spi: sh-msiof: Constify platform_device_id
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676                                 sh = get_free_stripe(conf, hash);
677                                 if (!sh && llist_empty(&conf->released_stripes) &&
678                                     !test_bit(R5_DID_ALLOC, &conf->cache_state))
679                                         set_bit(R5_ALLOC_MORE,
680                                                 &conf->cache_state);
681                         }
682                         if (noblock && sh == NULL)
683                                 break;
684                         if (!sh) {
685                                 set_bit(R5_INACTIVE_BLOCKED,
686                                         &conf->cache_state);
687                                 wait_event_lock_irq(
688                                         conf->wait_for_stripe,
689                                         !list_empty(conf->inactive_list + hash) &&
690                                         (atomic_read(&conf->active_stripes)
691                                          < (conf->max_nr_stripes * 3 / 4)
692                                          || !test_bit(R5_INACTIVE_BLOCKED,
693                                                       &conf->cache_state)),
694                                         *(conf->hash_locks + hash));
695                                 clear_bit(R5_INACTIVE_BLOCKED,
696                                           &conf->cache_state);
697                         } else {
698                                 init_stripe(sh, sector, previous);
699                                 atomic_inc(&sh->count);
700                         }
701                 } else if (!atomic_inc_not_zero(&sh->count)) {
702                         spin_lock(&conf->device_lock);
703                         if (!atomic_read(&sh->count)) {
704                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
705                                         atomic_inc(&conf->active_stripes);
706                                 BUG_ON(list_empty(&sh->lru) &&
707                                        !test_bit(STRIPE_EXPANDING, &sh->state));
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                         }
714                         atomic_inc(&sh->count);
715                         spin_unlock(&conf->device_lock);
716                 }
717         } while (sh == NULL);
718
719         spin_unlock_irq(conf->hash_locks + hash);
720         return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         local_irq_disable();
732         if (sh1 > sh2) {
733                 spin_lock(&sh2->stripe_lock);
734                 spin_lock_nested(&sh1->stripe_lock, 1);
735         } else {
736                 spin_lock(&sh1->stripe_lock);
737                 spin_lock_nested(&sh2->stripe_lock, 1);
738         }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743         spin_unlock(&sh1->stripe_lock);
744         spin_unlock(&sh2->stripe_lock);
745         local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752                 is_full_stripe_write(sh);
753 }
754
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758         struct stripe_head *head;
759         sector_t head_sector, tmp_sec;
760         int hash;
761         int dd_idx;
762
763         if (!stripe_can_batch(sh))
764                 return;
765         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766         tmp_sec = sh->sector;
767         if (!sector_div(tmp_sec, conf->chunk_sectors))
768                 return;
769         head_sector = sh->sector - STRIPE_SECTORS;
770
771         hash = stripe_hash_locks_hash(head_sector);
772         spin_lock_irq(conf->hash_locks + hash);
773         head = __find_stripe(conf, head_sector, conf->generation);
774         if (head && !atomic_inc_not_zero(&head->count)) {
775                 spin_lock(&conf->device_lock);
776                 if (!atomic_read(&head->count)) {
777                         if (!test_bit(STRIPE_HANDLE, &head->state))
778                                 atomic_inc(&conf->active_stripes);
779                         BUG_ON(list_empty(&head->lru) &&
780                                !test_bit(STRIPE_EXPANDING, &head->state));
781                         list_del_init(&head->lru);
782                         if (head->group) {
783                                 head->group->stripes_cnt--;
784                                 head->group = NULL;
785                         }
786                 }
787                 atomic_inc(&head->count);
788                 spin_unlock(&conf->device_lock);
789         }
790         spin_unlock_irq(conf->hash_locks + hash);
791
792         if (!head)
793                 return;
794         if (!stripe_can_batch(head))
795                 goto out;
796
797         lock_two_stripes(head, sh);
798         /* clear_batch_ready clear the flag */
799         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800                 goto unlock_out;
801
802         if (sh->batch_head)
803                 goto unlock_out;
804
805         dd_idx = 0;
806         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807                 dd_idx++;
808         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809                 goto unlock_out;
810
811         if (head->batch_head) {
812                 spin_lock(&head->batch_head->batch_lock);
813                 /* This batch list is already running */
814                 if (!stripe_can_batch(head)) {
815                         spin_unlock(&head->batch_head->batch_lock);
816                         goto unlock_out;
817                 }
818
819                 /*
820                  * at this point, head's BATCH_READY could be cleared, but we
821                  * can still add the stripe to batch list
822                  */
823                 list_add(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_head->batch_lock);
825
826                 sh->batch_head = head->batch_head;
827         } else {
828                 head->batch_head = head;
829                 sh->batch_head = head->batch_head;
830                 spin_lock(&head->batch_lock);
831                 list_add_tail(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_lock);
833         }
834
835         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836                 if (atomic_dec_return(&conf->preread_active_stripes)
837                     < IO_THRESHOLD)
838                         md_wakeup_thread(conf->mddev->thread);
839
840         atomic_inc(&sh->count);
841 unlock_out:
842         unlock_two_stripes(head, sh);
843 out:
844         release_stripe(head);
845 }
846
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848  * in this stripe_head.
849  */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852         sector_t progress = conf->reshape_progress;
853         /* Need a memory barrier to make sure we see the value
854          * of conf->generation, or ->data_offset that was set before
855          * reshape_progress was updated.
856          */
857         smp_rmb();
858         if (progress == MaxSector)
859                 return 0;
860         if (sh->generation == conf->generation - 1)
861                 return 0;
862         /* We are in a reshape, and this is a new-generation stripe,
863          * so use new_data_offset.
864          */
865         return 1;
866 }
867
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875         struct r5conf *conf = sh->raid_conf;
876         int i, disks = sh->disks;
877         struct stripe_head *head_sh = sh;
878
879         might_sleep();
880
881         for (i = disks; i--; ) {
882                 int rw;
883                 int replace_only = 0;
884                 struct bio *bi, *rbi;
885                 struct md_rdev *rdev, *rrdev = NULL;
886
887                 sh = head_sh;
888                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890                                 rw = WRITE_FUA;
891                         else
892                                 rw = WRITE;
893                         if (test_bit(R5_Discard, &sh->dev[i].flags))
894                                 rw |= REQ_DISCARD;
895                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896                         rw = READ;
897                 else if (test_and_clear_bit(R5_WantReplace,
898                                             &sh->dev[i].flags)) {
899                         rw = WRITE;
900                         replace_only = 1;
901                 } else
902                         continue;
903                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904                         rw |= REQ_SYNC;
905
906 again:
907                 bi = &sh->dev[i].req;
908                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
909
910                 rcu_read_lock();
911                 rrdev = rcu_dereference(conf->disks[i].replacement);
912                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913                 rdev = rcu_dereference(conf->disks[i].rdev);
914                 if (!rdev) {
915                         rdev = rrdev;
916                         rrdev = NULL;
917                 }
918                 if (rw & WRITE) {
919                         if (replace_only)
920                                 rdev = NULL;
921                         if (rdev == rrdev)
922                                 /* We raced and saw duplicates */
923                                 rrdev = NULL;
924                 } else {
925                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926                                 rdev = rrdev;
927                         rrdev = NULL;
928                 }
929
930                 if (rdev && test_bit(Faulty, &rdev->flags))
931                         rdev = NULL;
932                 if (rdev)
933                         atomic_inc(&rdev->nr_pending);
934                 if (rrdev && test_bit(Faulty, &rrdev->flags))
935                         rrdev = NULL;
936                 if (rrdev)
937                         atomic_inc(&rrdev->nr_pending);
938                 rcu_read_unlock();
939
940                 /* We have already checked bad blocks for reads.  Now
941                  * need to check for writes.  We never accept write errors
942                  * on the replacement, so we don't to check rrdev.
943                  */
944                 while ((rw & WRITE) && rdev &&
945                        test_bit(WriteErrorSeen, &rdev->flags)) {
946                         sector_t first_bad;
947                         int bad_sectors;
948                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949                                               &first_bad, &bad_sectors);
950                         if (!bad)
951                                 break;
952
953                         if (bad < 0) {
954                                 set_bit(BlockedBadBlocks, &rdev->flags);
955                                 if (!conf->mddev->external &&
956                                     conf->mddev->flags) {
957                                         /* It is very unlikely, but we might
958                                          * still need to write out the
959                                          * bad block log - better give it
960                                          * a chance*/
961                                         md_check_recovery(conf->mddev);
962                                 }
963                                 /*
964                                  * Because md_wait_for_blocked_rdev
965                                  * will dec nr_pending, we must
966                                  * increment it first.
967                                  */
968                                 atomic_inc(&rdev->nr_pending);
969                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
970                         } else {
971                                 /* Acknowledged bad block - skip the write */
972                                 rdev_dec_pending(rdev, conf->mddev);
973                                 rdev = NULL;
974                         }
975                 }
976
977                 if (rdev) {
978                         if (s->syncing || s->expanding || s->expanded
979                             || s->replacing)
980                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
982                         set_bit(STRIPE_IO_STARTED, &sh->state);
983
984                         bio_reset(bi);
985                         bi->bi_bdev = rdev->bdev;
986                         bi->bi_rw = rw;
987                         bi->bi_end_io = (rw & WRITE)
988                                 ? raid5_end_write_request
989                                 : raid5_end_read_request;
990                         bi->bi_private = sh;
991
992                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993                                 __func__, (unsigned long long)sh->sector,
994                                 bi->bi_rw, i);
995                         atomic_inc(&sh->count);
996                         if (sh != head_sh)
997                                 atomic_inc(&head_sh->count);
998                         if (use_new_offset(conf, sh))
999                                 bi->bi_iter.bi_sector = (sh->sector
1000                                                  + rdev->new_data_offset);
1001                         else
1002                                 bi->bi_iter.bi_sector = (sh->sector
1003                                                  + rdev->data_offset);
1004                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005                                 bi->bi_rw |= REQ_NOMERGE;
1006
1007                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1010                         bi->bi_vcnt = 1;
1011                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012                         bi->bi_io_vec[0].bv_offset = 0;
1013                         bi->bi_iter.bi_size = STRIPE_SIZE;
1014                         /*
1015                          * If this is discard request, set bi_vcnt 0. We don't
1016                          * want to confuse SCSI because SCSI will replace payload
1017                          */
1018                         if (rw & REQ_DISCARD)
1019                                 bi->bi_vcnt = 0;
1020                         if (rrdev)
1021                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022
1023                         if (conf->mddev->gendisk)
1024                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025                                                       bi, disk_devt(conf->mddev->gendisk),
1026                                                       sh->dev[i].sector);
1027                         generic_make_request(bi);
1028                 }
1029                 if (rrdev) {
1030                         if (s->syncing || s->expanding || s->expanded
1031                             || s->replacing)
1032                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034                         set_bit(STRIPE_IO_STARTED, &sh->state);
1035
1036                         bio_reset(rbi);
1037                         rbi->bi_bdev = rrdev->bdev;
1038                         rbi->bi_rw = rw;
1039                         BUG_ON(!(rw & WRITE));
1040                         rbi->bi_end_io = raid5_end_write_request;
1041                         rbi->bi_private = sh;
1042
1043                         pr_debug("%s: for %llu schedule op %ld on "
1044                                  "replacement disc %d\n",
1045                                 __func__, (unsigned long long)sh->sector,
1046                                 rbi->bi_rw, i);
1047                         atomic_inc(&sh->count);
1048                         if (sh != head_sh)
1049                                 atomic_inc(&head_sh->count);
1050                         if (use_new_offset(conf, sh))
1051                                 rbi->bi_iter.bi_sector = (sh->sector
1052                                                   + rrdev->new_data_offset);
1053                         else
1054                                 rbi->bi_iter.bi_sector = (sh->sector
1055                                                   + rrdev->data_offset);
1056                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059                         rbi->bi_vcnt = 1;
1060                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061                         rbi->bi_io_vec[0].bv_offset = 0;
1062                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1063                         /*
1064                          * If this is discard request, set bi_vcnt 0. We don't
1065                          * want to confuse SCSI because SCSI will replace payload
1066                          */
1067                         if (rw & REQ_DISCARD)
1068                                 rbi->bi_vcnt = 0;
1069                         if (conf->mddev->gendisk)
1070                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071                                                       rbi, disk_devt(conf->mddev->gendisk),
1072                                                       sh->dev[i].sector);
1073                         generic_make_request(rbi);
1074                 }
1075                 if (!rdev && !rrdev) {
1076                         if (rw & WRITE)
1077                                 set_bit(STRIPE_DEGRADED, &sh->state);
1078                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1079                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1080                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081                         if (sh->batch_head)
1082                                 set_bit(STRIPE_BATCH_ERR,
1083                                         &sh->batch_head->state);
1084                         set_bit(STRIPE_HANDLE, &sh->state);
1085                 }
1086
1087                 if (!head_sh->batch_head)
1088                         continue;
1089                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090                                       batch_list);
1091                 if (sh != head_sh)
1092                         goto again;
1093         }
1094 }
1095
1096 static struct dma_async_tx_descriptor *
1097 async_copy_data(int frombio, struct bio *bio, struct page **page,
1098         sector_t sector, struct dma_async_tx_descriptor *tx,
1099         struct stripe_head *sh)
1100 {
1101         struct bio_vec bvl;
1102         struct bvec_iter iter;
1103         struct page *bio_page;
1104         int page_offset;
1105         struct async_submit_ctl submit;
1106         enum async_tx_flags flags = 0;
1107
1108         if (bio->bi_iter.bi_sector >= sector)
1109                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110         else
1111                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112
1113         if (frombio)
1114                 flags |= ASYNC_TX_FENCE;
1115         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
1117         bio_for_each_segment(bvl, bio, iter) {
1118                 int len = bvl.bv_len;
1119                 int clen;
1120                 int b_offset = 0;
1121
1122                 if (page_offset < 0) {
1123                         b_offset = -page_offset;
1124                         page_offset += b_offset;
1125                         len -= b_offset;
1126                 }
1127
1128                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129                         clen = STRIPE_SIZE - page_offset;
1130                 else
1131                         clen = len;
1132
1133                 if (clen > 0) {
1134                         b_offset += bvl.bv_offset;
1135                         bio_page = bvl.bv_page;
1136                         if (frombio) {
1137                                 if (sh->raid_conf->skip_copy &&
1138                                     b_offset == 0 && page_offset == 0 &&
1139                                     clen == STRIPE_SIZE)
1140                                         *page = bio_page;
1141                                 else
1142                                         tx = async_memcpy(*page, bio_page, page_offset,
1143                                                   b_offset, clen, &submit);
1144                         } else
1145                                 tx = async_memcpy(bio_page, *page, b_offset,
1146                                                   page_offset, clen, &submit);
1147                 }
1148                 /* chain the operations */
1149                 submit.depend_tx = tx;
1150
1151                 if (clen < len) /* hit end of page */
1152                         break;
1153                 page_offset +=  len;
1154         }
1155
1156         return tx;
1157 }
1158
1159 static void ops_complete_biofill(void *stripe_head_ref)
1160 {
1161         struct stripe_head *sh = stripe_head_ref;
1162         struct bio *return_bi = NULL;
1163         int i;
1164
1165         pr_debug("%s: stripe %llu\n", __func__,
1166                 (unsigned long long)sh->sector);
1167
1168         /* clear completed biofills */
1169         for (i = sh->disks; i--; ) {
1170                 struct r5dev *dev = &sh->dev[i];
1171
1172                 /* acknowledge completion of a biofill operation */
1173                 /* and check if we need to reply to a read request,
1174                  * new R5_Wantfill requests are held off until
1175                  * !STRIPE_BIOFILL_RUN
1176                  */
1177                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178                         struct bio *rbi, *rbi2;
1179
1180                         BUG_ON(!dev->read);
1181                         rbi = dev->read;
1182                         dev->read = NULL;
1183                         while (rbi && rbi->bi_iter.bi_sector <
1184                                 dev->sector + STRIPE_SECTORS) {
1185                                 rbi2 = r5_next_bio(rbi, dev->sector);
1186                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1187                                         rbi->bi_next = return_bi;
1188                                         return_bi = rbi;
1189                                 }
1190                                 rbi = rbi2;
1191                         }
1192                 }
1193         }
1194         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195
1196         return_io(return_bi);
1197
1198         set_bit(STRIPE_HANDLE, &sh->state);
1199         release_stripe(sh);
1200 }
1201
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204         struct dma_async_tx_descriptor *tx = NULL;
1205         struct async_submit_ctl submit;
1206         int i;
1207
1208         BUG_ON(sh->batch_head);
1209         pr_debug("%s: stripe %llu\n", __func__,
1210                 (unsigned long long)sh->sector);
1211
1212         for (i = sh->disks; i--; ) {
1213                 struct r5dev *dev = &sh->dev[i];
1214                 if (test_bit(R5_Wantfill, &dev->flags)) {
1215                         struct bio *rbi;
1216                         spin_lock_irq(&sh->stripe_lock);
1217                         dev->read = rbi = dev->toread;
1218                         dev->toread = NULL;
1219                         spin_unlock_irq(&sh->stripe_lock);
1220                         while (rbi && rbi->bi_iter.bi_sector <
1221                                 dev->sector + STRIPE_SECTORS) {
1222                                 tx = async_copy_data(0, rbi, &dev->page,
1223                                         dev->sector, tx, sh);
1224                                 rbi = r5_next_bio(rbi, dev->sector);
1225                         }
1226                 }
1227         }
1228
1229         atomic_inc(&sh->count);
1230         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231         async_trigger_callback(&submit);
1232 }
1233
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236         struct r5dev *tgt;
1237
1238         if (target < 0)
1239                 return;
1240
1241         tgt = &sh->dev[target];
1242         set_bit(R5_UPTODATE, &tgt->flags);
1243         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244         clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249         struct stripe_head *sh = stripe_head_ref;
1250
1251         pr_debug("%s: stripe %llu\n", __func__,
1252                 (unsigned long long)sh->sector);
1253
1254         /* mark the computed target(s) as uptodate */
1255         mark_target_uptodate(sh, sh->ops.target);
1256         mark_target_uptodate(sh, sh->ops.target2);
1257
1258         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259         if (sh->check_state == check_state_compute_run)
1260                 sh->check_state = check_state_compute_result;
1261         set_bit(STRIPE_HANDLE, &sh->state);
1262         release_stripe(sh);
1263 }
1264
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267                                  struct raid5_percpu *percpu, int i)
1268 {
1269         void *addr;
1270
1271         addr = flex_array_get(percpu->scribble, i);
1272         return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278         void *addr;
1279
1280         addr = flex_array_get(percpu->scribble, i);
1281         return addr;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287         int disks = sh->disks;
1288         struct page **xor_srcs = to_addr_page(percpu, 0);
1289         int target = sh->ops.target;
1290         struct r5dev *tgt = &sh->dev[target];
1291         struct page *xor_dest = tgt->page;
1292         int count = 0;
1293         struct dma_async_tx_descriptor *tx;
1294         struct async_submit_ctl submit;
1295         int i;
1296
1297         BUG_ON(sh->batch_head);
1298
1299         pr_debug("%s: stripe %llu block: %d\n",
1300                 __func__, (unsigned long long)sh->sector, target);
1301         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303         for (i = disks; i--; )
1304                 if (i != target)
1305                         xor_srcs[count++] = sh->dev[i].page;
1306
1307         atomic_inc(&sh->count);
1308
1309         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311         if (unlikely(count == 1))
1312                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313         else
1314                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315
1316         return tx;
1317 }
1318
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320  * @srcs - (struct page *) array of size sh->disks
1321  * @sh - stripe_head to parse
1322  *
1323  * Populates srcs in proper layout order for the stripe and returns the
1324  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1325  * destination buffer is recorded in srcs[count] and the Q destination
1326  * is recorded in srcs[count+1]].
1327  */
1328 static int set_syndrome_sources(struct page **srcs,
1329                                 struct stripe_head *sh,
1330                                 int srctype)
1331 {
1332         int disks = sh->disks;
1333         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334         int d0_idx = raid6_d0(sh);
1335         int count;
1336         int i;
1337
1338         for (i = 0; i < disks; i++)
1339                 srcs[i] = NULL;
1340
1341         count = 0;
1342         i = d0_idx;
1343         do {
1344                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345                 struct r5dev *dev = &sh->dev[i];
1346
1347                 if (i == sh->qd_idx || i == sh->pd_idx ||
1348                     (srctype == SYNDROME_SRC_ALL) ||
1349                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350                      test_bit(R5_Wantdrain, &dev->flags)) ||
1351                     (srctype == SYNDROME_SRC_WRITTEN &&
1352                      dev->written))
1353                         srcs[slot] = sh->dev[i].page;
1354                 i = raid6_next_disk(i, disks);
1355         } while (i != d0_idx);
1356
1357         return syndrome_disks;
1358 }
1359
1360 static struct dma_async_tx_descriptor *
1361 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362 {
1363         int disks = sh->disks;
1364         struct page **blocks = to_addr_page(percpu, 0);
1365         int target;
1366         int qd_idx = sh->qd_idx;
1367         struct dma_async_tx_descriptor *tx;
1368         struct async_submit_ctl submit;
1369         struct r5dev *tgt;
1370         struct page *dest;
1371         int i;
1372         int count;
1373
1374         BUG_ON(sh->batch_head);
1375         if (sh->ops.target < 0)
1376                 target = sh->ops.target2;
1377         else if (sh->ops.target2 < 0)
1378                 target = sh->ops.target;
1379         else
1380                 /* we should only have one valid target */
1381                 BUG();
1382         BUG_ON(target < 0);
1383         pr_debug("%s: stripe %llu block: %d\n",
1384                 __func__, (unsigned long long)sh->sector, target);
1385
1386         tgt = &sh->dev[target];
1387         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388         dest = tgt->page;
1389
1390         atomic_inc(&sh->count);
1391
1392         if (target == qd_idx) {
1393                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394                 blocks[count] = NULL; /* regenerating p is not necessary */
1395                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1396                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397                                   ops_complete_compute, sh,
1398                                   to_addr_conv(sh, percpu, 0));
1399                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400         } else {
1401                 /* Compute any data- or p-drive using XOR */
1402                 count = 0;
1403                 for (i = disks; i-- ; ) {
1404                         if (i == target || i == qd_idx)
1405                                 continue;
1406                         blocks[count++] = sh->dev[i].page;
1407                 }
1408
1409                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410                                   NULL, ops_complete_compute, sh,
1411                                   to_addr_conv(sh, percpu, 0));
1412                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413         }
1414
1415         return tx;
1416 }
1417
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421         int i, count, disks = sh->disks;
1422         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423         int d0_idx = raid6_d0(sh);
1424         int faila = -1, failb = -1;
1425         int target = sh->ops.target;
1426         int target2 = sh->ops.target2;
1427         struct r5dev *tgt = &sh->dev[target];
1428         struct r5dev *tgt2 = &sh->dev[target2];
1429         struct dma_async_tx_descriptor *tx;
1430         struct page **blocks = to_addr_page(percpu, 0);
1431         struct async_submit_ctl submit;
1432
1433         BUG_ON(sh->batch_head);
1434         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435                  __func__, (unsigned long long)sh->sector, target, target2);
1436         BUG_ON(target < 0 || target2 < 0);
1437         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
1440         /* we need to open-code set_syndrome_sources to handle the
1441          * slot number conversion for 'faila' and 'failb'
1442          */
1443         for (i = 0; i < disks ; i++)
1444                 blocks[i] = NULL;
1445         count = 0;
1446         i = d0_idx;
1447         do {
1448                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450                 blocks[slot] = sh->dev[i].page;
1451
1452                 if (i == target)
1453                         faila = slot;
1454                 if (i == target2)
1455                         failb = slot;
1456                 i = raid6_next_disk(i, disks);
1457         } while (i != d0_idx);
1458
1459         BUG_ON(faila == failb);
1460         if (failb < faila)
1461                 swap(faila, failb);
1462         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463                  __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465         atomic_inc(&sh->count);
1466
1467         if (failb == syndrome_disks+1) {
1468                 /* Q disk is one of the missing disks */
1469                 if (faila == syndrome_disks) {
1470                         /* Missing P+Q, just recompute */
1471                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472                                           ops_complete_compute, sh,
1473                                           to_addr_conv(sh, percpu, 0));
1474                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475                                                   STRIPE_SIZE, &submit);
1476                 } else {
1477                         struct page *dest;
1478                         int data_target;
1479                         int qd_idx = sh->qd_idx;
1480
1481                         /* Missing D+Q: recompute D from P, then recompute Q */
1482                         if (target == qd_idx)
1483                                 data_target = target2;
1484                         else
1485                                 data_target = target;
1486
1487                         count = 0;
1488                         for (i = disks; i-- ; ) {
1489                                 if (i == data_target || i == qd_idx)
1490                                         continue;
1491                                 blocks[count++] = sh->dev[i].page;
1492                         }
1493                         dest = sh->dev[data_target].page;
1494                         init_async_submit(&submit,
1495                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496                                           NULL, NULL, NULL,
1497                                           to_addr_conv(sh, percpu, 0));
1498                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499                                        &submit);
1500
1501                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1502                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503                                           ops_complete_compute, sh,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         return async_gen_syndrome(blocks, 0, count+2,
1506                                                   STRIPE_SIZE, &submit);
1507                 }
1508         } else {
1509                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510                                   ops_complete_compute, sh,
1511                                   to_addr_conv(sh, percpu, 0));
1512                 if (failb == syndrome_disks) {
1513                         /* We're missing D+P. */
1514                         return async_raid6_datap_recov(syndrome_disks+2,
1515                                                        STRIPE_SIZE, faila,
1516                                                        blocks, &submit);
1517                 } else {
1518                         /* We're missing D+D. */
1519                         return async_raid6_2data_recov(syndrome_disks+2,
1520                                                        STRIPE_SIZE, faila, failb,
1521                                                        blocks, &submit);
1522                 }
1523         }
1524 }
1525
1526 static void ops_complete_prexor(void *stripe_head_ref)
1527 {
1528         struct stripe_head *sh = stripe_head_ref;
1529
1530         pr_debug("%s: stripe %llu\n", __func__,
1531                 (unsigned long long)sh->sector);
1532 }
1533
1534 static struct dma_async_tx_descriptor *
1535 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536                 struct dma_async_tx_descriptor *tx)
1537 {
1538         int disks = sh->disks;
1539         struct page **xor_srcs = to_addr_page(percpu, 0);
1540         int count = 0, pd_idx = sh->pd_idx, i;
1541         struct async_submit_ctl submit;
1542
1543         /* existing parity data subtracted */
1544         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
1546         BUG_ON(sh->batch_head);
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549
1550         for (i = disks; i--; ) {
1551                 struct r5dev *dev = &sh->dev[i];
1552                 /* Only process blocks that are known to be uptodate */
1553                 if (test_bit(R5_Wantdrain, &dev->flags))
1554                         xor_srcs[count++] = dev->page;
1555         }
1556
1557         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560
1561         return tx;
1562 }
1563
1564 static struct dma_async_tx_descriptor *
1565 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566                 struct dma_async_tx_descriptor *tx)
1567 {
1568         struct page **blocks = to_addr_page(percpu, 0);
1569         int count;
1570         struct async_submit_ctl submit;
1571
1572         pr_debug("%s: stripe %llu\n", __func__,
1573                 (unsigned long long)sh->sector);
1574
1575         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1580
1581         return tx;
1582 }
1583
1584 static struct dma_async_tx_descriptor *
1585 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 {
1587         int disks = sh->disks;
1588         int i;
1589         struct stripe_head *head_sh = sh;
1590
1591         pr_debug("%s: stripe %llu\n", __func__,
1592                 (unsigned long long)sh->sector);
1593
1594         for (i = disks; i--; ) {
1595                 struct r5dev *dev;
1596                 struct bio *chosen;
1597
1598                 sh = head_sh;
1599                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600                         struct bio *wbi;
1601
1602 again:
1603                         dev = &sh->dev[i];
1604                         spin_lock_irq(&sh->stripe_lock);
1605                         chosen = dev->towrite;
1606                         dev->towrite = NULL;
1607                         sh->overwrite_disks = 0;
1608                         BUG_ON(dev->written);
1609                         wbi = dev->written = chosen;
1610                         spin_unlock_irq(&sh->stripe_lock);
1611                         WARN_ON(dev->page != dev->orig_page);
1612
