Merge tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         unsigned long do_wakeup = 0;
348         int i = 0;
349         unsigned long flags;
350
351         if (hash == NR_STRIPE_HASH_LOCKS) {
352                 size = NR_STRIPE_HASH_LOCKS;
353                 hash = NR_STRIPE_HASH_LOCKS - 1;
354         } else
355                 size = 1;
356         while (size) {
357                 struct list_head *list = &temp_inactive_list[size - 1];
358
359                 /*
360                  * We don't hold any lock here yet, get_active_stripe() might
361                  * remove stripes from the list
362                  */
363                 if (!list_empty_careful(list)) {
364                         spin_lock_irqsave(conf->hash_locks + hash, flags);
365                         if (list_empty(conf->inactive_list + hash) &&
366                             !list_empty(list))
367                                 atomic_dec(&conf->empty_inactive_list_nr);
368                         list_splice_tail_init(list, conf->inactive_list + hash);
369                         do_wakeup |= 1 << hash;
370                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371                 }
372                 size--;
373                 hash--;
374         }
375
376         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377                 if (do_wakeup & (1 << i))
378                         wake_up(&conf->wait_for_stripe[i]);
379         }
380
381         if (do_wakeup) {
382                 if (atomic_read(&conf->active_stripes) == 0)
383                         wake_up(&conf->wait_for_quiescent);
384                 if (conf->retry_read_aligned)
385                         md_wakeup_thread(conf->mddev->thread);
386         }
387 }
388
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391                                struct list_head *temp_inactive_list)
392 {
393         struct stripe_head *sh;
394         int count = 0;
395         struct llist_node *head;
396
397         head = llist_del_all(&conf->released_stripes);
398         head = llist_reverse_order(head);
399         while (head) {
400                 int hash;
401
402                 sh = llist_entry(head, struct stripe_head, release_list);
403                 head = llist_next(head);
404                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405                 smp_mb();
406                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407                 /*
408                  * Don't worry the bit is set here, because if the bit is set
409                  * again, the count is always > 1. This is true for
410                  * STRIPE_ON_UNPLUG_LIST bit too.
411                  */
412                 hash = sh->hash_lock_index;
413                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
414                 count++;
415         }
416
417         return count;
418 }
419
420 static void release_stripe(struct stripe_head *sh)
421 {
422         struct r5conf *conf = sh->raid_conf;
423         unsigned long flags;
424         struct list_head list;
425         int hash;
426         bool wakeup;
427
428         /* Avoid release_list until the last reference.
429          */
430         if (atomic_add_unless(&sh->count, -1, 1))
431                 return;
432
433         if (unlikely(!conf->mddev->thread) ||
434                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435                 goto slow_path;
436         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437         if (wakeup)
438                 md_wakeup_thread(conf->mddev->thread);
439         return;
440 slow_path:
441         local_irq_save(flags);
442         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444                 INIT_LIST_HEAD(&list);
445                 hash = sh->hash_lock_index;
446                 do_release_stripe(conf, sh, &list);
447                 spin_unlock(&conf->device_lock);
448                 release_inactive_stripe_list(conf, &list, hash);
449         }
450         local_irq_restore(flags);
451 }
452
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455         pr_debug("remove_hash(), stripe %llu\n",
456                 (unsigned long long)sh->sector);
457
458         hlist_del_init(&sh->hash);
459 }
460
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463         struct hlist_head *hp = stripe_hash(conf, sh->sector);
464
465         pr_debug("insert_hash(), stripe %llu\n",
466                 (unsigned long long)sh->sector);
467
468         hlist_add_head(&sh->hash, hp);
469 }
470
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474         struct stripe_head *sh = NULL;
475         struct list_head *first;
476
477         if (list_empty(conf->inactive_list + hash))
478                 goto out;
479         first = (conf->inactive_list + hash)->next;
480         sh = list_entry(first, struct stripe_head, lru);
481         list_del_init(first);
482         remove_hash(sh);
483         atomic_inc(&conf->active_stripes);
484         BUG_ON(hash != sh->hash_lock_index);
485         if (list_empty(conf->inactive_list + hash))
486                 atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488         return sh;
489 }
490
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493         struct page *p;
494         int i;
495         int num = sh->raid_conf->pool_size;
496
497         for (i = 0; i < num ; i++) {
498                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499                 p = sh->dev[i].page;
500                 if (!p)
501                         continue;
502                 sh->dev[i].page = NULL;
503                 put_page(p);
504         }
505 }
506
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509         int i;
510         int num = sh->raid_conf->pool_size;
511
512         for (i = 0; i < num; i++) {
513                 struct page *page;
514
515                 if (!(page = alloc_page(gfp))) {
516                         return 1;
517                 }
518                 sh->dev[i].page = page;
519                 sh->dev[i].orig_page = page;
520         }
521         return 0;
522 }
523
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526                             struct stripe_head *sh);
527
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530         struct r5conf *conf = sh->raid_conf;
531         int i, seq;
532
533         BUG_ON(atomic_read(&sh->count) != 0);
534         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535         BUG_ON(stripe_operations_active(sh));
536         BUG_ON(sh->batch_head);
537
538         pr_debug("init_stripe called, stripe %llu\n",
539                 (unsigned long long)sector);
540 retry:
541         seq = read_seqcount_begin(&conf->gen_lock);
542         sh->generation = conf->generation - previous;
543         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544         sh->sector = sector;
545         stripe_set_idx(sector, conf, previous, sh);
546         sh->state = 0;
547
548         for (i = sh->disks; i--; ) {
549                 struct r5dev *dev = &sh->dev[i];
550
551                 if (dev->toread || dev->read || dev->towrite || dev->written ||
552                     test_bit(R5_LOCKED, &dev->flags)) {
553                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554                                (unsigned long long)sh->sector, i, dev->toread,
555                                dev->read, dev->towrite, dev->written,
556                                test_bit(R5_LOCKED, &dev->flags));
557                         WARN_ON(1);
558                 }
559                 dev->flags = 0;
560                 raid5_build_block(sh, i, previous);
561         }
562         if (read_seqcount_retry(&conf->gen_lock, seq))
563                 goto retry;
564         sh->overwrite_disks = 0;
565         insert_hash(conf, sh);
566         sh->cpu = smp_processor_id();
567         set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571                                          short generation)
572 {
573         struct stripe_head *sh;
574
575         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577                 if (sh->sector == sector && sh->generation == generation)
578                         return sh;
579         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580         return NULL;
581 }
582
583 /*
584  * Need to check if array has failed when deciding whether to:
585  *  - start an array
586  *  - remove non-faulty devices
587  *  - add a spare
588  *  - allow a reshape
589  * This determination is simple when no reshape is happening.
590  * However if there is a reshape, we need to carefully check
591  * both the before and after sections.
592  * This is because some failed devices may only affect one
593  * of the two sections, and some non-in_sync devices may
594  * be insync in the section most affected by failed devices.
595  */
596 static int calc_degraded(struct r5conf *conf)
597 {
598         int degraded, degraded2;
599         int i;
600
601         rcu_read_lock();
602         degraded = 0;
603         for (i = 0; i < conf->previous_raid_disks; i++) {
604                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605                 if (rdev && test_bit(Faulty, &rdev->flags))
606                         rdev = rcu_dereference(conf->disks[i].replacement);
607                 if (!rdev || test_bit(Faulty, &rdev->flags))
608                         degraded++;
609                 else if (test_bit(In_sync, &rdev->flags))
610                         ;
611                 else
612                         /* not in-sync or faulty.
613                          * If the reshape increases the number of devices,
614                          * this is being recovered by the reshape, so
615                          * this 'previous' section is not in_sync.
616                          * If the number of devices is being reduced however,
617                          * the device can only be part of the array if
618                          * we are reverting a reshape, so this section will
619                          * be in-sync.
620                          */
621                         if (conf->raid_disks >= conf->previous_raid_disks)
622                                 degraded++;
623         }
624         rcu_read_unlock();
625         if (conf->raid_disks == conf->previous_raid_disks)
626                 return degraded;
627         rcu_read_lock();
628         degraded2 = 0;
629         for (i = 0; i < conf->raid_disks; i++) {
630                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631                 if (rdev && test_bit(Faulty, &rdev->flags))
632                         rdev = rcu_dereference(conf->disks[i].replacement);
633                 if (!rdev || test_bit(Faulty, &rdev->flags))
634                         degraded2++;
635                 else if (test_bit(In_sync, &rdev->flags))
636                         ;
637                 else
638                         /* not in-sync or faulty.
639                          * If reshape increases the number of devices, this
640                          * section has already been recovered, else it
641                          * almost certainly hasn't.
642                          */
643                         if (conf->raid_disks <= conf->previous_raid_disks)
644                                 degraded2++;
645         }
646         rcu_read_unlock();
647         if (degraded2 > degraded)
648                 return degraded2;
649         return degraded;
650 }
651
652 static int has_failed(struct r5conf *conf)
653 {
654         int degraded;
655
656         if (conf->mddev->reshape_position == MaxSector)
657                 return conf->mddev->degraded > conf->max_degraded;
658
659         degraded = calc_degraded(conf);
660         if (degraded > conf->max_degraded)
661                 return 1;
662         return 0;
663 }
664
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667                   int previous, int noblock, int noquiesce)
668 {
669         struct stripe_head *sh;
670         int hash = stripe_hash_locks_hash(sector);
671
672         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673
674         spin_lock_irq(conf->hash_locks + hash);
675
676         do {
677                 wait_event_lock_irq(conf->wait_for_quiescent,
678                                     conf->quiesce == 0 || noquiesce,
679                                     *(conf->hash_locks + hash));
680                 sh = __find_stripe(conf, sector, conf->generation - previous);
681                 if (!sh) {
682                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683                                 sh = get_free_stripe(conf, hash);
684                                 if (!sh && !test_bit(R5_DID_ALLOC,
685                                                      &conf->cache_state))
686                                         set_bit(R5_ALLOC_MORE,
687                                                 &conf->cache_state);
688                         }
689                         if (noblock && sh == NULL)
690                                 break;
691                         if (!sh) {
692                                 set_bit(R5_INACTIVE_BLOCKED,
693                                         &conf->cache_state);
694                                 wait_event_exclusive_cmd(
695                                         conf->wait_for_stripe[hash],
696                                         !list_empty(conf->inactive_list + hash) &&
697                                         (atomic_read(&conf->active_stripes)
698                                          < (conf->max_nr_stripes * 3 / 4)
699                                          || !test_bit(R5_INACTIVE_BLOCKED,
700                                                       &conf->cache_state)),
701                                         spin_unlock_irq(conf->hash_locks + hash),
702                                         spin_lock_irq(conf->hash_locks + hash));
703                                 clear_bit(R5_INACTIVE_BLOCKED,
704                                           &conf->cache_state);
705                         } else {
706                                 init_stripe(sh, sector, previous);
707                                 atomic_inc(&sh->count);
708                         }
709                 } else if (!atomic_inc_not_zero(&sh->count)) {
710                         spin_lock(&conf->device_lock);
711                         if (!atomic_read(&sh->count)) {
712                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
713                                         atomic_inc(&conf->active_stripes);
714                                 BUG_ON(list_empty(&sh->lru) &&
715                                        !test_bit(STRIPE_EXPANDING, &sh->state));
716                                 list_del_init(&sh->lru);
717                                 if (sh->group) {
718                                         sh->group->stripes_cnt--;
719                                         sh->group = NULL;
720                                 }
721                         }
722                         atomic_inc(&sh->count);
723                         spin_unlock(&conf->device_lock);
724                 }
725         } while (sh == NULL);
726
727         if (!list_empty(conf->inactive_list + hash))
728                 wake_up(&conf->wait_for_stripe[hash]);
729
730         spin_unlock_irq(conf->hash_locks + hash);
731         return sh;
732 }
733
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742         local_irq_disable();
743         if (sh1 > sh2) {
744                 spin_lock(&sh2->stripe_lock);
745                 spin_lock_nested(&sh1->stripe_lock, 1);
746         } else {
747                 spin_lock(&sh1->stripe_lock);
748                 spin_lock_nested(&sh2->stripe_lock, 1);
749         }
750 }
751
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754         spin_unlock(&sh1->stripe_lock);
755         spin_unlock(&sh2->stripe_lock);
756         local_irq_enable();
757 }
758
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764                 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770         struct stripe_head *head;
771         sector_t head_sector, tmp_sec;
772         int hash;
773         int dd_idx;
774
775         if (!stripe_can_batch(sh))
776                 return;
777         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778         tmp_sec = sh->sector;
779         if (!sector_div(tmp_sec, conf->chunk_sectors))
780                 return;
781         head_sector = sh->sector - STRIPE_SECTORS;
782
783         hash = stripe_hash_locks_hash(head_sector);
784         spin_lock_irq(conf->hash_locks + hash);
785         head = __find_stripe(conf, head_sector, conf->generation);
786         if (head && !atomic_inc_not_zero(&head->count)) {
787                 spin_lock(&conf->device_lock);
788                 if (!atomic_read(&head->count)) {
789                         if (!test_bit(STRIPE_HANDLE, &head->state))
790                                 atomic_inc(&conf->active_stripes);
791                         BUG_ON(list_empty(&head->lru) &&
792                                !test_bit(STRIPE_EXPANDING, &head->state));
793                         list_del_init(&head->lru);
794                         if (head->group) {
795                                 head->group->stripes_cnt--;
796                                 head->group = NULL;
797                         }
798                 }
799                 atomic_inc(&head->count);
800                 spin_unlock(&conf->device_lock);
801         }
802         spin_unlock_irq(conf->hash_locks + hash);
803
804         if (!head)
805                 return;
806         if (!stripe_can_batch(head))
807                 goto out;
808
809         lock_two_stripes(head, sh);
810         /* clear_batch_ready clear the flag */
811         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812                 goto unlock_out;
813
814         if (sh->batch_head)
815                 goto unlock_out;
816
817         dd_idx = 0;
818         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819                 dd_idx++;
820         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821                 goto unlock_out;
822
823         if (head->batch_head) {
824                 spin_lock(&head->batch_head->batch_lock);
825                 /* This batch list is already running */
826                 if (!stripe_can_batch(head)) {
827                         spin_unlock(&head->batch_head->batch_lock);
828                         goto unlock_out;
829                 }
830
831                 /*
832                  * at this point, head's BATCH_READY could be cleared, but we
833                  * can still add the stripe to batch list
834                  */
835                 list_add(&sh->batch_list, &head->batch_list);
836                 spin_unlock(&head->batch_head->batch_lock);
837
838                 sh->batch_head = head->batch_head;
839         } else {
840                 head->batch_head = head;
841                 sh->batch_head = head->batch_head;
842                 spin_lock(&head->batch_lock);
843                 list_add_tail(&sh->batch_list, &head->batch_list);
844                 spin_unlock(&head->batch_lock);
845         }
846
847         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848                 if (atomic_dec_return(&conf->preread_active_stripes)
849                     < IO_THRESHOLD)
850                         md_wakeup_thread(conf->mddev->thread);
851
852         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853                 int seq = sh->bm_seq;
854                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855                     sh->batch_head->bm_seq > seq)
856                         seq = sh->batch_head->bm_seq;
857                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858                 sh->batch_head->bm_seq = seq;
859         }
860
861         atomic_inc(&sh->count);
862 unlock_out:
863         unlock_two_stripes(head, sh);
864 out:
865         release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873         sector_t progress = conf->reshape_progress;
874         /* Need a memory barrier to make sure we see the value
875          * of conf->generation, or ->data_offset that was set before
876          * reshape_progress was updated.
877          */
878         smp_rmb();
879         if (progress == MaxSector)
880                 return 0;
881         if (sh->generation == conf->generation - 1)
882                 return 0;
883         /* We are in a reshape, and this is a new-generation stripe,
884          * so use new_data_offset.
885          */
886         return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi, int error);
891 static void
892 raid5_end_write_request(struct bio *bi, int error);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896         struct r5conf *conf = sh->raid_conf;
897         int i, disks = sh->disks;
898         struct stripe_head *head_sh = sh;
899
900         might_sleep();
901
902         for (i = disks; i--; ) {
903                 int rw;
904                 int replace_only = 0;
905                 struct bio *bi, *rbi;
906                 struct md_rdev *rdev, *rrdev = NULL;
907
908                 sh = head_sh;
909                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911                                 rw = WRITE_FUA;
912                         else
913                                 rw = WRITE;
914                         if (test_bit(R5_Discard, &sh->dev[i].flags))
915                                 rw |= REQ_DISCARD;
916                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917                         rw = READ;
918                 else if (test_and_clear_bit(R5_WantReplace,
919                                             &sh->dev[i].flags)) {
920                         rw = WRITE;
921                         replace_only = 1;
922                 } else
923                         continue;
924                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925                         rw |= REQ_SYNC;
926
927 again:
928                 bi = &sh->dev[i].req;
929                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931                 rcu_read_lock();
932                 rrdev = rcu_dereference(conf->disks[i].replacement);
933                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934                 rdev = rcu_dereference(conf->disks[i].rdev);
935                 if (!rdev) {
936                         rdev = rrdev;
937                         rrdev = NULL;
938                 }
939                 if (rw & WRITE) {
940                         if (replace_only)
941                                 rdev = NULL;
942                         if (rdev == rrdev)
943                                 /* We raced and saw duplicates */
944                                 rrdev = NULL;
945                 } else {
946                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947                                 rdev = rrdev;
948                         rrdev = NULL;
949                 }
950
951                 if (rdev && test_bit(Faulty, &rdev->flags))
952                         rdev = NULL;
953                 if (rdev)
954                         atomic_inc(&rdev->nr_pending);
955                 if (rrdev && test_bit(Faulty, &rrdev->flags))
956                         rrdev = NULL;
957                 if (rrdev)
958                         atomic_inc(&rrdev->nr_pending);
959                 rcu_read_unlock();
960
961                 /* We have already checked bad blocks for reads.  Now
962                  * need to check for writes.  We never accept write errors
963                  * on the replacement, so we don't to check rrdev.
964                  */
965                 while ((rw & WRITE) && rdev &&
966                        test_bit(WriteErrorSeen, &rdev->flags)) {
967                         sector_t first_bad;
968                         int bad_sectors;
969                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970                                               &first_bad, &bad_sectors);
971                         if (!bad)
972                                 break;
973
974                         if (bad < 0) {
975                                 set_bit(BlockedBadBlocks, &rdev->flags);
976                                 if (!conf->mddev->external &&
977                                     conf->mddev->flags) {
978                                         /* It is very unlikely, but we might
979                                          * still need to write out the
980                                          * bad block log - better give it
981                                          * a chance*/
982                                         md_check_recovery(conf->mddev);
983                                 }
984                                 /*
985                                  * Because md_wait_for_blocked_rdev
986                                  * will dec nr_pending, we must
987                                  * increment it first.
988                                  */
989                                 atomic_inc(&rdev->nr_pending);
990                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
991                         } else {
992                                 /* Acknowledged bad block - skip the write */
993                                 rdev_dec_pending(rdev, conf->mddev);
994                                 rdev = NULL;
995                         }
996                 }
997
998                 if (rdev) {
999                         if (s->syncing || s->expanding || s->expanded
1000                             || s->replacing)
1001                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003                         set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005                         bio_reset(bi);
1006                         bi->bi_bdev = rdev->bdev;
1007                         bi->bi_rw = rw;
1008                         bi->bi_end_io = (rw & WRITE)
1009                                 ? raid5_end_write_request
1010                                 : raid5_end_read_request;
1011                         bi->bi_private = sh;
1012
1013                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014                                 __func__, (unsigned long long)sh->sector,
1015                                 bi->bi_rw, i);
1016                         atomic_inc(&sh->count);
1017                         if (sh != head_sh)
1018                                 atomic_inc(&head_sh->count);
1019                         if (use_new_offset(conf, sh))
1020                                 bi->bi_iter.bi_sector = (sh->sector
1021                                                  + rdev->new_data_offset);
1022                         else
1023                                 bi->bi_iter.bi_sector = (sh->sector
1024                                                  + rdev->data_offset);
1025                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026                                 bi->bi_rw |= REQ_NOMERGE;
1027
1028                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1031                         bi->bi_vcnt = 1;
1032                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033                         bi->bi_io_vec[0].bv_offset = 0;
1034                         bi->bi_iter.bi_size = STRIPE_SIZE;
1035                         /*
1036                          * If this is discard request, set bi_vcnt 0. We don't
1037                          * want to confuse SCSI because SCSI will replace payload
1038                          */
1039                         if (rw & REQ_DISCARD)
1040                                 bi->bi_vcnt = 0;
1041                         if (rrdev)
1042                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044                         if (conf->mddev->gendisk)
1045                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046                                                       bi, disk_devt(conf->mddev->gendisk),
1047                                                       sh->dev[i].sector);
1048                         generic_make_request(bi);
1049                 }
1050                 if (rrdev) {
1051                         if (s->syncing || s->expanding || s->expanded
1052                             || s->replacing)
1053                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055                         set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057                         bio_reset(rbi);
1058                         rbi->bi_bdev = rrdev->bdev;
1059                         rbi->bi_rw = rw;
1060                         BUG_ON(!(rw & WRITE));
1061                         rbi->bi_end_io = raid5_end_write_request;
1062                         rbi->bi_private = sh;
1063
1064                         pr_debug("%s: for %llu schedule op %ld on "
1065                                  "replacement disc %d\n",
1066                                 __func__, (unsigned long long)sh->sector,
1067                                 rbi->bi_rw, i);
1068                         atomic_inc(&sh->count);
1069                         if (sh != head_sh)
1070                                 atomic_inc(&head_sh->count);
1071                         if (use_new_offset(conf, sh))
1072                                 rbi->bi_iter.bi_sector = (sh->sector
1073                                                   + rrdev->new_data_offset);
1074                         else
1075                                 rbi->bi_iter.bi_sector = (sh->sector
1076                                                   + rrdev->data_offset);
1077                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080                         rbi->bi_vcnt = 1;
1081                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082                         rbi->bi_io_vec[0].bv_offset = 0;
1083                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1084                         /*
1085                          * If this is discard request, set bi_vcnt 0. We don't
1086                          * want to confuse SCSI because SCSI will replace payload
1087                          */
1088                         if (rw & REQ_DISCARD)
1089                                 rbi->bi_vcnt = 0;
1090                         if (conf->mddev->gendisk)
1091                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092                                                       rbi, disk_devt(conf->mddev->gendisk),
1093                                                       sh->dev[i].sector);
1094                         generic_make_request(rbi);
1095                 }
1096                 if (!rdev && !rrdev) {
1097                         if (rw & WRITE)
1098                                 set_bit(STRIPE_DEGRADED, &sh->state);
1099                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1100                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1101                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102                         set_bit(STRIPE_HANDLE, &sh->state);
1103                 }
1104
1105                 if (!head_sh->batch_head)
1106                         continue;
1107                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108                                       batch_list);
1109                 if (sh != head_sh)
1110                         goto again;
1111         }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116         sector_t sector, struct dma_async_tx_descriptor *tx,
1117         struct stripe_head *sh)
1118 {
1119         struct bio_vec bvl;
1120         struct bvec_iter iter;
1121         struct page *bio_page;
1122         int page_offset;
1123         struct async_submit_ctl submit;
1124         enum async_tx_flags flags = 0;
1125
1126         if (bio->bi_iter.bi_sector >= sector)
1127                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128         else
1129                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131         if (frombio)
1132                 flags |= ASYNC_TX_FENCE;
1133         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135         bio_for_each_segment(bvl, bio, iter) {
1136                 int len = bvl.bv_len;
1137                 int clen;
1138                 int b_offset = 0;
1139
1140                 if (page_offset < 0) {
1141                         b_offset = -page_offset;
1142                         page_offset += b_offset;
1143                         len -= b_offset;
1144                 }
1145
1146                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147                         clen = STRIPE_SIZE - page_offset;
1148                 else
1149                         clen = len;
1150
1151                 if (clen > 0) {
1152                         b_offset += bvl.bv_offset;
1153                         bio_page = bvl.bv_page;
1154                         if (frombio) {
1155                                 if (sh->raid_conf->skip_copy &&
1156                                     b_offset == 0 && page_offset == 0 &&
1157                                     clen == STRIPE_SIZE)
1158                                         *page = bio_page;
1159                                 else
1160                                         tx = async_memcpy(*page, bio_page, page_offset,
1161                                                   b_offset, clen, &submit);
1162                         } else
1163                                 tx = async_memcpy(bio_page, *page, b_offset,
1164                                                   page_offset, clen, &submit);
1165                 }
1166                 /* chain the operations */
1167                 submit.depend_tx = tx;
1168
1169                 if (clen < len) /* hit end of page */
1170                         break;
1171                 page_offset +=  len;
1172         }
1173
1174         return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179         struct stripe_head *sh = stripe_head_ref;
1180         struct bio *return_bi = NULL;
1181         int i;
1182
1183         pr_debug("%s: stripe %llu\n", __func__,
1184                 (unsigned long long)sh->sector);
1185
1186         /* clear completed biofills */
1187         for (i = sh->disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189
1190                 /* acknowledge completion of a biofill operation */
1191                 /* and check if we need to reply to a read request,
1192                  * new R5_Wantfill requests are held off until
1193                  * !STRIPE_BIOFILL_RUN
1194                  */
1195                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196                         struct bio *rbi, *rbi2;
1197
1198                         BUG_ON(!dev->read);
1199                         rbi = dev->read;
1200                         dev->read = NULL;
1201                         while (rbi && rbi->bi_iter.bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 rbi2 = r5_next_bio(rbi, dev->sector);
1204                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1205                                         rbi->bi_next = return_bi;
1206                                         return_bi = rbi;
1207                                 }
1208                                 rbi = rbi2;
1209                         }
1210                 }
1211         }
1212         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214         return_io(return_bi);
1215
1216         set_bit(STRIPE_HANDLE, &sh->state);
1217         release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222         struct dma_async_tx_descriptor *tx = NULL;
1223         struct async_submit_ctl submit;
1224         int i;
1225
1226         BUG_ON(sh->batch_head);
1227         pr_debug("%s: stripe %llu\n", __func__,
1228                 (unsigned long long)sh->sector);
1229
1230         for (i = sh->disks; i--; ) {
1231                 struct r5dev *dev = &sh->dev[i];
1232                 if (test_bit(R5_Wantfill, &dev->flags)) {
1233                         struct bio *rbi;
1234                         spin_lock_irq(&sh->stripe_lock);
1235                         dev->read = rbi = dev->toread;
1236                         dev->toread = NULL;
1237                         spin_unlock_irq(&sh->stripe_lock);
1238                         while (rbi && rbi->bi_iter.bi_sector <
1239                                 dev->sector + STRIPE_SECTORS) {
1240                                 tx = async_copy_data(0, rbi, &dev->page,
1241                                         dev->sector, tx, sh);
1242                                 rbi = r5_next_bio(rbi, dev->sector);
1243                         }
1244                 }
1245         }
1246
1247         atomic_inc(&sh->count);
1248         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249         async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254         struct r5dev *tgt;
1255
1256         if (target < 0)
1257                 return;
1258
1259         tgt = &sh->dev[target];
1260         set_bit(R5_UPTODATE, &tgt->flags);
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262         clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267         struct stripe_head *sh = stripe_head_ref;
1268
1269         pr_debug("%s: stripe %llu\n", __func__,
1270                 (unsigned long long)sh->sector);
1271
1272         /* mark the computed target(s) as uptodate */
1273         mark_target_uptodate(sh, sh->ops.target);
1274         mark_target_uptodate(sh, sh->ops.target2);
1275
1276         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277         if (sh->check_state == check_state_compute_run)
1278                 sh->check_state = check_state_compute_result;
1279         set_bit(STRIPE_HANDLE, &sh->state);
1280         release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285                                  struct raid5_percpu *percpu, int i)
