x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710         sectors = r10_bio->sectors;
711         best_slot = -1;
712         best_rdev = NULL;
713         best_dist = MaxSector;
714         best_good_sectors = 0;
715         do_balance = 1;
716         /*
717          * Check if we can balance. We can balance on the whole
718          * device if no resync is going on (recovery is ok), or below
719          * the resync window. We take the first readable disk when
720          * above the resync window.
721          */
722         if (conf->mddev->recovery_cp < MaxSector
723             && (this_sector + sectors >= conf->next_resync))
724                 do_balance = 0;
725
726         for (slot = 0; slot < conf->copies ; slot++) {
727                 sector_t first_bad;
728                 int bad_sectors;
729                 sector_t dev_sector;
730
731                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732                         continue;
733                 disk = r10_bio->devs[slot].devnum;
734                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
738                 if (rdev == NULL ||
739                     test_bit(Faulty, &rdev->flags))
740                         continue;
741                 if (!test_bit(In_sync, &rdev->flags) &&
742                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743                         continue;
744
745                 dev_sector = r10_bio->devs[slot].addr;
746                 if (is_badblock(rdev, dev_sector, sectors,
747                                 &first_bad, &bad_sectors)) {
748                         if (best_dist < MaxSector)
749                                 /* Already have a better slot */
750                                 continue;
751                         if (first_bad <= dev_sector) {
752                                 /* Cannot read here.  If this is the
753                                  * 'primary' device, then we must not read
754                                  * beyond 'bad_sectors' from another device.
755                                  */
756                                 bad_sectors -= (dev_sector - first_bad);
757                                 if (!do_balance && sectors > bad_sectors)
758                                         sectors = bad_sectors;
759                                 if (best_good_sectors > sectors)
760                                         best_good_sectors = sectors;
761                         } else {
762                                 sector_t good_sectors =
763                                         first_bad - dev_sector;
764                                 if (good_sectors > best_good_sectors) {
765                                         best_good_sectors = good_sectors;
766                                         best_slot = slot;
767                                         best_rdev = rdev;
768                                 }
769                                 if (!do_balance)
770                                         /* Must read from here */
771                                         break;
772                         }
773                         continue;
774                 } else
775                         best_good_sectors = sectors;
776
777                 if (!do_balance)
778                         break;
779
780                 /* This optimisation is debatable, and completely destroys
781                  * sequential read speed for 'far copies' arrays.  So only
782                  * keep it for 'near' arrays, and review those later.
783                  */
784                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785                         break;
786
787                 /* for far > 1 always use the lowest address */
788                 if (geo->far_copies > 1)
789                         new_distance = r10_bio->devs[slot].addr;
790                 else
791                         new_distance = abs(r10_bio->devs[slot].addr -
792                                            conf->mirrors[disk].head_position);
793                 if (new_distance < best_dist) {
794                         best_dist = new_distance;
795                         best_slot = slot;
796                         best_rdev = rdev;
797                 }
798         }
799         if (slot >= conf->copies) {
800                 slot = best_slot;
801                 rdev = best_rdev;
802         }
803
804         if (slot >= 0) {
805                 atomic_inc(&rdev->nr_pending);
806                 r10_bio->read_slot = slot;
807         } else
808                 rdev = NULL;
809         rcu_read_unlock();
810         *max_sectors = best_good_sectors;
811
812         return rdev;
813 }
814
815 static int raid10_congested(struct mddev *mddev, int bits)
816 {
817         struct r10conf *conf = mddev->private;
818         int i, ret = 0;
819
820         if ((bits & (1 << WB_async_congested)) &&
821             conf->pending_count >= max_queued_requests)
822                 return 1;
823
824         rcu_read_lock();
825         for (i = 0;
826              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827                      && ret == 0;
828              i++) {
829                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
831                         struct request_queue *q = bdev_get_queue(rdev->bdev);
832
833                         ret |= bdi_congested(&q->backing_dev_info, bits);
834                 }
835         }
836         rcu_read_unlock();
837         return ret;
838 }
839
840 static void flush_pending_writes(struct r10conf *conf)
841 {
842         /* Any writes that have been queued but are awaiting
843          * bitmap updates get flushed here.
844          */
845         spin_lock_irq(&conf->device_lock);
846
847         if (conf->pending_bio_list.head) {
848                 struct bio *bio;
849                 bio = bio_list_get(&conf->pending_bio_list);
850                 conf->pending_count = 0;
851                 spin_unlock_irq(&conf->device_lock);
852                 /* flush any pending bitmap writes to disk
853                  * before proceeding w/ I/O */
854                 bitmap_unplug(conf->mddev->bitmap);
855                 wake_up(&conf->wait_barrier);
856
857                 while (bio) { /* submit pending writes */
858                         struct bio *next = bio->bi_next;
859                         bio->bi_next = NULL;
860                         if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
861                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862                                 /* Just ignore it */
863                                 bio_endio(bio);
864                         else
865                                 generic_make_request(bio);
866                         bio = next;
867                 }
868         } else
869                 spin_unlock_irq(&conf->device_lock);
870 }
871
872 /* Barriers....
873  * Sometimes we need to suspend IO while we do something else,
874  * either some resync/recovery, or reconfigure the array.
875  * To do this we raise a 'barrier'.
876  * The 'barrier' is a counter that can be raised multiple times
877  * to count how many activities are happening which preclude
878  * normal IO.
879  * We can only raise the barrier if there is no pending IO.
880  * i.e. if nr_pending == 0.
881  * We choose only to raise the barrier if no-one is waiting for the
882  * barrier to go down.  This means that as soon as an IO request
883  * is ready, no other operations which require a barrier will start
884  * until the IO request has had a chance.
885  *
886  * So: regular IO calls 'wait_barrier'.  When that returns there
887  *    is no backgroup IO happening,  It must arrange to call
888  *    allow_barrier when it has finished its IO.
889  * backgroup IO calls must call raise_barrier.  Once that returns
890  *    there is no normal IO happeing.  It must arrange to call
891  *    lower_barrier when the particular background IO completes.
892  */
893
894 static void raise_barrier(struct r10conf *conf, int force)
895 {
896         BUG_ON(force && !conf->barrier);
897         spin_lock_irq(&conf->resync_lock);
898
899         /* Wait until no block IO is waiting (unless 'force') */
900         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901                             conf->resync_lock);
902
903         /* block any new IO from starting */
904         conf->barrier++;
905
906         /* Now wait for all pending IO to complete */
907         wait_event_lock_irq(conf->wait_barrier,
908                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
909                             conf->resync_lock);
910
911         spin_unlock_irq(&conf->resync_lock);
912 }
913
914 static void lower_barrier(struct r10conf *conf)
915 {
916         unsigned long flags;
917         spin_lock_irqsave(&conf->resync_lock, flags);
918         conf->barrier--;
919         spin_unlock_irqrestore(&conf->resync_lock, flags);
920         wake_up(&conf->wait_barrier);
921 }
922
923 static void wait_barrier(struct r10conf *conf)
924 {
925         spin_lock_irq(&conf->resync_lock);
926         if (conf->barrier) {
927                 conf->nr_waiting++;
928                 /* Wait for the barrier to drop.
929                  * However if there are already pending
930                  * requests (preventing the barrier from
931                  * rising completely), and the
932                  * pre-process bio queue isn't empty,
933                  * then don't wait, as we need to empty
934                  * that queue to get the nr_pending
935                  * count down.
936                  */
937                 wait_event_lock_irq(conf->wait_barrier,
938                                     !conf->barrier ||
939                                     (atomic_read(&conf->nr_pending) &&
940                                      current->bio_list &&
941                                      !bio_list_empty(current->bio_list)),
942                                     conf->resync_lock);
943                 conf->nr_waiting--;
944                 if (!conf->nr_waiting)
945                         wake_up(&conf->wait_barrier);
946         }
947         atomic_inc(&conf->nr_pending);
948         spin_unlock_irq(&conf->resync_lock);
949 }
950
951 static void allow_barrier(struct r10conf *conf)
952 {
953         if ((atomic_dec_and_test(&conf->nr_pending)) ||
954                         (conf->array_freeze_pending))
955                 wake_up(&conf->wait_barrier);
956 }
957
958 static void freeze_array(struct r10conf *conf, int extra)
959 {
960         /* stop syncio and normal IO and wait for everything to
961          * go quiet.
962          * We increment barrier and nr_waiting, and then
963          * wait until nr_pending match nr_queued+extra
964          * This is called in the context of one normal IO request
965          * that has failed. Thus any sync request that might be pending
966          * will be blocked by nr_pending, and we need to wait for
967          * pending IO requests to complete or be queued for re-try.
968          * Thus the number queued (nr_queued) plus this request (extra)
969          * must match the number of pending IOs (nr_pending) before
970          * we continue.
971          */
972         spin_lock_irq(&conf->resync_lock);
973         conf->array_freeze_pending++;
974         conf->barrier++;
975         conf->nr_waiting++;
976         wait_event_lock_irq_cmd(conf->wait_barrier,
977                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
978                                 conf->resync_lock,
979                                 flush_pending_writes(conf));
980
981         conf->array_freeze_pending--;
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void unfreeze_array(struct r10conf *conf)
986 {
987         /* reverse the effect of the freeze */
988         spin_lock_irq(&conf->resync_lock);
989         conf->barrier--;
990         conf->nr_waiting--;
991         wake_up(&conf->wait_barrier);
992         spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static sector_t choose_data_offset(struct r10bio *r10_bio,
996                                    struct md_rdev *rdev)
997 {
998         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999             test_bit(R10BIO_Previous, &r10_bio->state))
1000                 return rdev->data_offset;
1001         else
1002                 return rdev->new_data_offset;
1003 }
1004
1005 struct raid10_plug_cb {
1006         struct blk_plug_cb      cb;
1007         struct bio_list         pending;
1008         int                     pending_cnt;
1009 };
1010
1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1012 {
1013         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014                                                    cb);
1015         struct mddev *mddev = plug->cb.data;
1016         struct r10conf *conf = mddev->private;
1017         struct bio *bio;
1018
1019         if (from_schedule || current->bio_list) {
1020                 spin_lock_irq(&conf->device_lock);
1021                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022                 conf->pending_count += plug->pending_cnt;
1023                 spin_unlock_irq(&conf->device_lock);
1024                 wake_up(&conf->wait_barrier);
1025                 md_wakeup_thread(mddev->thread);
1026                 kfree(plug);
1027                 return;
1028         }
1029
1030         /* we aren't scheduling, so we can do the write-out directly. */
1031         bio = bio_list_get(&plug->pending);
1032         bitmap_unplug(mddev->bitmap);
1033         wake_up(&conf->wait_barrier);
1034
1035         while (bio) { /* submit pending writes */
1036                 struct bio *next = bio->bi_next;
1037                 bio->bi_next = NULL;
1038                 if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1039                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040                         /* Just ignore it */
1041                         bio_endio(bio);
1042                 else
1043                         generic_make_request(bio);
1044                 bio = next;
1045         }
1046         kfree(plug);
1047 }
1048
1049 static void __make_request(struct mddev *mddev, struct bio *bio)
1050 {
1051         struct r10conf *conf = mddev->private;
1052         struct r10bio *r10_bio;
1053         struct bio *read_bio;
1054         int i;
1055         const int op = bio_op(bio);
1056         const int rw = bio_data_dir(bio);
1057         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1058         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1059         unsigned long flags;
1060         struct md_rdev *blocked_rdev;
1061         struct blk_plug_cb *cb;
1062         struct raid10_plug_cb *plug = NULL;
1063         int sectors_handled;
1064         int max_sectors;
1065         int sectors;
1066
1067         md_write_start(mddev, bio);
1068
1069         /*
1070          * Register the new request and wait if the reconstruction
1071          * thread has put up a bar for new requests.
1072          * Continue immediately if no resync is active currently.
1073          */
1074         wait_barrier(conf);
1075
1076         sectors = bio_sectors(bio);
1077         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1078             bio->bi_iter.bi_sector < conf->reshape_progress &&
1079             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1080                 /* IO spans the reshape position.  Need to wait for
1081                  * reshape to pass
1082                  */
1083                 allow_barrier(conf);
1084                 wait_event(conf->wait_barrier,
1085                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1086                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1087                            sectors);
1088                 wait_barrier(conf);
1089         }
1090         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1091             bio_data_dir(bio) == WRITE &&
1092             (mddev->reshape_backwards
1093              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1094                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1095              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1096                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1097                 /* Need to update reshape_position in metadata */
1098                 mddev->reshape_position = conf->reshape_progress;
1099                 set_mask_bits(&mddev->flags, 0,
1100                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1101                 md_wakeup_thread(mddev->thread);
1102                 wait_event(mddev->sb_wait,
1103                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1104
1105                 conf->reshape_safe = mddev->reshape_position;
1106         }
1107
1108         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1109
1110         r10_bio->master_bio = bio;
1111         r10_bio->sectors = sectors;
1112
1113         r10_bio->mddev = mddev;
1114         r10_bio->sector = bio->bi_iter.bi_sector;
1115         r10_bio->state = 0;
1116
1117         /* We might need to issue multiple reads to different
1118          * devices if there are bad blocks around, so we keep
1119          * track of the number of reads in bio->bi_phys_segments.
1120          * If this is 0, there is only one r10_bio and no locking
1121          * will be needed when the request completes.  If it is
1122          * non-zero, then it is the number of not-completed requests.
1123          */
1124         bio->bi_phys_segments = 0;
1125         bio_clear_flag(bio, BIO_SEG_VALID);
1126
1127         if (rw == READ) {
1128                 /*
1129                  * read balancing logic:
1130                  */
1131                 struct md_rdev *rdev;
1132                 int slot;
1133
1134 read_again:
1135                 rdev = read_balance(conf, r10_bio, &max_sectors);
1136                 if (!rdev) {
1137                         raid_end_bio_io(r10_bio);
1138                         return;
1139                 }
1140                 slot = r10_bio->read_slot;
1141
1142                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1143                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1144                          max_sectors);
1145
1146                 r10_bio->devs[slot].bio = read_bio;
1147                 r10_bio->devs[slot].rdev = rdev;
1148
1149                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1150                         choose_data_offset(r10_bio, rdev);
1151                 read_bio->bi_bdev = rdev->bdev;
1152                 read_bio->bi_end_io = raid10_end_read_request;
1153                 bio_set_op_attrs(read_bio, op, do_sync);
1154                 read_bio->bi_private = r10_bio;
1155
1156                 if (max_sectors < r10_bio->sectors) {
1157                         /* Could not read all from this device, so we will
1158                          * need another r10_bio.
1159                          */
1160                         sectors_handled = (r10_bio->sector + max_sectors
1161                                            - bio->bi_iter.bi_sector);
1162                         r10_bio->sectors = max_sectors;
1163                         spin_lock_irq(&conf->device_lock);
1164                         if (bio->bi_phys_segments == 0)
1165                                 bio->bi_phys_segments = 2;
1166                         else
1167                                 bio->bi_phys_segments++;
1168                         spin_unlock_irq(&conf->device_lock);
1169                         /* Cannot call generic_make_request directly
1170                          * as that will be queued in __generic_make_request
1171                          * and subsequent mempool_alloc might block
1172                          * waiting for it.  so hand bio over to raid10d.
1173                          */
1174                         reschedule_retry(r10_bio);
1175
1176                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1177
1178                         r10_bio->master_bio = bio;
1179                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1180                         r10_bio->state = 0;
1181                         r10_bio->mddev = mddev;
1182                         r10_bio->sector = bio->bi_iter.bi_sector +
1183                                 sectors_handled;
1184                         goto read_again;
1185                 } else
1186                         generic_make_request(read_bio);
1187                 return;
1188         }
1189
1190         /*
1191          * WRITE:
1192          */
1193         if (conf->pending_count >= max_queued_requests) {
1194                 md_wakeup_thread(mddev->thread);
1195                 wait_event(conf->wait_barrier,
1196                            conf->pending_count < max_queued_requests);
1197         }
1198         /* first select target devices under rcu_lock and
1199          * inc refcount on their rdev.  Record them by setting
1200          * bios[x] to bio
1201          * If there are known/acknowledged bad blocks on any device
1202          * on which we have seen a write error, we want to avoid
1203          * writing to those blocks.  This potentially requires several
1204          * writes to write around the bad blocks.  Each set of writes
1205          * gets its own r10_bio with a set of bios attached.  The number
1206          * of r10_bios is recored in bio->bi_phys_segments just as with
1207          * the read case.
