block: kill off q->flush_flags
[cascardo/linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 /*
38  * We only need 2 bios per I/O unit to make progress, but ensure we
39  * have a few more available to not get too tight.
40  */
41 #define R5L_POOL_SIZE   4
42
43 struct r5l_log {
44         struct md_rdev *rdev;
45
46         u32 uuid_checksum;
47
48         sector_t device_size;           /* log device size, round to
49                                          * BLOCK_SECTORS */
50         sector_t max_free_space;        /* reclaim run if free space is at
51                                          * this size */
52
53         sector_t last_checkpoint;       /* log tail. where recovery scan
54                                          * starts from */
55         u64 last_cp_seq;                /* log tail sequence */
56
57         sector_t log_start;             /* log head. where new data appends */
58         u64 seq;                        /* log head sequence */
59
60         sector_t next_checkpoint;
61         u64 next_cp_seq;
62
63         struct mutex io_mutex;
64         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
65
66         spinlock_t io_list_lock;
67         struct list_head running_ios;   /* io_units which are still running,
68                                          * and have not yet been completely
69                                          * written to the log */
70         struct list_head io_end_ios;    /* io_units which have been completely
71                                          * written to the log but not yet written
72                                          * to the RAID */
73         struct list_head flushing_ios;  /* io_units which are waiting for log
74                                          * cache flush */
75         struct list_head finished_ios;  /* io_units which settle down in log disk */
76         struct bio flush_bio;
77
78         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
79
80         struct kmem_cache *io_kc;
81         mempool_t *io_pool;
82         struct bio_set *bs;
83         mempool_t *meta_pool;
84
85         struct md_thread *reclaim_thread;
86         unsigned long reclaim_target;   /* number of space that need to be
87                                          * reclaimed.  if it's 0, reclaim spaces
88                                          * used by io_units which are in
89                                          * IO_UNIT_STRIPE_END state (eg, reclaim
90                                          * dones't wait for specific io_unit
91                                          * switching to IO_UNIT_STRIPE_END
92                                          * state) */
93         wait_queue_head_t iounit_wait;
94
95         struct list_head no_space_stripes; /* pending stripes, log has no space */
96         spinlock_t no_space_stripes_lock;
97
98         bool need_cache_flush;
99         bool in_teardown;
100 };
101
102 /*
103  * an IO range starts from a meta data block and end at the next meta data
104  * block. The io unit's the meta data block tracks data/parity followed it. io
105  * unit is written to log disk with normal write, as we always flush log disk
106  * first and then start move data to raid disks, there is no requirement to
107  * write io unit with FLUSH/FUA
108  */
109 struct r5l_io_unit {
110         struct r5l_log *log;
111
112         struct page *meta_page; /* store meta block */
113         int meta_offset;        /* current offset in meta_page */
114
115         struct bio *current_bio;/* current_bio accepting new data */
116
117         atomic_t pending_stripe;/* how many stripes not flushed to raid */
118         u64 seq;                /* seq number of the metablock */
119         sector_t log_start;     /* where the io_unit starts */
120         sector_t log_end;       /* where the io_unit ends */
121         struct list_head log_sibling; /* log->running_ios */
122         struct list_head stripe_list; /* stripes added to the io_unit */
123
124         int state;
125         bool need_split_bio;
126 };
127
128 /* r5l_io_unit state */
129 enum r5l_io_unit_state {
130         IO_UNIT_RUNNING = 0,    /* accepting new IO */
131         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
132                                  * don't accepting new bio */
133         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
134         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
135 };
136
137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138 {
139         start += inc;
140         if (start >= log->device_size)
141                 start = start - log->device_size;
142         return start;
143 }
144
145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
146                                   sector_t end)
147 {
148         if (end >= start)
149                 return end - start;
150         else
151                 return end + log->device_size - start;
152 }
153
154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155 {
156         sector_t used_size;
157
158         used_size = r5l_ring_distance(log, log->last_checkpoint,
159                                         log->log_start);
160
161         return log->device_size > used_size + size;
162 }
163
164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
165                                     enum r5l_io_unit_state state)
166 {
167         if (WARN_ON(io->state >= state))
168                 return;
169         io->state = state;
170 }
171
172 static void r5l_io_run_stripes(struct r5l_io_unit *io)
173 {
174         struct stripe_head *sh, *next;
175
176         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
177                 list_del_init(&sh->log_list);
178                 set_bit(STRIPE_HANDLE, &sh->state);
179                 raid5_release_stripe(sh);
180         }
181 }
182
183 static void r5l_log_run_stripes(struct r5l_log *log)
184 {
185         struct r5l_io_unit *io, *next;
186
187         assert_spin_locked(&log->io_list_lock);
188
189         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
190                 /* don't change list order */
191                 if (io->state < IO_UNIT_IO_END)