1613                         while (wbi && wbi->bi_iter.bi_sector <
1614                                 dev->sector + STRIPE_SECTORS) {
1615                                 if (wbi->bi_rw & REQ_FUA)
1616                                         set_bit(R5_WantFUA, &dev->flags);
1617                                 if (wbi->bi_rw & REQ_SYNC)
1618                                         set_bit(R5_SyncIO, &dev->flags);
1619                                 if (wbi->bi_rw & REQ_DISCARD)
1620                                         set_bit(R5_Discard, &dev->flags);
1621                                 else {
1622                                         tx = async_copy_data(1, wbi, &dev->page,
1623                                                 dev->sector, tx, sh);
1624                                         if (dev->page != dev->orig_page) {
1625                                                 set_bit(R5_SkipCopy, &dev->flags);
1626                                                 clear_bit(R5_UPTODATE, &dev->flags);
1627                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1628                                         }
1629                                 }
1630                                 wbi = r5_next_bio(wbi, dev->sector);
1631                         }
1632
1633                         if (head_sh->batch_head) {
1634                                 sh = list_first_entry(&sh->batch_list,
1635                                                       struct stripe_head,
1636                                                       batch_list);
1637                                 if (sh == head_sh)
1638                                         continue;
1639                                 goto again;
1640                         }
1641                 }
1642         }
1643
1644         return tx;
1645 }
1646
1647 static void ops_complete_reconstruct(void *stripe_head_ref)
1648 {
1649         struct stripe_head *sh = stripe_head_ref;
1650         int disks = sh->disks;
1651         int pd_idx = sh->pd_idx;
1652         int qd_idx = sh->qd_idx;
1653         int i;
1654         bool fua = false, sync = false, discard = false;
1655
1656         pr_debug("%s: stripe %llu\n", __func__,
1657                 (unsigned long long)sh->sector);
1658
1659         for (i = disks; i--; ) {
1660                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1661                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1663         }
1664
1665         for (i = disks; i--; ) {
1666                 struct r5dev *dev = &sh->dev[i];
1667
1668                 if (dev->written || i == pd_idx || i == qd_idx) {
1669                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670                                 set_bit(R5_UPTODATE, &dev->flags);
1671                         if (fua)
1672                                 set_bit(R5_WantFUA, &dev->flags);
1673                         if (sync)
1674                                 set_bit(R5_SyncIO, &dev->flags);
1675                 }
1676         }
1677
1678         if (sh->reconstruct_state == reconstruct_state_drain_run)
1679                 sh->reconstruct_state = reconstruct_state_drain_result;
1680         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682         else {
1683                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684                 sh->reconstruct_state = reconstruct_state_result;
1685         }
1686
1687         set_bit(STRIPE_HANDLE, &sh->state);
1688         release_stripe(sh);
1689 }
1690
1691 static void
1692 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693                      struct dma_async_tx_descriptor *tx)
1694 {
1695         int disks = sh->disks;
1696         struct page **xor_srcs;
1697         struct async_submit_ctl submit;
1698         int count, pd_idx = sh->pd_idx, i;
1699         struct page *xor_dest;
1700         int prexor = 0;
1701         unsigned long flags;
1702         int j = 0;
1703         struct stripe_head *head_sh = sh;
1704         int last_stripe;
1705
1706         pr_debug("%s: stripe %llu\n", __func__,
1707                 (unsigned long long)sh->sector);
1708
1709         for (i = 0; i < sh->disks; i++) {
1710                 if (pd_idx == i)
1711                         continue;
1712                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713                         break;
1714         }
1715         if (i >= sh->disks) {
1716                 atomic_inc(&sh->count);
1717                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718                 ops_complete_reconstruct(sh);
1719                 return;
1720         }
1721 again:
1722         count = 0;
1723         xor_srcs = to_addr_page(percpu, j);
1724         /* check if prexor is active which means only process blocks
1725          * that are part of a read-modify-write (written)
1726          */
1727         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728                 prexor = 1;
1729                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730                 for (i = disks; i--; ) {
1731                         struct r5dev *dev = &sh->dev[i];
1732                         if (head_sh->dev[i].written)
1733                                 xor_srcs[count++] = dev->page;
1734                 }
1735         } else {
1736                 xor_dest = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (i != pd_idx)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         }
1743
1744         /* 1/ if we prexor'd then the dest is reused as a source
1745          * 2/ if we did not prexor then we are redoing the parity
1746          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747          * for the synchronous xor case
1748          */
1749         last_stripe = !head_sh->batch_head ||
1750                 list_first_entry(&sh->batch_list,
1751                                  struct stripe_head, batch_list) == head_sh;
1752         if (last_stripe) {
1753                 flags = ASYNC_TX_ACK |
1754                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756                 atomic_inc(&head_sh->count);
1757                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758                                   to_addr_conv(sh, percpu, j));
1759         } else {
1760                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761                 init_async_submit(&submit, flags, tx, NULL, NULL,
1762                                   to_addr_conv(sh, percpu, j));
1763         }
1764
1765         if (unlikely(count == 1))
1766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767         else
1768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769         if (!last_stripe) {
1770                 j++;
1771                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772                                       batch_list);
1773                 goto again;
1774         }
1775 }
1776
1777 static void
1778 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779                      struct dma_async_tx_descriptor *tx)
1780 {
1781         struct async_submit_ctl submit;
1782         struct page **blocks;
1783         int count, i, j = 0;
1784         struct stripe_head *head_sh = sh;
1785         int last_stripe;
1786         int synflags;
1787         unsigned long txflags;
1788
1789         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
1791         for (i = 0; i < sh->disks; i++) {
1792                 if (sh->pd_idx == i || sh->qd_idx == i)
1793                         continue;
1794                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795                         break;
1796         }
1797         if (i >= sh->disks) {
1798                 atomic_inc(&sh->count);
1799                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801                 ops_complete_reconstruct(sh);
1802                 return;
1803         }
1804
1805 again:
1806         blocks = to_addr_page(percpu, j);
1807
1808         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809                 synflags = SYNDROME_SRC_WRITTEN;
1810                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811         } else {
1812                 synflags = SYNDROME_SRC_ALL;
1813                 txflags = ASYNC_TX_ACK;
1814         }
1815
1816         count = set_syndrome_sources(blocks, sh, synflags);
1817         last_stripe = !head_sh->batch_head ||
1818                 list_first_entry(&sh->batch_list,
1819                                  struct stripe_head, batch_list) == head_sh;
1820
1821         if (last_stripe) {
1822                 atomic_inc(&head_sh->count);
1823                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824                                   head_sh, to_addr_conv(sh, percpu, j));
1825         } else
1826                 init_async_submit(&submit, 0, tx, NULL, NULL,
1827                                   to_addr_conv(sh, percpu, j));
1828         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1829         if (!last_stripe) {
1830                 j++;
1831                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832                                       batch_list);
1833                 goto again;
1834         }
1835 }
1836
1837 static void ops_complete_check(void *stripe_head_ref)
1838 {
1839         struct stripe_head *sh = stripe_head_ref;
1840
1841         pr_debug("%s: stripe %llu\n", __func__,
1842                 (unsigned long long)sh->sector);
1843
1844         sh->check_state = check_state_check_result;
1845         set_bit(STRIPE_HANDLE, &sh->state);
1846         release_stripe(sh);
1847 }
1848
1849 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 {
1851         int disks = sh->disks;
1852         int pd_idx = sh->pd_idx;
1853         int qd_idx = sh->qd_idx;
1854         struct page *xor_dest;
1855         struct page **xor_srcs = to_addr_page(percpu, 0);
1856         struct dma_async_tx_descriptor *tx;
1857         struct async_submit_ctl submit;
1858         int count;
1859         int i;
1860
1861         pr_debug("%s: stripe %llu\n", __func__,
1862                 (unsigned long long)sh->sector);
1863
1864         BUG_ON(sh->batch_head);
1865         count = 0;
1866         xor_dest = sh->dev[pd_idx].page;
1867         xor_srcs[count++] = xor_dest;
1868         for (i = disks; i--; ) {
1869                 if (i == pd_idx || i == qd_idx)
1870                         continue;
1871                 xor_srcs[count++] = sh->dev[i].page;
1872         }
1873
1874         init_async_submit(&submit, 0, NULL, NULL, NULL,
1875                           to_addr_conv(sh, percpu, 0));
1876         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877                            &sh->ops.zero_sum_result, &submit);
1878
1879         atomic_inc(&sh->count);
1880         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881         tx = async_trigger_callback(&submit);
1882 }
1883
1884 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885 {
1886         struct page **srcs = to_addr_page(percpu, 0);
1887         struct async_submit_ctl submit;
1888         int count;
1889
1890         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891                 (unsigned long long)sh->sector, checkp);
1892
1893         BUG_ON(sh->batch_head);
1894         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895         if (!checkp)
1896                 srcs[count] = NULL;
1897
1898         atomic_inc(&sh->count);
1899         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900                           sh, to_addr_conv(sh, percpu, 0));
1901         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 }
1904
1905 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 {
1907         int overlap_clear = 0, i, disks = sh->disks;
1908         struct dma_async_tx_descriptor *tx = NULL;
1909         struct r5conf *conf = sh->raid_conf;
1910         int level = conf->level;
1911         struct raid5_percpu *percpu;
1912         unsigned long cpu;
1913
1914         cpu = get_cpu();
1915         percpu = per_cpu_ptr(conf->percpu, cpu);
1916         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917                 ops_run_biofill(sh);
1918                 overlap_clear++;
1919         }
1920
1921         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922                 if (level < 6)
1923                         tx = ops_run_compute5(sh, percpu);
1924                 else {
1925                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926                                 tx = ops_run_compute6_1(sh, percpu);
1927                         else
1928                                 tx = ops_run_compute6_2(sh, percpu);
1929                 }
1930                 /* terminate the chain if reconstruct is not set to be run */
1931                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932                         async_tx_ack(tx);
1933         }
1934
1935         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936                 if (level < 6)
1937                         tx = ops_run_prexor5(sh, percpu, tx);
1938                 else
1939                         tx = ops_run_prexor6(sh, percpu, tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943                 tx = ops_run_biodrain(sh, tx);
1944                 overlap_clear++;
1945         }
1946
1947         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948                 if (level < 6)
1949                         ops_run_reconstruct5(sh, percpu, tx);
1950                 else
1951                         ops_run_reconstruct6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955                 if (sh->check_state == check_state_run)
1956                         ops_run_check_p(sh, percpu);
1957                 else if (sh->check_state == check_state_run_q)
1958                         ops_run_check_pq(sh, percpu, 0);
1959                 else if (sh->check_state == check_state_run_pq)
1960                         ops_run_check_pq(sh, percpu, 1);
1961                 else
1962                         BUG();
1963         }
1964
1965         if (overlap_clear && !sh->batch_head)
1966                 for (i = disks; i--; ) {
1967                         struct r5dev *dev = &sh->dev[i];
1968                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969                                 wake_up(&sh->raid_conf->wait_for_overlap);
1970                 }
1971         put_cpu();
1972 }
1973
1974 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1975 {
1976         struct stripe_head *sh;
1977         sh = kmem_cache_zalloc(conf->slab_cache, gfp);
1978         if (!sh)
1979                 return 0;
1980
1981         sh->raid_conf = conf;
1982
1983         spin_lock_init(&sh->stripe_lock);
1984
1985         if (grow_buffers(sh, gfp)) {
1986                 shrink_buffers(sh);
1987                 kmem_cache_free(conf->slab_cache, sh);
1988                 return 0;
1989         }
1990         sh->hash_lock_index =
1991                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1992         /* we just created an active stripe so... */
1993         atomic_set(&sh->count, 1);
1994         atomic_inc(&conf->active_stripes);
1995         INIT_LIST_HEAD(&sh->lru);
1996
1997         spin_lock_init(&sh->batch_lock);
1998         INIT_LIST_HEAD(&sh->batch_list);
1999         sh->batch_head = NULL;
2000         release_stripe(sh);
2001         conf->max_nr_stripes++;
2002         return 1;
2003 }
2004
2005 static int grow_stripes(struct r5conf *conf, int num)
2006 {
2007         struct kmem_cache *sc;
2008         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2009
2010         if (conf->mddev->gendisk)
2011                 sprintf(conf->cache_name[0],
2012                         "raid%d-%s", conf->level, mdname(conf->mddev));
2013         else
2014                 sprintf(conf->cache_name[0],
2015                         "raid%d-%p", conf->level, conf->mddev);
2016         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2017
2018         conf->active_name = 0;
2019         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2020                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2021                                0, 0, NULL);
2022         if (!sc)
2023                 return 1;
2024         conf->slab_cache = sc;
2025         conf->pool_size = devs;
2026         while (num--)
2027                 if (!grow_one_stripe(conf, GFP_KERNEL))
2028                         return 1;
2029
2030         return 0;
2031 }
2032
2033 /**
2034  * scribble_len - return the required size of the scribble region
2035  * @num - total number of disks in the array
2036  *
2037  * The size must be enough to contain:
2038  * 1/ a struct page pointer for each device in the array +2
2039  * 2/ room to convert each entry in (1) to its corresponding dma
2040  *    (dma_map_page()) or page (page_address()) address.
2041  *
2042  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2043  * calculate over all devices (not just the data blocks), using zeros in place
2044  * of the P and Q blocks.
2045  */
2046 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2047 {
2048         struct flex_array *ret;
2049         size_t len;
2050
2051         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2052         ret = flex_array_alloc(len, cnt, flags);
2053         if (!ret)
2054                 return NULL;
2055         /* always prealloc all elements, so no locking is required */
2056         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2057                 flex_array_free(ret);
2058                 return NULL;
2059         }
2060         return ret;
2061 }
2062
2063 static int resize_stripes(struct r5conf *conf, int newsize)
2064 {
2065         /* Make all the stripes able to hold 'newsize' devices.
2066          * New slots in each stripe get 'page' set to a new page.
2067          *
2068          * This happens in stages:
2069          * 1/ create a new kmem_cache and allocate the required number of
2070          *    stripe_heads.
2071          * 2/ gather all the old stripe_heads and transfer the pages across
2072          *    to the new stripe_heads.  This will have the side effect of
2073          *    freezing the array as once all stripe_heads have been collected,
2074          *    no IO will be possible.  Old stripe heads are freed once their
2075          *    pages have been transferred over, and the old kmem_cache is
2076          *    freed when all stripes are done.
2077          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2078          *    we simple return a failre status - no need to clean anything up.
2079          * 4/ allocate new pages for the new slots in the new stripe_heads.
2080          *    If this fails, we don't bother trying the shrink the
2081          *    stripe_heads down again, we just leave them as they are.
2082          *    As each stripe_head is processed the new one is released into
2083          *    active service.
2084          *
2085          * Once step2 is started, we cannot afford to wait for a write,
2086          * so we use GFP_NOIO allocations.
2087          */
2088         struct stripe_head *osh, *nsh;
2089         LIST_HEAD(newstripes);
2090         struct disk_info *ndisks;
2091         unsigned long cpu;
2092         int err;
2093         struct kmem_cache *sc;
2094         int i;
2095         int hash, cnt;
2096
2097         if (newsize <= conf->pool_size)
2098                 return 0; /* never bother to shrink */
2099
2100         err = md_allow_write(conf->mddev);
2101         if (err)
2102                 return err;
2103
2104         /* Step 1 */
2105         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2106                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2107                                0, 0, NULL);
2108         if (!sc)
2109                 return -ENOMEM;
2110
2111         for (i = conf->max_nr_stripes; i; i--) {
2112                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2113                 if (!nsh)
2114                         break;
2115
2116                 nsh->raid_conf = conf;
2117                 spin_lock_init(&nsh->stripe_lock);
2118
2119                 list_add(&nsh->lru, &newstripes);
2120         }
2121         if (i) {
2122                 /* didn't get enough, give up */
2123                 while (!list_empty(&newstripes)) {
2124                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2125                         list_del(&nsh->lru);
2126                         kmem_cache_free(sc, nsh);
2127                 }
2128                 kmem_cache_destroy(sc);
2129                 return -ENOMEM;
2130         }
2131         /* Step 2 - Must use GFP_NOIO now.
2132          * OK, we have enough stripes, start collecting inactive
2133          * stripes and copying them over
2134          */
2135         hash = 0;
2136         cnt = 0;
2137         list_for_each_entry(nsh, &newstripes, lru) {
2138                 lock_device_hash_lock(conf, hash);
2139                 wait_event_cmd(conf->wait_for_stripe,
2140                                     !list_empty(conf->inactive_list + hash),
2141                                     unlock_device_hash_lock(conf, hash),
2142                                     lock_device_hash_lock(conf, hash));
2143                 osh = get_free_stripe(conf, hash);
2144                 unlock_device_hash_lock(conf, hash);
2145                 atomic_set(&nsh->count, 1);
2146                 for(i=0; i<conf->pool_size; i++) {
2147                         nsh->dev[i].page = osh->dev[i].page;
2148                         nsh->dev[i].orig_page = osh->dev[i].page;
2149                 }
2150                 for( ; i<newsize; i++)
2151                         nsh->dev[i].page = NULL;
2152                 nsh->hash_lock_index = hash;
2153                 kmem_cache_free(conf->slab_cache, osh);
2154                 cnt++;
2155                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2156                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2157                         hash++;
2158                         cnt = 0;
2159                 }
2160         }
2161         kmem_cache_destroy(conf->slab_cache);
2162
2163         /* Step 3.
2164          * At this point, we are holding all the stripes so the array
2165          * is completely stalled, so now is a good time to resize
2166          * conf->disks and the scribble region
2167          */
2168         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2169         if (ndisks) {
2170                 for (i=0; i<conf->raid_disks; i++)
2171                         ndisks[i] = conf->disks[i];
2172                 kfree(conf->disks);
2173                 conf->disks = ndisks;
2174         } else
2175                 err = -ENOMEM;
2176
2177         get_online_cpus();
2178         for_each_present_cpu(cpu) {
2179                 struct raid5_percpu *percpu;
2180                 struct flex_array *scribble;
2181
2182                 percpu = per_cpu_ptr(conf->percpu, cpu);
2183                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2184                         STRIPE_SECTORS, GFP_NOIO);
2185
2186                 if (scribble) {
2187                         flex_array_free(percpu->scribble);
2188                         percpu->scribble = scribble;
2189                 } else {
2190                         err = -ENOMEM;
2191                         break;
2192                 }
2193         }
2194         put_online_cpus();
2195
2196         /* Step 4, return new stripes to service */
2197         while(!list_empty(&newstripes)) {
2198                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2199                 list_del_init(&nsh->lru);
2200
2201                 for (i=conf->raid_disks; i < newsize; i++)
2202                         if (nsh->dev[i].page == NULL) {
2203                                 struct page *p = alloc_page(GFP_NOIO);
2204                                 nsh->dev[i].page = p;
2205                                 nsh->dev[i].orig_page = p;
2206                                 if (!p)
2207                                         err = -ENOMEM;
2208                         }
2209                 release_stripe(nsh);
2210         }
2211         /* critical section pass, GFP_NOIO no longer needed */
2212
2213         conf->slab_cache = sc;
2214         conf->active_name = 1-conf->active_name;
2215         conf->pool_size = newsize;
2216         return err;
2217 }
2218
2219 static int drop_one_stripe(struct r5conf *conf)
2220 {
2221         struct stripe_head *sh;
2222         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2223
2224         spin_lock_irq(conf->hash_locks + hash);
2225         sh = get_free_stripe(conf, hash);
2226         spin_unlock_irq(conf->hash_locks + hash);
2227         if (!sh)
2228                 return 0;
2229         BUG_ON(atomic_read(&sh->count));
2230         shrink_buffers(sh);
2231         kmem_cache_free(conf->slab_cache, sh);
2232         atomic_dec(&conf->active_stripes);
2233         conf->max_nr_stripes--;
2234         return 1;
2235 }
2236
2237 static void shrink_stripes(struct r5conf *conf)
2238 {
2239         while (conf->max_nr_stripes &&
2240                drop_one_stripe(conf))
2241                 ;
2242
2243         if (conf->slab_cache)
2244                 kmem_cache_destroy(conf->slab_cache);
2245         conf->slab_cache = NULL;
2246 }
2247
2248 static void raid5_end_read_request(struct bio * bi, int error)
2249 {
2250         struct stripe_head *sh = bi->bi_private;
2251         struct r5conf *conf = sh->raid_conf;
2252         int disks = sh->disks, i;
2253         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2254         char b[BDEVNAME_SIZE];
2255         struct md_rdev *rdev = NULL;
2256         sector_t s;
2257
2258         for (i=0 ; i<disks; i++)
2259                 if (bi == &sh->dev[i].req)
2260                         break;
2261
2262         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2263                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2264                 uptodate);
2265         if (i == disks) {
2266                 BUG();
2267                 return;
2268         }
2269         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2270                 /* If replacement finished while this request was outstanding,
2271                  * 'replacement' might be NULL already.
2272                  * In that case it moved down to 'rdev'.
2273                  * rdev is not removed until all requests are finished.
2274                  */
2275                 rdev = conf->disks[i].replacement;
2276         if (!rdev)
2277                 rdev = conf->disks[i].rdev;
2278
2279         if (use_new_offset(conf, sh))
2280                 s = sh->sector + rdev->new_data_offset;
2281         else
2282                 s = sh->sector + rdev->data_offset;
2283         if (uptodate) {
2284                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2285                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2286                         /* Note that this cannot happen on a
2287                          * replacement device.  We just fail those on
2288                          * any error
2289                          */
2290                         printk_ratelimited(
2291                                 KERN_INFO
2292                                 "md/raid:%s: read error corrected"
2293                                 " (%lu sectors at %llu on %s)\n",
2294                                 mdname(conf->mddev), STRIPE_SECTORS,
2295                                 (unsigned long long)s,
2296                                 bdevname(rdev->bdev, b));
2297                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2298                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2299                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2300                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2301                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2302
2303                 if (atomic_read(&rdev->read_errors))
2304                         atomic_set(&rdev->read_errors, 0);
2305         } else {
2306                 const char *bdn = bdevname(rdev->bdev, b);
2307                 int retry = 0;
2308                 int set_bad = 0;
2309
2310                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2311                 atomic_inc(&rdev->read_errors);
2312                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2313                         printk_ratelimited(
2314                                 KERN_WARNING
2315                                 "md/raid:%s: read error on replacement device "
2316                                 "(sector %llu on %s).\n",
2317                                 mdname(conf->mddev),
2318                                 (unsigned long long)s,
2319                                 bdn);
2320                 else if (conf->mddev->degraded >= conf->max_degraded) {
2321                         set_bad = 1;
2322                         printk_ratelimited(
2323                                 KERN_WARNING
2324                                 "md/raid:%s: read error not correctable "
2325                                 "(sector %llu on %s).\n",
2326                                 mdname(conf->mddev),
2327                                 (unsigned long long)s,
2328                                 bdn);
2329                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2330                         /* Oh, no!!! */
2331                         set_bad = 1;
2332                         printk_ratelimited(
2333                                 KERN_WARNING
2334                                 "md/raid:%s: read error NOT corrected!! "
2335                                 "(sector %llu on %s).\n",
2336                                 mdname(conf->mddev),
2337                                 (unsigned long long)s,
2338                                 bdn);
2339                 } else if (atomic_read(&rdev->read_errors)
2340                          > conf->max_nr_stripes)
2341                         printk(KERN_WARNING
2342                                "md/raid:%s: Too many read errors, failing device %s.\n",
2343                                mdname(conf->mddev), bdn);
2344                 else
2345                         retry = 1;
2346                 if (set_bad && test_bit(In_sync, &rdev->flags)
2347                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2348                         retry = 1;
2349                 if (retry)
2350                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2351                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2352                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2353                         } else
2354                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2355                 else {
2356                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2357                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2358                         if (!(set_bad
2359                               && test_bit(In_sync, &rdev->flags)
2360                               && rdev_set_badblocks(
2361                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2362                                 md_error(conf->mddev, rdev);
2363                 }
2364         }
2365         rdev_dec_pending(rdev, conf->mddev);
2366         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2367         set_bit(STRIPE_HANDLE, &sh->state);
2368         release_stripe(sh);
2369 }
2370
2371 static void raid5_end_write_request(struct bio *bi, int error)
2372 {
2373         struct stripe_head *sh = bi->bi_private;
2374         struct r5conf *conf = sh->raid_conf;
2375         int disks = sh->disks, i;
2376         struct md_rdev *uninitialized_var(rdev);
2377         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2378         sector_t first_bad;
2379         int bad_sectors;
2380         int replacement = 0;
2381
2382         for (i = 0 ; i < disks; i++) {
2383                 if (bi == &sh->dev[i].req) {
2384                         rdev = conf->disks[i].rdev;
2385                         break;
2386                 }
2387                 if (bi == &sh->dev[i].rreq) {
2388                         rdev = conf->disks[i].replacement;
2389                         if (rdev)
2390                                 replacement = 1;
2391                         else
2392                                 /* rdev was removed and 'replacement'
2393                                  * replaced it.  rdev is not removed
2394                                  * until all requests are finished.
2395                                  */
2396                                 rdev = conf->disks[i].rdev;
2397                         break;
2398                 }
2399         }
2400         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2401                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2402                 uptodate);
2403         if (i == disks) {
2404                 BUG();
2405                 return;
2406         }
2407
2408         if (replacement) {
2409                 if (!uptodate)
2410                         md_error(conf->mddev, rdev);
2411                 else if (is_badblock(rdev, sh->sector,
2412                                      STRIPE_SECTORS,
2413                                      &first_bad, &bad_sectors))
2414                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2415         } else {
2416                 if (!uptodate) {
2417                         set_bit(STRIPE_DEGRADED, &sh->state);
2418                         set_bit(WriteErrorSeen, &rdev->flags);
2419                         set_bit(R5_WriteError, &sh->dev[i].flags);
2420                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2421                                 set_bit(MD_RECOVERY_NEEDED,
2422                                         &rdev->mddev->recovery);
2423                 } else if (is_badblock(rdev, sh->sector,
2424                                        STRIPE_SECTORS,
2425                                        &first_bad, &bad_sectors)) {
2426                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2427                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2428                                 /* That was a successful write so make
2429                                  * sure it looks like we already did
2430                                  * a re-write.
2431                                  */
2432                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2433                 }
2434         }
2435         rdev_dec_pending(rdev, conf->mddev);
2436
2437         if (sh->batch_head && !uptodate)
2438                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2439
2440         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2441                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2442         set_bit(STRIPE_HANDLE, &sh->state);
2443         release_stripe(sh);
2444
2445         if (sh->batch_head && sh != sh->batch_head)
2446                 release_stripe(sh->batch_head);
2447 }
2448
2449 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2450
2451 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2452 {
2453         struct r5dev *dev = &sh->dev[i];
2454
2455         bio_init(&dev->req);
2456         dev->req.bi_io_vec = &dev->vec;
2457         dev->req.bi_max_vecs = 1;
2458         dev->req.bi_private = sh;
2459
2460         bio_init(&dev->rreq);
2461         dev->rreq.bi_io_vec = &dev->rvec;
2462         dev->rreq.bi_max_vecs = 1;
2463         dev->rreq.bi_private = sh;
2464
2465         dev->flags = 0;
2466         dev->sector = compute_blocknr(sh, i, previous);
2467 }
2468
2469 static void error(struct mddev *mddev, struct md_rdev *rdev)
2470 {
2471         char b[BDEVNAME_SIZE];
2472         struct r5conf *conf = mddev->private;
2473         unsigned long flags;
2474         pr_debug("raid456: error called\n");
2475
2476         spin_lock_irqsave(&conf->device_lock, flags);
2477         clear_bit(In_sync, &rdev->flags);
2478         mddev->degraded = calc_degraded(conf);
2479         spin_unlock_irqrestore(&conf->device_lock, flags);
2480         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2481
2482         set_bit(Blocked, &rdev->flags);
2483         set_bit(Faulty, &rdev->flags);
2484         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2485         printk(KERN_ALERT
2486                "md/raid:%s: Disk failure on %s, disabling device.\n"
2487                "md/raid:%s: Operation continuing on %d devices.\n",
2488                mdname(mddev),
2489                bdevname(rdev->bdev, b),
2490                mdname(mddev),
2491                conf->raid_disks - mddev->degraded);
2492 }
2493
2494 /*
2495  * Input: a 'big' sector number,
2496  * Output: index of the data and parity disk, and the sector # in them.
2497  */
2498 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2499                                      int previous, int *dd_idx,
2500                                      struct stripe_head *sh)
2501 {
2502         sector_t stripe, stripe2;
2503         sector_t chunk_number;
2504         unsigned int chunk_offset;
2505         int pd_idx, qd_idx;
2506         int ddf_layout = 0;
2507         sector_t new_sector;
2508         int algorithm = previous ? conf->prev_algo
2509                                  : conf->algorithm;
2510         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2511                                          : conf->chunk_sectors;
2512         int raid_disks = previous ? conf->previous_raid_disks
2513                                   : conf->raid_disks;
2514         int data_disks = raid_disks - conf->max_degraded;
2515
2516         /* First compute the information on this sector */
2517
2518         /*
2519          * Compute the chunk number and the sector offset inside the chunk
2520          */
2521         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2522         chunk_number = r_sector;
2523
2524         /*
2525          * Compute the stripe number
2526          */
2527         stripe = chunk_number;
2528         *dd_idx = sector_div(stripe, data_disks);
2529         stripe2 = stripe;
2530         /*
2531          * Select the parity disk based on the user selected algorithm.