1286 {
1287         void *addr;
1288
1289         addr = flex_array_get(percpu->scribble, i);
1290         return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296         void *addr;
1297
1298         addr = flex_array_get(percpu->scribble, i);
1299         return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305         int disks = sh->disks;
1306         struct page **xor_srcs = to_addr_page(percpu, 0);
1307         int target = sh->ops.target;
1308         struct r5dev *tgt = &sh->dev[target];
1309         struct page *xor_dest = tgt->page;
1310         int count = 0;
1311         struct dma_async_tx_descriptor *tx;
1312         struct async_submit_ctl submit;
1313         int i;
1314
1315         BUG_ON(sh->batch_head);
1316
1317         pr_debug("%s: stripe %llu block: %d\n",
1318                 __func__, (unsigned long long)sh->sector, target);
1319         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321         for (i = disks; i--; )
1322                 if (i != target)
1323                         xor_srcs[count++] = sh->dev[i].page;
1324
1325         atomic_inc(&sh->count);
1326
1327         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329         if (unlikely(count == 1))
1330                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331         else
1332                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334         return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347                                 struct stripe_head *sh,
1348                                 int srctype)
1349 {
1350         int disks = sh->disks;
1351         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352         int d0_idx = raid6_d0(sh);
1353         int count;
1354         int i;
1355
1356         for (i = 0; i < disks; i++)
1357                 srcs[i] = NULL;
1358
1359         count = 0;
1360         i = d0_idx;
1361         do {
1362                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363                 struct r5dev *dev = &sh->dev[i];
1364
1365                 if (i == sh->qd_idx || i == sh->pd_idx ||
1366                     (srctype == SYNDROME_SRC_ALL) ||
1367                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368                      test_bit(R5_Wantdrain, &dev->flags)) ||
1369                     (srctype == SYNDROME_SRC_WRITTEN &&
1370                      dev->written))
1371                         srcs[slot] = sh->dev[i].page;
1372                 i = raid6_next_disk(i, disks);
1373         } while (i != d0_idx);
1374
1375         return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381         int disks = sh->disks;
1382         struct page **blocks = to_addr_page(percpu, 0);
1383         int target;
1384         int qd_idx = sh->qd_idx;
1385         struct dma_async_tx_descriptor *tx;
1386         struct async_submit_ctl submit;
1387         struct r5dev *tgt;
1388         struct page *dest;
1389         int i;
1390         int count;
1391
1392         BUG_ON(sh->batch_head);
1393         if (sh->ops.target < 0)
1394                 target = sh->ops.target2;
1395         else if (sh->ops.target2 < 0)
1396                 target = sh->ops.target;
1397         else
1398                 /* we should only have one valid target */
1399                 BUG();
1400         BUG_ON(target < 0);
1401         pr_debug("%s: stripe %llu block: %d\n",
1402                 __func__, (unsigned long long)sh->sector, target);
1403
1404         tgt = &sh->dev[target];
1405         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406         dest = tgt->page;
1407
1408         atomic_inc(&sh->count);
1409
1410         if (target == qd_idx) {
1411                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412                 blocks[count] = NULL; /* regenerating p is not necessary */
1413                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415                                   ops_complete_compute, sh,
1416                                   to_addr_conv(sh, percpu, 0));
1417                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418         } else {
1419                 /* Compute any data- or p-drive using XOR */
1420                 count = 0;
1421                 for (i = disks; i-- ; ) {
1422                         if (i == target || i == qd_idx)
1423                                 continue;
1424                         blocks[count++] = sh->dev[i].page;
1425                 }
1426
1427                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428                                   NULL, ops_complete_compute, sh,
1429                                   to_addr_conv(sh, percpu, 0));
1430                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431         }
1432
1433         return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439         int i, count, disks = sh->disks;
1440         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441         int d0_idx = raid6_d0(sh);
1442         int faila = -1, failb = -1;
1443         int target = sh->ops.target;
1444         int target2 = sh->ops.target2;
1445         struct r5dev *tgt = &sh->dev[target];
1446         struct r5dev *tgt2 = &sh->dev[target2];
1447         struct dma_async_tx_descriptor *tx;
1448         struct page **blocks = to_addr_page(percpu, 0);
1449         struct async_submit_ctl submit;
1450
1451         BUG_ON(sh->batch_head);
1452         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453                  __func__, (unsigned long long)sh->sector, target, target2);
1454         BUG_ON(target < 0 || target2 < 0);
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458         /* we need to open-code set_syndrome_sources to handle the
1459          * slot number conversion for 'faila' and 'failb'
1460          */
1461         for (i = 0; i < disks ; i++)
1462                 blocks[i] = NULL;
1463         count = 0;
1464         i = d0_idx;
1465         do {
1466                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468                 blocks[slot] = sh->dev[i].page;
1469
1470                 if (i == target)
1471                         faila = slot;
1472                 if (i == target2)
1473                         failb = slot;
1474                 i = raid6_next_disk(i, disks);
1475         } while (i != d0_idx);
1476
1477         BUG_ON(faila == failb);
1478         if (failb < faila)
1479                 swap(faila, failb);
1480         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481                  __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483         atomic_inc(&sh->count);
1484
1485         if (failb == syndrome_disks+1) {
1486                 /* Q disk is one of the missing disks */
1487                 if (faila == syndrome_disks) {
1488                         /* Missing P+Q, just recompute */
1489                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490                                           ops_complete_compute, sh,
1491                                           to_addr_conv(sh, percpu, 0));
1492                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493                                                   STRIPE_SIZE, &submit);
1494                 } else {
1495                         struct page *dest;
1496                         int data_target;
1497                         int qd_idx = sh->qd_idx;
1498
1499                         /* Missing D+Q: recompute D from P, then recompute Q */
1500                         if (target == qd_idx)
1501                                 data_target = target2;
1502                         else
1503                                 data_target = target;
1504
1505                         count = 0;
1506                         for (i = disks; i-- ; ) {
1507                                 if (i == data_target || i == qd_idx)
1508                                         continue;
1509                                 blocks[count++] = sh->dev[i].page;
1510                         }
1511                         dest = sh->dev[data_target].page;
1512                         init_async_submit(&submit,
1513                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514                                           NULL, NULL, NULL,
1515                                           to_addr_conv(sh, percpu, 0));
1516                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517                                        &submit);
1518
1519                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521                                           ops_complete_compute, sh,
1522                                           to_addr_conv(sh, percpu, 0));
1523                         return async_gen_syndrome(blocks, 0, count+2,
1524                                                   STRIPE_SIZE, &submit);
1525                 }
1526         } else {
1527                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528                                   ops_complete_compute, sh,
1529                                   to_addr_conv(sh, percpu, 0));
1530                 if (failb == syndrome_disks) {
1531                         /* We're missing D+P. */
1532                         return async_raid6_datap_recov(syndrome_disks+2,
1533                                                        STRIPE_SIZE, faila,
1534                                                        blocks, &submit);
1535                 } else {
1536                         /* We're missing D+D. */
1537                         return async_raid6_2data_recov(syndrome_disks+2,
1538                                                        STRIPE_SIZE, faila, failb,
1539                                                        blocks, &submit);
1540                 }
1541         }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546         struct stripe_head *sh = stripe_head_ref;
1547
1548         pr_debug("%s: stripe %llu\n", __func__,
1549                 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554                 struct dma_async_tx_descriptor *tx)
1555 {
1556         int disks = sh->disks;
1557         struct page **xor_srcs = to_addr_page(percpu, 0);
1558         int count = 0, pd_idx = sh->pd_idx, i;
1559         struct async_submit_ctl submit;
1560
1561         /* existing parity data subtracted */
1562         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564         BUG_ON(sh->batch_head);
1565         pr_debug("%s: stripe %llu\n", __func__,
1566                 (unsigned long long)sh->sector);
1567
1568         for (i = disks; i--; ) {
1569                 struct r5dev *dev = &sh->dev[i];
1570                 /* Only process blocks that are known to be uptodate */
1571                 if (test_bit(R5_Wantdrain, &dev->flags))
1572                         xor_srcs[count++] = dev->page;
1573         }
1574
1575         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579         return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584                 struct dma_async_tx_descriptor *tx)
1585 {
1586         struct page **blocks = to_addr_page(percpu, 0);
1587         int count;
1588         struct async_submit_ctl submit;
1589
1590         pr_debug("%s: stripe %llu\n", __func__,
1591                 (unsigned long long)sh->sector);
1592
1593         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598
1599         return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605         int disks = sh->disks;
1606         int i;
1607         struct stripe_head *head_sh = sh;
1608
1609         pr_debug("%s: stripe %llu\n", __func__,
1610                 (unsigned long long)sh->sector);
1611
1612         for (i = disks; i--; ) {
1613                 struct r5dev *dev;
1614                 struct bio *chosen;
1615
1616                 sh = head_sh;
1617                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618                         struct bio *wbi;
1619
1620 again:
1621                         dev = &sh->dev[i];
1622                         spin_lock_irq(&sh->stripe_lock);
1623                         chosen = dev->towrite;
1624                         dev->towrite = NULL;
1625                         sh->overwrite_disks = 0;
1626                         BUG_ON(dev->written);
1627                         wbi = dev->written = chosen;
1628                         spin_unlock_irq(&sh->stripe_lock);
1629                         WARN_ON(dev->page != dev->orig_page);
1630
1631                         while (wbi && wbi->bi_iter.bi_sector <
1632                                 dev->sector + STRIPE_SECTORS) {
1633                                 if (wbi->bi_rw & REQ_FUA)
1634                                         set_bit(R5_WantFUA, &dev->flags);
1635                                 if (wbi->bi_rw & REQ_SYNC)
1636                                         set_bit(R5_SyncIO, &dev->flags);
1637                                 if (wbi->bi_rw & REQ_DISCARD)
1638                                         set_bit(R5_Discard, &dev->flags);
1639                                 else {
1640                                         tx = async_copy_data(1, wbi, &dev->page,
1641                                                 dev->sector, tx, sh);
1642                                         if (dev->page != dev->orig_page) {
1643                                                 set_bit(R5_SkipCopy, &dev->flags);
1644                                                 clear_bit(R5_UPTODATE, &dev->flags);
1645                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1646                                         }
1647                                 }
1648                                 wbi = r5_next_bio(wbi, dev->sector);
1649                         }
1650
1651                         if (head_sh->batch_head) {
1652                                 sh = list_first_entry(&sh->batch_list,
1653                                                       struct stripe_head,
1654                                                       batch_list);
1655                                 if (sh == head_sh)
1656                                         continue;
1657                                 goto again;
1658                         }
1659                 }
1660         }
1661
1662         return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667         struct stripe_head *sh = stripe_head_ref;
1668         int disks = sh->disks;
1669         int pd_idx = sh->pd_idx;
1670         int qd_idx = sh->qd_idx;
1671         int i;
1672         bool fua = false, sync = false, discard = false;
1673
1674         pr_debug("%s: stripe %llu\n", __func__,
1675                 (unsigned long long)sh->sector);
1676
1677         for (i = disks; i--; ) {
1678                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681         }
1682
1683         for (i = disks; i--; ) {
1684                 struct r5dev *dev = &sh->dev[i];
1685
1686                 if (dev->written || i == pd_idx || i == qd_idx) {
1687                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688                                 set_bit(R5_UPTODATE, &dev->flags);
1689                         if (fua)
1690                                 set_bit(R5_WantFUA, &dev->flags);
1691                         if (sync)
1692                                 set_bit(R5_SyncIO, &dev->flags);
1693                 }
1694         }
1695
1696         if (sh->reconstruct_state == reconstruct_state_drain_run)
1697                 sh->reconstruct_state = reconstruct_state_drain_result;
1698         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700         else {
1701                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702                 sh->reconstruct_state = reconstruct_state_result;
1703         }
1704
1705         set_bit(STRIPE_HANDLE, &sh->state);
1706         release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711                      struct dma_async_tx_descriptor *tx)
1712 {
1713         int disks = sh->disks;
1714         struct page **xor_srcs;
1715         struct async_submit_ctl submit;
1716         int count, pd_idx = sh->pd_idx, i;
1717         struct page *xor_dest;
1718         int prexor = 0;
1719         unsigned long flags;
1720         int j = 0;
1721         struct stripe_head *head_sh = sh;
1722         int last_stripe;
1723
1724         pr_debug("%s: stripe %llu\n", __func__,
1725                 (unsigned long long)sh->sector);
1726
1727         for (i = 0; i < sh->disks; i++) {
1728                 if (pd_idx == i)
1729                         continue;
1730                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731                         break;
1732         }
1733         if (i >= sh->disks) {
1734                 atomic_inc(&sh->count);
1735                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736                 ops_complete_reconstruct(sh);
1737                 return;
1738         }
1739 again:
1740         count = 0;
1741         xor_srcs = to_addr_page(percpu, j);
1742         /* check if prexor is active which means only process blocks
1743          * that are part of a read-modify-write (written)
1744          */
1745         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746                 prexor = 1;
1747                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748                 for (i = disks; i--; ) {
1749                         struct r5dev *dev = &sh->dev[i];
1750                         if (head_sh->dev[i].written)
1751                                 xor_srcs[count++] = dev->page;
1752                 }
1753         } else {
1754                 xor_dest = sh->dev[pd_idx].page;
1755                 for (i = disks; i--; ) {
1756                         struct r5dev *dev = &sh->dev[i];
1757                         if (i != pd_idx)
1758                                 xor_srcs[count++] = dev->page;
1759                 }
1760         }
1761
1762         /* 1/ if we prexor'd then the dest is reused as a source
1763          * 2/ if we did not prexor then we are redoing the parity
1764          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765          * for the synchronous xor case
1766          */
1767         last_stripe = !head_sh->batch_head ||
1768                 list_first_entry(&sh->batch_list,
1769                                  struct stripe_head, batch_list) == head_sh;
1770         if (last_stripe) {
1771                 flags = ASYNC_TX_ACK |
1772                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774                 atomic_inc(&head_sh->count);
1775                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776                                   to_addr_conv(sh, percpu, j));
1777         } else {
1778                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779                 init_async_submit(&submit, flags, tx, NULL, NULL,
1780                                   to_addr_conv(sh, percpu, j));
1781         }
1782
1783         if (unlikely(count == 1))
1784                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785         else
1786                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787         if (!last_stripe) {
1788                 j++;
1789                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790                                       batch_list);
1791                 goto again;
1792         }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797                      struct dma_async_tx_descriptor *tx)
1798 {
1799         struct async_submit_ctl submit;
1800         struct page **blocks;
1801         int count, i, j = 0;
1802         struct stripe_head *head_sh = sh;
1803         int last_stripe;
1804         int synflags;
1805         unsigned long txflags;
1806
1807         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809         for (i = 0; i < sh->disks; i++) {
1810                 if (sh->pd_idx == i || sh->qd_idx == i)
1811                         continue;
1812                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813                         break;
1814         }
1815         if (i >= sh->disks) {
1816                 atomic_inc(&sh->count);
1817                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819                 ops_complete_reconstruct(sh);
1820                 return;
1821         }
1822
1823 again:
1824         blocks = to_addr_page(percpu, j);
1825
1826         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827                 synflags = SYNDROME_SRC_WRITTEN;
1828                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829         } else {
1830                 synflags = SYNDROME_SRC_ALL;
1831                 txflags = ASYNC_TX_ACK;
1832         }
1833
1834         count = set_syndrome_sources(blocks, sh, synflags);
1835         last_stripe = !head_sh->batch_head ||
1836                 list_first_entry(&sh->batch_list,
1837                                  struct stripe_head, batch_list) == head_sh;
1838
1839         if (last_stripe) {
1840                 atomic_inc(&head_sh->count);
1841                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842                                   head_sh, to_addr_conv(sh, percpu, j));
1843         } else
1844                 init_async_submit(&submit, 0, tx, NULL, NULL,
1845                                   to_addr_conv(sh, percpu, j));
1846         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847         if (!last_stripe) {
1848                 j++;
1849                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850                                       batch_list);
1851                 goto again;
1852         }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857         struct stripe_head *sh = stripe_head_ref;
1858
1859         pr_debug("%s: stripe %llu\n", __func__,
1860                 (unsigned long long)sh->sector);
1861
1862         sh->check_state = check_state_check_result;
1863         set_bit(STRIPE_HANDLE, &sh->state);
1864         release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869         int disks = sh->disks;
1870         int pd_idx = sh->pd_idx;
1871         int qd_idx = sh->qd_idx;
1872         struct page *xor_dest;
1873         struct page **xor_srcs = to_addr_page(percpu, 0);
1874         struct dma_async_tx_descriptor *tx;
1875         struct async_submit_ctl submit;
1876         int count;
1877         int i;
1878
1879         pr_debug("%s: stripe %llu\n", __func__,
1880                 (unsigned long long)sh->sector);
1881
1882         BUG_ON(sh->batch_head);
1883         count = 0;
1884         xor_dest = sh->dev[pd_idx].page;
1885         xor_srcs[count++] = xor_dest;
1886         for (i = disks; i--; ) {
1887                 if (i == pd_idx || i == qd_idx)
1888                         continue;
1889                 xor_srcs[count++] = sh->dev[i].page;
1890         }
1891
1892         init_async_submit(&submit, 0, NULL, NULL, NULL,
1893                           to_addr_conv(sh, percpu, 0));
1894         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895                            &sh->ops.zero_sum_result, &submit);
1896
1897         atomic_inc(&sh->count);
1898         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899         tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904         struct page **srcs = to_addr_page(percpu, 0);
1905         struct async_submit_ctl submit;
1906         int count;
1907
1908         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909                 (unsigned long long)sh->sector, checkp);
1910
1911         BUG_ON(sh->batch_head);
1912         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913         if (!checkp)
1914                 srcs[count] = NULL;
1915
1916         atomic_inc(&sh->count);
1917         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918                           sh, to_addr_conv(sh, percpu, 0));
1919         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925         int overlap_clear = 0, i, disks = sh->disks;
1926         struct dma_async_tx_descriptor *tx = NULL;
1927         struct r5conf *conf = sh->raid_conf;
1928         int level = conf->level;
1929         struct raid5_percpu *percpu;
1930         unsigned long cpu;
1931
1932         cpu = get_cpu();
1933         percpu = per_cpu_ptr(conf->percpu, cpu);
1934         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935                 ops_run_biofill(sh);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940                 if (level < 6)
1941                         tx = ops_run_compute5(sh, percpu);
1942                 else {
1943                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944                                 tx = ops_run_compute6_1(sh, percpu);
1945                         else
1946                                 tx = ops_run_compute6_2(sh, percpu);
1947                 }
1948                 /* terminate the chain if reconstruct is not set to be run */
1949                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950                         async_tx_ack(tx);
1951         }
1952
1953         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954                 if (level < 6)
1955                         tx = ops_run_prexor5(sh, percpu, tx);
1956                 else
1957                         tx = ops_run_prexor6(sh, percpu, tx);
1958         }
1959
1960         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961                 tx = ops_run_biodrain(sh, tx);
1962                 overlap_clear++;
1963         }
1964
1965         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966                 if (level < 6)
1967                         ops_run_reconstruct5(sh, percpu, tx);
1968                 else
1969                         ops_run_reconstruct6(sh, percpu, tx);
1970         }
1971
1972         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973                 if (sh->check_state == check_state_run)
1974                         ops_run_check_p(sh, percpu);
1975                 else if (sh->check_state == check_state_run_q)
1976                         ops_run_check_pq(sh, percpu, 0);
1977                 else if (sh->check_state == check_state_run_pq)
1978                         ops_run_check_pq(sh, percpu, 1);
1979                 else
1980                         BUG();
1981         }
1982
1983         if (overlap_clear && !sh->batch_head)
1984                 for (i = disks; i--; ) {
1985                         struct r5dev *dev = &sh->dev[i];
1986                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987                                 wake_up(&sh->raid_conf->wait_for_overlap);
1988                 }
1989         put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994         struct stripe_head *sh;
1995
1996         sh = kmem_cache_zalloc(sc, gfp);
1997         if (sh) {
1998                 spin_lock_init(&sh->stripe_lock);
1999                 spin_lock_init(&sh->batch_lock);
2000                 INIT_LIST_HEAD(&sh->batch_list);
2001                 INIT_LIST_HEAD(&sh->lru);
2002                 atomic_set(&sh->count, 1);
2003         }
2004         return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008         struct stripe_head *sh;
2009
2010         sh = alloc_stripe(conf->slab_cache, gfp);
2011         if (!sh)
2012                 return 0;
2013
2014         sh->raid_conf = conf;
2015
2016         if (grow_buffers(sh, gfp)) {
2017                 shrink_buffers(sh);
2018                 kmem_cache_free(conf->slab_cache, sh);
2019                 return 0;
2020         }
2021         sh->hash_lock_index =
2022                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023         /* we just created an active stripe so... */
2024         atomic_inc(&conf->active_stripes);
2025
2026         release_stripe(sh);
2027         conf->max_nr_stripes++;
2028         return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033         struct kmem_cache *sc;
2034         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036         if (conf->mddev->gendisk)
2037                 sprintf(conf->cache_name[0],
2038                         "raid%d-%s", conf->level, mdname(conf->mddev));
2039         else
2040                 sprintf(conf->cache_name[0],
2041                         "raid%d-%p", conf->level, conf->mddev);
2042         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044         conf->active_name = 0;
2045         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047                                0, 0, NULL);
2048         if (!sc)
2049                 return 1;
2050         conf->slab_cache = sc;
2051         conf->pool_size = devs;
2052         while (num--)
2053                 if (!grow_one_stripe(conf, GFP_KERNEL))
2054                         return 1;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074         struct flex_array *ret;
2075         size_t len;
2076
2077         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078         ret = flex_array_alloc(len, cnt, flags);
2079         if (!ret)
2080                 return NULL;
2081         /* always prealloc all elements, so no locking is required */
2082         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083                 flex_array_free(ret);
2084                 return NULL;
2085         }
2086         return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091         unsigned long cpu;
2092         int err = 0;
2093
2094         mddev_suspend(conf->mddev);
2095         get_online_cpus();
2096         for_each_present_cpu(cpu) {
2097                 struct raid5_percpu *percpu;
2098                 struct flex_array *scribble;
2099
2100                 percpu = per_cpu_ptr(conf->percpu, cpu);
2101                 scribble = scribble_alloc(new_disks,
2102                                           new_sectors / STRIPE_SECTORS,
2103                                           GFP_NOIO);
2104
2105                 if (scribble) {
2106                         flex_array_free(percpu->scribble);
2107                         percpu->scribble = scribble;
2108                 } else {
2109                         err = -ENOMEM;
2110                         break;
2111                 }
2112         }
2113         put_online_cpus();
2114         mddev_resume(conf->mddev);
2115         return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120         /* Make all the stripes able to hold 'newsize' devices.
2121          * New slots in each stripe get 'page' set to a new page.
2122          *
2123          * This happens in stages:
2124          * 1/ create a new kmem_cache and allocate the required number of
2125          *    stripe_heads.
2126          * 2/ gather all the old stripe_heads and transfer the pages across
2127          *    to the new stripe_heads.  This will have the side effect of
2128          *    freezing the array as once all stripe_heads have been collected,
2129          *    no IO will be possible.  Old stripe heads are freed once their
2130          *    pages have been transferred over, and the old kmem_cache is
2131          *    freed when all stripes are done.
2132          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133          *    we simple return a failre status - no need to clean anything up.
2134          * 4/ allocate new pages for the new slots in the new stripe_heads.
2135          *    If this fails, we don't bother trying the shrink the
2136          *    stripe_heads down again, we just leave them as they are.
2137          *    As each stripe_head is processed the new one is released into
2138          *    active service.
2139          *
2140          * Once step2 is started, we cannot afford to wait for a write,
2141          * so we use GFP_NOIO allocations.
2142          */
2143         struct stripe_head *osh, *nsh;
2144         LIST_HEAD(newstripes);
2145         struct disk_info *ndisks;
2146         int err;
2147         struct kmem_cache *sc;
2148         int i;
2149         int hash, cnt;
2150
2151         if (newsize <= conf->pool_size)
2152                 return 0; /* never bother to shrink */
2153
2154         err = md_allow_write(conf->mddev);
2155         if (err)
2156                 return err;
2157
2158         /* Step 1 */
2159         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161                                0, 0, NULL);
2162         if (!sc)
2163                 return -ENOMEM;
2164
2165         for (i = conf->max_nr_stripes; i; i--) {
2166                 nsh = alloc_stripe(sc, GFP_KERNEL);
2167                 if (!nsh)
2168                         break;
2169
2170                 nsh->raid_conf = conf;
2171                 list_add(&nsh->lru, &newstripes);
2172         }
2173         if (i) {
2174                 /* didn't get enough, give up */
2175                 while (!list_empty(&newstripes)) {
2176                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2177                         list_del(&nsh->lru);
2178                         kmem_cache_free(sc, nsh);
2179                 }
2180                 kmem_cache_destroy(sc);
2181                 return -ENOMEM;
2182         }
2183         /* Step 2 - Must use GFP_NOIO now.
2184          * OK, we have enough stripes, start collecting inactive
2185          * stripes and copying them over
2186          */
2187         hash = 0;
2188         cnt = 0;
2189         list_for_each_entry(nsh, &newstripes, lru) {
2190                 lock_device_hash_lock(conf, hash);
2191                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2192                                     !list_empty(conf->inactive_list + hash),
2193                                     unlock_device_hash_lock(conf, hash),
2194                                     lock_device_hash_lock(conf, hash));
2195                 osh = get_free_stripe(conf, hash);
2196                 unlock_device_hash_lock(conf, hash);
2197
2198                 for(i=0; i<conf->pool_size; i++) {
2199                         nsh->dev[i].page = osh->dev[i].page;
2200                         nsh->dev[i].orig_page = osh->dev[i].page;
2201                 }
2202                 nsh->hash_lock_index = hash;
2203                 kmem_cache_free(conf->slab_cache, osh);
2204                 cnt++;
2205                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207                         hash++;
2208                         cnt = 0;
2209                 }
2210         }
2211         kmem_cache_destroy(conf->slab_cache);
2212
2213         /* Step 3.
2214          * At this point, we are holding all the stripes so the array
2215          * is completely stalled, so now is a good time to resize
2216          * conf->disks and the scribble region
2217          */
2218         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219         if (ndisks) {
2220                 for (i=0; i<conf->raid_disks; i++)
2221                         ndisks[i] = conf->disks[i];
2222                 kfree(conf->disks);
2223                 conf->disks = ndisks;
2224         } else
2225                 err = -ENOMEM;
2226
2227         /* Step 4, return new stripes to service */
2228         while(!list_empty(&newstripes)) {
2229                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2230                 list_del_init(&nsh->lru);
2231
2232                 for (i=conf->raid_disks; i < newsize; i++)
2233                         if (nsh->dev[i].page == NULL) {
2234                                 struct page *p = alloc_page(GFP_NOIO);
2235                                 nsh->dev[i].page = p;
2236                                 nsh->dev[i].orig_page = p;
2237                                 if (!p)
2238                                         err = -ENOMEM;
2239                         }
2240                 release_stripe(nsh);
2241         }
2242         /* critical section pass, GFP_NOIO no longer needed */
2243
2244         conf->slab_cache = sc;
2245         conf->active_name = 1-conf->active_name;
2246         if (!err)
2247                 conf->pool_size = newsize;
2248         return err;
2249 }
2250
2251 static int drop_one_stripe(struct r5conf *conf)
2252 {
2253         struct stripe_head *sh;
2254         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2255
2256         spin_lock_irq(conf->hash_locks + hash);
2257         sh = get_free_stripe(conf, hash);
2258         spin_unlock_irq(conf->hash_locks + hash);
2259         if (!sh)
2260                 return 0;
2261         BUG_ON(atomic_read(&sh->count));
2262         shrink_buffers(sh);
2263         kmem_cache_free(conf->slab_cache, sh);
2264         atomic_dec(&conf->active_stripes);
2265         conf->max_nr_stripes--;
2266         return 1;
2267 }
2268
2269 static void shrink_stripes(struct r5conf *conf)
2270 {
2271         while (conf->max_nr_stripes &&
2272                drop_one_stripe(conf))
2273                 ;
2274
2275         if (conf->slab_cache)
2276                 kmem_cache_destroy(conf->slab_cache);
2277         conf->slab_cache = NULL;
2278 }
2279
2280 static void raid5_end_read_request(struct bio * bi, int error)
2281 {
2282         struct stripe_head *sh = bi->bi_private;
2283         struct r5conf *conf = sh->raid_conf;
2284         int disks = sh->disks, i;
2285         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2286         char b[BDEVNAME_SIZE];
2287         struct md_rdev *rdev = NULL;
2288         sector_t s;
2289
2290         for (i=0 ; i<disks; i++)
2291                 if (bi == &sh->dev[i].req)
2292                         break;
2293
2294         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2295                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2296                 uptodate);
2297         if (i == disks) {
2298                 BUG();
2299                 return;
2300         }
2301         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2302                 /* If replacement finished while this request was outstanding,
2303                  * 'replacement' might be NULL already.
2304                  * In that case it moved down to 'rdev'.
2305                  * rdev is not removed until all requests are finished.