192                         break;
193
194                 list_move_tail(&io->log_sibling, &log->finished_ios);
195                 r5l_io_run_stripes(io);
196         }
197 }
198
199 static void r5l_move_to_end_ios(struct r5l_log *log)
200 {
201         struct r5l_io_unit *io, *next;
202
203         assert_spin_locked(&log->io_list_lock);
204
205         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
206                 /* don't change list order */
207                 if (io->state < IO_UNIT_IO_END)
208                         break;
209                 list_move_tail(&io->log_sibling, &log->io_end_ios);
210         }
211 }
212
213 static void r5l_log_endio(struct bio *bio)
214 {
215         struct r5l_io_unit *io = bio->bi_private;
216         struct r5l_log *log = io->log;
217         unsigned long flags;
218
219         if (bio->bi_error)
220                 md_error(log->rdev->mddev, log->rdev);
221
222         bio_put(bio);
223         mempool_free(io->meta_page, log->meta_pool);
224
225         spin_lock_irqsave(&log->io_list_lock, flags);
226         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
227         if (log->need_cache_flush)
228                 r5l_move_to_end_ios(log);
229         else
230                 r5l_log_run_stripes(log);
231         spin_unlock_irqrestore(&log->io_list_lock, flags);
232
233         if (log->need_cache_flush)
234                 md_wakeup_thread(log->rdev->mddev->thread);
235 }
236
237 static void r5l_submit_current_io(struct r5l_log *log)
238 {
239         struct r5l_io_unit *io = log->current_io;
240         struct r5l_meta_block *block;
241         unsigned long flags;
242         u32 crc;
243
244         if (!io)
245                 return;
246
247         block = page_address(io->meta_page);
248         block->meta_size = cpu_to_le32(io->meta_offset);
249         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
250         block->checksum = cpu_to_le32(crc);
251
252         log->current_io = NULL;
253         spin_lock_irqsave(&log->io_list_lock, flags);
254         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
255         spin_unlock_irqrestore(&log->io_list_lock, flags);
256
257         submit_bio(WRITE, io->current_bio);
258 }
259
260 static struct bio *r5l_bio_alloc(struct r5l_log *log)
261 {
262         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
263
264         bio->bi_rw = WRITE;
265         bio->bi_bdev = log->rdev->bdev;
266         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
267
268         return bio;
269 }
270
271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272 {
273         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
274
275         /*
276          * If we filled up the log device start from the beginning again,
277          * which will require a new bio.
278          *
279          * Note: for this to work properly the log size needs to me a multiple
280          * of BLOCK_SECTORS.
281          */
282         if (log->log_start == 0)
283                 io->need_split_bio = true;
284
285         io->log_end = log->log_start;
286 }
287
288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289 {
290         struct r5l_io_unit *io;
291         struct r5l_meta_block *block;
292
293         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
294         if (!io)
295                 return NULL;
296         memset(io, 0, sizeof(*io));
297
298         io->log = log;
299         INIT_LIST_HEAD(&io->log_sibling);
300         INIT_LIST_HEAD(&io->stripe_list);
301         io->state = IO_UNIT_RUNNING;
302
303         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
304         block = page_address(io->meta_page);
305         clear_page(block);
306         block->magic = cpu_to_le32(R5LOG_MAGIC);
307         block->version = R5LOG_VERSION;
308         block->seq = cpu_to_le64(log->seq);
309         block->position = cpu_to_le64(log->log_start);
310
311         io->log_start = log->log_start;
312         io->meta_offset = sizeof(struct r5l_meta_block);
313         io->seq = log->seq++;
314
315         io->current_bio = r5l_bio_alloc(log);
316         io->current_bio->bi_end_io = r5l_log_endio;
317         io->current_bio->bi_private = io;
318         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
319
320         r5_reserve_log_entry(log, io);
321
322         spin_lock_irq(&log->io_list_lock);
323         list_add_tail(&io->log_sibling, &log->running_ios);
324         spin_unlock_irq(&log->io_list_lock);
325
326         return io;
327 }
328
329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330 {
331         if (log->current_io &&
332             log->current_io->meta_offset + payload_size > PAGE_SIZE)
333                 r5l_submit_current_io(log);
334
335         if (!log->current_io) {
336                 log->current_io = r5l_new_meta(log);
337                 if (!log->current_io)
338                         return -ENOMEM;
339         }
340
341         return 0;
342 }
343
344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
345                                     sector_t location,
346                                     u32 checksum1, u32 checksum2,
347                                     bool checksum2_valid)
348 {
349         struct r5l_io_unit *io = log->current_io;
350         struct r5l_payload_data_parity *payload;
351
352         payload = page_address(io->meta_page) + io->meta_offset;
353         payload->header.type = cpu_to_le16(type);
354         payload->header.flags = cpu_to_le16(0);
355         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
356                                     (PAGE_SHIFT - 9));
357         payload->location = cpu_to_le64(location);
358         payload->checksum[0] = cpu_to_le32(checksum1);
359         if (checksum2_valid)
360                 payload->checksum[1] = cpu_to_le32(checksum2);
361
362         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
363                 sizeof(__le32) * (1 + !!checksum2_valid);
364 }
365
366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367 {
368         struct r5l_io_unit *io = log->current_io;
369
370         if (io->need_split_bio) {