2532          */
2533         pd_idx = qd_idx = -1;
2534         switch(conf->level) {
2535         case 4:
2536                 pd_idx = data_disks;
2537                 break;
2538         case 5:
2539                 switch (algorithm) {
2540                 case ALGORITHM_LEFT_ASYMMETRIC:
2541                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2542                         if (*dd_idx >= pd_idx)
2543                                 (*dd_idx)++;
2544                         break;
2545                 case ALGORITHM_RIGHT_ASYMMETRIC:
2546                         pd_idx = sector_div(stripe2, raid_disks);
2547                         if (*dd_idx >= pd_idx)
2548                                 (*dd_idx)++;
2549                         break;
2550                 case ALGORITHM_LEFT_SYMMETRIC:
2551                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2552                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2553                         break;
2554                 case ALGORITHM_RIGHT_SYMMETRIC:
2555                         pd_idx = sector_div(stripe2, raid_disks);
2556                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2557                         break;
2558                 case ALGORITHM_PARITY_0:
2559                         pd_idx = 0;
2560                         (*dd_idx)++;
2561                         break;
2562                 case ALGORITHM_PARITY_N:
2563                         pd_idx = data_disks;
2564                         break;
2565                 default:
2566                         BUG();
2567                 }
2568                 break;
2569         case 6:
2570
2571                 switch (algorithm) {
2572                 case ALGORITHM_LEFT_ASYMMETRIC:
2573                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2574                         qd_idx = pd_idx + 1;
2575                         if (pd_idx == raid_disks-1) {
2576                                 (*dd_idx)++;    /* Q D D D P */
2577                                 qd_idx = 0;
2578                         } else if (*dd_idx >= pd_idx)
2579                                 (*dd_idx) += 2; /* D D P Q D */
2580                         break;
2581                 case ALGORITHM_RIGHT_ASYMMETRIC:
2582                         pd_idx = sector_div(stripe2, raid_disks);
2583                         qd_idx = pd_idx + 1;
2584                         if (pd_idx == raid_disks-1) {
2585                                 (*dd_idx)++;    /* Q D D D P */
2586                                 qd_idx = 0;
2587                         } else if (*dd_idx >= pd_idx)
2588                                 (*dd_idx) += 2; /* D D P Q D */
2589                         break;
2590                 case ALGORITHM_LEFT_SYMMETRIC:
2591                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2592                         qd_idx = (pd_idx + 1) % raid_disks;
2593                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2594                         break;
2595                 case ALGORITHM_RIGHT_SYMMETRIC:
2596                         pd_idx = sector_div(stripe2, raid_disks);
2597                         qd_idx = (pd_idx + 1) % raid_disks;
2598                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2599                         break;
2600
2601                 case ALGORITHM_PARITY_0:
2602                         pd_idx = 0;
2603                         qd_idx = 1;
2604                         (*dd_idx) += 2;
2605                         break;
2606                 case ALGORITHM_PARITY_N:
2607                         pd_idx = data_disks;
2608                         qd_idx = data_disks + 1;
2609                         break;
2610
2611                 case ALGORITHM_ROTATING_ZERO_RESTART:
2612                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2613                          * of blocks for computing Q is different.
2614                          */
2615                         pd_idx = sector_div(stripe2, raid_disks);
2616                         qd_idx = pd_idx + 1;
2617                         if (pd_idx == raid_disks-1) {
2618                                 (*dd_idx)++;    /* Q D D D P */
2619                                 qd_idx = 0;
2620                         } else if (*dd_idx >= pd_idx)
2621                                 (*dd_idx) += 2; /* D D P Q D */
2622                         ddf_layout = 1;
2623                         break;
2624
2625                 case ALGORITHM_ROTATING_N_RESTART:
2626                         /* Same a left_asymmetric, by first stripe is
2627                          * D D D P Q  rather than
2628                          * Q D D D P
2629                          */
2630                         stripe2 += 1;
2631                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2632                         qd_idx = pd_idx + 1;
2633                         if (pd_idx == raid_disks-1) {
2634                                 (*dd_idx)++;    /* Q D D D P */
2635                                 qd_idx = 0;
2636                         } else if (*dd_idx >= pd_idx)
2637                                 (*dd_idx) += 2; /* D D P Q D */
2638                         ddf_layout = 1;
2639                         break;
2640
2641                 case ALGORITHM_ROTATING_N_CONTINUE:
2642                         /* Same as left_symmetric but Q is before P */
2643                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2644                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2645                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2646                         ddf_layout = 1;
2647                         break;
2648
2649                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2650                         /* RAID5 left_asymmetric, with Q on last device */
2651                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2652                         if (*dd_idx >= pd_idx)
2653                                 (*dd_idx)++;
2654                         qd_idx = raid_disks - 1;
2655                         break;
2656
2657                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2658                         pd_idx = sector_div(stripe2, raid_disks-1);
2659                         if (*dd_idx >= pd_idx)
2660                                 (*dd_idx)++;
2661                         qd_idx = raid_disks - 1;
2662                         break;
2663
2664                 case ALGORITHM_LEFT_SYMMETRIC_6:
2665                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2666                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2667                         qd_idx = raid_disks - 1;
2668                         break;
2669
2670                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2671                         pd_idx = sector_div(stripe2, raid_disks-1);
2672                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2673                         qd_idx = raid_disks - 1;
2674                         break;
2675
2676                 case ALGORITHM_PARITY_0_6:
2677                         pd_idx = 0;
2678                         (*dd_idx)++;
2679                         qd_idx = raid_disks - 1;
2680                         break;
2681
2682                 default:
2683                         BUG();
2684                 }
2685                 break;
2686         }
2687
2688         if (sh) {
2689                 sh->pd_idx = pd_idx;
2690                 sh->qd_idx = qd_idx;
2691                 sh->ddf_layout = ddf_layout;
2692         }
2693         /*
2694          * Finally, compute the new sector number
2695          */
2696         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2697         return new_sector;
2698 }
2699
2700 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2701 {
2702         struct r5conf *conf = sh->raid_conf;
2703         int raid_disks = sh->disks;
2704         int data_disks = raid_disks - conf->max_degraded;
2705         sector_t new_sector = sh->sector, check;
2706         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2707                                          : conf->chunk_sectors;
2708         int algorithm = previous ? conf->prev_algo
2709                                  : conf->algorithm;
2710         sector_t stripe;
2711         int chunk_offset;
2712         sector_t chunk_number;
2713         int dummy1, dd_idx = i;
2714         sector_t r_sector;
2715         struct stripe_head sh2;
2716
2717         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2718         stripe = new_sector;
2719
2720         if (i == sh->pd_idx)
2721                 return 0;
2722         switch(conf->level) {
2723         case 4: break;
2724         case 5:
2725                 switch (algorithm) {
2726                 case ALGORITHM_LEFT_ASYMMETRIC:
2727                 case ALGORITHM_RIGHT_ASYMMETRIC:
2728                         if (i > sh->pd_idx)
2729                                 i--;
2730                         break;
2731                 case ALGORITHM_LEFT_SYMMETRIC:
2732                 case ALGORITHM_RIGHT_SYMMETRIC:
2733                         if (i < sh->pd_idx)
2734                                 i += raid_disks;
2735                         i -= (sh->pd_idx + 1);
2736                         break;
2737                 case ALGORITHM_PARITY_0:
2738                         i -= 1;
2739                         break;
2740                 case ALGORITHM_PARITY_N:
2741                         break;
2742                 default:
2743                         BUG();
2744                 }
2745                 break;
2746         case 6:
2747                 if (i == sh->qd_idx)
2748                         return 0; /* It is the Q disk */
2749                 switch (algorithm) {
2750                 case ALGORITHM_LEFT_ASYMMETRIC:
2751                 case ALGORITHM_RIGHT_ASYMMETRIC:
2752                 case ALGORITHM_ROTATING_ZERO_RESTART:
2753                 case ALGORITHM_ROTATING_N_RESTART:
2754                         if (sh->pd_idx == raid_disks-1)
2755                                 i--;    /* Q D D D P */
2756                         else if (i > sh->pd_idx)
2757                                 i -= 2; /* D D P Q D */
2758                         break;
2759                 case ALGORITHM_LEFT_SYMMETRIC:
2760                 case ALGORITHM_RIGHT_SYMMETRIC:
2761                         if (sh->pd_idx == raid_disks-1)
2762                                 i--; /* Q D D D P */
2763                         else {
2764                                 /* D D P Q D */
2765                                 if (i < sh->pd_idx)
2766                                         i += raid_disks;
2767                                 i -= (sh->pd_idx + 2);
2768                         }
2769                         break;
2770                 case ALGORITHM_PARITY_0:
2771                         i -= 2;
2772                         break;
2773                 case ALGORITHM_PARITY_N:
2774                         break;
2775                 case ALGORITHM_ROTATING_N_CONTINUE:
2776                         /* Like left_symmetric, but P is before Q */
2777                         if (sh->pd_idx == 0)
2778                                 i--;    /* P D D D Q */
2779                         else {
2780                                 /* D D Q P D */
2781                                 if (i < sh->pd_idx)
2782                                         i += raid_disks;
2783                                 i -= (sh->pd_idx + 1);
2784                         }
2785                         break;
2786                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2787                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2788                         if (i > sh->pd_idx)
2789                                 i--;
2790                         break;
2791                 case ALGORITHM_LEFT_SYMMETRIC_6:
2792                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2793                         if (i < sh->pd_idx)
2794                                 i += data_disks + 1;
2795                         i -= (sh->pd_idx + 1);
2796                         break;
2797                 case ALGORITHM_PARITY_0_6:
2798                         i -= 1;
2799                         break;
2800                 default:
2801                         BUG();
2802                 }
2803                 break;
2804         }
2805
2806         chunk_number = stripe * data_disks + i;
2807         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2808
2809         check = raid5_compute_sector(conf, r_sector,
2810                                      previous, &dummy1, &sh2);
2811         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2812                 || sh2.qd_idx != sh->qd_idx) {
2813                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2814                        mdname(conf->mddev));
2815                 return 0;
2816         }
2817         return r_sector;
2818 }
2819
2820 static void
2821 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2822                          int rcw, int expand)
2823 {
2824         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2825         struct r5conf *conf = sh->raid_conf;
2826         int level = conf->level;
2827
2828         if (rcw) {
2829
2830                 for (i = disks; i--; ) {
2831                         struct r5dev *dev = &sh->dev[i];
2832
2833                         if (dev->towrite) {
2834                                 set_bit(R5_LOCKED, &dev->flags);
2835                                 set_bit(R5_Wantdrain, &dev->flags);
2836                                 if (!expand)
2837                                         clear_bit(R5_UPTODATE, &dev->flags);
2838                                 s->locked++;
2839                         }
2840                 }
2841                 /* if we are not expanding this is a proper write request, and
2842                  * there will be bios with new data to be drained into the
2843                  * stripe cache
2844                  */
2845                 if (!expand) {
2846                         if (!s->locked)
2847                                 /* False alarm, nothing to do */
2848                                 return;
2849                         sh->reconstruct_state = reconstruct_state_drain_run;
2850                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2851                 } else
2852                         sh->reconstruct_state = reconstruct_state_run;
2853
2854                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2855
2856                 if (s->locked + conf->max_degraded == disks)
2857                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2858                                 atomic_inc(&conf->pending_full_writes);
2859         } else {
2860                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2861                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2862                 BUG_ON(level == 6 &&
2863                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2864                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2865
2866                 for (i = disks; i--; ) {
2867                         struct r5dev *dev = &sh->dev[i];
2868                         if (i == pd_idx || i == qd_idx)
2869                                 continue;
2870
2871                         if (dev->towrite &&
2872                             (test_bit(R5_UPTODATE, &dev->flags) ||
2873                              test_bit(R5_Wantcompute, &dev->flags))) {
2874                                 set_bit(R5_Wantdrain, &dev->flags);
2875                                 set_bit(R5_LOCKED, &dev->flags);
2876                                 clear_bit(R5_UPTODATE, &dev->flags);
2877                                 s->locked++;
2878                         }
2879                 }
2880                 if (!s->locked)
2881                         /* False alarm - nothing to do */
2882                         return;
2883                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2884                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2885                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2886                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887         }
2888
2889         /* keep the parity disk(s) locked while asynchronous operations
2890          * are in flight
2891          */
2892         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2893         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2894         s->locked++;
2895
2896         if (level == 6) {
2897                 int qd_idx = sh->qd_idx;
2898                 struct r5dev *dev = &sh->dev[qd_idx];
2899
2900                 set_bit(R5_LOCKED, &dev->flags);
2901                 clear_bit(R5_UPTODATE, &dev->flags);
2902                 s->locked++;
2903         }
2904
2905         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2906                 __func__, (unsigned long long)sh->sector,
2907                 s->locked, s->ops_request);
2908 }
2909
2910 /*
2911  * Each stripe/dev can have one or more bion attached.
2912  * toread/towrite point to the first in a chain.
2913  * The bi_next chain must be in order.
2914  */
2915 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2916                           int forwrite, int previous)
2917 {
2918         struct bio **bip;
2919         struct r5conf *conf = sh->raid_conf;
2920         int firstwrite=0;
2921
2922         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2923                 (unsigned long long)bi->bi_iter.bi_sector,
2924                 (unsigned long long)sh->sector);
2925
2926         /*
2927          * If several bio share a stripe. The bio bi_phys_segments acts as a
2928          * reference count to avoid race. The reference count should already be
2929          * increased before this function is called (for example, in
2930          * make_request()), so other bio sharing this stripe will not free the
2931          * stripe. If a stripe is owned by one stripe, the stripe lock will
2932          * protect it.
2933          */
2934         spin_lock_irq(&sh->stripe_lock);
2935         /* Don't allow new IO added to stripes in batch list */
2936         if (sh->batch_head)
2937                 goto overlap;
2938         if (forwrite) {
2939                 bip = &sh->dev[dd_idx].towrite;
2940                 if (*bip == NULL)
2941                         firstwrite = 1;
2942         } else
2943                 bip = &sh->dev[dd_idx].toread;
2944         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2945                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2946                         goto overlap;
2947                 bip = & (*bip)->bi_next;
2948         }
2949         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2950                 goto overlap;
2951
2952         if (!forwrite || previous)
2953                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2954
2955         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2956         if (*bip)
2957                 bi->bi_next = *bip;
2958         *bip = bi;
2959         raid5_inc_bi_active_stripes(bi);
2960
2961         if (forwrite) {
2962                 /* check if page is covered */
2963                 sector_t sector = sh->dev[dd_idx].sector;
2964                 for (bi=sh->dev[dd_idx].towrite;
2965                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2966                              bi && bi->bi_iter.bi_sector <= sector;
2967                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2968                         if (bio_end_sector(bi) >= sector)
2969                                 sector = bio_end_sector(bi);
2970                 }
2971                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2972                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2973                                 sh->overwrite_disks++;
2974         }
2975
2976         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2977                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2978                 (unsigned long long)sh->sector, dd_idx);
2979         spin_unlock_irq(&sh->stripe_lock);
2980
2981         if (conf->mddev->bitmap && firstwrite) {
2982                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2983                                   STRIPE_SECTORS, 0);
2984                 sh->bm_seq = conf->seq_flush+1;
2985                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2986         }
2987
2988         if (stripe_can_batch(sh))
2989                 stripe_add_to_batch_list(conf, sh);
2990         return 1;
2991
2992  overlap:
2993         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2994         spin_unlock_irq(&sh->stripe_lock);
2995         return 0;
2996 }
2997
2998 static void end_reshape(struct r5conf *conf);
2999
3000 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3001                             struct stripe_head *sh)
3002 {
3003         int sectors_per_chunk =
3004                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3005         int dd_idx;
3006         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3007         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3008
3009         raid5_compute_sector(conf,
3010                              stripe * (disks - conf->max_degraded)
3011                              *sectors_per_chunk + chunk_offset,
3012                              previous,
3013                              &dd_idx, sh);
3014 }
3015
3016 static void
3017 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3018                                 struct stripe_head_state *s, int disks,
3019                                 struct bio **return_bi)
3020 {
3021         int i;
3022         BUG_ON(sh->batch_head);
3023         for (i = disks; i--; ) {
3024                 struct bio *bi;
3025                 int bitmap_end = 0;
3026
3027                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3028                         struct md_rdev *rdev;
3029                         rcu_read_lock();
3030                         rdev = rcu_dereference(conf->disks[i].rdev);
3031                         if (rdev && test_bit(In_sync, &rdev->flags))
3032                                 atomic_inc(&rdev->nr_pending);
3033                         else
3034                                 rdev = NULL;
3035                         rcu_read_unlock();
3036                         if (rdev) {
3037                                 if (!rdev_set_badblocks(
3038                                             rdev,
3039                                             sh->sector,
3040                                             STRIPE_SECTORS, 0))
3041                                         md_error(conf->mddev, rdev);
3042                                 rdev_dec_pending(rdev, conf->mddev);
3043                         }
3044                 }
3045                 spin_lock_irq(&sh->stripe_lock);
3046                 /* fail all writes first */
3047                 bi = sh->dev[i].towrite;
3048                 sh->dev[i].towrite = NULL;
3049                 sh->overwrite_disks = 0;
3050                 spin_unlock_irq(&sh->stripe_lock);
3051                 if (bi)
3052                         bitmap_end = 1;
3053
3054                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3055                         wake_up(&conf->wait_for_overlap);
3056
3057                 while (bi && bi->bi_iter.bi_sector <
3058                         sh->dev[i].sector + STRIPE_SECTORS) {
3059                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3060                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3061                         if (!raid5_dec_bi_active_stripes(bi)) {
3062                                 md_write_end(conf->mddev);
3063                                 bi->bi_next = *return_bi;
3064                                 *return_bi = bi;
3065                         }
3066                         bi = nextbi;
3067                 }
3068                 if (bitmap_end)
3069                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3070                                 STRIPE_SECTORS, 0, 0);
3071                 bitmap_end = 0;
3072                 /* and fail all 'written' */
3073                 bi = sh->dev[i].written;
3074                 sh->dev[i].written = NULL;
3075                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3076                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3077                         sh->dev[i].page = sh->dev[i].orig_page;
3078                 }
3079
3080                 if (bi) bitmap_end = 1;
3081                 while (bi && bi->bi_iter.bi_sector <
3082                        sh->dev[i].sector + STRIPE_SECTORS) {
3083                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3084                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3085                         if (!raid5_dec_bi_active_stripes(bi)) {
3086                                 md_write_end(conf->mddev);
3087                                 bi->bi_next = *return_bi;
3088                                 *return_bi = bi;
3089                         }
3090                         bi = bi2;
3091                 }
3092
3093                 /* fail any reads if this device is non-operational and
3094                  * the data has not reached the cache yet.
3095                  */
3096                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3097                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3098                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3099                         spin_lock_irq(&sh->stripe_lock);
3100                         bi = sh->dev[i].toread;
3101                         sh->dev[i].toread = NULL;
3102                         spin_unlock_irq(&sh->stripe_lock);
3103                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3104                                 wake_up(&conf->wait_for_overlap);
3105                         while (bi && bi->bi_iter.bi_sector <
3106                                sh->dev[i].sector + STRIPE_SECTORS) {
3107                                 struct bio *nextbi =
3108                                         r5_next_bio(bi, sh->dev[i].sector);
3109                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3110                                 if (!raid5_dec_bi_active_stripes(bi)) {
3111                                         bi->bi_next = *return_bi;
3112                                         *return_bi = bi;
3113                                 }
3114                                 bi = nextbi;
3115                         }
3116                 }
3117                 if (bitmap_end)
3118                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119                                         STRIPE_SECTORS, 0, 0);
3120                 /* If we were in the middle of a write the parity block might
3121                  * still be locked - so just clear all R5_LOCKED flags
3122                  */
3123                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3124         }
3125
3126         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3127                 if (atomic_dec_and_test(&conf->pending_full_writes))
3128                         md_wakeup_thread(conf->mddev->thread);
3129 }
3130
3131 static void
3132 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3133                    struct stripe_head_state *s)
3134 {
3135         int abort = 0;
3136         int i;
3137
3138         BUG_ON(sh->batch_head);
3139         clear_bit(STRIPE_SYNCING, &sh->state);
3140         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3141                 wake_up(&conf->wait_for_overlap);
3142         s->syncing = 0;
3143         s->replacing = 0;
3144         /* There is nothing more to do for sync/check/repair.
3145          * Don't even need to abort as that is handled elsewhere
3146          * if needed, and not always wanted e.g. if there is a known
3147          * bad block here.
3148          * For recover/replace we need to record a bad block on all
3149          * non-sync devices, or abort the recovery
3150          */
3151         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3152                 /* During recovery devices cannot be removed, so
3153                  * locking and refcounting of rdevs is not needed
3154                  */
3155                 for (i = 0; i < conf->raid_disks; i++) {
3156                         struct md_rdev *rdev = conf->disks[i].rdev;
3157                         if (rdev
3158                             && !test_bit(Faulty, &rdev->flags)
3159                             && !test_bit(In_sync, &rdev->flags)
3160                             && !rdev_set_badblocks(rdev, sh->sector,
3161                                                    STRIPE_SECTORS, 0))
3162                                 abort = 1;
3163                         rdev = conf->disks[i].replacement;
3164                         if (rdev
3165                             && !test_bit(Faulty, &rdev->flags)
3166                             && !test_bit(In_sync, &rdev->flags)
3167                             && !rdev_set_badblocks(rdev, sh->sector,
3168                                                    STRIPE_SECTORS, 0))
3169                                 abort = 1;
3170                 }
3171                 if (abort)
3172                         conf->recovery_disabled =
3173                                 conf->mddev->recovery_disabled;
3174         }
3175         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3176 }
3177
3178 static int want_replace(struct stripe_head *sh, int disk_idx)
3179 {
3180         struct md_rdev *rdev;
3181         int rv = 0;
3182         /* Doing recovery so rcu locking not required */
3183         rdev = sh->raid_conf->disks[disk_idx].replacement;
3184         if (rdev
3185             && !test_bit(Faulty, &rdev->flags)
3186             && !test_bit(In_sync, &rdev->flags)
3187             && (rdev->recovery_offset <= sh->sector
3188                 || rdev->mddev->recovery_cp <= sh->sector))
3189                 rv = 1;
3190
3191         return rv;
3192 }
3193
3194 /* fetch_block - checks the given member device to see if its data needs
3195  * to be read or computed to satisfy a request.
3196  *
3197  * Returns 1 when no more member devices need to be checked, otherwise returns
3198  * 0 to tell the loop in handle_stripe_fill to continue
3199  */
3200
3201 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3202                            int disk_idx, int disks)
3203 {
3204         struct r5dev *dev = &sh->dev[disk_idx];
3205         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3206                                   &sh->dev[s->failed_num[1]] };
3207         int i;
3208
3209
3210         if (test_bit(R5_LOCKED, &dev->flags) ||
3211             test_bit(R5_UPTODATE, &dev->flags))
3212                 /* No point reading this as we already have it or have
3213                  * decided to get it.
3214                  */
3215                 return 0;
3216
3217         if (dev->toread ||
3218             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3219                 /* We need this block to directly satisfy a request */
3220                 return 1;
3221
3222         if (s->syncing || s->expanding ||
3223             (s->replacing && want_replace(sh, disk_idx)))
3224                 /* When syncing, or expanding we read everything.
3225                  * When replacing, we need the replaced block.
3226                  */
3227                 return 1;
3228
3229         if ((s->failed >= 1 && fdev[0]->toread) ||
3230             (s->failed >= 2 && fdev[1]->toread))
3231                 /* If we want to read from a failed device, then
3232                  * we need to actually read every other device.
3233                  */
3234                 return 1;
3235
3236         /* Sometimes neither read-modify-write nor reconstruct-write
3237          * cycles can work.  In those cases we read every block we
3238          * can.  Then the parity-update is certain to have enough to
3239          * work with.
3240          * This can only be a problem when we need to write something,
3241          * and some device has failed.  If either of those tests
3242          * fail we need look no further.
3243          */
3244         if (!s->failed || !s->to_write)
3245                 return 0;
3246
3247         if (test_bit(R5_Insync, &dev->flags) &&
3248             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249                 /* Pre-reads at not permitted until after short delay
3250                  * to gather multiple requests.  However if this
3251                  * device is no Insync, the block could only be be computed
3252                  * and there is no need to delay that.
3253                  */
3254                 return 0;
3255
3256         for (i = 0; i < s->failed; i++) {
3257                 if (fdev[i]->towrite &&
3258                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3259                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3260                         /* If we have a partial write to a failed
3261                          * device, then we will need to reconstruct
3262                          * the content of that device, so all other
3263                          * devices must be read.
3264                          */
3265                         return 1;
3266         }
3267
3268         /* If we are forced to do a reconstruct-write, either because
3269          * the current RAID6 implementation only supports that, or
3270          * or because parity cannot be trusted and we are currently
3271          * recovering it, there is extra need to be careful.
3272          * If one of the devices that we would need to read, because
3273          * it is not being overwritten (and maybe not written at all)
3274          * is missing/faulty, then we need to read everything we can.
3275          */
3276         if (sh->raid_conf->level != 6 &&
3277             sh->sector < sh->raid_conf->mddev->recovery_cp)
3278                 /* reconstruct-write isn't being forced */
3279                 return 0;
3280         for (i = 0; i < s->failed; i++) {
3281                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3282                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3283                         return 1;
3284         }
3285
3286         return 0;
3287 }
3288
3289 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3290                        int disk_idx, int disks)
3291 {
3292         struct r5dev *dev = &sh->dev[disk_idx];
3293
3294         /* is the data in this block needed, and can we get it? */
3295         if (need_this_block(sh, s, disk_idx, disks)) {
3296                 /* we would like to get this block, possibly by computing it,
3297                  * otherwise read it if the backing disk is insync
3298                  */
3299                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3300                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3301                 if ((s->uptodate == disks - 1) &&
3302                     (s->failed && (disk_idx == s->failed_num[0] ||
3303                                    disk_idx == s->failed_num[1]))) {
3304                         /* have disk failed, and we're requested to fetch it;
3305                          * do compute it
3306                          */
3307                         pr_debug("Computing stripe %llu block %d\n",
3308                                (unsigned long long)sh->sector, disk_idx);
3309                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3310                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3311                         set_bit(R5_Wantcompute, &dev->flags);
3312                         sh->ops.target = disk_idx;
3313                         sh->ops.target2 = -1; /* no 2nd target */
3314                         s->req_compute = 1;
3315                         /* Careful: from this point on 'uptodate' is in the eye
3316                          * of raid_run_ops which services 'compute' operations
3317                          * before writes. R5_Wantcompute flags a block that will
3318                          * be R5_UPTODATE by the time it is needed for a
3319                          * subsequent operation.
3320                          */
3321                         s->uptodate++;
3322                         return 1;
3323                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3324                         /* Computing 2-failure is *very* expensive; only
3325                          * do it if failed >= 2
3326                          */
3327                         int other;
3328                         for (other = disks; other--; ) {
3329                                 if (other == disk_idx)
3330                                         continue;
3331                                 if (!test_bit(R5_UPTODATE,
3332                                       &sh->dev[other].flags))
3333                                         break;
3334                         }
3335                         BUG_ON(other < 0);
3336                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3337                                (unsigned long long)sh->sector,
3338                                disk_idx, other);
3339                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3340                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3341                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3342                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3343                         sh->ops.target = disk_idx;
3344                         sh->ops.target2 = other;
3345                         s->uptodate += 2;
3346                         s->req_compute = 1;
3347                         return 1;
3348                 } else if (test_bit(R5_Insync, &dev->flags)) {
3349                         set_bit(R5_LOCKED, &dev->flags);
3350                         set_bit(R5_Wantread, &dev->flags);
3351                         s->locked++;
3352                         pr_debug("Reading block %d (sync=%d)\n",
3353                                 disk_idx, s->syncing);
3354                 }
3355         }
3356
3357         return 0;
3358 }
3359
3360 /**
3361  * handle_stripe_fill - read or compute data to satisfy pending requests.
3362  */
3363 static void handle_stripe_fill(struct stripe_head *sh,
3364                                struct stripe_head_state *s,
3365                                int disks)
3366 {
3367         int i;
3368
3369         BUG_ON(sh->batch_head);
3370         /* look for blocks to read/compute, skip this if a compute
3371          * is already in flight, or if the stripe contents are in the
3372          * midst of changing due to a write
3373          */
3374         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3375             !sh->reconstruct_state)
3376                 for (i = disks; i--; )
3377                         if (fetch_block(sh, s, i, disks))
3378                                 break;
3379         set_bit(STRIPE_HANDLE, &sh->state);
3380 }
3381
3382 /* handle_stripe_clean_event
3383  * any written block on an uptodate or failed drive can be returned.
3384  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3385  * never LOCKED, so we don't need to test 'failed' directly.