1208          */
1209
1210         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1211         raid10_find_phys(conf, r10_bio);
1212 retry_write:
1213         blocked_rdev = NULL;
1214         rcu_read_lock();
1215         max_sectors = r10_bio->sectors;
1216
1217         for (i = 0;  i < conf->copies; i++) {
1218                 int d = r10_bio->devs[i].devnum;
1219                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1220                 struct md_rdev *rrdev = rcu_dereference(
1221                         conf->mirrors[d].replacement);
1222                 if (rdev == rrdev)
1223                         rrdev = NULL;
1224                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1225                         atomic_inc(&rdev->nr_pending);
1226                         blocked_rdev = rdev;
1227                         break;
1228                 }
1229                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1230                         atomic_inc(&rrdev->nr_pending);
1231                         blocked_rdev = rrdev;
1232                         break;
1233                 }
1234                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1235                         rdev = NULL;
1236                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1237                         rrdev = NULL;
1238
1239                 r10_bio->devs[i].bio = NULL;
1240                 r10_bio->devs[i].repl_bio = NULL;
1241
1242                 if (!rdev && !rrdev) {
1243                         set_bit(R10BIO_Degraded, &r10_bio->state);
1244                         continue;
1245                 }
1246                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1247                         sector_t first_bad;
1248                         sector_t dev_sector = r10_bio->devs[i].addr;
1249                         int bad_sectors;
1250                         int is_bad;
1251
1252                         is_bad = is_badblock(rdev, dev_sector,
1253                                              max_sectors,
1254                                              &first_bad, &bad_sectors);
1255                         if (is_bad < 0) {
1256                                 /* Mustn't write here until the bad block
1257                                  * is acknowledged
1258                                  */
1259                                 atomic_inc(&rdev->nr_pending);
1260                                 set_bit(BlockedBadBlocks, &rdev->flags);
1261                                 blocked_rdev = rdev;
1262                                 break;
1263                         }
1264                         if (is_bad && first_bad <= dev_sector) {
1265                                 /* Cannot write here at all */
1266                                 bad_sectors -= (dev_sector - first_bad);
1267                                 if (bad_sectors < max_sectors)
1268                                         /* Mustn't write more than bad_sectors
1269                                          * to other devices yet
1270                                          */
1271                                         max_sectors = bad_sectors;
1272                                 /* We don't set R10BIO_Degraded as that
1273                                  * only applies if the disk is missing,
1274                                  * so it might be re-added, and we want to
1275                                  * know to recover this chunk.
1276                                  * In this case the device is here, and the
1277                                  * fact that this chunk is not in-sync is
1278                                  * recorded in the bad block log.
1279                                  */
1280                                 continue;
1281                         }
1282                         if (is_bad) {
1283                                 int good_sectors = first_bad - dev_sector;
1284                                 if (good_sectors < max_sectors)
1285                                         max_sectors = good_sectors;
1286                         }
1287                 }
1288                 if (rdev) {
1289                         r10_bio->devs[i].bio = bio;
1290                         atomic_inc(&rdev->nr_pending);
1291                 }
1292                 if (rrdev) {
1293                         r10_bio->devs[i].repl_bio = bio;
1294                         atomic_inc(&rrdev->nr_pending);
1295                 }
1296         }
1297         rcu_read_unlock();
1298
1299         if (unlikely(blocked_rdev)) {
1300                 /* Have to wait for this device to get unblocked, then retry */
1301                 int j;
1302                 int d;
1303
1304                 for (j = 0; j < i; j++) {
1305                         if (r10_bio->devs[j].bio) {
1306                                 d = r10_bio->devs[j].devnum;
1307                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1308                         }
1309                         if (r10_bio->devs[j].repl_bio) {
1310                                 struct md_rdev *rdev;
1311                                 d = r10_bio->devs[j].devnum;
1312                                 rdev = conf->mirrors[d].replacement;
1313                                 if (!rdev) {
1314                                         /* Race with remove_disk */
1315                                         smp_mb();
1316                                         rdev = conf->mirrors[d].rdev;
1317                                 }
1318                                 rdev_dec_pending(rdev, mddev);
1319                         }
1320                 }
1321                 allow_barrier(conf);
1322                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1323                 wait_barrier(conf);
1324                 goto retry_write;
1325         }
1326
1327         if (max_sectors < r10_bio->sectors) {
1328                 /* We are splitting this into multiple parts, so
1329                  * we need to prepare for allocating another r10_bio.
1330                  */
1331                 r10_bio->sectors = max_sectors;
1332                 spin_lock_irq(&conf->device_lock);
1333                 if (bio->bi_phys_segments == 0)
1334                         bio->bi_phys_segments = 2;
1335                 else
1336                         bio->bi_phys_segments++;
1337                 spin_unlock_irq(&conf->device_lock);
1338         }
1339         sectors_handled = r10_bio->sector + max_sectors -
1340                 bio->bi_iter.bi_sector;
1341
1342         atomic_set(&r10_bio->remaining, 1);
1343         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1344
1345         for (i = 0; i < conf->copies; i++) {
1346                 struct bio *mbio;
1347                 int d = r10_bio->devs[i].devnum;
1348                 if (r10_bio->devs[i].bio) {
1349                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1350                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1351                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1352                                  max_sectors);
1353                         r10_bio->devs[i].bio = mbio;
1354
1355                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1356                                            choose_data_offset(r10_bio,
1357                                                               rdev));
1358                         mbio->bi_bdev = rdev->bdev;
1359                         mbio->bi_end_io = raid10_end_write_request;
1360                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1361                         mbio->bi_private = r10_bio;
1362
1363                         atomic_inc(&r10_bio->remaining);
1364
1365                         cb = blk_check_plugged(raid10_unplug, mddev,
1366                                                sizeof(*plug));
1367                         if (cb)
1368                                 plug = container_of(cb, struct raid10_plug_cb,
1369                                                     cb);
1370                         else
1371                                 plug = NULL;
1372                         spin_lock_irqsave(&conf->device_lock, flags);
1373                         if (plug) {
1374                                 bio_list_add(&plug->pending, mbio);
1375                                 plug->pending_cnt++;
1376                         } else {
1377                                 bio_list_add(&conf->pending_bio_list, mbio);
1378                                 conf->pending_count++;
1379                         }
1380                         spin_unlock_irqrestore(&conf->device_lock, flags);
1381                         if (!plug)
1382                                 md_wakeup_thread(mddev->thread);
1383                 }
1384
1385                 if (r10_bio->devs[i].repl_bio) {
1386                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1387                         if (rdev == NULL) {
1388                                 /* Replacement just got moved to main 'rdev' */
1389                                 smp_mb();
1390                                 rdev = conf->mirrors[d].rdev;
1391                         }
1392                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1393                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1394                                  max_sectors);
1395                         r10_bio->devs[i].repl_bio = mbio;
1396
1397                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1398                                            choose_data_offset(
1399                                                    r10_bio, rdev));
1400                         mbio->bi_bdev = rdev->bdev;
1401                         mbio->bi_end_io = raid10_end_write_request;
1402                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1403                         mbio->bi_private = r10_bio;
1404
1405                         atomic_inc(&r10_bio->remaining);
1406                         spin_lock_irqsave(&conf->device_lock, flags);
1407                         bio_list_add(&conf->pending_bio_list, mbio);
1408                         conf->pending_count++;
1409                         spin_unlock_irqrestore(&conf->device_lock, flags);
1410                         if (!mddev_check_plugged(mddev))
1411                                 md_wakeup_thread(mddev->thread);
1412                 }
1413         }
1414
1415         /* Don't remove the bias on 'remaining' (one_write_done) until
1416          * after checking if we need to go around again.
1417          */
1418
1419         if (sectors_handled < bio_sectors(bio)) {
1420                 one_write_done(r10_bio);
1421                 /* We need another r10_bio.  It has already been counted
1422                  * in bio->bi_phys_segments.
1423                  */
1424                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1425
1426                 r10_bio->master_bio = bio;
1427                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1428
1429                 r10_bio->mddev = mddev;
1430                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1431                 r10_bio->state = 0;
1432                 goto retry_write;
1433         }
1434         one_write_done(r10_bio);
1435 }
1436
1437 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1438 {
1439         struct r10conf *conf = mddev->private;
1440         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441         int chunk_sects = chunk_mask + 1;
1442
1443         struct bio *split;
1444
1445         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1446                 md_flush_request(mddev, bio);
1447                 return;
1448         }
1449
1450         do {
1451
1452                 /*
1453                  * If this request crosses a chunk boundary, we need to split
1454                  * it.
1455                  */
1456                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457                              bio_sectors(bio) > chunk_sects
1458                              && (conf->geo.near_copies < conf->geo.raid_disks
1459                                  || conf->prev.near_copies <
1460                                  conf->prev.raid_disks))) {
1461                         split = bio_split(bio, chunk_sects -
1462                                           (bio->bi_iter.bi_sector &
1463                                            (chunk_sects - 1)),
1464                                           GFP_NOIO, fs_bio_set);
1465                         bio_chain(split, bio);
1466                 } else {
1467                         split = bio;
1468                 }
1469
1470                 __make_request(mddev, split);
1471         } while (split != bio);
1472
1473         /* In case raid10d snuck in to freeze_array */
1474         wake_up(&conf->wait_barrier);
1475 }
1476
1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1478 {
1479         struct r10conf *conf = mddev->private;
1480         int i;
1481
1482         if (conf->geo.near_copies < conf->geo.raid_disks)
1483                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1484         if (conf->geo.near_copies > 1)
1485                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486         if (conf->geo.far_copies > 1) {
1487                 if (conf->geo.far_offset)
1488                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1489                 else
1490                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1491                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1492                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1493         }
1494         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495                                         conf->geo.raid_disks - mddev->degraded);
1496         rcu_read_lock();
1497         for (i = 0; i < conf->geo.raid_disks; i++) {
1498                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1500         }
1501         rcu_read_unlock();
1502         seq_printf(seq, "]");
1503 }
1504
1505 /* check if there are enough drives for
1506  * every block to appear on atleast one.
1507  * Don't consider the device numbered 'ignore'
1508  * as we might be about to remove it.
1509  */
1510 static int _enough(struct r10conf *conf, int previous, int ignore)
1511 {
1512         int first = 0;
1513         int has_enough = 0;
1514         int disks, ncopies;
1515         if (previous) {
1516                 disks = conf->prev.raid_disks;
1517                 ncopies = conf->prev.near_copies;
1518         } else {
1519                 disks = conf->geo.raid_disks;
1520                 ncopies = conf->geo.near_copies;
1521         }
1522
1523         rcu_read_lock();
1524         do {
1525                 int n = conf->copies;
1526                 int cnt = 0;
1527                 int this = first;
1528                 while (n--) {
1529                         struct md_rdev *rdev;
1530                         if (this != ignore &&
1531                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532                             test_bit(In_sync, &rdev->flags))
1533                                 cnt++;
1534                         this = (this+1) % disks;
1535                 }
1536                 if (cnt == 0)
1537                         goto out;
1538                 first = (first + ncopies) % disks;
1539         } while (first != 0);
1540         has_enough = 1;
1541 out:
1542         rcu_read_unlock();
1543         return has_enough;
1544 }
1545
1546 static int enough(struct r10conf *conf, int ignore)
1547 {
1548         /* when calling 'enough', both 'prev' and 'geo' must
1549          * be stable.
1550          * This is ensured if ->reconfig_mutex or ->device_lock
1551          * is held.
1552          */
1553         return _enough(conf, 0, ignore) &&
1554                 _enough(conf, 1, ignore);
1555 }
1556
1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1558 {
1559         char b[BDEVNAME_SIZE];
1560         struct r10conf *conf = mddev->private;
1561         unsigned long flags;
1562
1563         /*
1564          * If it is not operational, then we have already marked it as dead
1565          * else if it is the last working disks, ignore the error, let the
1566          * next level up know.
1567          * else mark the drive as failed
1568          */
1569         spin_lock_irqsave(&conf->device_lock, flags);
1570         if (test_bit(In_sync, &rdev->flags)
1571             && !enough(conf, rdev->raid_disk)) {
1572                 /*
1573                  * Don't fail the drive, just return an IO error.
1574                  */
1575                 spin_unlock_irqrestore(&conf->device_lock, flags);
1576                 return;
1577         }
1578         if (test_and_clear_bit(In_sync, &rdev->flags))
1579                 mddev->degraded++;
1580         /*
1581          * If recovery is running, make sure it aborts.
1582          */
1583         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1584         set_bit(Blocked, &rdev->flags);
1585         set_bit(Faulty, &rdev->flags);
1586         set_mask_bits(&mddev->flags, 0,
1587                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1588         spin_unlock_irqrestore(&conf->device_lock, flags);
1589         printk(KERN_ALERT
1590                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591                "md/raid10:%s: Operation continuing on %d devices.\n",
1592                mdname(mddev), bdevname(rdev->bdev, b),
1593                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1594 }
1595
1596 static void print_conf(struct r10conf *conf)
1597 {
1598         int i;
1599         struct md_rdev *rdev;
1600
1601         printk(KERN_DEBUG "RAID10 conf printout:\n");
1602         if (!conf) {
1603                 printk(KERN_DEBUG "(!conf)\n");
1604                 return;
1605         }
1606         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607                 conf->geo.raid_disks);
1608
1609         /* This is only called with ->reconfix_mutex held, so
1610          * rcu protection of rdev is not needed */
1611         for (i = 0; i < conf->geo.raid_disks; i++) {
1612                 char b[BDEVNAME_SIZE];
1613                 rdev = conf->mirrors[i].rdev;
1614                 if (rdev)
1615                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616                                 i, !test_bit(In_sync, &rdev->flags),
1617                                 !test_bit(Faulty, &rdev->flags),
1618                                 bdevname(rdev->bdev,b));
1619         }
1620 }
1621
1622 static void close_sync(struct r10conf *conf)
1623 {
1624         wait_barrier(conf);
1625         allow_barrier(conf);
1626
1627         mempool_destroy(conf->r10buf_pool);
1628         conf->r10buf_pool = NULL;
1629 }
1630
1631 static int raid10_spare_active(struct mddev *mddev)
1632 {
1633         int i;
1634         struct r10conf *conf = mddev->private;
1635         struct raid10_info *tmp;
1636         int count = 0;
1637         unsigned long flags;
1638
1639         /*
1640          * Find all non-in_sync disks within the RAID10 configuration
1641          * and mark them in_sync
1642          */
1643         for (i = 0; i < conf->geo.raid_disks; i++) {
1644                 tmp = conf->mirrors + i;
1645                 if (tmp->replacement
1646                     && tmp->replacement->recovery_offset == MaxSector
1647                     && !test_bit(Faulty, &tmp->replacement->flags)
1648                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649                         /* Replacement has just become active */
1650                         if (!tmp->rdev
1651                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652                                 count++;
1653                         if (tmp->rdev) {
1654                                 /* Replaced device not technically faulty,
1655                                  * but we need to be sure it gets removed
1656                                  * and never re-added.
1657                                  */
1658                                 set_bit(Faulty, &tmp->rdev->flags);
1659                                 sysfs_notify_dirent_safe(
1660                                         tmp->rdev->sysfs_state);
1661                         }
1662                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663                 } else if (tmp->rdev
1664                            && tmp->rdev->recovery_offset == MaxSector
1665                            && !test_bit(Faulty, &tmp->rdev->flags)
1666                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667                         count++;
1668                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1669                 }
1670         }
1671         spin_lock_irqsave(&conf->device_lock, flags);
1672         mddev->degraded -= count;
1673         spin_unlock_irqrestore(&conf->device_lock, flags);
1674
1675         print_conf(conf);
1676         return count;
1677 }
1678
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681         struct r10conf *conf = mddev->private;
1682         int err = -EEXIST;
1683         int mirror;
1684         int first = 0;
1685         int last = conf->geo.raid_disks - 1;
1686
1687         if (mddev->recovery_cp < MaxSector)
1688                 /* only hot-add to in-sync arrays, as recovery is
1689                  * very different from resync
1690                  */
1691                 return -EBUSY;
1692         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693                 return -EINVAL;
1694
1695         if (md_integrity_add_rdev(rdev, mddev))
1696                 return -ENXIO;
1697
1698         if (rdev->raid_disk >= 0)
1699                 first = last = rdev->raid_disk;
1700
1701         if (rdev->saved_raid_disk >= first &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 mirror = rdev->saved_raid_disk;
1704         else
1705                 mirror = first;
1706         for ( ; mirror <= last ; mirror++) {
1707                 struct raid10_info *p = &conf->mirrors[mirror];
1708                 if (p->recovery_disabled == mddev->recovery_disabled)
1709                         continue;
1710                 if (p->rdev) {
1711                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712                             p->replacement != NULL)
1713                                 continue;
1714                         clear_bit(In_sync, &rdev->flags);
1715                         set_bit(Replacement, &rdev->flags);
1716                         rdev->raid_disk = mirror;
1717                         err = 0;
1718                         if (mddev->gendisk)
1719                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720                                                   rdev->data_offset << 9);
1721                         conf->fullsync = 1;
1722                         rcu_assign_pointer(p->replacement, rdev);
1723                         break;
1724                 }
1725
1726                 if (mddev->gendisk)
1727                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1728                                           rdev->data_offset << 9);
1729
1730                 p->head_position = 0;
1731                 p->recovery_disabled = mddev->recovery_disabled - 1;
1732                 rdev->raid_disk = mirror;
1733                 err = 0;
1734                 if (rdev->saved_raid_disk != mirror)
1735                         conf->fullsync = 1;
1736                 rcu_assign_pointer(p->rdev, rdev);
1737                 break;
1738         }
1739         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741
1742         print_conf(conf);
1743         return err;
1744 }
1745
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748         struct r10conf *conf = mddev->private;
1749         int err = 0;
1750         int number = rdev->raid_disk;
1751         struct md_rdev **rdevp;
1752         struct raid10_info *p = conf->mirrors + number;
1753
1754         print_conf(conf);
1755         if (rdev == p->rdev)
1756                 rdevp = &p->rdev;
1757         else if (rdev == p->replacement)
1758                 rdevp = &p->replacement;
1759         else
1760                 return 0;
1761
1762         if (test_bit(In_sync, &rdev->flags) ||
1763             atomic_read(&rdev->nr_pending)) {
1764                 err = -EBUSY;
1765                 goto abort;
1766         }
1767         /* Only remove non-faulty devices if recovery
1768          * is not possible.