371                 struct bio *prev = io->current_bio;
372
373                 io->current_bio = r5l_bio_alloc(log);
374                 bio_chain(io->current_bio, prev);
375
376                 submit_bio(WRITE, prev);
377         }
378
379         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
380                 BUG();
381
382         r5_reserve_log_entry(log, io);
383 }
384
385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
386                            int data_pages, int parity_pages)
387 {
388         int i;
389         int meta_size;
390         int ret;
391         struct r5l_io_unit *io;
392
393         meta_size =
394                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
395                  * data_pages) +
396                 sizeof(struct r5l_payload_data_parity) +
397                 sizeof(__le32) * parity_pages;
398
399         ret = r5l_get_meta(log, meta_size);
400         if (ret)
401                 return ret;
402
403         io = log->current_io;
404
405         for (i = 0; i < sh->disks; i++) {
406                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
407                         continue;
408                 if (i == sh->pd_idx || i == sh->qd_idx)
409                         continue;
410                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
411                                         raid5_compute_blocknr(sh, i, 0),
412                                         sh->dev[i].log_checksum, 0, false);
413                 r5l_append_payload_page(log, sh->dev[i].page);
414         }
415
416         if (sh->qd_idx >= 0) {
417                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
418                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
419                                         sh->dev[sh->qd_idx].log_checksum, true);
420                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
421                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
422         } else {
423                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
424                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
425                                         0, false);
426                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
427         }
428
429         list_add_tail(&sh->log_list, &io->stripe_list);
430         atomic_inc(&io->pending_stripe);
431         sh->log_io = io;
432
433         return 0;
434 }
435
436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 /*
438  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439  * data from log to raid disks), so we shouldn't wait for reclaim here
440  */
441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 {
443         int write_disks = 0;
444         int data_pages, parity_pages;
445         int meta_size;
446         int reserve;
447         int i;
448         int ret = 0;
449
450         if (!log)
451                 return -EAGAIN;
452         /* Don't support stripe batch */
453         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
454             test_bit(STRIPE_SYNCING, &sh->state)) {
455                 /* the stripe is written to log, we start writing it to raid */
456                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
457                 return -EAGAIN;
458         }
459
460         for (i = 0; i < sh->disks; i++) {
461                 void *addr;
462
463                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
464                         continue;
465                 write_disks++;
466                 /* checksum is already calculated in last run */
467                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
468                         continue;
469                 addr = kmap_atomic(sh->dev[i].page);
470                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
471                                                     addr, PAGE_SIZE);
472                 kunmap_atomic(addr);
473         }
474         parity_pages = 1 + !!(sh->qd_idx >= 0);
475         data_pages = write_disks - parity_pages;
476
477         meta_size =
478                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
479                  * data_pages) +
480                 sizeof(struct r5l_payload_data_parity) +
481                 sizeof(__le32) * parity_pages;
482         /* Doesn't work with very big raid array */
483         if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
484                 return -EINVAL;
485
486         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
487         /*
488          * The stripe must enter state machine again to finish the write, so
489          * don't delay.
490          */
491         clear_bit(STRIPE_DELAYED, &sh->state);
492         atomic_inc(&sh->count);
493
494         mutex_lock(&log->io_mutex);
495         /* meta + data */
496         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
497         if (!r5l_has_free_space(log, reserve)) {
498                 spin_lock(&log->no_space_stripes_lock);
499                 list_add_tail(&sh->log_list, &log->no_space_stripes);
500                 spin_unlock(&log->no_space_stripes_lock);
501
502                 r5l_wake_reclaim(log, reserve);
503         } else {
504                 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
505                 if (ret) {
506                         spin_lock_irq(&log->io_list_lock);
507                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
508                         spin_unlock_irq(&log->io_list_lock);
509                 }
510         }
511
512         mutex_unlock(&log->io_mutex);
513         return 0;
514 }
515
516 void r5l_write_stripe_run(struct r5l_log *log)
517 {
518         if (!log)
519                 return;
520         mutex_lock(&log->io_mutex);
521         r5l_submit_current_io(log);
522         mutex_unlock(&log->io_mutex);
523 }
524
525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526 {
527         if (!log)
528                 return -ENODEV;
529         /*
530          * we flush log disk cache first, then write stripe data to raid disks.
