Merge branch 'mymd/for-next' into mymd/for-linus
[cascardo/linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710         sectors = r10_bio->sectors;
711         best_slot = -1;
712         best_rdev = NULL;
713         best_dist = MaxSector;
714         best_good_sectors = 0;
715         do_balance = 1;
716         /*
717          * Check if we can balance. We can balance on the whole
718          * device if no resync is going on (recovery is ok), or below
719          * the resync window. We take the first readable disk when
720          * above the resync window.
721          */
722         if (conf->mddev->recovery_cp < MaxSector
723             && (this_sector + sectors >= conf->next_resync))
724                 do_balance = 0;
725
726         for (slot = 0; slot < conf->copies ; slot++) {
727                 sector_t first_bad;
728                 int bad_sectors;
729                 sector_t dev_sector;
730
731                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732                         continue;
733                 disk = r10_bio->devs[slot].devnum;
734                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
738                 if (rdev == NULL ||
739                     test_bit(Faulty, &rdev->flags))
740                         continue;
741                 if (!test_bit(In_sync, &rdev->flags) &&
742                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743                         continue;
744
745                 dev_sector = r10_bio->devs[slot].addr;
746                 if (is_badblock(rdev, dev_sector, sectors,
747                                 &first_bad, &bad_sectors)) {
748                         if (best_dist < MaxSector)
749                                 /* Already have a better slot */
750                                 continue;
751                         if (first_bad <= dev_sector) {
752                                 /* Cannot read here.  If this is the
753                                  * 'primary' device, then we must not read
754                                  * beyond 'bad_sectors' from another device.
755                                  */
756                                 bad_sectors -= (dev_sector - first_bad);
757                                 if (!do_balance && sectors > bad_sectors)
758                                         sectors = bad_sectors;
759                                 if (best_good_sectors > sectors)
760                                         best_good_sectors = sectors;
761                         } else {
762                                 sector_t good_sectors =
763                                         first_bad - dev_sector;
764                                 if (good_sectors > best_good_sectors) {
765                                         best_good_sectors = good_sectors;
766                                         best_slot = slot;
767                                         best_rdev = rdev;
768                                 }
769                                 if (!do_balance)
770                                         /* Must read from here */
771                                         break;
772                         }
773                         continue;
774                 } else
775                         best_good_sectors = sectors;
776
777                 if (!do_balance)
778                         break;
779
780                 /* This optimisation is debatable, and completely destroys
781                  * sequential read speed for 'far copies' arrays.  So only
782                  * keep it for 'near' arrays, and review those later.
783                  */
784                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785                         break;
786
787                 /* for far > 1 always use the lowest address */
788                 if (geo->far_copies > 1)
789                         new_distance = r10_bio->devs[slot].addr;
790                 else
791                         new_distance = abs(r10_bio->devs[slot].addr -
792                                            conf->mirrors[disk].head_position);
793                 if (new_distance < best_dist) {
794                         best_dist = new_distance;
795                         best_slot = slot;
796                         best_rdev = rdev;
797                 }
798         }
799         if (slot >= conf->copies) {
800                 slot = best_slot;
801                 rdev = best_rdev;
802         }
803
804         if (slot >= 0) {
805                 atomic_inc(&rdev->nr_pending);
806                 r10_bio->read_slot = slot;
807         } else
808                 rdev = NULL;
809         rcu_read_unlock();
810         *max_sectors = best_good_sectors;
811
812         return rdev;
813 }
814
815 static int raid10_congested(struct mddev *mddev, int bits)
816 {
817         struct r10conf *conf = mddev->private;
818         int i, ret = 0;
819
820         if ((bits & (1 << WB_async_congested)) &&
821             conf->pending_count >= max_queued_requests)
822                 return 1;
823
824         rcu_read_lock();
825         for (i = 0;
826              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827                      && ret == 0;
828              i++) {
829                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
831                         struct request_queue *q = bdev_get_queue(rdev->bdev);
832
833                         ret |= bdi_congested(&q->backing_dev_info, bits);
834                 }
835         }
836         rcu_read_unlock();
837         return ret;
838 }
839
840 static void flush_pending_writes(struct r10conf *conf)
841 {
842         /* Any writes that have been queued but are awaiting
843          * bitmap updates get flushed here.
844          */
845         spin_lock_irq(&conf->device_lock);
846
847         if (conf->pending_bio_list.head) {
848                 struct bio *bio;
849                 bio = bio_list_get(&conf->pending_bio_list);
850                 conf->pending_count = 0;
851                 spin_unlock_irq(&conf->device_lock);
852                 /* flush any pending bitmap writes to disk
853                  * before proceeding w/ I/O */
854                 bitmap_unplug(conf->mddev->bitmap);
855                 wake_up(&conf->wait_barrier);
856
857                 while (bio) { /* submit pending writes */
858                         struct bio *next = bio->bi_next;
859                         bio->bi_next = NULL;
860                         if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
861                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862                                 /* Just ignore it */
863                                 bio_endio(bio);
864                         else
865                                 generic_make_request(bio);
866                         bio = next;
867                 }
868         } else
869                 spin_unlock_irq(&conf->device_lock);
870 }
871
872 /* Barriers....
873  * Sometimes we need to suspend IO while we do something else,
874  * either some resync/recovery, or reconfigure the array.
875  * To do this we raise a 'barrier'.
876  * The 'barrier' is a counter that can be raised multiple times
877  * to count how many activities are happening which preclude
878  * normal IO.
879  * We can only raise the barrier if there is no pending IO.
880  * i.e. if nr_pending == 0.
881  * We choose only to raise the barrier if no-one is waiting for the
882  * barrier to go down.  This means that as soon as an IO request
883  * is ready, no other operations which require a barrier will start
884  * until the IO request has had a chance.
885  *
886  * So: regular IO calls 'wait_barrier'.  When that returns there
887  *    is no backgroup IO happening,  It must arrange to call
888  *    allow_barrier when it has finished its IO.
889  * backgroup IO calls must call raise_barrier.  Once that returns
890  *    there is no normal IO happeing.  It must arrange to call
891  *    lower_barrier when the particular background IO completes.
892  */
893
894 static void raise_barrier(struct r10conf *conf, int force)
895 {
896         BUG_ON(force && !conf->barrier);
897         spin_lock_irq(&conf->resync_lock);
898
899         /* Wait until no block IO is waiting (unless 'force') */
900         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901                             conf->resync_lock);
902
903         /* block any new IO from starting */
904         conf->barrier++;
905
906         /* Now wait for all pending IO to complete */
907         wait_event_lock_irq(conf->wait_barrier,
908                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
909                             conf->resync_lock);
910
911         spin_unlock_irq(&conf->resync_lock);
912 }
913
914 static void lower_barrier(struct r10conf *conf)
915 {
916         unsigned long flags;
917         spin_lock_irqsave(&conf->resync_lock, flags);
918         conf->barrier--;
919         spin_unlock_irqrestore(&conf->resync_lock, flags);
920         wake_up(&conf->wait_barrier);
921 }
922
923 static void wait_barrier(struct r10conf *conf)
924 {
925         spin_lock_irq(&conf->resync_lock);
926         if (conf->barrier) {
927                 conf->nr_waiting++;
928                 /* Wait for the barrier to drop.
929                  * However if there are already pending
930                  * requests (preventing the barrier from
931                  * rising completely), and the
932                  * pre-process bio queue isn't empty,
933                  * then don't wait, as we need to empty
934                  * that queue to get the nr_pending
935                  * count down.
936                  */
937                 wait_event_lock_irq(conf->wait_barrier,
938                                     !conf->barrier ||
939                                     (atomic_read(&conf->nr_pending) &&
940                                      current->bio_list &&
941                                      !bio_list_empty(current->bio_list)),
942                                     conf->resync_lock);
943                 conf->nr_waiting--;
944                 if (!conf->nr_waiting)
945                         wake_up(&conf->wait_barrier);
946         }
947         atomic_inc(&conf->nr_pending);
948         spin_unlock_irq(&conf->resync_lock);
949 }
950
951 static void allow_barrier(struct r10conf *conf)
952 {
953         if ((atomic_dec_and_test(&conf->nr_pending)) ||
954                         (conf->array_freeze_pending))
955                 wake_up(&conf->wait_barrier);
956 }
957
958 static void freeze_array(struct r10conf *conf, int extra)
959 {
960         /* stop syncio and normal IO and wait for everything to
961          * go quiet.
962          * We increment barrier and nr_waiting, and then
963          * wait until nr_pending match nr_queued+extra
964          * This is called in the context of one normal IO request
965          * that has failed. Thus any sync request that might be pending
966          * will be blocked by nr_pending, and we need to wait for
967          * pending IO requests to complete or be queued for re-try.
968          * Thus the number queued (nr_queued) plus this request (extra)
969          * must match the number of pending IOs (nr_pending) before
970          * we continue.
971          */
972         spin_lock_irq(&conf->resync_lock);
973         conf->array_freeze_pending++;
974         conf->barrier++;
975         conf->nr_waiting++;
976         wait_event_lock_irq_cmd(conf->wait_barrier,
977                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
978                                 conf->resync_lock,
979                                 flush_pending_writes(conf));
980
981         conf->array_freeze_pending--;
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void unfreeze_array(struct r10conf *conf)
986 {
987         /* reverse the effect of the freeze */
988         spin_lock_irq(&conf->resync_lock);
989         conf->barrier--;
990         conf->nr_waiting--;
991         wake_up(&conf->wait_barrier);
992         spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static sector_t choose_data_offset(struct r10bio *r10_bio,
996                                    struct md_rdev *rdev)
997 {
998         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999             test_bit(R10BIO_Previous, &r10_bio->state))
1000                 return rdev->data_offset;
1001         else
1002                 return rdev->new_data_offset;
1003 }
1004
1005 struct raid10_plug_cb {
1006         struct blk_plug_cb      cb;
1007         struct bio_list         pending;
1008         int                     pending_cnt;
1009 };
1010
1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1012 {
1013         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014                                                    cb);
1015         struct mddev *mddev = plug->cb.data;
1016         struct r10conf *conf = mddev->private;
1017         struct bio *bio;
1018
1019         if (from_schedule || current->bio_list) {
1020                 spin_lock_irq(&conf->device_lock);
1021                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022                 conf->pending_count += plug->pending_cnt;
1023                 spin_unlock_irq(&conf->device_lock);
1024                 wake_up(&conf->wait_barrier);
1025                 md_wakeup_thread(mddev->thread);
1026                 kfree(plug);
1027                 return;
1028         }
1029
1030         /* we aren't scheduling, so we can do the write-out directly. */
1031         bio = bio_list_get(&plug->pending);
1032         bitmap_unplug(mddev->bitmap);
1033         wake_up(&conf->wait_barrier);
1034
1035         while (bio) { /* submit pending writes */
1036                 struct bio *next = bio->bi_next;
1037                 bio->bi_next = NULL;
1038                 if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1039                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040                         /* Just ignore it */
1041                         bio_endio(bio);
1042                 else
1043                         generic_make_request(bio);
1044                 bio = next;
1045         }
1046         kfree(plug);
1047 }
1048
1049 static void __make_request(struct mddev *mddev, struct bio *bio)
1050 {
1051         struct r10conf *conf = mddev->private;
1052         struct r10bio *r10_bio;
1053         struct bio *read_bio;
1054         int i;
1055         const int op = bio_op(bio);
1056         const int rw = bio_data_dir(bio);
1057         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1059         unsigned long flags;
1060         struct md_rdev *blocked_rdev;
1061         struct blk_plug_cb *cb;
1062         struct raid10_plug_cb *plug = NULL;
1063         int sectors_handled;
1064         int max_sectors;
1065         int sectors;
1066
1067         /*
1068          * Register the new request and wait if the reconstruction
1069          * thread has put up a bar for new requests.
1070          * Continue immediately if no resync is active currently.
1071          */
1072         wait_barrier(conf);
1073
1074         sectors = bio_sectors(bio);
1075         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1076             bio->bi_iter.bi_sector < conf->reshape_progress &&
1077             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1078                 /* IO spans the reshape position.  Need to wait for
1079                  * reshape to pass
1080                  */
1081                 allow_barrier(conf);
1082                 wait_event(conf->wait_barrier,
1083                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1084                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1085                            sectors);
1086                 wait_barrier(conf);
1087         }
1088         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1089             bio_data_dir(bio) == WRITE &&
1090             (mddev->reshape_backwards
1091              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1092                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1093              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1094                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1095                 /* Need to update reshape_position in metadata */
1096                 mddev->reshape_position = conf->reshape_progress;
1097                 set_mask_bits(&mddev->flags, 0,
1098                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1099                 md_wakeup_thread(mddev->thread);
1100                 wait_event(mddev->sb_wait,
1101                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1102
1103                 conf->reshape_safe = mddev->reshape_position;
1104         }
1105
1106         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1107
1108         r10_bio->master_bio = bio;
1109         r10_bio->sectors = sectors;
1110
1111         r10_bio->mddev = mddev;
1112         r10_bio->sector = bio->bi_iter.bi_sector;
1113         r10_bio->state = 0;
1114
1115         /* We might need to issue multiple reads to different
1116          * devices if there are bad blocks around, so we keep
1117          * track of the number of reads in bio->bi_phys_segments.
1118          * If this is 0, there is only one r10_bio and no locking
1119          * will be needed when the request completes.  If it is
1120          * non-zero, then it is the number of not-completed requests.
1121          */
1122         bio->bi_phys_segments = 0;
1123         bio_clear_flag(bio, BIO_SEG_VALID);
1124
1125         if (rw == READ) {
1126                 /*
1127                  * read balancing logic:
1128                  */
1129                 struct md_rdev *rdev;
1130                 int slot;
1131
1132 read_again:
1133                 rdev = read_balance(conf, r10_bio, &max_sectors);
1134                 if (!rdev) {
1135                         raid_end_bio_io(r10_bio);
1136                         return;
1137                 }
1138                 slot = r10_bio->read_slot;
1139
1140                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1141                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1142                          max_sectors);
1143
1144                 r10_bio->devs[slot].bio = read_bio;
1145                 r10_bio->devs[slot].rdev = rdev;
1146
1147                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1148                         choose_data_offset(r10_bio, rdev);
1149                 read_bio->bi_bdev = rdev->bdev;
1150                 read_bio->bi_end_io = raid10_end_read_request;
1151                 bio_set_op_attrs(read_bio, op, do_sync);
1152                 read_bio->bi_private = r10_bio;
1153
1154                 if (max_sectors < r10_bio->sectors) {
1155                         /* Could not read all from this device, so we will
1156                          * need another r10_bio.
1157                          */
1158                         sectors_handled = (r10_bio->sector + max_sectors
1159                                            - bio->bi_iter.bi_sector);
1160                         r10_bio->sectors = max_sectors;
1161                         spin_lock_irq(&conf->device_lock);
1162                         if (bio->bi_phys_segments == 0)
1163                                 bio->bi_phys_segments = 2;
1164                         else
1165                                 bio->bi_phys_segments++;
1166                         spin_unlock_irq(&conf->device_lock);
1167                         /* Cannot call generic_make_request directly
1168                          * as that will be queued in __generic_make_request
1169                          * and subsequent mempool_alloc might block
1170                          * waiting for it.  so hand bio over to raid10d.
1171                          */
1172                         reschedule_retry(r10_bio);
1173
1174                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1175
1176                         r10_bio->master_bio = bio;
1177                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1178                         r10_bio->state = 0;
1179                         r10_bio->mddev = mddev;
1180                         r10_bio->sector = bio->bi_iter.bi_sector +
1181                                 sectors_handled;
1182                         goto read_again;
1183                 } else
1184                         generic_make_request(read_bio);
1185                 return;
1186         }
1187
1188         /*
1189          * WRITE:
1190          */
1191         if (conf->pending_count >= max_queued_requests) {
1192                 md_wakeup_thread(mddev->thread);
1193                 wait_event(conf->wait_barrier,
1194                            conf->pending_count < max_queued_requests);
1195         }
1196         /* first select target devices under rcu_lock and
1197          * inc refcount on their rdev.  Record them by setting
1198          * bios[x] to bio
1199          * If there are known/acknowledged bad blocks on any device
1200          * on which we have seen a write error, we want to avoid
1201          * writing to those blocks.  This potentially requires several
1202          * writes to write around the bad blocks.  Each set of writes
1203          * gets its own r10_bio with a set of bios attached.  The number
1204          * of r10_bios is recored in bio->bi_phys_segments just as with
1205          * the read case.