3386  */
3387 static void handle_stripe_clean_event(struct r5conf *conf,
3388         struct stripe_head *sh, int disks, struct bio **return_bi)
3389 {
3390         int i;
3391         struct r5dev *dev;
3392         int discard_pending = 0;
3393         struct stripe_head *head_sh = sh;
3394         bool do_endio = false;
3395         int wakeup_nr = 0;
3396
3397         for (i = disks; i--; )
3398                 if (sh->dev[i].written) {
3399                         dev = &sh->dev[i];
3400                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3401                             (test_bit(R5_UPTODATE, &dev->flags) ||
3402                              test_bit(R5_Discard, &dev->flags) ||
3403                              test_bit(R5_SkipCopy, &dev->flags))) {
3404                                 /* We can return any write requests */
3405                                 struct bio *wbi, *wbi2;
3406                                 pr_debug("Return write for disc %d\n", i);
3407                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3408                                         clear_bit(R5_UPTODATE, &dev->flags);
3409                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3410                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3411                                 }
3412                                 do_endio = true;
3413
3414 returnbi:
3415                                 dev->page = dev->orig_page;
3416                                 wbi = dev->written;
3417                                 dev->written = NULL;
3418                                 while (wbi && wbi->bi_iter.bi_sector <
3419                                         dev->sector + STRIPE_SECTORS) {
3420                                         wbi2 = r5_next_bio(wbi, dev->sector);
3421                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3422                                                 md_write_end(conf->mddev);
3423                                                 wbi->bi_next = *return_bi;
3424                                                 *return_bi = wbi;
3425                                         }
3426                                         wbi = wbi2;
3427                                 }
3428                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3429                                                 STRIPE_SECTORS,
3430                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3431                                                 0);
3432                                 if (head_sh->batch_head) {
3433                                         sh = list_first_entry(&sh->batch_list,
3434                                                               struct stripe_head,
3435                                                               batch_list);
3436                                         if (sh != head_sh) {
3437                                                 dev = &sh->dev[i];
3438                                                 goto returnbi;
3439                                         }
3440                                 }
3441                                 sh = head_sh;
3442                                 dev = &sh->dev[i];
3443                         } else if (test_bit(R5_Discard, &dev->flags))
3444                                 discard_pending = 1;
3445                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3446                         WARN_ON(dev->page != dev->orig_page);
3447                 }
3448         if (!discard_pending &&
3449             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3450                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3451                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3452                 if (sh->qd_idx >= 0) {
3453                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3454                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3455                 }
3456                 /* now that discard is done we can proceed with any sync */
3457                 clear_bit(STRIPE_DISCARD, &sh->state);
3458                 /*
3459                  * SCSI discard will change some bio fields and the stripe has
3460                  * no updated data, so remove it from hash list and the stripe
3461                  * will be reinitialized
3462                  */
3463                 spin_lock_irq(&conf->device_lock);
3464 unhash:
3465                 remove_hash(sh);
3466                 if (head_sh->batch_head) {
3467                         sh = list_first_entry(&sh->batch_list,
3468                                               struct stripe_head, batch_list);
3469                         if (sh != head_sh)
3470                                         goto unhash;
3471                 }
3472                 spin_unlock_irq(&conf->device_lock);
3473                 sh = head_sh;
3474
3475                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3476                         set_bit(STRIPE_HANDLE, &sh->state);
3477
3478         }
3479
3480         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3481                 if (atomic_dec_and_test(&conf->pending_full_writes))
3482                         md_wakeup_thread(conf->mddev->thread);
3483
3484         if (!head_sh->batch_head || !do_endio)
3485                 return;
3486         for (i = 0; i < head_sh->disks; i++) {
3487                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3488                         wakeup_nr++;
3489         }
3490         while (!list_empty(&head_sh->batch_list)) {
3491                 int i;
3492                 sh = list_first_entry(&head_sh->batch_list,
3493                                       struct stripe_head, batch_list);
3494                 list_del_init(&sh->batch_list);
3495
3496                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3497                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3498                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3499                                                  STRIPE_EXPAND_SYNC_FLAG));
3500                 sh->check_state = head_sh->check_state;
3501                 sh->reconstruct_state = head_sh->reconstruct_state;
3502                 for (i = 0; i < sh->disks; i++) {
3503                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3504                                 wakeup_nr++;
3505                         sh->dev[i].flags = head_sh->dev[i].flags;
3506                 }
3507
3508                 spin_lock_irq(&sh->stripe_lock);
3509                 sh->batch_head = NULL;
3510                 spin_unlock_irq(&sh->stripe_lock);
3511                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3512                         set_bit(STRIPE_HANDLE, &sh->state);
3513                 release_stripe(sh);
3514         }
3515
3516         spin_lock_irq(&head_sh->stripe_lock);
3517         head_sh->batch_head = NULL;
3518         spin_unlock_irq(&head_sh->stripe_lock);
3519         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3520         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3521                 set_bit(STRIPE_HANDLE, &head_sh->state);
3522 }
3523
3524 static void handle_stripe_dirtying(struct r5conf *conf,
3525                                    struct stripe_head *sh,
3526                                    struct stripe_head_state *s,
3527                                    int disks)
3528 {
3529         int rmw = 0, rcw = 0, i;
3530         sector_t recovery_cp = conf->mddev->recovery_cp;
3531
3532         /* Check whether resync is now happening or should start.
3533          * If yes, then the array is dirty (after unclean shutdown or
3534          * initial creation), so parity in some stripes might be inconsistent.
3535          * In this case, we need to always do reconstruct-write, to ensure
3536          * that in case of drive failure or read-error correction, we
3537          * generate correct data from the parity.
3538          */
3539         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3540             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3541              s->failed == 0)) {
3542                 /* Calculate the real rcw later - for now make it
3543                  * look like rcw is cheaper
3544                  */
3545                 rcw = 1; rmw = 2;
3546                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3547                          conf->rmw_level, (unsigned long long)recovery_cp,
3548                          (unsigned long long)sh->sector);
3549         } else for (i = disks; i--; ) {
3550                 /* would I have to read this buffer for read_modify_write */
3551                 struct r5dev *dev = &sh->dev[i];
3552                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3553                     !test_bit(R5_LOCKED, &dev->flags) &&
3554                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3555                       test_bit(R5_Wantcompute, &dev->flags))) {
3556                         if (test_bit(R5_Insync, &dev->flags))
3557                                 rmw++;
3558                         else
3559                                 rmw += 2*disks;  /* cannot read it */
3560                 }
3561                 /* Would I have to read this buffer for reconstruct_write */
3562                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3563                     i != sh->pd_idx && i != sh->qd_idx &&
3564                     !test_bit(R5_LOCKED, &dev->flags) &&
3565                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3566                     test_bit(R5_Wantcompute, &dev->flags))) {
3567                         if (test_bit(R5_Insync, &dev->flags))
3568                                 rcw++;
3569                         else
3570                                 rcw += 2*disks;
3571                 }
3572         }
3573         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3574                 (unsigned long long)sh->sector, rmw, rcw);
3575         set_bit(STRIPE_HANDLE, &sh->state);
3576         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3577                 /* prefer read-modify-write, but need to get some data */
3578                 if (conf->mddev->queue)
3579                         blk_add_trace_msg(conf->mddev->queue,
3580                                           "raid5 rmw %llu %d",
3581                                           (unsigned long long)sh->sector, rmw);
3582                 for (i = disks; i--; ) {
3583                         struct r5dev *dev = &sh->dev[i];
3584                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3585                             !test_bit(R5_LOCKED, &dev->flags) &&
3586                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3587                             test_bit(R5_Wantcompute, &dev->flags)) &&
3588                             test_bit(R5_Insync, &dev->flags)) {
3589                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3590                                              &sh->state)) {
3591                                         pr_debug("Read_old block %d for r-m-w\n",
3592                                                  i);
3593                                         set_bit(R5_LOCKED, &dev->flags);
3594                                         set_bit(R5_Wantread, &dev->flags);
3595                                         s->locked++;
3596                                 } else {
3597                                         set_bit(STRIPE_DELAYED, &sh->state);
3598                                         set_bit(STRIPE_HANDLE, &sh->state);
3599                                 }
3600                         }
3601                 }
3602         }
3603         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3604                 /* want reconstruct write, but need to get some data */
3605                 int qread =0;
3606                 rcw = 0;
3607                 for (i = disks; i--; ) {
3608                         struct r5dev *dev = &sh->dev[i];
3609                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3610                             i != sh->pd_idx && i != sh->qd_idx &&
3611                             !test_bit(R5_LOCKED, &dev->flags) &&
3612                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3613                               test_bit(R5_Wantcompute, &dev->flags))) {
3614                                 rcw++;
3615                                 if (test_bit(R5_Insync, &dev->flags) &&
3616                                     test_bit(STRIPE_PREREAD_ACTIVE,
3617                                              &sh->state)) {
3618                                         pr_debug("Read_old block "
3619                                                 "%d for Reconstruct\n", i);
3620                                         set_bit(R5_LOCKED, &dev->flags);
3621                                         set_bit(R5_Wantread, &dev->flags);
3622                                         s->locked++;
3623                                         qread++;
3624                                 } else {
3625                                         set_bit(STRIPE_DELAYED, &sh->state);
3626                                         set_bit(STRIPE_HANDLE, &sh->state);
3627                                 }
3628                         }
3629                 }
3630                 if (rcw && conf->mddev->queue)
3631                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3632                                           (unsigned long long)sh->sector,
3633                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3634         }
3635
3636         if (rcw > disks && rmw > disks &&
3637             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3638                 set_bit(STRIPE_DELAYED, &sh->state);
3639
3640         /* now if nothing is locked, and if we have enough data,
3641          * we can start a write request
3642          */
3643         /* since handle_stripe can be called at any time we need to handle the
3644          * case where a compute block operation has been submitted and then a
3645          * subsequent call wants to start a write request.  raid_run_ops only
3646          * handles the case where compute block and reconstruct are requested
3647          * simultaneously.  If this is not the case then new writes need to be
3648          * held off until the compute completes.
3649          */
3650         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3651             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3652             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3653                 schedule_reconstruction(sh, s, rcw == 0, 0);
3654 }
3655
3656 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3657                                 struct stripe_head_state *s, int disks)
3658 {
3659         struct r5dev *dev = NULL;
3660
3661         BUG_ON(sh->batch_head);
3662         set_bit(STRIPE_HANDLE, &sh->state);
3663
3664         switch (sh->check_state) {
3665         case check_state_idle:
3666                 /* start a new check operation if there are no failures */
3667                 if (s->failed == 0) {
3668                         BUG_ON(s->uptodate != disks);
3669                         sh->check_state = check_state_run;
3670                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3671                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3672                         s->uptodate--;
3673                         break;
3674                 }
3675                 dev = &sh->dev[s->failed_num[0]];
3676                 /* fall through */
3677         case check_state_compute_result:
3678                 sh->check_state = check_state_idle;
3679                 if (!dev)
3680                         dev = &sh->dev[sh->pd_idx];
3681
3682                 /* check that a write has not made the stripe insync */
3683                 if (test_bit(STRIPE_INSYNC, &sh->state))
3684                         break;
3685
3686                 /* either failed parity check, or recovery is happening */
3687                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3688                 BUG_ON(s->uptodate != disks);
3689
3690                 set_bit(R5_LOCKED, &dev->flags);
3691                 s->locked++;
3692                 set_bit(R5_Wantwrite, &dev->flags);
3693
3694                 clear_bit(STRIPE_DEGRADED, &sh->state);
3695                 set_bit(STRIPE_INSYNC, &sh->state);
3696                 break;
3697         case check_state_run:
3698                 break; /* we will be called again upon completion */
3699         case check_state_check_result:
3700                 sh->check_state = check_state_idle;
3701
3702                 /* if a failure occurred during the check operation, leave
3703                  * STRIPE_INSYNC not set and let the stripe be handled again
3704                  */
3705                 if (s->failed)
3706                         break;
3707
3708                 /* handle a successful check operation, if parity is correct
3709                  * we are done.  Otherwise update the mismatch count and repair
3710                  * parity if !MD_RECOVERY_CHECK
3711                  */
3712                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3713                         /* parity is correct (on disc,
3714                          * not in buffer any more)
3715                          */
3716                         set_bit(STRIPE_INSYNC, &sh->state);
3717                 else {
3718                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3719                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3720                                 /* don't try to repair!! */
3721                                 set_bit(STRIPE_INSYNC, &sh->state);
3722                         else {
3723                                 sh->check_state = check_state_compute_run;
3724                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3725                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3726                                 set_bit(R5_Wantcompute,
3727                                         &sh->dev[sh->pd_idx].flags);
3728                                 sh->ops.target = sh->pd_idx;
3729                                 sh->ops.target2 = -1;
3730                                 s->uptodate++;
3731                         }
3732                 }
3733                 break;
3734         case check_state_compute_run:
3735                 break;
3736         default:
3737                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3738                        __func__, sh->check_state,
3739                        (unsigned long long) sh->sector);
3740                 BUG();
3741         }
3742 }
3743
3744 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3745                                   struct stripe_head_state *s,
3746                                   int disks)
3747 {
3748         int pd_idx = sh->pd_idx;
3749         int qd_idx = sh->qd_idx;
3750         struct r5dev *dev;
3751
3752         BUG_ON(sh->batch_head);
3753         set_bit(STRIPE_HANDLE, &sh->state);
3754
3755         BUG_ON(s->failed > 2);
3756
3757         /* Want to check and possibly repair P and Q.
3758          * However there could be one 'failed' device, in which
3759          * case we can only check one of them, possibly using the
3760          * other to generate missing data
3761          */
3762
3763         switch (sh->check_state) {
3764         case check_state_idle:
3765                 /* start a new check operation if there are < 2 failures */
3766                 if (s->failed == s->q_failed) {
3767                         /* The only possible failed device holds Q, so it
3768                          * makes sense to check P (If anything else were failed,
3769                          * we would have used P to recreate it).
3770                          */
3771                         sh->check_state = check_state_run;
3772                 }
3773                 if (!s->q_failed && s->failed < 2) {
3774                         /* Q is not failed, and we didn't use it to generate
3775                          * anything, so it makes sense to check it
3776                          */
3777                         if (sh->check_state == check_state_run)
3778                                 sh->check_state = check_state_run_pq;
3779                         else
3780                                 sh->check_state = check_state_run_q;
3781                 }
3782
3783                 /* discard potentially stale zero_sum_result */
3784                 sh->ops.zero_sum_result = 0;
3785
3786                 if (sh->check_state == check_state_run) {
3787                         /* async_xor_zero_sum destroys the contents of P */
3788                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3789                         s->uptodate--;
3790                 }
3791                 if (sh->check_state >= check_state_run &&
3792                     sh->check_state <= check_state_run_pq) {
3793                         /* async_syndrome_zero_sum preserves P and Q, so
3794                          * no need to mark them !uptodate here
3795                          */
3796                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3797                         break;
3798                 }
3799
3800                 /* we have 2-disk failure */
3801                 BUG_ON(s->failed != 2);
3802                 /* fall through */
3803         case check_state_compute_result:
3804                 sh->check_state = check_state_idle;
3805
3806                 /* check that a write has not made the stripe insync */
3807                 if (test_bit(STRIPE_INSYNC, &sh->state))
3808                         break;
3809
3810                 /* now write out any block on a failed drive,
3811                  * or P or Q if they were recomputed
3812                  */
3813                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3814                 if (s->failed == 2) {
3815                         dev = &sh->dev[s->failed_num[1]];
3816                         s->locked++;
3817                         set_bit(R5_LOCKED, &dev->flags);
3818                         set_bit(R5_Wantwrite, &dev->flags);
3819                 }
3820                 if (s->failed >= 1) {
3821                         dev = &sh->dev[s->failed_num[0]];
3822                         s->locked++;
3823                         set_bit(R5_LOCKED, &dev->flags);
3824                         set_bit(R5_Wantwrite, &dev->flags);
3825                 }
3826                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3827                         dev = &sh->dev[pd_idx];
3828                         s->locked++;
3829                         set_bit(R5_LOCKED, &dev->flags);
3830                         set_bit(R5_Wantwrite, &dev->flags);
3831                 }
3832                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3833                         dev = &sh->dev[qd_idx];
3834                         s->locked++;
3835                         set_bit(R5_LOCKED, &dev->flags);
3836                         set_bit(R5_Wantwrite, &dev->flags);
3837                 }
3838                 clear_bit(STRIPE_DEGRADED, &sh->state);
3839
3840                 set_bit(STRIPE_INSYNC, &sh->state);
3841                 break;
3842         case check_state_run:
3843         case check_state_run_q:
3844         case check_state_run_pq:
3845                 break; /* we will be called again upon completion */
3846         case check_state_check_result:
3847                 sh->check_state = check_state_idle;
3848
3849                 /* handle a successful check operation, if parity is correct
3850                  * we are done.  Otherwise update the mismatch count and repair
3851                  * parity if !MD_RECOVERY_CHECK
3852                  */
3853                 if (sh->ops.zero_sum_result == 0) {
3854                         /* both parities are correct */
3855                         if (!s->failed)
3856                                 set_bit(STRIPE_INSYNC, &sh->state);
3857                         else {
3858                                 /* in contrast to the raid5 case we can validate
3859                                  * parity, but still have a failure to write
3860                                  * back
3861                                  */
3862                                 sh->check_state = check_state_compute_result;
3863                                 /* Returning at this point means that we may go
3864                                  * off and bring p and/or q uptodate again so
3865                                  * we make sure to check zero_sum_result again
3866                                  * to verify if p or q need writeback
3867                                  */
3868                         }
3869                 } else {
3870                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3871                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3872                                 /* don't try to repair!! */
3873                                 set_bit(STRIPE_INSYNC, &sh->state);
3874                         else {
3875                                 int *target = &sh->ops.target;
3876
3877                                 sh->ops.target = -1;
3878                                 sh->ops.target2 = -1;
3879                                 sh->check_state = check_state_compute_run;
3880                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3881                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3882                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3883                                         set_bit(R5_Wantcompute,
3884                                                 &sh->dev[pd_idx].flags);
3885                                         *target = pd_idx;
3886                                         target = &sh->ops.target2;
3887                                         s->uptodate++;
3888                                 }
3889                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3890                                         set_bit(R5_Wantcompute,
3891                                                 &sh->dev[qd_idx].flags);
3892                                         *target = qd_idx;
3893                                         s->uptodate++;
3894                                 }
3895                         }
3896                 }
3897                 break;
3898         case check_state_compute_run:
3899                 break;
3900         default:
3901                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3902                        __func__, sh->check_state,
3903                        (unsigned long long) sh->sector);
3904                 BUG();
3905         }
3906 }
3907
3908 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3909 {
3910         int i;
3911
3912         /* We have read all the blocks in this stripe and now we need to
3913          * copy some of them into a target stripe for expand.
3914          */
3915         struct dma_async_tx_descriptor *tx = NULL;
3916         BUG_ON(sh->batch_head);
3917         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3918         for (i = 0; i < sh->disks; i++)
3919                 if (i != sh->pd_idx && i != sh->qd_idx) {
3920                         int dd_idx, j;
3921                         struct stripe_head *sh2;
3922                         struct async_submit_ctl submit;
3923
3924                         sector_t bn = compute_blocknr(sh, i, 1);
3925                         sector_t s = raid5_compute_sector(conf, bn, 0,
3926                                                           &dd_idx, NULL);
3927                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3928                         if (sh2 == NULL)
3929                                 /* so far only the early blocks of this stripe
3930                                  * have been requested.  When later blocks
3931                                  * get requested, we will try again
3932                                  */
3933                                 continue;
3934                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3935                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3936                                 /* must have already done this block */
3937                                 release_stripe(sh2);
3938                                 continue;
3939                         }
3940
3941                         /* place all the copies on one channel */
3942                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3943                         tx = async_memcpy(sh2->dev[dd_idx].page,
3944                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3945                                           &submit);
3946
3947                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3948                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3949                         for (j = 0; j < conf->raid_disks; j++)
3950                                 if (j != sh2->pd_idx &&
3951                                     j != sh2->qd_idx &&
3952                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3953                                         break;
3954                         if (j == conf->raid_disks) {
3955                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3956                                 set_bit(STRIPE_HANDLE, &sh2->state);
3957                         }
3958                         release_stripe(sh2);
3959
3960                 }
3961         /* done submitting copies, wait for them to complete */
3962         async_tx_quiesce(&tx);
3963 }
3964
3965 /*
3966  * handle_stripe - do things to a stripe.
3967  *
3968  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3969  * state of various bits to see what needs to be done.
3970  * Possible results:
3971  *    return some read requests which now have data
3972  *    return some write requests which are safely on storage
3973  *    schedule a read on some buffers
3974  *    schedule a write of some buffers
3975  *    return confirmation of parity correctness
3976  *
3977  */
3978
3979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3980 {
3981         struct r5conf *conf = sh->raid_conf;
3982         int disks = sh->disks;
3983         struct r5dev *dev;
3984         int i;
3985         int do_recovery = 0;
3986
3987         memset(s, 0, sizeof(*s));
3988
3989         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3990         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3991         s->failed_num[0] = -1;
3992         s->failed_num[1] = -1;
3993
3994         /* Now to look around and see what can be done */
3995         rcu_read_lock();
3996         for (i=disks; i--; ) {
3997                 struct md_rdev *rdev;
3998                 sector_t first_bad;
3999                 int bad_sectors;
4000                 int is_bad = 0;
4001
4002                 dev = &sh->dev[i];
4003
4004                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4005                          i, dev->flags,
4006                          dev->toread, dev->towrite, dev->written);
4007                 /* maybe we can reply to a read
4008                  *
4009                  * new wantfill requests are only permitted while
4010                  * ops_complete_biofill is guaranteed to be inactive
4011                  */
4012                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4013                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4014                         set_bit(R5_Wantfill, &dev->flags);
4015
4016                 /* now count some things */
4017                 if (test_bit(R5_LOCKED, &dev->flags))
4018                         s->locked++;
4019                 if (test_bit(R5_UPTODATE, &dev->flags))
4020                         s->uptodate++;
4021                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4022                         s->compute++;
4023                         BUG_ON(s->compute > 2);
4024                 }
4025
4026                 if (test_bit(R5_Wantfill, &dev->flags))
4027                         s->to_fill++;
4028                 else if (dev->toread)
4029                         s->to_read++;
4030                 if (dev->towrite) {
4031                         s->to_write++;
4032                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4033                                 s->non_overwrite++;
4034                 }
4035                 if (dev->written)
4036                         s->written++;
4037                 /* Prefer to use the replacement for reads, but only
4038                  * if it is recovered enough and has no bad blocks.
4039                  */
4040                 rdev = rcu_dereference(conf->disks[i].replacement);
4041                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4042                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4043                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4044                                  &first_bad, &bad_sectors))
4045                         set_bit(R5_ReadRepl, &dev->flags);
4046                 else {
4047                         if (rdev)
4048                                 set_bit(R5_NeedReplace, &dev->flags);
4049                         rdev = rcu_dereference(conf->disks[i].rdev);
4050                         clear_bit(R5_ReadRepl, &dev->flags);
4051                 }
4052                 if (rdev && test_bit(Faulty, &rdev->flags))
4053                         rdev = NULL;
4054                 if (rdev) {
4055                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4056                                              &first_bad, &bad_sectors);
4057                         if (s->blocked_rdev == NULL
4058                             && (test_bit(Blocked, &rdev->flags)
4059                                 || is_bad < 0)) {
4060                                 if (is_bad < 0)
4061                                         set_bit(BlockedBadBlocks,
4062                                                 &rdev->flags);
4063                                 s->blocked_rdev = rdev;
4064                                 atomic_inc(&rdev->nr_pending);
4065                         }
4066                 }
4067                 clear_bit(R5_Insync, &dev->flags);
4068                 if (!rdev)
4069                         /* Not in-sync */;
4070                 else if (is_bad) {
4071                         /* also not in-sync */
4072                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4073                             test_bit(R5_UPTODATE, &dev->flags)) {
4074                                 /* treat as in-sync, but with a read error
4075                                  * which we can now try to correct
4076                                  */
4077                                 set_bit(R5_Insync, &dev->flags);
4078                                 set_bit(R5_ReadError, &dev->flags);
4079                         }
4080                 } else if (test_bit(In_sync, &rdev->flags))
4081                         set_bit(R5_Insync, &dev->flags);
4082                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4083                         /* in sync if before recovery_offset */
4084                         set_bit(R5_Insync, &dev->flags);
4085                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4086                          test_bit(R5_Expanded, &dev->flags))
4087                         /* If we've reshaped into here, we assume it is Insync.
4088                          * We will shortly update recovery_offset to make
4089                          * it official.
4090                          */
4091                         set_bit(R5_Insync, &dev->flags);
4092
4093                 if (test_bit(R5_WriteError, &dev->flags)) {
4094                         /* This flag does not apply to '.replacement'
4095                          * only to .rdev, so make sure to check that*/
4096                         struct md_rdev *rdev2 = rcu_dereference(
4097                                 conf->disks[i].rdev);
4098                         if (rdev2 == rdev)
4099                                 clear_bit(R5_Insync, &dev->flags);
4100                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4101                                 s->handle_bad_blocks = 1;
4102                                 atomic_inc(&rdev2->nr_pending);
4103                         } else
4104                                 clear_bit(R5_WriteError, &dev->flags);
4105                 }
4106                 if (test_bit(R5_MadeGood, &dev->flags)) {
4107                         /* This flag does not apply to '.replacement'
4108                          * only to .rdev, so make sure to check that*/
4109                         struct md_rdev *rdev2 = rcu_dereference(
4110                                 conf->disks[i].rdev);
4111                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4112                                 s->handle_bad_blocks = 1;
4113                                 atomic_inc(&rdev2->nr_pending);
4114                         } else
4115                                 clear_bit(R5_MadeGood, &dev->flags);
4116                 }
4117                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4118                         struct md_rdev *rdev2 = rcu_dereference(
4119                                 conf->disks[i].replacement);
4120                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4121                                 s->handle_bad_blocks = 1;
4122                                 atomic_inc(&rdev2->nr_pending);
4123                         } else
4124                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4125                 }
4126                 if (!test_bit(R5_Insync, &dev->flags)) {
4127                         /* The ReadError flag will just be confusing now */
4128                         clear_bit(R5_ReadError, &dev->flags);
4129                         clear_bit(R5_ReWrite, &dev->flags);
4130                 }
4131                 if (test_bit(R5_ReadError, &dev->flags))
4132                         clear_bit(R5_Insync, &dev->flags);
4133                 if (!test_bit(R5_Insync, &dev->flags)) {
4134                         if (s->failed < 2)
4135                                 s->failed_num[s->failed] = i;
4136                         s->failed++;
4137                         if (rdev && !test_bit(Faulty, &rdev->flags))
4138                                 do_recovery = 1;
4139                 }
4140         }
4141         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4142                 /* If there is a failed device being replaced,
4143                  *     we must be recovering.
4144                  * else if we are after recovery_cp, we must be syncing
4145                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4146                  * else we can only be replacing
4147                  * sync and recovery both need to read all devices, and so
4148                  * use the same flag.
4149                  */
4150                 if (do_recovery ||
4151                     sh->sector >= conf->mddev->recovery_cp ||
4152                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4153                         s->syncing = 1;
4154                 else
4155                         s->replacing = 1;
4156         }
4157         rcu_read_unlock();
4158 }
4159
4160 static int clear_batch_ready(struct stripe_head *sh)
4161 {
4162         struct stripe_head *tmp;
4163         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4164                 return 0;
4165         spin_lock(&sh->stripe_lock);
4166         if (!sh->batch_head) {
4167                 spin_unlock(&sh->stripe_lock);
4168                 return 0;
4169         }
4170
4171         /*
4172          * this stripe could be added to a batch list before we check
4173          * BATCH_READY, skips it
4174          */
4175         if (sh->batch_head != sh) {
4176                 spin_unlock(&sh->stripe_lock);
4177                 return 1;
4178         }
4179         spin_lock(&sh->batch_lock);
4180         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4181                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4182         spin_unlock(&sh->batch_lock);
4183         spin_unlock(&sh->stripe_lock);
4184
4185         /*
4186          * BATCH_READY is cleared, no new stripes can be added.
4187          * batch_list can be accessed without lock
4188          */
4189         return 0;
4190 }
4191
4192 static void check_break_stripe_batch_list(struct stripe_head *sh)
4193 {
4194         struct stripe_head *head_sh, *next;
4195         int i;
4196
4197         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4198                 return;
4199
4200         head_sh = sh;
4201         do {
4202                 sh = list_first_entry(&sh->batch_list,
4203                                       struct stripe_head, batch_list);
4204                 BUG_ON(sh == head_sh);
4205         } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4206
4207         while (sh != head_sh) {
4208                 next = list_first_entry(&sh->batch_list,
4209                                         struct stripe_head, batch_list);
4210                 list_del_init(&sh->batch_list);
4211
4212                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4213                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4214                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4215                                                  (1 << STRIPE_DEGRADED) |
4216                                                  STRIPE_EXPAND_SYNC_FLAG));
4217                 sh->check_state = head_sh->check_state;
4218                 sh->reconstruct_state = head_sh->reconstruct_state;
4219                 for (i = 0; i < sh->disks; i++)
4220                         sh->dev[i].flags = head_sh->dev[i].flags &
4221                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4222
4223                 spin_lock_irq(&sh->stripe_lock);
4224                 sh->batch_head = NULL;
4225                 spin_unlock_irq(&sh->stripe_lock);
4226
4227                 set_bit(STRIPE_HANDLE, &sh->state);
4228                 release_stripe(sh);
4229
4230                 sh = next;
4231         }
4232 }
4233
4234 static void handle_stripe(struct stripe_head *sh)
4235 {
4236         struct stripe_head_state s;
4237         struct r5conf *conf = sh->raid_conf;
4238         int i;
4239         int prexor;
4240         int disks = sh->disks;
4241         struct r5dev *pdev, *qdev;
4242
4243         clear_bit(STRIPE_HANDLE, &sh->state);
4244         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4245                 /* already being handled, ensure it gets handled
4246                  * again when current action finishes */
4247                 set_bit(STRIPE_HANDLE, &sh->state);
4248                 return;
4249         }
4250
4251         if (clear_batch_ready(sh) ) {
4252                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4253                 return;
4254         }
4255
4256         check_break_stripe_batch_list(sh);
4257
4258         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4259                 spin_lock(&sh->stripe_lock);
4260                 /* Cannot process 'sync' concurrently with 'discard' */
4261                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4262                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4263                         set_bit(STRIPE_SYNCING, &sh->state);
4264                         clear_bit(STRIPE_INSYNC, &sh->state);
4265                         clear_bit(STRIPE_REPLACED, &sh->state);
4266                 }
4267                 spin_unlock(&sh->stripe_lock);
4268         }
4269         clear_bit(STRIPE_DELAYED, &sh->state);
4270
4271         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4272                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4273                (unsigned long long)sh->sector, sh->state,
4274                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4275                sh->check_state, sh->reconstruct_state);
4276
4277         analyse_stripe(sh, &s);
4278
4279         if (s.handle_bad_blocks) {
4280                 set_bit(STRIPE_HANDLE, &sh->state);
4281                 goto finish;
4282         }
4283
4284         if (unlikely(s.blocked_rdev)) {
4285                 if (s.syncing || s.expanding || s.expanded ||
4286                     s.replacing || s.to_write || s.written) {
4287                         set_bit(STRIPE_HANDLE, &sh->state);
4288                         goto finish;
4289                 }
4290                 /* There is nothing for the blocked_rdev to block */
4291                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4292                 s.blocked_rdev = NULL;
4293         }
4294
4295         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4296                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4297                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4298         }
4299
4300         pr_debug("locked=%d uptodate=%d to_read=%d"
4301                " to_write=%d failed=%d failed_num=%d,%d\n",
4302                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4303                s.failed_num[0], s.failed_num[1]);
4304         /* check if the array has lost more than max_degraded devices and,
4305          * if so, some requests might need to be failed.