1769          */
1770         if (!test_bit(Faulty, &rdev->flags) &&
1771             mddev->recovery_disabled != p->recovery_disabled &&
1772             (!p->replacement || p->replacement == rdev) &&
1773             number < conf->geo.raid_disks &&
1774             enough(conf, -1)) {
1775                 err = -EBUSY;
1776                 goto abort;
1777         }
1778         *rdevp = NULL;
1779         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780                 synchronize_rcu();
1781                 if (atomic_read(&rdev->nr_pending)) {
1782                         /* lost the race, try later */
1783                         err = -EBUSY;
1784                         *rdevp = rdev;
1785                         goto abort;
1786                 }
1787         }
1788         if (p->replacement) {
1789                 /* We must have just cleared 'rdev' */
1790                 p->rdev = p->replacement;
1791                 clear_bit(Replacement, &p->replacement->flags);
1792                 smp_mb(); /* Make sure other CPUs may see both as identical
1793                            * but will never see neither -- if they are careful.
1794                            */
1795                 p->replacement = NULL;
1796                 clear_bit(WantReplacement, &rdev->flags);
1797         } else
1798                 /* We might have just remove the Replacement as faulty
1799                  * Clear the flag just in case
1800                  */
1801                 clear_bit(WantReplacement, &rdev->flags);
1802
1803         err = md_integrity_register(mddev);
1804
1805 abort:
1806
1807         print_conf(conf);
1808         return err;
1809 }
1810
1811 static void end_sync_read(struct bio *bio)
1812 {
1813         struct r10bio *r10_bio = bio->bi_private;
1814         struct r10conf *conf = r10_bio->mddev->private;
1815         int d;
1816
1817         if (bio == r10_bio->master_bio) {
1818                 /* this is a reshape read */
1819                 d = r10_bio->read_slot; /* really the read dev */
1820         } else
1821                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1822
1823         if (!bio->bi_error)
1824                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1825         else
1826                 /* The write handler will notice the lack of
1827                  * R10BIO_Uptodate and record any errors etc
1828                  */
1829                 atomic_add(r10_bio->sectors,
1830                            &conf->mirrors[d].rdev->corrected_errors);
1831
1832         /* for reconstruct, we always reschedule after a read.
1833          * for resync, only after all reads
1834          */
1835         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837             atomic_dec_and_test(&r10_bio->remaining)) {
1838                 /* we have read all the blocks,
1839                  * do the comparison in process context in raid10d
1840                  */
1841                 reschedule_retry(r10_bio);
1842         }
1843 }
1844
1845 static void end_sync_request(struct r10bio *r10_bio)
1846 {
1847         struct mddev *mddev = r10_bio->mddev;
1848
1849         while (atomic_dec_and_test(&r10_bio->remaining)) {
1850                 if (r10_bio->master_bio == NULL) {
1851                         /* the primary of several recovery bios */
1852                         sector_t s = r10_bio->sectors;
1853                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854                             test_bit(R10BIO_WriteError, &r10_bio->state))
1855                                 reschedule_retry(r10_bio);
1856                         else
1857                                 put_buf(r10_bio);
1858                         md_done_sync(mddev, s, 1);
1859                         break;
1860                 } else {
1861                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863                             test_bit(R10BIO_WriteError, &r10_bio->state))
1864                                 reschedule_retry(r10_bio);
1865                         else
1866                                 put_buf(r10_bio);
1867                         r10_bio = r10_bio2;
1868                 }
1869         }
1870 }
1871
1872 static void end_sync_write(struct bio *bio)
1873 {
1874         struct r10bio *r10_bio = bio->bi_private;
1875         struct mddev *mddev = r10_bio->mddev;
1876         struct r10conf *conf = mddev->private;
1877         int d;
1878         sector_t first_bad;
1879         int bad_sectors;
1880         int slot;
1881         int repl;
1882         struct md_rdev *rdev = NULL;
1883
1884         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885         if (repl)
1886                 rdev = conf->mirrors[d].replacement;
1887         else
1888                 rdev = conf->mirrors[d].rdev;
1889
1890         if (bio->bi_error) {
1891                 if (repl)
1892                         md_error(mddev, rdev);
1893                 else {
1894                         set_bit(WriteErrorSeen, &rdev->flags);
1895                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896                                 set_bit(MD_RECOVERY_NEEDED,
1897                                         &rdev->mddev->recovery);
1898                         set_bit(R10BIO_WriteError, &r10_bio->state);
1899                 }
1900         } else if (is_badblock(rdev,
1901                              r10_bio->devs[slot].addr,
1902                              r10_bio->sectors,
1903                              &first_bad, &bad_sectors))
1904                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1905
1906         rdev_dec_pending(rdev, mddev);
1907
1908         end_sync_request(r10_bio);
1909 }
1910
1911 /*
1912  * Note: sync and recover and handled very differently for raid10
1913  * This code is for resync.
1914  * For resync, we read through virtual addresses and read all blocks.
1915  * If there is any error, we schedule a write.  The lowest numbered
1916  * drive is authoritative.
1917  * However requests come for physical address, so we need to map.
1918  * For every physical address there are raid_disks/copies virtual addresses,
1919  * which is always are least one, but is not necessarly an integer.
1920  * This means that a physical address can span multiple chunks, so we may
1921  * have to submit multiple io requests for a single sync request.
1922  */
1923 /*
1924  * We check if all blocks are in-sync and only write to blocks that
1925  * aren't in sync
1926  */
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1928 {
1929         struct r10conf *conf = mddev->private;
1930         int i, first;
1931         struct bio *tbio, *fbio;
1932         int vcnt;
1933
1934         atomic_set(&r10_bio->remaining, 1);
1935
1936         /* find the first device with a block */
1937         for (i=0; i<conf->copies; i++)
1938                 if (!r10_bio->devs[i].bio->bi_error)
1939                         break;
1940
1941         if (i == conf->copies)
1942                 goto done;
1943
1944         first = i;
1945         fbio = r10_bio->devs[i].bio;
1946         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947         fbio->bi_iter.bi_idx = 0;
1948
1949         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1950         /* now find blocks with errors */
1951         for (i=0 ; i < conf->copies ; i++) {
1952                 int  j, d;
1953
1954                 tbio = r10_bio->devs[i].bio;
1955
1956                 if (tbio->bi_end_io != end_sync_read)
1957                         continue;
1958                 if (i == first)
1959                         continue;
1960                 if (!r10_bio->devs[i].bio->bi_error) {
1961                         /* We know that the bi_io_vec layout is the same for
1962                          * both 'first' and 'i', so we just compare them.
1963                          * All vec entries are PAGE_SIZE;
1964                          */
1965                         int sectors = r10_bio->sectors;
1966                         for (j = 0; j < vcnt; j++) {
1967                                 int len = PAGE_SIZE;
1968                                 if (sectors < (len / 512))
1969                                         len = sectors * 512;
1970                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971                                            page_address(tbio->bi_io_vec[j].bv_page),
1972                                            len))
1973                                         break;
1974                                 sectors -= len/512;
1975                         }
1976                         if (j == vcnt)
1977                                 continue;
1978                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1979                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980                                 /* Don't fix anything. */
1981                                 continue;
1982                 }
1983                 /* Ok, we need to write this bio, either to correct an
1984                  * inconsistency or to correct an unreadable block.
1985                  * First we need to fixup bv_offset, bv_len and
1986                  * bi_vecs, as the read request might have corrupted these
1987                  */
1988                 bio_reset(tbio);
1989
1990                 tbio->bi_vcnt = vcnt;
1991                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1992                 tbio->bi_private = r10_bio;
1993                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994                 tbio->bi_end_io = end_sync_write;
1995                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1996
1997                 bio_copy_data(tbio, fbio);
1998
1999                 d = r10_bio->devs[i].devnum;
2000                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001                 atomic_inc(&r10_bio->remaining);
2002                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2003
2004                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2005                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006                 generic_make_request(tbio);
2007         }
2008
2009         /* Now write out to any replacement devices
2010          * that are active
2011          */
2012         for (i = 0; i < conf->copies; i++) {
2013                 int d;
2014
2015                 tbio = r10_bio->devs[i].repl_bio;
2016                 if (!tbio || !tbio->bi_end_io)
2017                         continue;
2018                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019                     && r10_bio->devs[i].bio != fbio)
2020                         bio_copy_data(tbio, fbio);
2021                 d = r10_bio->devs[i].devnum;
2022                 atomic_inc(&r10_bio->remaining);
2023                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2024                              bio_sectors(tbio));
2025                 generic_make_request(tbio);
2026         }
2027
2028 done:
2029         if (atomic_dec_and_test(&r10_bio->remaining)) {
2030                 md_done_sync(mddev, r10_bio->sectors, 1);
2031                 put_buf(r10_bio);
2032         }
2033 }
2034
2035 /*
2036  * Now for the recovery code.
2037  * Recovery happens across physical sectors.
2038  * We recover all non-is_sync drives by finding the virtual address of
2039  * each, and then choose a working drive that also has that virt address.
2040  * There is a separate r10_bio for each non-in_sync drive.
2041  * Only the first two slots are in use. The first for reading,
2042  * The second for writing.
2043  *
2044  */
2045 static void fix_recovery_read_error(struct r10bio *r10_bio)
2046 {
2047         /* We got a read error during recovery.
2048          * We repeat the read in smaller page-sized sections.
2049          * If a read succeeds, write it to the new device or record
2050          * a bad block if we cannot.
2051          * If a read fails, record a bad block on both old and
2052          * new devices.
2053          */
2054         struct mddev *mddev = r10_bio->mddev;
2055         struct r10conf *conf = mddev->private;
2056         struct bio *bio = r10_bio->devs[0].bio;
2057         sector_t sect = 0;
2058         int sectors = r10_bio->sectors;
2059         int idx = 0;
2060         int dr = r10_bio->devs[0].devnum;
2061         int dw = r10_bio->devs[1].devnum;
2062
2063         while (sectors) {
2064                 int s = sectors;
2065                 struct md_rdev *rdev;
2066                 sector_t addr;
2067                 int ok;
2068
2069                 if (s > (PAGE_SIZE>>9))
2070                         s = PAGE_SIZE >> 9;
2071
2072                 rdev = conf->mirrors[dr].rdev;
2073                 addr = r10_bio->devs[0].addr + sect,
2074                 ok = sync_page_io(rdev,
2075                                   addr,
2076                                   s << 9,
2077                                   bio->bi_io_vec[idx].bv_page,
2078                                   REQ_OP_READ, 0, false);
2079                 if (ok) {
2080                         rdev = conf->mirrors[dw].rdev;
2081                         addr = r10_bio->devs[1].addr + sect;
2082                         ok = sync_page_io(rdev,
2083                                           addr,
2084                                           s << 9,
2085                                           bio->bi_io_vec[idx].bv_page,
2086                                           REQ_OP_WRITE, 0, false);
2087                         if (!ok) {
2088                                 set_bit(WriteErrorSeen, &rdev->flags);
2089                                 if (!test_and_set_bit(WantReplacement,
2090                                                       &rdev->flags))
2091                                         set_bit(MD_RECOVERY_NEEDED,
2092                                                 &rdev->mddev->recovery);
2093                         }
2094                 }
2095                 if (!ok) {
2096                         /* We don't worry if we cannot set a bad block -
2097                          * it really is bad so there is no loss in not
2098                          * recording it yet
2099                          */
2100                         rdev_set_badblocks(rdev, addr, s, 0);
2101
2102                         if (rdev != conf->mirrors[dw].rdev) {
2103                                 /* need bad block on destination too */
2104                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2105                                 addr = r10_bio->devs[1].addr + sect;
2106                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107                                 if (!ok) {
2108                                         /* just abort the recovery */
2109                                         printk(KERN_NOTICE
2110                                                "md/raid10:%s: recovery aborted"
2111                                                " due to read error\n",
2112                                                mdname(mddev));
2113
2114                                         conf->mirrors[dw].recovery_disabled
2115                                                 = mddev->recovery_disabled;
2116                                         set_bit(MD_RECOVERY_INTR,
2117                                                 &mddev->recovery);
2118                                         break;
2119                                 }
2120                         }
2121                 }
2122
2123                 sectors -= s;
2124                 sect += s;
2125                 idx++;
2126         }
2127 }
2128
2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2130 {
2131         struct r10conf *conf = mddev->private;
2132         int d;
2133         struct bio *wbio, *wbio2;
2134
2135         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136                 fix_recovery_read_error(r10_bio);
2137                 end_sync_request(r10_bio);
2138                 return;
2139         }
2140
2141         /*
2142          * share the pages with the first bio
2143          * and submit the write request
2144          */
2145         d = r10_bio->devs[1].devnum;
2146         wbio = r10_bio->devs[1].bio;
2147         wbio2 = r10_bio->devs[1].repl_bio;
2148         /* Need to test wbio2->bi_end_io before we call
2149          * generic_make_request as if the former is NULL,
2150          * the latter is free to free wbio2.
2151          */
2152         if (wbio2 && !wbio2->bi_end_io)
2153                 wbio2 = NULL;
2154         if (wbio->bi_end_io) {
2155                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2157                 generic_make_request(wbio);
2158         }
2159         if (wbio2) {
2160                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2162                              bio_sectors(wbio2));
2163                 generic_make_request(wbio2);
2164         }
2165 }
2166
2167 /*
2168  * Used by fix_read_error() to decay the per rdev read_errors.
2169  * We halve the read error count for every hour that has elapsed
2170  * since the last recorded read error.
2171  *
2172  */
2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2174 {
2175         long cur_time_mon;
2176         unsigned long hours_since_last;
2177         unsigned int read_errors = atomic_read(&rdev->read_errors);
2178
2179         cur_time_mon = ktime_get_seconds();
2180
2181         if (rdev->last_read_error == 0) {
2182                 /* first time we've seen a read error */
2183                 rdev->last_read_error = cur_time_mon;
2184                 return;
2185         }
2186
2187         hours_since_last = (long)(cur_time_mon -
2188                             rdev->last_read_error) / 3600;
2189
2190         rdev->last_read_error = cur_time_mon;
2191
2192         /*
2193          * if hours_since_last is > the number of bits in read_errors
2194          * just set read errors to 0. We do this to avoid
2195          * overflowing the shift of read_errors by hours_since_last.
2196          */
2197         if (hours_since_last >= 8 * sizeof(read_errors))
2198                 atomic_set(&rdev->read_errors, 0);
2199         else
2200                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204                             int sectors, struct page *page, int rw)
2205 {
2206         sector_t first_bad;
2207         int bad_sectors;
2208
2209         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211                 return -1;
2212         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213                 /* success */
2214                 return 1;
2215         if (rw == WRITE) {
2216                 set_bit(WriteErrorSeen, &rdev->flags);
2217                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218                         set_bit(MD_RECOVERY_NEEDED,
2219                                 &rdev->mddev->recovery);
2220         }
2221         /* need to record an error - either for the block or the device */
2222         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223                 md_error(rdev->mddev, rdev);
2224         return 0;
2225 }
2226
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *      1.      Retries failed read operations on working mirrors.
2231  *      2.      Updates the raid superblock when problems encounter.
2232  *      3.      Performs writes following reads for array synchronising.
2233  */
2234
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237         int sect = 0; /* Offset from r10_bio->sector */
2238         int sectors = r10_bio->sectors;
2239         struct md_rdev*rdev;
2240         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242
2243         /* still own a reference to this rdev, so it cannot
2244          * have been cleared recently.