1206          */
1207
1208         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1209         raid10_find_phys(conf, r10_bio);
1210 retry_write:
1211         blocked_rdev = NULL;
1212         rcu_read_lock();
1213         max_sectors = r10_bio->sectors;
1214
1215         for (i = 0;  i < conf->copies; i++) {
1216                 int d = r10_bio->devs[i].devnum;
1217                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1218                 struct md_rdev *rrdev = rcu_dereference(
1219                         conf->mirrors[d].replacement);
1220                 if (rdev == rrdev)
1221                         rrdev = NULL;
1222                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223                         atomic_inc(&rdev->nr_pending);
1224                         blocked_rdev = rdev;
1225                         break;
1226                 }
1227                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1228                         atomic_inc(&rrdev->nr_pending);
1229                         blocked_rdev = rrdev;
1230                         break;
1231                 }
1232                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1233                         rdev = NULL;
1234                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1235                         rrdev = NULL;
1236
1237                 r10_bio->devs[i].bio = NULL;
1238                 r10_bio->devs[i].repl_bio = NULL;
1239
1240                 if (!rdev && !rrdev) {
1241                         set_bit(R10BIO_Degraded, &r10_bio->state);
1242                         continue;
1243                 }
1244                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1245                         sector_t first_bad;
1246                         sector_t dev_sector = r10_bio->devs[i].addr;
1247                         int bad_sectors;
1248                         int is_bad;
1249
1250                         is_bad = is_badblock(rdev, dev_sector,
1251                                              max_sectors,
1252                                              &first_bad, &bad_sectors);
1253                         if (is_bad < 0) {
1254                                 /* Mustn't write here until the bad block
1255                                  * is acknowledged
1256                                  */
1257                                 atomic_inc(&rdev->nr_pending);
1258                                 set_bit(BlockedBadBlocks, &rdev->flags);
1259                                 blocked_rdev = rdev;
1260                                 break;
1261                         }
1262                         if (is_bad && first_bad <= dev_sector) {
1263                                 /* Cannot write here at all */
1264                                 bad_sectors -= (dev_sector - first_bad);
1265                                 if (bad_sectors < max_sectors)
1266                                         /* Mustn't write more than bad_sectors
1267                                          * to other devices yet
1268                                          */
1269                                         max_sectors = bad_sectors;
1270                                 /* We don't set R10BIO_Degraded as that
1271                                  * only applies if the disk is missing,
1272                                  * so it might be re-added, and we want to
1273                                  * know to recover this chunk.
1274                                  * In this case the device is here, and the
1275                                  * fact that this chunk is not in-sync is
1276                                  * recorded in the bad block log.
1277                                  */
1278                                 continue;
1279                         }
1280                         if (is_bad) {
1281                                 int good_sectors = first_bad - dev_sector;
1282                                 if (good_sectors < max_sectors)
1283                                         max_sectors = good_sectors;
1284                         }
1285                 }
1286                 if (rdev) {
1287                         r10_bio->devs[i].bio = bio;
1288                         atomic_inc(&rdev->nr_pending);
1289                 }
1290                 if (rrdev) {
1291                         r10_bio->devs[i].repl_bio = bio;
1292                         atomic_inc(&rrdev->nr_pending);
1293                 }
1294         }
1295         rcu_read_unlock();
1296
1297         if (unlikely(blocked_rdev)) {
1298                 /* Have to wait for this device to get unblocked, then retry */
1299                 int j;
1300                 int d;
1301
1302                 for (j = 0; j < i; j++) {
1303                         if (r10_bio->devs[j].bio) {
1304                                 d = r10_bio->devs[j].devnum;
1305                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1306                         }
1307                         if (r10_bio->devs[j].repl_bio) {
1308                                 struct md_rdev *rdev;
1309                                 d = r10_bio->devs[j].devnum;
1310                                 rdev = conf->mirrors[d].replacement;
1311                                 if (!rdev) {
1312                                         /* Race with remove_disk */
1313                                         smp_mb();
1314                                         rdev = conf->mirrors[d].rdev;
1315                                 }
1316                                 rdev_dec_pending(rdev, mddev);
1317                         }
1318                 }
1319                 allow_barrier(conf);
1320                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1321                 wait_barrier(conf);
1322                 goto retry_write;
1323         }
1324
1325         if (max_sectors < r10_bio->sectors) {
1326                 /* We are splitting this into multiple parts, so
1327                  * we need to prepare for allocating another r10_bio.
1328                  */
1329                 r10_bio->sectors = max_sectors;
1330                 spin_lock_irq(&conf->device_lock);
1331                 if (bio->bi_phys_segments == 0)
1332                         bio->bi_phys_segments = 2;
1333                 else
1334                         bio->bi_phys_segments++;
1335                 spin_unlock_irq(&conf->device_lock);
1336         }
1337         sectors_handled = r10_bio->sector + max_sectors -
1338                 bio->bi_iter.bi_sector;
1339
1340         atomic_set(&r10_bio->remaining, 1);
1341         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1342
1343         for (i = 0; i < conf->copies; i++) {
1344                 struct bio *mbio;
1345                 int d = r10_bio->devs[i].devnum;
1346                 if (r10_bio->devs[i].bio) {
1347                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1348                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1349                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1350                                  max_sectors);
1351                         r10_bio->devs[i].bio = mbio;
1352
1353                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1354                                            choose_data_offset(r10_bio,
1355                                                               rdev));
1356                         mbio->bi_bdev = rdev->bdev;
1357                         mbio->bi_end_io = raid10_end_write_request;
1358                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1359                         mbio->bi_private = r10_bio;
1360
1361                         atomic_inc(&r10_bio->remaining);
1362
1363                         cb = blk_check_plugged(raid10_unplug, mddev,
1364                                                sizeof(*plug));
1365                         if (cb)
1366                                 plug = container_of(cb, struct raid10_plug_cb,
1367                                                     cb);
1368                         else
1369                                 plug = NULL;
1370                         spin_lock_irqsave(&conf->device_lock, flags);
1371                         if (plug) {
1372                                 bio_list_add(&plug->pending, mbio);
1373                                 plug->pending_cnt++;
1374                         } else {
1375                                 bio_list_add(&conf->pending_bio_list, mbio);
1376                                 conf->pending_count++;
1377                         }
1378                         spin_unlock_irqrestore(&conf->device_lock, flags);
1379                         if (!plug)
1380                                 md_wakeup_thread(mddev->thread);
1381                 }
1382
1383                 if (r10_bio->devs[i].repl_bio) {
1384                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1385                         if (rdev == NULL) {
1386                                 /* Replacement just got moved to main 'rdev' */
1387                                 smp_mb();
1388                                 rdev = conf->mirrors[d].rdev;
1389                         }
1390                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1391                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1392                                  max_sectors);
1393                         r10_bio->devs[i].repl_bio = mbio;
1394
1395                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1396                                            choose_data_offset(
1397                                                    r10_bio, rdev));
1398                         mbio->bi_bdev = rdev->bdev;
1399                         mbio->bi_end_io = raid10_end_write_request;
1400                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1401                         mbio->bi_private = r10_bio;
1402
1403                         atomic_inc(&r10_bio->remaining);
1404                         spin_lock_irqsave(&conf->device_lock, flags);
1405                         bio_list_add(&conf->pending_bio_list, mbio);
1406                         conf->pending_count++;
1407                         spin_unlock_irqrestore(&conf->device_lock, flags);
1408                         if (!mddev_check_plugged(mddev))
1409                                 md_wakeup_thread(mddev->thread);
1410                 }
1411         }
1412
1413         /* Don't remove the bias on 'remaining' (one_write_done) until
1414          * after checking if we need to go around again.
1415          */
1416
1417         if (sectors_handled < bio_sectors(bio)) {
1418                 one_write_done(r10_bio);
1419                 /* We need another r10_bio.  It has already been counted
1420                  * in bio->bi_phys_segments.
1421                  */
1422                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1423
1424                 r10_bio->master_bio = bio;
1425                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1426
1427                 r10_bio->mddev = mddev;
1428                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1429                 r10_bio->state = 0;
1430                 goto retry_write;
1431         }
1432         one_write_done(r10_bio);
1433 }
1434
1435 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1436 {
1437         struct r10conf *conf = mddev->private;
1438         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1439         int chunk_sects = chunk_mask + 1;
1440
1441         struct bio *split;
1442
1443         if (unlikely(bio->bi_rw & REQ_PREFLUSH)) {
1444                 md_flush_request(mddev, bio);
1445                 return;
1446         }
1447
1448         md_write_start(mddev, bio);
1449
1450         do {
1451
1452                 /*
1453                  * If this request crosses a chunk boundary, we need to split
1454                  * it.
1455                  */
1456                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457                              bio_sectors(bio) > chunk_sects
1458                              && (conf->geo.near_copies < conf->geo.raid_disks
1459                                  || conf->prev.near_copies <
1460                                  conf->prev.raid_disks))) {
1461                         split = bio_split(bio, chunk_sects -
1462                                           (bio->bi_iter.bi_sector &
1463                                            (chunk_sects - 1)),
1464                                           GFP_NOIO, fs_bio_set);
1465                         bio_chain(split, bio);
1466                 } else {
1467                         split = bio;
1468                 }
1469
1470                 __make_request(mddev, split);
1471         } while (split != bio);
1472
1473         /* In case raid10d snuck in to freeze_array */
1474         wake_up(&conf->wait_barrier);
1475 }
1476
1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1478 {
1479         struct r10conf *conf = mddev->private;
1480         int i;
1481
1482         if (conf->geo.near_copies < conf->geo.raid_disks)
1483                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1484         if (conf->geo.near_copies > 1)
1485                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486         if (conf->geo.far_copies > 1) {
1487                 if (conf->geo.far_offset)
1488                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1489                 else
1490                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1491                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1492                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1493         }
1494         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495                                         conf->geo.raid_disks - mddev->degraded);
1496         rcu_read_lock();
1497         for (i = 0; i < conf->geo.raid_disks; i++) {
1498                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1500         }
1501         rcu_read_unlock();
1502         seq_printf(seq, "]");
1503 }
1504
1505 /* check if there are enough drives for
1506  * every block to appear on atleast one.
1507  * Don't consider the device numbered 'ignore'
1508  * as we might be about to remove it.
1509  */
1510 static int _enough(struct r10conf *conf, int previous, int ignore)
1511 {
1512         int first = 0;
1513         int has_enough = 0;
1514         int disks, ncopies;
1515         if (previous) {
1516                 disks = conf->prev.raid_disks;
1517                 ncopies = conf->prev.near_copies;
1518         } else {
1519                 disks = conf->geo.raid_disks;
1520                 ncopies = conf->geo.near_copies;
1521         }
1522
1523         rcu_read_lock();
1524         do {
1525                 int n = conf->copies;
1526                 int cnt = 0;
1527                 int this = first;
1528                 while (n--) {
1529                         struct md_rdev *rdev;
1530                         if (this != ignore &&
1531                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532                             test_bit(In_sync, &rdev->flags))
1533                                 cnt++;
1534                         this = (this+1) % disks;
1535                 }
1536                 if (cnt == 0)
1537                         goto out;
1538                 first = (first + ncopies) % disks;
1539         } while (first != 0);
1540         has_enough = 1;
1541 out:
1542         rcu_read_unlock();
1543         return has_enough;
1544 }
1545
1546 static int enough(struct r10conf *conf, int ignore)
1547 {
1548         /* when calling 'enough', both 'prev' and 'geo' must
1549          * be stable.
1550          * This is ensured if ->reconfig_mutex or ->device_lock
1551          * is held.
1552          */
1553         return _enough(conf, 0, ignore) &&
1554                 _enough(conf, 1, ignore);
1555 }
1556
1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1558 {
1559         char b[BDEVNAME_SIZE];
1560         struct r10conf *conf = mddev->private;
1561         unsigned long flags;
1562
1563         /*
1564          * If it is not operational, then we have already marked it as dead
1565          * else if it is the last working disks, ignore the error, let the
1566          * next level up know.
1567          * else mark the drive as failed
1568          */
1569         spin_lock_irqsave(&conf->device_lock, flags);
1570         if (test_bit(In_sync, &rdev->flags)
1571             && !enough(conf, rdev->raid_disk)) {
1572                 /*
1573                  * Don't fail the drive, just return an IO error.
1574                  */
1575                 spin_unlock_irqrestore(&conf->device_lock, flags);
1576                 return;
1577         }
1578         if (test_and_clear_bit(In_sync, &rdev->flags))
1579                 mddev->degraded++;
1580         /*
1581          * If recovery is running, make sure it aborts.
1582          */
1583         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1584         set_bit(Blocked, &rdev->flags);
1585         set_bit(Faulty, &rdev->flags);
1586         set_mask_bits(&mddev->flags, 0,
1587                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1588         spin_unlock_irqrestore(&conf->device_lock, flags);
1589         printk(KERN_ALERT
1590                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591                "md/raid10:%s: Operation continuing on %d devices.\n",
1592                mdname(mddev), bdevname(rdev->bdev, b),
1593                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1594 }
1595
1596 static void print_conf(struct r10conf *conf)
1597 {
1598         int i;
1599         struct md_rdev *rdev;
1600
1601         printk(KERN_DEBUG "RAID10 conf printout:\n");
1602         if (!conf) {
1603                 printk(KERN_DEBUG "(!conf)\n");
1604                 return;
1605         }
1606         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607                 conf->geo.raid_disks);
1608
1609         /* This is only called with ->reconfix_mutex held, so
1610          * rcu protection of rdev is not needed */
1611         for (i = 0; i < conf->geo.raid_disks; i++) {
1612                 char b[BDEVNAME_SIZE];
1613                 rdev = conf->mirrors[i].rdev;
1614                 if (rdev)
1615                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616                                 i, !test_bit(In_sync, &rdev->flags),
1617                                 !test_bit(Faulty, &rdev->flags),
1618                                 bdevname(rdev->bdev,b));
1619         }
1620 }
1621
1622 static void close_sync(struct r10conf *conf)
1623 {
1624         wait_barrier(conf);
1625         allow_barrier(conf);
1626
1627         mempool_destroy(conf->r10buf_pool);
1628         conf->r10buf_pool = NULL;
1629 }
1630
1631 static int raid10_spare_active(struct mddev *mddev)
1632 {
1633         int i;
1634         struct r10conf *conf = mddev->private;
1635         struct raid10_info *tmp;
1636         int count = 0;
1637         unsigned long flags;
1638
1639         /*
1640          * Find all non-in_sync disks within the RAID10 configuration
1641          * and mark them in_sync
1642          */
1643         for (i = 0; i < conf->geo.raid_disks; i++) {
1644                 tmp = conf->mirrors + i;
1645                 if (tmp->replacement
1646                     && tmp->replacement->recovery_offset == MaxSector
1647                     && !test_bit(Faulty, &tmp->replacement->flags)
1648                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649                         /* Replacement has just become active */
1650                         if (!tmp->rdev
1651                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652                                 count++;
1653                         if (tmp->rdev) {
1654                                 /* Replaced device not technically faulty,
1655                                  * but we need to be sure it gets removed
1656                                  * and never re-added.
1657                                  */
1658                                 set_bit(Faulty, &tmp->rdev->flags);
1659                                 sysfs_notify_dirent_safe(
1660                                         tmp->rdev->sysfs_state);
1661                         }
1662                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663                 } else if (tmp->rdev
1664                            && tmp->rdev->recovery_offset == MaxSector
1665                            && !test_bit(Faulty, &tmp->rdev->flags)
1666                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667                         count++;
1668                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1669                 }
1670         }
1671         spin_lock_irqsave(&conf->device_lock, flags);
1672         mddev->degraded -= count;
1673         spin_unlock_irqrestore(&conf->device_lock, flags);
1674
1675         print_conf(conf);
1676         return count;
1677 }
1678
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681         struct r10conf *conf = mddev->private;
1682         int err = -EEXIST;
1683         int mirror;
1684         int first = 0;
1685         int last = conf->geo.raid_disks - 1;
1686
1687         if (mddev->recovery_cp < MaxSector)
1688                 /* only hot-add to in-sync arrays, as recovery is
1689                  * very different from resync
1690                  */
1691                 return -EBUSY;
1692         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693                 return -EINVAL;
1694
1695         if (md_integrity_add_rdev(rdev, mddev))
1696                 return -ENXIO;
1697
1698         if (rdev->raid_disk >= 0)
1699                 first = last = rdev->raid_disk;
1700
1701         if (rdev->saved_raid_disk >= first &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 mirror = rdev->saved_raid_disk;
1704         else
1705                 mirror = first;
1706         for ( ; mirror <= last ; mirror++) {
1707                 struct raid10_info *p = &conf->mirrors[mirror];
1708                 if (p->recovery_disabled == mddev->recovery_disabled)
1709                         continue;
1710                 if (p->rdev) {
1711                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712                             p->replacement != NULL)
1713                                 continue;
1714                         clear_bit(In_sync, &rdev->flags);
1715                         set_bit(Replacement, &rdev->flags);
1716                         rdev->raid_disk = mirror;
1717                         err = 0;
1718                         if (mddev->gendisk)
1719                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720                                                   rdev->data_offset << 9);
1721                         conf->fullsync = 1;
1722                         rcu_assign_pointer(p->replacement, rdev);
1723                         break;
1724                 }
1725
1726                 if (mddev->gendisk)
1727                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1728                                           rdev->data_offset << 9);
1729
1730                 p->head_position = 0;
1731                 p->recovery_disabled = mddev->recovery_disabled - 1;
1732                 rdev->raid_disk = mirror;
1733                 err = 0;
1734                 if (rdev->saved_raid_disk != mirror)
1735                         conf->fullsync = 1;
1736                 rcu_assign_pointer(p->rdev, rdev);
1737                 break;
1738         }
1739         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741
1742         print_conf(conf);
1743         return err;
1744 }
1745
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748         struct r10conf *conf = mddev->private;
1749         int err = 0;
1750         int number = rdev->raid_disk;
1751         struct md_rdev **rdevp;
1752         struct raid10_info *p = conf->mirrors + number;
1753
1754         print_conf(conf);
1755         if (rdev == p->rdev)
1756                 rdevp = &p->rdev;
1757         else if (rdev == p->replacement)
1758                 rdevp = &p->replacement;
1759         else
1760                 return 0;
1761
1762         if (test_bit(In_sync, &rdev->flags) ||
1763             atomic_read(&rdev->nr_pending)) {
1764                 err = -EBUSY;
1765                 goto abort;
1766         }
1767         /* Only remove non-faulty devices if recovery
1768          * is not possible.