4306          */
4307         if (s.failed > conf->max_degraded) {
4308                 sh->check_state = 0;
4309                 sh->reconstruct_state = 0;
4310                 if (s.to_read+s.to_write+s.written)
4311                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4312                 if (s.syncing + s.replacing)
4313                         handle_failed_sync(conf, sh, &s);
4314         }
4315
4316         /* Now we check to see if any write operations have recently
4317          * completed
4318          */
4319         prexor = 0;
4320         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4321                 prexor = 1;
4322         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4323             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4324                 sh->reconstruct_state = reconstruct_state_idle;
4325
4326                 /* All the 'written' buffers and the parity block are ready to
4327                  * be written back to disk
4328                  */
4329                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4330                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4331                 BUG_ON(sh->qd_idx >= 0 &&
4332                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4333                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4334                 for (i = disks; i--; ) {
4335                         struct r5dev *dev = &sh->dev[i];
4336                         if (test_bit(R5_LOCKED, &dev->flags) &&
4337                                 (i == sh->pd_idx || i == sh->qd_idx ||
4338                                  dev->written)) {
4339                                 pr_debug("Writing block %d\n", i);
4340                                 set_bit(R5_Wantwrite, &dev->flags);
4341                                 if (prexor)
4342                                         continue;
4343                                 if (s.failed > 1)
4344                                         continue;
4345                                 if (!test_bit(R5_Insync, &dev->flags) ||
4346                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4347                                      s.failed == 0))
4348                                         set_bit(STRIPE_INSYNC, &sh->state);
4349                         }
4350                 }
4351                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4352                         s.dec_preread_active = 1;
4353         }
4354
4355         /*
4356          * might be able to return some write requests if the parity blocks
4357          * are safe, or on a failed drive
4358          */
4359         pdev = &sh->dev[sh->pd_idx];
4360         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4361                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4362         qdev = &sh->dev[sh->qd_idx];
4363         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4364                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4365                 || conf->level < 6;
4366
4367         if (s.written &&
4368             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4369                              && !test_bit(R5_LOCKED, &pdev->flags)
4370                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4371                                  test_bit(R5_Discard, &pdev->flags))))) &&
4372             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4373                              && !test_bit(R5_LOCKED, &qdev->flags)
4374                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4375                                  test_bit(R5_Discard, &qdev->flags))))))
4376                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4377
4378         /* Now we might consider reading some blocks, either to check/generate
4379          * parity, or to satisfy requests
4380          * or to load a block that is being partially written.
4381          */
4382         if (s.to_read || s.non_overwrite
4383             || (conf->level == 6 && s.to_write && s.failed)
4384             || (s.syncing && (s.uptodate + s.compute < disks))
4385             || s.replacing
4386             || s.expanding)
4387                 handle_stripe_fill(sh, &s, disks);
4388
4389         /* Now to consider new write requests and what else, if anything
4390          * should be read.  We do not handle new writes when:
4391          * 1/ A 'write' operation (copy+xor) is already in flight.
4392          * 2/ A 'check' operation is in flight, as it may clobber the parity
4393          *    block.
4394          */
4395         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4396                 handle_stripe_dirtying(conf, sh, &s, disks);
4397
4398         /* maybe we need to check and possibly fix the parity for this stripe
4399          * Any reads will already have been scheduled, so we just see if enough
4400          * data is available.  The parity check is held off while parity
4401          * dependent operations are in flight.
4402          */
4403         if (sh->check_state ||
4404             (s.syncing && s.locked == 0 &&
4405              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4406              !test_bit(STRIPE_INSYNC, &sh->state))) {
4407                 if (conf->level == 6)
4408                         handle_parity_checks6(conf, sh, &s, disks);
4409                 else
4410                         handle_parity_checks5(conf, sh, &s, disks);
4411         }
4412
4413         if ((s.replacing || s.syncing) && s.locked == 0
4414             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4415             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4416                 /* Write out to replacement devices where possible */
4417                 for (i = 0; i < conf->raid_disks; i++)
4418                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4419                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4420                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4421                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4422                                 s.locked++;
4423                         }
4424                 if (s.replacing)
4425                         set_bit(STRIPE_INSYNC, &sh->state);
4426                 set_bit(STRIPE_REPLACED, &sh->state);
4427         }
4428         if ((s.syncing || s.replacing) && s.locked == 0 &&
4429             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4430             test_bit(STRIPE_INSYNC, &sh->state)) {
4431                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4432                 clear_bit(STRIPE_SYNCING, &sh->state);
4433                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4434                         wake_up(&conf->wait_for_overlap);
4435         }
4436
4437         /* If the failed drives are just a ReadError, then we might need
4438          * to progress the repair/check process
4439          */
4440         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4441                 for (i = 0; i < s.failed; i++) {
4442                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4443                         if (test_bit(R5_ReadError, &dev->flags)
4444                             && !test_bit(R5_LOCKED, &dev->flags)
4445                             && test_bit(R5_UPTODATE, &dev->flags)
4446                                 ) {
4447                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4448                                         set_bit(R5_Wantwrite, &dev->flags);
4449                                         set_bit(R5_ReWrite, &dev->flags);
4450                                         set_bit(R5_LOCKED, &dev->flags);
4451                                         s.locked++;
4452                                 } else {
4453                                         /* let's read it back */
4454                                         set_bit(R5_Wantread, &dev->flags);
4455                                         set_bit(R5_LOCKED, &dev->flags);
4456                                         s.locked++;
4457                                 }
4458                         }
4459                 }
4460
4461         /* Finish reconstruct operations initiated by the expansion process */
4462         if (sh->reconstruct_state == reconstruct_state_result) {
4463                 struct stripe_head *sh_src
4464                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4465                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4466                         /* sh cannot be written until sh_src has been read.
4467                          * so arrange for sh to be delayed a little
4468                          */
4469                         set_bit(STRIPE_DELAYED, &sh->state);
4470                         set_bit(STRIPE_HANDLE, &sh->state);
4471                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4472                                               &sh_src->state))
4473                                 atomic_inc(&conf->preread_active_stripes);
4474                         release_stripe(sh_src);
4475                         goto finish;
4476                 }
4477                 if (sh_src)
4478                         release_stripe(sh_src);
4479
4480                 sh->reconstruct_state = reconstruct_state_idle;
4481                 clear_bit(STRIPE_EXPANDING, &sh->state);
4482                 for (i = conf->raid_disks; i--; ) {
4483                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4484                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4485                         s.locked++;
4486                 }
4487         }
4488
4489         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4490             !sh->reconstruct_state) {
4491                 /* Need to write out all blocks after computing parity */
4492                 sh->disks = conf->raid_disks;
4493                 stripe_set_idx(sh->sector, conf, 0, sh);
4494                 schedule_reconstruction(sh, &s, 1, 1);
4495         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4496                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4497                 atomic_dec(&conf->reshape_stripes);
4498                 wake_up(&conf->wait_for_overlap);
4499                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4500         }
4501
4502         if (s.expanding && s.locked == 0 &&
4503             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4504                 handle_stripe_expansion(conf, sh);
4505
4506 finish:
4507         /* wait for this device to become unblocked */
4508         if (unlikely(s.blocked_rdev)) {
4509                 if (conf->mddev->external)
4510                         md_wait_for_blocked_rdev(s.blocked_rdev,
4511                                                  conf->mddev);
4512                 else
4513                         /* Internal metadata will immediately
4514                          * be written by raid5d, so we don't
4515                          * need to wait here.
4516                          */
4517                         rdev_dec_pending(s.blocked_rdev,
4518                                          conf->mddev);
4519         }
4520
4521         if (s.handle_bad_blocks)
4522                 for (i = disks; i--; ) {
4523                         struct md_rdev *rdev;
4524                         struct r5dev *dev = &sh->dev[i];
4525                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4526                                 /* We own a safe reference to the rdev */
4527                                 rdev = conf->disks[i].rdev;
4528                                 if (!rdev_set_badblocks(rdev, sh->sector,
4529                                                         STRIPE_SECTORS, 0))
4530                                         md_error(conf->mddev, rdev);
4531                                 rdev_dec_pending(rdev, conf->mddev);
4532                         }
4533                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4534                                 rdev = conf->disks[i].rdev;
4535                                 rdev_clear_badblocks(rdev, sh->sector,
4536                                                      STRIPE_SECTORS, 0);
4537                                 rdev_dec_pending(rdev, conf->mddev);
4538                         }
4539                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4540                                 rdev = conf->disks[i].replacement;
4541                                 if (!rdev)
4542                                         /* rdev have been moved down */
4543                                         rdev = conf->disks[i].rdev;
4544                                 rdev_clear_badblocks(rdev, sh->sector,
4545                                                      STRIPE_SECTORS, 0);
4546                                 rdev_dec_pending(rdev, conf->mddev);
4547                         }
4548                 }
4549
4550         if (s.ops_request)
4551                 raid_run_ops(sh, s.ops_request);
4552
4553         ops_run_io(sh, &s);
4554
4555         if (s.dec_preread_active) {
4556                 /* We delay this until after ops_run_io so that if make_request
4557                  * is waiting on a flush, it won't continue until the writes
4558                  * have actually been submitted.
4559                  */
4560                 atomic_dec(&conf->preread_active_stripes);
4561                 if (atomic_read(&conf->preread_active_stripes) <
4562                     IO_THRESHOLD)
4563                         md_wakeup_thread(conf->mddev->thread);
4564         }
4565
4566         return_io(s.return_bi);
4567
4568         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4569 }
4570
4571 static void raid5_activate_delayed(struct r5conf *conf)
4572 {
4573         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4574                 while (!list_empty(&conf->delayed_list)) {
4575                         struct list_head *l = conf->delayed_list.next;
4576                         struct stripe_head *sh;
4577                         sh = list_entry(l, struct stripe_head, lru);
4578                         list_del_init(l);
4579                         clear_bit(STRIPE_DELAYED, &sh->state);
4580                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4581                                 atomic_inc(&conf->preread_active_stripes);
4582                         list_add_tail(&sh->lru, &conf->hold_list);
4583                         raid5_wakeup_stripe_thread(sh);
4584                 }
4585         }
4586 }
4587
4588 static void activate_bit_delay(struct r5conf *conf,
4589         struct list_head *temp_inactive_list)
4590 {
4591         /* device_lock is held */
4592         struct list_head head;
4593         list_add(&head, &conf->bitmap_list);
4594         list_del_init(&conf->bitmap_list);
4595         while (!list_empty(&head)) {
4596                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4597                 int hash;
4598                 list_del_init(&sh->lru);
4599                 atomic_inc(&sh->count);
4600                 hash = sh->hash_lock_index;
4601                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4602         }
4603 }
4604
4605 static int raid5_congested(struct mddev *mddev, int bits)
4606 {
4607         struct r5conf *conf = mddev->private;
4608
4609         /* No difference between reads and writes.  Just check
4610          * how busy the stripe_cache is
4611          */
4612
4613         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4614                 return 1;
4615         if (conf->quiesce)
4616                 return 1;
4617         if (atomic_read(&conf->empty_inactive_list_nr))
4618                 return 1;
4619
4620         return 0;
4621 }
4622
4623 /* We want read requests to align with chunks where possible,
4624  * but write requests don't need to.
4625  */
4626 static int raid5_mergeable_bvec(struct mddev *mddev,
4627                                 struct bvec_merge_data *bvm,
4628                                 struct bio_vec *biovec)
4629 {
4630         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4631         int max;
4632         unsigned int chunk_sectors = mddev->chunk_sectors;
4633         unsigned int bio_sectors = bvm->bi_size >> 9;
4634
4635         /*
4636          * always allow writes to be mergeable, read as well if array
4637          * is degraded as we'll go through stripe cache anyway.
4638          */
4639         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4640                 return biovec->bv_len;
4641
4642         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4643                 chunk_sectors = mddev->new_chunk_sectors;
4644         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4645         if (max < 0) max = 0;
4646         if (max <= biovec->bv_len && bio_sectors == 0)
4647                 return biovec->bv_len;
4648         else
4649                 return max;
4650 }
4651
4652 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4653 {
4654         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4655         unsigned int chunk_sectors = mddev->chunk_sectors;
4656         unsigned int bio_sectors = bio_sectors(bio);
4657
4658         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4659                 chunk_sectors = mddev->new_chunk_sectors;
4660         return  chunk_sectors >=
4661                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4662 }
4663
4664 /*
4665  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4666  *  later sampled by raid5d.
4667  */
4668 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4669 {
4670         unsigned long flags;
4671
4672         spin_lock_irqsave(&conf->device_lock, flags);
4673
4674         bi->bi_next = conf->retry_read_aligned_list;
4675         conf->retry_read_aligned_list = bi;
4676
4677         spin_unlock_irqrestore(&conf->device_lock, flags);
4678         md_wakeup_thread(conf->mddev->thread);
4679 }
4680
4681 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4682 {
4683         struct bio *bi;
4684
4685         bi = conf->retry_read_aligned;
4686         if (bi) {
4687                 conf->retry_read_aligned = NULL;
4688                 return bi;
4689         }
4690         bi = conf->retry_read_aligned_list;
4691         if(bi) {
4692                 conf->retry_read_aligned_list = bi->bi_next;
4693                 bi->bi_next = NULL;
4694                 /*
4695                  * this sets the active strip count to 1 and the processed
4696                  * strip count to zero (upper 8 bits)
4697                  */
4698                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4699         }
4700
4701         return bi;
4702 }
4703
4704 /*
4705  *  The "raid5_align_endio" should check if the read succeeded and if it
4706  *  did, call bio_endio on the original bio (having bio_put the new bio
4707  *  first).
4708  *  If the read failed..
4709  */
4710 static void raid5_align_endio(struct bio *bi, int error)
4711 {
4712         struct bio* raid_bi  = bi->bi_private;
4713         struct mddev *mddev;
4714         struct r5conf *conf;
4715         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4716         struct md_rdev *rdev;
4717
4718         bio_put(bi);
4719
4720         rdev = (void*)raid_bi->bi_next;
4721         raid_bi->bi_next = NULL;
4722         mddev = rdev->mddev;
4723         conf = mddev->private;
4724
4725         rdev_dec_pending(rdev, conf->mddev);
4726
4727         if (!error && uptodate) {
4728                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4729                                          raid_bi, 0);
4730                 bio_endio(raid_bi, 0);
4731                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4732                         wake_up(&conf->wait_for_stripe);
4733                 return;
4734         }
4735
4736         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4737
4738         add_bio_to_retry(raid_bi, conf);
4739 }
4740
4741 static int bio_fits_rdev(struct bio *bi)
4742 {
4743         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4744
4745         if (bio_sectors(bi) > queue_max_sectors(q))
4746                 return 0;
4747         blk_recount_segments(q, bi);
4748         if (bi->bi_phys_segments > queue_max_segments(q))
4749                 return 0;
4750
4751         if (q->merge_bvec_fn)
4752                 /* it's too hard to apply the merge_bvec_fn at this stage,
4753                  * just just give up
4754                  */
4755                 return 0;
4756
4757         return 1;
4758 }
4759
4760 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4761 {
4762         struct r5conf *conf = mddev->private;
4763         int dd_idx;
4764         struct bio* align_bi;
4765         struct md_rdev *rdev;
4766         sector_t end_sector;
4767
4768         if (!in_chunk_boundary(mddev, raid_bio)) {
4769                 pr_debug("chunk_aligned_read : non aligned\n");
4770                 return 0;
4771         }
4772         /*
4773          * use bio_clone_mddev to make a copy of the bio
4774          */
4775         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4776         if (!align_bi)
4777                 return 0;
4778         /*
4779          *   set bi_end_io to a new function, and set bi_private to the
4780          *     original bio.
4781          */
4782         align_bi->bi_end_io  = raid5_align_endio;
4783         align_bi->bi_private = raid_bio;
4784         /*
4785          *      compute position
4786          */
4787         align_bi->bi_iter.bi_sector =
4788                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4789                                      0, &dd_idx, NULL);
4790
4791         end_sector = bio_end_sector(align_bi);
4792         rcu_read_lock();
4793         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4794         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4795             rdev->recovery_offset < end_sector) {
4796                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4797                 if (rdev &&
4798                     (test_bit(Faulty, &rdev->flags) ||
4799                     !(test_bit(In_sync, &rdev->flags) ||
4800                       rdev->recovery_offset >= end_sector)))
4801                         rdev = NULL;
4802         }
4803         if (rdev) {
4804                 sector_t first_bad;
4805                 int bad_sectors;
4806
4807                 atomic_inc(&rdev->nr_pending);
4808                 rcu_read_unlock();
4809                 raid_bio->bi_next = (void*)rdev;
4810                 align_bi->bi_bdev =  rdev->bdev;
4811                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4812
4813                 if (!bio_fits_rdev(align_bi) ||
4814                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4815                                 bio_sectors(align_bi),
4816                                 &first_bad, &bad_sectors)) {
4817                         /* too big in some way, or has a known bad block */
4818                         bio_put(align_bi);
4819                         rdev_dec_pending(rdev, mddev);
4820                         return 0;
4821                 }
4822
4823                 /* No reshape active, so we can trust rdev->data_offset */
4824                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4825
4826                 spin_lock_irq(&conf->device_lock);
4827                 wait_event_lock_irq(conf->wait_for_stripe,
4828                                     conf->quiesce == 0,
4829                                     conf->device_lock);
4830                 atomic_inc(&conf->active_aligned_reads);
4831                 spin_unlock_irq(&conf->device_lock);
4832
4833                 if (mddev->gendisk)
4834                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4835                                               align_bi, disk_devt(mddev->gendisk),
4836                                               raid_bio->bi_iter.bi_sector);
4837                 generic_make_request(align_bi);
4838                 return 1;
4839         } else {
4840                 rcu_read_unlock();
4841                 bio_put(align_bi);
4842                 return 0;
4843         }
4844 }
4845
4846 /* __get_priority_stripe - get the next stripe to process
4847  *
4848  * Full stripe writes are allowed to pass preread active stripes up until
4849  * the bypass_threshold is exceeded.  In general the bypass_count
4850  * increments when the handle_list is handled before the hold_list; however, it
4851  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4852  * stripe with in flight i/o.  The bypass_count will be reset when the
4853  * head of the hold_list has changed, i.e. the head was promoted to the
4854  * handle_list.
4855  */
4856 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4857 {
4858         struct stripe_head *sh = NULL, *tmp;
4859         struct list_head *handle_list = NULL;
4860         struct r5worker_group *wg = NULL;
4861
4862         if (conf->worker_cnt_per_group == 0) {
4863                 handle_list = &conf->handle_list;
4864         } else if (group != ANY_GROUP) {
4865                 handle_list = &conf->worker_groups[group].handle_list;
4866                 wg = &conf->worker_groups[group];
4867         } else {
4868                 int i;
4869                 for (i = 0; i < conf->group_cnt; i++) {
4870                         handle_list = &conf->worker_groups[i].handle_list;
4871                         wg = &conf->worker_groups[i];
4872                         if (!list_empty(handle_list))
4873                                 break;
4874                 }
4875         }
4876
4877         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4878                   __func__,
4879                   list_empty(handle_list) ? "empty" : "busy",
4880                   list_empty(&conf->hold_list) ? "empty" : "busy",
4881                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4882
4883         if (!list_empty(handle_list)) {
4884                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4885
4886                 if (list_empty(&conf->hold_list))
4887                         conf->bypass_count = 0;
4888                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4889                         if (conf->hold_list.next == conf->last_hold)
4890                                 conf->bypass_count++;
4891                         else {
4892                                 conf->last_hold = conf->hold_list.next;
4893                                 conf->bypass_count -= conf->bypass_threshold;
4894                                 if (conf->bypass_count < 0)
4895                                         conf->bypass_count = 0;
4896                         }
4897                 }
4898         } else if (!list_empty(&conf->hold_list) &&
4899                    ((conf->bypass_threshold &&
4900                      conf->bypass_count > conf->bypass_threshold) ||
4901                     atomic_read(&conf->pending_full_writes) == 0)) {
4902
4903                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4904                         if (conf->worker_cnt_per_group == 0 ||
4905                             group == ANY_GROUP ||
4906                             !cpu_online(tmp->cpu) ||
4907                             cpu_to_group(tmp->cpu) == group) {
4908                                 sh = tmp;
4909                                 break;
4910                         }
4911                 }
4912
4913                 if (sh) {
4914                         conf->bypass_count -= conf->bypass_threshold;
4915                         if (conf->bypass_count < 0)
4916                                 conf->bypass_count = 0;
4917                 }
4918                 wg = NULL;
4919         }
4920
4921         if (!sh)
4922                 return NULL;
4923
4924         if (wg) {
4925                 wg->stripes_cnt--;
4926                 sh->group = NULL;
4927         }
4928         list_del_init(&sh->lru);
4929         BUG_ON(atomic_inc_return(&sh->count) != 1);
4930         return sh;
4931 }
4932
4933 struct raid5_plug_cb {
4934         struct blk_plug_cb      cb;
4935         struct list_head        list;
4936         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4937 };
4938
4939 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4940 {
4941         struct raid5_plug_cb *cb = container_of(
4942                 blk_cb, struct raid5_plug_cb, cb);
4943         struct stripe_head *sh;
4944         struct mddev *mddev = cb->cb.data;
4945         struct r5conf *conf = mddev->private;
4946         int cnt = 0;
4947         int hash;
4948
4949         if (cb->list.next && !list_empty(&cb->list)) {
4950                 spin_lock_irq(&conf->device_lock);
4951                 while (!list_empty(&cb->list)) {
4952                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4953                         list_del_init(&sh->lru);
4954                         /*
4955                          * avoid race release_stripe_plug() sees
4956                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4957                          * is still in our list
4958                          */
4959                         smp_mb__before_atomic();
4960                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4961                         /*
4962                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4963                          * case, the count is always > 1 here
4964                          */
4965                         hash = sh->hash_lock_index;
4966                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4967                         cnt++;
4968                 }
4969                 spin_unlock_irq(&conf->device_lock);
4970         }
4971         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4972                                      NR_STRIPE_HASH_LOCKS);
4973         if (mddev->queue)
4974                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4975         kfree(cb);
4976 }
4977
4978 static void release_stripe_plug(struct mddev *mddev,
4979                                 struct stripe_head *sh)
4980 {
4981         struct blk_plug_cb *blk_cb = blk_check_plugged(
4982                 raid5_unplug, mddev,
4983                 sizeof(struct raid5_plug_cb));
4984         struct raid5_plug_cb *cb;
4985
4986         if (!blk_cb) {
4987                 release_stripe(sh);
4988                 return;
4989         }
4990
4991         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4992
4993         if (cb->list.next == NULL) {
4994                 int i;
4995                 INIT_LIST_HEAD(&cb->list);
4996                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4997                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4998         }
4999
5000         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5001                 list_add_tail(&sh->lru, &cb->list);
5002         else
5003                 release_stripe(sh);
5004 }
5005
5006 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5007 {
5008         struct r5conf *conf = mddev->private;
5009         sector_t logical_sector, last_sector;
5010         struct stripe_head *sh;
5011         int remaining;
5012         int stripe_sectors;
5013
5014         if (mddev->reshape_position != MaxSector)
5015                 /* Skip discard while reshape is happening */
5016                 return;
5017
5018         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5019         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5020
5021         bi->bi_next = NULL;
5022         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5023
5024         stripe_sectors = conf->chunk_sectors *
5025                 (conf->raid_disks - conf->max_degraded);
5026         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5027                                                stripe_sectors);
5028         sector_div(last_sector, stripe_sectors);
5029
5030         logical_sector *= conf->chunk_sectors;
5031         last_sector *= conf->chunk_sectors;
5032
5033         for (; logical_sector < last_sector;
5034              logical_sector += STRIPE_SECTORS) {
5035                 DEFINE_WAIT(w);
5036                 int d;
5037         again:
5038                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5039                 prepare_to_wait(&conf->wait_for_overlap, &w,
5040                                 TASK_UNINTERRUPTIBLE);
5041                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5042                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5043                         release_stripe(sh);
5044                         schedule();
5045                         goto again;
5046                 }
5047                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5048                 spin_lock_irq(&sh->stripe_lock);
5049                 for (d = 0; d < conf->raid_disks; d++) {
5050                         if (d == sh->pd_idx || d == sh->qd_idx)
5051                                 continue;
5052                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5053                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5054                                 spin_unlock_irq(&sh->stripe_lock);
5055                                 release_stripe(sh);
5056                                 schedule();
5057                                 goto again;
5058                         }
5059                 }
5060                 set_bit(STRIPE_DISCARD, &sh->state);
5061                 finish_wait(&conf->wait_for_overlap, &w);
5062                 sh->overwrite_disks = 0;
5063                 for (d = 0; d < conf->raid_disks; d++) {
5064                         if (d == sh->pd_idx || d == sh->qd_idx)
5065                                 continue;
5066                         sh->dev[d].towrite = bi;
5067                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5068                         raid5_inc_bi_active_stripes(bi);
5069                         sh->overwrite_disks++;
5070                 }
5071                 spin_unlock_irq(&sh->stripe_lock);
5072                 if (conf->mddev->bitmap) {
5073                         for (d = 0;
5074                              d < conf->raid_disks - conf->max_degraded;
5075                              d++)
5076                                 bitmap_startwrite(mddev->bitmap,
5077                                                   sh->sector,
5078                                                   STRIPE_SECTORS,
5079                                                   0);
5080                         sh->bm_seq = conf->seq_flush + 1;
5081                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5082                 }
5083
5084                 set_bit(STRIPE_HANDLE, &sh->state);
5085                 clear_bit(STRIPE_DELAYED, &sh->state);
5086                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5087                         atomic_inc(&conf->preread_active_stripes);
5088                 release_stripe_plug(mddev, sh);
5089         }
5090
5091         remaining = raid5_dec_bi_active_stripes(bi);
5092         if (remaining == 0) {
5093                 md_write_end(mddev);
5094                 bio_endio(bi, 0);
5095         }
5096 }
5097
5098 static void make_request(struct mddev *mddev, struct bio * bi)
5099 {
5100         struct r5conf *conf = mddev->private;
5101         int dd_idx;
5102         sector_t new_sector;
5103         sector_t logical_sector, last_sector;
5104         struct stripe_head *sh;
5105         const int rw = bio_data_dir(bi);
5106         int remaining;
5107         DEFINE_WAIT(w);
5108         bool do_prepare;
5109
5110         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5111                 md_flush_request(mddev, bi);
5112                 return;
5113         }
5114
5115         md_write_start(mddev, bi);
5116
5117         /*
5118          * If array is degraded, better not do chunk aligned read because
5119          * later we might have to read it again in order to reconstruct
5120          * data on failed drives.
5121          */
5122         if (rw == READ && mddev->degraded == 0 &&
5123              mddev->reshape_position == MaxSector &&
5124              chunk_aligned_read(mddev,bi))
5125                 return;
5126
5127         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5128                 make_discard_request(mddev, bi);
5129                 return;
5130         }
5131
5132         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5133         last_sector = bio_end_sector(bi);
5134         bi->bi_next = NULL;
5135         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5136
5137         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5138         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5139                 int previous;
5140                 int seq;
5141
5142                 do_prepare = false;
5143         retry:
5144                 seq = read_seqcount_begin(&conf->gen_lock);
5145                 previous = 0;
5146                 if (do_prepare)
5147                         prepare_to_wait(&conf->wait_for_overlap, &w,
5148                                 TASK_UNINTERRUPTIBLE);
5149                 if (unlikely(conf->reshape_progress != MaxSector)) {
5150                         /* spinlock is needed as reshape_progress may be
5151                          * 64bit on a 32bit platform, and so it might be
5152                          * possible to see a half-updated value
5153                          * Of course reshape_progress could change after
5154                          * the lock is dropped, so once we get a reference
5155                          * to the stripe that we think it is, we will have
5156                          * to check again.