2245          */
2246         rdev = conf->mirrors[d].rdev;
2247
2248         if (test_bit(Faulty, &rdev->flags))
2249                 /* drive has already been failed, just ignore any
2250                    more fix_read_error() attempts */
2251                 return;
2252
2253         check_decay_read_errors(mddev, rdev);
2254         atomic_inc(&rdev->read_errors);
2255         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256                 char b[BDEVNAME_SIZE];
2257                 bdevname(rdev->bdev, b);
2258
2259                 printk(KERN_NOTICE
2260                        "md/raid10:%s: %s: Raid device exceeded "
2261                        "read_error threshold [cur %d:max %d]\n",
2262                        mdname(mddev), b,
2263                        atomic_read(&rdev->read_errors), max_read_errors);
2264                 printk(KERN_NOTICE
2265                        "md/raid10:%s: %s: Failing raid device\n",
2266                        mdname(mddev), b);
2267                 md_error(mddev, rdev);
2268                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269                 return;
2270         }
2271
2272         while(sectors) {
2273                 int s = sectors;
2274                 int sl = r10_bio->read_slot;
2275                 int success = 0;
2276                 int start;
2277
2278                 if (s > (PAGE_SIZE>>9))
2279                         s = PAGE_SIZE >> 9;
2280
2281                 rcu_read_lock();
2282                 do {
2283                         sector_t first_bad;
2284                         int bad_sectors;
2285
2286                         d = r10_bio->devs[sl].devnum;
2287                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2288                         if (rdev &&
2289                             test_bit(In_sync, &rdev->flags) &&
2290                             !test_bit(Faulty, &rdev->flags) &&
2291                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292                                         &first_bad, &bad_sectors) == 0) {
2293                                 atomic_inc(&rdev->nr_pending);
2294                                 rcu_read_unlock();
2295                                 success = sync_page_io(rdev,
2296                                                        r10_bio->devs[sl].addr +
2297                                                        sect,
2298                                                        s<<9,
2299                                                        conf->tmppage,
2300                                                        REQ_OP_READ, 0, false);
2301                                 rdev_dec_pending(rdev, mddev);
2302                                 rcu_read_lock();
2303                                 if (success)
2304                                         break;
2305                         }
2306                         sl++;
2307                         if (sl == conf->copies)
2308                                 sl = 0;
2309                 } while (!success && sl != r10_bio->read_slot);
2310                 rcu_read_unlock();
2311
2312                 if (!success) {
2313                         /* Cannot read from anywhere, just mark the block
2314                          * as bad on the first device to discourage future
2315                          * reads.
2316                          */
2317                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318                         rdev = conf->mirrors[dn].rdev;
2319
2320                         if (!rdev_set_badblocks(
2321                                     rdev,
2322                                     r10_bio->devs[r10_bio->read_slot].addr
2323                                     + sect,
2324                                     s, 0)) {
2325                                 md_error(mddev, rdev);
2326                                 r10_bio->devs[r10_bio->read_slot].bio
2327                                         = IO_BLOCKED;
2328                         }
2329                         break;
2330                 }
2331
2332                 start = sl;
2333                 /* write it back and re-read */
2334                 rcu_read_lock();
2335                 while (sl != r10_bio->read_slot) {
2336                         char b[BDEVNAME_SIZE];
2337
2338                         if (sl==0)
2339                                 sl = conf->copies;
2340                         sl--;
2341                         d = r10_bio->devs[sl].devnum;
2342                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2343                         if (!rdev ||
2344                             test_bit(Faulty, &rdev->flags) ||
2345                             !test_bit(In_sync, &rdev->flags))
2346                                 continue;
2347
2348                         atomic_inc(&rdev->nr_pending);
2349                         rcu_read_unlock();
2350                         if (r10_sync_page_io(rdev,
2351                                              r10_bio->devs[sl].addr +
2352                                              sect,
2353                                              s, conf->tmppage, WRITE)
2354                             == 0) {
2355                                 /* Well, this device is dead */
2356                                 printk(KERN_NOTICE
2357                                        "md/raid10:%s: read correction "
2358                                        "write failed"
2359                                        " (%d sectors at %llu on %s)\n",
2360                                        mdname(mddev), s,
2361                                        (unsigned long long)(
2362                                                sect +
2363                                                choose_data_offset(r10_bio,
2364                                                                   rdev)),
2365                                        bdevname(rdev->bdev, b));
2366                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367                                        "drive\n",
2368                                        mdname(mddev),
2369                                        bdevname(rdev->bdev, b));
2370                         }
2371                         rdev_dec_pending(rdev, mddev);
2372                         rcu_read_lock();
2373                 }
2374                 sl = start;
2375                 while (sl != r10_bio->read_slot) {
2376                         char b[BDEVNAME_SIZE];
2377
2378                         if (sl==0)
2379                                 sl = conf->copies;
2380                         sl--;
2381                         d = r10_bio->devs[sl].devnum;
2382                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2383                         if (!rdev ||
2384                             test_bit(Faulty, &rdev->flags) ||
2385                             !test_bit(In_sync, &rdev->flags))
2386                                 continue;
2387
2388                         atomic_inc(&rdev->nr_pending);
2389                         rcu_read_unlock();
2390                         switch (r10_sync_page_io(rdev,
2391                                              r10_bio->devs[sl].addr +
2392                                              sect,
2393                                              s, conf->tmppage,
2394                                                  READ)) {
2395                         case 0:
2396                                 /* Well, this device is dead */
2397                                 printk(KERN_NOTICE
2398                                        "md/raid10:%s: unable to read back "
2399                                        "corrected sectors"
2400                                        " (%d sectors at %llu on %s)\n",
2401                                        mdname(mddev), s,
2402                                        (unsigned long long)(
2403                                                sect +
2404                                                choose_data_offset(r10_bio, rdev)),
2405                                        bdevname(rdev->bdev, b));
2406                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407                                        "drive\n",
2408                                        mdname(mddev),
2409                                        bdevname(rdev->bdev, b));
2410                                 break;
2411                         case 1:
2412                                 printk(KERN_INFO
2413                                        "md/raid10:%s: read error corrected"
2414                                        " (%d sectors at %llu on %s)\n",
2415                                        mdname(mddev), s,
2416                                        (unsigned long long)(
2417                                                sect +
2418                                                choose_data_offset(r10_bio, rdev)),
2419                                        bdevname(rdev->bdev, b));
2420                                 atomic_add(s, &rdev->corrected_errors);
2421                         }
2422
2423                         rdev_dec_pending(rdev, mddev);
2424                         rcu_read_lock();
2425                 }
2426                 rcu_read_unlock();
2427
2428                 sectors -= s;
2429                 sect += s;
2430         }
2431 }
2432
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435         struct bio *bio = r10_bio->master_bio;
2436         struct mddev *mddev = r10_bio->mddev;
2437         struct r10conf *conf = mddev->private;
2438         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439         /* bio has the data to be written to slot 'i' where
2440          * we just recently had a write error.
2441          * We repeatedly clone the bio and trim down to one block,
2442          * then try the write.  Where the write fails we record
2443          * a bad block.
2444          * It is conceivable that the bio doesn't exactly align with
2445          * blocks.  We must handle this.
2446          *
2447          * We currently own a reference to the rdev.
2448          */
2449
2450         int block_sectors;
2451         sector_t sector;
2452         int sectors;
2453         int sect_to_write = r10_bio->sectors;
2454         int ok = 1;
2455
2456         if (rdev->badblocks.shift < 0)
2457                 return 0;
2458
2459         block_sectors = roundup(1 << rdev->badblocks.shift,
2460                                 bdev_logical_block_size(rdev->bdev) >> 9);
2461         sector = r10_bio->sector;
2462         sectors = ((r10_bio->sector + block_sectors)
2463                    & ~(sector_t)(block_sectors - 1))
2464                 - sector;
2465
2466         while (sect_to_write) {
2467                 struct bio *wbio;
2468                 sector_t wsector;
2469                 if (sectors > sect_to_write)
2470                         sectors = sect_to_write;
2471                 /* Write at 'sector' for 'sectors' */
2472                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2473                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2474                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2475                 wbio->bi_iter.bi_sector = wsector +
2476                                    choose_data_offset(r10_bio, rdev);
2477                 wbio->bi_bdev = rdev->bdev;
2478                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2479
2480                 if (submit_bio_wait(wbio) < 0)
2481                         /* Failure! */
2482                         ok = rdev_set_badblocks(rdev, wsector,
2483                                                 sectors, 0)
2484                                 && ok;
2485
2486                 bio_put(wbio);
2487                 sect_to_write -= sectors;
2488                 sector += sectors;
2489                 sectors = block_sectors;
2490         }
2491         return ok;
2492 }
2493
2494 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2495 {
2496         int slot = r10_bio->read_slot;
2497         struct bio *bio;
2498         struct r10conf *conf = mddev->private;
2499         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2500         char b[BDEVNAME_SIZE];
2501         unsigned long do_sync;
2502         int max_sectors;
2503
2504         /* we got a read error. Maybe the drive is bad.  Maybe just
2505          * the block and we can fix it.
2506          * We freeze all other IO, and try reading the block from
2507          * other devices.  When we find one, we re-write
2508          * and check it that fixes the read error.
2509          * This is all done synchronously while the array is
2510          * frozen.
2511          */
2512         bio = r10_bio->devs[slot].bio;
2513         bdevname(bio->bi_bdev, b);
2514         bio_put(bio);
2515         r10_bio->devs[slot].bio = NULL;
2516
2517         if (mddev->ro == 0) {
2518                 freeze_array(conf, 1);
2519                 fix_read_error(conf, mddev, r10_bio);
2520                 unfreeze_array(conf);
2521         } else
2522                 r10_bio->devs[slot].bio = IO_BLOCKED;
2523
2524         rdev_dec_pending(rdev, mddev);
2525
2526 read_more:
2527         rdev = read_balance(conf, r10_bio, &max_sectors);
2528         if (rdev == NULL) {
2529                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2530                        " read error for block %llu\n",
2531                        mdname(mddev), b,
2532                        (unsigned long long)r10_bio->sector);
2533                 raid_end_bio_io(r10_bio);
2534                 return;
2535         }
2536
2537         do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2538         slot = r10_bio->read_slot;
2539         printk_ratelimited(
2540                 KERN_ERR
2541                 "md/raid10:%s: %s: redirecting "
2542                 "sector %llu to another mirror\n",
2543                 mdname(mddev),
2544                 bdevname(rdev->bdev, b),
2545                 (unsigned long long)r10_bio->sector);
2546         bio = bio_clone_mddev(r10_bio->master_bio,
2547                               GFP_NOIO, mddev);
2548         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2549         r10_bio->devs[slot].bio = bio;
2550         r10_bio->devs[slot].rdev = rdev;
2551         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2552                 + choose_data_offset(r10_bio, rdev);
2553         bio->bi_bdev = rdev->bdev;
2554         bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2555         bio->bi_private = r10_bio;
2556         bio->bi_end_io = raid10_end_read_request;
2557         if (max_sectors < r10_bio->sectors) {
2558                 /* Drat - have to split this up more */
2559                 struct bio *mbio = r10_bio->master_bio;
2560                 int sectors_handled =
2561                         r10_bio->sector + max_sectors
2562                         - mbio->bi_iter.bi_sector;
2563                 r10_bio->sectors = max_sectors;
2564                 spin_lock_irq(&conf->device_lock);
2565                 if (mbio->bi_phys_segments == 0)
2566                         mbio->bi_phys_segments = 2;
2567                 else
2568                         mbio->bi_phys_segments++;
2569                 spin_unlock_irq(&conf->device_lock);
2570                 generic_make_request(bio);
2571
2572                 r10_bio = mempool_alloc(conf->r10bio_pool,
2573                                         GFP_NOIO);
2574                 r10_bio->master_bio = mbio;
2575                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2576                 r10_bio->state = 0;
2577                 set_bit(R10BIO_ReadError,
2578                         &r10_bio->state);
2579                 r10_bio->mddev = mddev;
2580                 r10_bio->sector = mbio->bi_iter.bi_sector
2581                         + sectors_handled;
2582
2583                 goto read_more;
2584         } else
2585                 generic_make_request(bio);
2586 }
2587
2588 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2589 {
2590         /* Some sort of write request has finished and it
2591          * succeeded in writing where we thought there was a
2592          * bad block.  So forget the bad block.
2593          * Or possibly if failed and we need to record
2594          * a bad block.
2595          */
2596         int m;
2597         struct md_rdev *rdev;
2598
2599         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2600             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2601                 for (m = 0; m < conf->copies; m++) {
2602                         int dev = r10_bio->devs[m].devnum;
2603                         rdev = conf->mirrors[dev].rdev;
2604                         if (r10_bio->devs[m].bio == NULL)
2605                                 continue;
2606                         if (!r10_bio->devs[m].bio->bi_error) {
2607                                 rdev_clear_badblocks(
2608                                         rdev,
2609                                         r10_bio->devs[m].addr,
2610                                         r10_bio->sectors, 0);
2611                         } else {
2612                                 if (!rdev_set_badblocks(
2613                                             rdev,
2614                                             r10_bio->devs[m].addr,
2615                                             r10_bio->sectors, 0))
2616                                         md_error(conf->mddev, rdev);
2617                         }
2618                         rdev = conf->mirrors[dev].replacement;
2619                         if (r10_bio->devs[m].repl_bio == NULL)
2620                                 continue;
2621
2622                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2623                                 rdev_clear_badblocks(
2624                                         rdev,
2625                                         r10_bio->devs[m].addr,
2626                                         r10_bio->sectors, 0);
2627                         } else {
2628                                 if (!rdev_set_badblocks(
2629                                             rdev,
2630                                             r10_bio->devs[m].addr,
2631                                             r10_bio->sectors, 0))
2632                                         md_error(conf->mddev, rdev);
2633                         }
2634                 }
2635                 put_buf(r10_bio);
2636         } else {
2637                 bool fail = false;
2638                 for (m = 0; m < conf->copies; m++) {
2639                         int dev = r10_bio->devs[m].devnum;
2640                         struct bio *bio = r10_bio->devs[m].bio;
2641                         rdev = conf->mirrors[dev].rdev;
2642                         if (bio == IO_MADE_GOOD) {
2643                                 rdev_clear_badblocks(
2644                                         rdev,
2645                                         r10_bio->devs[m].addr,
2646                                         r10_bio->sectors, 0);
2647                                 rdev_dec_pending(rdev, conf->mddev);
2648                         } else if (bio != NULL && bio->bi_error) {
2649                                 fail = true;
2650                                 if (!narrow_write_error(r10_bio, m)) {
2651                                         md_error(conf->mddev, rdev);
2652                                         set_bit(R10BIO_Degraded,
2653                                                 &r10_bio->state);
2654                                 }
2655                                 rdev_dec_pending(rdev, conf->mddev);
2656                         }
2657                         bio = r10_bio->devs[m].repl_bio;
2658                         rdev = conf->mirrors[dev].replacement;
2659                         if (rdev && bio == IO_MADE_GOOD) {
2660                                 rdev_clear_badblocks(
2661                                         rdev,
2662                                         r10_bio->devs[m].addr,
2663                                         r10_bio->sectors, 0);
2664                                 rdev_dec_pending(rdev, conf->mddev);
2665                         }
2666                 }
2667                 if (fail) {
2668                         spin_lock_irq(&conf->device_lock);
2669                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2670                         conf->nr_queued++;
2671                         spin_unlock_irq(&conf->device_lock);
2672                         md_wakeup_thread(conf->mddev->thread);
2673                 } else {
2674                         if (test_bit(R10BIO_WriteError,
2675                                      &r10_bio->state))
2676                                 close_write(r10_bio);
2677                         raid_end_bio_io(r10_bio);
2678                 }
2679         }
2680 }
2681
2682 static void raid10d(struct md_thread *thread)
2683 {
2684         struct mddev *mddev = thread->mddev;
2685         struct r10bio *r10_bio;
2686         unsigned long flags;
2687         struct r10conf *conf = mddev->private;
2688         struct list_head *head = &conf->retry_list;
2689         struct blk_plug plug;
2690
2691         md_check_recovery(mddev);
2692
2693         if (!list_empty_careful(&conf->bio_end_io_list) &&
2694             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2695                 LIST_HEAD(tmp);
2696                 spin_lock_irqsave(&conf->device_lock, flags);
2697                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698                         while (!list_empty(&conf->bio_end_io_list)) {
2699                                 list_move(conf->bio_end_io_list.prev, &tmp);
2700                                 conf->nr_queued--;
2701                         }
2702                 }
2703                 spin_unlock_irqrestore(&conf->device_lock, flags);
2704                 while (!list_empty(&tmp)) {
2705                         r10_bio = list_first_entry(&tmp, struct r10bio,
2706                                                    retry_list);
2707                         list_del(&r10_bio->retry_list);
2708                         if (mddev->degraded)
2709                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2710
2711                         if (test_bit(R10BIO_WriteError,
2712                                      &r10_bio->state))
2713                                 close_write(r10_bio);
2714                         raid_end_bio_io(r10_bio);
2715                 }
2716         }
2717
2718         blk_start_plug(&plug);
2719         for (;;) {
2720
2721                 flush_pending_writes(conf);
2722
2723                 spin_lock_irqsave(&conf->device_lock, flags);
2724                 if (list_empty(head)) {
2725                         spin_unlock_irqrestore(&conf->device_lock, flags);
2726                         break;
2727                 }
2728                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2729                 list_del(head->prev);
2730                 conf->nr_queued--;
2731                 spin_unlock_irqrestore(&conf->device_lock, flags);
2732
2733                 mddev = r10_bio->mddev;
2734                 conf = mddev->private;
2735                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2736                     test_bit(R10BIO_WriteError, &r10_bio->state))
2737                         handle_write_completed(conf, r10_bio);
2738                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2739                         reshape_request_write(mddev, r10_bio);
2740                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2741                         sync_request_write(mddev, r10_bio);
2742                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2743                         recovery_request_write(mddev, r10_bio);
2744                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2745                         handle_read_error(mddev, r10_bio);
2746                 else {
2747                         /* just a partial read to be scheduled from a
2748                          * separate context
2749                          */
2750                         int slot = r10_bio->read_slot;
2751                         generic_make_request(r10_bio->devs[slot].bio);
2752                 }
2753
2754                 cond_resched();
2755                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2756                         md_check_recovery(mddev);
2757         }
2758         blk_finish_plug(&plug);
2759 }
2760
2761 static int init_resync(struct r10conf *conf)
2762 {
2763         int buffs;
2764         int i;
2765
2766         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2767         BUG_ON(conf->r10buf_pool);
2768         conf->have_replacement = 0;
2769         for (i = 0; i < conf->geo.raid_disks; i++)
2770                 if (conf->mirrors[i].replacement)
2771                         conf->have_replacement = 1;
2772         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2773         if (!conf->r10buf_pool)
2774                 return -ENOMEM;
2775         conf->next_resync = 0;
2776         return 0;
2777 }
2778
2779 /*
2780  * perform a "sync" on one "block"
2781  *
2782  * We need to make sure that no normal I/O request - particularly write
2783  * requests - conflict with active sync requests.