1769          */
1770         if (!test_bit(Faulty, &rdev->flags) &&
1771             mddev->recovery_disabled != p->recovery_disabled &&
1772             (!p->replacement || p->replacement == rdev) &&
1773             number < conf->geo.raid_disks &&
1774             enough(conf, -1)) {
1775                 err = -EBUSY;
1776                 goto abort;
1777         }
1778         *rdevp = NULL;
1779         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780                 synchronize_rcu();
1781                 if (atomic_read(&rdev->nr_pending)) {
1782                         /* lost the race, try later */
1783                         err = -EBUSY;
1784                         *rdevp = rdev;
1785                         goto abort;
1786                 }
1787         }
1788         if (p->replacement) {
1789                 /* We must have just cleared 'rdev' */
1790                 p->rdev = p->replacement;
1791                 clear_bit(Replacement, &p->replacement->flags);
1792                 smp_mb(); /* Make sure other CPUs may see both as identical
1793                            * but will never see neither -- if they are careful.
1794                            */
1795                 p->replacement = NULL;
1796                 clear_bit(WantReplacement, &rdev->flags);
1797         } else
1798                 /* We might have just remove the Replacement as faulty
1799                  * Clear the flag just in case
1800                  */
1801                 clear_bit(WantReplacement, &rdev->flags);
1802
1803         err = md_integrity_register(mddev);
1804
1805 abort:
1806
1807         print_conf(conf);
1808         return err;
1809 }
1810
1811 static void end_sync_read(struct bio *bio)
1812 {
1813         struct r10bio *r10_bio = bio->bi_private;
1814         struct r10conf *conf = r10_bio->mddev->private;
1815         int d;
1816
1817         if (bio == r10_bio->master_bio) {
1818                 /* this is a reshape read */
1819                 d = r10_bio->read_slot; /* really the read dev */
1820         } else
1821                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1822
1823         if (!bio->bi_error)
1824                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1825         else
1826                 /* The write handler will notice the lack of
1827                  * R10BIO_Uptodate and record any errors etc
1828                  */
1829                 atomic_add(r10_bio->sectors,
1830                            &conf->mirrors[d].rdev->corrected_errors);
1831
1832         /* for reconstruct, we always reschedule after a read.
1833          * for resync, only after all reads
1834          */
1835         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837             atomic_dec_and_test(&r10_bio->remaining)) {
1838                 /* we have read all the blocks,
1839                  * do the comparison in process context in raid10d
1840                  */
1841                 reschedule_retry(r10_bio);
1842         }
1843 }
1844
1845 static void end_sync_request(struct r10bio *r10_bio)
1846 {
1847         struct mddev *mddev = r10_bio->mddev;
1848
1849         while (atomic_dec_and_test(&r10_bio->remaining)) {
1850                 if (r10_bio->master_bio == NULL) {
1851                         /* the primary of several recovery bios */
1852                         sector_t s = r10_bio->sectors;
1853                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854                             test_bit(R10BIO_WriteError, &r10_bio->state))
1855                                 reschedule_retry(r10_bio);
1856                         else
1857                                 put_buf(r10_bio);
1858                         md_done_sync(mddev, s, 1);
1859                         break;
1860                 } else {
1861                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863                             test_bit(R10BIO_WriteError, &r10_bio->state))
1864                                 reschedule_retry(r10_bio);
1865                         else
1866                                 put_buf(r10_bio);
1867                         r10_bio = r10_bio2;
1868                 }
1869         }
1870 }
1871
1872 static void end_sync_write(struct bio *bio)
1873 {
1874         struct r10bio *r10_bio = bio->bi_private;
1875         struct mddev *mddev = r10_bio->mddev;
1876         struct r10conf *conf = mddev->private;
1877         int d;
1878         sector_t first_bad;
1879         int bad_sectors;
1880         int slot;
1881         int repl;
1882         struct md_rdev *rdev = NULL;
1883
1884         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885         if (repl)
1886                 rdev = conf->mirrors[d].replacement;
1887         else
1888                 rdev = conf->mirrors[d].rdev;
1889
1890         if (bio->bi_error) {
1891                 if (repl)
1892                         md_error(mddev, rdev);
1893                 else {
1894                         set_bit(WriteErrorSeen, &rdev->flags);
1895                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896                                 set_bit(MD_RECOVERY_NEEDED,
1897                                         &rdev->mddev->recovery);
1898                         set_bit(R10BIO_WriteError, &r10_bio->state);
1899                 }
1900         } else if (is_badblock(rdev,
1901                              r10_bio->devs[slot].addr,
1902                              r10_bio->sectors,
1903                              &first_bad, &bad_sectors))
1904                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1905
1906         rdev_dec_pending(rdev, mddev);
1907
1908         end_sync_request(r10_bio);
1909 }
1910
1911 /*
1912  * Note: sync and recover and handled very differently for raid10
1913  * This code is for resync.
1914  * For resync, we read through virtual addresses and read all blocks.
1915  * If there is any error, we schedule a write.  The lowest numbered
1916  * drive is authoritative.
1917  * However requests come for physical address, so we need to map.
1918  * For every physical address there are raid_disks/copies virtual addresses,
1919  * which is always are least one, but is not necessarly an integer.
1920  * This means that a physical address can span multiple chunks, so we may
1921  * have to submit multiple io requests for a single sync request.
1922  */
1923 /*
1924  * We check if all blocks are in-sync and only write to blocks that
1925  * aren't in sync
1926  */
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1928 {
1929         struct r10conf *conf = mddev->private;
1930         int i, first;
1931         struct bio *tbio, *fbio;
1932         int vcnt;
1933
1934         atomic_set(&r10_bio->remaining, 1);
1935
1936         /* find the first device with a block */
1937         for (i=0; i<conf->copies; i++)
1938                 if (!r10_bio->devs[i].bio->bi_error)
1939                         break;
1940
1941         if (i == conf->copies)
1942                 goto done;
1943
1944         first = i;
1945         fbio = r10_bio->devs[i].bio;
1946         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947         fbio->bi_iter.bi_idx = 0;
1948
1949         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1950         /* now find blocks with errors */
1951         for (i=0 ; i < conf->copies ; i++) {
1952                 int  j, d;
1953
1954                 tbio = r10_bio->devs[i].bio;
1955
1956                 if (tbio->bi_end_io != end_sync_read)
1957                         continue;
1958                 if (i == first)
1959                         continue;
1960                 if (!r10_bio->devs[i].bio->bi_error) {
1961                         /* We know that the bi_io_vec layout is the same for
1962                          * both 'first' and 'i', so we just compare them.
1963                          * All vec entries are PAGE_SIZE;
1964                          */
1965                         int sectors = r10_bio->sectors;
1966                         for (j = 0; j < vcnt; j++) {
1967                                 int len = PAGE_SIZE;
1968                                 if (sectors < (len / 512))
1969                                         len = sectors * 512;
1970                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971                                            page_address(tbio->bi_io_vec[j].bv_page),
1972                                            len))
1973                                         break;
1974                                 sectors -= len/512;
1975                         }
1976                         if (j == vcnt)
1977                                 continue;
1978                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1979                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980                                 /* Don't fix anything. */
1981                                 continue;
1982                 }
1983                 /* Ok, we need to write this bio, either to correct an
1984                  * inconsistency or to correct an unreadable block.
1985                  * First we need to fixup bv_offset, bv_len and
1986                  * bi_vecs, as the read request might have corrupted these
1987                  */
1988                 bio_reset(tbio);
1989
1990                 tbio->bi_vcnt = vcnt;
1991                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1992                 tbio->bi_private = r10_bio;
1993                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994                 tbio->bi_end_io = end_sync_write;
1995                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1996
1997                 bio_copy_data(tbio, fbio);
1998
1999                 d = r10_bio->devs[i].devnum;
2000                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001                 atomic_inc(&r10_bio->remaining);
2002                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2003
2004                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2005                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006                 generic_make_request(tbio);
2007         }
2008
2009         /* Now write out to any replacement devices
2010          * that are active
2011          */
2012         for (i = 0; i < conf->copies; i++) {
2013                 int d;
2014
2015                 tbio = r10_bio->devs[i].repl_bio;
2016                 if (!tbio || !tbio->bi_end_io)
2017                         continue;
2018                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019                     && r10_bio->devs[i].bio != fbio)
2020                         bio_copy_data(tbio, fbio);
2021                 d = r10_bio->devs[i].devnum;
2022                 atomic_inc(&r10_bio->remaining);
2023                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2024                              bio_sectors(tbio));
2025                 generic_make_request(tbio);
2026         }
2027
2028 done:
2029         if (atomic_dec_and_test(&r10_bio->remaining)) {
2030                 md_done_sync(mddev, r10_bio->sectors, 1);
2031                 put_buf(r10_bio);
2032         }
2033 }
2034
2035 /*
2036  * Now for the recovery code.
2037  * Recovery happens across physical sectors.
2038  * We recover all non-is_sync drives by finding the virtual address of
2039  * each, and then choose a working drive that also has that virt address.
2040  * There is a separate r10_bio for each non-in_sync drive.
2041  * Only the first two slots are in use. The first for reading,
2042  * The second for writing.
2043  *
2044  */
2045 static void fix_recovery_read_error(struct r10bio *r10_bio)
2046 {
2047         /* We got a read error during recovery.
2048          * We repeat the read in smaller page-sized sections.
2049          * If a read succeeds, write it to the new device or record
2050          * a bad block if we cannot.
2051          * If a read fails, record a bad block on both old and
2052          * new devices.
2053          */
2054         struct mddev *mddev = r10_bio->mddev;
2055         struct r10conf *conf = mddev->private;
2056         struct bio *bio = r10_bio->devs[0].bio;
2057         sector_t sect = 0;
2058         int sectors = r10_bio->sectors;
2059         int idx = 0;
2060         int dr = r10_bio->devs[0].devnum;
2061         int dw = r10_bio->devs[1].devnum;
2062
2063         while (sectors) {
2064                 int s = sectors;
2065                 struct md_rdev *rdev;
2066                 sector_t addr;
2067                 int ok;
2068
2069                 if (s > (PAGE_SIZE>>9))
2070                         s = PAGE_SIZE >> 9;
2071
2072                 rdev = conf->mirrors[dr].rdev;
2073                 addr = r10_bio->devs[0].addr + sect,
2074                 ok = sync_page_io(rdev,
2075                                   addr,
2076                                   s << 9,
2077                                   bio->bi_io_vec[idx].bv_page,
2078                                   REQ_OP_READ, 0, false);
2079                 if (ok) {
2080                         rdev = conf->mirrors[dw].rdev;
2081                         addr = r10_bio->devs[1].addr + sect;
2082                         ok = sync_page_io(rdev,
2083                                           addr,
2084                                           s << 9,
2085                                           bio->bi_io_vec[idx].bv_page,
2086                                           REQ_OP_WRITE, 0, false);
2087                         if (!ok) {
2088                                 set_bit(WriteErrorSeen, &rdev->flags);
2089                                 if (!test_and_set_bit(WantReplacement,
2090                                                       &rdev->flags))
2091                                         set_bit(MD_RECOVERY_NEEDED,
2092                                                 &rdev->mddev->recovery);
2093                         }
2094                 }
2095                 if (!ok) {
2096                         /* We don't worry if we cannot set a bad block -
2097                          * it really is bad so there is no loss in not
2098                          * recording it yet
2099                          */
2100                         rdev_set_badblocks(rdev, addr, s, 0);
2101
2102                         if (rdev != conf->mirrors[dw].rdev) {
2103                                 /* need bad block on destination too */
2104                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2105                                 addr = r10_bio->devs[1].addr + sect;
2106                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107                                 if (!ok) {
2108                                         /* just abort the recovery */
2109                                         printk(KERN_NOTICE
2110                                                "md/raid10:%s: recovery aborted"
2111                                                " due to read error\n",
2112                                                mdname(mddev));
2113
2114                                         conf->mirrors[dw].recovery_disabled
2115                                                 = mddev->recovery_disabled;
2116                                         set_bit(MD_RECOVERY_INTR,
2117                                                 &mddev->recovery);
2118                                         break;
2119                                 }
2120                         }
2121                 }
2122
2123                 sectors -= s;
2124                 sect += s;
2125                 idx++;
2126         }
2127 }
2128
2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2130 {
2131         struct r10conf *conf = mddev->private;
2132         int d;
2133         struct bio *wbio, *wbio2;
2134
2135         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136                 fix_recovery_read_error(r10_bio);
2137                 end_sync_request(r10_bio);
2138                 return;
2139         }
2140
2141         /*
2142          * share the pages with the first bio
2143          * and submit the write request
2144          */
2145         d = r10_bio->devs[1].devnum;
2146         wbio = r10_bio->devs[1].bio;
2147         wbio2 = r10_bio->devs[1].repl_bio;
2148         /* Need to test wbio2->bi_end_io before we call
2149          * generic_make_request as if the former is NULL,
2150          * the latter is free to free wbio2.
2151          */
2152         if (wbio2 && !wbio2->bi_end_io)
2153                 wbio2 = NULL;
2154         if (wbio->bi_end_io) {
2155                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2157                 generic_make_request(wbio);
2158         }
2159         if (wbio2) {
2160                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2162                              bio_sectors(wbio2));
2163                 generic_make_request(wbio2);
2164         }
2165 }
2166
2167 /*
2168  * Used by fix_read_error() to decay the per rdev read_errors.
2169  * We halve the read error count for every hour that has elapsed
2170  * since the last recorded read error.
2171  *
2172  */
2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2174 {
2175         long cur_time_mon;
2176         unsigned long hours_since_last;
2177         unsigned int read_errors = atomic_read(&rdev->read_errors);
2178
2179         cur_time_mon = ktime_get_seconds();
2180
2181         if (rdev->last_read_error == 0) {
2182                 /* first time we've seen a read error */
2183                 rdev->last_read_error = cur_time_mon;
2184                 return;
2185         }
2186
2187         hours_since_last = (long)(cur_time_mon -
2188                             rdev->last_read_error) / 3600;
2189
2190         rdev->last_read_error = cur_time_mon;
2191
2192         /*
2193          * if hours_since_last is > the number of bits in read_errors
2194          * just set read errors to 0. We do this to avoid
2195          * overflowing the shift of read_errors by hours_since_last.
2196          */
2197         if (hours_since_last >= 8 * sizeof(read_errors))
2198                 atomic_set(&rdev->read_errors, 0);
2199         else
2200                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204                             int sectors, struct page *page, int rw)
2205 {
2206         sector_t first_bad;
2207         int bad_sectors;
2208
2209         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211                 return -1;
2212         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213                 /* success */
2214                 return 1;
2215         if (rw == WRITE) {
2216                 set_bit(WriteErrorSeen, &rdev->flags);
2217                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218                         set_bit(MD_RECOVERY_NEEDED,
2219                                 &rdev->mddev->recovery);
2220         }
2221         /* need to record an error - either for the block or the device */
2222         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223                 md_error(rdev->mddev, rdev);
2224         return 0;
2225 }
2226
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *      1.      Retries failed read operations on working mirrors.
2231  *      2.      Updates the raid superblock when problems encounter.
2232  *      3.      Performs writes following reads for array synchronising.
2233  */
2234
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237         int sect = 0; /* Offset from r10_bio->sector */
2238         int sectors = r10_bio->sectors;
2239         struct md_rdev*rdev;
2240         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242
2243         /* still own a reference to this rdev, so it cannot
2244          * have been cleared recently.