531          * So if bio is finished, the log disk cache is flushed already. The
532          * recovery guarantees we can recovery the bio from log disk, so we
533          * don't need to flush again
534          */
535         if (bio->bi_iter.bi_size == 0) {
536                 bio_endio(bio);
537                 return 0;
538         }
539         bio->bi_rw &= ~REQ_FLUSH;
540         return -EAGAIN;
541 }
542
543 /* This will run after log space is reclaimed */
544 static void r5l_run_no_space_stripes(struct r5l_log *log)
545 {
546         struct stripe_head *sh;
547
548         spin_lock(&log->no_space_stripes_lock);
549         while (!list_empty(&log->no_space_stripes)) {
550                 sh = list_first_entry(&log->no_space_stripes,
551                                       struct stripe_head, log_list);
552                 list_del_init(&sh->log_list);
553                 set_bit(STRIPE_HANDLE, &sh->state);
554                 raid5_release_stripe(sh);
555         }
556         spin_unlock(&log->no_space_stripes_lock);
557 }
558
559 static sector_t r5l_reclaimable_space(struct r5l_log *log)
560 {
561         return r5l_ring_distance(log, log->last_checkpoint,
562                                  log->next_checkpoint);
563 }
564
565 static void r5l_run_no_mem_stripe(struct r5l_log *log)
566 {
567         struct stripe_head *sh;
568
569         assert_spin_locked(&log->io_list_lock);
570
571         if (!list_empty(&log->no_mem_stripes)) {
572                 sh = list_first_entry(&log->no_mem_stripes,
573                                       struct stripe_head, log_list);
574                 list_del_init(&sh->log_list);
575                 set_bit(STRIPE_HANDLE, &sh->state);
576                 raid5_release_stripe(sh);
577         }
578 }
579
580 static bool r5l_complete_finished_ios(struct r5l_log *log)
581 {
582         struct r5l_io_unit *io, *next;
583         bool found = false;
584
585         assert_spin_locked(&log->io_list_lock);
586
587         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
588                 /* don't change list order */
589                 if (io->state < IO_UNIT_STRIPE_END)
590                         break;
591
592                 log->next_checkpoint = io->log_start;
593                 log->next_cp_seq = io->seq;
594
595                 list_del(&io->log_sibling);
596                 mempool_free(io, log->io_pool);
597                 r5l_run_no_mem_stripe(log);
598
599                 found = true;
600         }
601
602         return found;
603 }
604
605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606 {
607         struct r5l_log *log = io->log;
608         unsigned long flags;
609
610         spin_lock_irqsave(&log->io_list_lock, flags);
611         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
612
613         if (!r5l_complete_finished_ios(log)) {
614                 spin_unlock_irqrestore(&log->io_list_lock, flags);
615                 return;
616         }
617
618         if (r5l_reclaimable_space(log) > log->max_free_space)
619                 r5l_wake_reclaim(log, 0);
620
621         spin_unlock_irqrestore(&log->io_list_lock, flags);
622         wake_up(&log->iounit_wait);
623 }
624
625 void r5l_stripe_write_finished(struct stripe_head *sh)
626 {
627         struct r5l_io_unit *io;
628
629         io = sh->log_io;
630         sh->log_io = NULL;
631
632         if (io && atomic_dec_and_test(&io->pending_stripe))
633                 __r5l_stripe_write_finished(io);
634 }
635
636 static void r5l_log_flush_endio(struct bio *bio)
637 {
638         struct r5l_log *log = container_of(bio, struct r5l_log,
639                 flush_bio);
640         unsigned long flags;
641         struct r5l_io_unit *io;
642
643         if (bio->bi_error)
644                 md_error(log->rdev->mddev, log->rdev);
645
646         spin_lock_irqsave(&log->io_list_lock, flags);
647         list_for_each_entry(io, &log->flushing_ios, log_sibling)
648                 r5l_io_run_stripes(io);
649         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
650         spin_unlock_irqrestore(&log->io_list_lock, flags);
651 }
652
653 /*
654  * Starting dispatch IO to raid.
655  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
656  * broken meta in the middle of a log causes recovery can't find meta at the
657  * head of log. If operations require meta at the head persistent in log, we
658  * must make sure meta before it persistent in log too. A case is:
659  *
660  * stripe data/parity is in log, we start write stripe to raid disks. stripe
661  * data/parity must be persistent in log before we do the write to raid disks.
662  *
663  * The solution is we restrictly maintain io_unit list order. In this case, we
664  * only write stripes of an io_unit to raid disks till the io_unit is the first
665  * one whose data/parity is in log.