2784  *
2785  * This is achieved by tracking pending requests and a 'barrier' concept
2786  * that can be installed to exclude normal IO requests.
2787  *
2788  * Resync and recovery are handled very differently.
2789  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2790  *
2791  * For resync, we iterate over virtual addresses, read all copies,
2792  * and update if there are differences.  If only one copy is live,
2793  * skip it.
2794  * For recovery, we iterate over physical addresses, read a good
2795  * value for each non-in_sync drive, and over-write.
2796  *
2797  * So, for recovery we may have several outstanding complex requests for a
2798  * given address, one for each out-of-sync device.  We model this by allocating
2799  * a number of r10_bio structures, one for each out-of-sync device.
2800  * As we setup these structures, we collect all bio's together into a list
2801  * which we then process collectively to add pages, and then process again
2802  * to pass to generic_make_request.
2803  *
2804  * The r10_bio structures are linked using a borrowed master_bio pointer.
2805  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2806  * has its remaining count decremented to 0, the whole complex operation
2807  * is complete.
2808  *
2809  */
2810
2811 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2812                              int *skipped)
2813 {
2814         struct r10conf *conf = mddev->private;
2815         struct r10bio *r10_bio;
2816         struct bio *biolist = NULL, *bio;
2817         sector_t max_sector, nr_sectors;
2818         int i;
2819         int max_sync;
2820         sector_t sync_blocks;
2821         sector_t sectors_skipped = 0;
2822         int chunks_skipped = 0;
2823         sector_t chunk_mask = conf->geo.chunk_mask;
2824
2825         if (!conf->r10buf_pool)
2826                 if (init_resync(conf))
2827                         return 0;
2828
2829         /*
2830          * Allow skipping a full rebuild for incremental assembly
2831          * of a clean array, like RAID1 does.
2832          */
2833         if (mddev->bitmap == NULL &&
2834             mddev->recovery_cp == MaxSector &&
2835             mddev->reshape_position == MaxSector &&
2836             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2837             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2838             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2839             conf->fullsync == 0) {
2840                 *skipped = 1;
2841                 return mddev->dev_sectors - sector_nr;
2842         }
2843
2844  skipped:
2845         max_sector = mddev->dev_sectors;
2846         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2847             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2848                 max_sector = mddev->resync_max_sectors;
2849         if (sector_nr >= max_sector) {
2850                 /* If we aborted, we need to abort the
2851                  * sync on the 'current' bitmap chucks (there can
2852                  * be several when recovering multiple devices).
2853                  * as we may have started syncing it but not finished.
2854                  * We can find the current address in
2855                  * mddev->curr_resync, but for recovery,
2856                  * we need to convert that to several
2857                  * virtual addresses.
2858                  */
2859                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2860                         end_reshape(conf);
2861                         close_sync(conf);
2862                         return 0;
2863                 }
2864
2865                 if (mddev->curr_resync < max_sector) { /* aborted */
2866                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2867                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2868                                                 &sync_blocks, 1);
2869                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2870                                 sector_t sect =
2871                                         raid10_find_virt(conf, mddev->curr_resync, i);
2872                                 bitmap_end_sync(mddev->bitmap, sect,
2873                                                 &sync_blocks, 1);
2874                         }
2875                 } else {
2876                         /* completed sync */
2877                         if ((!mddev->bitmap || conf->fullsync)
2878                             && conf->have_replacement
2879                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2880                                 /* Completed a full sync so the replacements
2881                                  * are now fully recovered.
2882                                  */
2883                                 rcu_read_lock();
2884                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2885                                         struct md_rdev *rdev =
2886                                                 rcu_dereference(conf->mirrors[i].replacement);
2887                                         if (rdev)
2888                                                 rdev->recovery_offset = MaxSector;
2889                                 }
2890                                 rcu_read_unlock();
2891                         }
2892                         conf->fullsync = 0;
2893                 }
2894                 bitmap_close_sync(mddev->bitmap);
2895                 close_sync(conf);
2896                 *skipped = 1;
2897                 return sectors_skipped;
2898         }
2899
2900         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2901                 return reshape_request(mddev, sector_nr, skipped);
2902
2903         if (chunks_skipped >= conf->geo.raid_disks) {
2904                 /* if there has been nothing to do on any drive,
2905                  * then there is nothing to do at all..
2906                  */
2907                 *skipped = 1;
2908                 return (max_sector - sector_nr) + sectors_skipped;
2909         }
2910
2911         if (max_sector > mddev->resync_max)
2912                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2913
2914         /* make sure whole request will fit in a chunk - if chunks
2915          * are meaningful
2916          */
2917         if (conf->geo.near_copies < conf->geo.raid_disks &&
2918             max_sector > (sector_nr | chunk_mask))
2919                 max_sector = (sector_nr | chunk_mask) + 1;
2920
2921         /*
2922          * If there is non-resync activity waiting for a turn, then let it
2923          * though before starting on this new sync request.
2924          */
2925         if (conf->nr_waiting)
2926                 schedule_timeout_uninterruptible(1);
2927
2928         /* Again, very different code for resync and recovery.
2929          * Both must result in an r10bio with a list of bios that
2930          * have bi_end_io, bi_sector, bi_bdev set,
2931          * and bi_private set to the r10bio.
2932          * For recovery, we may actually create several r10bios
2933          * with 2 bios in each, that correspond to the bios in the main one.
2934          * In this case, the subordinate r10bios link back through a
2935          * borrowed master_bio pointer, and the counter in the master
2936          * includes a ref from each subordinate.
2937          */
2938         /* First, we decide what to do and set ->bi_end_io
2939          * To end_sync_read if we want to read, and
2940          * end_sync_write if we will want to write.
2941          */
2942
2943         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2944         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2945                 /* recovery... the complicated one */
2946                 int j;
2947                 r10_bio = NULL;
2948
2949                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2950                         int still_degraded;
2951                         struct r10bio *rb2;
2952                         sector_t sect;
2953                         int must_sync;
2954                         int any_working;
2955                         struct raid10_info *mirror = &conf->mirrors[i];
2956                         struct md_rdev *mrdev, *mreplace;
2957
2958                         rcu_read_lock();
2959                         mrdev = rcu_dereference(mirror->rdev);
2960                         mreplace = rcu_dereference(mirror->replacement);
2961
2962                         if ((mrdev == NULL ||
2963                              test_bit(Faulty, &mrdev->flags) ||
2964                              test_bit(In_sync, &mrdev->flags)) &&
2965                             (mreplace == NULL ||
2966                              test_bit(Faulty, &mreplace->flags))) {
2967                                 rcu_read_unlock();
2968                                 continue;
2969                         }
2970
2971                         still_degraded = 0;
2972                         /* want to reconstruct this device */
2973                         rb2 = r10_bio;
2974                         sect = raid10_find_virt(conf, sector_nr, i);
2975                         if (sect >= mddev->resync_max_sectors) {
2976                                 /* last stripe is not complete - don't
2977                                  * try to recover this sector.
2978                                  */
2979                                 rcu_read_unlock();
2980                                 continue;
2981                         }
2982                         if (mreplace && test_bit(Faulty, &mreplace->flags))
2983                                 mreplace = NULL;
2984                         /* Unless we are doing a full sync, or a replacement
2985                          * we only need to recover the block if it is set in
2986                          * the bitmap
2987                          */
2988                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2989                                                       &sync_blocks, 1);
2990                         if (sync_blocks < max_sync)
2991                                 max_sync = sync_blocks;
2992                         if (!must_sync &&
2993                             mreplace == NULL &&
2994                             !conf->fullsync) {
2995                                 /* yep, skip the sync_blocks here, but don't assume
2996                                  * that there will never be anything to do here
2997                                  */
2998                                 chunks_skipped = -1;
2999                                 rcu_read_unlock();
3000                                 continue;
3001                         }
3002                         atomic_inc(&mrdev->nr_pending);
3003                         if (mreplace)
3004                                 atomic_inc(&mreplace->nr_pending);
3005                         rcu_read_unlock();
3006
3007                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3008                         r10_bio->state = 0;
3009                         raise_barrier(conf, rb2 != NULL);
3010                         atomic_set(&r10_bio->remaining, 0);
3011
3012                         r10_bio->master_bio = (struct bio*)rb2;
3013                         if (rb2)
3014                                 atomic_inc(&rb2->remaining);
3015                         r10_bio->mddev = mddev;
3016                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3017                         r10_bio->sector = sect;
3018
3019                         raid10_find_phys(conf, r10_bio);
3020
3021                         /* Need to check if the array will still be
3022                          * degraded
3023                          */
3024                         rcu_read_lock();
3025                         for (j = 0; j < conf->geo.raid_disks; j++) {
3026                                 struct md_rdev *rdev = rcu_dereference(
3027                                         conf->mirrors[j].rdev);
3028                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3029                                         still_degraded = 1;
3030                                         break;
3031                                 }
3032                         }
3033
3034                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035                                                       &sync_blocks, still_degraded);
3036
3037                         any_working = 0;
3038                         for (j=0; j<conf->copies;j++) {
3039                                 int k;
3040                                 int d = r10_bio->devs[j].devnum;
3041                                 sector_t from_addr, to_addr;
3042                                 struct md_rdev *rdev =
3043                                         rcu_dereference(conf->mirrors[d].rdev);
3044                                 sector_t sector, first_bad;
3045                                 int bad_sectors;
3046                                 if (!rdev ||
3047                                     !test_bit(In_sync, &rdev->flags))
3048                                         continue;
3049                                 /* This is where we read from */
3050                                 any_working = 1;
3051                                 sector = r10_bio->devs[j].addr;
3052
3053                                 if (is_badblock(rdev, sector, max_sync,
3054                                                 &first_bad, &bad_sectors)) {
3055                                         if (first_bad > sector)
3056                                                 max_sync = first_bad - sector;
3057                                         else {
3058                                                 bad_sectors -= (sector
3059                                                                 - first_bad);
3060                                                 if (max_sync > bad_sectors)
3061                                                         max_sync = bad_sectors;
3062                                                 continue;
3063                                         }
3064                                 }
3065                                 bio = r10_bio->devs[0].bio;
3066                                 bio_reset(bio);
3067                                 bio->bi_next = biolist;
3068                                 biolist = bio;
3069                                 bio->bi_private = r10_bio;
3070                                 bio->bi_end_io = end_sync_read;
3071                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3072                                 from_addr = r10_bio->devs[j].addr;
3073                                 bio->bi_iter.bi_sector = from_addr +
3074                                         rdev->data_offset;
3075                                 bio->bi_bdev = rdev->bdev;
3076                                 atomic_inc(&rdev->nr_pending);
3077                                 /* and we write to 'i' (if not in_sync) */
3078
3079                                 for (k=0; k<conf->copies; k++)
3080                                         if (r10_bio->devs[k].devnum == i)
3081                                                 break;
3082                                 BUG_ON(k == conf->copies);
3083                                 to_addr = r10_bio->devs[k].addr;
3084                                 r10_bio->devs[0].devnum = d;
3085                                 r10_bio->devs[0].addr = from_addr;
3086                                 r10_bio->devs[1].devnum = i;
3087                                 r10_bio->devs[1].addr = to_addr;
3088
3089                                 if (!test_bit(In_sync, &mrdev->flags)) {
3090                                         bio = r10_bio->devs[1].bio;
3091                                         bio_reset(bio);
3092                                         bio->bi_next = biolist;
3093                                         biolist = bio;
3094                                         bio->bi_private = r10_bio;
3095                                         bio->bi_end_io = end_sync_write;
3096                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3097                                         bio->bi_iter.bi_sector = to_addr
3098                                                 + mrdev->data_offset;
3099                                         bio->bi_bdev = mrdev->bdev;
3100                                         atomic_inc(&r10_bio->remaining);
3101                                 } else
3102                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3103
3104                                 /* and maybe write to replacement */
3105                                 bio = r10_bio->devs[1].repl_bio;
3106                                 if (bio)
3107                                         bio->bi_end_io = NULL;
3108                                 /* Note: if mreplace != NULL, then bio
3109                                  * cannot be NULL as r10buf_pool_alloc will
3110                                  * have allocated it.
3111                                  * So the second test here is pointless.
3112                                  * But it keeps semantic-checkers happy, and
3113                                  * this comment keeps human reviewers
3114                                  * happy.