2245          */
2246         rdev = conf->mirrors[d].rdev;
2247
2248         if (test_bit(Faulty, &rdev->flags))
2249                 /* drive has already been failed, just ignore any
2250                    more fix_read_error() attempts */
2251                 return;
2252
2253         check_decay_read_errors(mddev, rdev);
2254         atomic_inc(&rdev->read_errors);
2255         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256                 char b[BDEVNAME_SIZE];
2257                 bdevname(rdev->bdev, b);
2258
2259                 printk(KERN_NOTICE
2260                        "md/raid10:%s: %s: Raid device exceeded "
2261                        "read_error threshold [cur %d:max %d]\n",
2262                        mdname(mddev), b,
2263                        atomic_read(&rdev->read_errors), max_read_errors);
2264                 printk(KERN_NOTICE
2265                        "md/raid10:%s: %s: Failing raid device\n",
2266                        mdname(mddev), b);
2267                 md_error(mddev, rdev);
2268                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269                 return;
2270         }
2271
2272         while(sectors) {
2273                 int s = sectors;
2274                 int sl = r10_bio->read_slot;
2275                 int success = 0;
2276                 int start;
2277
2278                 if (s > (PAGE_SIZE>>9))
2279                         s = PAGE_SIZE >> 9;
2280
2281                 rcu_read_lock();
2282                 do {
2283                         sector_t first_bad;
2284                         int bad_sectors;
2285
2286                         d = r10_bio->devs[sl].devnum;
2287                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2288                         if (rdev &&
2289                             test_bit(In_sync, &rdev->flags) &&
2290                             !test_bit(Faulty, &rdev->flags) &&
2291                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292                                         &first_bad, &bad_sectors) == 0) {
2293                                 atomic_inc(&rdev->nr_pending);
2294                                 rcu_read_unlock();
2295                                 success = sync_page_io(rdev,
2296                                                        r10_bio->devs[sl].addr +
2297                                                        sect,
2298                                                        s<<9,
2299                                                        conf->tmppage,
2300                                                        REQ_OP_READ, 0, false);
2301                                 rdev_dec_pending(rdev, mddev);
2302                                 rcu_read_lock();
2303                                 if (success)
2304                                         break;
2305                         }
2306                         sl++;
2307                         if (sl == conf->copies)
2308                                 sl = 0;
2309                 } while (!success && sl != r10_bio->read_slot);
2310                 rcu_read_unlock();
2311
2312                 if (!success) {
2313                         /* Cannot read from anywhere, just mark the block
2314                          * as bad on the first device to discourage future
2315                          * reads.
2316                          */
2317                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318                         rdev = conf->mirrors[dn].rdev;
2319
2320                         if (!rdev_set_badblocks(
2321                                     rdev,
2322                                     r10_bio->devs[r10_bio->read_slot].addr
2323                                     + sect,
2324                                     s, 0)) {
2325                                 md_error(mddev, rdev);
2326                                 r10_bio->devs[r10_bio->read_slot].bio
2327                                         = IO_BLOCKED;
2328                         }
2329                         break;
2330                 }
2331
2332                 start = sl;
2333                 /* write it back and re-read */
2334                 rcu_read_lock();
2335                 while (sl != r10_bio->read_slot) {
2336                         char b[BDEVNAME_SIZE];
2337
2338                         if (sl==0)
2339                                 sl = conf->copies;
2340                         sl--;
2341                         d = r10_bio->devs[sl].devnum;
2342                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2343                         if (!rdev ||
2344                             test_bit(Faulty, &rdev->flags) ||
2345                             !test_bit(In_sync, &rdev->flags))
2346                                 continue;
2347
2348                         atomic_inc(&rdev->nr_pending);
2349                         rcu_read_unlock();
2350                         if (r10_sync_page_io(rdev,
2351                                              r10_bio->devs[sl].addr +
2352                                              sect,
2353                                              s, conf->tmppage, WRITE)
2354                             == 0) {
2355                                 /* Well, this device is dead */
2356                                 printk(KERN_NOTICE
2357                                        "md/raid10:%s: read correction "
2358                                        "write failed"
2359                                        " (%d sectors at %llu on %s)\n",
2360                                        mdname(mddev), s,
2361                                        (unsigned long long)(
2362                                                sect +
2363                                                choose_data_offset(r10_bio,
2364                                                                   rdev)),
2365                                        bdevname(rdev->bdev, b));
2366                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367                                        "drive\n",
2368                                        mdname(mddev),
2369                                        bdevname(rdev->bdev, b));
2370                         }
2371                         rdev_dec_pending(rdev, mddev);
2372                         rcu_read_lock();
2373                 }
2374                 sl = start;
2375                 while (sl != r10_bio->read_slot) {
2376                         char b[BDEVNAME_SIZE];
2377
2378                         if (sl==0)
2379                                 sl = conf->copies;
2380                         sl--;
2381                         d = r10_bio->devs[sl].devnum;
2382                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2383                         if (!rdev ||
2384                             test_bit(Faulty, &rdev->flags) ||
2385                             !test_bit(In_sync, &rdev->flags))
2386                                 continue;
2387
2388                         atomic_inc(&rdev->nr_pending);
2389                         rcu_read_unlock();
2390                         switch (r10_sync_page_io(rdev,
2391                                              r10_bio->devs[sl].addr +
2392                                              sect,
2393                                              s, conf->tmppage,
2394                                                  READ)) {
2395                         case 0:
2396                                 /* Well, this device is dead */
2397                                 printk(KERN_NOTICE
2398                                        "md/raid10:%s: unable to read back "
2399                                        "corrected sectors"
2400                                        " (%d sectors at %llu on %s)\n",
2401                                        mdname(mddev), s,
2402                                        (unsigned long long)(
2403                                                sect +
2404                                                choose_data_offset(r10_bio, rdev)),
2405                                        bdevname(rdev->bdev, b));
2406                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407                                        "drive\n",
2408                                        mdname(mddev),
2409                                        bdevname(rdev->bdev, b));
2410                                 break;
2411                         case 1:
2412                                 printk(KERN_INFO
2413                                        "md/raid10:%s: read error corrected"
2414                                        " (%d sectors at %llu on %s)\n",
2415                                        mdname(mddev), s,
2416                                        (unsigned long long)(
2417                                                sect +
2418                                                choose_data_offset(r10_bio, rdev)),
2419                                        bdevname(rdev->bdev, b));
2420                                 atomic_add(s, &rdev->corrected_errors);
2421                         }
2422
2423                         rdev_dec_pending(rdev, mddev);
2424                         rcu_read_lock();
2425                 }
2426                 rcu_read_unlock();
2427
2428                 sectors -= s;
2429                 sect += s;
2430         }
2431 }
2432
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435         struct bio *bio = r10_bio->master_bio;
2436         struct mddev *mddev = r10_bio->mddev;
2437         struct r10conf *conf = mddev->private;
2438         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439         /* bio has the data to be written to slot 'i' where
2440          * we just recently had a write error.
2441          * We repeatedly clone the bio and trim down to one block,
2442          * then try the write.  Where the write fails we record
2443          * a bad block.
2444          * It is conceivable that the bio doesn't exactly align with
2445          * blocks.  We must handle this.
2446          *
2447          * We currently own a reference to the rdev.
2448          */
2449
2450         int block_sectors;
2451         sector_t sector;
2452         int sectors;
2453         int sect_to_write = r10_bio->sectors;
2454         int ok = 1;
2455
2456         if (rdev->badblocks.shift < 0)
2457                 return 0;
2458
2459         block_sectors = roundup(1 << rdev->badblocks.shift,
2460                                 bdev_logical_block_size(rdev->bdev) >> 9);
2461         sector = r10_bio->sector;
2462         sectors = ((r10_bio->sector + block_sectors)
2463                    & ~(sector_t)(block_sectors - 1))
2464                 - sector;
2465
2466         while (sect_to_write) {
2467                 struct bio *wbio;
2468                 if (sectors > sect_to_write)
2469                         sectors = sect_to_write;
2470                 /* Write at 'sector' for 'sectors' */
2471                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474                                    choose_data_offset(r10_bio, rdev) +
2475                                    (sector - r10_bio->sector));
2476                 wbio->bi_bdev = rdev->bdev;
2477                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2478
2479                 if (submit_bio_wait(wbio) < 0)
2480                         /* Failure! */
2481                         ok = rdev_set_badblocks(rdev, sector,
2482                                                 sectors, 0)
2483                                 && ok;
2484
2485                 bio_put(wbio);
2486                 sect_to_write -= sectors;
2487                 sector += sectors;
2488                 sectors = block_sectors;
2489         }
2490         return ok;
2491 }
2492
2493 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494 {
2495         int slot = r10_bio->read_slot;
2496         struct bio *bio;
2497         struct r10conf *conf = mddev->private;
2498         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499         char b[BDEVNAME_SIZE];
2500         unsigned long do_sync;
2501         int max_sectors;
2502
2503         /* we got a read error. Maybe the drive is bad.  Maybe just
2504          * the block and we can fix it.
2505          * We freeze all other IO, and try reading the block from
2506          * other devices.  When we find one, we re-write
2507          * and check it that fixes the read error.
2508          * This is all done synchronously while the array is
2509          * frozen.
2510          */
2511         bio = r10_bio->devs[slot].bio;
2512         bdevname(bio->bi_bdev, b);
2513         bio_put(bio);
2514         r10_bio->devs[slot].bio = NULL;
2515
2516         if (mddev->ro == 0) {
2517                 freeze_array(conf, 1);
2518                 fix_read_error(conf, mddev, r10_bio);
2519                 unfreeze_array(conf);
2520         } else
2521                 r10_bio->devs[slot].bio = IO_BLOCKED;
2522
2523         rdev_dec_pending(rdev, mddev);
2524
2525 read_more:
2526         rdev = read_balance(conf, r10_bio, &max_sectors);
2527         if (rdev == NULL) {
2528                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529                        " read error for block %llu\n",
2530                        mdname(mddev), b,
2531                        (unsigned long long)r10_bio->sector);
2532                 raid_end_bio_io(r10_bio);
2533                 return;
2534         }
2535
2536         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2537         slot = r10_bio->read_slot;
2538         printk_ratelimited(
2539                 KERN_ERR
2540                 "md/raid10:%s: %s: redirecting "
2541                 "sector %llu to another mirror\n",
2542                 mdname(mddev),
2543                 bdevname(rdev->bdev, b),
2544                 (unsigned long long)r10_bio->sector);
2545         bio = bio_clone_mddev(r10_bio->master_bio,
2546                               GFP_NOIO, mddev);
2547         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2548         r10_bio->devs[slot].bio = bio;
2549         r10_bio->devs[slot].rdev = rdev;
2550         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2551                 + choose_data_offset(r10_bio, rdev);
2552         bio->bi_bdev = rdev->bdev;
2553         bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2554         bio->bi_private = r10_bio;
2555         bio->bi_end_io = raid10_end_read_request;
2556         if (max_sectors < r10_bio->sectors) {
2557                 /* Drat - have to split this up more */
2558                 struct bio *mbio = r10_bio->master_bio;
2559                 int sectors_handled =
2560                         r10_bio->sector + max_sectors
2561                         - mbio->bi_iter.bi_sector;
2562                 r10_bio->sectors = max_sectors;
2563                 spin_lock_irq(&conf->device_lock);
2564                 if (mbio->bi_phys_segments == 0)
2565                         mbio->bi_phys_segments = 2;
2566                 else
2567                         mbio->bi_phys_segments++;
2568                 spin_unlock_irq(&conf->device_lock);
2569                 generic_make_request(bio);
2570
2571                 r10_bio = mempool_alloc(conf->r10bio_pool,
2572                                         GFP_NOIO);
2573                 r10_bio->master_bio = mbio;
2574                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2575                 r10_bio->state = 0;
2576                 set_bit(R10BIO_ReadError,
2577                         &r10_bio->state);
2578                 r10_bio->mddev = mddev;
2579                 r10_bio->sector = mbio->bi_iter.bi_sector
2580                         + sectors_handled;
2581
2582                 goto read_more;
2583         } else
2584                 generic_make_request(bio);
2585 }
2586
2587 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2588 {
2589         /* Some sort of write request has finished and it
2590          * succeeded in writing where we thought there was a
2591          * bad block.  So forget the bad block.
2592          * Or possibly if failed and we need to record
2593          * a bad block.
2594          */
2595         int m;
2596         struct md_rdev *rdev;
2597
2598         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2599             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2600                 for (m = 0; m < conf->copies; m++) {
2601                         int dev = r10_bio->devs[m].devnum;
2602                         rdev = conf->mirrors[dev].rdev;
2603                         if (r10_bio->devs[m].bio == NULL)
2604                                 continue;
2605                         if (!r10_bio->devs[m].bio->bi_error) {
2606                                 rdev_clear_badblocks(
2607                                         rdev,
2608                                         r10_bio->devs[m].addr,
2609                                         r10_bio->sectors, 0);
2610                         } else {
2611                                 if (!rdev_set_badblocks(
2612                                             rdev,
2613                                             r10_bio->devs[m].addr,
2614                                             r10_bio->sectors, 0))
2615                                         md_error(conf->mddev, rdev);
2616                         }
2617                         rdev = conf->mirrors[dev].replacement;
2618                         if (r10_bio->devs[m].repl_bio == NULL)
2619                                 continue;
2620
2621                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2622                                 rdev_clear_badblocks(
2623                                         rdev,
2624                                         r10_bio->devs[m].addr,
2625                                         r10_bio->sectors, 0);
2626                         } else {
2627                                 if (!rdev_set_badblocks(
2628                                             rdev,
2629                                             r10_bio->devs[m].addr,
2630                                             r10_bio->sectors, 0))
2631                                         md_error(conf->mddev, rdev);
2632                         }
2633                 }
2634                 put_buf(r10_bio);
2635         } else {
2636                 bool fail = false;
2637                 for (m = 0; m < conf->copies; m++) {
2638                         int dev = r10_bio->devs[m].devnum;
2639                         struct bio *bio = r10_bio->devs[m].bio;
2640                         rdev = conf->mirrors[dev].rdev;
2641                         if (bio == IO_MADE_GOOD) {
2642                                 rdev_clear_badblocks(
2643                                         rdev,
2644                                         r10_bio->devs[m].addr,
2645                                         r10_bio->sectors, 0);
2646                                 rdev_dec_pending(rdev, conf->mddev);
2647                         } else if (bio != NULL && bio->bi_error) {
2648                                 fail = true;
2649                                 if (!narrow_write_error(r10_bio, m)) {
2650                                         md_error(conf->mddev, rdev);
2651                                         set_bit(R10BIO_Degraded,
2652                                                 &r10_bio->state);
2653                                 }
2654                                 rdev_dec_pending(rdev, conf->mddev);
2655                         }
2656                         bio = r10_bio->devs[m].repl_bio;
2657                         rdev = conf->mirrors[dev].replacement;
2658                         if (rdev && bio == IO_MADE_GOOD) {
2659                                 rdev_clear_badblocks(
2660                                         rdev,
2661                                         r10_bio->devs[m].addr,
2662                                         r10_bio->sectors, 0);
2663                                 rdev_dec_pending(rdev, conf->mddev);
2664                         }
2665                 }
2666                 if (fail) {
2667                         spin_lock_irq(&conf->device_lock);
2668                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2669                         conf->nr_queued++;
2670                         spin_unlock_irq(&conf->device_lock);
2671                         md_wakeup_thread(conf->mddev->thread);
2672                 } else {
2673                         if (test_bit(R10BIO_WriteError,
2674                                      &r10_bio->state))
2675                                 close_write(r10_bio);
2676                         raid_end_bio_io(r10_bio);
2677                 }
2678         }
2679 }
2680
2681 static void raid10d(struct md_thread *thread)
2682 {
2683         struct mddev *mddev = thread->mddev;
2684         struct r10bio *r10_bio;
2685         unsigned long flags;
2686         struct r10conf *conf = mddev->private;
2687         struct list_head *head = &conf->retry_list;
2688         struct blk_plug plug;
2689
2690         md_check_recovery(mddev);
2691
2692         if (!list_empty_careful(&conf->bio_end_io_list) &&
2693             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694                 LIST_HEAD(tmp);
2695                 spin_lock_irqsave(&conf->device_lock, flags);
2696                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2697                         while (!list_empty(&conf->bio_end_io_list)) {
2698                                 list_move(conf->bio_end_io_list.prev, &tmp);
2699                                 conf->nr_queued--;
2700                         }
2701                 }
2702                 spin_unlock_irqrestore(&conf->device_lock, flags);
2703                 while (!list_empty(&tmp)) {
2704                         r10_bio = list_first_entry(&tmp, struct r10bio,
2705                                                    retry_list);
2706                         list_del(&r10_bio->retry_list);
2707                         if (mddev->degraded)
2708                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2709
2710                         if (test_bit(R10BIO_WriteError,
2711                                      &r10_bio->state))
2712                                 close_write(r10_bio);
2713                         raid_end_bio_io(r10_bio);
2714                 }
2715         }
2716
2717         blk_start_plug(&plug);
2718         for (;;) {
2719
2720                 flush_pending_writes(conf);
2721
2722                 spin_lock_irqsave(&conf->device_lock, flags);
2723                 if (list_empty(head)) {
2724                         spin_unlock_irqrestore(&conf->device_lock, flags);
2725                         break;
2726                 }
2727                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2728                 list_del(head->prev);
2729                 conf->nr_queued--;
2730                 spin_unlock_irqrestore(&conf->device_lock, flags);
2731
2732                 mddev = r10_bio->mddev;
2733                 conf = mddev->private;
2734                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2735                     test_bit(R10BIO_WriteError, &r10_bio->state))
2736                         handle_write_completed(conf, r10_bio);
2737                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2738                         reshape_request_write(mddev, r10_bio);
2739                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2740                         sync_request_write(mddev, r10_bio);
2741                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2742                         recovery_request_write(mddev, r10_bio);
2743                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2744                         handle_read_error(mddev, r10_bio);
2745                 else {
2746                         /* just a partial read to be scheduled from a
2747                          * separate context
2748                          */
2749                         int slot = r10_bio->read_slot;
2750                         generic_make_request(r10_bio->devs[slot].bio);
2751                 }
2752
2753                 cond_resched();
2754                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2755                         md_check_recovery(mddev);
2756         }
2757         blk_finish_plug(&plug);
2758 }
2759
2760 static int init_resync(struct r10conf *conf)
2761 {
2762         int buffs;
2763         int i;
2764
2765         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2766         BUG_ON(conf->r10buf_pool);
2767         conf->have_replacement = 0;
2768         for (i = 0; i < conf->geo.raid_disks; i++)
2769                 if (conf->mirrors[i].replacement)
2770                         conf->have_replacement = 1;
2771         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2772         if (!conf->r10buf_pool)
2773                 return -ENOMEM;
2774         conf->next_resync = 0;
2775         return 0;
2776 }
2777
2778 /*
2779  * perform a "sync" on one "block"
2780  *
2781  * We need to make sure that no normal I/O request - particularly write
2782  * requests - conflict with active sync requests.