666  */
667 void r5l_flush_stripe_to_raid(struct r5l_log *log)
668 {
669         bool do_flush;
670
671         if (!log || !log->need_cache_flush)
672                 return;
673
674         spin_lock_irq(&log->io_list_lock);
675         /* flush bio is running */
676         if (!list_empty(&log->flushing_ios)) {
677                 spin_unlock_irq(&log->io_list_lock);
678                 return;
679         }
680         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
681         do_flush = !list_empty(&log->flushing_ios);
682         spin_unlock_irq(&log->io_list_lock);
683
684         if (!do_flush)
685                 return;
686         bio_reset(&log->flush_bio);
687         log->flush_bio.bi_bdev = log->rdev->bdev;
688         log->flush_bio.bi_end_io = r5l_log_flush_endio;
689         submit_bio(WRITE_FLUSH, &log->flush_bio);
690 }
691
692 static void r5l_write_super(struct r5l_log *log, sector_t cp);
693 static void r5l_write_super_and_discard_space(struct r5l_log *log,
694         sector_t end)
695 {
696         struct block_device *bdev = log->rdev->bdev;
697         struct mddev *mddev;
698
699         r5l_write_super(log, end);
700
701         if (!blk_queue_discard(bdev_get_queue(bdev)))
702                 return;
703
704         mddev = log->rdev->mddev;
705         /*
706          * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
707          * wait for this thread to finish. This thread waits for
708          * MD_CHANGE_PENDING clear, which is supposed to be done in
709          * md_check_recovery(). md_check_recovery() tries to get
710          * reconfig_mutex. Since r5l_quiesce already holds the mutex,
711          * md_check_recovery() fails, so the PENDING never get cleared. The
712          * in_teardown check workaround this issue.
713          */
714         if (!log->in_teardown) {
715                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
716                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
717                 md_wakeup_thread(mddev->thread);
718                 wait_event(mddev->sb_wait,
719                         !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
720                         log->in_teardown);
721                 /*
722                  * r5l_quiesce could run after in_teardown check and hold
723                  * mutex first. Superblock might get updated twice.
724                  */
725                 if (log->in_teardown)
726                         md_update_sb(mddev, 1);
727         } else {
728                 WARN_ON(!mddev_is_locked(mddev));
729                 md_update_sb(mddev, 1);
730         }
731
732         /* discard IO error really doesn't matter, ignore it */
733         if (log->last_checkpoint < end) {
734                 blkdev_issue_discard(bdev,
735                                 log->last_checkpoint + log->rdev->data_offset,
736                                 end - log->last_checkpoint, GFP_NOIO, 0);
737         } else {
738                 blkdev_issue_discard(bdev,
739                                 log->last_checkpoint + log->rdev->data_offset,
740                                 log->device_size - log->last_checkpoint,
741                                 GFP_NOIO, 0);
742                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
743                                 GFP_NOIO, 0);
744         }
745 }
746
747
748 static void r5l_do_reclaim(struct r5l_log *log)
749 {
750         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
751         sector_t reclaimable;
752         sector_t next_checkpoint;
753         u64 next_cp_seq;
754
755         spin_lock_irq(&log->io_list_lock);
756         /*
757          * move proper io_unit to reclaim list. We should not change the order.
758          * reclaimable/unreclaimable io_unit can be mixed in the list, we
759          * shouldn't reuse space of an unreclaimable io_unit
760          */
761         while (1) {
762                 reclaimable = r5l_reclaimable_space(log);
763                 if (reclaimable >= reclaim_target ||
764                     (list_empty(&log->running_ios) &&
765                      list_empty(&log->io_end_ios) &&
766                      list_empty(&log->flushing_ios) &&
767                      list_empty(&log->finished_ios)))
768                         break;
769
770                 md_wakeup_thread(log->rdev->mddev->thread);
771                 wait_event_lock_irq(log->iounit_wait,
772                                     r5l_reclaimable_space(log) > reclaimable,
773                                     log->io_list_lock);
774         }
775
776         next_checkpoint = log->next_checkpoint;
777         next_cp_seq = log->next_cp_seq;
778         spin_unlock_irq(&log->io_list_lock);
779
780         BUG_ON(reclaimable < 0);
781         if (reclaimable == 0)
782                 return;
783
784         /*
785          * write_super will flush cache of each raid disk. We must write super
786          * here, because the log area might be reused soon and we don't want to
787          * confuse recovery
788          */
789         r5l_write_super_and_discard_space(log, next_checkpoint);
790
791         mutex_lock(&log->io_mutex);
792         log->last_checkpoint = next_checkpoint;
793         log->last_cp_seq = next_cp_seq;
794         mutex_unlock(&log->io_mutex);
795
796         r5l_run_no_space_stripes(log);
797 }
798
799 static void r5l_reclaim_thread(struct md_thread *thread)
800 {
801         struct mddev *mddev = thread->mddev;
802         struct r5conf *conf = mddev->private;
803         struct r5l_log *log = conf->log;
804
805         if (!log)
806                 return;
807         r5l_do_reclaim(log);
808 }
809
810 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
811 {
812         unsigned long target;
813         unsigned long new = (unsigned long)space; /* overflow in theory */
814
815         do {
816                 target = log->reclaim_target;
817                 if (new < target)
818                         return;
819         } while (cmpxchg(&log->reclaim_target, target, new) != target);
820         md_wakeup_thread(log->reclaim_thread);
821 }
822
823 void r5l_quiesce(struct r5l_log *log, int state)
824 {
825         struct mddev *mddev;
826         if (!log || state == 2)
827                 return;
828         if (state == 0) {
829                 log->in_teardown = 0;
830                 /*
831                  * This is a special case for hotadd. In suspend, the array has
832                  * no journal. In resume, journal is initialized as well as the
833                  * reclaim thread.