2306                  */
2307                 rdev = conf->disks[i].replacement;
2308         if (!rdev)
2309                 rdev = conf->disks[i].rdev;
2310
2311         if (use_new_offset(conf, sh))
2312                 s = sh->sector + rdev->new_data_offset;
2313         else
2314                 s = sh->sector + rdev->data_offset;
2315         if (uptodate) {
2316                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2317                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2318                         /* Note that this cannot happen on a
2319                          * replacement device.  We just fail those on
2320                          * any error
2321                          */
2322                         printk_ratelimited(
2323                                 KERN_INFO
2324                                 "md/raid:%s: read error corrected"
2325                                 " (%lu sectors at %llu on %s)\n",
2326                                 mdname(conf->mddev), STRIPE_SECTORS,
2327                                 (unsigned long long)s,
2328                                 bdevname(rdev->bdev, b));
2329                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2330                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2331                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2332                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2333                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2334
2335                 if (atomic_read(&rdev->read_errors))
2336                         atomic_set(&rdev->read_errors, 0);
2337         } else {
2338                 const char *bdn = bdevname(rdev->bdev, b);
2339                 int retry = 0;
2340                 int set_bad = 0;
2341
2342                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2343                 atomic_inc(&rdev->read_errors);
2344                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2345                         printk_ratelimited(
2346                                 KERN_WARNING
2347                                 "md/raid:%s: read error on replacement device "
2348                                 "(sector %llu on %s).\n",
2349                                 mdname(conf->mddev),
2350                                 (unsigned long long)s,
2351                                 bdn);
2352                 else if (conf->mddev->degraded >= conf->max_degraded) {
2353                         set_bad = 1;
2354                         printk_ratelimited(
2355                                 KERN_WARNING
2356                                 "md/raid:%s: read error not correctable "
2357                                 "(sector %llu on %s).\n",
2358                                 mdname(conf->mddev),
2359                                 (unsigned long long)s,
2360                                 bdn);
2361                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2362                         /* Oh, no!!! */
2363                         set_bad = 1;
2364                         printk_ratelimited(
2365                                 KERN_WARNING
2366                                 "md/raid:%s: read error NOT corrected!! "
2367                                 "(sector %llu on %s).\n",
2368                                 mdname(conf->mddev),
2369                                 (unsigned long long)s,
2370                                 bdn);
2371                 } else if (atomic_read(&rdev->read_errors)
2372                          > conf->max_nr_stripes)
2373                         printk(KERN_WARNING
2374                                "md/raid:%s: Too many read errors, failing device %s.\n",
2375                                mdname(conf->mddev), bdn);
2376                 else
2377                         retry = 1;
2378                 if (set_bad && test_bit(In_sync, &rdev->flags)
2379                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2380                         retry = 1;
2381                 if (retry)
2382                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2383                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2384                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385                         } else
2386                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2387                 else {
2388                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2389                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2390                         if (!(set_bad
2391                               && test_bit(In_sync, &rdev->flags)
2392                               && rdev_set_badblocks(
2393                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2394                                 md_error(conf->mddev, rdev);
2395                 }
2396         }
2397         rdev_dec_pending(rdev, conf->mddev);
2398         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2399         set_bit(STRIPE_HANDLE, &sh->state);
2400         release_stripe(sh);
2401 }
2402
2403 static void raid5_end_write_request(struct bio *bi, int error)
2404 {
2405         struct stripe_head *sh = bi->bi_private;
2406         struct r5conf *conf = sh->raid_conf;
2407         int disks = sh->disks, i;
2408         struct md_rdev *uninitialized_var(rdev);
2409         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2410         sector_t first_bad;
2411         int bad_sectors;
2412         int replacement = 0;
2413
2414         for (i = 0 ; i < disks; i++) {
2415                 if (bi == &sh->dev[i].req) {
2416                         rdev = conf->disks[i].rdev;
2417                         break;
2418                 }
2419                 if (bi == &sh->dev[i].rreq) {
2420                         rdev = conf->disks[i].replacement;
2421                         if (rdev)
2422                                 replacement = 1;
2423                         else
2424                                 /* rdev was removed and 'replacement'
2425                                  * replaced it.  rdev is not removed
2426                                  * until all requests are finished.
2427                                  */
2428                                 rdev = conf->disks[i].rdev;
2429                         break;
2430                 }
2431         }
2432         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2433                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434                 uptodate);
2435         if (i == disks) {
2436                 BUG();
2437                 return;
2438         }
2439
2440         if (replacement) {
2441                 if (!uptodate)
2442                         md_error(conf->mddev, rdev);
2443                 else if (is_badblock(rdev, sh->sector,
2444                                      STRIPE_SECTORS,
2445                                      &first_bad, &bad_sectors))
2446                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447         } else {
2448                 if (!uptodate) {
2449                         set_bit(STRIPE_DEGRADED, &sh->state);
2450                         set_bit(WriteErrorSeen, &rdev->flags);
2451                         set_bit(R5_WriteError, &sh->dev[i].flags);
2452                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453                                 set_bit(MD_RECOVERY_NEEDED,
2454                                         &rdev->mddev->recovery);
2455                 } else if (is_badblock(rdev, sh->sector,
2456                                        STRIPE_SECTORS,
2457                                        &first_bad, &bad_sectors)) {
2458                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2459                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460                                 /* That was a successful write so make
2461                                  * sure it looks like we already did
2462                                  * a re-write.
2463                                  */
2464                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2465                 }
2466         }
2467         rdev_dec_pending(rdev, conf->mddev);
2468
2469         if (sh->batch_head && !uptodate && !replacement)
2470                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471
2472         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474         set_bit(STRIPE_HANDLE, &sh->state);
2475         release_stripe(sh);
2476
2477         if (sh->batch_head && sh != sh->batch_head)
2478                 release_stripe(sh->batch_head);
2479 }
2480
2481 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2482
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485         struct r5dev *dev = &sh->dev[i];
2486
2487         bio_init(&dev->req);
2488         dev->req.bi_io_vec = &dev->vec;
2489         dev->req.bi_max_vecs = 1;
2490         dev->req.bi_private = sh;
2491
2492         bio_init(&dev->rreq);
2493         dev->rreq.bi_io_vec = &dev->rvec;
2494         dev->rreq.bi_max_vecs = 1;
2495         dev->rreq.bi_private = sh;
2496
2497         dev->flags = 0;
2498         dev->sector = compute_blocknr(sh, i, previous);
2499 }
2500
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503         char b[BDEVNAME_SIZE];
2504         struct r5conf *conf = mddev->private;
2505         unsigned long flags;
2506         pr_debug("raid456: error called\n");
2507
2508         spin_lock_irqsave(&conf->device_lock, flags);
2509         clear_bit(In_sync, &rdev->flags);
2510         mddev->degraded = calc_degraded(conf);
2511         spin_unlock_irqrestore(&conf->device_lock, flags);
2512         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513
2514         set_bit(Blocked, &rdev->flags);
2515         set_bit(Faulty, &rdev->flags);
2516         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517         printk(KERN_ALERT
2518                "md/raid:%s: Disk failure on %s, disabling device.\n"
2519                "md/raid:%s: Operation continuing on %d devices.\n",
2520                mdname(mddev),
2521                bdevname(rdev->bdev, b),
2522                mdname(mddev),
2523                conf->raid_disks - mddev->degraded);
2524 }
2525
2526 /*
2527  * Input: a 'big' sector number,
2528  * Output: index of the data and parity disk, and the sector # in them.
2529  */
2530 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2531                                      int previous, int *dd_idx,
2532                                      struct stripe_head *sh)
2533 {
2534         sector_t stripe, stripe2;
2535         sector_t chunk_number;
2536         unsigned int chunk_offset;
2537         int pd_idx, qd_idx;
2538         int ddf_layout = 0;
2539         sector_t new_sector;
2540         int algorithm = previous ? conf->prev_algo
2541                                  : conf->algorithm;
2542         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2543                                          : conf->chunk_sectors;
2544         int raid_disks = previous ? conf->previous_raid_disks
2545                                   : conf->raid_disks;
2546         int data_disks = raid_disks - conf->max_degraded;
2547
2548         /* First compute the information on this sector */
2549
2550         /*
2551          * Compute the chunk number and the sector offset inside the chunk
2552          */
2553         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2554         chunk_number = r_sector;
2555
2556         /*
2557          * Compute the stripe number
2558          */
2559         stripe = chunk_number;
2560         *dd_idx = sector_div(stripe, data_disks);
2561         stripe2 = stripe;
2562         /*
2563          * Select the parity disk based on the user selected algorithm.
2564          */
2565         pd_idx = qd_idx = -1;
2566         switch(conf->level) {
2567         case 4:
2568                 pd_idx = data_disks;
2569                 break;
2570         case 5:
2571                 switch (algorithm) {
2572                 case ALGORITHM_LEFT_ASYMMETRIC:
2573                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2574                         if (*dd_idx >= pd_idx)
2575                                 (*dd_idx)++;
2576                         break;
2577                 case ALGORITHM_RIGHT_ASYMMETRIC:
2578                         pd_idx = sector_div(stripe2, raid_disks);
2579                         if (*dd_idx >= pd_idx)
2580                                 (*dd_idx)++;
2581                         break;
2582                 case ALGORITHM_LEFT_SYMMETRIC:
2583                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2584                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2585                         break;
2586                 case ALGORITHM_RIGHT_SYMMETRIC:
2587                         pd_idx = sector_div(stripe2, raid_disks);
2588                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589                         break;
2590                 case ALGORITHM_PARITY_0:
2591                         pd_idx = 0;
2592                         (*dd_idx)++;
2593                         break;
2594                 case ALGORITHM_PARITY_N:
2595                         pd_idx = data_disks;
2596                         break;
2597                 default:
2598                         BUG();
2599                 }
2600                 break;
2601         case 6:
2602
2603                 switch (algorithm) {
2604                 case ALGORITHM_LEFT_ASYMMETRIC:
2605                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2606                         qd_idx = pd_idx + 1;
2607                         if (pd_idx == raid_disks-1) {
2608                                 (*dd_idx)++;    /* Q D D D P */
2609                                 qd_idx = 0;
2610                         } else if (*dd_idx >= pd_idx)
2611                                 (*dd_idx) += 2; /* D D P Q D */
2612                         break;
2613                 case ALGORITHM_RIGHT_ASYMMETRIC:
2614                         pd_idx = sector_div(stripe2, raid_disks);
2615                         qd_idx = pd_idx + 1;
2616                         if (pd_idx == raid_disks-1) {
2617                                 (*dd_idx)++;    /* Q D D D P */
2618                                 qd_idx = 0;
2619                         } else if (*dd_idx >= pd_idx)
2620                                 (*dd_idx) += 2; /* D D P Q D */
2621                         break;
2622                 case ALGORITHM_LEFT_SYMMETRIC:
2623                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2624                         qd_idx = (pd_idx + 1) % raid_disks;
2625                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2626                         break;
2627                 case ALGORITHM_RIGHT_SYMMETRIC:
2628                         pd_idx = sector_div(stripe2, raid_disks);
2629                         qd_idx = (pd_idx + 1) % raid_disks;
2630                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631                         break;
2632
2633                 case ALGORITHM_PARITY_0:
2634                         pd_idx = 0;
2635                         qd_idx = 1;
2636                         (*dd_idx) += 2;
2637                         break;
2638                 case ALGORITHM_PARITY_N:
2639                         pd_idx = data_disks;
2640                         qd_idx = data_disks + 1;
2641                         break;
2642
2643                 case ALGORITHM_ROTATING_ZERO_RESTART:
2644                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2645                          * of blocks for computing Q is different.
2646                          */
2647                         pd_idx = sector_div(stripe2, raid_disks);
2648                         qd_idx = pd_idx + 1;
2649                         if (pd_idx == raid_disks-1) {
2650                                 (*dd_idx)++;    /* Q D D D P */
2651                                 qd_idx = 0;
2652                         } else if (*dd_idx >= pd_idx)
2653                                 (*dd_idx) += 2; /* D D P Q D */
2654                         ddf_layout = 1;
2655                         break;
2656
2657                 case ALGORITHM_ROTATING_N_RESTART:
2658                         /* Same a left_asymmetric, by first stripe is
2659                          * D D D P Q  rather than
2660                          * Q D D D P
2661                          */
2662                         stripe2 += 1;
2663                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2664                         qd_idx = pd_idx + 1;
2665                         if (pd_idx == raid_disks-1) {
2666                                 (*dd_idx)++;    /* Q D D D P */
2667                                 qd_idx = 0;
2668                         } else if (*dd_idx >= pd_idx)
2669                                 (*dd_idx) += 2; /* D D P Q D */
2670                         ddf_layout = 1;
2671                         break;
2672
2673                 case ALGORITHM_ROTATING_N_CONTINUE:
2674                         /* Same as left_symmetric but Q is before P */
2675                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2676                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2677                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2678                         ddf_layout = 1;
2679                         break;
2680
2681                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2682                         /* RAID5 left_asymmetric, with Q on last device */
2683                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2684                         if (*dd_idx >= pd_idx)
2685                                 (*dd_idx)++;
2686                         qd_idx = raid_disks - 1;
2687                         break;
2688
2689                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2690                         pd_idx = sector_div(stripe2, raid_disks-1);
2691                         if (*dd_idx >= pd_idx)
2692                                 (*dd_idx)++;
2693                         qd_idx = raid_disks - 1;
2694                         break;
2695
2696                 case ALGORITHM_LEFT_SYMMETRIC_6:
2697                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2699                         qd_idx = raid_disks - 1;
2700                         break;
2701
2702                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2703                         pd_idx = sector_div(stripe2, raid_disks-1);
2704                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705                         qd_idx = raid_disks - 1;
2706                         break;
2707
2708                 case ALGORITHM_PARITY_0_6:
2709                         pd_idx = 0;
2710                         (*dd_idx)++;
2711                         qd_idx = raid_disks - 1;
2712                         break;
2713
2714                 default:
2715                         BUG();
2716                 }
2717                 break;
2718         }
2719
2720         if (sh) {
2721                 sh->pd_idx = pd_idx;
2722                 sh->qd_idx = qd_idx;
2723                 sh->ddf_layout = ddf_layout;
2724         }
2725         /*
2726          * Finally, compute the new sector number
2727          */
2728         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2729         return new_sector;
2730 }
2731
2732 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2733 {
2734         struct r5conf *conf = sh->raid_conf;
2735         int raid_disks = sh->disks;
2736         int data_disks = raid_disks - conf->max_degraded;
2737         sector_t new_sector = sh->sector, check;
2738         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2739                                          : conf->chunk_sectors;
2740         int algorithm = previous ? conf->prev_algo
2741                                  : conf->algorithm;
2742         sector_t stripe;
2743         int chunk_offset;
2744         sector_t chunk_number;
2745         int dummy1, dd_idx = i;
2746         sector_t r_sector;
2747         struct stripe_head sh2;
2748
2749         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2750         stripe = new_sector;
2751
2752         if (i == sh->pd_idx)
2753                 return 0;
2754         switch(conf->level) {
2755         case 4: break;
2756         case 5:
2757                 switch (algorithm) {
2758                 case ALGORITHM_LEFT_ASYMMETRIC:
2759                 case ALGORITHM_RIGHT_ASYMMETRIC:
2760                         if (i > sh->pd_idx)
2761                                 i--;
2762                         break;
2763                 case ALGORITHM_LEFT_SYMMETRIC:
2764                 case ALGORITHM_RIGHT_SYMMETRIC:
2765                         if (i < sh->pd_idx)
2766                                 i += raid_disks;
2767                         i -= (sh->pd_idx + 1);
2768                         break;
2769                 case ALGORITHM_PARITY_0:
2770                         i -= 1;
2771                         break;
2772                 case ALGORITHM_PARITY_N:
2773                         break;
2774                 default:
2775                         BUG();
2776                 }
2777                 break;
2778         case 6:
2779                 if (i == sh->qd_idx)
2780                         return 0; /* It is the Q disk */
2781                 switch (algorithm) {
2782                 case ALGORITHM_LEFT_ASYMMETRIC:
2783                 case ALGORITHM_RIGHT_ASYMMETRIC:
2784                 case ALGORITHM_ROTATING_ZERO_RESTART:
2785                 case ALGORITHM_ROTATING_N_RESTART:
2786                         if (sh->pd_idx == raid_disks-1)
2787                                 i--;    /* Q D D D P */
2788                         else if (i > sh->pd_idx)
2789                                 i -= 2; /* D D P Q D */
2790                         break;
2791                 case ALGORITHM_LEFT_SYMMETRIC:
2792                 case ALGORITHM_RIGHT_SYMMETRIC:
2793                         if (sh->pd_idx == raid_disks-1)
2794                                 i--; /* Q D D D P */
2795                         else {
2796                                 /* D D P Q D */
2797                                 if (i < sh->pd_idx)
2798                                         i += raid_disks;
2799                                 i -= (sh->pd_idx + 2);
2800                         }
2801                         break;
2802                 case ALGORITHM_PARITY_0:
2803                         i -= 2;
2804                         break;
2805                 case ALGORITHM_PARITY_N:
2806                         break;
2807                 case ALGORITHM_ROTATING_N_CONTINUE:
2808                         /* Like left_symmetric, but P is before Q */
2809                         if (sh->pd_idx == 0)
2810                                 i--;    /* P D D D Q */
2811                         else {
2812                                 /* D D Q P D */
2813                                 if (i < sh->pd_idx)
2814                                         i += raid_disks;
2815                                 i -= (sh->pd_idx + 1);
2816                         }
2817                         break;
2818                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2819                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2820                         if (i > sh->pd_idx)
2821                                 i--;
2822                         break;
2823                 case ALGORITHM_LEFT_SYMMETRIC_6:
2824                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2825                         if (i < sh->pd_idx)
2826                                 i += data_disks + 1;
2827                         i -= (sh->pd_idx + 1);
2828                         break;
2829                 case ALGORITHM_PARITY_0_6:
2830                         i -= 1;
2831                         break;
2832                 default:
2833                         BUG();
2834                 }
2835                 break;
2836         }
2837
2838         chunk_number = stripe * data_disks + i;
2839         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2840
2841         check = raid5_compute_sector(conf, r_sector,
2842                                      previous, &dummy1, &sh2);
2843         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2844                 || sh2.qd_idx != sh->qd_idx) {
2845                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2846                        mdname(conf->mddev));
2847                 return 0;
2848         }
2849         return r_sector;
2850 }
2851
2852 static void
2853 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2854                          int rcw, int expand)
2855 {
2856         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2857         struct r5conf *conf = sh->raid_conf;
2858         int level = conf->level;
2859
2860         if (rcw) {
2861
2862                 for (i = disks; i--; ) {
2863                         struct r5dev *dev = &sh->dev[i];
2864
2865                         if (dev->towrite) {
2866                                 set_bit(R5_LOCKED, &dev->flags);
2867                                 set_bit(R5_Wantdrain, &dev->flags);
2868                                 if (!expand)
2869                                         clear_bit(R5_UPTODATE, &dev->flags);
2870                                 s->locked++;
2871                         }
2872                 }
2873                 /* if we are not expanding this is a proper write request, and
2874                  * there will be bios with new data to be drained into the
2875                  * stripe cache
2876                  */
2877                 if (!expand) {
2878                         if (!s->locked)
2879                                 /* False alarm, nothing to do */
2880                                 return;
2881                         sh->reconstruct_state = reconstruct_state_drain_run;
2882                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2883                 } else
2884                         sh->reconstruct_state = reconstruct_state_run;
2885
2886                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887
2888                 if (s->locked + conf->max_degraded == disks)
2889                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2890                                 atomic_inc(&conf->pending_full_writes);
2891         } else {
2892                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2893                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2894                 BUG_ON(level == 6 &&
2895                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2896                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2897
2898                 for (i = disks; i--; ) {
2899                         struct r5dev *dev = &sh->dev[i];
2900                         if (i == pd_idx || i == qd_idx)
2901                                 continue;
2902
2903                         if (dev->towrite &&
2904                             (test_bit(R5_UPTODATE, &dev->flags) ||
2905                              test_bit(R5_Wantcompute, &dev->flags))) {
2906                                 set_bit(R5_Wantdrain, &dev->flags);
2907                                 set_bit(R5_LOCKED, &dev->flags);
2908                                 clear_bit(R5_UPTODATE, &dev->flags);
2909                                 s->locked++;
2910                         }
2911                 }
2912                 if (!s->locked)
2913                         /* False alarm - nothing to do */
2914                         return;
2915                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2916                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2917                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2918                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2919         }
2920
2921         /* keep the parity disk(s) locked while asynchronous operations
2922          * are in flight
2923          */
2924         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2925         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2926         s->locked++;
2927
2928         if (level == 6) {
2929                 int qd_idx = sh->qd_idx;
2930                 struct r5dev *dev = &sh->dev[qd_idx];
2931
2932                 set_bit(R5_LOCKED, &dev->flags);
2933                 clear_bit(R5_UPTODATE, &dev->flags);
2934                 s->locked++;
2935         }
2936
2937         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2938                 __func__, (unsigned long long)sh->sector,
2939                 s->locked, s->ops_request);
2940 }
2941
2942 /*
2943  * Each stripe/dev can have one or more bion attached.
2944  * toread/towrite point to the first in a chain.
2945  * The bi_next chain must be in order.
2946  */
2947 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2948                           int forwrite, int previous)
2949 {
2950         struct bio **bip;
2951         struct r5conf *conf = sh->raid_conf;
2952         int firstwrite=0;
2953
2954         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2955                 (unsigned long long)bi->bi_iter.bi_sector,
2956                 (unsigned long long)sh->sector);
2957
2958         /*
2959          * If several bio share a stripe. The bio bi_phys_segments acts as a
2960          * reference count to avoid race. The reference count should already be
2961          * increased before this function is called (for example, in
2962          * make_request()), so other bio sharing this stripe will not free the
2963          * stripe. If a stripe is owned by one stripe, the stripe lock will
2964          * protect it.
2965          */
2966         spin_lock_irq(&sh->stripe_lock);
2967         /* Don't allow new IO added to stripes in batch list */
2968         if (sh->batch_head)
2969                 goto overlap;
2970         if (forwrite) {
2971                 bip = &sh->dev[dd_idx].towrite;
2972                 if (*bip == NULL)
2973                         firstwrite = 1;
2974         } else
2975                 bip = &sh->dev[dd_idx].toread;
2976         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2977                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2978                         goto overlap;
2979                 bip = & (*bip)->bi_next;
2980         }
2981         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2982                 goto overlap;
2983
2984         if (!forwrite || previous)
2985                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2986
2987         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2988         if (*bip)
2989                 bi->bi_next = *bip;
2990         *bip = bi;
2991         raid5_inc_bi_active_stripes(bi);
2992
2993         if (forwrite) {
2994                 /* check if page is covered */
2995                 sector_t sector = sh->dev[dd_idx].sector;
2996                 for (bi=sh->dev[dd_idx].towrite;
2997                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2998                              bi && bi->bi_iter.bi_sector <= sector;
2999                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3000                         if (bio_end_sector(bi) >= sector)
3001                                 sector = bio_end_sector(bi);
3002                 }
3003                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3004                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3005                                 sh->overwrite_disks++;
3006         }
3007
3008         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3009                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3010                 (unsigned long long)sh->sector, dd_idx);
3011
3012         if (conf->mddev->bitmap && firstwrite) {
3013                 /* Cannot hold spinlock over bitmap_startwrite,
3014                  * but must ensure this isn't added to a batch until
3015                  * we have added to the bitmap and set bm_seq.
3016                  * So set STRIPE_BITMAP_PENDING to prevent
3017                  * batching.
3018                  * If multiple add_stripe_bio() calls race here they
3019                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3020                  * to complete "bitmap_startwrite" gets to set
3021                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3022                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3023                  * any more.
3024                  */
3025                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3026                 spin_unlock_irq(&sh->stripe_lock);
3027                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3028                                   STRIPE_SECTORS, 0);
3029                 spin_lock_irq(&sh->stripe_lock);
3030                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031                 if (!sh->batch_head) {
3032                         sh->bm_seq = conf->seq_flush+1;
3033                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3034                 }
3035         }
3036         spin_unlock_irq(&sh->stripe_lock);
3037
3038         if (stripe_can_batch(sh))
3039                 stripe_add_to_batch_list(conf, sh);
3040         return 1;
3041
3042  overlap:
3043         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3044         spin_unlock_irq(&sh->stripe_lock);
3045         return 0;
3046 }
3047
3048 static void end_reshape(struct r5conf *conf);
3049
3050 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3051                             struct stripe_head *sh)
3052 {
3053         int sectors_per_chunk =
3054                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3055         int dd_idx;
3056         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3057         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3058
3059         raid5_compute_sector(conf,
3060                              stripe * (disks - conf->max_degraded)
3061                              *sectors_per_chunk + chunk_offset,
3062                              previous,
3063                              &dd_idx, sh);
3064 }
3065
3066 static void
3067 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3068                                 struct stripe_head_state *s, int disks,
3069                                 struct bio **return_bi)
3070 {
3071         int i;
3072         BUG_ON(sh->batch_head);
3073         for (i = disks; i--; ) {
3074                 struct bio *bi;
3075                 int bitmap_end = 0;
3076
3077                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3078                         struct md_rdev *rdev;
3079                         rcu_read_lock();
3080                         rdev = rcu_dereference(conf->disks[i].rdev);
3081                         if (rdev && test_bit(In_sync, &rdev->flags))
3082                                 atomic_inc(&rdev->nr_pending);
3083                         else
3084                                 rdev = NULL;
3085                         rcu_read_unlock();
3086                         if (rdev) {
3087                                 if (!rdev_set_badblocks(
3088                                             rdev,
3089                                             sh->sector,
3090                                             STRIPE_SECTORS, 0))
3091                                         md_error(conf->mddev, rdev);
3092                                 rdev_dec_pending(rdev, conf->mddev);
3093                         }
3094                 }
3095                 spin_lock_irq(&sh->stripe_lock);
3096                 /* fail all writes first */
3097                 bi = sh->dev[i].towrite;
3098                 sh->dev[i].towrite = NULL;
3099                 sh->overwrite_disks = 0;
3100                 spin_unlock_irq(&sh->stripe_lock);
3101                 if (bi)
3102                         bitmap_end = 1;
3103
3104                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3105                         wake_up(&conf->wait_for_overlap);
3106
3107                 while (bi && bi->bi_iter.bi_sector <
3108                         sh->dev[i].sector + STRIPE_SECTORS) {
3109                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3110                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3111                         if (!raid5_dec_bi_active_stripes(bi)) {
3112                                 md_write_end(conf->mddev);
3113                                 bi->bi_next = *return_bi;
3114                                 *return_bi = bi;
3115                         }
3116                         bi = nextbi;
3117                 }
3118                 if (bitmap_end)
3119                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3120                                 STRIPE_SECTORS, 0, 0);
3121                 bitmap_end = 0;
3122                 /* and fail all 'written' */
3123                 bi = sh->dev[i].written;
3124                 sh->dev[i].written = NULL;
3125                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3126                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3127                         sh->dev[i].page = sh->dev[i].orig_page;
3128                 }
3129
3130                 if (bi) bitmap_end = 1;
3131                 while (bi && bi->bi_iter.bi_sector <
3132                        sh->dev[i].sector + STRIPE_SECTORS) {
3133                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3134                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3135                         if (!raid5_dec_bi_active_stripes(bi)) {
3136                                 md_write_end(conf->mddev);
3137                                 bi->bi_next = *return_bi;
3138                                 *return_bi = bi;
3139                         }
3140                         bi = bi2;
3141                 }
3142
3143                 /* fail any reads if this device is non-operational and
3144                  * the data has not reached the cache yet.