5157                          */
5158                         spin_lock_irq(&conf->device_lock);
5159                         if (mddev->reshape_backwards
5160                             ? logical_sector < conf->reshape_progress
5161                             : logical_sector >= conf->reshape_progress) {
5162                                 previous = 1;
5163                         } else {
5164                                 if (mddev->reshape_backwards
5165                                     ? logical_sector < conf->reshape_safe
5166                                     : logical_sector >= conf->reshape_safe) {
5167                                         spin_unlock_irq(&conf->device_lock);
5168                                         schedule();
5169                                         do_prepare = true;
5170                                         goto retry;
5171                                 }
5172                         }
5173                         spin_unlock_irq(&conf->device_lock);
5174                 }
5175
5176                 new_sector = raid5_compute_sector(conf, logical_sector,
5177                                                   previous,
5178                                                   &dd_idx, NULL);
5179                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5180                         (unsigned long long)new_sector,
5181                         (unsigned long long)logical_sector);
5182
5183                 sh = get_active_stripe(conf, new_sector, previous,
5184                                        (bi->bi_rw&RWA_MASK), 0);
5185                 if (sh) {
5186                         if (unlikely(previous)) {
5187                                 /* expansion might have moved on while waiting for a
5188                                  * stripe, so we must do the range check again.
5189                                  * Expansion could still move past after this
5190                                  * test, but as we are holding a reference to
5191                                  * 'sh', we know that if that happens,
5192                                  *  STRIPE_EXPANDING will get set and the expansion
5193                                  * won't proceed until we finish with the stripe.
5194                                  */
5195                                 int must_retry = 0;
5196                                 spin_lock_irq(&conf->device_lock);
5197                                 if (mddev->reshape_backwards
5198                                     ? logical_sector >= conf->reshape_progress
5199                                     : logical_sector < conf->reshape_progress)
5200                                         /* mismatch, need to try again */
5201                                         must_retry = 1;
5202                                 spin_unlock_irq(&conf->device_lock);
5203                                 if (must_retry) {
5204                                         release_stripe(sh);
5205                                         schedule();
5206                                         do_prepare = true;
5207                                         goto retry;
5208                                 }
5209                         }
5210                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5211                                 /* Might have got the wrong stripe_head
5212                                  * by accident
5213                                  */
5214                                 release_stripe(sh);
5215                                 goto retry;
5216                         }
5217
5218                         if (rw == WRITE &&
5219                             logical_sector >= mddev->suspend_lo &&
5220                             logical_sector < mddev->suspend_hi) {
5221                                 release_stripe(sh);
5222                                 /* As the suspend_* range is controlled by
5223                                  * userspace, we want an interruptible
5224                                  * wait.
5225                                  */
5226                                 flush_signals(current);
5227                                 prepare_to_wait(&conf->wait_for_overlap,
5228                                                 &w, TASK_INTERRUPTIBLE);
5229                                 if (logical_sector >= mddev->suspend_lo &&
5230                                     logical_sector < mddev->suspend_hi) {
5231                                         schedule();
5232                                         do_prepare = true;
5233                                 }
5234                                 goto retry;
5235                         }
5236
5237                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5238                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5239                                 /* Stripe is busy expanding or
5240                                  * add failed due to overlap.  Flush everything
5241                                  * and wait a while
5242                                  */
5243                                 md_wakeup_thread(mddev->thread);
5244                                 release_stripe(sh);
5245                                 schedule();
5246                                 do_prepare = true;
5247                                 goto retry;
5248                         }
5249                         set_bit(STRIPE_HANDLE, &sh->state);
5250                         clear_bit(STRIPE_DELAYED, &sh->state);
5251                         if ((!sh->batch_head || sh == sh->batch_head) &&
5252                             (bi->bi_rw & REQ_SYNC) &&
5253                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5254                                 atomic_inc(&conf->preread_active_stripes);
5255                         release_stripe_plug(mddev, sh);
5256                 } else {
5257                         /* cannot get stripe for read-ahead, just give-up */
5258                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5259                         break;
5260                 }
5261         }
5262         finish_wait(&conf->wait_for_overlap, &w);
5263
5264         remaining = raid5_dec_bi_active_stripes(bi);
5265         if (remaining == 0) {
5266
5267                 if ( rw == WRITE )
5268                         md_write_end(mddev);
5269
5270                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5271                                          bi, 0);
5272                 bio_endio(bi, 0);
5273         }
5274 }
5275
5276 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5277
5278 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5279 {
5280         /* reshaping is quite different to recovery/resync so it is
5281          * handled quite separately ... here.
5282          *
5283          * On each call to sync_request, we gather one chunk worth of
5284          * destination stripes and flag them as expanding.
5285          * Then we find all the source stripes and request reads.
5286          * As the reads complete, handle_stripe will copy the data
5287          * into the destination stripe and release that stripe.
5288          */
5289         struct r5conf *conf = mddev->private;
5290         struct stripe_head *sh;
5291         sector_t first_sector, last_sector;
5292         int raid_disks = conf->previous_raid_disks;
5293         int data_disks = raid_disks - conf->max_degraded;
5294         int new_data_disks = conf->raid_disks - conf->max_degraded;
5295         int i;
5296         int dd_idx;
5297         sector_t writepos, readpos, safepos;
5298         sector_t stripe_addr;
5299         int reshape_sectors;
5300         struct list_head stripes;
5301
5302         if (sector_nr == 0) {
5303                 /* If restarting in the middle, skip the initial sectors */
5304                 if (mddev->reshape_backwards &&
5305                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5306                         sector_nr = raid5_size(mddev, 0, 0)
5307                                 - conf->reshape_progress;
5308                 } else if (!mddev->reshape_backwards &&
5309                            conf->reshape_progress > 0)
5310                         sector_nr = conf->reshape_progress;
5311                 sector_div(sector_nr, new_data_disks);
5312                 if (sector_nr) {
5313                         mddev->curr_resync_completed = sector_nr;
5314                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5315                         *skipped = 1;
5316                         return sector_nr;
5317                 }
5318         }
5319
5320         /* We need to process a full chunk at a time.
5321          * If old and new chunk sizes differ, we need to process the
5322          * largest of these
5323          */
5324         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5325                 reshape_sectors = mddev->new_chunk_sectors;
5326         else
5327                 reshape_sectors = mddev->chunk_sectors;
5328
5329         /* We update the metadata at least every 10 seconds, or when
5330          * the data about to be copied would over-write the source of
5331          * the data at the front of the range.  i.e. one new_stripe
5332          * along from reshape_progress new_maps to after where
5333          * reshape_safe old_maps to
5334          */
5335         writepos = conf->reshape_progress;
5336         sector_div(writepos, new_data_disks);
5337         readpos = conf->reshape_progress;
5338         sector_div(readpos, data_disks);
5339         safepos = conf->reshape_safe;
5340         sector_div(safepos, data_disks);
5341         if (mddev->reshape_backwards) {
5342                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5343                 readpos += reshape_sectors;
5344                 safepos += reshape_sectors;
5345         } else {
5346                 writepos += reshape_sectors;
5347                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5348                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5349         }
5350
5351         /* Having calculated the 'writepos' possibly use it
5352          * to set 'stripe_addr' which is where we will write to.
5353          */
5354         if (mddev->reshape_backwards) {
5355                 BUG_ON(conf->reshape_progress == 0);
5356                 stripe_addr = writepos;
5357                 BUG_ON((mddev->dev_sectors &
5358                         ~((sector_t)reshape_sectors - 1))
5359                        - reshape_sectors - stripe_addr
5360                        != sector_nr);
5361         } else {
5362                 BUG_ON(writepos != sector_nr + reshape_sectors);
5363                 stripe_addr = sector_nr;
5364         }
5365
5366         /* 'writepos' is the most advanced device address we might write.
5367          * 'readpos' is the least advanced device address we might read.
5368          * 'safepos' is the least address recorded in the metadata as having
5369          *     been reshaped.
5370          * If there is a min_offset_diff, these are adjusted either by
5371          * increasing the safepos/readpos if diff is negative, or
5372          * increasing writepos if diff is positive.
5373          * If 'readpos' is then behind 'writepos', there is no way that we can
5374          * ensure safety in the face of a crash - that must be done by userspace
5375          * making a backup of the data.  So in that case there is no particular
5376          * rush to update metadata.
5377          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5378          * update the metadata to advance 'safepos' to match 'readpos' so that
5379          * we can be safe in the event of a crash.
5380          * So we insist on updating metadata if safepos is behind writepos and
5381          * readpos is beyond writepos.
5382          * In any case, update the metadata every 10 seconds.
5383          * Maybe that number should be configurable, but I'm not sure it is
5384          * worth it.... maybe it could be a multiple of safemode_delay???
5385          */
5386         if (conf->min_offset_diff < 0) {
5387                 safepos += -conf->min_offset_diff;
5388                 readpos += -conf->min_offset_diff;
5389         } else
5390                 writepos += conf->min_offset_diff;
5391
5392         if ((mddev->reshape_backwards
5393              ? (safepos > writepos && readpos < writepos)
5394              : (safepos < writepos && readpos > writepos)) ||
5395             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5396                 /* Cannot proceed until we've updated the superblock... */
5397                 wait_event(conf->wait_for_overlap,
5398                            atomic_read(&conf->reshape_stripes)==0
5399                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5400                 if (atomic_read(&conf->reshape_stripes) != 0)
5401                         return 0;
5402                 mddev->reshape_position = conf->reshape_progress;
5403                 mddev->curr_resync_completed = sector_nr;
5404                 conf->reshape_checkpoint = jiffies;
5405                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5406                 md_wakeup_thread(mddev->thread);
5407                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5408                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5409                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5410                         return 0;
5411                 spin_lock_irq(&conf->device_lock);
5412                 conf->reshape_safe = mddev->reshape_position;
5413                 spin_unlock_irq(&conf->device_lock);
5414                 wake_up(&conf->wait_for_overlap);
5415                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5416         }
5417
5418         INIT_LIST_HEAD(&stripes);
5419         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5420                 int j;
5421                 int skipped_disk = 0;
5422                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5423                 set_bit(STRIPE_EXPANDING, &sh->state);
5424                 atomic_inc(&conf->reshape_stripes);
5425                 /* If any of this stripe is beyond the end of the old
5426                  * array, then we need to zero those blocks
5427                  */
5428                 for (j=sh->disks; j--;) {
5429                         sector_t s;
5430                         if (j == sh->pd_idx)
5431                                 continue;
5432                         if (conf->level == 6 &&
5433                             j == sh->qd_idx)
5434                                 continue;
5435                         s = compute_blocknr(sh, j, 0);
5436                         if (s < raid5_size(mddev, 0, 0)) {
5437                                 skipped_disk = 1;
5438                                 continue;
5439                         }
5440                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5441                         set_bit(R5_Expanded, &sh->dev[j].flags);
5442                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5443                 }
5444                 if (!skipped_disk) {
5445                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5446                         set_bit(STRIPE_HANDLE, &sh->state);
5447                 }
5448                 list_add(&sh->lru, &stripes);
5449         }
5450         spin_lock_irq(&conf->device_lock);
5451         if (mddev->reshape_backwards)
5452                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5453         else
5454                 conf->reshape_progress += reshape_sectors * new_data_disks;
5455         spin_unlock_irq(&conf->device_lock);
5456         /* Ok, those stripe are ready. We can start scheduling
5457          * reads on the source stripes.
5458          * The source stripes are determined by mapping the first and last
5459          * block on the destination stripes.
5460          */
5461         first_sector =
5462                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5463                                      1, &dd_idx, NULL);
5464         last_sector =
5465                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5466                                             * new_data_disks - 1),
5467                                      1, &dd_idx, NULL);
5468         if (last_sector >= mddev->dev_sectors)
5469                 last_sector = mddev->dev_sectors - 1;
5470         while (first_sector <= last_sector) {
5471                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5472                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5473                 set_bit(STRIPE_HANDLE, &sh->state);
5474                 release_stripe(sh);
5475                 first_sector += STRIPE_SECTORS;
5476         }
5477         /* Now that the sources are clearly marked, we can release
5478          * the destination stripes
5479          */
5480         while (!list_empty(&stripes)) {
5481                 sh = list_entry(stripes.next, struct stripe_head, lru);
5482                 list_del_init(&sh->lru);
5483                 release_stripe(sh);
5484         }
5485         /* If this takes us to the resync_max point where we have to pause,
5486          * then we need to write out the superblock.
5487          */
5488         sector_nr += reshape_sectors;
5489         if ((sector_nr - mddev->curr_resync_completed) * 2
5490             >= mddev->resync_max - mddev->curr_resync_completed) {
5491                 /* Cannot proceed until we've updated the superblock... */
5492                 wait_event(conf->wait_for_overlap,
5493                            atomic_read(&conf->reshape_stripes) == 0
5494                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5495                 if (atomic_read(&conf->reshape_stripes) != 0)
5496                         goto ret;
5497                 mddev->reshape_position = conf->reshape_progress;
5498                 mddev->curr_resync_completed = sector_nr;
5499                 conf->reshape_checkpoint = jiffies;
5500                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5501                 md_wakeup_thread(mddev->thread);
5502                 wait_event(mddev->sb_wait,
5503                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5504                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5505                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5506                         goto ret;
5507                 spin_lock_irq(&conf->device_lock);
5508                 conf->reshape_safe = mddev->reshape_position;
5509                 spin_unlock_irq(&conf->device_lock);
5510                 wake_up(&conf->wait_for_overlap);
5511                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5512         }
5513 ret:
5514         return reshape_sectors;
5515 }
5516
5517 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5518 {
5519         struct r5conf *conf = mddev->private;
5520         struct stripe_head *sh;
5521         sector_t max_sector = mddev->dev_sectors;
5522         sector_t sync_blocks;
5523         int still_degraded = 0;
5524         int i;
5525
5526         if (sector_nr >= max_sector) {
5527                 /* just being told to finish up .. nothing much to do */
5528
5529                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5530                         end_reshape(conf);
5531                         return 0;
5532                 }
5533
5534                 if (mddev->curr_resync < max_sector) /* aborted */
5535                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5536                                         &sync_blocks, 1);
5537                 else /* completed sync */
5538                         conf->fullsync = 0;
5539                 bitmap_close_sync(mddev->bitmap);
5540
5541                 return 0;
5542         }
5543
5544         /* Allow raid5_quiesce to complete */
5545         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5546
5547         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5548                 return reshape_request(mddev, sector_nr, skipped);
5549
5550         /* No need to check resync_max as we never do more than one
5551          * stripe, and as resync_max will always be on a chunk boundary,
5552          * if the check in md_do_sync didn't fire, there is no chance
5553          * of overstepping resync_max here
5554          */
5555
5556         /* if there is too many failed drives and we are trying
5557          * to resync, then assert that we are finished, because there is
5558          * nothing we can do.
5559          */
5560         if (mddev->degraded >= conf->max_degraded &&
5561             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5562                 sector_t rv = mddev->dev_sectors - sector_nr;
5563                 *skipped = 1;
5564                 return rv;
5565         }
5566         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5567             !conf->fullsync &&
5568             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5569             sync_blocks >= STRIPE_SECTORS) {
5570                 /* we can skip this block, and probably more */
5571                 sync_blocks /= STRIPE_SECTORS;
5572                 *skipped = 1;
5573                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5574         }
5575
5576         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5577
5578         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5579         if (sh == NULL) {
5580                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5581                 /* make sure we don't swamp the stripe cache if someone else
5582                  * is trying to get access
5583                  */
5584                 schedule_timeout_uninterruptible(1);
5585         }
5586         /* Need to check if array will still be degraded after recovery/resync
5587          * Note in case of > 1 drive failures it's possible we're rebuilding
5588          * one drive while leaving another faulty drive in array.
5589          */
5590         rcu_read_lock();
5591         for (i = 0; i < conf->raid_disks; i++) {
5592                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5593
5594                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5595                         still_degraded = 1;
5596         }
5597         rcu_read_unlock();
5598
5599         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5600
5601         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5602         set_bit(STRIPE_HANDLE, &sh->state);
5603
5604         release_stripe(sh);
5605
5606         return STRIPE_SECTORS;
5607 }
5608
5609 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5610 {
5611         /* We may not be able to submit a whole bio at once as there
5612          * may not be enough stripe_heads available.
5613          * We cannot pre-allocate enough stripe_heads as we may need
5614          * more than exist in the cache (if we allow ever large chunks).
5615          * So we do one stripe head at a time and record in
5616          * ->bi_hw_segments how many have been done.
5617          *
5618          * We *know* that this entire raid_bio is in one chunk, so
5619          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5620          */
5621         struct stripe_head *sh;
5622         int dd_idx;
5623         sector_t sector, logical_sector, last_sector;
5624         int scnt = 0;
5625         int remaining;
5626         int handled = 0;
5627
5628         logical_sector = raid_bio->bi_iter.bi_sector &
5629                 ~((sector_t)STRIPE_SECTORS-1);
5630         sector = raid5_compute_sector(conf, logical_sector,
5631                                       0, &dd_idx, NULL);
5632         last_sector = bio_end_sector(raid_bio);
5633
5634         for (; logical_sector < last_sector;
5635              logical_sector += STRIPE_SECTORS,
5636                      sector += STRIPE_SECTORS,
5637                      scnt++) {
5638
5639                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5640                         /* already done this stripe */
5641                         continue;
5642
5643                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5644
5645                 if (!sh) {
5646                         /* failed to get a stripe - must wait */
5647                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5648                         conf->retry_read_aligned = raid_bio;
5649                         return handled;
5650                 }
5651
5652                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5653                         release_stripe(sh);
5654                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5655                         conf->retry_read_aligned = raid_bio;
5656                         return handled;
5657                 }
5658
5659                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5660                 handle_stripe(sh);
5661                 release_stripe(sh);
5662                 handled++;
5663         }
5664         remaining = raid5_dec_bi_active_stripes(raid_bio);
5665         if (remaining == 0) {
5666                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5667                                          raid_bio, 0);
5668                 bio_endio(raid_bio, 0);
5669         }
5670         if (atomic_dec_and_test(&conf->active_aligned_reads))
5671                 wake_up(&conf->wait_for_stripe);
5672         return handled;
5673 }
5674
5675 static int handle_active_stripes(struct r5conf *conf, int group,
5676                                  struct r5worker *worker,
5677                                  struct list_head *temp_inactive_list)
5678 {
5679         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5680         int i, batch_size = 0, hash;
5681         bool release_inactive = false;
5682
5683         while (batch_size < MAX_STRIPE_BATCH &&
5684                         (sh = __get_priority_stripe(conf, group)) != NULL)
5685                 batch[batch_size++] = sh;
5686
5687         if (batch_size == 0) {
5688                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5689                         if (!list_empty(temp_inactive_list + i))
5690                                 break;
5691                 if (i == NR_STRIPE_HASH_LOCKS)
5692                         return batch_size;
5693                 release_inactive = true;
5694         }
5695         spin_unlock_irq(&conf->device_lock);
5696
5697         release_inactive_stripe_list(conf, temp_inactive_list,
5698                                      NR_STRIPE_HASH_LOCKS);
5699
5700         if (release_inactive) {
5701                 spin_lock_irq(&conf->device_lock);
5702                 return 0;
5703         }
5704
5705         for (i = 0; i < batch_size; i++)
5706                 handle_stripe(batch[i]);
5707
5708         cond_resched();
5709
5710         spin_lock_irq(&conf->device_lock);
5711         for (i = 0; i < batch_size; i++) {
5712                 hash = batch[i]->hash_lock_index;
5713                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5714         }
5715         return batch_size;
5716 }
5717
5718 static void raid5_do_work(struct work_struct *work)
5719 {
5720         struct r5worker *worker = container_of(work, struct r5worker, work);
5721         struct r5worker_group *group = worker->group;
5722         struct r5conf *conf = group->conf;
5723         int group_id = group - conf->worker_groups;
5724         int handled;
5725         struct blk_plug plug;
5726
5727         pr_debug("+++ raid5worker active\n");
5728
5729         blk_start_plug(&plug);
5730         handled = 0;
5731         spin_lock_irq(&conf->device_lock);
5732         while (1) {
5733                 int batch_size, released;
5734
5735                 released = release_stripe_list(conf, worker->temp_inactive_list);
5736
5737                 batch_size = handle_active_stripes(conf, group_id, worker,
5738                                                    worker->temp_inactive_list);
5739                 worker->working = false;
5740                 if (!batch_size && !released)
5741                         break;
5742                 handled += batch_size;
5743         }
5744         pr_debug("%d stripes handled\n", handled);
5745
5746         spin_unlock_irq(&conf->device_lock);
5747         blk_finish_plug(&plug);
5748
5749         pr_debug("--- raid5worker inactive\n");
5750 }
5751
5752 /*
5753  * This is our raid5 kernel thread.
5754  *
5755  * We scan the hash table for stripes which can be handled now.
5756  * During the scan, completed stripes are saved for us by the interrupt
5757  * handler, so that they will not have to wait for our next wakeup.
5758  */
5759 static void raid5d(struct md_thread *thread)
5760 {
5761         struct mddev *mddev = thread->mddev;
5762         struct r5conf *conf = mddev->private;
5763         int handled;
5764         struct blk_plug plug;
5765
5766         pr_debug("+++ raid5d active\n");
5767
5768         md_check_recovery(mddev);
5769
5770         blk_start_plug(&plug);
5771         handled = 0;
5772         spin_lock_irq(&conf->device_lock);
5773         while (1) {
5774                 struct bio *bio;
5775                 int batch_size, released;
5776
5777                 released = release_stripe_list(conf, conf->temp_inactive_list);
5778                 if (released)
5779                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5780
5781                 if (
5782                     !list_empty(&conf->bitmap_list)) {
5783                         /* Now is a good time to flush some bitmap updates */
5784                         conf->seq_flush++;
5785                         spin_unlock_irq(&conf->device_lock);
5786                         bitmap_unplug(mddev->bitmap);
5787                         spin_lock_irq(&conf->device_lock);
5788                         conf->seq_write = conf->seq_flush;
5789                         activate_bit_delay(conf, conf->temp_inactive_list);
5790                 }
5791                 raid5_activate_delayed(conf);
5792
5793                 while ((bio = remove_bio_from_retry(conf))) {
5794                         int ok;
5795                         spin_unlock_irq(&conf->device_lock);
5796                         ok = retry_aligned_read(conf, bio);
5797                         spin_lock_irq(&conf->device_lock);
5798                         if (!ok)
5799                                 break;
5800                         handled++;
5801                 }
5802
5803                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5804                                                    conf->temp_inactive_list);
5805                 if (!batch_size && !released)
5806                         break;
5807                 handled += batch_size;
5808
5809                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5810                         spin_unlock_irq(&conf->device_lock);
5811                         md_check_recovery(mddev);
5812                         spin_lock_irq(&conf->device_lock);
5813                 }
5814         }
5815         pr_debug("%d stripes handled\n", handled);
5816
5817         spin_unlock_irq(&conf->device_lock);
5818         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5819                 grow_one_stripe(conf, __GFP_NOWARN);
5820                 /* Set flag even if allocation failed.  This helps
5821                  * slow down allocation requests when mem is short
5822                  */
5823                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5824         }
5825
5826         async_tx_issue_pending_all();
5827         blk_finish_plug(&plug);
5828
5829         pr_debug("--- raid5d inactive\n");
5830 }
5831
5832 static ssize_t
5833 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5834 {
5835         struct r5conf *conf;
5836         int ret = 0;
5837         spin_lock(&mddev->lock);
5838         conf = mddev->private;
5839         if (conf)
5840                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5841         spin_unlock(&mddev->lock);
5842         return ret;
5843 }
5844
5845 int
5846 raid5_set_cache_size(struct mddev *mddev, int size)
5847 {
5848         struct r5conf *conf = mddev->private;
5849         int err;
5850
5851         if (size <= 16 || size > 32768)
5852                 return -EINVAL;
5853
5854         conf->min_nr_stripes = size;
5855         while (size < conf->max_nr_stripes &&
5856                drop_one_stripe(conf))
5857                 ;
5858
5859
5860         err = md_allow_write(mddev);
5861         if (err)
5862                 return err;
5863
5864         while (size > conf->max_nr_stripes)
5865                 if (!grow_one_stripe(conf, GFP_KERNEL))
5866                         break;
5867
5868         return 0;
5869 }
5870 EXPORT_SYMBOL(raid5_set_cache_size);
5871
5872 static ssize_t
5873 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5874 {
5875         struct r5conf *conf;
5876         unsigned long new;
5877         int err;
5878
5879         if (len >= PAGE_SIZE)
5880                 return -EINVAL;
5881         if (kstrtoul(page, 10, &new))
5882                 return -EINVAL;
5883         err = mddev_lock(mddev);
5884         if (err)
5885                 return err;
5886         conf = mddev->private;
5887         if (!conf)
5888                 err = -ENODEV;
5889         else
5890                 err = raid5_set_cache_size(mddev, new);
5891         mddev_unlock(mddev);
5892
5893         return err ?: len;
5894 }
5895
5896 static struct md_sysfs_entry
5897 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5898                                 raid5_show_stripe_cache_size,
5899                                 raid5_store_stripe_cache_size);
5900
5901 static ssize_t
5902 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5903 {
5904         struct r5conf *conf = mddev->private;
5905         if (conf)
5906                 return sprintf(page, "%d\n", conf->rmw_level);
5907         else
5908                 return 0;
5909 }
5910
5911 static ssize_t
5912 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5913 {
5914         struct r5conf *conf = mddev->private;
5915         unsigned long new;
5916
5917         if (!conf)
5918                 return -ENODEV;
5919
5920         if (len >= PAGE_SIZE)
5921                 return -EINVAL;
5922
5923         if (kstrtoul(page, 10, &new))
5924                 return -EINVAL;
5925
5926         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5927                 return -EINVAL;
5928
5929         if (new != PARITY_DISABLE_RMW &&
5930             new != PARITY_ENABLE_RMW &&
5931             new != PARITY_PREFER_RMW)
5932                 return -EINVAL;
5933
5934         conf->rmw_level = new;
5935         return len;
5936 }
5937
5938 static struct md_sysfs_entry
5939 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5940                          raid5_show_rmw_level,
5941                          raid5_store_rmw_level);
5942
5943
5944 static ssize_t
5945 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5946 {
5947         struct r5conf *conf;
5948         int ret = 0;
5949         spin_lock(&mddev->lock);
5950         conf = mddev->private;
5951         if (conf)
5952                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5953         spin_unlock(&mddev->lock);
5954         return ret;
5955 }
5956
5957 static ssize_t
5958 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5959 {
5960         struct r5conf *conf;
5961         unsigned long new;
5962         int err;
5963
5964         if (len >= PAGE_SIZE)
5965                 return -EINVAL;
5966         if (kstrtoul(page, 10, &new))
5967                 return -EINVAL;
5968
5969         err = mddev_lock(mddev);
5970         if (err)
5971                 return err;
5972         conf = mddev->private;
5973         if (!conf)
5974                 err = -ENODEV;
5975         else if (new > conf->min_nr_stripes)
5976                 err = -EINVAL;
5977         else
5978                 conf->bypass_threshold = new;
5979         mddev_unlock(mddev);
5980         return err ?: len;
5981 }
5982
5983 static struct md_sysfs_entry
5984 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5985                                         S_IRUGO | S_IWUSR,
5986                                         raid5_show_preread_threshold,
5987                                         raid5_store_preread_threshold);
5988
5989 static ssize_t
5990 raid5_show_skip_copy(struct mddev *mddev, char *page)
5991 {
5992         struct r5conf *conf;
5993         int ret = 0;
5994         spin_lock(&mddev->lock);
5995         conf = mddev->private;
5996         if (conf)
5997                 ret = sprintf(page, "%d\n", conf->skip_copy);
5998         spin_unlock(&mddev->lock);
5999         return ret;
6000 }
6001
6002 static ssize_t
6003 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6004 {
6005         struct r5conf *conf;
6006         unsigned long new;
6007         int err;
6008
6009         if (len >= PAGE_SIZE)
6010                 return -EINVAL;
6011         if (kstrtoul(page, 10, &new))
6012                 return -EINVAL;
6013         new = !!new;
6014
6015         err = mddev_lock(mddev);
6016         if (err)
6017                 return err;
6018         conf = mddev->private;
6019         if (!conf)
6020                 err = -ENODEV;
6021         else if (new != conf->skip_copy) {
6022                 mddev_suspend(mddev);
6023                 conf->skip_copy = new;
6024                 if (new)
6025                         mddev->queue->backing_dev_info.capabilities |=
6026                                 BDI_CAP_STABLE_WRITES;
6027                 else
6028                         mddev->queue->backing_dev_info.capabilities &=
6029                                 ~BDI_CAP_STABLE_WRITES;
6030                 mddev_resume(mddev);
6031         }
6032         mddev_unlock(mddev);
6033         return err ?: len;
6034 }
6035
6036 static struct md_sysfs_entry
6037 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6038                                         raid5_show_skip_copy,
6039                                         raid5_store_skip_copy);
6040
6041 static ssize_t
6042 stripe_cache_active_show(struct mddev *mddev, char *page)
6043 {
6044         struct r5conf *conf = mddev->private;
6045         if (conf)
6046                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6047         else
6048                 return 0;
6049 }
6050
6051 static struct md_sysfs_entry
6052 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6053
6054 static ssize_t
6055 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6056 {
6057         struct r5conf *conf;
6058         int ret = 0;
6059         spin_lock(&mddev->lock);
6060         conf = mddev->private;
6061         if (conf)
6062                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6063         spin_unlock(&mddev->lock);
6064         return ret;
6065 }
6066
6067 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6068                                int *group_cnt,
6069                                int *worker_cnt_per_group,
6070                                struct r5worker_group **worker_groups);
6071 static ssize_t
6072 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6073 {