2783  *
2784  * This is achieved by tracking pending requests and a 'barrier' concept
2785  * that can be installed to exclude normal IO requests.
2786  *
2787  * Resync and recovery are handled very differently.
2788  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2789  *
2790  * For resync, we iterate over virtual addresses, read all copies,
2791  * and update if there are differences.  If only one copy is live,
2792  * skip it.
2793  * For recovery, we iterate over physical addresses, read a good
2794  * value for each non-in_sync drive, and over-write.
2795  *
2796  * So, for recovery we may have several outstanding complex requests for a
2797  * given address, one for each out-of-sync device.  We model this by allocating
2798  * a number of r10_bio structures, one for each out-of-sync device.
2799  * As we setup these structures, we collect all bio's together into a list
2800  * which we then process collectively to add pages, and then process again
2801  * to pass to generic_make_request.
2802  *
2803  * The r10_bio structures are linked using a borrowed master_bio pointer.
2804  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2805  * has its remaining count decremented to 0, the whole complex operation
2806  * is complete.
2807  *
2808  */
2809
2810 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2811                              int *skipped)
2812 {
2813         struct r10conf *conf = mddev->private;
2814         struct r10bio *r10_bio;
2815         struct bio *biolist = NULL, *bio;
2816         sector_t max_sector, nr_sectors;
2817         int i;
2818         int max_sync;
2819         sector_t sync_blocks;
2820         sector_t sectors_skipped = 0;
2821         int chunks_skipped = 0;
2822         sector_t chunk_mask = conf->geo.chunk_mask;
2823
2824         if (!conf->r10buf_pool)
2825                 if (init_resync(conf))
2826                         return 0;
2827
2828         /*
2829          * Allow skipping a full rebuild for incremental assembly
2830          * of a clean array, like RAID1 does.
2831          */
2832         if (mddev->bitmap == NULL &&
2833             mddev->recovery_cp == MaxSector &&
2834             mddev->reshape_position == MaxSector &&
2835             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2837             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2838             conf->fullsync == 0) {
2839                 *skipped = 1;
2840                 return mddev->dev_sectors - sector_nr;
2841         }
2842
2843  skipped:
2844         max_sector = mddev->dev_sectors;
2845         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2846             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2847                 max_sector = mddev->resync_max_sectors;
2848         if (sector_nr >= max_sector) {
2849                 /* If we aborted, we need to abort the
2850                  * sync on the 'current' bitmap chucks (there can
2851                  * be several when recovering multiple devices).
2852                  * as we may have started syncing it but not finished.
2853                  * We can find the current address in
2854                  * mddev->curr_resync, but for recovery,
2855                  * we need to convert that to several
2856                  * virtual addresses.
2857                  */
2858                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2859                         end_reshape(conf);
2860                         close_sync(conf);
2861                         return 0;
2862                 }
2863
2864                 if (mddev->curr_resync < max_sector) { /* aborted */
2865                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2866                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2867                                                 &sync_blocks, 1);
2868                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2869                                 sector_t sect =
2870                                         raid10_find_virt(conf, mddev->curr_resync, i);
2871                                 bitmap_end_sync(mddev->bitmap, sect,
2872                                                 &sync_blocks, 1);
2873                         }
2874                 } else {
2875                         /* completed sync */
2876                         if ((!mddev->bitmap || conf->fullsync)
2877                             && conf->have_replacement
2878                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2879                                 /* Completed a full sync so the replacements
2880                                  * are now fully recovered.
2881                                  */
2882                                 rcu_read_lock();
2883                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2884                                         struct md_rdev *rdev =
2885                                                 rcu_dereference(conf->mirrors[i].replacement);
2886                                         if (rdev)
2887                                                 rdev->recovery_offset = MaxSector;
2888                                 }
2889                                 rcu_read_unlock();
2890                         }
2891                         conf->fullsync = 0;
2892                 }
2893                 bitmap_close_sync(mddev->bitmap);
2894                 close_sync(conf);
2895                 *skipped = 1;
2896                 return sectors_skipped;
2897         }
2898
2899         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2900                 return reshape_request(mddev, sector_nr, skipped);
2901
2902         if (chunks_skipped >= conf->geo.raid_disks) {
2903                 /* if there has been nothing to do on any drive,
2904                  * then there is nothing to do at all..
2905                  */
2906                 *skipped = 1;
2907                 return (max_sector - sector_nr) + sectors_skipped;
2908         }
2909
2910         if (max_sector > mddev->resync_max)
2911                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2912
2913         /* make sure whole request will fit in a chunk - if chunks
2914          * are meaningful
2915          */
2916         if (conf->geo.near_copies < conf->geo.raid_disks &&
2917             max_sector > (sector_nr | chunk_mask))
2918                 max_sector = (sector_nr | chunk_mask) + 1;
2919
2920         /*
2921          * If there is non-resync activity waiting for a turn, then let it
2922          * though before starting on this new sync request.
2923          */
2924         if (conf->nr_waiting)
2925                 schedule_timeout_uninterruptible(1);
2926
2927         /* Again, very different code for resync and recovery.
2928          * Both must result in an r10bio with a list of bios that
2929          * have bi_end_io, bi_sector, bi_bdev set,
2930          * and bi_private set to the r10bio.
2931          * For recovery, we may actually create several r10bios
2932          * with 2 bios in each, that correspond to the bios in the main one.
2933          * In this case, the subordinate r10bios link back through a
2934          * borrowed master_bio pointer, and the counter in the master
2935          * includes a ref from each subordinate.
2936          */
2937         /* First, we decide what to do and set ->bi_end_io
2938          * To end_sync_read if we want to read, and
2939          * end_sync_write if we will want to write.
2940          */
2941
2942         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2943         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2944                 /* recovery... the complicated one */
2945                 int j;
2946                 r10_bio = NULL;
2947
2948                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2949                         int still_degraded;
2950                         struct r10bio *rb2;
2951                         sector_t sect;
2952                         int must_sync;
2953                         int any_working;
2954                         struct raid10_info *mirror = &conf->mirrors[i];
2955                         struct md_rdev *mrdev, *mreplace;
2956
2957                         rcu_read_lock();
2958                         mrdev = rcu_dereference(mirror->rdev);
2959                         mreplace = rcu_dereference(mirror->replacement);
2960
2961                         if ((mrdev == NULL ||
2962                              test_bit(Faulty, &mrdev->flags) ||
2963                              test_bit(In_sync, &mrdev->flags)) &&
2964                             (mreplace == NULL ||
2965                              test_bit(Faulty, &mreplace->flags))) {
2966                                 rcu_read_unlock();
2967                                 continue;
2968                         }
2969
2970                         still_degraded = 0;
2971                         /* want to reconstruct this device */
2972                         rb2 = r10_bio;
2973                         sect = raid10_find_virt(conf, sector_nr, i);
2974                         if (sect >= mddev->resync_max_sectors) {
2975                                 /* last stripe is not complete - don't
2976                                  * try to recover this sector.
2977                                  */
2978                                 rcu_read_unlock();
2979                                 continue;
2980                         }
2981                         if (mreplace && test_bit(Faulty, &mreplace->flags))
2982                                 mreplace = NULL;
2983                         /* Unless we are doing a full sync, or a replacement
2984                          * we only need to recover the block if it is set in
2985                          * the bitmap
2986                          */
2987                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2988                                                       &sync_blocks, 1);
2989                         if (sync_blocks < max_sync)
2990                                 max_sync = sync_blocks;
2991                         if (!must_sync &&
2992                             mreplace == NULL &&
2993                             !conf->fullsync) {
2994                                 /* yep, skip the sync_blocks here, but don't assume
2995                                  * that there will never be anything to do here
2996                                  */
2997                                 chunks_skipped = -1;
2998                                 rcu_read_unlock();
2999                                 continue;
3000                         }
3001                         atomic_inc(&mrdev->nr_pending);
3002                         if (mreplace)
3003                                 atomic_inc(&mreplace->nr_pending);
3004                         rcu_read_unlock();
3005
3006                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3007                         r10_bio->state = 0;
3008                         raise_barrier(conf, rb2 != NULL);
3009                         atomic_set(&r10_bio->remaining, 0);
3010
3011                         r10_bio->master_bio = (struct bio*)rb2;
3012                         if (rb2)
3013                                 atomic_inc(&rb2->remaining);
3014                         r10_bio->mddev = mddev;
3015                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3016                         r10_bio->sector = sect;
3017
3018                         raid10_find_phys(conf, r10_bio);
3019
3020                         /* Need to check if the array will still be
3021                          * degraded
3022                          */
3023                         rcu_read_lock();
3024                         for (j = 0; j < conf->geo.raid_disks; j++) {
3025                                 struct md_rdev *rdev = rcu_dereference(
3026                                         conf->mirrors[j].rdev);
3027                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3028                                         still_degraded = 1;
3029                                         break;
3030                                 }
3031                         }
3032
3033                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3034                                                       &sync_blocks, still_degraded);
3035
3036                         any_working = 0;
3037                         for (j=0; j<conf->copies;j++) {
3038                                 int k;
3039                                 int d = r10_bio->devs[j].devnum;
3040                                 sector_t from_addr, to_addr;
3041                                 struct md_rdev *rdev =
3042                                         rcu_dereference(conf->mirrors[d].rdev);
3043                                 sector_t sector, first_bad;
3044                                 int bad_sectors;
3045                                 if (!rdev ||
3046                                     !test_bit(In_sync, &rdev->flags))
3047                                         continue;
3048                                 /* This is where we read from */
3049                                 any_working = 1;
3050                                 sector = r10_bio->devs[j].addr;
3051
3052                                 if (is_badblock(rdev, sector, max_sync,
3053                                                 &first_bad, &bad_sectors)) {
3054                                         if (first_bad > sector)
3055                                                 max_sync = first_bad - sector;
3056                                         else {
3057                                                 bad_sectors -= (sector
3058                                                                 - first_bad);
3059                                                 if (max_sync > bad_sectors)
3060                                                         max_sync = bad_sectors;
3061                                                 continue;
3062                                         }
3063                                 }
3064                                 bio = r10_bio->devs[0].bio;
3065                                 bio_reset(bio);
3066                                 bio->bi_next = biolist;
3067                                 biolist = bio;
3068                                 bio->bi_private = r10_bio;
3069                                 bio->bi_end_io = end_sync_read;
3070                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3071                                 from_addr = r10_bio->devs[j].addr;
3072                                 bio->bi_iter.bi_sector = from_addr +
3073                                         rdev->data_offset;
3074                                 bio->bi_bdev = rdev->bdev;
3075                                 atomic_inc(&rdev->nr_pending);
3076                                 /* and we write to 'i' (if not in_sync) */
3077
3078                                 for (k=0; k<conf->copies; k++)
3079                                         if (r10_bio->devs[k].devnum == i)
3080                                                 break;
3081                                 BUG_ON(k == conf->copies);
3082                                 to_addr = r10_bio->devs[k].addr;
3083                                 r10_bio->devs[0].devnum = d;
3084                                 r10_bio->devs[0].addr = from_addr;
3085                                 r10_bio->devs[1].devnum = i;
3086                                 r10_bio->devs[1].addr = to_addr;
3087
3088                                 if (!test_bit(In_sync, &mrdev->flags)) {
3089                                         bio = r10_bio->devs[1].bio;
3090                                         bio_reset(bio);
3091                                         bio->bi_next = biolist;
3092                                         biolist = bio;
3093                                         bio->bi_private = r10_bio;
3094                                         bio->bi_end_io = end_sync_write;
3095                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3096                                         bio->bi_iter.bi_sector = to_addr
3097                                                 + mrdev->data_offset;
3098                                         bio->bi_bdev = mrdev->bdev;
3099                                         atomic_inc(&r10_bio->remaining);
3100                                 } else
3101                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3102
3103                                 /* and maybe write to replacement */
3104                                 bio = r10_bio->devs[1].repl_bio;
3105                                 if (bio)
3106                                         bio->bi_end_io = NULL;
3107                                 /* Note: if mreplace != NULL, then bio
3108                                  * cannot be NULL as r10buf_pool_alloc will
3109                                  * have allocated it.
3110                                  * So the second test here is pointless.
3111                                  * But it keeps semantic-checkers happy, and
3112                                  * this comment keeps human reviewers
3113                                  * happy.