3145                  */
3146                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3147                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3148                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3149                         spin_lock_irq(&sh->stripe_lock);
3150                         bi = sh->dev[i].toread;
3151                         sh->dev[i].toread = NULL;
3152                         spin_unlock_irq(&sh->stripe_lock);
3153                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3154                                 wake_up(&conf->wait_for_overlap);
3155                         while (bi && bi->bi_iter.bi_sector <
3156                                sh->dev[i].sector + STRIPE_SECTORS) {
3157                                 struct bio *nextbi =
3158                                         r5_next_bio(bi, sh->dev[i].sector);
3159                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3160                                 if (!raid5_dec_bi_active_stripes(bi)) {
3161                                         bi->bi_next = *return_bi;
3162                                         *return_bi = bi;
3163                                 }
3164                                 bi = nextbi;
3165                         }
3166                 }
3167                 if (bitmap_end)
3168                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3169                                         STRIPE_SECTORS, 0, 0);
3170                 /* If we were in the middle of a write the parity block might
3171                  * still be locked - so just clear all R5_LOCKED flags
3172                  */
3173                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3174         }
3175
3176         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177                 if (atomic_dec_and_test(&conf->pending_full_writes))
3178                         md_wakeup_thread(conf->mddev->thread);
3179 }
3180
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183                    struct stripe_head_state *s)
3184 {
3185         int abort = 0;
3186         int i;
3187
3188         BUG_ON(sh->batch_head);
3189         clear_bit(STRIPE_SYNCING, &sh->state);
3190         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191                 wake_up(&conf->wait_for_overlap);
3192         s->syncing = 0;
3193         s->replacing = 0;
3194         /* There is nothing more to do for sync/check/repair.
3195          * Don't even need to abort as that is handled elsewhere
3196          * if needed, and not always wanted e.g. if there is a known
3197          * bad block here.
3198          * For recover/replace we need to record a bad block on all
3199          * non-sync devices, or abort the recovery
3200          */
3201         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202                 /* During recovery devices cannot be removed, so
3203                  * locking and refcounting of rdevs is not needed
3204                  */
3205                 for (i = 0; i < conf->raid_disks; i++) {
3206                         struct md_rdev *rdev = conf->disks[i].rdev;
3207                         if (rdev
3208                             && !test_bit(Faulty, &rdev->flags)
3209                             && !test_bit(In_sync, &rdev->flags)
3210                             && !rdev_set_badblocks(rdev, sh->sector,
3211                                                    STRIPE_SECTORS, 0))
3212                                 abort = 1;
3213                         rdev = conf->disks[i].replacement;
3214                         if (rdev
3215                             && !test_bit(Faulty, &rdev->flags)
3216                             && !test_bit(In_sync, &rdev->flags)
3217                             && !rdev_set_badblocks(rdev, sh->sector,
3218                                                    STRIPE_SECTORS, 0))
3219                                 abort = 1;
3220                 }
3221                 if (abort)
3222                         conf->recovery_disabled =
3223                                 conf->mddev->recovery_disabled;
3224         }
3225         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230         struct md_rdev *rdev;
3231         int rv = 0;
3232         /* Doing recovery so rcu locking not required */
3233         rdev = sh->raid_conf->disks[disk_idx].replacement;
3234         if (rdev
3235             && !test_bit(Faulty, &rdev->flags)
3236             && !test_bit(In_sync, &rdev->flags)
3237             && (rdev->recovery_offset <= sh->sector
3238                 || rdev->mddev->recovery_cp <= sh->sector))
3239                 rv = 1;
3240
3241         return rv;
3242 }
3243
3244 /* fetch_block - checks the given member device to see if its data needs
3245  * to be read or computed to satisfy a request.
3246  *
3247  * Returns 1 when no more member devices need to be checked, otherwise returns
3248  * 0 to tell the loop in handle_stripe_fill to continue
3249  */
3250
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252                            int disk_idx, int disks)
3253 {
3254         struct r5dev *dev = &sh->dev[disk_idx];
3255         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256                                   &sh->dev[s->failed_num[1]] };
3257         int i;
3258
3259
3260         if (test_bit(R5_LOCKED, &dev->flags) ||
3261             test_bit(R5_UPTODATE, &dev->flags))
3262                 /* No point reading this as we already have it or have
3263                  * decided to get it.
3264                  */
3265                 return 0;
3266
3267         if (dev->toread ||
3268             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269                 /* We need this block to directly satisfy a request */
3270                 return 1;
3271
3272         if (s->syncing || s->expanding ||
3273             (s->replacing && want_replace(sh, disk_idx)))
3274                 /* When syncing, or expanding we read everything.
3275                  * When replacing, we need the replaced block.
3276                  */
3277                 return 1;
3278
3279         if ((s->failed >= 1 && fdev[0]->toread) ||
3280             (s->failed >= 2 && fdev[1]->toread))
3281                 /* If we want to read from a failed device, then
3282                  * we need to actually read every other device.
3283                  */
3284                 return 1;
3285
3286         /* Sometimes neither read-modify-write nor reconstruct-write
3287          * cycles can work.  In those cases we read every block we
3288          * can.  Then the parity-update is certain to have enough to
3289          * work with.
3290          * This can only be a problem when we need to write something,
3291          * and some device has failed.  If either of those tests
3292          * fail we need look no further.
3293          */
3294         if (!s->failed || !s->to_write)
3295                 return 0;
3296
3297         if (test_bit(R5_Insync, &dev->flags) &&
3298             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299                 /* Pre-reads at not permitted until after short delay
3300                  * to gather multiple requests.  However if this
3301                  * device is no Insync, the block could only be be computed
3302                  * and there is no need to delay that.
3303                  */
3304                 return 0;
3305
3306         for (i = 0; i < s->failed; i++) {
3307                 if (fdev[i]->towrite &&
3308                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310                         /* If we have a partial write to a failed
3311                          * device, then we will need to reconstruct
3312                          * the content of that device, so all other
3313                          * devices must be read.
3314                          */
3315                         return 1;
3316         }
3317
3318         /* If we are forced to do a reconstruct-write, either because
3319          * the current RAID6 implementation only supports that, or
3320          * or because parity cannot be trusted and we are currently
3321          * recovering it, there is extra need to be careful.
3322          * If one of the devices that we would need to read, because
3323          * it is not being overwritten (and maybe not written at all)
3324          * is missing/faulty, then we need to read everything we can.
3325          */
3326         if (sh->raid_conf->level != 6 &&
3327             sh->sector < sh->raid_conf->mddev->recovery_cp)
3328                 /* reconstruct-write isn't being forced */
3329                 return 0;
3330         for (i = 0; i < s->failed; i++) {
3331                 if (s->failed_num[i] != sh->pd_idx &&
3332                     s->failed_num[i] != sh->qd_idx &&
3333                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335                         return 1;
3336         }
3337
3338         return 0;
3339 }
3340
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342                        int disk_idx, int disks)
3343 {
3344         struct r5dev *dev = &sh->dev[disk_idx];
3345
3346         /* is the data in this block needed, and can we get it? */
3347         if (need_this_block(sh, s, disk_idx, disks)) {
3348                 /* we would like to get this block, possibly by computing it,
3349                  * otherwise read it if the backing disk is insync
3350                  */
3351                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353                 BUG_ON(sh->batch_head);
3354                 if ((s->uptodate == disks - 1) &&
3355                     (s->failed && (disk_idx == s->failed_num[0] ||
3356                                    disk_idx == s->failed_num[1]))) {
3357                         /* have disk failed, and we're requested to fetch it;
3358                          * do compute it
3359                          */
3360                         pr_debug("Computing stripe %llu block %d\n",
3361                                (unsigned long long)sh->sector, disk_idx);
3362                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364                         set_bit(R5_Wantcompute, &dev->flags);
3365                         sh->ops.target = disk_idx;
3366                         sh->ops.target2 = -1; /* no 2nd target */
3367                         s->req_compute = 1;
3368                         /* Careful: from this point on 'uptodate' is in the eye
3369                          * of raid_run_ops which services 'compute' operations
3370                          * before writes. R5_Wantcompute flags a block that will
3371                          * be R5_UPTODATE by the time it is needed for a
3372                          * subsequent operation.
3373                          */
3374                         s->uptodate++;
3375                         return 1;
3376                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3377                         /* Computing 2-failure is *very* expensive; only
3378                          * do it if failed >= 2
3379                          */
3380                         int other;
3381                         for (other = disks; other--; ) {
3382                                 if (other == disk_idx)
3383                                         continue;
3384                                 if (!test_bit(R5_UPTODATE,
3385                                       &sh->dev[other].flags))
3386                                         break;
3387                         }
3388                         BUG_ON(other < 0);
3389                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3390                                (unsigned long long)sh->sector,
3391                                disk_idx, other);
3392                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396                         sh->ops.target = disk_idx;
3397                         sh->ops.target2 = other;
3398                         s->uptodate += 2;
3399                         s->req_compute = 1;
3400                         return 1;
3401                 } else if (test_bit(R5_Insync, &dev->flags)) {
3402                         set_bit(R5_LOCKED, &dev->flags);
3403                         set_bit(R5_Wantread, &dev->flags);
3404                         s->locked++;
3405                         pr_debug("Reading block %d (sync=%d)\n",
3406                                 disk_idx, s->syncing);
3407                 }
3408         }
3409
3410         return 0;
3411 }
3412
3413 /**
3414  * handle_stripe_fill - read or compute data to satisfy pending requests.
3415  */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417                                struct stripe_head_state *s,
3418                                int disks)
3419 {
3420         int i;
3421
3422         /* look for blocks to read/compute, skip this if a compute
3423          * is already in flight, or if the stripe contents are in the
3424          * midst of changing due to a write
3425          */
3426         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427             !sh->reconstruct_state)
3428                 for (i = disks; i--; )
3429                         if (fetch_block(sh, s, i, disks))
3430                                 break;
3431         set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435                                     unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437  * any written block on an uptodate or failed drive can be returned.
3438  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439  * never LOCKED, so we don't need to test 'failed' directly.
3440  */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442         struct stripe_head *sh, int disks, struct bio **return_bi)
3443 {
3444         int i;
3445         struct r5dev *dev;
3446         int discard_pending = 0;
3447         struct stripe_head *head_sh = sh;
3448         bool do_endio = false;
3449
3450         for (i = disks; i--; )
3451                 if (sh->dev[i].written) {
3452                         dev = &sh->dev[i];
3453                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3454                             (test_bit(R5_UPTODATE, &dev->flags) ||
3455                              test_bit(R5_Discard, &dev->flags) ||
3456                              test_bit(R5_SkipCopy, &dev->flags))) {
3457                                 /* We can return any write requests */
3458                                 struct bio *wbi, *wbi2;
3459                                 pr_debug("Return write for disc %d\n", i);
3460                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3461                                         clear_bit(R5_UPTODATE, &dev->flags);
3462                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464                                 }
3465                                 do_endio = true;
3466
3467 returnbi:
3468                                 dev->page = dev->orig_page;
3469                                 wbi = dev->written;
3470                                 dev->written = NULL;
3471                                 while (wbi && wbi->bi_iter.bi_sector <
3472                                         dev->sector + STRIPE_SECTORS) {
3473                                         wbi2 = r5_next_bio(wbi, dev->sector);
3474                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3475                                                 md_write_end(conf->mddev);
3476                                                 wbi->bi_next = *return_bi;
3477                                                 *return_bi = wbi;
3478                                         }
3479                                         wbi = wbi2;
3480                                 }
3481                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3482                                                 STRIPE_SECTORS,
3483                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3484                                                 0);
3485                                 if (head_sh->batch_head) {
3486                                         sh = list_first_entry(&sh->batch_list,
3487                                                               struct stripe_head,
3488                                                               batch_list);
3489                                         if (sh != head_sh) {
3490                                                 dev = &sh->dev[i];
3491                                                 goto returnbi;
3492                                         }
3493                                 }
3494                                 sh = head_sh;
3495                                 dev = &sh->dev[i];
3496                         } else if (test_bit(R5_Discard, &dev->flags))
3497                                 discard_pending = 1;
3498                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3499                         WARN_ON(dev->page != dev->orig_page);
3500                 }
3501         if (!discard_pending &&
3502             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3503                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505                 if (sh->qd_idx >= 0) {
3506                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508                 }
3509                 /* now that discard is done we can proceed with any sync */
3510                 clear_bit(STRIPE_DISCARD, &sh->state);
3511                 /*
3512                  * SCSI discard will change some bio fields and the stripe has
3513                  * no updated data, so remove it from hash list and the stripe
3514                  * will be reinitialized
3515                  */
3516                 spin_lock_irq(&conf->device_lock);
3517 unhash:
3518                 remove_hash(sh);
3519                 if (head_sh->batch_head) {
3520                         sh = list_first_entry(&sh->batch_list,
3521                                               struct stripe_head, batch_list);
3522                         if (sh != head_sh)
3523                                         goto unhash;
3524                 }
3525                 spin_unlock_irq(&conf->device_lock);
3526                 sh = head_sh;
3527
3528                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3529                         set_bit(STRIPE_HANDLE, &sh->state);
3530
3531         }
3532
3533         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3534                 if (atomic_dec_and_test(&conf->pending_full_writes))
3535                         md_wakeup_thread(conf->mddev->thread);
3536
3537         if (head_sh->batch_head && do_endio)
3538                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3539 }
3540
3541 static void handle_stripe_dirtying(struct r5conf *conf,
3542                                    struct stripe_head *sh,
3543                                    struct stripe_head_state *s,
3544                                    int disks)
3545 {
3546         int rmw = 0, rcw = 0, i;
3547         sector_t recovery_cp = conf->mddev->recovery_cp;
3548
3549         /* Check whether resync is now happening or should start.
3550          * If yes, then the array is dirty (after unclean shutdown or
3551          * initial creation), so parity in some stripes might be inconsistent.
3552          * In this case, we need to always do reconstruct-write, to ensure
3553          * that in case of drive failure or read-error correction, we
3554          * generate correct data from the parity.
3555          */
3556         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3557             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3558              s->failed == 0)) {
3559                 /* Calculate the real rcw later - for now make it
3560                  * look like rcw is cheaper
3561                  */
3562                 rcw = 1; rmw = 2;
3563                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3564                          conf->rmw_level, (unsigned long long)recovery_cp,
3565                          (unsigned long long)sh->sector);
3566         } else for (i = disks; i--; ) {
3567                 /* would I have to read this buffer for read_modify_write */
3568                 struct r5dev *dev = &sh->dev[i];
3569                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3570                     !test_bit(R5_LOCKED, &dev->flags) &&
3571                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3572                       test_bit(R5_Wantcompute, &dev->flags))) {
3573                         if (test_bit(R5_Insync, &dev->flags))
3574                                 rmw++;
3575                         else
3576                                 rmw += 2*disks;  /* cannot read it */
3577                 }
3578                 /* Would I have to read this buffer for reconstruct_write */
3579                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3580                     i != sh->pd_idx && i != sh->qd_idx &&
3581                     !test_bit(R5_LOCKED, &dev->flags) &&
3582                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3583                     test_bit(R5_Wantcompute, &dev->flags))) {
3584                         if (test_bit(R5_Insync, &dev->flags))
3585                                 rcw++;
3586                         else
3587                                 rcw += 2*disks;
3588                 }
3589         }
3590         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3591                 (unsigned long long)sh->sector, rmw, rcw);
3592         set_bit(STRIPE_HANDLE, &sh->state);
3593         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3594                 /* prefer read-modify-write, but need to get some data */
3595                 if (conf->mddev->queue)
3596                         blk_add_trace_msg(conf->mddev->queue,
3597                                           "raid5 rmw %llu %d",
3598                                           (unsigned long long)sh->sector, rmw);
3599                 for (i = disks; i--; ) {
3600                         struct r5dev *dev = &sh->dev[i];
3601                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3602                             !test_bit(R5_LOCKED, &dev->flags) &&
3603                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3604                             test_bit(R5_Wantcompute, &dev->flags)) &&
3605                             test_bit(R5_Insync, &dev->flags)) {
3606                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3607                                              &sh->state)) {
3608                                         pr_debug("Read_old block %d for r-m-w\n",
3609                                                  i);
3610                                         set_bit(R5_LOCKED, &dev->flags);
3611                                         set_bit(R5_Wantread, &dev->flags);
3612                                         s->locked++;
3613                                 } else {
3614                                         set_bit(STRIPE_DELAYED, &sh->state);
3615                                         set_bit(STRIPE_HANDLE, &sh->state);
3616                                 }
3617                         }
3618                 }
3619         }
3620         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3621                 /* want reconstruct write, but need to get some data */
3622                 int qread =0;
3623                 rcw = 0;
3624                 for (i = disks; i--; ) {
3625                         struct r5dev *dev = &sh->dev[i];
3626                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3627                             i != sh->pd_idx && i != sh->qd_idx &&
3628                             !test_bit(R5_LOCKED, &dev->flags) &&
3629                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3630                               test_bit(R5_Wantcompute, &dev->flags))) {
3631                                 rcw++;
3632                                 if (test_bit(R5_Insync, &dev->flags) &&
3633                                     test_bit(STRIPE_PREREAD_ACTIVE,
3634                                              &sh->state)) {
3635                                         pr_debug("Read_old block "
3636                                                 "%d for Reconstruct\n", i);
3637                                         set_bit(R5_LOCKED, &dev->flags);
3638                                         set_bit(R5_Wantread, &dev->flags);
3639                                         s->locked++;
3640                                         qread++;
3641                                 } else {
3642                                         set_bit(STRIPE_DELAYED, &sh->state);
3643                                         set_bit(STRIPE_HANDLE, &sh->state);
3644                                 }
3645                         }
3646                 }
3647                 if (rcw && conf->mddev->queue)
3648                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3649                                           (unsigned long long)sh->sector,
3650                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3651         }
3652
3653         if (rcw > disks && rmw > disks &&
3654             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3655                 set_bit(STRIPE_DELAYED, &sh->state);
3656
3657         /* now if nothing is locked, and if we have enough data,
3658          * we can start a write request
3659          */
3660         /* since handle_stripe can be called at any time we need to handle the
3661          * case where a compute block operation has been submitted and then a
3662          * subsequent call wants to start a write request.  raid_run_ops only
3663          * handles the case where compute block and reconstruct are requested
3664          * simultaneously.  If this is not the case then new writes need to be
3665          * held off until the compute completes.
3666          */
3667         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3668             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3669             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3670                 schedule_reconstruction(sh, s, rcw == 0, 0);
3671 }
3672
3673 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3674                                 struct stripe_head_state *s, int disks)
3675 {
3676         struct r5dev *dev = NULL;
3677
3678         BUG_ON(sh->batch_head);
3679         set_bit(STRIPE_HANDLE, &sh->state);
3680
3681         switch (sh->check_state) {
3682         case check_state_idle:
3683                 /* start a new check operation if there are no failures */
3684                 if (s->failed == 0) {
3685                         BUG_ON(s->uptodate != disks);
3686                         sh->check_state = check_state_run;
3687                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3688                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3689                         s->uptodate--;
3690                         break;
3691                 }
3692                 dev = &sh->dev[s->failed_num[0]];
3693                 /* fall through */
3694         case check_state_compute_result:
3695                 sh->check_state = check_state_idle;
3696                 if (!dev)
3697                         dev = &sh->dev[sh->pd_idx];
3698
3699                 /* check that a write has not made the stripe insync */
3700                 if (test_bit(STRIPE_INSYNC, &sh->state))
3701                         break;
3702
3703                 /* either failed parity check, or recovery is happening */
3704                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3705                 BUG_ON(s->uptodate != disks);
3706
3707                 set_bit(R5_LOCKED, &dev->flags);
3708                 s->locked++;
3709                 set_bit(R5_Wantwrite, &dev->flags);
3710
3711                 clear_bit(STRIPE_DEGRADED, &sh->state);
3712                 set_bit(STRIPE_INSYNC, &sh->state);
3713                 break;
3714         case check_state_run:
3715                 break; /* we will be called again upon completion */
3716         case check_state_check_result:
3717                 sh->check_state = check_state_idle;
3718
3719                 /* if a failure occurred during the check operation, leave
3720                  * STRIPE_INSYNC not set and let the stripe be handled again
3721                  */
3722                 if (s->failed)
3723                         break;
3724
3725                 /* handle a successful check operation, if parity is correct
3726                  * we are done.  Otherwise update the mismatch count and repair
3727                  * parity if !MD_RECOVERY_CHECK
3728                  */
3729                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3730                         /* parity is correct (on disc,
3731                          * not in buffer any more)
3732                          */
3733                         set_bit(STRIPE_INSYNC, &sh->state);
3734                 else {
3735                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3736                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3737                                 /* don't try to repair!! */
3738                                 set_bit(STRIPE_INSYNC, &sh->state);
3739                         else {
3740                                 sh->check_state = check_state_compute_run;
3741                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3742                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3743                                 set_bit(R5_Wantcompute,
3744                                         &sh->dev[sh->pd_idx].flags);
3745                                 sh->ops.target = sh->pd_idx;
3746                                 sh->ops.target2 = -1;
3747                                 s->uptodate++;
3748                         }
3749                 }
3750                 break;
3751         case check_state_compute_run:
3752                 break;
3753         default:
3754                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3755                        __func__, sh->check_state,
3756                        (unsigned long long) sh->sector);
3757                 BUG();
3758         }
3759 }
3760
3761 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3762                                   struct stripe_head_state *s,
3763                                   int disks)
3764 {
3765         int pd_idx = sh->pd_idx;
3766         int qd_idx = sh->qd_idx;
3767         struct r5dev *dev;
3768
3769         BUG_ON(sh->batch_head);
3770         set_bit(STRIPE_HANDLE, &sh->state);
3771
3772         BUG_ON(s->failed > 2);
3773
3774         /* Want to check and possibly repair P and Q.
3775          * However there could be one 'failed' device, in which
3776          * case we can only check one of them, possibly using the
3777          * other to generate missing data
3778          */
3779
3780         switch (sh->check_state) {
3781         case check_state_idle:
3782                 /* start a new check operation if there are < 2 failures */
3783                 if (s->failed == s->q_failed) {
3784                         /* The only possible failed device holds Q, so it
3785                          * makes sense to check P (If anything else were failed,
3786                          * we would have used P to recreate it).
3787                          */
3788                         sh->check_state = check_state_run;
3789                 }
3790                 if (!s->q_failed && s->failed < 2) {
3791                         /* Q is not failed, and we didn't use it to generate
3792                          * anything, so it makes sense to check it
3793                          */
3794                         if (sh->check_state == check_state_run)
3795                                 sh->check_state = check_state_run_pq;
3796                         else
3797                                 sh->check_state = check_state_run_q;
3798                 }
3799
3800                 /* discard potentially stale zero_sum_result */
3801                 sh->ops.zero_sum_result = 0;
3802
3803                 if (sh->check_state == check_state_run) {
3804                         /* async_xor_zero_sum destroys the contents of P */
3805                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3806                         s->uptodate--;
3807                 }
3808                 if (sh->check_state >= check_state_run &&
3809                     sh->check_state <= check_state_run_pq) {
3810                         /* async_syndrome_zero_sum preserves P and Q, so
3811                          * no need to mark them !uptodate here
3812                          */
3813                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3814                         break;
3815                 }
3816
3817                 /* we have 2-disk failure */
3818                 BUG_ON(s->failed != 2);
3819                 /* fall through */
3820         case check_state_compute_result:
3821                 sh->check_state = check_state_idle;
3822
3823                 /* check that a write has not made the stripe insync */
3824                 if (test_bit(STRIPE_INSYNC, &sh->state))
3825                         break;
3826
3827                 /* now write out any block on a failed drive,
3828                  * or P or Q if they were recomputed
3829                  */
3830                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3831                 if (s->failed == 2) {
3832                         dev = &sh->dev[s->failed_num[1]];
3833                         s->locked++;
3834                         set_bit(R5_LOCKED, &dev->flags);
3835                         set_bit(R5_Wantwrite, &dev->flags);
3836                 }
3837                 if (s->failed >= 1) {
3838                         dev = &sh->dev[s->failed_num[0]];
3839                         s->locked++;
3840                         set_bit(R5_LOCKED, &dev->flags);
3841                         set_bit(R5_Wantwrite, &dev->flags);
3842                 }
3843                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3844                         dev = &sh->dev[pd_idx];
3845                         s->locked++;
3846                         set_bit(R5_LOCKED, &dev->flags);
3847                         set_bit(R5_Wantwrite, &dev->flags);
3848                 }
3849                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3850                         dev = &sh->dev[qd_idx];
3851                         s->locked++;
3852                         set_bit(R5_LOCKED, &dev->flags);
3853                         set_bit(R5_Wantwrite, &dev->flags);
3854                 }
3855                 clear_bit(STRIPE_DEGRADED, &sh->state);
3856
3857                 set_bit(STRIPE_INSYNC, &sh->state);
3858                 break;
3859         case check_state_run:
3860         case check_state_run_q:
3861         case check_state_run_pq:
3862                 break; /* we will be called again upon completion */
3863         case check_state_check_result:
3864                 sh->check_state = check_state_idle;
3865
3866                 /* handle a successful check operation, if parity is correct
3867                  * we are done.  Otherwise update the mismatch count and repair
3868                  * parity if !MD_RECOVERY_CHECK
3869                  */
3870                 if (sh->ops.zero_sum_result == 0) {
3871                         /* both parities are correct */
3872                         if (!s->failed)
3873                                 set_bit(STRIPE_INSYNC, &sh->state);
3874                         else {
3875                                 /* in contrast to the raid5 case we can validate
3876                                  * parity, but still have a failure to write
3877                                  * back
3878                                  */
3879                                 sh->check_state = check_state_compute_result;
3880                                 /* Returning at this point means that we may go
3881                                  * off and bring p and/or q uptodate again so
3882                                  * we make sure to check zero_sum_result again
3883                                  * to verify if p or q need writeback
3884                                  */
3885                         }
3886                 } else {
3887                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3888                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3889                                 /* don't try to repair!! */
3890                                 set_bit(STRIPE_INSYNC, &sh->state);
3891                         else {
3892                                 int *target = &sh->ops.target;
3893
3894                                 sh->ops.target = -1;
3895                                 sh->ops.target2 = -1;
3896                                 sh->check_state = check_state_compute_run;
3897                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3900                                         set_bit(R5_Wantcompute,
3901                                                 &sh->dev[pd_idx].flags);
3902                                         *target = pd_idx;
3903                                         target = &sh->ops.target2;
3904                                         s->uptodate++;
3905                                 }
3906                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3907                                         set_bit(R5_Wantcompute,
3908                                                 &sh->dev[qd_idx].flags);
3909                                         *target = qd_idx;
3910                                         s->uptodate++;
3911                                 }
3912                         }
3913                 }
3914                 break;
3915         case check_state_compute_run:
3916                 break;
3917         default:
3918                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3919                        __func__, sh->check_state,
3920                        (unsigned long long) sh->sector);
3921                 BUG();
3922         }
3923 }
3924
3925 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3926 {
3927         int i;
3928
3929         /* We have read all the blocks in this stripe and now we need to
3930          * copy some of them into a target stripe for expand.
3931          */
3932         struct dma_async_tx_descriptor *tx = NULL;
3933         BUG_ON(sh->batch_head);
3934         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935         for (i = 0; i < sh->disks; i++)
3936                 if (i != sh->pd_idx && i != sh->qd_idx) {
3937                         int dd_idx, j;
3938                         struct stripe_head *sh2;
3939                         struct async_submit_ctl submit;
3940
3941                         sector_t bn = compute_blocknr(sh, i, 1);
3942                         sector_t s = raid5_compute_sector(conf, bn, 0,
3943                                                           &dd_idx, NULL);
3944                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3945                         if (sh2 == NULL)
3946                                 /* so far only the early blocks of this stripe
3947                                  * have been requested.  When later blocks
3948                                  * get requested, we will try again
3949                                  */
3950                                 continue;
3951                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3952                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3953                                 /* must have already done this block */
3954                                 release_stripe(sh2);
3955                                 continue;
3956                         }
3957
3958                         /* place all the copies on one channel */
3959                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3960                         tx = async_memcpy(sh2->dev[dd_idx].page,
3961                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3962                                           &submit);
3963
3964                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3965                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3966                         for (j = 0; j < conf->raid_disks; j++)
3967                                 if (j != sh2->pd_idx &&
3968                                     j != sh2->qd_idx &&
3969                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3970                                         break;
3971                         if (j == conf->raid_disks) {
3972                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3973                                 set_bit(STRIPE_HANDLE, &sh2->state);
3974                         }
3975                         release_stripe(sh2);
3976
3977                 }
3978         /* done submitting copies, wait for them to complete */
3979         async_tx_quiesce(&tx);
3980 }
3981
3982 /*
3983  * handle_stripe - do things to a stripe.
3984  *
3985  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3986  * state of various bits to see what needs to be done.