6074         struct r5conf *conf;
6075         unsigned long new;
6076         int err;
6077         struct r5worker_group *new_groups, *old_groups;
6078         int group_cnt, worker_cnt_per_group;
6079
6080         if (len >= PAGE_SIZE)
6081                 return -EINVAL;
6082         if (kstrtoul(page, 10, &new))
6083                 return -EINVAL;
6084
6085         err = mddev_lock(mddev);
6086         if (err)
6087                 return err;
6088         conf = mddev->private;
6089         if (!conf)
6090                 err = -ENODEV;
6091         else if (new != conf->worker_cnt_per_group) {
6092                 mddev_suspend(mddev);
6093
6094                 old_groups = conf->worker_groups;
6095                 if (old_groups)
6096                         flush_workqueue(raid5_wq);
6097
6098                 err = alloc_thread_groups(conf, new,
6099                                           &group_cnt, &worker_cnt_per_group,
6100                                           &new_groups);
6101                 if (!err) {
6102                         spin_lock_irq(&conf->device_lock);
6103                         conf->group_cnt = group_cnt;
6104                         conf->worker_cnt_per_group = worker_cnt_per_group;
6105                         conf->worker_groups = new_groups;
6106                         spin_unlock_irq(&conf->device_lock);
6107
6108                         if (old_groups)
6109                                 kfree(old_groups[0].workers);
6110                         kfree(old_groups);
6111                 }
6112                 mddev_resume(mddev);
6113         }
6114         mddev_unlock(mddev);
6115
6116         return err ?: len;
6117 }
6118
6119 static struct md_sysfs_entry
6120 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6121                                 raid5_show_group_thread_cnt,
6122                                 raid5_store_group_thread_cnt);
6123
6124 static struct attribute *raid5_attrs[] =  {
6125         &raid5_stripecache_size.attr,
6126         &raid5_stripecache_active.attr,
6127         &raid5_preread_bypass_threshold.attr,
6128         &raid5_group_thread_cnt.attr,
6129         &raid5_skip_copy.attr,
6130         &raid5_rmw_level.attr,
6131         NULL,
6132 };
6133 static struct attribute_group raid5_attrs_group = {
6134         .name = NULL,
6135         .attrs = raid5_attrs,
6136 };
6137
6138 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6139                                int *group_cnt,
6140                                int *worker_cnt_per_group,
6141                                struct r5worker_group **worker_groups)
6142 {
6143         int i, j, k;
6144         ssize_t size;
6145         struct r5worker *workers;
6146
6147         *worker_cnt_per_group = cnt;
6148         if (cnt == 0) {
6149                 *group_cnt = 0;
6150                 *worker_groups = NULL;
6151                 return 0;
6152         }
6153         *group_cnt = num_possible_nodes();
6154         size = sizeof(struct r5worker) * cnt;
6155         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6156         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6157                                 *group_cnt, GFP_NOIO);
6158         if (!*worker_groups || !workers) {
6159                 kfree(workers);
6160                 kfree(*worker_groups);
6161                 return -ENOMEM;
6162         }
6163
6164         for (i = 0; i < *group_cnt; i++) {
6165                 struct r5worker_group *group;
6166
6167                 group = &(*worker_groups)[i];
6168                 INIT_LIST_HEAD(&group->handle_list);
6169                 group->conf = conf;
6170                 group->workers = workers + i * cnt;
6171
6172                 for (j = 0; j < cnt; j++) {
6173                         struct r5worker *worker = group->workers + j;
6174                         worker->group = group;
6175                         INIT_WORK(&worker->work, raid5_do_work);
6176
6177                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6178                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6179                 }
6180         }
6181
6182         return 0;
6183 }
6184
6185 static void free_thread_groups(struct r5conf *conf)
6186 {
6187         if (conf->worker_groups)
6188                 kfree(conf->worker_groups[0].workers);
6189         kfree(conf->worker_groups);
6190         conf->worker_groups = NULL;
6191 }
6192
6193 static sector_t
6194 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6195 {
6196         struct r5conf *conf = mddev->private;
6197
6198         if (!sectors)
6199                 sectors = mddev->dev_sectors;
6200         if (!raid_disks)
6201                 /* size is defined by the smallest of previous and new size */
6202                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6203
6204         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6205         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6206         return sectors * (raid_disks - conf->max_degraded);
6207 }
6208
6209 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6210 {
6211         safe_put_page(percpu->spare_page);
6212         if (percpu->scribble)
6213                 flex_array_free(percpu->scribble);
6214         percpu->spare_page = NULL;
6215         percpu->scribble = NULL;
6216 }
6217
6218 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6219 {
6220         if (conf->level == 6 && !percpu->spare_page)
6221                 percpu->spare_page = alloc_page(GFP_KERNEL);
6222         if (!percpu->scribble)
6223                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6224                         conf->previous_raid_disks), conf->chunk_sectors /
6225                         STRIPE_SECTORS, GFP_KERNEL);
6226
6227         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6228                 free_scratch_buffer(conf, percpu);
6229                 return -ENOMEM;
6230         }
6231
6232         return 0;
6233 }
6234
6235 static void raid5_free_percpu(struct r5conf *conf)
6236 {
6237         unsigned long cpu;
6238
6239         if (!conf->percpu)
6240                 return;
6241
6242 #ifdef CONFIG_HOTPLUG_CPU
6243         unregister_cpu_notifier(&conf->cpu_notify);
6244 #endif
6245
6246         get_online_cpus();
6247         for_each_possible_cpu(cpu)
6248                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6249         put_online_cpus();
6250
6251         free_percpu(conf->percpu);
6252 }
6253
6254 static void free_conf(struct r5conf *conf)
6255 {
6256         if (conf->shrinker.seeks)
6257                 unregister_shrinker(&conf->shrinker);
6258         free_thread_groups(conf);
6259         shrink_stripes(conf);
6260         raid5_free_percpu(conf);
6261         kfree(conf->disks);
6262         kfree(conf->stripe_hashtbl);
6263         kfree(conf);
6264 }
6265
6266 #ifdef CONFIG_HOTPLUG_CPU
6267 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6268                               void *hcpu)
6269 {
6270         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6271         long cpu = (long)hcpu;
6272         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6273
6274         switch (action) {
6275         case CPU_UP_PREPARE:
6276         case CPU_UP_PREPARE_FROZEN:
6277                 if (alloc_scratch_buffer(conf, percpu)) {
6278                         pr_err("%s: failed memory allocation for cpu%ld\n",
6279                                __func__, cpu);
6280                         return notifier_from_errno(-ENOMEM);
6281                 }
6282                 break;
6283         case CPU_DEAD:
6284         case CPU_DEAD_FROZEN:
6285                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6286                 break;
6287         default:
6288                 break;
6289         }
6290         return NOTIFY_OK;
6291 }
6292 #endif
6293
6294 static int raid5_alloc_percpu(struct r5conf *conf)
6295 {
6296         unsigned long cpu;
6297         int err = 0;
6298
6299         conf->percpu = alloc_percpu(struct raid5_percpu);
6300         if (!conf->percpu)
6301                 return -ENOMEM;
6302
6303 #ifdef CONFIG_HOTPLUG_CPU
6304         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6305         conf->cpu_notify.priority = 0;
6306         err = register_cpu_notifier(&conf->cpu_notify);
6307         if (err)
6308                 return err;
6309 #endif
6310
6311         get_online_cpus();
6312         for_each_present_cpu(cpu) {
6313                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6314                 if (err) {
6315                         pr_err("%s: failed memory allocation for cpu%ld\n",
6316                                __func__, cpu);
6317                         break;
6318                 }
6319         }
6320         put_online_cpus();
6321
6322         return err;
6323 }
6324
6325 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6326                                       struct shrink_control *sc)
6327 {
6328         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6329         int ret = 0;
6330         while (ret < sc->nr_to_scan) {
6331                 if (drop_one_stripe(conf) == 0)
6332                         return SHRINK_STOP;
6333                 ret++;
6334         }
6335         return ret;
6336 }
6337
6338 static unsigned long raid5_cache_count(struct shrinker *shrink,
6339                                        struct shrink_control *sc)
6340 {
6341         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6342
6343         if (conf->max_nr_stripes < conf->min_nr_stripes)
6344                 /* unlikely, but not impossible */
6345                 return 0;
6346         return conf->max_nr_stripes - conf->min_nr_stripes;
6347 }
6348
6349 static struct r5conf *setup_conf(struct mddev *mddev)
6350 {
6351         struct r5conf *conf;
6352         int raid_disk, memory, max_disks;
6353         struct md_rdev *rdev;
6354         struct disk_info *disk;
6355         char pers_name[6];
6356         int i;
6357         int group_cnt, worker_cnt_per_group;
6358         struct r5worker_group *new_group;
6359
6360         if (mddev->new_level != 5
6361             && mddev->new_level != 4
6362             && mddev->new_level != 6) {
6363                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6364                        mdname(mddev), mddev->new_level);
6365                 return ERR_PTR(-EIO);
6366         }
6367         if ((mddev->new_level == 5
6368              && !algorithm_valid_raid5(mddev->new_layout)) ||
6369             (mddev->new_level == 6
6370              && !algorithm_valid_raid6(mddev->new_layout))) {
6371                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6372                        mdname(mddev), mddev->new_layout);
6373                 return ERR_PTR(-EIO);
6374         }
6375         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6376                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6377                        mdname(mddev), mddev->raid_disks);
6378                 return ERR_PTR(-EINVAL);
6379         }
6380
6381         if (!mddev->new_chunk_sectors ||
6382             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6383             !is_power_of_2(mddev->new_chunk_sectors)) {
6384                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6385                        mdname(mddev), mddev->new_chunk_sectors << 9);
6386                 return ERR_PTR(-EINVAL);
6387         }
6388
6389         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6390         if (conf == NULL)
6391                 goto abort;
6392         /* Don't enable multi-threading by default*/
6393         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6394                                  &new_group)) {
6395                 conf->group_cnt = group_cnt;
6396                 conf->worker_cnt_per_group = worker_cnt_per_group;
6397                 conf->worker_groups = new_group;
6398         } else
6399                 goto abort;
6400         spin_lock_init(&conf->device_lock);
6401         seqcount_init(&conf->gen_lock);
6402         init_waitqueue_head(&conf->wait_for_stripe);
6403         init_waitqueue_head(&conf->wait_for_overlap);
6404         INIT_LIST_HEAD(&conf->handle_list);
6405         INIT_LIST_HEAD(&conf->hold_list);
6406         INIT_LIST_HEAD(&conf->delayed_list);
6407         INIT_LIST_HEAD(&conf->bitmap_list);
6408         init_llist_head(&conf->released_stripes);
6409         atomic_set(&conf->active_stripes, 0);
6410         atomic_set(&conf->preread_active_stripes, 0);
6411         atomic_set(&conf->active_aligned_reads, 0);
6412         conf->bypass_threshold = BYPASS_THRESHOLD;
6413         conf->recovery_disabled = mddev->recovery_disabled - 1;
6414
6415         conf->raid_disks = mddev->raid_disks;
6416         if (mddev->reshape_position == MaxSector)
6417                 conf->previous_raid_disks = mddev->raid_disks;
6418         else
6419                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6420         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6421
6422         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6423                               GFP_KERNEL);
6424         if (!conf->disks)
6425                 goto abort;
6426
6427         conf->mddev = mddev;
6428
6429         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6430                 goto abort;
6431
6432         /* We init hash_locks[0] separately to that it can be used
6433          * as the reference lock in the spin_lock_nest_lock() call
6434          * in lock_all_device_hash_locks_irq in order to convince
6435          * lockdep that we know what we are doing.
6436          */
6437         spin_lock_init(conf->hash_locks);
6438         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6439                 spin_lock_init(conf->hash_locks + i);
6440
6441         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6442                 INIT_LIST_HEAD(conf->inactive_list + i);
6443
6444         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6445                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6446
6447         conf->level = mddev->new_level;
6448         conf->chunk_sectors = mddev->new_chunk_sectors;
6449         if (raid5_alloc_percpu(conf) != 0)
6450                 goto abort;
6451
6452         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6453
6454         rdev_for_each(rdev, mddev) {
6455                 raid_disk = rdev->raid_disk;
6456                 if (raid_disk >= max_disks
6457                     || raid_disk < 0)
6458                         continue;
6459                 disk = conf->disks + raid_disk;
6460
6461                 if (test_bit(Replacement, &rdev->flags)) {
6462                         if (disk->replacement)
6463                                 goto abort;
6464                         disk->replacement = rdev;
6465                 } else {
6466                         if (disk->rdev)
6467                                 goto abort;
6468                         disk->rdev = rdev;
6469                 }
6470
6471                 if (test_bit(In_sync, &rdev->flags)) {
6472                         char b[BDEVNAME_SIZE];
6473                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6474                                " disk %d\n",
6475                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6476                 } else if (rdev->saved_raid_disk != raid_disk)
6477                         /* Cannot rely on bitmap to complete recovery */
6478                         conf->fullsync = 1;
6479         }
6480
6481         conf->level = mddev->new_level;
6482         if (conf->level == 6) {
6483                 conf->max_degraded = 2;
6484                 if (raid6_call.xor_syndrome)
6485                         conf->rmw_level = PARITY_ENABLE_RMW;
6486                 else
6487                         conf->rmw_level = PARITY_DISABLE_RMW;
6488         } else {
6489                 conf->max_degraded = 1;
6490                 conf->rmw_level = PARITY_ENABLE_RMW;
6491         }
6492         conf->algorithm = mddev->new_layout;
6493         conf->reshape_progress = mddev->reshape_position;
6494         if (conf->reshape_progress != MaxSector) {
6495                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6496                 conf->prev_algo = mddev->layout;
6497         }
6498
6499         conf->min_nr_stripes = NR_STRIPES;
6500         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6501                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6502         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6503         if (grow_stripes(conf, conf->min_nr_stripes)) {
6504                 printk(KERN_ERR
6505                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6506                        mdname(mddev), memory);
6507                 goto abort;
6508         } else
6509                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6510                        mdname(mddev), memory);
6511         /*
6512          * Losing a stripe head costs more than the time to refill it,
6513          * it reduces the queue depth and so can hurt throughput.
6514          * So set it rather large, scaled by number of devices.
6515          */
6516         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6517         conf->shrinker.scan_objects = raid5_cache_scan;
6518         conf->shrinker.count_objects = raid5_cache_count;
6519         conf->shrinker.batch = 128;
6520         conf->shrinker.flags = 0;
6521         register_shrinker(&conf->shrinker);
6522
6523         sprintf(pers_name, "raid%d", mddev->new_level);
6524         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6525         if (!conf->thread) {
6526                 printk(KERN_ERR
6527                        "md/raid:%s: couldn't allocate thread.\n",
6528                        mdname(mddev));
6529                 goto abort;
6530         }
6531
6532         return conf;
6533
6534  abort:
6535         if (conf) {
6536                 free_conf(conf);
6537                 return ERR_PTR(-EIO);
6538         } else
6539                 return ERR_PTR(-ENOMEM);
6540 }
6541
6542 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6543 {
6544         switch (algo) {
6545         case ALGORITHM_PARITY_0:
6546                 if (raid_disk < max_degraded)
6547                         return 1;
6548                 break;
6549         case ALGORITHM_PARITY_N:
6550                 if (raid_disk >= raid_disks - max_degraded)
6551                         return 1;
6552                 break;
6553         case ALGORITHM_PARITY_0_6:
6554                 if (raid_disk == 0 ||
6555                     raid_disk == raid_disks - 1)
6556                         return 1;
6557                 break;
6558         case ALGORITHM_LEFT_ASYMMETRIC_6:
6559         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6560         case ALGORITHM_LEFT_SYMMETRIC_6:
6561         case ALGORITHM_RIGHT_SYMMETRIC_6:
6562                 if (raid_disk == raid_disks - 1)
6563                         return 1;
6564         }
6565         return 0;
6566 }
6567
6568 static int run(struct mddev *mddev)
6569 {
6570         struct r5conf *conf;
6571         int working_disks = 0;
6572         int dirty_parity_disks = 0;
6573         struct md_rdev *rdev;
6574         sector_t reshape_offset = 0;
6575         int i;
6576         long long min_offset_diff = 0;
6577         int first = 1;
6578
6579         if (mddev->recovery_cp != MaxSector)
6580                 printk(KERN_NOTICE "md/raid:%s: not clean"
6581                        " -- starting background reconstruction\n",
6582                        mdname(mddev));
6583
6584         rdev_for_each(rdev, mddev) {
6585                 long long diff;
6586                 if (rdev->raid_disk < 0)
6587                         continue;
6588                 diff = (rdev->new_data_offset - rdev->data_offset);
6589                 if (first) {
6590                         min_offset_diff = diff;
6591                         first = 0;
6592                 } else if (mddev->reshape_backwards &&
6593                          diff < min_offset_diff)
6594                         min_offset_diff = diff;
6595                 else if (!mddev->reshape_backwards &&
6596                          diff > min_offset_diff)
6597                         min_offset_diff = diff;
6598         }
6599
6600         if (mddev->reshape_position != MaxSector) {
6601                 /* Check that we can continue the reshape.
6602                  * Difficulties arise if the stripe we would write to
6603                  * next is at or after the stripe we would read from next.
6604                  * For a reshape that changes the number of devices, this
6605                  * is only possible for a very short time, and mdadm makes
6606                  * sure that time appears to have past before assembling
6607                  * the array.  So we fail if that time hasn't passed.
6608                  * For a reshape that keeps the number of devices the same
6609                  * mdadm must be monitoring the reshape can keeping the
6610                  * critical areas read-only and backed up.  It will start
6611                  * the array in read-only mode, so we check for that.
6612                  */
6613                 sector_t here_new, here_old;
6614                 int old_disks;
6615                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6616
6617                 if (mddev->new_level != mddev->level) {
6618                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6619                                "required - aborting.\n",
6620                                mdname(mddev));
6621                         return -EINVAL;
6622                 }
6623                 old_disks = mddev->raid_disks - mddev->delta_disks;
6624                 /* reshape_position must be on a new-stripe boundary, and one
6625                  * further up in new geometry must map after here in old
6626                  * geometry.
6627                  */
6628                 here_new = mddev->reshape_position;
6629                 if (sector_div(here_new, mddev->new_chunk_sectors *
6630                                (mddev->raid_disks - max_degraded))) {
6631                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6632                                "on a stripe boundary\n", mdname(mddev));
6633                         return -EINVAL;
6634                 }
6635                 reshape_offset = here_new * mddev->new_chunk_sectors;
6636                 /* here_new is the stripe we will write to */
6637                 here_old = mddev->reshape_position;
6638                 sector_div(here_old, mddev->chunk_sectors *
6639                            (old_disks-max_degraded));
6640                 /* here_old is the first stripe that we might need to read
6641                  * from */
6642                 if (mddev->delta_disks == 0) {
6643                         if ((here_new * mddev->new_chunk_sectors !=
6644                              here_old * mddev->chunk_sectors)) {
6645                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6646                                        " confused - aborting\n", mdname(mddev));
6647                                 return -EINVAL;
6648                         }
6649                         /* We cannot be sure it is safe to start an in-place
6650                          * reshape.  It is only safe if user-space is monitoring
6651                          * and taking constant backups.
6652                          * mdadm always starts a situation like this in
6653                          * readonly mode so it can take control before
6654                          * allowing any writes.  So just check for that.
6655                          */
6656                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6657                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6658                                 /* not really in-place - so OK */;
6659                         else if (mddev->ro == 0) {
6660                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6661                                        "must be started in read-only mode "
6662                                        "- aborting\n",
6663                                        mdname(mddev));
6664                                 return -EINVAL;
6665                         }
6666                 } else if (mddev->reshape_backwards
6667                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6668                        here_old * mddev->chunk_sectors)
6669                     : (here_new * mddev->new_chunk_sectors >=
6670                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6671                         /* Reading from the same stripe as writing to - bad */
6672                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6673                                "auto-recovery - aborting.\n",
6674                                mdname(mddev));
6675                         return -EINVAL;
6676                 }
6677                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6678                        mdname(mddev));
6679                 /* OK, we should be able to continue; */
6680         } else {
6681                 BUG_ON(mddev->level != mddev->new_level);
6682                 BUG_ON(mddev->layout != mddev->new_layout);
6683                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6684                 BUG_ON(mddev->delta_disks != 0);
6685         }
6686
6687         if (mddev->private == NULL)
6688                 conf = setup_conf(mddev);
6689         else
6690                 conf = mddev->private;
6691
6692         if (IS_ERR(conf))
6693                 return PTR_ERR(conf);
6694
6695         conf->min_offset_diff = min_offset_diff;
6696         mddev->thread = conf->thread;
6697         conf->thread = NULL;
6698         mddev->private = conf;
6699
6700         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6701              i++) {
6702                 rdev = conf->disks[i].rdev;
6703                 if (!rdev && conf->disks[i].replacement) {
6704                         /* The replacement is all we have yet */
6705                         rdev = conf->disks[i].replacement;
6706                         conf->disks[i].replacement = NULL;
6707                         clear_bit(Replacement, &rdev->flags);
6708                         conf->disks[i].rdev = rdev;
6709                 }
6710                 if (!rdev)
6711                         continue;
6712                 if (conf->disks[i].replacement &&
6713                     conf->reshape_progress != MaxSector) {
6714                         /* replacements and reshape simply do not mix. */
6715                         printk(KERN_ERR "md: cannot handle concurrent "
6716                                "replacement and reshape.\n");
6717                         goto abort;
6718                 }
6719                 if (test_bit(In_sync, &rdev->flags)) {
6720                         working_disks++;
6721                         continue;
6722                 }
6723                 /* This disc is not fully in-sync.  However if it
6724                  * just stored parity (beyond the recovery_offset),
6725                  * when we don't need to be concerned about the
6726                  * array being dirty.
6727                  * When reshape goes 'backwards', we never have
6728                  * partially completed devices, so we only need
6729                  * to worry about reshape going forwards.
6730                  */
6731                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6732                 if (mddev->major_version == 0 &&
6733                     mddev->minor_version > 90)
6734                         rdev->recovery_offset = reshape_offset;
6735
6736                 if (rdev->recovery_offset < reshape_offset) {
6737                         /* We need to check old and new layout */
6738                         if (!only_parity(rdev->raid_disk,
6739                                          conf->algorithm,
6740                                          conf->raid_disks,
6741                                          conf->max_degraded))
6742                                 continue;
6743                 }
6744                 if (!only_parity(rdev->raid_disk,
6745                                  conf->prev_algo,
6746                                  conf->previous_raid_disks,
6747                                  conf->max_degraded))
6748                         continue;
6749                 dirty_parity_disks++;
6750         }
6751
6752         /*
6753          * 0 for a fully functional array, 1 or 2 for a degraded array.
6754          */
6755         mddev->degraded = calc_degraded(conf);
6756
6757         if (has_failed(conf)) {
6758                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6759                         " (%d/%d failed)\n",
6760                         mdname(mddev), mddev->degraded, conf->raid_disks);
6761                 goto abort;
6762         }
6763
6764         /* device size must be a multiple of chunk size */
6765         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6766         mddev->resync_max_sectors = mddev->dev_sectors;
6767
6768         if (mddev->degraded > dirty_parity_disks &&
6769             mddev->recovery_cp != MaxSector) {
6770                 if (mddev->ok_start_degraded)
6771                         printk(KERN_WARNING
6772                                "md/raid:%s: starting dirty degraded array"
6773                                " - data corruption possible.\n",
6774                                mdname(mddev));
6775                 else {
6776                         printk(KERN_ERR
6777                                "md/raid:%s: cannot start dirty degraded array.\n",
6778                                mdname(mddev));
6779                         goto abort;
6780                 }
6781         }
6782
6783         if (mddev->degraded == 0)
6784                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6785                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6786                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6787                        mddev->new_layout);
6788         else
6789                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6790                        " out of %d devices, algorithm %d\n",
6791                        mdname(mddev), conf->level,
6792                        mddev->raid_disks - mddev->degraded,
6793                        mddev->raid_disks, mddev->new_layout);
6794
6795         print_raid5_conf(conf);
6796
6797         if (conf->reshape_progress != MaxSector) {
6798                 conf->reshape_safe = conf->reshape_progress;
6799                 atomic_set(&conf->reshape_stripes, 0);
6800                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6801                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6802                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6803                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6804                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6805                                                         "reshape");
6806         }
6807
6808         /* Ok, everything is just fine now */
6809         if (mddev->to_remove == &raid5_attrs_group)
6810                 mddev->to_remove = NULL;
6811         else if (mddev->kobj.sd &&
6812             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6813                 printk(KERN_WARNING
6814                        "raid5: failed to create sysfs attributes for %s\n",
6815                        mdname(mddev));
6816         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6817
6818         if (mddev->queue) {
6819                 int chunk_size;
6820                 bool discard_supported = true;
6821                 /* read-ahead size must cover two whole stripes, which
6822                  * is 2 * (datadisks) * chunksize where 'n' is the
6823                  * number of raid devices
6824                  */
6825                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6826                 int stripe = data_disks *
6827                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6828                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6829                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6830
6831                 chunk_size = mddev->chunk_sectors << 9;
6832                 blk_queue_io_min(mddev->queue, chunk_size);
6833                 blk_queue_io_opt(mddev->queue, chunk_size *
6834                                  (conf->raid_disks - conf->max_degraded));
6835                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6836                 /*
6837                  * We can only discard a whole stripe. It doesn't make sense to
6838                  * discard data disk but write parity disk
6839                  */
6840                 stripe = stripe * PAGE_SIZE;
6841                 /* Round up to power of 2, as discard handling
6842                  * currently assumes that */
6843                 while ((stripe-1) & stripe)
6844                         stripe = (stripe | (stripe-1)) + 1;
6845                 mddev->queue->limits.discard_alignment = stripe;
6846                 mddev->queue->limits.discard_granularity = stripe;
6847                 /*
6848                  * unaligned part of discard request will be ignored, so can't
6849                  * guarantee discard_zeroes_data
6850                  */
6851                 mddev->queue->limits.discard_zeroes_data = 0;
6852
6853                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6854
6855                 rdev_for_each(rdev, mddev) {
6856                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6857                                           rdev->data_offset << 9);
6858                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6859                                           rdev->new_data_offset << 9);
6860                         /*
6861                          * discard_zeroes_data is required, otherwise data
6862                          * could be lost. Consider a scenario: discard a stripe
6863                          * (the stripe could be inconsistent if
6864                          * discard_zeroes_data is 0); write one disk of the
6865                          * stripe (the stripe could be inconsistent again
6866                          * depending on which disks are used to calculate
6867                          * parity); the disk is broken; The stripe data of this
6868                          * disk is lost.
6869                          */
6870                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6871                             !bdev_get_queue(rdev->bdev)->
6872                                                 limits.discard_zeroes_data)
6873                                 discard_supported = false;
6874                         /* Unfortunately, discard_zeroes_data is not currently
6875                          * a guarantee - just a hint.  So we only allow DISCARD
6876                          * if the sysadmin has confirmed that only safe devices
6877                          * are in use by setting a module parameter.
6878                          */
6879                         if (!devices_handle_discard_safely) {
6880                                 if (discard_supported) {
6881                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6882                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6883                                 }
6884                                 discard_supported = false;
6885                         }
6886                 }
6887
6888                 if (discard_supported &&
6889                    mddev->queue->limits.max_discard_sectors >= stripe &&
6890                    mddev->queue->limits.discard_granularity >= stripe)
6891                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6892                                                 mddev->queue);
6893                 else
6894                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6895                                                 mddev->queue);
6896         }
6897
6898         return 0;
6899 abort:
6900         md_unregister_thread(&mddev->thread);
6901         print_raid5_conf(conf);
6902         free_conf(conf);
6903         mddev->private = NULL;
6904         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6905         return -EIO;
6906 }
6907
6908 static void raid5_free(struct mddev *mddev, void *priv)
6909 {
6910         struct r5conf *conf = priv;
6911
6912         free_conf(conf);
6913         mddev->to_remove = &raid5_attrs_group;
6914 }
6915
6916 static void status(struct seq_file *seq, struct mddev *mddev)
6917 {
6918         struct r5conf *conf = mddev->private;
6919         int i;
6920
6921         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6922                 mddev->chunk_sectors / 2, mddev->layout);
6923         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6924         for (i = 0; i < conf->raid_disks; i++)
6925                 seq_printf (seq, "%s",
6926                                conf->disks[i].rdev &&
6927                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6928         seq_printf (seq, "]");
6929 }
6930
6931 static void print_raid5_conf (struct r5conf *conf)
6932 {
6933         int i;
6934         struct disk_info *tmp;
6935
6936         printk(KERN_DEBUG "RAID conf printout:\n");
6937         if (!conf) {
6938                 printk("(conf==NULL)\n");
6939                 return;
6940         }
6941         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6942                conf->raid_disks,
6943                conf->raid_disks - conf->mddev->degraded);
6944
6945         for (i = 0; i < conf->raid_disks; i++) {
6946                 char b[BDEVNAME_SIZE];
6947                 tmp = conf->disks + i;
6948                 if (tmp->rdev)
6949                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6950                                i, !test_bit(Faulty, &tmp->rdev->flags),
6951                                bdevname(tmp->rdev->bdev, b));
6952         }
6953 }
6954
6955 static int raid5_spare_active(struct mddev *mddev)
6956 {
6957         int i;
6958         struct r5conf *conf = mddev->private;
6959         struct disk_info *tmp;
6960         int count = 0;
6961         unsigned long flags;
6962
6963         for (i = 0; i < conf->raid_disks; i++) {
6964                 tmp = conf->disks + i;
6965                 if (tmp->replacement
6966                     && tmp->replacement->recovery_offset == MaxSector
6967                     && !test_bit(Faulty, &tmp->replacement->flags)
6968                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6969                         /* Replacement has just become active. */
6970                         if (!tmp->rdev
6971                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6972                                 count++;
6973                         if (tmp->rdev) {
6974                                 /* Replaced device not technically faulty,
6975                                  * but we need to be sure it gets removed
6976                                  * and never re-added.