3114                                  */
3115                                 if (mreplace == NULL || bio == NULL ||
3116                                     test_bit(Faulty, &mreplace->flags))
3117                                         break;
3118                                 bio_reset(bio);
3119                                 bio->bi_next = biolist;
3120                                 biolist = bio;
3121                                 bio->bi_private = r10_bio;
3122                                 bio->bi_end_io = end_sync_write;
3123                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3124                                 bio->bi_iter.bi_sector = to_addr +
3125                                         mreplace->data_offset;
3126                                 bio->bi_bdev = mreplace->bdev;
3127                                 atomic_inc(&r10_bio->remaining);
3128                                 break;
3129                         }
3130                         rcu_read_unlock();
3131                         if (j == conf->copies) {
3132                                 /* Cannot recover, so abort the recovery or
3133                                  * record a bad block */
3134                                 if (any_working) {
3135                                         /* problem is that there are bad blocks
3136                                          * on other device(s)
3137                                          */
3138                                         int k;
3139                                         for (k = 0; k < conf->copies; k++)
3140                                                 if (r10_bio->devs[k].devnum == i)
3141                                                         break;
3142                                         if (!test_bit(In_sync,
3143                                                       &mrdev->flags)
3144                                             && !rdev_set_badblocks(
3145                                                     mrdev,
3146                                                     r10_bio->devs[k].addr,
3147                                                     max_sync, 0))
3148                                                 any_working = 0;
3149                                         if (mreplace &&
3150                                             !rdev_set_badblocks(
3151                                                     mreplace,
3152                                                     r10_bio->devs[k].addr,
3153                                                     max_sync, 0))
3154                                                 any_working = 0;
3155                                 }
3156                                 if (!any_working)  {
3157                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3158                                                               &mddev->recovery))
3159                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3160                                                        "working devices for recovery.\n",
3161                                                        mdname(mddev));
3162                                         mirror->recovery_disabled
3163                                                 = mddev->recovery_disabled;
3164                                 }
3165                                 put_buf(r10_bio);
3166                                 if (rb2)
3167                                         atomic_dec(&rb2->remaining);
3168                                 r10_bio = rb2;
3169                                 rdev_dec_pending(mrdev, mddev);
3170                                 if (mreplace)
3171                                         rdev_dec_pending(mreplace, mddev);
3172                                 break;
3173                         }
3174                         rdev_dec_pending(mrdev, mddev);
3175                         if (mreplace)
3176                                 rdev_dec_pending(mreplace, mddev);
3177                 }
3178                 if (biolist == NULL) {
3179                         while (r10_bio) {
3180                                 struct r10bio *rb2 = r10_bio;
3181                                 r10_bio = (struct r10bio*) rb2->master_bio;
3182                                 rb2->master_bio = NULL;
3183                                 put_buf(rb2);
3184                         }
3185                         goto giveup;
3186                 }
3187         } else {
3188                 /* resync. Schedule a read for every block at this virt offset */
3189                 int count = 0;
3190
3191                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3192
3193                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3194                                        &sync_blocks, mddev->degraded) &&
3195                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3196                                                  &mddev->recovery)) {
3197                         /* We can skip this block */
3198                         *skipped = 1;
3199                         return sync_blocks + sectors_skipped;
3200                 }
3201                 if (sync_blocks < max_sync)
3202                         max_sync = sync_blocks;
3203                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3204                 r10_bio->state = 0;
3205
3206                 r10_bio->mddev = mddev;
3207                 atomic_set(&r10_bio->remaining, 0);
3208                 raise_barrier(conf, 0);
3209                 conf->next_resync = sector_nr;
3210
3211                 r10_bio->master_bio = NULL;
3212                 r10_bio->sector = sector_nr;
3213                 set_bit(R10BIO_IsSync, &r10_bio->state);
3214                 raid10_find_phys(conf, r10_bio);
3215                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3216
3217                 for (i = 0; i < conf->copies; i++) {
3218                         int d = r10_bio->devs[i].devnum;
3219                         sector_t first_bad, sector;
3220                         int bad_sectors;
3221                         struct md_rdev *rdev;
3222
3223                         if (r10_bio->devs[i].repl_bio)
3224                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3225
3226                         bio = r10_bio->devs[i].bio;
3227                         bio_reset(bio);
3228                         bio->bi_error = -EIO;
3229                         rcu_read_lock();
3230                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3231                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3232                                 rcu_read_unlock();
3233                                 continue;
3234                         }
3235                         sector = r10_bio->devs[i].addr;
3236                         if (is_badblock(rdev, sector, max_sync,
3237                                         &first_bad, &bad_sectors)) {
3238                                 if (first_bad > sector)
3239                                         max_sync = first_bad - sector;
3240                                 else {
3241                                         bad_sectors -= (sector - first_bad);
3242                                         if (max_sync > bad_sectors)
3243                                                 max_sync = bad_sectors;
3244                                         rcu_read_unlock();
3245                                         continue;
3246                                 }
3247                         }
3248                         atomic_inc(&rdev->nr_pending);
3249                         atomic_inc(&r10_bio->remaining);
3250                         bio->bi_next = biolist;
3251                         biolist = bio;
3252                         bio->bi_private = r10_bio;
3253                         bio->bi_end_io = end_sync_read;
3254                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3255                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3256                         bio->bi_bdev = rdev->bdev;
3257                         count++;
3258
3259                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3260                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3261                                 rcu_read_unlock();
3262                                 continue;
3263                         }
3264                         atomic_inc(&rdev->nr_pending);
3265                         rcu_read_unlock();
3266
3267                         /* Need to set up for writing to the replacement */
3268                         bio = r10_bio->devs[i].repl_bio;
3269                         bio_reset(bio);
3270                         bio->bi_error = -EIO;
3271
3272                         sector = r10_bio->devs[i].addr;
3273                         bio->bi_next = biolist;
3274                         biolist = bio;
3275                         bio->bi_private = r10_bio;
3276                         bio->bi_end_io = end_sync_write;
3277                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3278                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3279                         bio->bi_bdev = rdev->bdev;
3280                         count++;
3281                 }
3282
3283                 if (count < 2) {
3284                         for (i=0; i<conf->copies; i++) {
3285                                 int d = r10_bio->devs[i].devnum;
3286                                 if (r10_bio->devs[i].bio->bi_end_io)
3287                                         rdev_dec_pending(conf->mirrors[d].rdev,
3288                                                          mddev);
3289                                 if (r10_bio->devs[i].repl_bio &&
3290                                     r10_bio->devs[i].repl_bio->bi_end_io)
3291                                         rdev_dec_pending(
3292                                                 conf->mirrors[d].replacement,
3293                                                 mddev);
3294                         }
3295                         put_buf(r10_bio);
3296                         biolist = NULL;
3297                         goto giveup;
3298                 }
3299         }
3300
3301         nr_sectors = 0;
3302         if (sector_nr + max_sync < max_sector)
3303                 max_sector = sector_nr + max_sync;
3304         do {
3305                 struct page *page;
3306                 int len = PAGE_SIZE;
3307                 if (sector_nr + (len>>9) > max_sector)
3308                         len = (max_sector - sector_nr) << 9;
3309                 if (len == 0)
3310                         break;
3311                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3312                         struct bio *bio2;
3313                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3314                         if (bio_add_page(bio, page, len, 0))
3315                                 continue;
3316
3317                         /* stop here */
3318                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3319                         for (bio2 = biolist;
3320                              bio2 && bio2 != bio;
3321                              bio2 = bio2->bi_next) {
3322                                 /* remove last page from this bio */
3323                                 bio2->bi_vcnt--;
3324                                 bio2->bi_iter.bi_size -= len;
3325                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3326                         }
3327                         goto bio_full;
3328                 }
3329                 nr_sectors += len>>9;
3330                 sector_nr += len>>9;
3331         } while (biolist->bi_vcnt < RESYNC_PAGES);
3332  bio_full:
3333         r10_bio->sectors = nr_sectors;
3334
3335         while (biolist) {
3336                 bio = biolist;
3337                 biolist = biolist->bi_next;
3338
3339                 bio->bi_next = NULL;
3340                 r10_bio = bio->bi_private;
3341                 r10_bio->sectors = nr_sectors;
3342
3343                 if (bio->bi_end_io == end_sync_read) {
3344                         md_sync_acct(bio->bi_bdev, nr_sectors);
3345                         bio->bi_error = 0;
3346                         generic_make_request(bio);
3347                 }
3348         }
3349
3350         if (sectors_skipped)
3351                 /* pretend they weren't skipped, it makes
3352                  * no important difference in this case
3353                  */
3354                 md_done_sync(mddev, sectors_skipped, 1);
3355
3356         return sectors_skipped + nr_sectors;
3357  giveup:
3358         /* There is nowhere to write, so all non-sync
3359          * drives must be failed or in resync, all drives
3360          * have a bad block, so try the next chunk...
3361          */
3362         if (sector_nr + max_sync < max_sector)
3363                 max_sector = sector_nr + max_sync;
3364
3365         sectors_skipped += (max_sector - sector_nr);
3366         chunks_skipped ++;
3367         sector_nr = max_sector;
3368         goto skipped;
3369 }
3370
3371 static sector_t
3372 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3373 {
3374         sector_t size;
3375         struct r10conf *conf = mddev->private;
3376
3377         if (!raid_disks)
3378                 raid_disks = min(conf->geo.raid_disks,
3379                                  conf->prev.raid_disks);
3380         if (!sectors)
3381                 sectors = conf->dev_sectors;
3382
3383         size = sectors >> conf->geo.chunk_shift;
3384         sector_div(size, conf->geo.far_copies);
3385         size = size * raid_disks;
3386         sector_div(size, conf->geo.near_copies);
3387
3388         return size << conf->geo.chunk_shift;
3389 }
3390
3391 static void calc_sectors(struct r10conf *conf, sector_t size)
3392 {
3393         /* Calculate the number of sectors-per-device that will
3394          * actually be used, and set conf->dev_sectors and
3395          * conf->stride
3396          */
3397
3398         size = size >> conf->geo.chunk_shift;
3399         sector_div(size, conf->geo.far_copies);
3400         size = size * conf->geo.raid_disks;
3401         sector_div(size, conf->geo.near_copies);
3402         /* 'size' is now the number of chunks in the array */
3403         /* calculate "used chunks per device" */
3404         size = size * conf->copies;
3405
3406         /* We need to round up when dividing by raid_disks to
3407          * get the stride size.
3408          */
3409         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3410
3411         conf->dev_sectors = size << conf->geo.chunk_shift;
3412
3413         if (conf->geo.far_offset)
3414                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3415         else {
3416                 sector_div(size, conf->geo.far_copies);
3417                 conf->geo.stride = size << conf->geo.chunk_shift;
3418         }
3419 }
3420
3421 enum geo_type {geo_new, geo_old, geo_start};
3422 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3423 {
3424         int nc, fc, fo;
3425         int layout, chunk, disks;
3426         switch (new) {
3427         case geo_old:
3428                 layout = mddev->layout;
3429                 chunk = mddev->chunk_sectors;
3430                 disks = mddev->raid_disks - mddev->delta_disks;
3431                 break;
3432         case geo_new:
3433                 layout = mddev->new_layout;
3434                 chunk = mddev->new_chunk_sectors;
3435                 disks = mddev->raid_disks;
3436                 break;
3437         default: /* avoid 'may be unused' warnings */
3438         case geo_start: /* new when starting reshape - raid_disks not
3439                          * updated yet. */
3440                 layout = mddev->new_layout;
3441                 chunk = mddev->new_chunk_sectors;
3442                 disks = mddev->raid_disks + mddev->delta_disks;
3443                 break;
3444         }
3445         if (layout >> 19)
3446                 return -1;
3447         if (chunk < (PAGE_SIZE >> 9) ||
3448             !is_power_of_2(chunk))
3449                 return -2;
3450         nc = layout & 255;
3451         fc = (layout >> 8) & 255;
3452         fo = layout & (1<<16);
3453         geo->raid_disks = disks;
3454         geo->near_copies = nc;
3455         geo->far_copies = fc;
3456         geo->far_offset = fo;
3457         switch (layout >> 17) {
3458         case 0: /* original layout.  simple but not always optimal */
3459                 geo->far_set_size = disks;
3460                 break;
3461         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3462                  * actually using this, but leave code here just in case.*/
3463                 geo->far_set_size = disks/fc;
3464                 WARN(geo->far_set_size < fc,
3465                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3466                 break;
3467         case 2: /* "improved" layout fixed to match documentation */
3468                 geo->far_set_size = fc * nc;
3469                 break;
3470         default: /* Not a valid layout */
3471                 return -1;
3472         }
3473         geo->chunk_mask = chunk - 1;
3474         geo->chunk_shift = ffz(~chunk);
3475         return nc*fc;
3476 }
3477
3478 static struct r10conf *setup_conf(struct mddev *mddev)
3479 {
3480         struct r10conf *conf = NULL;
3481         int err = -EINVAL;
3482         struct geom geo;
3483         int copies;
3484
3485         copies = setup_geo(&geo, mddev, geo_new);
3486
3487         if (copies == -2) {
3488                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3489                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3490                        mdname(mddev), PAGE_SIZE);
3491                 goto out;
3492         }
3493
3494         if (copies < 2 || copies > mddev->raid_disks) {
3495                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3496                        mdname(mddev), mddev->new_layout);
3497                 goto out;
3498         }
3499
3500         err = -ENOMEM;
3501         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3502         if (!conf)
3503                 goto out;
3504
3505         /* FIXME calc properly */
3506         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3507                                                             max(0,-mddev->delta_disks)),
3508                                 GFP_KERNEL);
3509         if (!conf->mirrors)
3510                 goto out;
3511
3512         conf->tmppage = alloc_page(GFP_KERNEL);
3513         if (!conf->tmppage)
3514                 goto out;
3515
3516         conf->geo = geo;
3517         conf->copies = copies;
3518         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3519                                            r10bio_pool_free, conf);
3520         if (!conf->r10bio_pool)
3521                 goto out;
3522
3523         calc_sectors(conf, mddev->dev_sectors);
3524         if (mddev->reshape_position == MaxSector) {
3525                 conf->prev = conf->geo;
3526                 conf->reshape_progress = MaxSector;
3527         } else {
3528                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3529                         err = -EINVAL;
3530                         goto out;
3531                 }
3532                 conf->reshape_progress = mddev->reshape_position;
3533                 if (conf->prev.far_offset)
3534                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3535                 else
3536                         /* far_copies must be 1 */
3537                         conf->prev.stride = conf->dev_sectors;
3538         }
3539         conf->reshape_safe = conf->reshape_progress;
3540         spin_lock_init(&conf->device_lock);
3541         INIT_LIST_HEAD(&conf->retry_list);
3542         INIT_LIST_HEAD(&conf->bio_end_io_list);
3543
3544         spin_lock_init(&conf->resync_lock);
3545         init_waitqueue_head(&conf->wait_barrier);
3546         atomic_set(&conf->nr_pending, 0);
3547
3548         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3549         if (!conf->thread)
3550                 goto out;
3551
3552         conf->mddev = mddev;
3553         return conf;
3554
3555  out:
3556         if (err == -ENOMEM)
3557                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3558                        mdname(mddev));
3559         if (conf) {
3560                 mempool_destroy(conf->r10bio_pool);
3561                 kfree(conf->mirrors);
3562                 safe_put_page(conf->tmppage);
3563                 kfree(conf);
3564         }
3565         return ERR_PTR(err);
3566 }
3567
3568 static int raid10_run(struct mddev *mddev)
3569 {
3570         struct r10conf *conf;
3571         int i, disk_idx, chunk_size;
3572         struct raid10_info *disk;
3573         struct md_rdev *rdev;
3574         sector_t size;
3575         sector_t min_offset_diff = 0;
3576         int first = 1;
3577         bool discard_supported = false;
3578
3579         if (mddev->private == NULL) {
3580                 conf = setup_conf(mddev);
3581                 if (IS_ERR(conf))
3582                         return PTR_ERR(conf);
3583                 mddev->private = conf;
3584         }
3585         conf = mddev->private;
3586         if (!conf)
3587                 goto out;
3588
3589         mddev->thread = conf->thread;
3590         conf->thread = NULL;
3591
3592         chunk_size = mddev->chunk_sectors << 9;
3593         if (mddev->queue) {
3594                 blk_queue_max_discard_sectors(mddev->queue,
3595                                               mddev->chunk_sectors);
3596                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3597                 blk_queue_io_min(mddev->queue, chunk_size);
3598                 if (conf->geo.raid_disks % conf->geo.near_copies)
3599                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3600                 else
3601                         blk_queue_io_opt(mddev->queue, chunk_size *
3602                                          (conf->geo.raid_disks / conf->geo.near_copies));
3603         }
3604
3605         rdev_for_each(rdev, mddev) {
3606                 long long diff;
3607                 struct request_queue *q;
3608
3609                 disk_idx = rdev->raid_disk;
3610                 if (disk_idx < 0)
3611                         continue;
3612                 if (disk_idx >= conf->geo.raid_disks &&
3613                     disk_idx >= conf->prev.raid_disks)
3614                         continue;
3615                 disk = conf->mirrors + disk_idx;
3616
3617                 if (test_bit(Replacement, &rdev->flags)) {
3618                         if (disk->replacement)
3619                                 goto out_free_conf;
3620                         disk->replacement = rdev;
3621                 } else {
3622                         if (disk->rdev)
3623                                 goto out_free_conf;
3624                         disk->rdev = rdev;
3625                 }
3626                 q = bdev_get_queue(rdev->bdev);
3627                 diff = (rdev->new_data_offset - rdev->data_offset);
3628                 if (!mddev->reshape_backwards)
3629                         diff = -diff;
3630                 if (diff < 0)
3631                         diff = 0;
3632                 if (first || diff < min_offset_diff)
3633                         min_offset_diff = diff;
3634
3635                 if (mddev->gendisk)
3636                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3637                                           rdev->data_offset << 9);
3638
3639                 disk->head_position = 0;
3640
3641                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3642                         discard_supported = true;
3643         }
3644
3645         if (mddev->queue) {
3646                 if (discard_supported)
3647                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3648                                                 mddev->queue);
3649                 else
3650                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3651                                                   mddev->queue);
3652         }
3653         /* need to check that every block has at least one working mirror */
3654         if (!enough(conf, -1)) {
3655                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3656                        mdname(mddev));
3657                 goto out_free_conf;
3658         }
3659
3660         if (conf->reshape_progress != MaxSector) {
3661                 /* must ensure that shape change is supported */
3662                 if (conf->geo.far_copies != 1 &&
3663                     conf->geo.far_offset == 0)
3664                         goto out_free_conf;
3665                 if (conf->prev.far_copies != 1 &&
3666                     conf->prev.far_offset == 0)
3667                         goto out_free_conf;
3668         }
3669
3670         mddev->degraded = 0;
3671         for (i = 0;
3672              i < conf->geo.raid_disks
3673                      || i < conf->prev.raid_disks;
3674              i++) {
3675
3676                 disk = conf->mirrors + i;
3677
3678                 if (!disk->rdev && disk->replacement) {
3679                         /* The replacement is all we have - use it */
3680                         disk->rdev = disk->replacement;
3681                         disk->replacement = NULL;
3682                         clear_bit(Replacement, &disk->rdev->flags);
3683                 }
3684
3685                 if (!disk->rdev ||
3686                     !test_bit(In_sync, &disk->rdev->flags)) {
3687                         disk->head_position = 0;
3688                         mddev->degraded++;
3689                         if (disk->rdev &&
3690                             disk->rdev->saved_raid_disk < 0)
3691                                 conf->fullsync = 1;
3692                 }
3693                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3694         }
3695
3696         if (mddev->recovery_cp != MaxSector)
3697                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3698                        " -- starting background reconstruction\n",
3699                        mdname(mddev));
3700         printk(KERN_INFO
3701                 "md/raid10:%s: active with %d out of %d devices\n",
3702                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3703                 conf->geo.raid_disks);
3704         /*
3705          * Ok, everything is just fine now
3706          */
3707         mddev->dev_sectors = conf->dev_sectors;
3708         size = raid10_size(mddev, 0, 0);
3709         md_set_array_sectors(mddev, size);
3710         mddev->resync_max_sectors = size;
3711
3712         if (mddev->queue) {
3713                 int stripe = conf->geo.raid_disks *
3714                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3715
3716                 /* Calculate max read-ahead size.