3987  * Possible results:
3988  *    return some read requests which now have data
3989  *    return some write requests which are safely on storage
3990  *    schedule a read on some buffers
3991  *    schedule a write of some buffers
3992  *    return confirmation of parity correctness
3993  *
3994  */
3995
3996 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3997 {
3998         struct r5conf *conf = sh->raid_conf;
3999         int disks = sh->disks;
4000         struct r5dev *dev;
4001         int i;
4002         int do_recovery = 0;
4003
4004         memset(s, 0, sizeof(*s));
4005
4006         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4007         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4008         s->failed_num[0] = -1;
4009         s->failed_num[1] = -1;
4010
4011         /* Now to look around and see what can be done */
4012         rcu_read_lock();
4013         for (i=disks; i--; ) {
4014                 struct md_rdev *rdev;
4015                 sector_t first_bad;
4016                 int bad_sectors;
4017                 int is_bad = 0;
4018
4019                 dev = &sh->dev[i];
4020
4021                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4022                          i, dev->flags,
4023                          dev->toread, dev->towrite, dev->written);
4024                 /* maybe we can reply to a read
4025                  *
4026                  * new wantfill requests are only permitted while
4027                  * ops_complete_biofill is guaranteed to be inactive
4028                  */
4029                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4030                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4031                         set_bit(R5_Wantfill, &dev->flags);
4032
4033                 /* now count some things */
4034                 if (test_bit(R5_LOCKED, &dev->flags))
4035                         s->locked++;
4036                 if (test_bit(R5_UPTODATE, &dev->flags))
4037                         s->uptodate++;
4038                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4039                         s->compute++;
4040                         BUG_ON(s->compute > 2);
4041                 }
4042
4043                 if (test_bit(R5_Wantfill, &dev->flags))
4044                         s->to_fill++;
4045                 else if (dev->toread)
4046                         s->to_read++;
4047                 if (dev->towrite) {
4048                         s->to_write++;
4049                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4050                                 s->non_overwrite++;
4051                 }
4052                 if (dev->written)
4053                         s->written++;
4054                 /* Prefer to use the replacement for reads, but only
4055                  * if it is recovered enough and has no bad blocks.
4056                  */
4057                 rdev = rcu_dereference(conf->disks[i].replacement);
4058                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4059                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4060                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4061                                  &first_bad, &bad_sectors))
4062                         set_bit(R5_ReadRepl, &dev->flags);
4063                 else {
4064                         if (rdev)
4065                                 set_bit(R5_NeedReplace, &dev->flags);
4066                         rdev = rcu_dereference(conf->disks[i].rdev);
4067                         clear_bit(R5_ReadRepl, &dev->flags);
4068                 }
4069                 if (rdev && test_bit(Faulty, &rdev->flags))
4070                         rdev = NULL;
4071                 if (rdev) {
4072                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4073                                              &first_bad, &bad_sectors);
4074                         if (s->blocked_rdev == NULL
4075                             && (test_bit(Blocked, &rdev->flags)
4076                                 || is_bad < 0)) {
4077                                 if (is_bad < 0)
4078                                         set_bit(BlockedBadBlocks,
4079                                                 &rdev->flags);
4080                                 s->blocked_rdev = rdev;
4081                                 atomic_inc(&rdev->nr_pending);
4082                         }
4083                 }
4084                 clear_bit(R5_Insync, &dev->flags);
4085                 if (!rdev)
4086                         /* Not in-sync */;
4087                 else if (is_bad) {
4088                         /* also not in-sync */
4089                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4090                             test_bit(R5_UPTODATE, &dev->flags)) {
4091                                 /* treat as in-sync, but with a read error
4092                                  * which we can now try to correct
4093                                  */
4094                                 set_bit(R5_Insync, &dev->flags);
4095                                 set_bit(R5_ReadError, &dev->flags);
4096                         }
4097                 } else if (test_bit(In_sync, &rdev->flags))
4098                         set_bit(R5_Insync, &dev->flags);
4099                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4100                         /* in sync if before recovery_offset */
4101                         set_bit(R5_Insync, &dev->flags);
4102                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4103                          test_bit(R5_Expanded, &dev->flags))
4104                         /* If we've reshaped into here, we assume it is Insync.
4105                          * We will shortly update recovery_offset to make
4106                          * it official.
4107                          */
4108                         set_bit(R5_Insync, &dev->flags);
4109
4110                 if (test_bit(R5_WriteError, &dev->flags)) {
4111                         /* This flag does not apply to '.replacement'
4112                          * only to .rdev, so make sure to check that*/
4113                         struct md_rdev *rdev2 = rcu_dereference(
4114                                 conf->disks[i].rdev);
4115                         if (rdev2 == rdev)
4116                                 clear_bit(R5_Insync, &dev->flags);
4117                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118                                 s->handle_bad_blocks = 1;
4119                                 atomic_inc(&rdev2->nr_pending);
4120                         } else
4121                                 clear_bit(R5_WriteError, &dev->flags);
4122                 }
4123                 if (test_bit(R5_MadeGood, &dev->flags)) {
4124                         /* This flag does not apply to '.replacement'
4125                          * only to .rdev, so make sure to check that*/
4126                         struct md_rdev *rdev2 = rcu_dereference(
4127                                 conf->disks[i].rdev);
4128                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4129                                 s->handle_bad_blocks = 1;
4130                                 atomic_inc(&rdev2->nr_pending);
4131                         } else
4132                                 clear_bit(R5_MadeGood, &dev->flags);
4133                 }
4134                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4135                         struct md_rdev *rdev2 = rcu_dereference(
4136                                 conf->disks[i].replacement);
4137                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4138                                 s->handle_bad_blocks = 1;
4139                                 atomic_inc(&rdev2->nr_pending);
4140                         } else
4141                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4142                 }
4143                 if (!test_bit(R5_Insync, &dev->flags)) {
4144                         /* The ReadError flag will just be confusing now */
4145                         clear_bit(R5_ReadError, &dev->flags);
4146                         clear_bit(R5_ReWrite, &dev->flags);
4147                 }
4148                 if (test_bit(R5_ReadError, &dev->flags))
4149                         clear_bit(R5_Insync, &dev->flags);
4150                 if (!test_bit(R5_Insync, &dev->flags)) {
4151                         if (s->failed < 2)
4152                                 s->failed_num[s->failed] = i;
4153                         s->failed++;
4154                         if (rdev && !test_bit(Faulty, &rdev->flags))
4155                                 do_recovery = 1;
4156                 }
4157         }
4158         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4159                 /* If there is a failed device being replaced,
4160                  *     we must be recovering.
4161                  * else if we are after recovery_cp, we must be syncing
4162                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4163                  * else we can only be replacing
4164                  * sync and recovery both need to read all devices, and so
4165                  * use the same flag.
4166                  */
4167                 if (do_recovery ||
4168                     sh->sector >= conf->mddev->recovery_cp ||
4169                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4170                         s->syncing = 1;
4171                 else
4172                         s->replacing = 1;
4173         }
4174         rcu_read_unlock();
4175 }
4176
4177 static int clear_batch_ready(struct stripe_head *sh)
4178 {
4179         /* Return '1' if this is a member of batch, or
4180          * '0' if it is a lone stripe or a head which can now be
4181          * handled.
4182          */
4183         struct stripe_head *tmp;
4184         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4185                 return (sh->batch_head && sh->batch_head != sh);
4186         spin_lock(&sh->stripe_lock);
4187         if (!sh->batch_head) {
4188                 spin_unlock(&sh->stripe_lock);
4189                 return 0;
4190         }
4191
4192         /*
4193          * this stripe could be added to a batch list before we check
4194          * BATCH_READY, skips it
4195          */
4196         if (sh->batch_head != sh) {
4197                 spin_unlock(&sh->stripe_lock);
4198                 return 1;
4199         }
4200         spin_lock(&sh->batch_lock);
4201         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4202                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4203         spin_unlock(&sh->batch_lock);
4204         spin_unlock(&sh->stripe_lock);
4205
4206         /*
4207          * BATCH_READY is cleared, no new stripes can be added.
4208          * batch_list can be accessed without lock
4209          */
4210         return 0;
4211 }
4212
4213 static void break_stripe_batch_list(struct stripe_head *head_sh,
4214                                     unsigned long handle_flags)
4215 {
4216         struct stripe_head *sh, *next;
4217         int i;
4218         int do_wakeup = 0;
4219
4220         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4221
4222                 list_del_init(&sh->batch_list);
4223
4224                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4225                                           (1 << STRIPE_SYNCING) |
4226                                           (1 << STRIPE_REPLACED) |
4227                                           (1 << STRIPE_PREREAD_ACTIVE) |
4228                                           (1 << STRIPE_DELAYED) |
4229                                           (1 << STRIPE_BIT_DELAY) |
4230                                           (1 << STRIPE_FULL_WRITE) |
4231                                           (1 << STRIPE_BIOFILL_RUN) |
4232                                           (1 << STRIPE_COMPUTE_RUN)  |
4233                                           (1 << STRIPE_OPS_REQ_PENDING) |
4234                                           (1 << STRIPE_DISCARD) |
4235                                           (1 << STRIPE_BATCH_READY) |
4236                                           (1 << STRIPE_BATCH_ERR) |
4237                                           (1 << STRIPE_BITMAP_PENDING)));
4238                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4239                                               (1 << STRIPE_REPLACED)));
4240
4241                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4242                                             (1 << STRIPE_DEGRADED)),
4243                               head_sh->state & (1 << STRIPE_INSYNC));
4244
4245                 sh->check_state = head_sh->check_state;
4246                 sh->reconstruct_state = head_sh->reconstruct_state;
4247                 for (i = 0; i < sh->disks; i++) {
4248                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4249                                 do_wakeup = 1;
4250                         sh->dev[i].flags = head_sh->dev[i].flags &
4251                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4252                 }
4253                 spin_lock_irq(&sh->stripe_lock);
4254                 sh->batch_head = NULL;
4255                 spin_unlock_irq(&sh->stripe_lock);
4256                 if (handle_flags == 0 ||
4257                     sh->state & handle_flags)
4258                         set_bit(STRIPE_HANDLE, &sh->state);
4259                 release_stripe(sh);
4260         }
4261         spin_lock_irq(&head_sh->stripe_lock);
4262         head_sh->batch_head = NULL;
4263         spin_unlock_irq(&head_sh->stripe_lock);
4264         for (i = 0; i < head_sh->disks; i++)
4265                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4266                         do_wakeup = 1;
4267         if (head_sh->state & handle_flags)
4268                 set_bit(STRIPE_HANDLE, &head_sh->state);
4269
4270         if (do_wakeup)
4271                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4272 }
4273
4274 static void handle_stripe(struct stripe_head *sh)
4275 {
4276         struct stripe_head_state s;
4277         struct r5conf *conf = sh->raid_conf;
4278         int i;
4279         int prexor;
4280         int disks = sh->disks;
4281         struct r5dev *pdev, *qdev;
4282
4283         clear_bit(STRIPE_HANDLE, &sh->state);
4284         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4285                 /* already being handled, ensure it gets handled
4286                  * again when current action finishes */
4287                 set_bit(STRIPE_HANDLE, &sh->state);
4288                 return;
4289         }
4290
4291         if (clear_batch_ready(sh) ) {
4292                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4293                 return;
4294         }
4295
4296         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4297                 break_stripe_batch_list(sh, 0);
4298
4299         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4300                 spin_lock(&sh->stripe_lock);
4301                 /* Cannot process 'sync' concurrently with 'discard' */
4302                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4303                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4304                         set_bit(STRIPE_SYNCING, &sh->state);
4305                         clear_bit(STRIPE_INSYNC, &sh->state);
4306                         clear_bit(STRIPE_REPLACED, &sh->state);
4307                 }
4308                 spin_unlock(&sh->stripe_lock);
4309         }
4310         clear_bit(STRIPE_DELAYED, &sh->state);
4311
4312         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4313                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4314                (unsigned long long)sh->sector, sh->state,
4315                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4316                sh->check_state, sh->reconstruct_state);
4317
4318         analyse_stripe(sh, &s);
4319
4320         if (s.handle_bad_blocks) {
4321                 set_bit(STRIPE_HANDLE, &sh->state);
4322                 goto finish;
4323         }
4324
4325         if (unlikely(s.blocked_rdev)) {
4326                 if (s.syncing || s.expanding || s.expanded ||
4327                     s.replacing || s.to_write || s.written) {
4328                         set_bit(STRIPE_HANDLE, &sh->state);
4329                         goto finish;
4330                 }
4331                 /* There is nothing for the blocked_rdev to block */
4332                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4333                 s.blocked_rdev = NULL;
4334         }
4335
4336         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4337                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4338                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4339         }
4340
4341         pr_debug("locked=%d uptodate=%d to_read=%d"
4342                " to_write=%d failed=%d failed_num=%d,%d\n",
4343                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4344                s.failed_num[0], s.failed_num[1]);
4345         /* check if the array has lost more than max_degraded devices and,
4346          * if so, some requests might need to be failed.
4347          */
4348         if (s.failed > conf->max_degraded) {
4349                 sh->check_state = 0;
4350                 sh->reconstruct_state = 0;
4351                 break_stripe_batch_list(sh, 0);
4352                 if (s.to_read+s.to_write+s.written)
4353                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4354                 if (s.syncing + s.replacing)
4355                         handle_failed_sync(conf, sh, &s);
4356         }
4357
4358         /* Now we check to see if any write operations have recently
4359          * completed
4360          */
4361         prexor = 0;
4362         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4363                 prexor = 1;
4364         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4365             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4366                 sh->reconstruct_state = reconstruct_state_idle;
4367
4368                 /* All the 'written' buffers and the parity block are ready to
4369                  * be written back to disk
4370                  */
4371                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4372                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4373                 BUG_ON(sh->qd_idx >= 0 &&
4374                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4375                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4376                 for (i = disks; i--; ) {
4377                         struct r5dev *dev = &sh->dev[i];
4378                         if (test_bit(R5_LOCKED, &dev->flags) &&
4379                                 (i == sh->pd_idx || i == sh->qd_idx ||
4380                                  dev->written)) {
4381                                 pr_debug("Writing block %d\n", i);
4382                                 set_bit(R5_Wantwrite, &dev->flags);
4383                                 if (prexor)
4384                                         continue;
4385                                 if (s.failed > 1)
4386                                         continue;
4387                                 if (!test_bit(R5_Insync, &dev->flags) ||
4388                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4389                                      s.failed == 0))
4390                                         set_bit(STRIPE_INSYNC, &sh->state);
4391                         }
4392                 }
4393                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4394                         s.dec_preread_active = 1;
4395         }
4396
4397         /*
4398          * might be able to return some write requests if the parity blocks
4399          * are safe, or on a failed drive
4400          */
4401         pdev = &sh->dev[sh->pd_idx];
4402         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4403                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4404         qdev = &sh->dev[sh->qd_idx];
4405         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4406                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4407                 || conf->level < 6;
4408
4409         if (s.written &&
4410             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4411                              && !test_bit(R5_LOCKED, &pdev->flags)
4412                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4413                                  test_bit(R5_Discard, &pdev->flags))))) &&
4414             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4415                              && !test_bit(R5_LOCKED, &qdev->flags)
4416                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4417                                  test_bit(R5_Discard, &qdev->flags))))))
4418                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4419
4420         /* Now we might consider reading some blocks, either to check/generate
4421          * parity, or to satisfy requests
4422          * or to load a block that is being partially written.
4423          */
4424         if (s.to_read || s.non_overwrite
4425             || (conf->level == 6 && s.to_write && s.failed)
4426             || (s.syncing && (s.uptodate + s.compute < disks))
4427             || s.replacing
4428             || s.expanding)
4429                 handle_stripe_fill(sh, &s, disks);
4430
4431         /* Now to consider new write requests and what else, if anything
4432          * should be read.  We do not handle new writes when:
4433          * 1/ A 'write' operation (copy+xor) is already in flight.
4434          * 2/ A 'check' operation is in flight, as it may clobber the parity
4435          *    block.
4436          */
4437         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4438                 handle_stripe_dirtying(conf, sh, &s, disks);
4439
4440         /* maybe we need to check and possibly fix the parity for this stripe
4441          * Any reads will already have been scheduled, so we just see if enough
4442          * data is available.  The parity check is held off while parity
4443          * dependent operations are in flight.
4444          */
4445         if (sh->check_state ||
4446             (s.syncing && s.locked == 0 &&
4447              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4448              !test_bit(STRIPE_INSYNC, &sh->state))) {
4449                 if (conf->level == 6)
4450                         handle_parity_checks6(conf, sh, &s, disks);
4451                 else
4452                         handle_parity_checks5(conf, sh, &s, disks);
4453         }
4454
4455         if ((s.replacing || s.syncing) && s.locked == 0
4456             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4457             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4458                 /* Write out to replacement devices where possible */
4459                 for (i = 0; i < conf->raid_disks; i++)
4460                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4461                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4462                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4463                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4464                                 s.locked++;
4465                         }
4466                 if (s.replacing)
4467                         set_bit(STRIPE_INSYNC, &sh->state);
4468                 set_bit(STRIPE_REPLACED, &sh->state);
4469         }
4470         if ((s.syncing || s.replacing) && s.locked == 0 &&
4471             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4472             test_bit(STRIPE_INSYNC, &sh->state)) {
4473                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4474                 clear_bit(STRIPE_SYNCING, &sh->state);
4475                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4476                         wake_up(&conf->wait_for_overlap);
4477         }
4478
4479         /* If the failed drives are just a ReadError, then we might need
4480          * to progress the repair/check process
4481          */
4482         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4483                 for (i = 0; i < s.failed; i++) {
4484                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4485                         if (test_bit(R5_ReadError, &dev->flags)
4486                             && !test_bit(R5_LOCKED, &dev->flags)
4487                             && test_bit(R5_UPTODATE, &dev->flags)
4488                                 ) {
4489                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4490                                         set_bit(R5_Wantwrite, &dev->flags);
4491                                         set_bit(R5_ReWrite, &dev->flags);
4492                                         set_bit(R5_LOCKED, &dev->flags);
4493                                         s.locked++;
4494                                 } else {
4495                                         /* let's read it back */
4496                                         set_bit(R5_Wantread, &dev->flags);
4497                                         set_bit(R5_LOCKED, &dev->flags);
4498                                         s.locked++;
4499                                 }
4500                         }
4501                 }
4502
4503         /* Finish reconstruct operations initiated by the expansion process */
4504         if (sh->reconstruct_state == reconstruct_state_result) {
4505                 struct stripe_head *sh_src
4506                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4507                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4508                         /* sh cannot be written until sh_src has been read.
4509                          * so arrange for sh to be delayed a little
4510                          */
4511                         set_bit(STRIPE_DELAYED, &sh->state);
4512                         set_bit(STRIPE_HANDLE, &sh->state);
4513                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4514                                               &sh_src->state))
4515                                 atomic_inc(&conf->preread_active_stripes);
4516                         release_stripe(sh_src);
4517                         goto finish;
4518                 }
4519                 if (sh_src)
4520                         release_stripe(sh_src);
4521
4522                 sh->reconstruct_state = reconstruct_state_idle;
4523                 clear_bit(STRIPE_EXPANDING, &sh->state);
4524                 for (i = conf->raid_disks; i--; ) {
4525                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4526                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4527                         s.locked++;
4528                 }
4529         }
4530
4531         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4532             !sh->reconstruct_state) {
4533                 /* Need to write out all blocks after computing parity */
4534                 sh->disks = conf->raid_disks;
4535                 stripe_set_idx(sh->sector, conf, 0, sh);
4536                 schedule_reconstruction(sh, &s, 1, 1);
4537         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4538                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4539                 atomic_dec(&conf->reshape_stripes);
4540                 wake_up(&conf->wait_for_overlap);
4541                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4542         }
4543
4544         if (s.expanding && s.locked == 0 &&
4545             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4546                 handle_stripe_expansion(conf, sh);
4547
4548 finish:
4549         /* wait for this device to become unblocked */
4550         if (unlikely(s.blocked_rdev)) {
4551                 if (conf->mddev->external)
4552                         md_wait_for_blocked_rdev(s.blocked_rdev,
4553                                                  conf->mddev);
4554                 else
4555                         /* Internal metadata will immediately
4556                          * be written by raid5d, so we don't
4557                          * need to wait here.
4558                          */
4559                         rdev_dec_pending(s.blocked_rdev,
4560                                          conf->mddev);
4561         }
4562
4563         if (s.handle_bad_blocks)
4564                 for (i = disks; i--; ) {
4565                         struct md_rdev *rdev;
4566                         struct r5dev *dev = &sh->dev[i];
4567                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4568                                 /* We own a safe reference to the rdev */
4569                                 rdev = conf->disks[i].rdev;
4570                                 if (!rdev_set_badblocks(rdev, sh->sector,
4571                                                         STRIPE_SECTORS, 0))
4572                                         md_error(conf->mddev, rdev);
4573                                 rdev_dec_pending(rdev, conf->mddev);
4574                         }
4575                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4576                                 rdev = conf->disks[i].rdev;
4577                                 rdev_clear_badblocks(rdev, sh->sector,
4578                                                      STRIPE_SECTORS, 0);
4579                                 rdev_dec_pending(rdev, conf->mddev);
4580                         }
4581                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4582                                 rdev = conf->disks[i].replacement;
4583                                 if (!rdev)
4584                                         /* rdev have been moved down */
4585                                         rdev = conf->disks[i].rdev;
4586                                 rdev_clear_badblocks(rdev, sh->sector,
4587                                                      STRIPE_SECTORS, 0);
4588                                 rdev_dec_pending(rdev, conf->mddev);
4589                         }
4590                 }
4591
4592         if (s.ops_request)
4593                 raid_run_ops(sh, s.ops_request);
4594
4595         ops_run_io(sh, &s);
4596
4597         if (s.dec_preread_active) {
4598                 /* We delay this until after ops_run_io so that if make_request
4599                  * is waiting on a flush, it won't continue until the writes
4600                  * have actually been submitted.
4601                  */
4602                 atomic_dec(&conf->preread_active_stripes);
4603                 if (atomic_read(&conf->preread_active_stripes) <
4604                     IO_THRESHOLD)
4605                         md_wakeup_thread(conf->mddev->thread);
4606         }
4607
4608         return_io(s.return_bi);
4609
4610         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4611 }
4612
4613 static void raid5_activate_delayed(struct r5conf *conf)
4614 {
4615         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4616                 while (!list_empty(&conf->delayed_list)) {
4617                         struct list_head *l = conf->delayed_list.next;
4618                         struct stripe_head *sh;
4619                         sh = list_entry(l, struct stripe_head, lru);
4620                         list_del_init(l);
4621                         clear_bit(STRIPE_DELAYED, &sh->state);
4622                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4623                                 atomic_inc(&conf->preread_active_stripes);
4624                         list_add_tail(&sh->lru, &conf->hold_list);
4625                         raid5_wakeup_stripe_thread(sh);
4626                 }
4627         }
4628 }
4629
4630 static void activate_bit_delay(struct r5conf *conf,
4631         struct list_head *temp_inactive_list)
4632 {
4633         /* device_lock is held */
4634         struct list_head head;
4635         list_add(&head, &conf->bitmap_list);
4636         list_del_init(&conf->bitmap_list);
4637         while (!list_empty(&head)) {
4638                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4639                 int hash;
4640                 list_del_init(&sh->lru);
4641                 atomic_inc(&sh->count);
4642                 hash = sh->hash_lock_index;
4643                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4644         }
4645 }
4646
4647 static int raid5_congested(struct mddev *mddev, int bits)
4648 {
4649         struct r5conf *conf = mddev->private;
4650
4651         /* No difference between reads and writes.  Just check
4652          * how busy the stripe_cache is
4653          */
4654
4655         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4656                 return 1;
4657         if (conf->quiesce)
4658                 return 1;
4659         if (atomic_read(&conf->empty_inactive_list_nr))
4660                 return 1;
4661
4662         return 0;
4663 }
4664
4665 /* We want read requests to align with chunks where possible,
4666  * but write requests don't need to.
4667  */
4668 static int raid5_mergeable_bvec(struct mddev *mddev,
4669                                 struct bvec_merge_data *bvm,
4670                                 struct bio_vec *biovec)
4671 {
4672         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4673         int max;
4674         unsigned int chunk_sectors = mddev->chunk_sectors;
4675         unsigned int bio_sectors = bvm->bi_size >> 9;
4676
4677         /*
4678          * always allow writes to be mergeable, read as well if array
4679          * is degraded as we'll go through stripe cache anyway.
4680          */
4681         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4682                 return biovec->bv_len;
4683
4684         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4685                 chunk_sectors = mddev->new_chunk_sectors;
4686         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4687         if (max < 0) max = 0;
4688         if (max <= biovec->bv_len && bio_sectors == 0)
4689                 return biovec->bv_len;
4690         else
4691                 return max;
4692 }
4693
4694 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4695 {
4696         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697         unsigned int chunk_sectors = mddev->chunk_sectors;
4698         unsigned int bio_sectors = bio_sectors(bio);
4699
4700         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4701                 chunk_sectors = mddev->new_chunk_sectors;
4702         return  chunk_sectors >=
4703                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4704 }
4705
4706 /*
4707  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4708  *  later sampled by raid5d.
4709  */
4710 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4711 {
4712         unsigned long flags;
4713
4714         spin_lock_irqsave(&conf->device_lock, flags);
4715
4716         bi->bi_next = conf->retry_read_aligned_list;
4717         conf->retry_read_aligned_list = bi;
4718
4719         spin_unlock_irqrestore(&conf->device_lock, flags);
4720         md_wakeup_thread(conf->mddev->thread);
4721 }
4722
4723 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4724 {
4725         struct bio *bi;
4726
4727         bi = conf->retry_read_aligned;
4728         if (bi) {
4729                 conf->retry_read_aligned = NULL;
4730                 return bi;
4731         }
4732         bi = conf->retry_read_aligned_list;
4733         if(bi) {
4734                 conf->retry_read_aligned_list = bi->bi_next;
4735                 bi->bi_next = NULL;
4736                 /*
4737                  * this sets the active strip count to 1 and the processed
4738                  * strip count to zero (upper 8 bits)
4739                  */
4740                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4741         }
4742
4743         return bi;
4744 }
4745
4746 /*
4747  *  The "raid5_align_endio" should check if the read succeeded and if it
4748  *  did, call bio_endio on the original bio (having bio_put the new bio
4749  *  first).
4750  *  If the read failed..
4751  */
4752 static void raid5_align_endio(struct bio *bi, int error)
4753 {
4754         struct bio* raid_bi  = bi->bi_private;
4755         struct mddev *mddev;
4756         struct r5conf *conf;
4757         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4758         struct md_rdev *rdev;
4759
4760         bio_put(bi);
4761
4762         rdev = (void*)raid_bi->bi_next;
4763         raid_bi->bi_next = NULL;
4764         mddev = rdev->mddev;
4765         conf = mddev->private;
4766
4767         rdev_dec_pending(rdev, conf->mddev);
4768
4769         if (!error && uptodate) {
4770                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4771                                          raid_bi, 0);
4772                 bio_endio(raid_bi, 0);
4773                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4774                         wake_up(&conf->wait_for_quiescent);
4775                 return;
4776         }
4777
4778         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4779
4780         add_bio_to_retry(raid_bi, conf);
4781 }
4782
4783 static int bio_fits_rdev(struct bio *bi)
4784 {
4785         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4786
4787         if (bio_sectors(bi) > queue_max_sectors(q))
4788                 return 0;
4789         blk_recount_segments(q, bi);
4790         if (bi->bi_phys_segments > queue_max_segments(q))
4791                 return 0;
4792
4793         if (q->merge_bvec_fn)
4794                 /* it's too hard to apply the merge_bvec_fn at this stage,
4795                  * just just give up
4796                  */
4797                 return 0;
4798
4799         return 1;
4800 }
4801
4802 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4803 {
4804         struct r5conf *conf = mddev->private;
4805         int dd_idx;
4806         struct bio* align_bi;
4807         struct md_rdev *rdev;
4808         sector_t end_sector;
4809
4810         if (!in_chunk_boundary(mddev, raid_bio)) {
4811                 pr_debug("chunk_aligned_read : non aligned\n");
4812                 return 0;
4813         }
4814         /*
4815          * use bio_clone_mddev to make a copy of the bio
4816          */
4817         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4818         if (!align_bi)
4819                 return 0;
4820         /*
4821          *   set bi_end_io to a new function, and set bi_private to the
4822          *     original bio.
