3107                                        "md/raid1:%s: cannot register rd%d\n",
3108                                        mdname(mddev), rdev->raid_disk);
3109                 }
3110                 if (rdev)
3111                         newmirrors[d2++].rdev = rdev;
3112         }
3113         kfree(conf->mirrors);
3114         conf->mirrors = newmirrors;
3115         kfree(conf->poolinfo);
3116         conf->poolinfo = newpoolinfo;
3117
3118         spin_lock_irqsave(&conf->device_lock, flags);
3119         mddev->degraded += (raid_disks - conf->raid_disks);
3120         spin_unlock_irqrestore(&conf->device_lock, flags);
3121         conf->raid_disks = mddev->raid_disks = raid_disks;
3122         mddev->delta_disks = 0;
3123
3124         unfreeze_array(conf);
3125
3126         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3127         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3128         md_wakeup_thread(mddev->thread);
3129
3130         mempool_destroy(oldpool);
3131         return 0;
3132 }
3133
3134 static void raid1_quiesce(struct mddev *mddev, int state)
3135 {
3136         struct r1conf *conf = mddev->private;
3137
3138         switch(state) {
3139         case 2: /* wake for suspend */
3140                 wake_up(&conf->wait_barrier);
3141                 break;
3142         case 1:
3143                 freeze_array(conf, 0);
3144                 break;
3145         case 0:
3146                 unfreeze_array(conf);
3147                 break;
3148         }
3149 }
3150
3151 static void *raid1_takeover(struct mddev *mddev)
3152 {
3153         /* raid1 can take over:
3154          *  raid5 with 2 devices, any layout or chunk size
3155          */
3156         if (mddev->level == 5 && mddev->raid_disks == 2) {
3157                 struct r1conf *conf;
3158                 mddev->new_level = 1;
3159                 mddev->new_layout = 0;
3160                 mddev->new_chunk_sectors = 0;
3161                 conf = setup_conf(mddev);
3162                 if (!IS_ERR(conf))
3163                         /* Array must appear to be quiesced */
3164                         conf->array_frozen = 1;
3165                 return conf;
3166         }
3167         return ERR_PTR(-EINVAL);
3168 }
3169
3170 static struct md_personality raid1_personality =
3171 {
3172         .name           = "raid1",
3173         .level          = 1,
3174         .owner          = THIS_MODULE,
3175         .make_request   = raid1_make_request,
3176         .run            = raid1_run,
3177         .free           = raid1_free,
3178         .status         = raid1_status,
3179         .error_handler  = raid1_error,
3180         .hot_add_disk   = raid1_add_disk,
3181         .hot_remove_disk= raid1_remove_disk,
3182         .spare_active   = raid1_spare_active,
3183         .sync_request   = raid1_sync_request,
3184         .resize         = raid1_resize,
3185         .size           = raid1_size,
3186         .check_reshape  = raid1_reshape,
3187         .quiesce        = raid1_quiesce,
3188         .takeover       = raid1_takeover,
3189         .congested      = raid1_congested,
3190 };
3191
3192 static int __init raid_init(void)
3193 {
3194         return register_md_personality(&raid1_personality);
3195 }
3196
3197 static void raid_exit(void)
3198 {
3199         unregister_md_personality(&raid1_personality);
3200 }
3201
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);