3115                                  */
3116                                 if (mreplace == NULL || bio == NULL ||
3117                                     test_bit(Faulty, &mreplace->flags))
3118                                         break;
3119                                 bio_reset(bio);
3120                                 bio->bi_next = biolist;
3121                                 biolist = bio;
3122                                 bio->bi_private = r10_bio;
3123                                 bio->bi_end_io = end_sync_write;
3124                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125                                 bio->bi_iter.bi_sector = to_addr +
3126                                         mreplace->data_offset;
3127                                 bio->bi_bdev = mreplace->bdev;
3128                                 atomic_inc(&r10_bio->remaining);
3129                                 break;
3130                         }
3131                         rcu_read_unlock();
3132                         if (j == conf->copies) {
3133                                 /* Cannot recover, so abort the recovery or
3134                                  * record a bad block */
3135                                 if (any_working) {
3136                                         /* problem is that there are bad blocks
3137                                          * on other device(s)
3138                                          */
3139                                         int k;
3140                                         for (k = 0; k < conf->copies; k++)
3141                                                 if (r10_bio->devs[k].devnum == i)
3142                                                         break;
3143                                         if (!test_bit(In_sync,
3144                                                       &mrdev->flags)
3145                                             && !rdev_set_badblocks(
3146                                                     mrdev,
3147                                                     r10_bio->devs[k].addr,
3148                                                     max_sync, 0))
3149                                                 any_working = 0;
3150                                         if (mreplace &&
3151                                             !rdev_set_badblocks(
3152                                                     mreplace,
3153                                                     r10_bio->devs[k].addr,
3154                                                     max_sync, 0))
3155                                                 any_working = 0;
3156                                 }
3157                                 if (!any_working)  {
3158                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3159                                                               &mddev->recovery))
3160                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3161                                                        "working devices for recovery.\n",
3162                                                        mdname(mddev));
3163                                         mirror->recovery_disabled
3164                                                 = mddev->recovery_disabled;
3165                                 }
3166                                 put_buf(r10_bio);
3167                                 if (rb2)
3168                                         atomic_dec(&rb2->remaining);
3169                                 r10_bio = rb2;
3170                                 rdev_dec_pending(mrdev, mddev);
3171                                 if (mreplace)
3172                                         rdev_dec_pending(mreplace, mddev);
3173                                 break;
3174                         }
3175                         rdev_dec_pending(mrdev, mddev);
3176                         if (mreplace)
3177                                 rdev_dec_pending(mreplace, mddev);
3178                 }
3179                 if (biolist == NULL) {
3180                         while (r10_bio) {
3181                                 struct r10bio *rb2 = r10_bio;
3182                                 r10_bio = (struct r10bio*) rb2->master_bio;
3183                                 rb2->master_bio = NULL;
3184                                 put_buf(rb2);
3185                         }
3186                         goto giveup;
3187                 }
3188         } else {
3189                 /* resync. Schedule a read for every block at this virt offset */
3190                 int count = 0;
3191
3192                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3193
3194                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3195                                        &sync_blocks, mddev->degraded) &&
3196                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3197                                                  &mddev->recovery)) {
3198                         /* We can skip this block */
3199                         *skipped = 1;
3200                         return sync_blocks + sectors_skipped;
3201                 }
3202                 if (sync_blocks < max_sync)
3203                         max_sync = sync_blocks;
3204                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3205                 r10_bio->state = 0;
3206
3207                 r10_bio->mddev = mddev;
3208                 atomic_set(&r10_bio->remaining, 0);
3209                 raise_barrier(conf, 0);
3210                 conf->next_resync = sector_nr;
3211
3212                 r10_bio->master_bio = NULL;
3213                 r10_bio->sector = sector_nr;
3214                 set_bit(R10BIO_IsSync, &r10_bio->state);
3215                 raid10_find_phys(conf, r10_bio);
3216                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3217
3218                 for (i = 0; i < conf->copies; i++) {
3219                         int d = r10_bio->devs[i].devnum;
3220                         sector_t first_bad, sector;
3221                         int bad_sectors;
3222                         struct md_rdev *rdev;
3223
3224                         if (r10_bio->devs[i].repl_bio)
3225                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3226
3227                         bio = r10_bio->devs[i].bio;
3228                         bio_reset(bio);
3229                         bio->bi_error = -EIO;
3230                         rcu_read_lock();
3231                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3232                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3233                                 rcu_read_unlock();
3234                                 continue;
3235                         }
3236                         sector = r10_bio->devs[i].addr;
3237                         if (is_badblock(rdev, sector, max_sync,
3238                                         &first_bad, &bad_sectors)) {
3239                                 if (first_bad > sector)
3240                                         max_sync = first_bad - sector;
3241                                 else {
3242                                         bad_sectors -= (sector - first_bad);
3243                                         if (max_sync > bad_sectors)
3244                                                 max_sync = bad_sectors;
3245                                         rcu_read_unlock();
3246                                         continue;
3247                                 }
3248                         }
3249                         atomic_inc(&rdev->nr_pending);
3250                         atomic_inc(&r10_bio->remaining);
3251                         bio->bi_next = biolist;
3252                         biolist = bio;
3253                         bio->bi_private = r10_bio;
3254                         bio->bi_end_io = end_sync_read;
3255                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3256                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3257                         bio->bi_bdev = rdev->bdev;
3258                         count++;
3259
3260                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3261                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3262                                 rcu_read_unlock();
3263                                 continue;
3264                         }
3265                         atomic_inc(&rdev->nr_pending);
3266                         rcu_read_unlock();
3267
3268                         /* Need to set up for writing to the replacement */
3269                         bio = r10_bio->devs[i].repl_bio;
3270                         bio_reset(bio);
3271                         bio->bi_error = -EIO;
3272
3273                         sector = r10_bio->devs[i].addr;
3274                         bio->bi_next = biolist;
3275                         biolist = bio;
3276                         bio->bi_private = r10_bio;
3277                         bio->bi_end_io = end_sync_write;
3278                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3279                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3280                         bio->bi_bdev = rdev->bdev;
3281                         count++;
3282                 }
3283
3284                 if (count < 2) {
3285                         for (i=0; i<conf->copies; i++) {
3286                                 int d = r10_bio->devs[i].devnum;
3287                                 if (r10_bio->devs[i].bio->bi_end_io)
3288                                         rdev_dec_pending(conf->mirrors[d].rdev,
3289                                                          mddev);
3290                                 if (r10_bio->devs[i].repl_bio &&
3291                                     r10_bio->devs[i].repl_bio->bi_end_io)
3292                                         rdev_dec_pending(
3293                                                 conf->mirrors[d].replacement,
3294                                                 mddev);
3295                         }
3296                         put_buf(r10_bio);
3297                         biolist = NULL;
3298                         goto giveup;
3299                 }
3300         }
3301
3302         nr_sectors = 0;
3303         if (sector_nr + max_sync < max_sector)
3304                 max_sector = sector_nr + max_sync;
3305         do {
3306                 struct page *page;
3307                 int len = PAGE_SIZE;
3308                 if (sector_nr + (len>>9) > max_sector)
3309                         len = (max_sector - sector_nr) << 9;
3310                 if (len == 0)
3311                         break;
3312                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3313                         struct bio *bio2;
3314                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3315                         if (bio_add_page(bio, page, len, 0))
3316                                 continue;
3317
3318                         /* stop here */
3319                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3320                         for (bio2 = biolist;
3321                              bio2 && bio2 != bio;
3322                              bio2 = bio2->bi_next) {
3323                                 /* remove last page from this bio */
3324                                 bio2->bi_vcnt--;
3325                                 bio2->bi_iter.bi_size -= len;
3326                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3327                         }
3328                         goto bio_full;
3329                 }
3330                 nr_sectors += len>>9;
3331                 sector_nr += len>>9;
3332         } while (biolist->bi_vcnt < RESYNC_PAGES);
3333  bio_full:
3334         r10_bio->sectors = nr_sectors;
3335
3336         while (biolist) {
3337                 bio = biolist;
3338                 biolist = biolist->bi_next;
3339
3340                 bio->bi_next = NULL;
3341                 r10_bio = bio->bi_private;
3342                 r10_bio->sectors = nr_sectors;
3343
3344                 if (bio->bi_end_io == end_sync_read) {
3345                         md_sync_acct(bio->bi_bdev, nr_sectors);
3346                         bio->bi_error = 0;
3347                         generic_make_request(bio);
3348                 }
3349         }
3350
3351         if (sectors_skipped)
3352                 /* pretend they weren't skipped, it makes
3353                  * no important difference in this case
3354                  */
3355                 md_done_sync(mddev, sectors_skipped, 1);
3356
3357         return sectors_skipped + nr_sectors;
3358  giveup:
3359         /* There is nowhere to write, so all non-sync
3360          * drives must be failed or in resync, all drives
3361          * have a bad block, so try the next chunk...
3362          */
3363         if (sector_nr + max_sync < max_sector)
3364                 max_sector = sector_nr + max_sync;
3365
3366         sectors_skipped += (max_sector - sector_nr);
3367         chunks_skipped ++;
3368         sector_nr = max_sector;
3369         goto skipped;
3370 }
3371
3372 static sector_t
3373 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3374 {
3375         sector_t size;
3376         struct r10conf *conf = mddev->private;
3377
3378         if (!raid_disks)
3379                 raid_disks = min(conf->geo.raid_disks,
3380                                  conf->prev.raid_disks);
3381         if (!sectors)
3382                 sectors = conf->dev_sectors;
3383
3384         size = sectors >> conf->geo.chunk_shift;
3385         sector_div(size, conf->geo.far_copies);
3386         size = size * raid_disks;
3387         sector_div(size, conf->geo.near_copies);
3388
3389         return size << conf->geo.chunk_shift;
3390 }
3391
3392 static void calc_sectors(struct r10conf *conf, sector_t size)
3393 {
3394         /* Calculate the number of sectors-per-device that will
3395          * actually be used, and set conf->dev_sectors and
3396          * conf->stride
3397          */
3398
3399         size = size >> conf->geo.chunk_shift;
3400         sector_div(size, conf->geo.far_copies);
3401         size = size * conf->geo.raid_disks;
3402         sector_div(size, conf->geo.near_copies);
3403         /* 'size' is now the number of chunks in the array */
3404         /* calculate "used chunks per device" */
3405         size = size * conf->copies;
3406
3407         /* We need to round up when dividing by raid_disks to
3408          * get the stride size.
3409          */
3410         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3411
3412         conf->dev_sectors = size << conf->geo.chunk_shift;
3413
3414         if (conf->geo.far_offset)
3415                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3416         else {
3417                 sector_div(size, conf->geo.far_copies);
3418                 conf->geo.stride = size << conf->geo.chunk_shift;
3419         }
3420 }
3421
3422 enum geo_type {geo_new, geo_old, geo_start};
3423 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3424 {
3425         int nc, fc, fo;
3426         int layout, chunk, disks;
3427         switch (new) {
3428         case geo_old:
3429                 layout = mddev->layout;
3430                 chunk = mddev->chunk_sectors;
3431                 disks = mddev->raid_disks - mddev->delta_disks;
3432                 break;
3433         case geo_new:
3434                 layout = mddev->new_layout;
3435                 chunk = mddev->new_chunk_sectors;
3436                 disks = mddev->raid_disks;
3437                 break;
3438         default: /* avoid 'may be unused' warnings */
3439         case geo_start: /* new when starting reshape - raid_disks not
3440                          * updated yet. */
3441                 layout = mddev->new_layout;
3442                 chunk = mddev->new_chunk_sectors;
3443                 disks = mddev->raid_disks + mddev->delta_disks;
3444                 break;
3445         }
3446         if (layout >> 19)
3447                 return -1;
3448         if (chunk < (PAGE_SIZE >> 9) ||
3449             !is_power_of_2(chunk))
3450                 return -2;
3451         nc = layout & 255;
3452         fc = (layout >> 8) & 255;
3453         fo = layout & (1<<16);
3454         geo->raid_disks = disks;
3455         geo->near_copies = nc;
3456         geo->far_copies = fc;
3457         geo->far_offset = fo;
3458         switch (layout >> 17) {
3459         case 0: /* original layout.  simple but not always optimal */
3460                 geo->far_set_size = disks;
3461                 break;
3462         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3463                  * actually using this, but leave code here just in case.*/
3464                 geo->far_set_size = disks/fc;
3465                 WARN(geo->far_set_size < fc,
3466                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3467                 break;
3468         case 2: /* "improved" layout fixed to match documentation */
3469                 geo->far_set_size = fc * nc;
3470                 break;
3471         default: /* Not a valid layout */
3472                 return -1;
3473         }
3474         geo->chunk_mask = chunk - 1;
3475         geo->chunk_shift = ffz(~chunk);
3476         return nc*fc;
3477 }
3478
3479 static struct r10conf *setup_conf(struct mddev *mddev)
3480 {
3481         struct r10conf *conf = NULL;
3482         int err = -EINVAL;
3483         struct geom geo;
3484         int copies;
3485
3486         copies = setup_geo(&geo, mddev, geo_new);
3487
3488         if (copies == -2) {
3489                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3490                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3491                        mdname(mddev), PAGE_SIZE);
3492                 goto out;
3493         }
3494
3495         if (copies < 2 || copies > mddev->raid_disks) {
3496                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3497                        mdname(mddev), mddev->new_layout);
3498                 goto out;
3499         }
3500
3501         err = -ENOMEM;
3502         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3503         if (!conf)
3504                 goto out;
3505
3506         /* FIXME calc properly */
3507         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3508                                                             max(0,-mddev->delta_disks)),
3509                                 GFP_KERNEL);
3510         if (!conf->mirrors)
3511                 goto out;
3512
3513         conf->tmppage = alloc_page(GFP_KERNEL);
3514         if (!conf->tmppage)
3515                 goto out;
3516
3517         conf->geo = geo;
3518         conf->copies = copies;
3519         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3520                                            r10bio_pool_free, conf);
3521         if (!conf->r10bio_pool)
3522                 goto out;
3523
3524         calc_sectors(conf, mddev->dev_sectors);
3525         if (mddev->reshape_position == MaxSector) {
3526                 conf->prev = conf->geo;
3527                 conf->reshape_progress = MaxSector;
3528         } else {
3529                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3530                         err = -EINVAL;
3531                         goto out;
3532                 }
3533                 conf->reshape_progress = mddev->reshape_position;
3534                 if (conf->prev.far_offset)
3535                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3536                 else
3537                         /* far_copies must be 1 */
3538                         conf->prev.stride = conf->dev_sectors;
3539         }
3540         conf->reshape_safe = conf->reshape_progress;
3541         spin_lock_init(&conf->device_lock);
3542         INIT_LIST_HEAD(&conf->retry_list);
3543         INIT_LIST_HEAD(&conf->bio_end_io_list);
3544
3545         spin_lock_init(&conf->resync_lock);
3546         init_waitqueue_head(&conf->wait_barrier);
3547         atomic_set(&conf->nr_pending, 0);
3548
3549         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3550         if (!conf->thread)
3551                 goto out;
3552
3553         conf->mddev = mddev;
3554         return conf;
3555
3556  out:
3557         if (err == -ENOMEM)
3558                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559                        mdname(mddev));
3560         if (conf) {
3561                 mempool_destroy(conf->r10bio_pool);
3562                 kfree(conf->mirrors);
3563                 safe_put_page(conf->tmppage);
3564                 kfree(conf);
3565         }
3566         return ERR_PTR(err);
3567 }
3568
3569 static int raid10_run(struct mddev *mddev)
3570 {
3571         struct r10conf *conf;
3572         int i, disk_idx, chunk_size;
3573         struct raid10_info *disk;
3574         struct md_rdev *rdev;
3575         sector_t size;
3576         sector_t min_offset_diff = 0;
3577         int first = 1;
3578         bool discard_supported = false;
3579
3580         if (mddev->private == NULL) {
3581                 conf = setup_conf(mddev);
3582                 if (IS_ERR(conf))
3583                         return PTR_ERR(conf);
3584                 mddev->private = conf;
3585         }
3586         conf = mddev->private;
3587         if (!conf)
3588                 goto out;
3589
3590         mddev->thread = conf->thread;
3591         conf->thread = NULL;
3592
3593         chunk_size = mddev->chunk_sectors << 9;
3594         if (mddev->queue) {
3595                 blk_queue_max_discard_sectors(mddev->queue,
3596                                               mddev->chunk_sectors);
3597                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3598                 blk_queue_io_min(mddev->queue, chunk_size);
3599                 if (conf->geo.raid_disks % conf->geo.near_copies)
3600                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601                 else
3602                         blk_queue_io_opt(mddev->queue, chunk_size *
3603                                          (conf->geo.raid_disks / conf->geo.near_copies));
3604         }
3605
3606         rdev_for_each(rdev, mddev) {
3607                 long long diff;
3608                 struct request_queue *q;
3609
3610                 disk_idx = rdev->raid_disk;
3611                 if (disk_idx < 0)
3612                         continue;
3613                 if (disk_idx >= conf->geo.raid_disks &&
3614                     disk_idx >= conf->prev.raid_disks)
3615                         continue;
3616                 disk = conf->mirrors + disk_idx;
3617
3618                 if (test_bit(Replacement, &rdev->flags)) {
3619                         if (disk->replacement)
3620                                 goto out_free_conf;
3621                         disk->replacement = rdev;
3622                 } else {
3623                         if (disk->rdev)
3624                                 goto out_free_conf;
3625                         disk->rdev = rdev;
3626                 }
3627                 q = bdev_get_queue(rdev->bdev);
3628                 diff = (rdev->new_data_offset - rdev->data_offset);
3629                 if (!mddev->reshape_backwards)
3630                         diff = -diff;
3631                 if (diff < 0)
3632                         diff = 0;
3633                 if (first || diff < min_offset_diff)
3634                         min_offset_diff = diff;
3635
3636                 if (mddev->gendisk)
3637                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3638                                           rdev->data_offset << 9);
3639
3640                 disk->head_position = 0;
3641
3642                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643                         discard_supported = true;
3644         }
3645
3646         if (mddev->queue) {
3647                 if (discard_supported)
3648                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3649                                                 mddev->queue);
3650                 else
3651                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3652                                                   mddev->queue);
3653         }
3654         /* need to check that every block has at least one working mirror */
3655         if (!enough(conf, -1)) {
3656                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3657                        mdname(mddev));
3658                 goto out_free_conf;
3659         }
3660
3661         if (conf->reshape_progress != MaxSector) {
3662                 /* must ensure that shape change is supported */
3663                 if (conf->geo.far_copies != 1 &&
3664                     conf->geo.far_offset == 0)
3665                         goto out_free_conf;
3666                 if (conf->prev.far_copies != 1 &&
3667                     conf->prev.far_offset == 0)
3668                         goto out_free_conf;
3669         }
3670
3671         mddev->degraded = 0;
3672         for (i = 0;
3673              i < conf->geo.raid_disks
3674                      || i < conf->prev.raid_disks;
3675              i++) {
3676
3677                 disk = conf->mirrors + i;
3678
3679                 if (!disk->rdev && disk->replacement) {
3680                         /* The replacement is all we have - use it */
3681                         disk->rdev = disk->replacement;
3682                         disk->replacement = NULL;
3683                         clear_bit(Replacement, &disk->rdev->flags);
3684                 }
3685
3686                 if (!disk->rdev ||
3687                     !test_bit(In_sync, &disk->rdev->flags)) {
3688                         disk->head_position = 0;
3689                         mddev->degraded++;
3690                         if (disk->rdev &&
3691                             disk->rdev->saved_raid_disk < 0)
3692                                 conf->fullsync = 1;
3693                 }
3694                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3695         }
3696
3697         if (mddev->recovery_cp != MaxSector)
3698                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3699                        " -- starting background reconstruction\n",
3700                        mdname(mddev));
3701         printk(KERN_INFO
3702                 "md/raid10:%s: active with %d out of %d devices\n",
3703                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3704                 conf->geo.raid_disks);
3705         /*
3706          * Ok, everything is just fine now
3707          */
3708         mddev->dev_sectors = conf->dev_sectors;
3709         size = raid10_size(mddev, 0, 0);
3710         md_set_array_sectors(mddev, size);
3711         mddev->resync_max_sectors = size;
3712
3713         if (mddev->queue) {
3714                 int stripe = conf->geo.raid_disks *
3715                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3716
3717                 /* Calculate max read-ahead size.