834                  */
835                 if (log->reclaim_thread)
836                         return;
837                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
838                                         log->rdev->mddev, "reclaim");
839         } else if (state == 1) {
840                 /*
841                  * at this point all stripes are finished, so io_unit is at
842                  * least in STRIPE_END state
843                  */
844                 log->in_teardown = 1;
845                 /* make sure r5l_write_super_and_discard_space exits */
846                 mddev = log->rdev->mddev;
847                 wake_up(&mddev->sb_wait);
848                 r5l_wake_reclaim(log, -1L);
849                 md_unregister_thread(&log->reclaim_thread);
850                 r5l_do_reclaim(log);
851         }
852 }
853
854 bool r5l_log_disk_error(struct r5conf *conf)
855 {
856         struct r5l_log *log;
857         bool ret;
858         /* don't allow write if journal disk is missing */
859         rcu_read_lock();
860         log = rcu_dereference(conf->log);
861
862         if (!log)
863                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
864         else
865                 ret = test_bit(Faulty, &log->rdev->flags);
866         rcu_read_unlock();
867         return ret;
868 }
869
870 struct r5l_recovery_ctx {
871         struct page *meta_page;         /* current meta */
872         sector_t meta_total_blocks;     /* total size of current meta and data */
873         sector_t pos;                   /* recovery position */
874         u64 seq;                        /* recovery position seq */
875 };
876
877 static int r5l_read_meta_block(struct r5l_log *log,
878                                struct r5l_recovery_ctx *ctx)
879 {
880         struct page *page = ctx->meta_page;
881         struct r5l_meta_block *mb;
882         u32 crc, stored_crc;
883
884         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
885                 return -EIO;
886
887         mb = page_address(page);
888         stored_crc = le32_to_cpu(mb->checksum);
889         mb->checksum = 0;
890
891         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
892             le64_to_cpu(mb->seq) != ctx->seq ||
893             mb->version != R5LOG_VERSION ||
894             le64_to_cpu(mb->position) != ctx->pos)
895                 return -EINVAL;
896
897         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
898         if (stored_crc != crc)
899                 return -EINVAL;
900
901         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
902                 return -EINVAL;
903
904         ctx->meta_total_blocks = BLOCK_SECTORS;
905
906         return 0;
907 }
908
909 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
910                                          struct r5l_recovery_ctx *ctx,
911                                          sector_t stripe_sect,
912                                          int *offset, sector_t *log_offset)
913 {
914         struct r5conf *conf = log->rdev->mddev->private;
915         struct stripe_head *sh;
916         struct r5l_payload_data_parity *payload;
917         int disk_index;
918
919         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
920         while (1) {
921                 payload = page_address(ctx->meta_page) + *offset;
922
923                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
924                         raid5_compute_sector(conf,
925                                              le64_to_cpu(payload->location), 0,
926                                              &disk_index, sh);
927
928                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
929                                      sh->dev[disk_index].page, READ, false);
930                         sh->dev[disk_index].log_checksum =
931                                 le32_to_cpu(payload->checksum[0]);
932                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
933                         ctx->meta_total_blocks += BLOCK_SECTORS;
934                 } else {
935                         disk_index = sh->pd_idx;
936                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
937                                      sh->dev[disk_index].page, READ, false);
938                         sh->dev[disk_index].log_checksum =
939                                 le32_to_cpu(payload->checksum[0]);
940                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
941
942                         if (sh->qd_idx >= 0) {
943                                 disk_index = sh->qd_idx;
944                                 sync_page_io(log->rdev,
945                                              r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
946                                              PAGE_SIZE, sh->dev[disk_index].page,
947                                              READ, false);
948                                 sh->dev[disk_index].log_checksum =
949                                         le32_to_cpu(payload->checksum[1]);
950                                 set_bit(R5_Wantwrite,
951                                         &sh->dev[disk_index].flags);
952                         }
953                         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
954                 }
955
956                 *log_offset = r5l_ring_add(log, *log_offset,
957                                            le32_to_cpu(payload->size));
958                 *offset += sizeof(struct r5l_payload_data_parity) +