3717                  * We need to readahead at least twice a whole stripe....
3718                  * maybe...
3719                  */
3720                 stripe /= conf->geo.near_copies;
3721                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3722                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3723         }
3724
3725         if (md_integrity_register(mddev))
3726                 goto out_free_conf;
3727
3728         if (conf->reshape_progress != MaxSector) {
3729                 unsigned long before_length, after_length;
3730
3731                 before_length = ((1 << conf->prev.chunk_shift) *
3732                                  conf->prev.far_copies);
3733                 after_length = ((1 << conf->geo.chunk_shift) *
3734                                 conf->geo.far_copies);
3735
3736                 if (max(before_length, after_length) > min_offset_diff) {
3737                         /* This cannot work */
3738                         printk("md/raid10: offset difference not enough to continue reshape\n");
3739                         goto out_free_conf;
3740                 }
3741                 conf->offset_diff = min_offset_diff;
3742
3743                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3744                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3745                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3746                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3747                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3748                                                         "reshape");
3749         }
3750
3751         return 0;
3752
3753 out_free_conf:
3754         md_unregister_thread(&mddev->thread);
3755         mempool_destroy(conf->r10bio_pool);
3756         safe_put_page(conf->tmppage);
3757         kfree(conf->mirrors);
3758         kfree(conf);
3759         mddev->private = NULL;
3760 out:
3761         return -EIO;
3762 }
3763
3764 static void raid10_free(struct mddev *mddev, void *priv)
3765 {
3766         struct r10conf *conf = priv;
3767
3768         mempool_destroy(conf->r10bio_pool);
3769         safe_put_page(conf->tmppage);
3770         kfree(conf->mirrors);
3771         kfree(conf->mirrors_old);
3772         kfree(conf->mirrors_new);
3773         kfree(conf);
3774 }
3775
3776 static void raid10_quiesce(struct mddev *mddev, int state)
3777 {
3778         struct r10conf *conf = mddev->private;
3779
3780         switch(state) {
3781         case 1:
3782                 raise_barrier(conf, 0);
3783                 break;
3784         case 0:
3785                 lower_barrier(conf);
3786                 break;
3787         }
3788 }
3789
3790 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3791 {
3792         /* Resize of 'far' arrays is not supported.
3793          * For 'near' and 'offset' arrays we can set the
3794          * number of sectors used to be an appropriate multiple
3795          * of the chunk size.
3796          * For 'offset', this is far_copies*chunksize.
3797          * For 'near' the multiplier is the LCM of
3798          * near_copies and raid_disks.
3799          * So if far_copies > 1 && !far_offset, fail.
3800          * Else find LCM(raid_disks, near_copy)*far_copies and
3801          * multiply by chunk_size.  Then round to this number.
3802          * This is mostly done by raid10_size()
3803          */
3804         struct r10conf *conf = mddev->private;
3805         sector_t oldsize, size;
3806
3807         if (mddev->reshape_position != MaxSector)
3808                 return -EBUSY;
3809
3810         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3811                 return -EINVAL;
3812
3813         oldsize = raid10_size(mddev, 0, 0);
3814         size = raid10_size(mddev, sectors, 0);
3815         if (mddev->external_size &&
3816             mddev->array_sectors > size)
3817                 return -EINVAL;
3818         if (mddev->bitmap) {
3819                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3820                 if (ret)
3821                         return ret;
3822         }
3823         md_set_array_sectors(mddev, size);
3824         if (mddev->queue) {
3825                 set_capacity(mddev->gendisk, mddev->array_sectors);
3826                 revalidate_disk(mddev->gendisk);
3827         }
3828         if (sectors > mddev->dev_sectors &&
3829             mddev->recovery_cp > oldsize) {
3830                 mddev->recovery_cp = oldsize;
3831                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3832         }
3833         calc_sectors(conf, sectors);
3834         mddev->dev_sectors = conf->dev_sectors;
3835         mddev->resync_max_sectors = size;
3836         return 0;
3837 }
3838
3839 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3840 {
3841         struct md_rdev *rdev;
3842         struct r10conf *conf;
3843
3844         if (mddev->degraded > 0) {
3845                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3846                        mdname(mddev));
3847                 return ERR_PTR(-EINVAL);
3848         }
3849         sector_div(size, devs);
3850
3851         /* Set new parameters */
3852         mddev->new_level = 10;
3853         /* new layout: far_copies = 1, near_copies = 2 */
3854         mddev->new_layout = (1<<8) + 2;
3855         mddev->new_chunk_sectors = mddev->chunk_sectors;
3856         mddev->delta_disks = mddev->raid_disks;
3857         mddev->raid_disks *= 2;
3858         /* make sure it will be not marked as dirty */
3859         mddev->recovery_cp = MaxSector;
3860         mddev->dev_sectors = size;
3861
3862         conf = setup_conf(mddev);
3863         if (!IS_ERR(conf)) {
3864                 rdev_for_each(rdev, mddev)
3865                         if (rdev->raid_disk >= 0) {
3866                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3867                                 rdev->sectors = size;
3868                         }
3869                 conf->barrier = 1;
3870         }
3871
3872         return conf;
3873 }
3874
3875 static void *raid10_takeover(struct mddev *mddev)
3876 {
3877         struct r0conf *raid0_conf;
3878
3879         /* raid10 can take over:
3880          *  raid0 - providing it has only two drives
3881          */
3882         if (mddev->level == 0) {
3883                 /* for raid0 takeover only one zone is supported */
3884                 raid0_conf = mddev->private;
3885                 if (raid0_conf->nr_strip_zones > 1) {
3886                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3887                                " with more than one zone.\n",
3888                                mdname(mddev));
3889                         return ERR_PTR(-EINVAL);
3890                 }
3891                 return raid10_takeover_raid0(mddev,
3892                         raid0_conf->strip_zone->zone_end,
3893                         raid0_conf->strip_zone->nb_dev);
3894         }
3895         return ERR_PTR(-EINVAL);
3896 }
3897
3898 static int raid10_check_reshape(struct mddev *mddev)
3899 {
3900         /* Called when there is a request to change
3901          * - layout (to ->new_layout)
3902          * - chunk size (to ->new_chunk_sectors)
3903          * - raid_disks (by delta_disks)
3904          * or when trying to restart a reshape that was ongoing.
3905          *
3906          * We need to validate the request and possibly allocate
3907          * space if that might be an issue later.
3908          *
3909          * Currently we reject any reshape of a 'far' mode array,
3910          * allow chunk size to change if new is generally acceptable,
3911          * allow raid_disks to increase, and allow
3912          * a switch between 'near' mode and 'offset' mode.
3913          */
3914         struct r10conf *conf = mddev->private;
3915         struct geom geo;
3916
3917         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3918                 return -EINVAL;
3919
3920         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3921                 /* mustn't change number of copies */
3922                 return -EINVAL;
3923         if (geo.far_copies > 1 && !geo.far_offset)
3924                 /* Cannot switch to 'far' mode */
3925                 return -EINVAL;
3926
3927         if (mddev->array_sectors & geo.chunk_mask)
3928                         /* not factor of array size */
3929                         return -EINVAL;
3930
3931         if (!enough(conf, -1))
3932                 return -EINVAL;
3933
3934         kfree(conf->mirrors_new);
3935         conf->mirrors_new = NULL;
3936         if (mddev->delta_disks > 0) {
3937                 /* allocate new 'mirrors' list */
3938                 conf->mirrors_new = kzalloc(
3939                         sizeof(struct raid10_info)
3940                         *(mddev->raid_disks +
3941                           mddev->delta_disks),
3942                         GFP_KERNEL);
3943                 if (!conf->mirrors_new)
3944                         return -ENOMEM;
3945         }
3946         return 0;
3947 }
3948
3949 /*
3950  * Need to check if array has failed when deciding whether to:
3951  *  - start an array
3952  *  - remove non-faulty devices
3953  *  - add a spare
3954  *  - allow a reshape
3955  * This determination is simple when no reshape is happening.
3956  * However if there is a reshape, we need to carefully check
3957  * both the before and after sections.
3958  * This is because some failed devices may only affect one
3959  * of the two sections, and some non-in_sync devices may
3960  * be insync in the section most affected by failed devices.
3961  */
3962 static int calc_degraded(struct r10conf *conf)
3963 {
3964         int degraded, degraded2;
3965         int i;
3966
3967         rcu_read_lock();
3968         degraded = 0;
3969         /* 'prev' section first */
3970         for (i = 0; i < conf->prev.raid_disks; i++) {
3971                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3972                 if (!rdev || test_bit(Faulty, &rdev->flags))
3973                         degraded++;
3974                 else if (!test_bit(In_sync, &rdev->flags))
3975                         /* When we can reduce the number of devices in
3976                          * an array, this might not contribute to
3977                          * 'degraded'.  It does now.
3978                          */
3979                         degraded++;
3980         }
3981         rcu_read_unlock();
3982         if (conf->geo.raid_disks == conf->prev.raid_disks)
3983                 return degraded;
3984         rcu_read_lock();
3985         degraded2 = 0;
3986         for (i = 0; i < conf->geo.raid_disks; i++) {
3987                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3988                 if (!rdev || test_bit(Faulty, &rdev->flags))
3989                         degraded2++;
3990                 else if (!test_bit(In_sync, &rdev->flags)) {
3991                         /* If reshape is increasing the number of devices,
3992                          * this section has already been recovered, so
3993                          * it doesn't contribute to degraded.
3994                          * else it does.
3995                          */
3996                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3997                                 degraded2++;
3998                 }
3999         }
4000         rcu_read_unlock();
4001         if (degraded2 > degraded)
4002                 return degraded2;
4003         return degraded;
4004 }
4005
4006 static int raid10_start_reshape(struct mddev *mddev)
4007 {
4008         /* A 'reshape' has been requested. This commits
4009          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4010          * This also checks if there are enough spares and adds them
4011          * to the array.
4012          * We currently require enough spares to make the final
4013          * array non-degraded.  We also require that the difference
4014          * between old and new data_offset - on each device - is
4015          * enough that we never risk over-writing.
4016          */
4017
4018         unsigned long before_length, after_length;
4019         sector_t min_offset_diff = 0;
4020         int first = 1;
4021         struct geom new;
4022         struct r10conf *conf = mddev->private;
4023         struct md_rdev *rdev;
4024         int spares = 0;
4025         int ret;
4026
4027         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4028                 return -EBUSY;
4029
4030         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4031                 return -EINVAL;
4032
4033         before_length = ((1 << conf->prev.chunk_shift) *
4034                          conf->prev.far_copies);
4035         after_length = ((1 << conf->geo.chunk_shift) *
4036                         conf->geo.far_copies);
4037
4038         rdev_for_each(rdev, mddev) {
4039                 if (!test_bit(In_sync, &rdev->flags)
4040                     && !test_bit(Faulty, &rdev->flags))
4041                         spares++;
4042                 if (rdev->raid_disk >= 0) {
4043                         long long diff = (rdev->new_data_offset
4044                                           - rdev->data_offset);
4045                         if (!mddev->reshape_backwards)
4046                                 diff = -diff;
4047                         if (diff < 0)
4048                                 diff = 0;
4049                         if (first || diff < min_offset_diff)
4050                                 min_offset_diff = diff;
4051                 }
4052         }
4053
4054         if (max(before_length, after_length) > min_offset_diff)
4055                 return -EINVAL;
4056
4057         if (spares < mddev->delta_disks)
4058                 return -EINVAL;
4059
4060         conf->offset_diff = min_offset_diff;
4061         spin_lock_irq(&conf->device_lock);
4062         if (conf->mirrors_new) {
4063                 memcpy(conf->mirrors_new, conf->mirrors,
4064                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4065                 smp_mb();
4066                 kfree(conf->mirrors_old);
4067                 conf->mirrors_old = conf->mirrors;
4068                 conf->mirrors = conf->mirrors_new;
4069                 conf->mirrors_new = NULL;
4070         }
4071         setup_geo(&conf->geo, mddev, geo_start);
4072         smp_mb();
4073         if (mddev->reshape_backwards) {
4074                 sector_t size = raid10_size(mddev, 0, 0);
4075                 if (size < mddev->array_sectors) {
4076                         spin_unlock_irq(&conf->device_lock);
4077                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4078                                mdname(mddev));
4079                         return -EINVAL;
4080                 }
4081                 mddev->resync_max_sectors = size;
4082                 conf->reshape_progress = size;
4083         } else
4084                 conf->reshape_progress = 0;
4085         conf->reshape_safe = conf->reshape_progress;
4086         spin_unlock_irq(&conf->device_lock);
4087
4088         if (mddev->delta_disks && mddev->bitmap) {
4089                 ret = bitmap_resize(mddev->bitmap,
4090                                     raid10_size(mddev, 0,
4091                                                 conf->geo.raid_disks),
4092                                     0, 0);
4093                 if (ret)
4094                         goto abort;
4095         }
4096         if (mddev->delta_disks > 0) {
4097                 rdev_for_each(rdev, mddev)
4098                         if (rdev->raid_disk < 0 &&
4099                             !test_bit(Faulty, &rdev->flags)) {
4100                                 if (raid10_add_disk(mddev, rdev) == 0) {
4101                                         if (rdev->raid_disk >=
4102                                             conf->prev.raid_disks)
4103                                                 set_bit(In_sync, &rdev->flags);
4104                                         else
4105                                                 rdev->recovery_offset = 0;
4106
4107                                         if (sysfs_link_rdev(mddev, rdev))
4108                                                 /* Failure here  is OK */;
4109                                 }
4110                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4111                                    && !test_bit(Faulty, &rdev->flags)) {
4112                                 /* This is a spare that was manually added */
4113                                 set_bit(In_sync, &rdev->flags);
4114                         }
4115         }
4116         /* When a reshape changes the number of devices,
4117          * ->degraded is measured against the larger of the
4118          * pre and  post numbers.
4119          */
4120         spin_lock_irq(&conf->device_lock);
4121         mddev->degraded = calc_degraded(conf);
4122         spin_unlock_irq(&conf->device_lock);
4123         mddev->raid_disks = conf->geo.raid_disks;
4124         mddev->reshape_position = conf->reshape_progress;
4125         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4126
4127         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4128         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4129         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4130         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4131         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4132
4133         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4134                                                 "reshape");
4135         if (!mddev->sync_thread) {
4136                 ret = -EAGAIN;
4137                 goto abort;
4138         }
4139         conf->reshape_checkpoint = jiffies;
4140         md_wakeup_thread(mddev->sync_thread);
4141         md_new_event(mddev);
4142         return 0;
4143
4144 abort:
4145         mddev->recovery = 0;
4146         spin_lock_irq(&conf->device_lock);
4147         conf->geo = conf->prev;
4148         mddev->raid_disks = conf->geo.raid_disks;
4149         rdev_for_each(rdev, mddev)
4150                 rdev->new_data_offset = rdev->data_offset;
4151         smp_wmb();
4152         conf->reshape_progress = MaxSector;
4153         conf->reshape_safe = MaxSector;
4154         mddev->reshape_position = MaxSector;
4155         spin_unlock_irq(&conf->device_lock);
4156         return ret;
4157 }
4158
4159 /* Calculate the last device-address that could contain
4160  * any block from the chunk that includes the array-address 's'
4161  * and report the next address.
4162  * i.e. the address returned will be chunk-aligned and after
4163  * any data that is in the chunk containing 's'.
4164  */
4165 static sector_t last_dev_address(sector_t s, struct geom *geo)
4166 {
4167         s = (s | geo->chunk_mask) + 1;
4168         s >>= geo->chunk_shift;
4169         s *= geo->near_copies;
4170         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4171         s *= geo->far_copies;
4172         s <<= geo->chunk_shift;
4173         return s;
4174 }
4175
4176 /* Calculate the first device-address that could contain
4177  * any block from the chunk that includes the array-address 's'.
4178  * This too will be the start of a chunk
4179  */
4180 static sector_t first_dev_address(sector_t s, struct geom *geo)
4181 {
4182         s >>= geo->chunk_shift;
4183         s *= geo->near_copies;
4184         sector_div(s, geo->raid_disks);
4185         s *= geo->far_copies;
4186         s <<= geo->chunk_shift;
4187         return s;
4188 }
4189
4190 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4191                                 int *skipped)
4192 {
4193         /* We simply copy at most one chunk (smallest of old and new)
4194          * at a time, possibly less if that exceeds RESYNC_PAGES,
4195          * or we hit a bad block or something.
4196          * This might mean we pause for normal IO in the middle of
4197          * a chunk, but that is not a problem as mddev->reshape_position
4198          * can record any location.
4199          *
4200          * If we will want to write to a location that isn't
4201          * yet recorded as 'safe' (i.e. in metadata on disk) then
4202          * we need to flush all reshape requests and update the metadata.