4823          */
4824         align_bi->bi_end_io  = raid5_align_endio;
4825         align_bi->bi_private = raid_bio;
4826         /*
4827          *      compute position
4828          */
4829         align_bi->bi_iter.bi_sector =
4830                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4831                                      0, &dd_idx, NULL);
4832
4833         end_sector = bio_end_sector(align_bi);
4834         rcu_read_lock();
4835         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4836         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4837             rdev->recovery_offset < end_sector) {
4838                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4839                 if (rdev &&
4840                     (test_bit(Faulty, &rdev->flags) ||
4841                     !(test_bit(In_sync, &rdev->flags) ||
4842                       rdev->recovery_offset >= end_sector)))
4843                         rdev = NULL;
4844         }
4845         if (rdev) {
4846                 sector_t first_bad;
4847                 int bad_sectors;
4848
4849                 atomic_inc(&rdev->nr_pending);
4850                 rcu_read_unlock();
4851                 raid_bio->bi_next = (void*)rdev;
4852                 align_bi->bi_bdev =  rdev->bdev;
4853                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4854
4855                 if (!bio_fits_rdev(align_bi) ||
4856                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857                                 bio_sectors(align_bi),
4858                                 &first_bad, &bad_sectors)) {
4859                         /* too big in some way, or has a known bad block */
4860                         bio_put(align_bi);
4861                         rdev_dec_pending(rdev, mddev);
4862                         return 0;
4863                 }
4864
4865                 /* No reshape active, so we can trust rdev->data_offset */
4866                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4867
4868                 spin_lock_irq(&conf->device_lock);
4869                 wait_event_lock_irq(conf->wait_for_quiescent,
4870                                     conf->quiesce == 0,
4871                                     conf->device_lock);
4872                 atomic_inc(&conf->active_aligned_reads);
4873                 spin_unlock_irq(&conf->device_lock);
4874
4875                 if (mddev->gendisk)
4876                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4877                                               align_bi, disk_devt(mddev->gendisk),
4878                                               raid_bio->bi_iter.bi_sector);
4879                 generic_make_request(align_bi);
4880                 return 1;
4881         } else {
4882                 rcu_read_unlock();
4883                 bio_put(align_bi);
4884                 return 0;
4885         }
4886 }
4887
4888 /* __get_priority_stripe - get the next stripe to process
4889  *
4890  * Full stripe writes are allowed to pass preread active stripes up until
4891  * the bypass_threshold is exceeded.  In general the bypass_count
4892  * increments when the handle_list is handled before the hold_list; however, it
4893  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894  * stripe with in flight i/o.  The bypass_count will be reset when the
4895  * head of the hold_list has changed, i.e. the head was promoted to the
4896  * handle_list.
4897  */
4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899 {
4900         struct stripe_head *sh = NULL, *tmp;
4901         struct list_head *handle_list = NULL;
4902         struct r5worker_group *wg = NULL;
4903
4904         if (conf->worker_cnt_per_group == 0) {
4905                 handle_list = &conf->handle_list;
4906         } else if (group != ANY_GROUP) {
4907                 handle_list = &conf->worker_groups[group].handle_list;
4908                 wg = &conf->worker_groups[group];
4909         } else {
4910                 int i;
4911                 for (i = 0; i < conf->group_cnt; i++) {
4912                         handle_list = &conf->worker_groups[i].handle_list;
4913                         wg = &conf->worker_groups[i];
4914                         if (!list_empty(handle_list))
4915                                 break;
4916                 }
4917         }
4918
4919         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4920                   __func__,
4921                   list_empty(handle_list) ? "empty" : "busy",
4922                   list_empty(&conf->hold_list) ? "empty" : "busy",
4923                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4924
4925         if (!list_empty(handle_list)) {
4926                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4927
4928                 if (list_empty(&conf->hold_list))
4929                         conf->bypass_count = 0;
4930                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4931                         if (conf->hold_list.next == conf->last_hold)
4932                                 conf->bypass_count++;
4933                         else {
4934                                 conf->last_hold = conf->hold_list.next;
4935                                 conf->bypass_count -= conf->bypass_threshold;
4936                                 if (conf->bypass_count < 0)
4937                                         conf->bypass_count = 0;
4938                         }
4939                 }
4940         } else if (!list_empty(&conf->hold_list) &&
4941                    ((conf->bypass_threshold &&
4942                      conf->bypass_count > conf->bypass_threshold) ||
4943                     atomic_read(&conf->pending_full_writes) == 0)) {
4944
4945                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4946                         if (conf->worker_cnt_per_group == 0 ||
4947                             group == ANY_GROUP ||
4948                             !cpu_online(tmp->cpu) ||
4949                             cpu_to_group(tmp->cpu) == group) {
4950                                 sh = tmp;
4951                                 break;
4952                         }
4953                 }
4954
4955                 if (sh) {
4956                         conf->bypass_count -= conf->bypass_threshold;
4957                         if (conf->bypass_count < 0)
4958                                 conf->bypass_count = 0;
4959                 }
4960                 wg = NULL;
4961         }
4962
4963         if (!sh)
4964                 return NULL;
4965
4966         if (wg) {
4967                 wg->stripes_cnt--;
4968                 sh->group = NULL;
4969         }
4970         list_del_init(&sh->lru);
4971         BUG_ON(atomic_inc_return(&sh->count) != 1);
4972         return sh;
4973 }
4974
4975 struct raid5_plug_cb {
4976         struct blk_plug_cb      cb;
4977         struct list_head        list;
4978         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 };
4980
4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4982 {
4983         struct raid5_plug_cb *cb = container_of(
4984                 blk_cb, struct raid5_plug_cb, cb);
4985         struct stripe_head *sh;
4986         struct mddev *mddev = cb->cb.data;
4987         struct r5conf *conf = mddev->private;
4988         int cnt = 0;
4989         int hash;
4990
4991         if (cb->list.next && !list_empty(&cb->list)) {
4992                 spin_lock_irq(&conf->device_lock);
4993                 while (!list_empty(&cb->list)) {
4994                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4995                         list_del_init(&sh->lru);
4996                         /*
4997                          * avoid race release_stripe_plug() sees
4998                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999                          * is still in our list
5000                          */
5001                         smp_mb__before_atomic();
5002                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5003                         /*
5004                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5005                          * case, the count is always > 1 here
5006                          */
5007                         hash = sh->hash_lock_index;
5008                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5009                         cnt++;
5010                 }
5011                 spin_unlock_irq(&conf->device_lock);
5012         }
5013         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5014                                      NR_STRIPE_HASH_LOCKS);
5015         if (mddev->queue)
5016                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017         kfree(cb);
5018 }
5019
5020 static void release_stripe_plug(struct mddev *mddev,
5021                                 struct stripe_head *sh)
5022 {
5023         struct blk_plug_cb *blk_cb = blk_check_plugged(
5024                 raid5_unplug, mddev,
5025                 sizeof(struct raid5_plug_cb));
5026         struct raid5_plug_cb *cb;
5027
5028         if (!blk_cb) {
5029                 release_stripe(sh);
5030                 return;
5031         }
5032
5033         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5034
5035         if (cb->list.next == NULL) {
5036                 int i;
5037                 INIT_LIST_HEAD(&cb->list);
5038                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5039                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5040         }
5041
5042         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5043                 list_add_tail(&sh->lru, &cb->list);
5044         else
5045                 release_stripe(sh);
5046 }
5047
5048 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5049 {
5050         struct r5conf *conf = mddev->private;
5051         sector_t logical_sector, last_sector;
5052         struct stripe_head *sh;
5053         int remaining;
5054         int stripe_sectors;
5055
5056         if (mddev->reshape_position != MaxSector)
5057                 /* Skip discard while reshape is happening */
5058                 return;
5059
5060         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5061         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5062
5063         bi->bi_next = NULL;
5064         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5065
5066         stripe_sectors = conf->chunk_sectors *
5067                 (conf->raid_disks - conf->max_degraded);
5068         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5069                                                stripe_sectors);
5070         sector_div(last_sector, stripe_sectors);
5071
5072         logical_sector *= conf->chunk_sectors;
5073         last_sector *= conf->chunk_sectors;
5074
5075         for (; logical_sector < last_sector;
5076              logical_sector += STRIPE_SECTORS) {
5077                 DEFINE_WAIT(w);
5078                 int d;
5079         again:
5080                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5081                 prepare_to_wait(&conf->wait_for_overlap, &w,
5082                                 TASK_UNINTERRUPTIBLE);
5083                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5084                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5085                         release_stripe(sh);
5086                         schedule();
5087                         goto again;
5088                 }
5089                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5090                 spin_lock_irq(&sh->stripe_lock);
5091                 for (d = 0; d < conf->raid_disks; d++) {
5092                         if (d == sh->pd_idx || d == sh->qd_idx)
5093                                 continue;
5094                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5095                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5096                                 spin_unlock_irq(&sh->stripe_lock);
5097                                 release_stripe(sh);
5098                                 schedule();
5099                                 goto again;
5100                         }
5101                 }
5102                 set_bit(STRIPE_DISCARD, &sh->state);
5103                 finish_wait(&conf->wait_for_overlap, &w);
5104                 sh->overwrite_disks = 0;
5105                 for (d = 0; d < conf->raid_disks; d++) {
5106                         if (d == sh->pd_idx || d == sh->qd_idx)
5107                                 continue;
5108                         sh->dev[d].towrite = bi;
5109                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5110                         raid5_inc_bi_active_stripes(bi);
5111                         sh->overwrite_disks++;
5112                 }
5113                 spin_unlock_irq(&sh->stripe_lock);
5114                 if (conf->mddev->bitmap) {
5115                         for (d = 0;
5116                              d < conf->raid_disks - conf->max_degraded;
5117                              d++)
5118                                 bitmap_startwrite(mddev->bitmap,
5119                                                   sh->sector,
5120                                                   STRIPE_SECTORS,
5121                                                   0);
5122                         sh->bm_seq = conf->seq_flush + 1;
5123                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5124                 }
5125
5126                 set_bit(STRIPE_HANDLE, &sh->state);
5127                 clear_bit(STRIPE_DELAYED, &sh->state);
5128                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5129                         atomic_inc(&conf->preread_active_stripes);
5130                 release_stripe_plug(mddev, sh);
5131         }
5132
5133         remaining = raid5_dec_bi_active_stripes(bi);
5134         if (remaining == 0) {
5135                 md_write_end(mddev);
5136                 bio_endio(bi, 0);
5137         }
5138 }
5139
5140 static void make_request(struct mddev *mddev, struct bio * bi)
5141 {
5142         struct r5conf *conf = mddev->private;
5143         int dd_idx;
5144         sector_t new_sector;
5145         sector_t logical_sector, last_sector;
5146         struct stripe_head *sh;
5147         const int rw = bio_data_dir(bi);
5148         int remaining;
5149         DEFINE_WAIT(w);
5150         bool do_prepare;
5151
5152         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5153                 md_flush_request(mddev, bi);
5154                 return;
5155         }
5156
5157         md_write_start(mddev, bi);
5158
5159         /*
5160          * If array is degraded, better not do chunk aligned read because
5161          * later we might have to read it again in order to reconstruct
5162          * data on failed drives.
5163          */
5164         if (rw == READ && mddev->degraded == 0 &&
5165              mddev->reshape_position == MaxSector &&
5166              chunk_aligned_read(mddev,bi))
5167                 return;
5168
5169         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5170                 make_discard_request(mddev, bi);
5171                 return;
5172         }
5173
5174         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5175         last_sector = bio_end_sector(bi);
5176         bi->bi_next = NULL;
5177         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5178
5179         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5180         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5181                 int previous;
5182                 int seq;
5183
5184                 do_prepare = false;
5185         retry:
5186                 seq = read_seqcount_begin(&conf->gen_lock);
5187                 previous = 0;
5188                 if (do_prepare)
5189                         prepare_to_wait(&conf->wait_for_overlap, &w,
5190                                 TASK_UNINTERRUPTIBLE);
5191                 if (unlikely(conf->reshape_progress != MaxSector)) {
5192                         /* spinlock is needed as reshape_progress may be
5193                          * 64bit on a 32bit platform, and so it might be
5194                          * possible to see a half-updated value
5195                          * Of course reshape_progress could change after
5196                          * the lock is dropped, so once we get a reference
5197                          * to the stripe that we think it is, we will have
5198                          * to check again.
5199                          */
5200                         spin_lock_irq(&conf->device_lock);
5201                         if (mddev->reshape_backwards
5202                             ? logical_sector < conf->reshape_progress
5203                             : logical_sector >= conf->reshape_progress) {
5204                                 previous = 1;
5205                         } else {
5206                                 if (mddev->reshape_backwards
5207                                     ? logical_sector < conf->reshape_safe
5208                                     : logical_sector >= conf->reshape_safe) {
5209                                         spin_unlock_irq(&conf->device_lock);
5210                                         schedule();
5211                                         do_prepare = true;
5212                                         goto retry;
5213                                 }
5214                         }
5215                         spin_unlock_irq(&conf->device_lock);
5216                 }
5217
5218                 new_sector = raid5_compute_sector(conf, logical_sector,
5219                                                   previous,
5220                                                   &dd_idx, NULL);
5221                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5222                         (unsigned long long)new_sector,
5223                         (unsigned long long)logical_sector);
5224
5225                 sh = get_active_stripe(conf, new_sector, previous,
5226                                        (bi->bi_rw&RWA_MASK), 0);
5227                 if (sh) {
5228                         if (unlikely(previous)) {
5229                                 /* expansion might have moved on while waiting for a
5230                                  * stripe, so we must do the range check again.
5231                                  * Expansion could still move past after this
5232                                  * test, but as we are holding a reference to
5233                                  * 'sh', we know that if that happens,
5234                                  *  STRIPE_EXPANDING will get set and the expansion
5235                                  * won't proceed until we finish with the stripe.
5236                                  */
5237                                 int must_retry = 0;
5238                                 spin_lock_irq(&conf->device_lock);
5239                                 if (mddev->reshape_backwards
5240                                     ? logical_sector >= conf->reshape_progress
5241                                     : logical_sector < conf->reshape_progress)
5242                                         /* mismatch, need to try again */
5243                                         must_retry = 1;
5244                                 spin_unlock_irq(&conf->device_lock);
5245                                 if (must_retry) {
5246                                         release_stripe(sh);
5247                                         schedule();
5248                                         do_prepare = true;
5249                                         goto retry;
5250                                 }
5251                         }
5252                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5253                                 /* Might have got the wrong stripe_head
5254                                  * by accident
5255                                  */
5256                                 release_stripe(sh);
5257                                 goto retry;
5258                         }
5259
5260                         if (rw == WRITE &&
5261                             logical_sector >= mddev->suspend_lo &&
5262                             logical_sector < mddev->suspend_hi) {
5263                                 release_stripe(sh);
5264                                 /* As the suspend_* range is controlled by
5265                                  * userspace, we want an interruptible
5266                                  * wait.
5267                                  */
5268                                 flush_signals(current);
5269                                 prepare_to_wait(&conf->wait_for_overlap,
5270                                                 &w, TASK_INTERRUPTIBLE);
5271                                 if (logical_sector >= mddev->suspend_lo &&
5272                                     logical_sector < mddev->suspend_hi) {
5273                                         schedule();
5274                                         do_prepare = true;
5275                                 }
5276                                 goto retry;
5277                         }
5278
5279                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5280                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5281                                 /* Stripe is busy expanding or
5282                                  * add failed due to overlap.  Flush everything
5283                                  * and wait a while
5284                                  */
5285                                 md_wakeup_thread(mddev->thread);
5286                                 release_stripe(sh);
5287                                 schedule();
5288                                 do_prepare = true;
5289                                 goto retry;
5290                         }
5291                         set_bit(STRIPE_HANDLE, &sh->state);
5292                         clear_bit(STRIPE_DELAYED, &sh->state);
5293                         if ((!sh->batch_head || sh == sh->batch_head) &&
5294                             (bi->bi_rw & REQ_SYNC) &&
5295                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5296                                 atomic_inc(&conf->preread_active_stripes);
5297                         release_stripe_plug(mddev, sh);
5298                 } else {
5299                         /* cannot get stripe for read-ahead, just give-up */
5300                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5301                         break;
5302                 }
5303         }
5304         finish_wait(&conf->wait_for_overlap, &w);
5305
5306         remaining = raid5_dec_bi_active_stripes(bi);
5307         if (remaining == 0) {
5308
5309                 if ( rw == WRITE )
5310                         md_write_end(mddev);
5311
5312                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5313                                          bi, 0);
5314                 bio_endio(bi, 0);
5315         }
5316 }
5317
5318 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5319
5320 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5321 {
5322         /* reshaping is quite different to recovery/resync so it is
5323          * handled quite separately ... here.
5324          *
5325          * On each call to sync_request, we gather one chunk worth of
5326          * destination stripes and flag them as expanding.
5327          * Then we find all the source stripes and request reads.
5328          * As the reads complete, handle_stripe will copy the data
5329          * into the destination stripe and release that stripe.
5330          */
5331         struct r5conf *conf = mddev->private;
5332         struct stripe_head *sh;
5333         sector_t first_sector, last_sector;
5334         int raid_disks = conf->previous_raid_disks;
5335         int data_disks = raid_disks - conf->max_degraded;
5336         int new_data_disks = conf->raid_disks - conf->max_degraded;
5337         int i;
5338         int dd_idx;
5339         sector_t writepos, readpos, safepos;
5340         sector_t stripe_addr;
5341         int reshape_sectors;
5342         struct list_head stripes;
5343
5344         if (sector_nr == 0) {
5345                 /* If restarting in the middle, skip the initial sectors */
5346                 if (mddev->reshape_backwards &&
5347                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5348                         sector_nr = raid5_size(mddev, 0, 0)
5349                                 - conf->reshape_progress;
5350                 } else if (!mddev->reshape_backwards &&
5351                            conf->reshape_progress > 0)
5352                         sector_nr = conf->reshape_progress;
5353                 sector_div(sector_nr, new_data_disks);
5354                 if (sector_nr) {
5355                         mddev->curr_resync_completed = sector_nr;
5356                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5357                         *skipped = 1;
5358                         return sector_nr;
5359                 }
5360         }
5361
5362         /* We need to process a full chunk at a time.
5363          * If old and new chunk sizes differ, we need to process the
5364          * largest of these
5365          */
5366         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5367                 reshape_sectors = mddev->new_chunk_sectors;
5368         else
5369                 reshape_sectors = mddev->chunk_sectors;
5370
5371         /* We update the metadata at least every 10 seconds, or when
5372          * the data about to be copied would over-write the source of
5373          * the data at the front of the range.  i.e. one new_stripe
5374          * along from reshape_progress new_maps to after where
5375          * reshape_safe old_maps to
5376          */
5377         writepos = conf->reshape_progress;
5378         sector_div(writepos, new_data_disks);
5379         readpos = conf->reshape_progress;
5380         sector_div(readpos, data_disks);
5381         safepos = conf->reshape_safe;
5382         sector_div(safepos, data_disks);
5383         if (mddev->reshape_backwards) {
5384                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5385                 readpos += reshape_sectors;
5386                 safepos += reshape_sectors;
5387         } else {
5388                 writepos += reshape_sectors;
5389                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5390                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5391         }
5392
5393         /* Having calculated the 'writepos' possibly use it
5394          * to set 'stripe_addr' which is where we will write to.
5395          */
5396         if (mddev->reshape_backwards) {
5397                 BUG_ON(conf->reshape_progress == 0);
5398                 stripe_addr = writepos;
5399                 BUG_ON((mddev->dev_sectors &
5400                         ~((sector_t)reshape_sectors - 1))
5401                        - reshape_sectors - stripe_addr
5402                        != sector_nr);
5403         } else {
5404                 BUG_ON(writepos != sector_nr + reshape_sectors);
5405                 stripe_addr = sector_nr;
5406         }
5407
5408         /* 'writepos' is the most advanced device address we might write.
5409          * 'readpos' is the least advanced device address we might read.
5410          * 'safepos' is the least address recorded in the metadata as having
5411          *     been reshaped.
5412          * If there is a min_offset_diff, these are adjusted either by
5413          * increasing the safepos/readpos if diff is negative, or
5414          * increasing writepos if diff is positive.
5415          * If 'readpos' is then behind 'writepos', there is no way that we can
5416          * ensure safety in the face of a crash - that must be done by userspace
5417          * making a backup of the data.  So in that case there is no particular
5418          * rush to update metadata.
5419          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5420          * update the metadata to advance 'safepos' to match 'readpos' so that
5421          * we can be safe in the event of a crash.
5422          * So we insist on updating metadata if safepos is behind writepos and
5423          * readpos is beyond writepos.
5424          * In any case, update the metadata every 10 seconds.
5425          * Maybe that number should be configurable, but I'm not sure it is
5426          * worth it.... maybe it could be a multiple of safemode_delay???
5427          */
5428         if (conf->min_offset_diff < 0) {
5429                 safepos += -conf->min_offset_diff;
5430                 readpos += -conf->min_offset_diff;
5431         } else
5432                 writepos += conf->min_offset_diff;
5433
5434         if ((mddev->reshape_backwards
5435              ? (safepos > writepos && readpos < writepos)
5436              : (safepos < writepos && readpos > writepos)) ||
5437             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5438                 /* Cannot proceed until we've updated the superblock... */
5439                 wait_event(conf->wait_for_overlap,
5440                            atomic_read(&conf->reshape_stripes)==0
5441                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5442                 if (atomic_read(&conf->reshape_stripes) != 0)
5443                         return 0;
5444                 mddev->reshape_position = conf->reshape_progress;
5445                 mddev->curr_resync_completed = sector_nr;
5446                 conf->reshape_checkpoint = jiffies;
5447                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5448                 md_wakeup_thread(mddev->thread);
5449                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5450                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5451                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5452                         return 0;
5453                 spin_lock_irq(&conf->device_lock);
5454                 conf->reshape_safe = mddev->reshape_position;
5455                 spin_unlock_irq(&conf->device_lock);
5456                 wake_up(&conf->wait_for_overlap);
5457                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5458         }
5459
5460         INIT_LIST_HEAD(&stripes);
5461         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5462                 int j;
5463                 int skipped_disk = 0;
5464                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5465                 set_bit(STRIPE_EXPANDING, &sh->state);
5466                 atomic_inc(&conf->reshape_stripes);
5467                 /* If any of this stripe is beyond the end of the old
5468                  * array, then we need to zero those blocks
5469                  */
5470                 for (j=sh->disks; j--;) {
5471                         sector_t s;
5472                         if (j == sh->pd_idx)
5473                                 continue;
5474                         if (conf->level == 6 &&
5475                             j == sh->qd_idx)
5476                                 continue;
5477                         s = compute_blocknr(sh, j, 0);
5478                         if (s < raid5_size(mddev, 0, 0)) {
5479                                 skipped_disk = 1;
5480                                 continue;
5481                         }
5482                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5483                         set_bit(R5_Expanded, &sh->dev[j].flags);
5484                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5485                 }
5486                 if (!skipped_disk) {
5487                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5488                         set_bit(STRIPE_HANDLE, &sh->state);
5489                 }
5490                 list_add(&sh->lru, &stripes);
5491         }
5492         spin_lock_irq(&conf->device_lock);
5493         if (mddev->reshape_backwards)
5494                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5495         else
5496                 conf->reshape_progress += reshape_sectors * new_data_disks;
5497         spin_unlock_irq(&conf->device_lock);
5498         /* Ok, those stripe are ready. We can start scheduling
5499          * reads on the source stripes.
5500          * The source stripes are determined by mapping the first and last
5501          * block on the destination stripes.
5502          */
5503         first_sector =
5504                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5505                                      1, &dd_idx, NULL);
5506         last_sector =
5507                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5508                                             * new_data_disks - 1),
5509                                      1, &dd_idx, NULL);
5510         if (last_sector >= mddev->dev_sectors)
5511                 last_sector = mddev->dev_sectors - 1;
5512         while (first_sector <= last_sector) {
5513                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5514                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5515                 set_bit(STRIPE_HANDLE, &sh->state);
5516                 release_stripe(sh);
5517                 first_sector += STRIPE_SECTORS;
5518         }
5519         /* Now that the sources are clearly marked, we can release
5520          * the destination stripes
5521          */
5522         while (!list_empty(&stripes)) {
5523                 sh = list_entry(stripes.next, struct stripe_head, lru);
5524                 list_del_init(&sh->lru);
5525                 release_stripe(sh);
5526         }
5527         /* If this takes us to the resync_max point where we have to pause,
5528          * then we need to write out the superblock.
5529          */
5530         sector_nr += reshape_sectors;
5531         if ((sector_nr - mddev->curr_resync_completed) * 2
5532             >= mddev->resync_max - mddev->curr_resync_completed) {
5533                 /* Cannot proceed until we've updated the superblock... */
5534                 wait_event(conf->wait_for_overlap,
5535                            atomic_read(&conf->reshape_stripes) == 0
5536                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5537                 if (atomic_read(&conf->reshape_stripes) != 0)
5538                         goto ret;
5539                 mddev->reshape_position = conf->reshape_progress;
5540                 mddev->curr_resync_completed = sector_nr;
5541                 conf->reshape_checkpoint = jiffies;
5542                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5543                 md_wakeup_thread(mddev->thread);
5544                 wait_event(mddev->sb_wait,
5545                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5546                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5548                         goto ret;
5549                 spin_lock_irq(&conf->device_lock);
5550                 conf->reshape_safe = mddev->reshape_position;
5551                 spin_unlock_irq(&conf->device_lock);
5552                 wake_up(&conf->wait_for_overlap);
5553                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5554         }
5555 ret:
5556         return reshape_sectors;
5557 }
5558
5559 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5560 {
5561         struct r5conf *conf = mddev->private;
5562         struct stripe_head *sh;
5563         sector_t max_sector = mddev->dev_sectors;
5564         sector_t sync_blocks;
5565         int still_degraded = 0;
5566         int i;
5567
5568         if (sector_nr >= max_sector) {
5569                 /* just being told to finish up .. nothing much to do */
5570
5571                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5572                         end_reshape(conf);
5573                         return 0;
5574                 }
5575
5576                 if (mddev->curr_resync < max_sector) /* aborted */
5577                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5578                                         &sync_blocks, 1);
5579                 else /* completed sync */
5580                         conf->fullsync = 0;
5581                 bitmap_close_sync(mddev->bitmap);
5582
5583                 return 0;
5584         }
5585
5586         /* Allow raid5_quiesce to complete */
5587         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5588
5589         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5590                 return reshape_request(mddev, sector_nr, skipped);
5591
5592         /* No need to check resync_max as we never do more than one
5593          * stripe, and as resync_max will always be on a chunk boundary,
5594          * if the check in md_do_sync didn't fire, there is no chance
5595          * of overstepping resync_max here
5596          */
5597
5598         /* if there is too many failed drives and we are trying
5599          * to resync, then assert that we are finished, because there is
5600          * nothing we can do.
5601          */
5602         if (mddev->degraded >= conf->max_degraded &&
5603             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5604                 sector_t rv = mddev->dev_sectors - sector_nr;
5605                 *skipped = 1;
5606                 return rv;
5607         }
5608         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5609             !conf->fullsync &&
5610             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5611             sync_blocks >= STRIPE_SECTORS) {
5612                 /* we can skip this block, and probably more */
5613                 sync_blocks /= STRIPE_SECTORS;
5614                 *skipped = 1;
5615                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5616         }
5617
5618         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5619
5620         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5621         if (sh == NULL) {
5622                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5623                 /* make sure we don't swamp the stripe cache if someone else
5624                  * is trying to get access
5625                  */
5626                 schedule_timeout_uninterruptible(1);
5627         }
5628         /* Need to check if array will still be degraded after recovery/resync
5629          * Note in case of > 1 drive failures it's possible we're rebuilding
5630          * one drive while leaving another faulty drive in array.
5631          */
5632         rcu_read_lock();
5633         for (i = 0; i < conf->raid_disks; i++) {
5634                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5635
5636                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5637                         still_degraded = 1;
5638         }
5639         rcu_read_unlock();
5640
5641         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5642
5643         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5644         set_bit(STRIPE_HANDLE, &sh->state);
5645
5646         release_stripe(sh);
5647
5648         return STRIPE_SECTORS;
5649 }
5650
5651 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5652 {
5653         /* We may not be able to submit a whole bio at once as there
5654          * may not be enough stripe_heads available.
5655          * We cannot pre-allocate enough stripe_heads as we may need
5656          * more than exist in the cache (if we allow ever large chunks).
5657          * So we do one stripe head at a time and record in
5658          * ->bi_hw_segments how many have been done.