3718                  * We need to readahead at least twice a whole stripe....
3719                  * maybe...
3720                  */
3721                 stripe /= conf->geo.near_copies;
3722                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3723                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3724         }
3725
3726         if (md_integrity_register(mddev))
3727                 goto out_free_conf;
3728
3729         if (conf->reshape_progress != MaxSector) {
3730                 unsigned long before_length, after_length;
3731
3732                 before_length = ((1 << conf->prev.chunk_shift) *
3733                                  conf->prev.far_copies);
3734                 after_length = ((1 << conf->geo.chunk_shift) *
3735                                 conf->geo.far_copies);
3736
3737                 if (max(before_length, after_length) > min_offset_diff) {
3738                         /* This cannot work */
3739                         printk("md/raid10: offset difference not enough to continue reshape\n");
3740                         goto out_free_conf;
3741                 }
3742                 conf->offset_diff = min_offset_diff;
3743
3744                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3746                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3747                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3748                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3749                                                         "reshape");
3750         }
3751
3752         return 0;
3753
3754 out_free_conf:
3755         md_unregister_thread(&mddev->thread);
3756         mempool_destroy(conf->r10bio_pool);
3757         safe_put_page(conf->tmppage);
3758         kfree(conf->mirrors);
3759         kfree(conf);
3760         mddev->private = NULL;
3761 out:
3762         return -EIO;
3763 }
3764
3765 static void raid10_free(struct mddev *mddev, void *priv)
3766 {
3767         struct r10conf *conf = priv;
3768
3769         mempool_destroy(conf->r10bio_pool);
3770         safe_put_page(conf->tmppage);
3771         kfree(conf->mirrors);
3772         kfree(conf->mirrors_old);
3773         kfree(conf->mirrors_new);
3774         kfree(conf);
3775 }
3776
3777 static void raid10_quiesce(struct mddev *mddev, int state)
3778 {
3779         struct r10conf *conf = mddev->private;
3780
3781         switch(state) {
3782         case 1:
3783                 raise_barrier(conf, 0);
3784                 break;
3785         case 0:
3786                 lower_barrier(conf);
3787                 break;
3788         }
3789 }
3790
3791 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3792 {
3793         /* Resize of 'far' arrays is not supported.
3794          * For 'near' and 'offset' arrays we can set the
3795          * number of sectors used to be an appropriate multiple
3796          * of the chunk size.
3797          * For 'offset', this is far_copies*chunksize.
3798          * For 'near' the multiplier is the LCM of
3799          * near_copies and raid_disks.
3800          * So if far_copies > 1 && !far_offset, fail.
3801          * Else find LCM(raid_disks, near_copy)*far_copies and
3802          * multiply by chunk_size.  Then round to this number.
3803          * This is mostly done by raid10_size()
3804          */
3805         struct r10conf *conf = mddev->private;
3806         sector_t oldsize, size;
3807
3808         if (mddev->reshape_position != MaxSector)
3809                 return -EBUSY;
3810
3811         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3812                 return -EINVAL;
3813
3814         oldsize = raid10_size(mddev, 0, 0);
3815         size = raid10_size(mddev, sectors, 0);
3816         if (mddev->external_size &&
3817             mddev->array_sectors > size)
3818                 return -EINVAL;
3819         if (mddev->bitmap) {
3820                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3821                 if (ret)
3822                         return ret;
3823         }
3824         md_set_array_sectors(mddev, size);
3825         if (mddev->queue) {
3826                 set_capacity(mddev->gendisk, mddev->array_sectors);
3827                 revalidate_disk(mddev->gendisk);
3828         }
3829         if (sectors > mddev->dev_sectors &&
3830             mddev->recovery_cp > oldsize) {
3831                 mddev->recovery_cp = oldsize;
3832                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3833         }
3834         calc_sectors(conf, sectors);
3835         mddev->dev_sectors = conf->dev_sectors;
3836         mddev->resync_max_sectors = size;
3837         return 0;
3838 }
3839
3840 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3841 {
3842         struct md_rdev *rdev;
3843         struct r10conf *conf;
3844
3845         if (mddev->degraded > 0) {
3846                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3847                        mdname(mddev));
3848                 return ERR_PTR(-EINVAL);
3849         }
3850         sector_div(size, devs);
3851
3852         /* Set new parameters */
3853         mddev->new_level = 10;
3854         /* new layout: far_copies = 1, near_copies = 2 */
3855         mddev->new_layout = (1<<8) + 2;
3856         mddev->new_chunk_sectors = mddev->chunk_sectors;
3857         mddev->delta_disks = mddev->raid_disks;
3858         mddev->raid_disks *= 2;
3859         /* make sure it will be not marked as dirty */
3860         mddev->recovery_cp = MaxSector;
3861         mddev->dev_sectors = size;
3862
3863         conf = setup_conf(mddev);
3864         if (!IS_ERR(conf)) {
3865                 rdev_for_each(rdev, mddev)
3866                         if (rdev->raid_disk >= 0) {
3867                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3868                                 rdev->sectors = size;
3869                         }
3870                 conf->barrier = 1;
3871         }
3872
3873         return conf;
3874 }
3875
3876 static void *raid10_takeover(struct mddev *mddev)
3877 {
3878         struct r0conf *raid0_conf;
3879
3880         /* raid10 can take over:
3881          *  raid0 - providing it has only two drives
3882          */
3883         if (mddev->level == 0) {
3884                 /* for raid0 takeover only one zone is supported */
3885                 raid0_conf = mddev->private;
3886                 if (raid0_conf->nr_strip_zones > 1) {
3887                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3888                                " with more than one zone.\n",
3889                                mdname(mddev));
3890                         return ERR_PTR(-EINVAL);
3891                 }
3892                 return raid10_takeover_raid0(mddev,
3893                         raid0_conf->strip_zone->zone_end,
3894                         raid0_conf->strip_zone->nb_dev);
3895         }
3896         return ERR_PTR(-EINVAL);
3897 }
3898
3899 static int raid10_check_reshape(struct mddev *mddev)
3900 {
3901         /* Called when there is a request to change
3902          * - layout (to ->new_layout)
3903          * - chunk size (to ->new_chunk_sectors)
3904          * - raid_disks (by delta_disks)
3905          * or when trying to restart a reshape that was ongoing.
3906          *
3907          * We need to validate the request and possibly allocate
3908          * space if that might be an issue later.
3909          *
3910          * Currently we reject any reshape of a 'far' mode array,
3911          * allow chunk size to change if new is generally acceptable,
3912          * allow raid_disks to increase, and allow
3913          * a switch between 'near' mode and 'offset' mode.
3914          */
3915         struct r10conf *conf = mddev->private;
3916         struct geom geo;
3917
3918         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3919                 return -EINVAL;
3920
3921         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3922                 /* mustn't change number of copies */
3923                 return -EINVAL;
3924         if (geo.far_copies > 1 && !geo.far_offset)
3925                 /* Cannot switch to 'far' mode */
3926                 return -EINVAL;
3927
3928         if (mddev->array_sectors & geo.chunk_mask)
3929                         /* not factor of array size */
3930                         return -EINVAL;
3931
3932         if (!enough(conf, -1))
3933                 return -EINVAL;
3934
3935         kfree(conf->mirrors_new);
3936         conf->mirrors_new = NULL;
3937         if (mddev->delta_disks > 0) {
3938                 /* allocate new 'mirrors' list */
3939                 conf->mirrors_new = kzalloc(
3940                         sizeof(struct raid10_info)
3941                         *(mddev->raid_disks +
3942                           mddev->delta_disks),
3943                         GFP_KERNEL);
3944                 if (!conf->mirrors_new)
3945                         return -ENOMEM;
3946         }
3947         return 0;
3948 }
3949
3950 /*
3951  * Need to check if array has failed when deciding whether to:
3952  *  - start an array
3953  *  - remove non-faulty devices
3954  *  - add a spare
3955  *  - allow a reshape
3956  * This determination is simple when no reshape is happening.
3957  * However if there is a reshape, we need to carefully check
3958  * both the before and after sections.
3959  * This is because some failed devices may only affect one
3960  * of the two sections, and some non-in_sync devices may
3961  * be insync in the section most affected by failed devices.
3962  */
3963 static int calc_degraded(struct r10conf *conf)
3964 {
3965         int degraded, degraded2;
3966         int i;
3967
3968         rcu_read_lock();
3969         degraded = 0;
3970         /* 'prev' section first */
3971         for (i = 0; i < conf->prev.raid_disks; i++) {
3972                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3973                 if (!rdev || test_bit(Faulty, &rdev->flags))
3974                         degraded++;
3975                 else if (!test_bit(In_sync, &rdev->flags))
3976                         /* When we can reduce the number of devices in
3977                          * an array, this might not contribute to
3978                          * 'degraded'.  It does now.
3979                          */
3980                         degraded++;
3981         }
3982         rcu_read_unlock();
3983         if (conf->geo.raid_disks == conf->prev.raid_disks)
3984                 return degraded;
3985         rcu_read_lock();
3986         degraded2 = 0;
3987         for (i = 0; i < conf->geo.raid_disks; i++) {
3988                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3989                 if (!rdev || test_bit(Faulty, &rdev->flags))
3990                         degraded2++;
3991                 else if (!test_bit(In_sync, &rdev->flags)) {
3992                         /* If reshape is increasing the number of devices,
3993                          * this section has already been recovered, so
3994                          * it doesn't contribute to degraded.
3995                          * else it does.
3996                          */
3997                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3998                                 degraded2++;
3999                 }
4000         }
4001         rcu_read_unlock();
4002         if (degraded2 > degraded)
4003                 return degraded2;
4004         return degraded;
4005 }
4006
4007 static int raid10_start_reshape(struct mddev *mddev)
4008 {
4009         /* A 'reshape' has been requested. This commits
4010          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4011          * This also checks if there are enough spares and adds them
4012          * to the array.
4013          * We currently require enough spares to make the final
4014          * array non-degraded.  We also require that the difference
4015          * between old and new data_offset - on each device - is
4016          * enough that we never risk over-writing.
4017          */
4018
4019         unsigned long before_length, after_length;
4020         sector_t min_offset_diff = 0;
4021         int first = 1;
4022         struct geom new;
4023         struct r10conf *conf = mddev->private;
4024         struct md_rdev *rdev;
4025         int spares = 0;
4026         int ret;
4027
4028         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4029                 return -EBUSY;
4030
4031         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4032                 return -EINVAL;
4033
4034         before_length = ((1 << conf->prev.chunk_shift) *
4035                          conf->prev.far_copies);
4036         after_length = ((1 << conf->geo.chunk_shift) *
4037                         conf->geo.far_copies);
4038
4039         rdev_for_each(rdev, mddev) {
4040                 if (!test_bit(In_sync, &rdev->flags)
4041                     && !test_bit(Faulty, &rdev->flags))
4042                         spares++;
4043                 if (rdev->raid_disk >= 0) {
4044                         long long diff = (rdev->new_data_offset
4045                                           - rdev->data_offset);
4046                         if (!mddev->reshape_backwards)
4047                                 diff = -diff;
4048                         if (diff < 0)
4049                                 diff = 0;
4050                         if (first || diff < min_offset_diff)
4051                                 min_offset_diff = diff;
4052                 }
4053         }
4054
4055         if (max(before_length, after_length) > min_offset_diff)
4056                 return -EINVAL;
4057
4058         if (spares < mddev->delta_disks)
4059                 return -EINVAL;
4060
4061         conf->offset_diff = min_offset_diff;
4062         spin_lock_irq(&conf->device_lock);
4063         if (conf->mirrors_new) {
4064                 memcpy(conf->mirrors_new, conf->mirrors,
4065                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4066                 smp_mb();
4067                 kfree(conf->mirrors_old);
4068                 conf->mirrors_old = conf->mirrors;
4069                 conf->mirrors = conf->mirrors_new;
4070                 conf->mirrors_new = NULL;
4071         }
4072         setup_geo(&conf->geo, mddev, geo_start);
4073         smp_mb();
4074         if (mddev->reshape_backwards) {
4075                 sector_t size = raid10_size(mddev, 0, 0);
4076                 if (size < mddev->array_sectors) {
4077                         spin_unlock_irq(&conf->device_lock);
4078                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4079                                mdname(mddev));
4080                         return -EINVAL;
4081                 }
4082                 mddev->resync_max_sectors = size;
4083                 conf->reshape_progress = size;
4084         } else
4085                 conf->reshape_progress = 0;
4086         conf->reshape_safe = conf->reshape_progress;
4087         spin_unlock_irq(&conf->device_lock);
4088
4089         if (mddev->delta_disks && mddev->bitmap) {
4090                 ret = bitmap_resize(mddev->bitmap,
4091                                     raid10_size(mddev, 0,
4092                                                 conf->geo.raid_disks),
4093                                     0, 0);
4094                 if (ret)
4095                         goto abort;
4096         }
4097         if (mddev->delta_disks > 0) {
4098                 rdev_for_each(rdev, mddev)
4099                         if (rdev->raid_disk < 0 &&
4100                             !test_bit(Faulty, &rdev->flags)) {
4101                                 if (raid10_add_disk(mddev, rdev) == 0) {
4102                                         if (rdev->raid_disk >=
4103                                             conf->prev.raid_disks)
4104                                                 set_bit(In_sync, &rdev->flags);
4105                                         else
4106                                                 rdev->recovery_offset = 0;
4107
4108                                         if (sysfs_link_rdev(mddev, rdev))
4109                                                 /* Failure here  is OK */;
4110                                 }
4111                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4112                                    && !test_bit(Faulty, &rdev->flags)) {
4113                                 /* This is a spare that was manually added */
4114                                 set_bit(In_sync, &rdev->flags);
4115                         }
4116         }
4117         /* When a reshape changes the number of devices,
4118          * ->degraded is measured against the larger of the
4119          * pre and  post numbers.
4120          */
4121         spin_lock_irq(&conf->device_lock);
4122         mddev->degraded = calc_degraded(conf);
4123         spin_unlock_irq(&conf->device_lock);
4124         mddev->raid_disks = conf->geo.raid_disks;
4125         mddev->reshape_position = conf->reshape_progress;
4126         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4127
4128         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4129         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4131         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4132         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4133
4134         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4135                                                 "reshape");
4136         if (!mddev->sync_thread) {
4137                 ret = -EAGAIN;
4138                 goto abort;
4139         }
4140         conf->reshape_checkpoint = jiffies;
4141         md_wakeup_thread(mddev->sync_thread);
4142         md_new_event(mddev);
4143         return 0;
4144
4145 abort:
4146         mddev->recovery = 0;
4147         spin_lock_irq(&conf->device_lock);
4148         conf->geo = conf->prev;
4149         mddev->raid_disks = conf->geo.raid_disks;
4150         rdev_for_each(rdev, mddev)
4151                 rdev->new_data_offset = rdev->data_offset;
4152         smp_wmb();
4153         conf->reshape_progress = MaxSector;
4154         conf->reshape_safe = MaxSector;
4155         mddev->reshape_position = MaxSector;
4156         spin_unlock_irq(&conf->device_lock);
4157         return ret;
4158 }
4159
4160 /* Calculate the last device-address that could contain
4161  * any block from the chunk that includes the array-address 's'
4162  * and report the next address.
4163  * i.e. the address returned will be chunk-aligned and after
4164  * any data that is in the chunk containing 's'.
4165  */
4166 static sector_t last_dev_address(sector_t s, struct geom *geo)
4167 {
4168         s = (s | geo->chunk_mask) + 1;
4169         s >>= geo->chunk_shift;
4170         s *= geo->near_copies;
4171         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4172         s *= geo->far_copies;
4173         s <<= geo->chunk_shift;
4174         return s;
4175 }
4176
4177 /* Calculate the first device-address that could contain
4178  * any block from the chunk that includes the array-address 's'.
4179  * This too will be the start of a chunk
4180  */
4181 static sector_t first_dev_address(sector_t s, struct geom *geo)
4182 {
4183         s >>= geo->chunk_shift;
4184         s *= geo->near_copies;
4185         sector_div(s, geo->raid_disks);
4186         s *= geo->far_copies;
4187         s <<= geo->chunk_shift;
4188         return s;
4189 }
4190
4191 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4192                                 int *skipped)
4193 {
4194         /* We simply copy at most one chunk (smallest of old and new)
4195          * at a time, possibly less if that exceeds RESYNC_PAGES,
4196          * or we hit a bad block or something.
4197          * This might mean we pause for normal IO in the middle of
4198          * a chunk, but that is not a problem as mddev->reshape_position
4199          * can record any location.
4200          *
4201          * If we will want to write to a location that isn't
4202          * yet recorded as 'safe' (i.e. in metadata on disk) then
4203          * we need to flush all reshape requests and update the metadata.