959                         sizeof(__le32) *
960                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
961                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
962                         break;
963         }
964
965         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
966                 void *addr;
967                 u32 checksum;
968
969                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
970                         continue;
971                 addr = kmap_atomic(sh->dev[disk_index].page);
972                 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
973                 kunmap_atomic(addr);
974                 if (checksum != sh->dev[disk_index].log_checksum)
975                         goto error;
976         }
977
978         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
979                 struct md_rdev *rdev, *rrdev;
980
981                 if (!test_and_clear_bit(R5_Wantwrite,
982                                         &sh->dev[disk_index].flags))
983                         continue;
984
985                 /* in case device is broken */
986                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
987                 if (rdev)
988                         sync_page_io(rdev, stripe_sect, PAGE_SIZE,
989                                      sh->dev[disk_index].page, WRITE, false);
990                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
991                 if (rrdev)
992                         sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
993                                      sh->dev[disk_index].page, WRITE, false);
994         }
995         raid5_release_stripe(sh);
996         return 0;
997
998 error:
999         for (disk_index = 0; disk_index < sh->disks; disk_index++)
1000                 sh->dev[disk_index].flags = 0;
1001         raid5_release_stripe(sh);
1002         return -EINVAL;
1003 }
1004
1005 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1006                                        struct r5l_recovery_ctx *ctx)
1007 {
1008         struct r5conf *conf = log->rdev->mddev->private;
1009         struct r5l_payload_data_parity *payload;
1010         struct r5l_meta_block *mb;
1011         int offset;
1012         sector_t log_offset;
1013         sector_t stripe_sector;
1014
1015         mb = page_address(ctx->meta_page);
1016         offset = sizeof(struct r5l_meta_block);
1017         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1018
1019         while (offset < le32_to_cpu(mb->meta_size)) {
1020                 int dd;
1021
1022                 payload = (void *)mb + offset;
1023                 stripe_sector = raid5_compute_sector(conf,
1024                                                      le64_to_cpu(payload->location), 0, &dd, NULL);
1025                 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1026                                                   &offset, &log_offset))
1027                         return -EINVAL;
1028         }
1029         return 0;
1030 }
1031
1032 /* copy data/parity from log to raid disks */
1033 static void r5l_recovery_flush_log(struct r5l_log *log,
1034                                    struct r5l_recovery_ctx *ctx)
1035 {
1036         while (1) {
1037                 if (r5l_read_meta_block(log, ctx))
1038                         return;
1039                 if (r5l_recovery_flush_one_meta(log, ctx))
1040                         return;
1041                 ctx->seq++;
1042                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1043         }
1044 }
1045
1046 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1047                                           u64 seq)
1048 {
1049         struct page *page;
1050         struct r5l_meta_block *mb;
1051         u32 crc;
1052
1053         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1054         if (!page)
1055                 return -ENOMEM;
1056         mb = page_address(page);
1057         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1058         mb->version = R5LOG_VERSION;
1059         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1060         mb->seq = cpu_to_le64(seq);
1061         mb->position = cpu_to_le64(pos);
1062         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1063         mb->checksum = cpu_to_le32(crc);
1064
1065         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1066                 __free_page(page);
1067                 return -EIO;
1068         }
1069         __free_page(page);
1070         return 0;
1071 }
1072
1073 static int r5l_recovery_log(struct r5l_log *log)
1074 {
1075         struct r5l_recovery_ctx ctx;
1076
1077         ctx.pos = log->last_checkpoint;
1078         ctx.seq = log->last_cp_seq;
1079         ctx.meta_page = alloc_page(GFP_KERNEL);
1080         if (!ctx.meta_page)
1081                 return -ENOMEM;
1082
1083         r5l_recovery_flush_log(log, &ctx);
1084         __free_page(ctx.meta_page);
1085
1086         /*
1087          * we did a recovery. Now ctx.pos points to an invalid meta block. New
1088          * log will start here. but we can't let superblock point to last valid
1089          * meta block. The log might looks like:
1090          * | meta 1| meta 2| meta 3|
1091          * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1092          * superblock points to meta 1, we write a new valid meta 2n.  if crash
1093          * happens again, new recovery will start from meta 1. Since meta 2n is
1094          * valid now, recovery will think meta 3 is valid, which is wrong.