5659          *
5660          * We *know* that this entire raid_bio is in one chunk, so
5661          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5662          */
5663         struct stripe_head *sh;
5664         int dd_idx;
5665         sector_t sector, logical_sector, last_sector;
5666         int scnt = 0;
5667         int remaining;
5668         int handled = 0;
5669
5670         logical_sector = raid_bio->bi_iter.bi_sector &
5671                 ~((sector_t)STRIPE_SECTORS-1);
5672         sector = raid5_compute_sector(conf, logical_sector,
5673                                       0, &dd_idx, NULL);
5674         last_sector = bio_end_sector(raid_bio);
5675
5676         for (; logical_sector < last_sector;
5677              logical_sector += STRIPE_SECTORS,
5678                      sector += STRIPE_SECTORS,
5679                      scnt++) {
5680
5681                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5682                         /* already done this stripe */
5683                         continue;
5684
5685                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5686
5687                 if (!sh) {
5688                         /* failed to get a stripe - must wait */
5689                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5690                         conf->retry_read_aligned = raid_bio;
5691                         return handled;
5692                 }
5693
5694                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5695                         release_stripe(sh);
5696                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5697                         conf->retry_read_aligned = raid_bio;
5698                         return handled;
5699                 }
5700
5701                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5702                 handle_stripe(sh);
5703                 release_stripe(sh);
5704                 handled++;
5705         }
5706         remaining = raid5_dec_bi_active_stripes(raid_bio);
5707         if (remaining == 0) {
5708                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5709                                          raid_bio, 0);
5710                 bio_endio(raid_bio, 0);
5711         }
5712         if (atomic_dec_and_test(&conf->active_aligned_reads))
5713                 wake_up(&conf->wait_for_quiescent);
5714         return handled;
5715 }
5716
5717 static int handle_active_stripes(struct r5conf *conf, int group,
5718                                  struct r5worker *worker,
5719                                  struct list_head *temp_inactive_list)
5720 {
5721         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5722         int i, batch_size = 0, hash;
5723         bool release_inactive = false;
5724
5725         while (batch_size < MAX_STRIPE_BATCH &&
5726                         (sh = __get_priority_stripe(conf, group)) != NULL)
5727                 batch[batch_size++] = sh;
5728
5729         if (batch_size == 0) {
5730                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731                         if (!list_empty(temp_inactive_list + i))
5732                                 break;
5733                 if (i == NR_STRIPE_HASH_LOCKS)
5734                         return batch_size;
5735                 release_inactive = true;
5736         }
5737         spin_unlock_irq(&conf->device_lock);
5738
5739         release_inactive_stripe_list(conf, temp_inactive_list,
5740                                      NR_STRIPE_HASH_LOCKS);
5741
5742         if (release_inactive) {
5743                 spin_lock_irq(&conf->device_lock);
5744                 return 0;
5745         }
5746
5747         for (i = 0; i < batch_size; i++)
5748                 handle_stripe(batch[i]);
5749
5750         cond_resched();
5751
5752         spin_lock_irq(&conf->device_lock);
5753         for (i = 0; i < batch_size; i++) {
5754                 hash = batch[i]->hash_lock_index;
5755                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5756         }
5757         return batch_size;
5758 }
5759
5760 static void raid5_do_work(struct work_struct *work)
5761 {
5762         struct r5worker *worker = container_of(work, struct r5worker, work);
5763         struct r5worker_group *group = worker->group;
5764         struct r5conf *conf = group->conf;
5765         int group_id = group - conf->worker_groups;
5766         int handled;
5767         struct blk_plug plug;
5768
5769         pr_debug("+++ raid5worker active\n");
5770
5771         blk_start_plug(&plug);
5772         handled = 0;
5773         spin_lock_irq(&conf->device_lock);
5774         while (1) {
5775                 int batch_size, released;
5776
5777                 released = release_stripe_list(conf, worker->temp_inactive_list);
5778
5779                 batch_size = handle_active_stripes(conf, group_id, worker,
5780                                                    worker->temp_inactive_list);
5781                 worker->working = false;
5782                 if (!batch_size && !released)
5783                         break;
5784                 handled += batch_size;
5785         }
5786         pr_debug("%d stripes handled\n", handled);
5787
5788         spin_unlock_irq(&conf->device_lock);
5789         blk_finish_plug(&plug);
5790
5791         pr_debug("--- raid5worker inactive\n");
5792 }
5793
5794 /*
5795  * This is our raid5 kernel thread.
5796  *
5797  * We scan the hash table for stripes which can be handled now.
5798  * During the scan, completed stripes are saved for us by the interrupt
5799  * handler, so that they will not have to wait for our next wakeup.
5800  */
5801 static void raid5d(struct md_thread *thread)
5802 {
5803         struct mddev *mddev = thread->mddev;
5804         struct r5conf *conf = mddev->private;
5805         int handled;
5806         struct blk_plug plug;
5807
5808         pr_debug("+++ raid5d active\n");
5809
5810         md_check_recovery(mddev);
5811
5812         blk_start_plug(&plug);
5813         handled = 0;
5814         spin_lock_irq(&conf->device_lock);
5815         while (1) {
5816                 struct bio *bio;
5817                 int batch_size, released;
5818
5819                 released = release_stripe_list(conf, conf->temp_inactive_list);
5820                 if (released)
5821                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5822
5823                 if (
5824                     !list_empty(&conf->bitmap_list)) {
5825                         /* Now is a good time to flush some bitmap updates */
5826                         conf->seq_flush++;
5827                         spin_unlock_irq(&conf->device_lock);
5828                         bitmap_unplug(mddev->bitmap);
5829                         spin_lock_irq(&conf->device_lock);
5830                         conf->seq_write = conf->seq_flush;
5831                         activate_bit_delay(conf, conf->temp_inactive_list);
5832                 }
5833                 raid5_activate_delayed(conf);
5834
5835                 while ((bio = remove_bio_from_retry(conf))) {
5836                         int ok;
5837                         spin_unlock_irq(&conf->device_lock);
5838                         ok = retry_aligned_read(conf, bio);
5839                         spin_lock_irq(&conf->device_lock);
5840                         if (!ok)
5841                                 break;
5842                         handled++;
5843                 }
5844
5845                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5846                                                    conf->temp_inactive_list);
5847                 if (!batch_size && !released)
5848                         break;
5849                 handled += batch_size;
5850
5851                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5852                         spin_unlock_irq(&conf->device_lock);
5853                         md_check_recovery(mddev);
5854                         spin_lock_irq(&conf->device_lock);
5855                 }
5856         }
5857         pr_debug("%d stripes handled\n", handled);
5858
5859         spin_unlock_irq(&conf->device_lock);
5860         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5861                 grow_one_stripe(conf, __GFP_NOWARN);
5862                 /* Set flag even if allocation failed.  This helps
5863                  * slow down allocation requests when mem is short
5864                  */
5865                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5866         }
5867
5868         async_tx_issue_pending_all();
5869         blk_finish_plug(&plug);
5870
5871         pr_debug("--- raid5d inactive\n");
5872 }
5873
5874 static ssize_t
5875 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5876 {
5877         struct r5conf *conf;
5878         int ret = 0;
5879         spin_lock(&mddev->lock);
5880         conf = mddev->private;
5881         if (conf)
5882                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5883         spin_unlock(&mddev->lock);
5884         return ret;
5885 }
5886
5887 int
5888 raid5_set_cache_size(struct mddev *mddev, int size)
5889 {
5890         struct r5conf *conf = mddev->private;
5891         int err;
5892
5893         if (size <= 16 || size > 32768)
5894                 return -EINVAL;
5895
5896         conf->min_nr_stripes = size;
5897         while (size < conf->max_nr_stripes &&
5898                drop_one_stripe(conf))
5899                 ;
5900
5901
5902         err = md_allow_write(mddev);
5903         if (err)
5904                 return err;
5905
5906         while (size > conf->max_nr_stripes)
5907                 if (!grow_one_stripe(conf, GFP_KERNEL))
5908                         break;
5909
5910         return 0;
5911 }
5912 EXPORT_SYMBOL(raid5_set_cache_size);
5913
5914 static ssize_t
5915 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5916 {
5917         struct r5conf *conf;
5918         unsigned long new;
5919         int err;
5920
5921         if (len >= PAGE_SIZE)
5922                 return -EINVAL;
5923         if (kstrtoul(page, 10, &new))
5924                 return -EINVAL;
5925         err = mddev_lock(mddev);
5926         if (err)
5927                 return err;
5928         conf = mddev->private;
5929         if (!conf)
5930                 err = -ENODEV;
5931         else
5932                 err = raid5_set_cache_size(mddev, new);
5933         mddev_unlock(mddev);
5934
5935         return err ?: len;
5936 }
5937
5938 static struct md_sysfs_entry
5939 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5940                                 raid5_show_stripe_cache_size,
5941                                 raid5_store_stripe_cache_size);
5942
5943 static ssize_t
5944 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5945 {
5946         struct r5conf *conf = mddev->private;
5947         if (conf)
5948                 return sprintf(page, "%d\n", conf->rmw_level);
5949         else
5950                 return 0;
5951 }
5952
5953 static ssize_t
5954 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5955 {
5956         struct r5conf *conf = mddev->private;
5957         unsigned long new;
5958
5959         if (!conf)
5960                 return -ENODEV;
5961
5962         if (len >= PAGE_SIZE)
5963                 return -EINVAL;
5964
5965         if (kstrtoul(page, 10, &new))
5966                 return -EINVAL;
5967
5968         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5969                 return -EINVAL;
5970
5971         if (new != PARITY_DISABLE_RMW &&
5972             new != PARITY_ENABLE_RMW &&
5973             new != PARITY_PREFER_RMW)
5974                 return -EINVAL;
5975
5976         conf->rmw_level = new;
5977         return len;
5978 }
5979
5980 static struct md_sysfs_entry
5981 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5982                          raid5_show_rmw_level,
5983                          raid5_store_rmw_level);
5984
5985
5986 static ssize_t
5987 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5988 {
5989         struct r5conf *conf;
5990         int ret = 0;
5991         spin_lock(&mddev->lock);
5992         conf = mddev->private;
5993         if (conf)
5994                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5995         spin_unlock(&mddev->lock);
5996         return ret;
5997 }
5998
5999 static ssize_t
6000 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6001 {
6002         struct r5conf *conf;
6003         unsigned long new;
6004         int err;
6005
6006         if (len >= PAGE_SIZE)
6007                 return -EINVAL;
6008         if (kstrtoul(page, 10, &new))
6009                 return -EINVAL;
6010
6011         err = mddev_lock(mddev);
6012         if (err)
6013                 return err;
6014         conf = mddev->private;
6015         if (!conf)
6016                 err = -ENODEV;
6017         else if (new > conf->min_nr_stripes)
6018                 err = -EINVAL;
6019         else
6020                 conf->bypass_threshold = new;
6021         mddev_unlock(mddev);
6022         return err ?: len;
6023 }
6024
6025 static struct md_sysfs_entry
6026 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6027                                         S_IRUGO | S_IWUSR,
6028                                         raid5_show_preread_threshold,
6029                                         raid5_store_preread_threshold);
6030
6031 static ssize_t
6032 raid5_show_skip_copy(struct mddev *mddev, char *page)
6033 {
6034         struct r5conf *conf;
6035         int ret = 0;
6036         spin_lock(&mddev->lock);
6037         conf = mddev->private;
6038         if (conf)
6039                 ret = sprintf(page, "%d\n", conf->skip_copy);
6040         spin_unlock(&mddev->lock);
6041         return ret;
6042 }
6043
6044 static ssize_t
6045 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6046 {
6047         struct r5conf *conf;
6048         unsigned long new;
6049         int err;
6050
6051         if (len >= PAGE_SIZE)
6052                 return -EINVAL;
6053         if (kstrtoul(page, 10, &new))
6054                 return -EINVAL;
6055         new = !!new;
6056
6057         err = mddev_lock(mddev);
6058         if (err)
6059                 return err;
6060         conf = mddev->private;
6061         if (!conf)
6062                 err = -ENODEV;
6063         else if (new != conf->skip_copy) {
6064                 mddev_suspend(mddev);
6065                 conf->skip_copy = new;
6066                 if (new)
6067                         mddev->queue->backing_dev_info.capabilities |=
6068                                 BDI_CAP_STABLE_WRITES;
6069                 else
6070                         mddev->queue->backing_dev_info.capabilities &=
6071                                 ~BDI_CAP_STABLE_WRITES;
6072                 mddev_resume(mddev);
6073         }
6074         mddev_unlock(mddev);
6075         return err ?: len;
6076 }
6077
6078 static struct md_sysfs_entry
6079 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6080                                         raid5_show_skip_copy,
6081                                         raid5_store_skip_copy);
6082
6083 static ssize_t
6084 stripe_cache_active_show(struct mddev *mddev, char *page)
6085 {
6086         struct r5conf *conf = mddev->private;
6087         if (conf)
6088                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6089         else
6090                 return 0;
6091 }
6092
6093 static struct md_sysfs_entry
6094 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6095
6096 static ssize_t
6097 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6098 {
6099         struct r5conf *conf;
6100         int ret = 0;
6101         spin_lock(&mddev->lock);
6102         conf = mddev->private;
6103         if (conf)
6104                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6105         spin_unlock(&mddev->lock);
6106         return ret;
6107 }
6108
6109 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6110                                int *group_cnt,
6111                                int *worker_cnt_per_group,
6112                                struct r5worker_group **worker_groups);
6113 static ssize_t
6114 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6115 {
6116         struct r5conf *conf;
6117         unsigned long new;
6118         int err;
6119         struct r5worker_group *new_groups, *old_groups;
6120         int group_cnt, worker_cnt_per_group;
6121
6122         if (len >= PAGE_SIZE)
6123                 return -EINVAL;
6124         if (kstrtoul(page, 10, &new))
6125                 return -EINVAL;
6126
6127         err = mddev_lock(mddev);
6128         if (err)
6129                 return err;
6130         conf = mddev->private;
6131         if (!conf)
6132                 err = -ENODEV;
6133         else if (new != conf->worker_cnt_per_group) {
6134                 mddev_suspend(mddev);
6135
6136                 old_groups = conf->worker_groups;
6137                 if (old_groups)
6138                         flush_workqueue(raid5_wq);
6139
6140                 err = alloc_thread_groups(conf, new,
6141                                           &group_cnt, &worker_cnt_per_group,
6142                                           &new_groups);
6143                 if (!err) {
6144                         spin_lock_irq(&conf->device_lock);
6145                         conf->group_cnt = group_cnt;
6146                         conf->worker_cnt_per_group = worker_cnt_per_group;
6147                         conf->worker_groups = new_groups;
6148                         spin_unlock_irq(&conf->device_lock);
6149
6150                         if (old_groups)
6151                                 kfree(old_groups[0].workers);
6152                         kfree(old_groups);
6153                 }
6154                 mddev_resume(mddev);
6155         }
6156         mddev_unlock(mddev);
6157
6158         return err ?: len;
6159 }
6160
6161 static struct md_sysfs_entry
6162 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6163                                 raid5_show_group_thread_cnt,
6164                                 raid5_store_group_thread_cnt);
6165
6166 static struct attribute *raid5_attrs[] =  {
6167         &raid5_stripecache_size.attr,
6168         &raid5_stripecache_active.attr,
6169         &raid5_preread_bypass_threshold.attr,
6170         &raid5_group_thread_cnt.attr,
6171         &raid5_skip_copy.attr,
6172         &raid5_rmw_level.attr,
6173         NULL,
6174 };
6175 static struct attribute_group raid5_attrs_group = {
6176         .name = NULL,
6177         .attrs = raid5_attrs,
6178 };
6179
6180 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6181                                int *group_cnt,
6182                                int *worker_cnt_per_group,
6183                                struct r5worker_group **worker_groups)
6184 {
6185         int i, j, k;
6186         ssize_t size;
6187         struct r5worker *workers;
6188
6189         *worker_cnt_per_group = cnt;
6190         if (cnt == 0) {
6191                 *group_cnt = 0;
6192                 *worker_groups = NULL;
6193                 return 0;
6194         }
6195         *group_cnt = num_possible_nodes();
6196         size = sizeof(struct r5worker) * cnt;
6197         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6198         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6199                                 *group_cnt, GFP_NOIO);
6200         if (!*worker_groups || !workers) {
6201                 kfree(workers);
6202                 kfree(*worker_groups);
6203                 return -ENOMEM;
6204         }
6205
6206         for (i = 0; i < *group_cnt; i++) {
6207                 struct r5worker_group *group;
6208
6209                 group = &(*worker_groups)[i];
6210                 INIT_LIST_HEAD(&group->handle_list);
6211                 group->conf = conf;
6212                 group->workers = workers + i * cnt;
6213
6214                 for (j = 0; j < cnt; j++) {
6215                         struct r5worker *worker = group->workers + j;
6216                         worker->group = group;
6217                         INIT_WORK(&worker->work, raid5_do_work);
6218
6219                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6220                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6221                 }
6222         }
6223
6224         return 0;
6225 }
6226
6227 static void free_thread_groups(struct r5conf *conf)
6228 {
6229         if (conf->worker_groups)
6230                 kfree(conf->worker_groups[0].workers);
6231         kfree(conf->worker_groups);
6232         conf->worker_groups = NULL;
6233 }
6234
6235 static sector_t
6236 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6237 {
6238         struct r5conf *conf = mddev->private;
6239
6240         if (!sectors)
6241                 sectors = mddev->dev_sectors;
6242         if (!raid_disks)
6243                 /* size is defined by the smallest of previous and new size */
6244                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6245
6246         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6247         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6248         return sectors * (raid_disks - conf->max_degraded);
6249 }
6250
6251 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6252 {
6253         safe_put_page(percpu->spare_page);
6254         if (percpu->scribble)
6255                 flex_array_free(percpu->scribble);
6256         percpu->spare_page = NULL;
6257         percpu->scribble = NULL;
6258 }
6259
6260 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6261 {
6262         if (conf->level == 6 && !percpu->spare_page)
6263                 percpu->spare_page = alloc_page(GFP_KERNEL);
6264         if (!percpu->scribble)
6265                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6266                                                       conf->previous_raid_disks),
6267                                                   max(conf->chunk_sectors,
6268                                                       conf->prev_chunk_sectors)
6269                                                    / STRIPE_SECTORS,
6270                                                   GFP_KERNEL);
6271
6272         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6273                 free_scratch_buffer(conf, percpu);
6274                 return -ENOMEM;
6275         }
6276
6277         return 0;
6278 }
6279
6280 static void raid5_free_percpu(struct r5conf *conf)
6281 {
6282         unsigned long cpu;
6283
6284         if (!conf->percpu)
6285                 return;
6286
6287 #ifdef CONFIG_HOTPLUG_CPU
6288         unregister_cpu_notifier(&conf->cpu_notify);
6289 #endif
6290
6291         get_online_cpus();
6292         for_each_possible_cpu(cpu)
6293                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6294         put_online_cpus();
6295
6296         free_percpu(conf->percpu);
6297 }
6298
6299 static void free_conf(struct r5conf *conf)
6300 {
6301         if (conf->shrinker.seeks)
6302                 unregister_shrinker(&conf->shrinker);
6303         free_thread_groups(conf);
6304         shrink_stripes(conf);
6305         raid5_free_percpu(conf);
6306         kfree(conf->disks);
6307         kfree(conf->stripe_hashtbl);
6308         kfree(conf);
6309 }
6310
6311 #ifdef CONFIG_HOTPLUG_CPU
6312 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6313                               void *hcpu)
6314 {
6315         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6316         long cpu = (long)hcpu;
6317         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6318
6319         switch (action) {
6320         case CPU_UP_PREPARE:
6321         case CPU_UP_PREPARE_FROZEN:
6322                 if (alloc_scratch_buffer(conf, percpu)) {
6323                         pr_err("%s: failed memory allocation for cpu%ld\n",
6324                                __func__, cpu);
6325                         return notifier_from_errno(-ENOMEM);
6326                 }
6327                 break;
6328         case CPU_DEAD:
6329         case CPU_DEAD_FROZEN:
6330                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6331                 break;
6332         default:
6333                 break;
6334         }
6335         return NOTIFY_OK;
6336 }
6337 #endif
6338
6339 static int raid5_alloc_percpu(struct r5conf *conf)
6340 {
6341         unsigned long cpu;
6342         int err = 0;
6343
6344         conf->percpu = alloc_percpu(struct raid5_percpu);
6345         if (!conf->percpu)
6346                 return -ENOMEM;
6347
6348 #ifdef CONFIG_HOTPLUG_CPU
6349         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6350         conf->cpu_notify.priority = 0;
6351         err = register_cpu_notifier(&conf->cpu_notify);
6352         if (err)
6353                 return err;
6354 #endif
6355
6356         get_online_cpus();
6357         for_each_present_cpu(cpu) {
6358                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6359                 if (err) {
6360                         pr_err("%s: failed memory allocation for cpu%ld\n",
6361                                __func__, cpu);
6362                         break;
6363                 }
6364         }
6365         put_online_cpus();
6366
6367         return err;
6368 }
6369
6370 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6371                                       struct shrink_control *sc)
6372 {
6373         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6374         int ret = 0;
6375         while (ret < sc->nr_to_scan) {
6376                 if (drop_one_stripe(conf) == 0)
6377                         return SHRINK_STOP;
6378                 ret++;
6379         }
6380         return ret;
6381 }
6382
6383 static unsigned long raid5_cache_count(struct shrinker *shrink,
6384                                        struct shrink_control *sc)
6385 {
6386         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387
6388         if (conf->max_nr_stripes < conf->min_nr_stripes)
6389                 /* unlikely, but not impossible */
6390                 return 0;
6391         return conf->max_nr_stripes - conf->min_nr_stripes;
6392 }
6393
6394 static struct r5conf *setup_conf(struct mddev *mddev)
6395 {
6396         struct r5conf *conf;
6397         int raid_disk, memory, max_disks;
6398         struct md_rdev *rdev;
6399         struct disk_info *disk;
6400         char pers_name[6];
6401         int i;
6402         int group_cnt, worker_cnt_per_group;
6403         struct r5worker_group *new_group;
6404
6405         if (mddev->new_level != 5
6406             && mddev->new_level != 4
6407             && mddev->new_level != 6) {
6408                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6409                        mdname(mddev), mddev->new_level);
6410                 return ERR_PTR(-EIO);
6411         }
6412         if ((mddev->new_level == 5
6413              && !algorithm_valid_raid5(mddev->new_layout)) ||
6414             (mddev->new_level == 6
6415              && !algorithm_valid_raid6(mddev->new_layout))) {
6416                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6417                        mdname(mddev), mddev->new_layout);
6418                 return ERR_PTR(-EIO);
6419         }
6420         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6421                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6422                        mdname(mddev), mddev->raid_disks);
6423                 return ERR_PTR(-EINVAL);
6424         }
6425
6426         if (!mddev->new_chunk_sectors ||
6427             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6428             !is_power_of_2(mddev->new_chunk_sectors)) {
6429                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6430                        mdname(mddev), mddev->new_chunk_sectors << 9);
6431                 return ERR_PTR(-EINVAL);
6432         }
6433
6434         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6435         if (conf == NULL)
6436                 goto abort;
6437         /* Don't enable multi-threading by default*/
6438         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6439                                  &new_group)) {
6440                 conf->group_cnt = group_cnt;
6441                 conf->worker_cnt_per_group = worker_cnt_per_group;
6442                 conf->worker_groups = new_group;
6443         } else
6444                 goto abort;
6445         spin_lock_init(&conf->device_lock);
6446         seqcount_init(&conf->gen_lock);
6447         init_waitqueue_head(&conf->wait_for_quiescent);
6448         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6449                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6450         }
6451         init_waitqueue_head(&conf->wait_for_overlap);
6452         INIT_LIST_HEAD(&conf->handle_list);
6453         INIT_LIST_HEAD(&conf->hold_list);
6454         INIT_LIST_HEAD(&conf->delayed_list);
6455         INIT_LIST_HEAD(&conf->bitmap_list);
6456         init_llist_head(&conf->released_stripes);
6457         atomic_set(&conf->active_stripes, 0);
6458         atomic_set(&conf->preread_active_stripes, 0);
6459         atomic_set(&conf->active_aligned_reads, 0);
6460         conf->bypass_threshold = BYPASS_THRESHOLD;
6461         conf->recovery_disabled = mddev->recovery_disabled - 1;
6462
6463         conf->raid_disks = mddev->raid_disks;
6464         if (mddev->reshape_position == MaxSector)
6465                 conf->previous_raid_disks = mddev->raid_disks;
6466         else
6467                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6468         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6469
6470         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6471                               GFP_KERNEL);
6472         if (!conf->disks)
6473                 goto abort;
6474
6475         conf->mddev = mddev;
6476
6477         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6478                 goto abort;
6479
6480         /* We init hash_locks[0] separately to that it can be used
6481          * as the reference lock in the spin_lock_nest_lock() call
6482          * in lock_all_device_hash_locks_irq in order to convince
6483          * lockdep that we know what we are doing.
6484          */
6485         spin_lock_init(conf->hash_locks);
6486         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6487                 spin_lock_init(conf->hash_locks + i);
6488
6489         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6490                 INIT_LIST_HEAD(conf->inactive_list + i);
6491
6492         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6493                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6494
6495         conf->level = mddev->new_level;
6496         conf->chunk_sectors = mddev->new_chunk_sectors;
6497         if (raid5_alloc_percpu(conf) != 0)
6498                 goto abort;
6499
6500         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6501
6502         rdev_for_each(rdev, mddev) {
6503                 raid_disk = rdev->raid_disk;
6504                 if (raid_disk >= max_disks
6505                     || raid_disk < 0)
6506                         continue;
6507                 disk = conf->disks + raid_disk;
6508
6509                 if (test_bit(Replacement, &rdev->flags)) {
6510                         if (disk->replacement)
6511                                 goto abort;
6512                         disk->replacement = rdev;
6513                 } else {
6514                         if (disk->rdev)
6515                                 goto abort;
6516                         disk->rdev = rdev;
6517                 }
6518
6519                 if (test_bit(In_sync, &rdev->flags)) {
6520                         char b[BDEVNAME_SIZE];
6521                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6522                                " disk %d\n",
6523                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6524                 } else if (rdev->saved_raid_disk != raid_disk)
6525                         /* Cannot rely on bitmap to complete recovery */
6526                         conf->fullsync = 1;
6527         }
6528
6529         conf->level = mddev->new_level;
6530         if (conf->level == 6) {
6531                 conf->max_degraded = 2;
6532                 if (raid6_call.xor_syndrome)
6533                         conf->rmw_level = PARITY_ENABLE_RMW;
6534                 else
6535                         conf->rmw_level = PARITY_DISABLE_RMW;
6536         } else {
6537                 conf->max_degraded = 1;
6538                 conf->rmw_level = PARITY_ENABLE_RMW;
6539         }
6540         conf->algorithm = mddev->new_layout;
6541         conf->reshape_progress = mddev->reshape_position;
6542         if (conf->reshape_progress != MaxSector) {
6543                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6544                 conf->prev_algo = mddev->layout;
6545         }
6546
6547         conf->min_nr_stripes = NR_STRIPES;
6548         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6549                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6550         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6551         if (grow_stripes(conf, conf->min_nr_stripes)) {
6552                 printk(KERN_ERR
6553                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6554                        mdname(mddev), memory);
6555                 goto abort;
6556         } else
6557                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6558                        mdname(mddev), memory);
6559         /*
6560          * Losing a stripe head costs more than the time to refill it,
6561          * it reduces the queue depth and so can hurt throughput.
6562          * So set it rather large, scaled by number of devices.