6977                                  */
6978                                 set_bit(Faulty, &tmp->rdev->flags);
6979                                 sysfs_notify_dirent_safe(
6980                                         tmp->rdev->sysfs_state);
6981                         }
6982                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6983                 } else if (tmp->rdev
6984                     && tmp->rdev->recovery_offset == MaxSector
6985                     && !test_bit(Faulty, &tmp->rdev->flags)
6986                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6987                         count++;
6988                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6989                 }
6990         }
6991         spin_lock_irqsave(&conf->device_lock, flags);
6992         mddev->degraded = calc_degraded(conf);
6993         spin_unlock_irqrestore(&conf->device_lock, flags);
6994         print_raid5_conf(conf);
6995         return count;
6996 }
6997
6998 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6999 {
7000         struct r5conf *conf = mddev->private;
7001         int err = 0;
7002         int number = rdev->raid_disk;
7003         struct md_rdev **rdevp;
7004         struct disk_info *p = conf->disks + number;
7005
7006         print_raid5_conf(conf);
7007         if (rdev == p->rdev)
7008                 rdevp = &p->rdev;
7009         else if (rdev == p->replacement)
7010                 rdevp = &p->replacement;
7011         else
7012                 return 0;
7013
7014         if (number >= conf->raid_disks &&
7015             conf->reshape_progress == MaxSector)
7016                 clear_bit(In_sync, &rdev->flags);
7017
7018         if (test_bit(In_sync, &rdev->flags) ||
7019             atomic_read(&rdev->nr_pending)) {
7020                 err = -EBUSY;
7021                 goto abort;
7022         }
7023         /* Only remove non-faulty devices if recovery
7024          * isn't possible.
7025          */
7026         if (!test_bit(Faulty, &rdev->flags) &&
7027             mddev->recovery_disabled != conf->recovery_disabled &&
7028             !has_failed(conf) &&
7029             (!p->replacement || p->replacement == rdev) &&
7030             number < conf->raid_disks) {
7031                 err = -EBUSY;
7032                 goto abort;
7033         }
7034         *rdevp = NULL;
7035         synchronize_rcu();
7036         if (atomic_read(&rdev->nr_pending)) {
7037                 /* lost the race, try later */
7038                 err = -EBUSY;
7039                 *rdevp = rdev;
7040         } else if (p->replacement) {
7041                 /* We must have just cleared 'rdev' */
7042                 p->rdev = p->replacement;
7043                 clear_bit(Replacement, &p->replacement->flags);
7044                 smp_mb(); /* Make sure other CPUs may see both as identical
7045                            * but will never see neither - if they are careful
7046                            */
7047                 p->replacement = NULL;
7048                 clear_bit(WantReplacement, &rdev->flags);
7049         } else
7050                 /* We might have just removed the Replacement as faulty-
7051                  * clear the bit just in case
7052                  */
7053                 clear_bit(WantReplacement, &rdev->flags);
7054 abort:
7055
7056         print_raid5_conf(conf);
7057         return err;
7058 }
7059
7060 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7061 {
7062         struct r5conf *conf = mddev->private;
7063         int err = -EEXIST;
7064         int disk;
7065         struct disk_info *p;
7066         int first = 0;
7067         int last = conf->raid_disks - 1;
7068
7069         if (mddev->recovery_disabled == conf->recovery_disabled)
7070                 return -EBUSY;
7071
7072         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7073                 /* no point adding a device */
7074                 return -EINVAL;
7075
7076         if (rdev->raid_disk >= 0)
7077                 first = last = rdev->raid_disk;
7078
7079         /*
7080          * find the disk ... but prefer rdev->saved_raid_disk
7081          * if possible.
7082          */
7083         if (rdev->saved_raid_disk >= 0 &&
7084             rdev->saved_raid_disk >= first &&
7085             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7086                 first = rdev->saved_raid_disk;
7087
7088         for (disk = first; disk <= last; disk++) {
7089                 p = conf->disks + disk;
7090                 if (p->rdev == NULL) {
7091                         clear_bit(In_sync, &rdev->flags);
7092                         rdev->raid_disk = disk;
7093                         err = 0;
7094                         if (rdev->saved_raid_disk != disk)
7095                                 conf->fullsync = 1;
7096                         rcu_assign_pointer(p->rdev, rdev);
7097                         goto out;
7098                 }
7099         }
7100         for (disk = first; disk <= last; disk++) {
7101                 p = conf->disks + disk;
7102                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7103                     p->replacement == NULL) {
7104                         clear_bit(In_sync, &rdev->flags);
7105                         set_bit(Replacement, &rdev->flags);
7106                         rdev->raid_disk = disk;
7107                         err = 0;
7108                         conf->fullsync = 1;
7109                         rcu_assign_pointer(p->replacement, rdev);
7110                         break;
7111                 }
7112         }
7113 out:
7114         print_raid5_conf(conf);
7115         return err;
7116 }
7117
7118 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7119 {
7120         /* no resync is happening, and there is enough space
7121          * on all devices, so we can resize.
7122          * We need to make sure resync covers any new space.
7123          * If the array is shrinking we should possibly wait until
7124          * any io in the removed space completes, but it hardly seems
7125          * worth it.
7126          */
7127         sector_t newsize;
7128         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7129         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7130         if (mddev->external_size &&
7131             mddev->array_sectors > newsize)
7132                 return -EINVAL;
7133         if (mddev->bitmap) {
7134                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7135                 if (ret)
7136                         return ret;
7137         }
7138         md_set_array_sectors(mddev, newsize);
7139         set_capacity(mddev->gendisk, mddev->array_sectors);
7140         revalidate_disk(mddev->gendisk);
7141         if (sectors > mddev->dev_sectors &&
7142             mddev->recovery_cp > mddev->dev_sectors) {
7143                 mddev->recovery_cp = mddev->dev_sectors;
7144                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7145         }
7146         mddev->dev_sectors = sectors;
7147         mddev->resync_max_sectors = sectors;
7148         return 0;
7149 }
7150
7151 static int check_stripe_cache(struct mddev *mddev)
7152 {
7153         /* Can only proceed if there are plenty of stripe_heads.
7154          * We need a minimum of one full stripe,, and for sensible progress
7155          * it is best to have about 4 times that.
7156          * If we require 4 times, then the default 256 4K stripe_heads will
7157          * allow for chunk sizes up to 256K, which is probably OK.
7158          * If the chunk size is greater, user-space should request more
7159          * stripe_heads first.
7160          */
7161         struct r5conf *conf = mddev->private;
7162         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7163             > conf->min_nr_stripes ||
7164             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7165             > conf->min_nr_stripes) {
7166                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7167                        mdname(mddev),
7168                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7169                         / STRIPE_SIZE)*4);
7170                 return 0;
7171         }
7172         return 1;
7173 }
7174
7175 static int check_reshape(struct mddev *mddev)
7176 {
7177         struct r5conf *conf = mddev->private;
7178
7179         if (mddev->delta_disks == 0 &&
7180             mddev->new_layout == mddev->layout &&
7181             mddev->new_chunk_sectors == mddev->chunk_sectors)
7182                 return 0; /* nothing to do */
7183         if (has_failed(conf))
7184                 return -EINVAL;
7185         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7186                 /* We might be able to shrink, but the devices must
7187                  * be made bigger first.
7188                  * For raid6, 4 is the minimum size.
7189                  * Otherwise 2 is the minimum
7190                  */
7191                 int min = 2;
7192                 if (mddev->level == 6)
7193                         min = 4;
7194                 if (mddev->raid_disks + mddev->delta_disks < min)
7195                         return -EINVAL;
7196         }
7197
7198         if (!check_stripe_cache(mddev))
7199                 return -ENOSPC;
7200
7201         return resize_stripes(conf, (conf->previous_raid_disks
7202                                      + mddev->delta_disks));
7203 }
7204
7205 static int raid5_start_reshape(struct mddev *mddev)
7206 {
7207         struct r5conf *conf = mddev->private;
7208         struct md_rdev *rdev;
7209         int spares = 0;
7210         unsigned long flags;
7211
7212         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7213                 return -EBUSY;
7214
7215         if (!check_stripe_cache(mddev))
7216                 return -ENOSPC;
7217
7218         if (has_failed(conf))
7219                 return -EINVAL;
7220
7221         rdev_for_each(rdev, mddev) {
7222                 if (!test_bit(In_sync, &rdev->flags)
7223                     && !test_bit(Faulty, &rdev->flags))
7224                         spares++;
7225         }
7226
7227         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7228                 /* Not enough devices even to make a degraded array
7229                  * of that size
7230                  */
7231                 return -EINVAL;
7232
7233         /* Refuse to reduce size of the array.  Any reductions in
7234          * array size must be through explicit setting of array_size
7235          * attribute.
7236          */
7237         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7238             < mddev->array_sectors) {
7239                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7240                        "before number of disks\n", mdname(mddev));
7241                 return -EINVAL;
7242         }
7243
7244         atomic_set(&conf->reshape_stripes, 0);
7245         spin_lock_irq(&conf->device_lock);
7246         write_seqcount_begin(&conf->gen_lock);
7247         conf->previous_raid_disks = conf->raid_disks;
7248         conf->raid_disks += mddev->delta_disks;
7249         conf->prev_chunk_sectors = conf->chunk_sectors;
7250         conf->chunk_sectors = mddev->new_chunk_sectors;
7251         conf->prev_algo = conf->algorithm;
7252         conf->algorithm = mddev->new_layout;
7253         conf->generation++;
7254         /* Code that selects data_offset needs to see the generation update
7255          * if reshape_progress has been set - so a memory barrier needed.
7256          */
7257         smp_mb();
7258         if (mddev->reshape_backwards)
7259                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7260         else
7261                 conf->reshape_progress = 0;
7262         conf->reshape_safe = conf->reshape_progress;
7263         write_seqcount_end(&conf->gen_lock);
7264         spin_unlock_irq(&conf->device_lock);
7265
7266         /* Now make sure any requests that proceeded on the assumption
7267          * the reshape wasn't running - like Discard or Read - have
7268          * completed.
7269          */
7270         mddev_suspend(mddev);
7271         mddev_resume(mddev);
7272
7273         /* Add some new drives, as many as will fit.
7274          * We know there are enough to make the newly sized array work.
7275          * Don't add devices if we are reducing the number of
7276          * devices in the array.  This is because it is not possible
7277          * to correctly record the "partially reconstructed" state of
7278          * such devices during the reshape and confusion could result.
7279          */
7280         if (mddev->delta_disks >= 0) {
7281                 rdev_for_each(rdev, mddev)
7282                         if (rdev->raid_disk < 0 &&
7283                             !test_bit(Faulty, &rdev->flags)) {
7284                                 if (raid5_add_disk(mddev, rdev) == 0) {
7285                                         if (rdev->raid_disk
7286                                             >= conf->previous_raid_disks)
7287                                                 set_bit(In_sync, &rdev->flags);
7288                                         else
7289                                                 rdev->recovery_offset = 0;
7290
7291                                         if (sysfs_link_rdev(mddev, rdev))
7292                                                 /* Failure here is OK */;
7293                                 }
7294                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7295                                    && !test_bit(Faulty, &rdev->flags)) {
7296                                 /* This is a spare that was manually added */
7297                                 set_bit(In_sync, &rdev->flags);
7298                         }
7299
7300                 /* When a reshape changes the number of devices,
7301                  * ->degraded is measured against the larger of the
7302                  * pre and post number of devices.
7303                  */
7304                 spin_lock_irqsave(&conf->device_lock, flags);
7305                 mddev->degraded = calc_degraded(conf);
7306                 spin_unlock_irqrestore(&conf->device_lock, flags);
7307         }
7308         mddev->raid_disks = conf->raid_disks;
7309         mddev->reshape_position = conf->reshape_progress;
7310         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7311
7312         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7313         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7314         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7315         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7316         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7317                                                 "reshape");
7318         if (!mddev->sync_thread) {
7319                 mddev->recovery = 0;
7320                 spin_lock_irq(&conf->device_lock);
7321                 write_seqcount_begin(&conf->gen_lock);
7322                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7323                 mddev->new_chunk_sectors =
7324                         conf->chunk_sectors = conf->prev_chunk_sectors;
7325                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7326                 rdev_for_each(rdev, mddev)
7327                         rdev->new_data_offset = rdev->data_offset;
7328                 smp_wmb();
7329                 conf->generation --;
7330                 conf->reshape_progress = MaxSector;
7331                 mddev->reshape_position = MaxSector;
7332                 write_seqcount_end(&conf->gen_lock);
7333                 spin_unlock_irq(&conf->device_lock);
7334                 return -EAGAIN;
7335         }
7336         conf->reshape_checkpoint = jiffies;
7337         md_wakeup_thread(mddev->sync_thread);
7338         md_new_event(mddev);
7339         return 0;
7340 }
7341
7342 /* This is called from the reshape thread and should make any
7343  * changes needed in 'conf'
7344  */
7345 static void end_reshape(struct r5conf *conf)
7346 {
7347
7348         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7349                 struct md_rdev *rdev;
7350
7351                 spin_lock_irq(&conf->device_lock);
7352                 conf->previous_raid_disks = conf->raid_disks;
7353                 rdev_for_each(rdev, conf->mddev)
7354                         rdev->data_offset = rdev->new_data_offset;
7355                 smp_wmb();
7356                 conf->reshape_progress = MaxSector;
7357                 spin_unlock_irq(&conf->device_lock);
7358                 wake_up(&conf->wait_for_overlap);
7359
7360                 /* read-ahead size must cover two whole stripes, which is
7361                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7362                  */
7363                 if (conf->mddev->queue) {
7364                         int data_disks = conf->raid_disks - conf->max_degraded;
7365                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7366                                                    / PAGE_SIZE);
7367                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7368                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7369                 }
7370         }
7371 }
7372
7373 /* This is called from the raid5d thread with mddev_lock held.
7374  * It makes config changes to the device.
7375  */
7376 static void raid5_finish_reshape(struct mddev *mddev)
7377 {
7378         struct r5conf *conf = mddev->private;
7379
7380         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7381
7382                 if (mddev->delta_disks > 0) {
7383                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7384                         set_capacity(mddev->gendisk, mddev->array_sectors);
7385                         revalidate_disk(mddev->gendisk);
7386                 } else {
7387                         int d;
7388                         spin_lock_irq(&conf->device_lock);
7389                         mddev->degraded = calc_degraded(conf);
7390                         spin_unlock_irq(&conf->device_lock);
7391                         for (d = conf->raid_disks ;
7392                              d < conf->raid_disks - mddev->delta_disks;
7393                              d++) {
7394                                 struct md_rdev *rdev = conf->disks[d].rdev;
7395                                 if (rdev)
7396                                         clear_bit(In_sync, &rdev->flags);
7397                                 rdev = conf->disks[d].replacement;
7398                                 if (rdev)
7399                                         clear_bit(In_sync, &rdev->flags);
7400                         }
7401                 }
7402                 mddev->layout = conf->algorithm;
7403                 mddev->chunk_sectors = conf->chunk_sectors;
7404                 mddev->reshape_position = MaxSector;
7405                 mddev->delta_disks = 0;
7406                 mddev->reshape_backwards = 0;
7407         }
7408 }
7409
7410 static void raid5_quiesce(struct mddev *mddev, int state)
7411 {
7412         struct r5conf *conf = mddev->private;
7413
7414         switch(state) {
7415         case 2: /* resume for a suspend */
7416                 wake_up(&conf->wait_for_overlap);
7417                 break;
7418
7419         case 1: /* stop all writes */
7420                 lock_all_device_hash_locks_irq(conf);
7421                 /* '2' tells resync/reshape to pause so that all
7422                  * active stripes can drain
7423                  */
7424                 conf->quiesce = 2;
7425                 wait_event_cmd(conf->wait_for_stripe,
7426                                     atomic_read(&conf->active_stripes) == 0 &&
7427                                     atomic_read(&conf->active_aligned_reads) == 0,
7428                                     unlock_all_device_hash_locks_irq(conf),
7429                                     lock_all_device_hash_locks_irq(conf));
7430                 conf->quiesce = 1;
7431                 unlock_all_device_hash_locks_irq(conf);
7432                 /* allow reshape to continue */
7433                 wake_up(&conf->wait_for_overlap);
7434                 break;
7435
7436         case 0: /* re-enable writes */
7437                 lock_all_device_hash_locks_irq(conf);
7438                 conf->quiesce = 0;
7439                 wake_up(&conf->wait_for_stripe);
7440                 wake_up(&conf->wait_for_overlap);
7441                 unlock_all_device_hash_locks_irq(conf);
7442                 break;
7443         }
7444 }
7445
7446 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7447 {
7448         struct r0conf *raid0_conf = mddev->private;
7449         sector_t sectors;
7450
7451         /* for raid0 takeover only one zone is supported */
7452         if (raid0_conf->nr_strip_zones > 1) {
7453                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7454                        mdname(mddev));
7455                 return ERR_PTR(-EINVAL);
7456         }
7457
7458         sectors = raid0_conf->strip_zone[0].zone_end;
7459         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7460         mddev->dev_sectors = sectors;
7461         mddev->new_level = level;
7462         mddev->new_layout = ALGORITHM_PARITY_N;
7463         mddev->new_chunk_sectors = mddev->chunk_sectors;
7464         mddev->raid_disks += 1;
7465         mddev->delta_disks = 1;
7466         /* make sure it will be not marked as dirty */
7467         mddev->recovery_cp = MaxSector;
7468
7469         return setup_conf(mddev);
7470 }
7471
7472 static void *raid5_takeover_raid1(struct mddev *mddev)
7473 {
7474         int chunksect;
7475
7476         if (mddev->raid_disks != 2 ||
7477             mddev->degraded > 1)
7478                 return ERR_PTR(-EINVAL);
7479
7480         /* Should check if there are write-behind devices? */
7481
7482         chunksect = 64*2; /* 64K by default */
7483
7484         /* The array must be an exact multiple of chunksize */
7485         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7486                 chunksect >>= 1;
7487
7488         if ((chunksect<<9) < STRIPE_SIZE)
7489                 /* array size does not allow a suitable chunk size */
7490                 return ERR_PTR(-EINVAL);
7491
7492         mddev->new_level = 5;
7493         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7494         mddev->new_chunk_sectors = chunksect;
7495
7496         return setup_conf(mddev);
7497 }
7498
7499 static void *raid5_takeover_raid6(struct mddev *mddev)
7500 {
7501         int new_layout;
7502
7503         switch (mddev->layout) {
7504         case ALGORITHM_LEFT_ASYMMETRIC_6:
7505                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7506                 break;
7507         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7508                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7509                 break;
7510         case ALGORITHM_LEFT_SYMMETRIC_6:
7511                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7512                 break;
7513         case ALGORITHM_RIGHT_SYMMETRIC_6:
7514                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7515                 break;
7516         case ALGORITHM_PARITY_0_6:
7517                 new_layout = ALGORITHM_PARITY_0;
7518                 break;
7519         case ALGORITHM_PARITY_N:
7520                 new_layout = ALGORITHM_PARITY_N;
7521                 break;
7522         default:
7523                 return ERR_PTR(-EINVAL);
7524         }
7525         mddev->new_level = 5;
7526         mddev->new_layout = new_layout;
7527         mddev->delta_disks = -1;
7528         mddev->raid_disks -= 1;
7529         return setup_conf(mddev);
7530 }
7531
7532 static int raid5_check_reshape(struct mddev *mddev)
7533 {
7534         /* For a 2-drive array, the layout and chunk size can be changed
7535          * immediately as not restriping is needed.
7536          * For larger arrays we record the new value - after validation
7537          * to be used by a reshape pass.
7538          */
7539         struct r5conf *conf = mddev->private;
7540         int new_chunk = mddev->new_chunk_sectors;
7541
7542         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7543                 return -EINVAL;
7544         if (new_chunk > 0) {
7545                 if (!is_power_of_2(new_chunk))
7546                         return -EINVAL;
7547                 if (new_chunk < (PAGE_SIZE>>9))
7548                         return -EINVAL;
7549                 if (mddev->array_sectors & (new_chunk-1))
7550                         /* not factor of array size */
7551                         return -EINVAL;
7552         }
7553
7554         /* They look valid */
7555
7556         if (mddev->raid_disks == 2) {
7557                 /* can make the change immediately */
7558                 if (mddev->new_layout >= 0) {
7559                         conf->algorithm = mddev->new_layout;
7560                         mddev->layout = mddev->new_layout;
7561                 }
7562                 if (new_chunk > 0) {
7563                         conf->chunk_sectors = new_chunk ;
7564                         mddev->chunk_sectors = new_chunk;
7565                 }
7566                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7567                 md_wakeup_thread(mddev->thread);
7568         }
7569         return check_reshape(mddev);
7570 }
7571
7572 static int raid6_check_reshape(struct mddev *mddev)
7573 {
7574         int new_chunk = mddev->new_chunk_sectors;
7575
7576         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7577                 return -EINVAL;
7578         if (new_chunk > 0) {
7579                 if (!is_power_of_2(new_chunk))
7580                         return -EINVAL;
7581                 if (new_chunk < (PAGE_SIZE >> 9))
7582                         return -EINVAL;
7583                 if (mddev->array_sectors & (new_chunk-1))
7584                         /* not factor of array size */
7585                         return -EINVAL;
7586         }
7587
7588         /* They look valid */
7589         return check_reshape(mddev);
7590 }
7591
7592 static void *raid5_takeover(struct mddev *mddev)
7593 {
7594         /* raid5 can take over:
7595          *  raid0 - if there is only one strip zone - make it a raid4 layout
7596          *  raid1 - if there are two drives.  We need to know the chunk size
7597          *  raid4 - trivial - just use a raid4 layout.
7598          *  raid6 - Providing it is a *_6 layout
7599          */
7600         if (mddev->level == 0)
7601                 return raid45_takeover_raid0(mddev, 5);
7602         if (mddev->level == 1)
7603                 return raid5_takeover_raid1(mddev);
7604         if (mddev->level == 4) {
7605                 mddev->new_layout = ALGORITHM_PARITY_N;
7606                 mddev->new_level = 5;
7607                 return setup_conf(mddev);
7608         }
7609         if (mddev->level == 6)
7610                 return raid5_takeover_raid6(mddev);
7611
7612         return ERR_PTR(-EINVAL);
7613 }
7614
7615 static void *raid4_takeover(struct mddev *mddev)
7616 {
7617         /* raid4 can take over:
7618          *  raid0 - if there is only one strip zone
7619          *  raid5 - if layout is right
7620          */
7621         if (mddev->level == 0)
7622                 return raid45_takeover_raid0(mddev, 4);
7623         if (mddev->level == 5 &&
7624             mddev->layout == ALGORITHM_PARITY_N) {
7625                 mddev->new_layout = 0;
7626                 mddev->new_level = 4;
7627                 return setup_conf(mddev);
7628         }
7629         return ERR_PTR(-EINVAL);
7630 }
7631
7632 static struct md_personality raid5_personality;
7633
7634 static void *raid6_takeover(struct mddev *mddev)
7635 {
7636         /* Currently can only take over a raid5.  We map the
7637          * personality to an equivalent raid6 personality
7638          * with the Q block at the end.
7639          */
7640         int new_layout;
7641
7642         if (mddev->pers != &raid5_personality)
7643                 return ERR_PTR(-EINVAL);
7644         if (mddev->degraded > 1)
7645                 return ERR_PTR(-EINVAL);
7646         if (mddev->raid_disks > 253)
7647                 return ERR_PTR(-EINVAL);
7648         if (mddev->raid_disks < 3)
7649                 return ERR_PTR(-EINVAL);
7650
7651         switch (mddev->layout) {
7652         case ALGORITHM_LEFT_ASYMMETRIC:
7653                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7654                 break;
7655         case ALGORITHM_RIGHT_ASYMMETRIC:
7656                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7657                 break;
7658         case ALGORITHM_LEFT_SYMMETRIC:
7659                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7660                 break;
7661         case ALGORITHM_RIGHT_SYMMETRIC:
7662                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7663                 break;
7664         case ALGORITHM_PARITY_0:
7665                 new_layout = ALGORITHM_PARITY_0_6;
7666                 break;
7667         case ALGORITHM_PARITY_N:
7668                 new_layout = ALGORITHM_PARITY_N;
7669                 break;
7670         default:
7671                 return ERR_PTR(-EINVAL);
7672         }
7673         mddev->new_level = 6;
7674         mddev->new_layout = new_layout;
7675         mddev->delta_disks = 1;
7676         mddev->raid_disks += 1;
7677         return setup_conf(mddev);
7678 }
7679
7680 static struct md_personality raid6_personality =
7681 {
7682         .name           = "raid6",
7683         .level          = 6,
7684         .owner          = THIS_MODULE,
7685         .make_request   = make_request,
7686         .run            = run,
7687         .free           = raid5_free,
7688         .status         = status,
7689         .error_handler  = error,
7690         .hot_add_disk   = raid5_add_disk,
7691         .hot_remove_disk= raid5_remove_disk,
7692         .spare_active   = raid5_spare_active,
7693         .sync_request   = sync_request,
7694         .resize         = raid5_resize,
7695         .size           = raid5_size,
7696         .check_reshape  = raid6_check_reshape,
7697         .start_reshape  = raid5_start_reshape,
7698         .finish_reshape = raid5_finish_reshape,
7699         .quiesce        = raid5_quiesce,
7700         .takeover       = raid6_takeover,
7701         .congested      = raid5_congested,
7702         .mergeable_bvec = raid5_mergeable_bvec,
7703 };
7704 static struct md_personality raid5_personality =
7705 {
7706         .name           = "raid5",
7707         .level          = 5,
7708         .owner          = THIS_MODULE,
7709         .make_request   = make_request,
7710         .run            = run,
7711         .free           = raid5_free,
7712         .status         = status,
7713         .error_handler  = error,
7714         .hot_add_disk   = raid5_add_disk,
7715         .hot_remove_disk= raid5_remove_disk,
7716         .spare_active   = raid5_spare_active,
7717         .sync_request   = sync_request,
7718         .resize         = raid5_resize,
7719         .size           = raid5_size,
7720         .check_reshape  = raid5_check_reshape,
7721         .start_reshape  = raid5_start_reshape,
7722         .finish_reshape = raid5_finish_reshape,
7723         .quiesce        = raid5_quiesce,
7724         .takeover       = raid5_takeover,
7725         .congested      = raid5_congested,
7726         .mergeable_bvec = raid5_mergeable_bvec,
7727 };
7728
7729 static struct md_personality raid4_personality =
7730 {
7731         .name           = "raid4",
7732         .level          = 4,
7733         .owner          = THIS_MODULE,
7734         .make_request   = make_request,
7735         .run            = run,
7736         .free           = raid5_free,
7737         .status         = status,
7738         .error_handler  = error,
7739         .hot_add_disk   = raid5_add_disk,
7740         .hot_remove_disk= raid5_remove_disk,
7741         .spare_active   = raid5_spare_active,
7742         .sync_request   = sync_request,
7743         .resize         = raid5_resize,
7744         .size           = raid5_size,
7745         .check_reshape  = raid5_check_reshape,
7746         .start_reshape  = raid5_start_reshape,
7747         .finish_reshape = raid5_finish_reshape,
7748         .quiesce        = raid5_quiesce,
7749         .takeover       = raid4_takeover,
7750         .congested      = raid5_congested,
7751         .mergeable_bvec = raid5_mergeable_bvec,
7752 };
7753
7754 static int __init raid5_init(void)
7755 {
7756         raid5_wq = alloc_workqueue("raid5wq",
7757                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7758         if (!raid5_wq)
7759                 return -ENOMEM;
7760         register_md_personality(&raid6_personality);
7761         register_md_personality(&raid5_personality);
7762         register_md_personality(&raid4_personality);
7763         return 0;
7764 }
7765
7766 static void raid5_exit(void)
7767 {
7768         unregister_md_personality(&raid6_personality);
7769         unregister_md_personality(&raid5_personality);
7770         unregister_md_personality(&raid4_personality);
7771         destroy_workqueue(raid5_wq);
7772 }
7773
7774 module_init(raid5_init);
7775 module_exit(raid5_exit);
7776 MODULE_LICENSE("GPL");
7777 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7778 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7779 MODULE_ALIAS("md-raid5");
7780 MODULE_ALIAS("md-raid4");
7781 MODULE_ALIAS("md-level-5");
7782 MODULE_ALIAS("md-level-4");
7783 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7784 MODULE_ALIAS("md-raid6");
7785 MODULE_ALIAS("md-level-6");
7786
7787 /* This used to be two separate modules, they were: */
7788 MODULE_ALIAS("raid5");
7789 MODULE_ALIAS("raid6");