4204          *
4205          * When reshaping forwards (e.g. to more devices), we interpret
4206          * 'safe' as the earliest block which might not have been copied
4207          * down yet.  We divide this by previous stripe size and multiply
4208          * by previous stripe length to get lowest device offset that we
4209          * cannot write to yet.
4210          * We interpret 'sector_nr' as an address that we want to write to.
4211          * From this we use last_device_address() to find where we might
4212          * write to, and first_device_address on the  'safe' position.
4213          * If this 'next' write position is after the 'safe' position,
4214          * we must update the metadata to increase the 'safe' position.
4215          *
4216          * When reshaping backwards, we round in the opposite direction
4217          * and perform the reverse test:  next write position must not be
4218          * less than current safe position.
4219          *
4220          * In all this the minimum difference in data offsets
4221          * (conf->offset_diff - always positive) allows a bit of slack,
4222          * so next can be after 'safe', but not by more than offset_diff
4223          *
4224          * We need to prepare all the bios here before we start any IO
4225          * to ensure the size we choose is acceptable to all devices.
4226          * The means one for each copy for write-out and an extra one for
4227          * read-in.
4228          * We store the read-in bio in ->master_bio and the others in
4229          * ->devs[x].bio and ->devs[x].repl_bio.
4230          */
4231         struct r10conf *conf = mddev->private;
4232         struct r10bio *r10_bio;
4233         sector_t next, safe, last;
4234         int max_sectors;
4235         int nr_sectors;
4236         int s;
4237         struct md_rdev *rdev;
4238         int need_flush = 0;
4239         struct bio *blist;
4240         struct bio *bio, *read_bio;
4241         int sectors_done = 0;
4242
4243         if (sector_nr == 0) {
4244                 /* If restarting in the middle, skip the initial sectors */
4245                 if (mddev->reshape_backwards &&
4246                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4247                         sector_nr = (raid10_size(mddev, 0, 0)
4248                                      - conf->reshape_progress);
4249                 } else if (!mddev->reshape_backwards &&
4250                            conf->reshape_progress > 0)
4251                         sector_nr = conf->reshape_progress;
4252                 if (sector_nr) {
4253                         mddev->curr_resync_completed = sector_nr;
4254                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4255                         *skipped = 1;
4256                         return sector_nr;
4257                 }
4258         }
4259
4260         /* We don't use sector_nr to track where we are up to
4261          * as that doesn't work well for ->reshape_backwards.
4262          * So just use ->reshape_progress.
4263          */
4264         if (mddev->reshape_backwards) {
4265                 /* 'next' is the earliest device address that we might
4266                  * write to for this chunk in the new layout
4267                  */
4268                 next = first_dev_address(conf->reshape_progress - 1,
4269                                          &conf->geo);
4270
4271                 /* 'safe' is the last device address that we might read from
4272                  * in the old layout after a restart
4273                  */
4274                 safe = last_dev_address(conf->reshape_safe - 1,
4275                                         &conf->prev);
4276
4277                 if (next + conf->offset_diff < safe)
4278                         need_flush = 1;
4279
4280                 last = conf->reshape_progress - 1;
4281                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4282                                                & conf->prev.chunk_mask);
4283                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4284                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4285         } else {
4286                 /* 'next' is after the last device address that we
4287                  * might write to for this chunk in the new layout
4288                  */
4289                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4290
4291                 /* 'safe' is the earliest device address that we might
4292                  * read from in the old layout after a restart
4293                  */
4294                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4295
4296                 /* Need to update metadata if 'next' might be beyond 'safe'
4297                  * as that would possibly corrupt data
4298                  */
4299                 if (next > safe + conf->offset_diff)
4300                         need_flush = 1;
4301
4302                 sector_nr = conf->reshape_progress;
4303                 last  = sector_nr | (conf->geo.chunk_mask
4304                                      & conf->prev.chunk_mask);
4305
4306                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4307                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4308         }
4309
4310         if (need_flush ||
4311             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4312                 /* Need to update reshape_position in metadata */
4313                 wait_barrier(conf);
4314                 mddev->reshape_position = conf->reshape_progress;
4315                 if (mddev->reshape_backwards)
4316                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4317                                 - conf->reshape_progress;
4318                 else
4319                         mddev->curr_resync_completed = conf->reshape_progress;
4320                 conf->reshape_checkpoint = jiffies;
4321                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4322                 md_wakeup_thread(mddev->thread);
4323                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4324                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4325                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4326                         allow_barrier(conf);
4327                         return sectors_done;
4328                 }
4329                 conf->reshape_safe = mddev->reshape_position;
4330                 allow_barrier(conf);
4331         }
4332
4333 read_more:
4334         /* Now schedule reads for blocks from sector_nr to last */
4335         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4336         r10_bio->state = 0;
4337         raise_barrier(conf, sectors_done != 0);
4338         atomic_set(&r10_bio->remaining, 0);
4339         r10_bio->mddev = mddev;
4340         r10_bio->sector = sector_nr;
4341         set_bit(R10BIO_IsReshape, &r10_bio->state);
4342         r10_bio->sectors = last - sector_nr + 1;
4343         rdev = read_balance(conf, r10_bio, &max_sectors);
4344         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4345
4346         if (!rdev) {
4347                 /* Cannot read from here, so need to record bad blocks
4348                  * on all the target devices.
4349                  */
4350                 // FIXME
4351                 mempool_free(r10_bio, conf->r10buf_pool);
4352                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4353                 return sectors_done;
4354         }
4355
4356         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4357
4358         read_bio->bi_bdev = rdev->bdev;
4359         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4360                                + rdev->data_offset);
4361         read_bio->bi_private = r10_bio;
4362         read_bio->bi_end_io = end_sync_read;
4363         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4364         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4365         read_bio->bi_error = 0;
4366         read_bio->bi_vcnt = 0;
4367         read_bio->bi_iter.bi_size = 0;
4368         r10_bio->master_bio = read_bio;
4369         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4370
4371         /* Now find the locations in the new layout */
4372         __raid10_find_phys(&conf->geo, r10_bio);
4373
4374         blist = read_bio;
4375         read_bio->bi_next = NULL;
4376
4377         rcu_read_lock();
4378         for (s = 0; s < conf->copies*2; s++) {
4379                 struct bio *b;
4380                 int d = r10_bio->devs[s/2].devnum;
4381                 struct md_rdev *rdev2;
4382                 if (s&1) {
4383                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4384                         b = r10_bio->devs[s/2].repl_bio;
4385                 } else {
4386                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4387                         b = r10_bio->devs[s/2].bio;
4388                 }
4389                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4390                         continue;
4391
4392                 bio_reset(b);
4393                 b->bi_bdev = rdev2->bdev;
4394                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4395                         rdev2->new_data_offset;
4396                 b->bi_private = r10_bio;
4397                 b->bi_end_io = end_reshape_write;
4398                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4399                 b->bi_next = blist;
4400                 blist = b;
4401         }
4402
4403         /* Now add as many pages as possible to all of these bios. */
4404
4405         nr_sectors = 0;
4406         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4407                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4408                 int len = (max_sectors - s) << 9;
4409                 if (len > PAGE_SIZE)
4410                         len = PAGE_SIZE;
4411                 for (bio = blist; bio ; bio = bio->bi_next) {
4412                         struct bio *bio2;
4413                         if (bio_add_page(bio, page, len, 0))
4414                                 continue;
4415
4416                         /* Didn't fit, must stop */
4417                         for (bio2 = blist;
4418                              bio2 && bio2 != bio;
4419                              bio2 = bio2->bi_next) {
4420                                 /* Remove last page from this bio */
4421                                 bio2->bi_vcnt--;
4422                                 bio2->bi_iter.bi_size -= len;
4423                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4424                         }
4425                         goto bio_full;
4426                 }
4427                 sector_nr += len >> 9;
4428                 nr_sectors += len >> 9;
4429         }
4430 bio_full:
4431         rcu_read_unlock();
4432         r10_bio->sectors = nr_sectors;
4433
4434         /* Now submit the read */
4435         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4436         atomic_inc(&r10_bio->remaining);
4437         read_bio->bi_next = NULL;
4438         generic_make_request(read_bio);
4439         sector_nr += nr_sectors;
4440         sectors_done += nr_sectors;
4441         if (sector_nr <= last)
4442                 goto read_more;
4443
4444         /* Now that we have done the whole section we can
4445          * update reshape_progress
4446          */
4447         if (mddev->reshape_backwards)
4448                 conf->reshape_progress -= sectors_done;
4449         else
4450                 conf->reshape_progress += sectors_done;
4451
4452         return sectors_done;
4453 }
4454
4455 static void end_reshape_request(struct r10bio *r10_bio);
4456 static int handle_reshape_read_error(struct mddev *mddev,
4457                                      struct r10bio *r10_bio);
4458 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4459 {
4460         /* Reshape read completed.  Hopefully we have a block
4461          * to write out.
4462          * If we got a read error then we do sync 1-page reads from
4463          * elsewhere until we find the data - or give up.
4464          */
4465         struct r10conf *conf = mddev->private;
4466         int s;
4467
4468         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4469                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4470                         /* Reshape has been aborted */
4471                         md_done_sync(mddev, r10_bio->sectors, 0);
4472                         return;
4473                 }
4474
4475         /* We definitely have the data in the pages, schedule the
4476          * writes.
4477          */
4478         atomic_set(&r10_bio->remaining, 1);
4479         for (s = 0; s < conf->copies*2; s++) {
4480                 struct bio *b;
4481                 int d = r10_bio->devs[s/2].devnum;
4482                 struct md_rdev *rdev;
4483                 rcu_read_lock();
4484                 if (s&1) {
4485                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4486                         b = r10_bio->devs[s/2].repl_bio;
4487                 } else {
4488                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4489                         b = r10_bio->devs[s/2].bio;
4490                 }
4491                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4492                         rcu_read_unlock();
4493                         continue;
4494                 }
4495                 atomic_inc(&rdev->nr_pending);
4496                 rcu_read_unlock();
4497                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4498                 atomic_inc(&r10_bio->remaining);
4499                 b->bi_next = NULL;
4500                 generic_make_request(b);
4501         }
4502         end_reshape_request(r10_bio);
4503 }
4504
4505 static void end_reshape(struct r10conf *conf)
4506 {
4507         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4508                 return;
4509
4510         spin_lock_irq(&conf->device_lock);
4511         conf->prev = conf->geo;
4512         md_finish_reshape(conf->mddev);
4513         smp_wmb();
4514         conf->reshape_progress = MaxSector;
4515         conf->reshape_safe = MaxSector;
4516         spin_unlock_irq(&conf->device_lock);
4517
4518         /* read-ahead size must cover two whole stripes, which is
4519          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4520          */
4521         if (conf->mddev->queue) {
4522                 int stripe = conf->geo.raid_disks *
4523                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4524                 stripe /= conf->geo.near_copies;
4525                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4526                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4527         }
4528         conf->fullsync = 0;
4529 }
4530
4531 static int handle_reshape_read_error(struct mddev *mddev,
4532                                      struct r10bio *r10_bio)
4533 {
4534         /* Use sync reads to get the blocks from somewhere else */
4535         int sectors = r10_bio->sectors;
4536         struct r10conf *conf = mddev->private;
4537         struct {
4538                 struct r10bio r10_bio;
4539                 struct r10dev devs[conf->copies];
4540         } on_stack;
4541         struct r10bio *r10b = &on_stack.r10_bio;
4542         int slot = 0;
4543         int idx = 0;
4544         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4545
4546         r10b->sector = r10_bio->sector;
4547         __raid10_find_phys(&conf->prev, r10b);
4548
4549         while (sectors) {
4550                 int s = sectors;
4551                 int success = 0;
4552                 int first_slot = slot;
4553
4554                 if (s > (PAGE_SIZE >> 9))
4555                         s = PAGE_SIZE >> 9;
4556
4557                 rcu_read_lock();
4558                 while (!success) {
4559                         int d = r10b->devs[slot].devnum;
4560                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4561                         sector_t addr;
4562                         if (rdev == NULL ||
4563                             test_bit(Faulty, &rdev->flags) ||
4564                             !test_bit(In_sync, &rdev->flags))
4565                                 goto failed;
4566
4567                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4568                         atomic_inc(&rdev->nr_pending);
4569                         rcu_read_unlock();
4570                         success = sync_page_io(rdev,
4571                                                addr,
4572                                                s << 9,
4573                                                bvec[idx].bv_page,
4574                                                REQ_OP_READ, 0, false);
4575                         rdev_dec_pending(rdev, mddev);
4576                         rcu_read_lock();
4577                         if (success)
4578                                 break;
4579                 failed:
4580                         slot++;
4581                         if (slot >= conf->copies)
4582                                 slot = 0;
4583                         if (slot == first_slot)
4584                                 break;
4585                 }
4586                 rcu_read_unlock();
4587                 if (!success) {
4588                         /* couldn't read this block, must give up */
4589                         set_bit(MD_RECOVERY_INTR,
4590                                 &mddev->recovery);
4591                         return -EIO;
4592                 }
4593                 sectors -= s;
4594                 idx++;
4595         }
4596         return 0;
4597 }
4598
4599 static void end_reshape_write(struct bio *bio)
4600 {
4601         struct r10bio *r10_bio = bio->bi_private;
4602         struct mddev *mddev = r10_bio->mddev;
4603         struct r10conf *conf = mddev->private;
4604         int d;
4605         int slot;
4606         int repl;
4607         struct md_rdev *rdev = NULL;
4608
4609         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4610         if (repl)
4611                 rdev = conf->mirrors[d].replacement;
4612         if (!rdev) {
4613                 smp_mb();
4614                 rdev = conf->mirrors[d].rdev;
4615         }
4616
4617         if (bio->bi_error) {
4618                 /* FIXME should record badblock */
4619                 md_error(mddev, rdev);
4620         }
4621
4622         rdev_dec_pending(rdev, mddev);
4623         end_reshape_request(r10_bio);
4624 }
4625
4626 static void end_reshape_request(struct r10bio *r10_bio)
4627 {
4628         if (!atomic_dec_and_test(&r10_bio->remaining))
4629                 return;
4630         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4631         bio_put(r10_bio->master_bio);
4632         put_buf(r10_bio);
4633 }
4634
4635 static void raid10_finish_reshape(struct mddev *mddev)
4636 {
4637         struct r10conf *conf = mddev->private;
4638
4639         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4640                 return;
4641
4642         if (mddev->delta_disks > 0) {
4643                 sector_t size = raid10_size(mddev, 0, 0);
4644                 md_set_array_sectors(mddev, size);
4645                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4646                         mddev->recovery_cp = mddev->resync_max_sectors;
4647                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4648                 }
4649                 mddev->resync_max_sectors = size;
4650                 if (mddev->queue) {
4651                         set_capacity(mddev->gendisk, mddev->array_sectors);
4652                         revalidate_disk(mddev->gendisk);
4653                 }
4654         } else {
4655                 int d;
4656                 rcu_read_lock();
4657                 for (d = conf->geo.raid_disks ;
4658                      d < conf->geo.raid_disks - mddev->delta_disks;
4659                      d++) {
4660                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4661                         if (rdev)
4662                                 clear_bit(In_sync, &rdev->flags);
4663                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4664                         if (rdev)
4665                                 clear_bit(In_sync, &rdev->flags);
4666                 }
4667                 rcu_read_unlock();
4668         }
4669         mddev->layout = mddev->new_layout;
4670         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4671         mddev->reshape_position = MaxSector;
4672         mddev->delta_disks = 0;
4673         mddev->reshape_backwards = 0;
4674 }
4675
4676 static struct md_personality raid10_personality =
4677 {
4678         .name           = "raid10",
4679         .level          = 10,
4680         .owner          = THIS_MODULE,
4681         .make_request   = raid10_make_request,
4682         .run            = raid10_run,
4683         .free           = raid10_free,
4684         .status         = raid10_status,
4685         .error_handler  = raid10_error,
4686         .hot_add_disk   = raid10_add_disk,
4687         .hot_remove_disk= raid10_remove_disk,
4688         .spare_active   = raid10_spare_active,
4689         .sync_request   = raid10_sync_request,
4690         .quiesce        = raid10_quiesce,
4691         .size           = raid10_size,
4692         .resize         = raid10_resize,
4693         .takeover       = raid10_takeover,
4694         .check_reshape  = raid10_check_reshape,
4695         .start_reshape  = raid10_start_reshape,
4696         .finish_reshape = raid10_finish_reshape,
4697         .congested      = raid10_congested,
4698 };
4699
4700 static int __init raid_init(void)
4701 {
4702         return register_md_personality(&raid10_personality);
4703 }
4704
4705 static void raid_exit(void)
4706 {
4707         unregister_md_personality(&raid10_personality);
4708 }
4709
4710 module_init(raid_init);
4711 module_exit(raid_exit);
4712 MODULE_LICENSE("GPL");
4713 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4714 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4715 MODULE_ALIAS("md-raid10");
4716 MODULE_ALIAS("md-level-10");
4717
4718 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);