4203          *
4204          * When reshaping forwards (e.g. to more devices), we interpret
4205          * 'safe' as the earliest block which might not have been copied
4206          * down yet.  We divide this by previous stripe size and multiply
4207          * by previous stripe length to get lowest device offset that we
4208          * cannot write to yet.
4209          * We interpret 'sector_nr' as an address that we want to write to.
4210          * From this we use last_device_address() to find where we might
4211          * write to, and first_device_address on the  'safe' position.
4212          * If this 'next' write position is after the 'safe' position,
4213          * we must update the metadata to increase the 'safe' position.
4214          *
4215          * When reshaping backwards, we round in the opposite direction
4216          * and perform the reverse test:  next write position must not be
4217          * less than current safe position.
4218          *
4219          * In all this the minimum difference in data offsets
4220          * (conf->offset_diff - always positive) allows a bit of slack,
4221          * so next can be after 'safe', but not by more than offset_diff
4222          *
4223          * We need to prepare all the bios here before we start any IO
4224          * to ensure the size we choose is acceptable to all devices.
4225          * The means one for each copy for write-out and an extra one for
4226          * read-in.
4227          * We store the read-in bio in ->master_bio and the others in
4228          * ->devs[x].bio and ->devs[x].repl_bio.
4229          */
4230         struct r10conf *conf = mddev->private;
4231         struct r10bio *r10_bio;
4232         sector_t next, safe, last;
4233         int max_sectors;
4234         int nr_sectors;
4235         int s;
4236         struct md_rdev *rdev;
4237         int need_flush = 0;
4238         struct bio *blist;
4239         struct bio *bio, *read_bio;
4240         int sectors_done = 0;
4241
4242         if (sector_nr == 0) {
4243                 /* If restarting in the middle, skip the initial sectors */
4244                 if (mddev->reshape_backwards &&
4245                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4246                         sector_nr = (raid10_size(mddev, 0, 0)
4247                                      - conf->reshape_progress);
4248                 } else if (!mddev->reshape_backwards &&
4249                            conf->reshape_progress > 0)
4250                         sector_nr = conf->reshape_progress;
4251                 if (sector_nr) {
4252                         mddev->curr_resync_completed = sector_nr;
4253                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4254                         *skipped = 1;
4255                         return sector_nr;
4256                 }
4257         }
4258
4259         /* We don't use sector_nr to track where we are up to
4260          * as that doesn't work well for ->reshape_backwards.
4261          * So just use ->reshape_progress.
4262          */
4263         if (mddev->reshape_backwards) {
4264                 /* 'next' is the earliest device address that we might
4265                  * write to for this chunk in the new layout
4266                  */
4267                 next = first_dev_address(conf->reshape_progress - 1,
4268                                          &conf->geo);
4269
4270                 /* 'safe' is the last device address that we might read from
4271                  * in the old layout after a restart
4272                  */
4273                 safe = last_dev_address(conf->reshape_safe - 1,
4274                                         &conf->prev);
4275
4276                 if (next + conf->offset_diff < safe)
4277                         need_flush = 1;
4278
4279                 last = conf->reshape_progress - 1;
4280                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4281                                                & conf->prev.chunk_mask);
4282                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4283                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4284         } else {
4285                 /* 'next' is after the last device address that we
4286                  * might write to for this chunk in the new layout
4287                  */
4288                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4289
4290                 /* 'safe' is the earliest device address that we might
4291                  * read from in the old layout after a restart
4292                  */
4293                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4294
4295                 /* Need to update metadata if 'next' might be beyond 'safe'
4296                  * as that would possibly corrupt data
4297                  */
4298                 if (next > safe + conf->offset_diff)
4299                         need_flush = 1;
4300
4301                 sector_nr = conf->reshape_progress;
4302                 last  = sector_nr | (conf->geo.chunk_mask
4303                                      & conf->prev.chunk_mask);
4304
4305                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4306                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4307         }
4308
4309         if (need_flush ||
4310             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4311                 /* Need to update reshape_position in metadata */
4312                 wait_barrier(conf);
4313                 mddev->reshape_position = conf->reshape_progress;
4314                 if (mddev->reshape_backwards)
4315                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4316                                 - conf->reshape_progress;
4317                 else
4318                         mddev->curr_resync_completed = conf->reshape_progress;
4319                 conf->reshape_checkpoint = jiffies;
4320                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4321                 md_wakeup_thread(mddev->thread);
4322                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4323                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4324                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4325                         allow_barrier(conf);
4326                         return sectors_done;
4327                 }
4328                 conf->reshape_safe = mddev->reshape_position;
4329                 allow_barrier(conf);
4330         }
4331
4332 read_more:
4333         /* Now schedule reads for blocks from sector_nr to last */
4334         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4335         r10_bio->state = 0;
4336         raise_barrier(conf, sectors_done != 0);
4337         atomic_set(&r10_bio->remaining, 0);
4338         r10_bio->mddev = mddev;
4339         r10_bio->sector = sector_nr;
4340         set_bit(R10BIO_IsReshape, &r10_bio->state);
4341         r10_bio->sectors = last - sector_nr + 1;
4342         rdev = read_balance(conf, r10_bio, &max_sectors);
4343         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4344
4345         if (!rdev) {
4346                 /* Cannot read from here, so need to record bad blocks
4347                  * on all the target devices.
4348                  */
4349                 // FIXME
4350                 mempool_free(r10_bio, conf->r10buf_pool);
4351                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4352                 return sectors_done;
4353         }
4354
4355         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4356
4357         read_bio->bi_bdev = rdev->bdev;
4358         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4359                                + rdev->data_offset);
4360         read_bio->bi_private = r10_bio;
4361         read_bio->bi_end_io = end_sync_read;
4362         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4363         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4364         read_bio->bi_error = 0;
4365         read_bio->bi_vcnt = 0;
4366         read_bio->bi_iter.bi_size = 0;
4367         r10_bio->master_bio = read_bio;
4368         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4369
4370         /* Now find the locations in the new layout */
4371         __raid10_find_phys(&conf->geo, r10_bio);
4372
4373         blist = read_bio;
4374         read_bio->bi_next = NULL;
4375
4376         rcu_read_lock();
4377         for (s = 0; s < conf->copies*2; s++) {
4378                 struct bio *b;
4379                 int d = r10_bio->devs[s/2].devnum;
4380                 struct md_rdev *rdev2;
4381                 if (s&1) {
4382                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4383                         b = r10_bio->devs[s/2].repl_bio;
4384                 } else {
4385                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4386                         b = r10_bio->devs[s/2].bio;
4387                 }
4388                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4389                         continue;
4390
4391                 bio_reset(b);
4392                 b->bi_bdev = rdev2->bdev;
4393                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4394                         rdev2->new_data_offset;
4395                 b->bi_private = r10_bio;
4396                 b->bi_end_io = end_reshape_write;
4397                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4398                 b->bi_next = blist;
4399                 blist = b;
4400         }
4401
4402         /* Now add as many pages as possible to all of these bios. */
4403
4404         nr_sectors = 0;
4405         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4406                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4407                 int len = (max_sectors - s) << 9;
4408                 if (len > PAGE_SIZE)
4409                         len = PAGE_SIZE;
4410                 for (bio = blist; bio ; bio = bio->bi_next) {
4411                         struct bio *bio2;
4412                         if (bio_add_page(bio, page, len, 0))
4413                                 continue;
4414
4415                         /* Didn't fit, must stop */
4416                         for (bio2 = blist;
4417                              bio2 && bio2 != bio;
4418                              bio2 = bio2->bi_next) {
4419                                 /* Remove last page from this bio */
4420                                 bio2->bi_vcnt--;
4421                                 bio2->bi_iter.bi_size -= len;
4422                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4423                         }
4424                         goto bio_full;
4425                 }
4426                 sector_nr += len >> 9;
4427                 nr_sectors += len >> 9;
4428         }
4429 bio_full:
4430         rcu_read_unlock();
4431         r10_bio->sectors = nr_sectors;
4432
4433         /* Now submit the read */
4434         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4435         atomic_inc(&r10_bio->remaining);
4436         read_bio->bi_next = NULL;
4437         generic_make_request(read_bio);
4438         sector_nr += nr_sectors;
4439         sectors_done += nr_sectors;
4440         if (sector_nr <= last)
4441                 goto read_more;
4442
4443         /* Now that we have done the whole section we can
4444          * update reshape_progress
4445          */
4446         if (mddev->reshape_backwards)
4447                 conf->reshape_progress -= sectors_done;
4448         else
4449                 conf->reshape_progress += sectors_done;
4450
4451         return sectors_done;
4452 }
4453
4454 static void end_reshape_request(struct r10bio *r10_bio);
4455 static int handle_reshape_read_error(struct mddev *mddev,
4456                                      struct r10bio *r10_bio);
4457 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4458 {
4459         /* Reshape read completed.  Hopefully we have a block
4460          * to write out.
4461          * If we got a read error then we do sync 1-page reads from
4462          * elsewhere until we find the data - or give up.
4463          */
4464         struct r10conf *conf = mddev->private;
4465         int s;
4466
4467         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4468                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4469                         /* Reshape has been aborted */
4470                         md_done_sync(mddev, r10_bio->sectors, 0);
4471                         return;
4472                 }
4473
4474         /* We definitely have the data in the pages, schedule the
4475          * writes.
4476          */
4477         atomic_set(&r10_bio->remaining, 1);
4478         for (s = 0; s < conf->copies*2; s++) {
4479                 struct bio *b;
4480                 int d = r10_bio->devs[s/2].devnum;
4481                 struct md_rdev *rdev;
4482                 rcu_read_lock();
4483                 if (s&1) {
4484                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4485                         b = r10_bio->devs[s/2].repl_bio;
4486                 } else {
4487                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4488                         b = r10_bio->devs[s/2].bio;
4489                 }
4490                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4491                         rcu_read_unlock();
4492                         continue;
4493                 }
4494                 atomic_inc(&rdev->nr_pending);
4495                 rcu_read_unlock();
4496                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4497                 atomic_inc(&r10_bio->remaining);
4498                 b->bi_next = NULL;
4499                 generic_make_request(b);
4500         }
4501         end_reshape_request(r10_bio);
4502 }
4503
4504 static void end_reshape(struct r10conf *conf)
4505 {
4506         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4507                 return;
4508
4509         spin_lock_irq(&conf->device_lock);
4510         conf->prev = conf->geo;
4511         md_finish_reshape(conf->mddev);
4512         smp_wmb();
4513         conf->reshape_progress = MaxSector;
4514         conf->reshape_safe = MaxSector;
4515         spin_unlock_irq(&conf->device_lock);
4516
4517         /* read-ahead size must cover two whole stripes, which is
4518          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4519          */
4520         if (conf->mddev->queue) {
4521                 int stripe = conf->geo.raid_disks *
4522                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4523                 stripe /= conf->geo.near_copies;
4524                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4525                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4526         }
4527         conf->fullsync = 0;
4528 }
4529
4530 static int handle_reshape_read_error(struct mddev *mddev,
4531                                      struct r10bio *r10_bio)
4532 {
4533         /* Use sync reads to get the blocks from somewhere else */
4534         int sectors = r10_bio->sectors;
4535         struct r10conf *conf = mddev->private;
4536         struct {
4537                 struct r10bio r10_bio;
4538                 struct r10dev devs[conf->copies];
4539         } on_stack;
4540         struct r10bio *r10b = &on_stack.r10_bio;
4541         int slot = 0;
4542         int idx = 0;
4543         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4544
4545         r10b->sector = r10_bio->sector;
4546         __raid10_find_phys(&conf->prev, r10b);
4547
4548         while (sectors) {
4549                 int s = sectors;
4550                 int success = 0;
4551                 int first_slot = slot;
4552
4553                 if (s > (PAGE_SIZE >> 9))
4554                         s = PAGE_SIZE >> 9;
4555
4556                 rcu_read_lock();
4557                 while (!success) {
4558                         int d = r10b->devs[slot].devnum;
4559                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4560                         sector_t addr;
4561                         if (rdev == NULL ||
4562                             test_bit(Faulty, &rdev->flags) ||
4563                             !test_bit(In_sync, &rdev->flags))
4564                                 goto failed;
4565
4566                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4567                         atomic_inc(&rdev->nr_pending);
4568                         rcu_read_unlock();
4569                         success = sync_page_io(rdev,
4570                                                addr,
4571                                                s << 9,
4572                                                bvec[idx].bv_page,
4573                                                REQ_OP_READ, 0, false);
4574                         rdev_dec_pending(rdev, mddev);
4575                         rcu_read_lock();
4576                         if (success)
4577                                 break;
4578                 failed:
4579                         slot++;
4580                         if (slot >= conf->copies)
4581                                 slot = 0;
4582                         if (slot == first_slot)
4583                                 break;
4584                 }
4585                 rcu_read_unlock();
4586                 if (!success) {
4587                         /* couldn't read this block, must give up */
4588                         set_bit(MD_RECOVERY_INTR,
4589                                 &mddev->recovery);
4590                         return -EIO;
4591                 }
4592                 sectors -= s;
4593                 idx++;
4594         }
4595         return 0;
4596 }
4597
4598 static void end_reshape_write(struct bio *bio)
4599 {
4600         struct r10bio *r10_bio = bio->bi_private;
4601         struct mddev *mddev = r10_bio->mddev;
4602         struct r10conf *conf = mddev->private;
4603         int d;
4604         int slot;
4605         int repl;
4606         struct md_rdev *rdev = NULL;
4607
4608         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4609         if (repl)
4610                 rdev = conf->mirrors[d].replacement;
4611         if (!rdev) {
4612                 smp_mb();
4613                 rdev = conf->mirrors[d].rdev;
4614         }
4615
4616         if (bio->bi_error) {
4617                 /* FIXME should record badblock */
4618                 md_error(mddev, rdev);
4619         }
4620
4621         rdev_dec_pending(rdev, mddev);
4622         end_reshape_request(r10_bio);
4623 }
4624
4625 static void end_reshape_request(struct r10bio *r10_bio)
4626 {
4627         if (!atomic_dec_and_test(&r10_bio->remaining))
4628                 return;
4629         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4630         bio_put(r10_bio->master_bio);
4631         put_buf(r10_bio);
4632 }
4633
4634 static void raid10_finish_reshape(struct mddev *mddev)
4635 {
4636         struct r10conf *conf = mddev->private;
4637
4638         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4639                 return;
4640
4641         if (mddev->delta_disks > 0) {
4642                 sector_t size = raid10_size(mddev, 0, 0);
4643                 md_set_array_sectors(mddev, size);
4644                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4645                         mddev->recovery_cp = mddev->resync_max_sectors;
4646                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4647                 }
4648                 mddev->resync_max_sectors = size;
4649                 if (mddev->queue) {
4650                         set_capacity(mddev->gendisk, mddev->array_sectors);
4651                         revalidate_disk(mddev->gendisk);
4652                 }
4653         } else {
4654                 int d;
4655                 rcu_read_lock();
4656                 for (d = conf->geo.raid_disks ;
4657                      d < conf->geo.raid_disks - mddev->delta_disks;
4658                      d++) {
4659                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4660                         if (rdev)
4661                                 clear_bit(In_sync, &rdev->flags);
4662                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4663                         if (rdev)
4664                                 clear_bit(In_sync, &rdev->flags);
4665                 }
4666                 rcu_read_unlock();
4667         }
4668         mddev->layout = mddev->new_layout;
4669         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4670         mddev->reshape_position = MaxSector;
4671         mddev->delta_disks = 0;
4672         mddev->reshape_backwards = 0;
4673 }
4674
4675 static struct md_personality raid10_personality =
4676 {
4677         .name           = "raid10",
4678         .level          = 10,
4679         .owner          = THIS_MODULE,
4680         .make_request   = raid10_make_request,
4681         .run            = raid10_run,
4682         .free           = raid10_free,
4683         .status         = raid10_status,
4684         .error_handler  = raid10_error,
4685         .hot_add_disk   = raid10_add_disk,
4686         .hot_remove_disk= raid10_remove_disk,
4687         .spare_active   = raid10_spare_active,
4688         .sync_request   = raid10_sync_request,
4689         .quiesce        = raid10_quiesce,
4690         .size           = raid10_size,
4691         .resize         = raid10_resize,
4692         .takeover       = raid10_takeover,
4693         .check_reshape  = raid10_check_reshape,
4694         .start_reshape  = raid10_start_reshape,
4695         .finish_reshape = raid10_finish_reshape,
4696         .congested      = raid10_congested,
4697 };
4698
4699 static int __init raid_init(void)
4700 {
4701         return register_md_personality(&raid10_personality);
4702 }
4703
4704 static void raid_exit(void)
4705 {
4706         unregister_md_personality(&raid10_personality);
4707 }
4708
4709 module_init(raid_init);
4710 module_exit(raid_exit);
4711 MODULE_LICENSE("GPL");
4712 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4713 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4714 MODULE_ALIAS("md-raid10");
4715 MODULE_ALIAS("md-level-10");
4716
4717 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);