1095          * The solution is we create a new meta in meta2 with its seq == meta
1096          * 1's seq + 10 and let superblock points to meta2. The same recovery will
1097          * not think meta 3 is a valid meta, because its seq doesn't match
1098          */
1099         if (ctx.seq > log->last_cp_seq + 1) {
1100                 int ret;
1101
1102                 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1103                 if (ret)
1104                         return ret;
1105                 log->seq = ctx.seq + 11;
1106                 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1107                 r5l_write_super(log, ctx.pos);
1108         } else {
1109                 log->log_start = ctx.pos;
1110                 log->seq = ctx.seq;
1111         }
1112         return 0;
1113 }
1114
1115 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1116 {
1117         struct mddev *mddev = log->rdev->mddev;
1118
1119         log->rdev->journal_tail = cp;
1120         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1121 }
1122
1123 static int r5l_load_log(struct r5l_log *log)
1124 {
1125         struct md_rdev *rdev = log->rdev;
1126         struct page *page;
1127         struct r5l_meta_block *mb;
1128         sector_t cp = log->rdev->journal_tail;
1129         u32 stored_crc, expected_crc;
1130         bool create_super = false;
1131         int ret;
1132
1133         /* Make sure it's valid */
1134         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1135                 cp = 0;
1136         page = alloc_page(GFP_KERNEL);
1137         if (!page)
1138                 return -ENOMEM;
1139
1140         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1141                 ret = -EIO;
1142                 goto ioerr;
1143         }
1144         mb = page_address(page);
1145
1146         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1147             mb->version != R5LOG_VERSION) {
1148                 create_super = true;
1149                 goto create;
1150         }
1151         stored_crc = le32_to_cpu(mb->checksum);
1152         mb->checksum = 0;
1153         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1154         if (stored_crc != expected_crc) {
1155                 create_super = true;
1156                 goto create;
1157         }
1158         if (le64_to_cpu(mb->position) != cp) {
1159                 create_super = true;
1160                 goto create;
1161         }
1162 create:
1163         if (create_super) {
1164                 log->last_cp_seq = prandom_u32();
1165                 cp = 0;
1166                 /*
1167                  * Make sure super points to correct address. Log might have
1168                  * data very soon. If super hasn't correct log tail address,
1169                  * recovery can't find the log
1170                  */
1171                 r5l_write_super(log, cp);
1172         } else
1173                 log->last_cp_seq = le64_to_cpu(mb->seq);
1174
1175         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1176         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1177         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1178                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1179         log->last_checkpoint = cp;
1180
1181         __free_page(page);
1182
1183         return r5l_recovery_log(log);
1184 ioerr:
1185         __free_page(page);
1186         return ret;
1187 }
1188
1189 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1190 {
1191         struct request_queue *q = bdev_get_queue(rdev->bdev);
1192         struct r5l_log *log;
1193
1194         if (PAGE_SIZE != 4096)
1195                 return -EINVAL;
1196         log = kzalloc(sizeof(*log), GFP_KERNEL);
1197         if (!log)
1198                 return -ENOMEM;
1199         log->rdev = rdev;
1200
1201         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
1202
1203         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1204                                        sizeof(rdev->mddev->uuid));
1205
1206         mutex_init(&log->io_mutex);
1207
1208         spin_lock_init(&log->io_list_lock);
1209         INIT_LIST_HEAD(&log->running_ios);
1210         INIT_LIST_HEAD(&log->io_end_ios);
1211         INIT_LIST_HEAD(&log->flushing_ios);
1212         INIT_LIST_HEAD(&log->finished_ios);
1213         bio_init(&log->flush_bio);
1214
1215         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1216         if (!log->io_kc)
1217                 goto io_kc;
1218
1219         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1220         if (!log->io_pool)
1221                 goto io_pool;
1222
1223         log->bs = bioset_create(R5L_POOL_SIZE, 0);
1224         if (!log->bs)
1225                 goto io_bs;
1226
1227         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1228         if (!log->meta_pool)
1229                 goto out_mempool;
1230
1231         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1232                                                  log->rdev->mddev, "reclaim");
1233         if (!log->reclaim_thread)
1234                 goto reclaim_thread;
1235         init_waitqueue_head(&log->iounit_wait);
1236
1237         INIT_LIST_HEAD(&log->no_mem_stripes);
1238
1239         INIT_LIST_HEAD(&log->no_space_stripes);
1240         spin_lock_init(&log->no_space_stripes_lock);
1241
1242         if (r5l_load_log(log))
1243                 goto error;
1244
1245         rcu_assign_pointer(conf->log, log);
1246         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1247         return 0;
1248
1249 error:
1250         md_unregister_thread(&log->reclaim_thread);
1251 reclaim_thread:
1252         mempool_destroy(log->meta_pool);
1253 out_mempool:
1254         bioset_free(log->bs);
1255 io_bs:
1256         mempool_destroy(log->io_pool);
1257 io_pool:
1258         kmem_cache_destroy(log->io_kc);
1259 io_kc:
1260         kfree(log);
1261         return -EINVAL;
1262 }
1263
1264 void r5l_exit_log(struct r5l_log *log)
1265 {
1266         md_unregister_thread(&log->reclaim_thread);
1267         mempool_destroy(log->meta_pool);
1268         bioset_free(log->bs);
1269         mempool_destroy(log->io_pool);
1270         kmem_cache_destroy(log->io_kc);
1271         kfree(log);
1272 }