6563          */
6564         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6565         conf->shrinker.scan_objects = raid5_cache_scan;
6566         conf->shrinker.count_objects = raid5_cache_count;
6567         conf->shrinker.batch = 128;
6568         conf->shrinker.flags = 0;
6569         register_shrinker(&conf->shrinker);
6570
6571         sprintf(pers_name, "raid%d", mddev->new_level);
6572         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6573         if (!conf->thread) {
6574                 printk(KERN_ERR
6575                        "md/raid:%s: couldn't allocate thread.\n",
6576                        mdname(mddev));
6577                 goto abort;
6578         }
6579
6580         return conf;
6581
6582  abort:
6583         if (conf) {
6584                 free_conf(conf);
6585                 return ERR_PTR(-EIO);
6586         } else
6587                 return ERR_PTR(-ENOMEM);
6588 }
6589
6590 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6591 {
6592         switch (algo) {
6593         case ALGORITHM_PARITY_0:
6594                 if (raid_disk < max_degraded)
6595                         return 1;
6596                 break;
6597         case ALGORITHM_PARITY_N:
6598                 if (raid_disk >= raid_disks - max_degraded)
6599                         return 1;
6600                 break;
6601         case ALGORITHM_PARITY_0_6:
6602                 if (raid_disk == 0 ||
6603                     raid_disk == raid_disks - 1)
6604                         return 1;
6605                 break;
6606         case ALGORITHM_LEFT_ASYMMETRIC_6:
6607         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6608         case ALGORITHM_LEFT_SYMMETRIC_6:
6609         case ALGORITHM_RIGHT_SYMMETRIC_6:
6610                 if (raid_disk == raid_disks - 1)
6611                         return 1;
6612         }
6613         return 0;
6614 }
6615
6616 static int run(struct mddev *mddev)
6617 {
6618         struct r5conf *conf;
6619         int working_disks = 0;
6620         int dirty_parity_disks = 0;
6621         struct md_rdev *rdev;
6622         sector_t reshape_offset = 0;
6623         int i;
6624         long long min_offset_diff = 0;
6625         int first = 1;
6626
6627         if (mddev->recovery_cp != MaxSector)
6628                 printk(KERN_NOTICE "md/raid:%s: not clean"
6629                        " -- starting background reconstruction\n",
6630                        mdname(mddev));
6631
6632         rdev_for_each(rdev, mddev) {
6633                 long long diff;
6634                 if (rdev->raid_disk < 0)
6635                         continue;
6636                 diff = (rdev->new_data_offset - rdev->data_offset);
6637                 if (first) {
6638                         min_offset_diff = diff;
6639                         first = 0;
6640                 } else if (mddev->reshape_backwards &&
6641                          diff < min_offset_diff)
6642                         min_offset_diff = diff;
6643                 else if (!mddev->reshape_backwards &&
6644                          diff > min_offset_diff)
6645                         min_offset_diff = diff;
6646         }
6647
6648         if (mddev->reshape_position != MaxSector) {
6649                 /* Check that we can continue the reshape.
6650                  * Difficulties arise if the stripe we would write to
6651                  * next is at or after the stripe we would read from next.
6652                  * For a reshape that changes the number of devices, this
6653                  * is only possible for a very short time, and mdadm makes
6654                  * sure that time appears to have past before assembling
6655                  * the array.  So we fail if that time hasn't passed.
6656                  * For a reshape that keeps the number of devices the same
6657                  * mdadm must be monitoring the reshape can keeping the
6658                  * critical areas read-only and backed up.  It will start
6659                  * the array in read-only mode, so we check for that.
6660                  */
6661                 sector_t here_new, here_old;
6662                 int old_disks;
6663                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6664
6665                 if (mddev->new_level != mddev->level) {
6666                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6667                                "required - aborting.\n",
6668                                mdname(mddev));
6669                         return -EINVAL;
6670                 }
6671                 old_disks = mddev->raid_disks - mddev->delta_disks;
6672                 /* reshape_position must be on a new-stripe boundary, and one
6673                  * further up in new geometry must map after here in old
6674                  * geometry.
6675                  */
6676                 here_new = mddev->reshape_position;
6677                 if (sector_div(here_new, mddev->new_chunk_sectors *
6678                                (mddev->raid_disks - max_degraded))) {
6679                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6680                                "on a stripe boundary\n", mdname(mddev));
6681                         return -EINVAL;
6682                 }
6683                 reshape_offset = here_new * mddev->new_chunk_sectors;
6684                 /* here_new is the stripe we will write to */
6685                 here_old = mddev->reshape_position;
6686                 sector_div(here_old, mddev->chunk_sectors *
6687                            (old_disks-max_degraded));
6688                 /* here_old is the first stripe that we might need to read
6689                  * from */
6690                 if (mddev->delta_disks == 0) {
6691                         if ((here_new * mddev->new_chunk_sectors !=
6692                              here_old * mddev->chunk_sectors)) {
6693                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6694                                        " confused - aborting\n", mdname(mddev));
6695                                 return -EINVAL;
6696                         }
6697                         /* We cannot be sure it is safe to start an in-place
6698                          * reshape.  It is only safe if user-space is monitoring
6699                          * and taking constant backups.
6700                          * mdadm always starts a situation like this in
6701                          * readonly mode so it can take control before
6702                          * allowing any writes.  So just check for that.
6703                          */
6704                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6705                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6706                                 /* not really in-place - so OK */;
6707                         else if (mddev->ro == 0) {
6708                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6709                                        "must be started in read-only mode "
6710                                        "- aborting\n",
6711                                        mdname(mddev));
6712                                 return -EINVAL;
6713                         }
6714                 } else if (mddev->reshape_backwards
6715                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6716                        here_old * mddev->chunk_sectors)
6717                     : (here_new * mddev->new_chunk_sectors >=
6718                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6719                         /* Reading from the same stripe as writing to - bad */
6720                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6721                                "auto-recovery - aborting.\n",
6722                                mdname(mddev));
6723                         return -EINVAL;
6724                 }
6725                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6726                        mdname(mddev));
6727                 /* OK, we should be able to continue; */
6728         } else {
6729                 BUG_ON(mddev->level != mddev->new_level);
6730                 BUG_ON(mddev->layout != mddev->new_layout);
6731                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6732                 BUG_ON(mddev->delta_disks != 0);
6733         }
6734
6735         if (mddev->private == NULL)
6736                 conf = setup_conf(mddev);
6737         else
6738                 conf = mddev->private;
6739
6740         if (IS_ERR(conf))
6741                 return PTR_ERR(conf);
6742
6743         conf->min_offset_diff = min_offset_diff;
6744         mddev->thread = conf->thread;
6745         conf->thread = NULL;
6746         mddev->private = conf;
6747
6748         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6749              i++) {
6750                 rdev = conf->disks[i].rdev;
6751                 if (!rdev && conf->disks[i].replacement) {
6752                         /* The replacement is all we have yet */
6753                         rdev = conf->disks[i].replacement;
6754                         conf->disks[i].replacement = NULL;
6755                         clear_bit(Replacement, &rdev->flags);
6756                         conf->disks[i].rdev = rdev;
6757                 }
6758                 if (!rdev)
6759                         continue;
6760                 if (conf->disks[i].replacement &&
6761                     conf->reshape_progress != MaxSector) {
6762                         /* replacements and reshape simply do not mix. */
6763                         printk(KERN_ERR "md: cannot handle concurrent "
6764                                "replacement and reshape.\n");
6765                         goto abort;
6766                 }
6767                 if (test_bit(In_sync, &rdev->flags)) {
6768                         working_disks++;
6769                         continue;
6770                 }
6771                 /* This disc is not fully in-sync.  However if it
6772                  * just stored parity (beyond the recovery_offset),
6773                  * when we don't need to be concerned about the
6774                  * array being dirty.
6775                  * When reshape goes 'backwards', we never have
6776                  * partially completed devices, so we only need
6777                  * to worry about reshape going forwards.
6778                  */
6779                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6780                 if (mddev->major_version == 0 &&
6781                     mddev->minor_version > 90)
6782                         rdev->recovery_offset = reshape_offset;
6783
6784                 if (rdev->recovery_offset < reshape_offset) {
6785                         /* We need to check old and new layout */
6786                         if (!only_parity(rdev->raid_disk,
6787                                          conf->algorithm,
6788                                          conf->raid_disks,
6789                                          conf->max_degraded))
6790                                 continue;
6791                 }
6792                 if (!only_parity(rdev->raid_disk,
6793                                  conf->prev_algo,
6794                                  conf->previous_raid_disks,
6795                                  conf->max_degraded))
6796                         continue;
6797                 dirty_parity_disks++;
6798         }
6799
6800         /*
6801          * 0 for a fully functional array, 1 or 2 for a degraded array.
6802          */
6803         mddev->degraded = calc_degraded(conf);
6804
6805         if (has_failed(conf)) {
6806                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6807                         " (%d/%d failed)\n",
6808                         mdname(mddev), mddev->degraded, conf->raid_disks);
6809                 goto abort;
6810         }
6811
6812         /* device size must be a multiple of chunk size */
6813         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6814         mddev->resync_max_sectors = mddev->dev_sectors;
6815
6816         if (mddev->degraded > dirty_parity_disks &&
6817             mddev->recovery_cp != MaxSector) {
6818                 if (mddev->ok_start_degraded)
6819                         printk(KERN_WARNING
6820                                "md/raid:%s: starting dirty degraded array"
6821                                " - data corruption possible.\n",
6822                                mdname(mddev));
6823                 else {
6824                         printk(KERN_ERR
6825                                "md/raid:%s: cannot start dirty degraded array.\n",
6826                                mdname(mddev));
6827                         goto abort;
6828                 }
6829         }
6830
6831         if (mddev->degraded == 0)
6832                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6833                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6834                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6835                        mddev->new_layout);
6836         else
6837                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6838                        " out of %d devices, algorithm %d\n",
6839                        mdname(mddev), conf->level,
6840                        mddev->raid_disks - mddev->degraded,
6841                        mddev->raid_disks, mddev->new_layout);
6842
6843         print_raid5_conf(conf);
6844
6845         if (conf->reshape_progress != MaxSector) {
6846                 conf->reshape_safe = conf->reshape_progress;
6847                 atomic_set(&conf->reshape_stripes, 0);
6848                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6849                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6850                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6851                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6852                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6853                                                         "reshape");
6854         }
6855
6856         /* Ok, everything is just fine now */
6857         if (mddev->to_remove == &raid5_attrs_group)
6858                 mddev->to_remove = NULL;
6859         else if (mddev->kobj.sd &&
6860             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6861                 printk(KERN_WARNING
6862                        "raid5: failed to create sysfs attributes for %s\n",
6863                        mdname(mddev));
6864         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6865
6866         if (mddev->queue) {
6867                 int chunk_size;
6868                 bool discard_supported = true;
6869                 /* read-ahead size must cover two whole stripes, which
6870                  * is 2 * (datadisks) * chunksize where 'n' is the
6871                  * number of raid devices
6872                  */
6873                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6874                 int stripe = data_disks *
6875                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6876                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6877                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6878
6879                 chunk_size = mddev->chunk_sectors << 9;
6880                 blk_queue_io_min(mddev->queue, chunk_size);
6881                 blk_queue_io_opt(mddev->queue, chunk_size *
6882                                  (conf->raid_disks - conf->max_degraded));
6883                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6884                 /*
6885                  * We can only discard a whole stripe. It doesn't make sense to
6886                  * discard data disk but write parity disk
6887                  */
6888                 stripe = stripe * PAGE_SIZE;
6889                 /* Round up to power of 2, as discard handling
6890                  * currently assumes that */
6891                 while ((stripe-1) & stripe)
6892                         stripe = (stripe | (stripe-1)) + 1;
6893                 mddev->queue->limits.discard_alignment = stripe;
6894                 mddev->queue->limits.discard_granularity = stripe;
6895                 /*
6896                  * unaligned part of discard request will be ignored, so can't
6897                  * guarantee discard_zeroes_data
6898                  */
6899                 mddev->queue->limits.discard_zeroes_data = 0;
6900
6901                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6902
6903                 rdev_for_each(rdev, mddev) {
6904                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6905                                           rdev->data_offset << 9);
6906                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6907                                           rdev->new_data_offset << 9);
6908                         /*
6909                          * discard_zeroes_data is required, otherwise data
6910                          * could be lost. Consider a scenario: discard a stripe
6911                          * (the stripe could be inconsistent if
6912                          * discard_zeroes_data is 0); write one disk of the
6913                          * stripe (the stripe could be inconsistent again
6914                          * depending on which disks are used to calculate
6915                          * parity); the disk is broken; The stripe data of this
6916                          * disk is lost.
6917                          */
6918                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6919                             !bdev_get_queue(rdev->bdev)->
6920                                                 limits.discard_zeroes_data)
6921                                 discard_supported = false;
6922                         /* Unfortunately, discard_zeroes_data is not currently
6923                          * a guarantee - just a hint.  So we only allow DISCARD
6924                          * if the sysadmin has confirmed that only safe devices
6925                          * are in use by setting a module parameter.
6926                          */
6927                         if (!devices_handle_discard_safely) {
6928                                 if (discard_supported) {
6929                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6930                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6931                                 }
6932                                 discard_supported = false;
6933                         }
6934                 }
6935
6936                 if (discard_supported &&
6937                    mddev->queue->limits.max_discard_sectors >= stripe &&
6938                    mddev->queue->limits.discard_granularity >= stripe)
6939                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6940                                                 mddev->queue);
6941                 else
6942                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6943                                                 mddev->queue);
6944         }
6945
6946         return 0;
6947 abort:
6948         md_unregister_thread(&mddev->thread);
6949         print_raid5_conf(conf);
6950         free_conf(conf);
6951         mddev->private = NULL;
6952         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6953         return -EIO;
6954 }
6955
6956 static void raid5_free(struct mddev *mddev, void *priv)
6957 {
6958         struct r5conf *conf = priv;
6959
6960         free_conf(conf);
6961         mddev->to_remove = &raid5_attrs_group;
6962 }
6963
6964 static void status(struct seq_file *seq, struct mddev *mddev)
6965 {
6966         struct r5conf *conf = mddev->private;
6967         int i;
6968
6969         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6970                 mddev->chunk_sectors / 2, mddev->layout);
6971         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6972         for (i = 0; i < conf->raid_disks; i++)
6973                 seq_printf (seq, "%s",
6974                                conf->disks[i].rdev &&
6975                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6976         seq_printf (seq, "]");
6977 }
6978
6979 static void print_raid5_conf (struct r5conf *conf)
6980 {
6981         int i;
6982         struct disk_info *tmp;
6983
6984         printk(KERN_DEBUG "RAID conf printout:\n");
6985         if (!conf) {
6986                 printk("(conf==NULL)\n");
6987                 return;
6988         }
6989         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6990                conf->raid_disks,
6991                conf->raid_disks - conf->mddev->degraded);
6992
6993         for (i = 0; i < conf->raid_disks; i++) {
6994                 char b[BDEVNAME_SIZE];
6995                 tmp = conf->disks + i;
6996                 if (tmp->rdev)
6997                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6998                                i, !test_bit(Faulty, &tmp->rdev->flags),
6999                                bdevname(tmp->rdev->bdev, b));
7000         }
7001 }
7002
7003 static int raid5_spare_active(struct mddev *mddev)
7004 {
7005         int i;
7006         struct r5conf *conf = mddev->private;
7007         struct disk_info *tmp;
7008         int count = 0;
7009         unsigned long flags;
7010
7011         for (i = 0; i < conf->raid_disks; i++) {
7012                 tmp = conf->disks + i;
7013                 if (tmp->replacement
7014                     && tmp->replacement->recovery_offset == MaxSector
7015                     && !test_bit(Faulty, &tmp->replacement->flags)
7016                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7017                         /* Replacement has just become active. */
7018                         if (!tmp->rdev
7019                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7020                                 count++;
7021                         if (tmp->rdev) {
7022                                 /* Replaced device not technically faulty,
7023                                  * but we need to be sure it gets removed
7024                                  * and never re-added.
7025                                  */
7026                                 set_bit(Faulty, &tmp->rdev->flags);
7027                                 sysfs_notify_dirent_safe(
7028                                         tmp->rdev->sysfs_state);
7029                         }
7030                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7031                 } else if (tmp->rdev
7032                     && tmp->rdev->recovery_offset == MaxSector
7033                     && !test_bit(Faulty, &tmp->rdev->flags)
7034                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7035                         count++;
7036                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7037                 }
7038         }
7039         spin_lock_irqsave(&conf->device_lock, flags);
7040         mddev->degraded = calc_degraded(conf);
7041         spin_unlock_irqrestore(&conf->device_lock, flags);
7042         print_raid5_conf(conf);
7043         return count;
7044 }
7045
7046 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7047 {
7048         struct r5conf *conf = mddev->private;
7049         int err = 0;
7050         int number = rdev->raid_disk;
7051         struct md_rdev **rdevp;
7052         struct disk_info *p = conf->disks + number;
7053
7054         print_raid5_conf(conf);
7055         if (rdev == p->rdev)
7056                 rdevp = &p->rdev;
7057         else if (rdev == p->replacement)
7058                 rdevp = &p->replacement;
7059         else
7060                 return 0;
7061
7062         if (number >= conf->raid_disks &&
7063             conf->reshape_progress == MaxSector)
7064                 clear_bit(In_sync, &rdev->flags);
7065
7066         if (test_bit(In_sync, &rdev->flags) ||
7067             atomic_read(&rdev->nr_pending)) {
7068                 err = -EBUSY;
7069                 goto abort;
7070         }
7071         /* Only remove non-faulty devices if recovery
7072          * isn't possible.
7073          */
7074         if (!test_bit(Faulty, &rdev->flags) &&
7075             mddev->recovery_disabled != conf->recovery_disabled &&
7076             !has_failed(conf) &&
7077             (!p->replacement || p->replacement == rdev) &&
7078             number < conf->raid_disks) {
7079                 err = -EBUSY;
7080                 goto abort;
7081         }
7082         *rdevp = NULL;
7083         synchronize_rcu();
7084         if (atomic_read(&rdev->nr_pending)) {
7085                 /* lost the race, try later */
7086                 err = -EBUSY;
7087                 *rdevp = rdev;
7088         } else if (p->replacement) {
7089                 /* We must have just cleared 'rdev' */
7090                 p->rdev = p->replacement;
7091                 clear_bit(Replacement, &p->replacement->flags);
7092                 smp_mb(); /* Make sure other CPUs may see both as identical
7093                            * but will never see neither - if they are careful
7094                            */
7095                 p->replacement = NULL;
7096                 clear_bit(WantReplacement, &rdev->flags);
7097         } else
7098                 /* We might have just removed the Replacement as faulty-
7099                  * clear the bit just in case
7100                  */
7101                 clear_bit(WantReplacement, &rdev->flags);
7102 abort:
7103
7104         print_raid5_conf(conf);
7105         return err;
7106 }
7107
7108 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7109 {
7110         struct r5conf *conf = mddev->private;
7111         int err = -EEXIST;
7112         int disk;
7113         struct disk_info *p;
7114         int first = 0;
7115         int last = conf->raid_disks - 1;
7116
7117         if (mddev->recovery_disabled == conf->recovery_disabled)
7118                 return -EBUSY;
7119
7120         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7121                 /* no point adding a device */
7122                 return -EINVAL;
7123
7124         if (rdev->raid_disk >= 0)
7125                 first = last = rdev->raid_disk;
7126
7127         /*
7128          * find the disk ... but prefer rdev->saved_raid_disk
7129          * if possible.
7130          */
7131         if (rdev->saved_raid_disk >= 0 &&
7132             rdev->saved_raid_disk >= first &&
7133             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7134                 first = rdev->saved_raid_disk;
7135
7136         for (disk = first; disk <= last; disk++) {
7137                 p = conf->disks + disk;
7138                 if (p->rdev == NULL) {
7139                         clear_bit(In_sync, &rdev->flags);
7140                         rdev->raid_disk = disk;
7141                         err = 0;
7142                         if (rdev->saved_raid_disk != disk)
7143                                 conf->fullsync = 1;
7144                         rcu_assign_pointer(p->rdev, rdev);
7145                         goto out;
7146                 }
7147         }
7148         for (disk = first; disk <= last; disk++) {
7149                 p = conf->disks + disk;
7150                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7151                     p->replacement == NULL) {
7152                         clear_bit(In_sync, &rdev->flags);
7153                         set_bit(Replacement, &rdev->flags);
7154                         rdev->raid_disk = disk;
7155                         err = 0;
7156                         conf->fullsync = 1;
7157                         rcu_assign_pointer(p->replacement, rdev);
7158                         break;
7159                 }
7160         }
7161 out:
7162         print_raid5_conf(conf);
7163         return err;
7164 }
7165
7166 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7167 {
7168         /* no resync is happening, and there is enough space
7169          * on all devices, so we can resize.
7170          * We need to make sure resync covers any new space.
7171          * If the array is shrinking we should possibly wait until
7172          * any io in the removed space completes, but it hardly seems
7173          * worth it.
7174          */
7175         sector_t newsize;
7176         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7177         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7178         if (mddev->external_size &&
7179             mddev->array_sectors > newsize)
7180                 return -EINVAL;
7181         if (mddev->bitmap) {
7182                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7183                 if (ret)
7184                         return ret;
7185         }
7186         md_set_array_sectors(mddev, newsize);
7187         set_capacity(mddev->gendisk, mddev->array_sectors);
7188         revalidate_disk(mddev->gendisk);
7189         if (sectors > mddev->dev_sectors &&
7190             mddev->recovery_cp > mddev->dev_sectors) {
7191                 mddev->recovery_cp = mddev->dev_sectors;
7192                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7193         }
7194         mddev->dev_sectors = sectors;
7195         mddev->resync_max_sectors = sectors;
7196         return 0;
7197 }
7198
7199 static int check_stripe_cache(struct mddev *mddev)
7200 {
7201         /* Can only proceed if there are plenty of stripe_heads.
7202          * We need a minimum of one full stripe,, and for sensible progress
7203          * it is best to have about 4 times that.
7204          * If we require 4 times, then the default 256 4K stripe_heads will
7205          * allow for chunk sizes up to 256K, which is probably OK.
7206          * If the chunk size is greater, user-space should request more
7207          * stripe_heads first.
7208          */
7209         struct r5conf *conf = mddev->private;
7210         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7211             > conf->min_nr_stripes ||
7212             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7213             > conf->min_nr_stripes) {
7214                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7215                        mdname(mddev),
7216                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7217                         / STRIPE_SIZE)*4);
7218                 return 0;
7219         }
7220         return 1;
7221 }
7222
7223 static int check_reshape(struct mddev *mddev)
7224 {
7225         struct r5conf *conf = mddev->private;
7226
7227         if (mddev->delta_disks == 0 &&
7228             mddev->new_layout == mddev->layout &&
7229             mddev->new_chunk_sectors == mddev->chunk_sectors)
7230                 return 0; /* nothing to do */
7231         if (has_failed(conf))
7232                 return -EINVAL;
7233         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7234                 /* We might be able to shrink, but the devices must
7235                  * be made bigger first.
7236                  * For raid6, 4 is the minimum size.
7237                  * Otherwise 2 is the minimum
7238                  */
7239                 int min = 2;
7240                 if (mddev->level == 6)
7241                         min = 4;
7242                 if (mddev->raid_disks + mddev->delta_disks < min)
7243                         return -EINVAL;
7244         }
7245
7246         if (!check_stripe_cache(mddev))
7247                 return -ENOSPC;
7248
7249         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7250             mddev->delta_disks > 0)
7251                 if (resize_chunks(conf,
7252                                   conf->previous_raid_disks
7253                                   + max(0, mddev->delta_disks),
7254                                   max(mddev->new_chunk_sectors,
7255                                       mddev->chunk_sectors)
7256                             ) < 0)
7257                         return -ENOMEM;
7258         return resize_stripes(conf, (conf->previous_raid_disks
7259                                      + mddev->delta_disks));
7260 }
7261
7262 static int raid5_start_reshape(struct mddev *mddev)
7263 {
7264         struct r5conf *conf = mddev->private;
7265         struct md_rdev *rdev;
7266         int spares = 0;
7267         unsigned long flags;
7268
7269         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7270                 return -EBUSY;
7271
7272         if (!check_stripe_cache(mddev))
7273                 return -ENOSPC;
7274
7275         if (has_failed(conf))
7276                 return -EINVAL;
7277
7278         rdev_for_each(rdev, mddev) {
7279                 if (!test_bit(In_sync, &rdev->flags)
7280                     && !test_bit(Faulty, &rdev->flags))
7281                         spares++;
7282         }
7283
7284         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7285                 /* Not enough devices even to make a degraded array
7286                  * of that size
7287                  */
7288                 return -EINVAL;
7289
7290         /* Refuse to reduce size of the array.  Any reductions in
7291          * array size must be through explicit setting of array_size
7292          * attribute.
7293          */
7294         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7295             < mddev->array_sectors) {
7296                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7297                        "before number of disks\n", mdname(mddev));
7298                 return -EINVAL;
7299         }
7300
7301         atomic_set(&conf->reshape_stripes, 0);
7302         spin_lock_irq(&conf->device_lock);
7303         write_seqcount_begin(&conf->gen_lock);
7304         conf->previous_raid_disks = conf->raid_disks;
7305         conf->raid_disks += mddev->delta_disks;
7306         conf->prev_chunk_sectors = conf->chunk_sectors;
7307         conf->chunk_sectors = mddev->new_chunk_sectors;
7308         conf->prev_algo = conf->algorithm;
7309         conf->algorithm = mddev->new_layout;
7310         conf->generation++;
7311         /* Code that selects data_offset needs to see the generation update
7312          * if reshape_progress has been set - so a memory barrier needed.
7313          */
7314         smp_mb();
7315         if (mddev->reshape_backwards)
7316                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7317         else
7318                 conf->reshape_progress = 0;
7319         conf->reshape_safe = conf->reshape_progress;
7320         write_seqcount_end(&conf->gen_lock);
7321         spin_unlock_irq(&conf->device_lock);
7322
7323         /* Now make sure any requests that proceeded on the assumption
7324          * the reshape wasn't running - like Discard or Read - have
7325          * completed.
7326          */
7327         mddev_suspend(mddev);
7328         mddev_resume(mddev);
7329
7330         /* Add some new drives, as many as will fit.
7331          * We know there are enough to make the newly sized array work.
7332          * Don't add devices if we are reducing the number of
7333          * devices in the array.  This is because it is not possible
7334          * to correctly record the "partially reconstructed" state of
7335          * such devices during the reshape and confusion could result.
7336          */
7337         if (mddev->delta_disks >= 0) {
7338                 rdev_for_each(rdev, mddev)
7339                         if (rdev->raid_disk < 0 &&
7340                             !test_bit(Faulty, &rdev->flags)) {
7341                                 if (raid5_add_disk(mddev, rdev) == 0) {
7342                                         if (rdev->raid_disk
7343                                             >= conf->previous_raid_disks)
7344                                                 set_bit(In_sync, &rdev->flags);
7345                                         else
7346                                                 rdev->recovery_offset = 0;
7347
7348                                         if (sysfs_link_rdev(mddev, rdev))
7349                                                 /* Failure here is OK */;
7350                                 }
7351                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7352                                    && !test_bit(Faulty, &rdev->flags)) {
7353                                 /* This is a spare that was manually added */
7354                                 set_bit(In_sync, &rdev->flags);
7355                         }
7356
7357                 /* When a reshape changes the number of devices,
7358                  * ->degraded is measured against the larger of the
7359                  * pre and post number of devices.
7360                  */
7361                 spin_lock_irqsave(&conf->device_lock, flags);
7362                 mddev->degraded = calc_degraded(conf);
7363                 spin_unlock_irqrestore(&conf->device_lock, flags);
7364         }
7365         mddev->raid_disks = conf->raid_disks;
7366         mddev->reshape_position = conf->reshape_progress;
7367         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7368
7369         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7370         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7371         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7372         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7373         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7374         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7375                                                 "reshape");
7376         if (!mddev->sync_thread) {
7377                 mddev->recovery = 0;
7378                 spin_lock_irq(&conf->device_lock);
7379                 write_seqcount_begin(&conf->gen_lock);
7380                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7381                 mddev->new_chunk_sectors =
7382                         conf->chunk_sectors = conf->prev_chunk_sectors;
7383                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7384                 rdev_for_each(rdev, mddev)
7385                         rdev->new_data_offset = rdev->data_offset;
7386                 smp_wmb();
7387                 conf->generation --;
7388                 conf->reshape_progress = MaxSector;
7389                 mddev->reshape_position = MaxSector;
7390                 write_seqcount_end(&conf->gen_lock);
7391                 spin_unlock_irq(&conf->device_lock);
7392                 return -EAGAIN;
7393         }
7394         conf->reshape_checkpoint = jiffies;
7395         md_wakeup_thread(mddev->sync_thread);
7396         md_new_event(mddev);
7397         return 0;
7398 }
7399
7400 /* This is called from the reshape thread and should make any
7401  * changes needed in 'conf'
7402  */
7403 static void end_reshape(struct r5conf *conf)
7404 {
7405
7406         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7407                 struct md_rdev *rdev;
7408
7409                 spin_lock_irq(&conf->device_lock);
7410                 conf->previous_raid_disks = conf->raid_disks;
7411                 rdev_for_each(rdev, conf->mddev)
7412                         rdev->data_offset = rdev->new_data_offset;
7413                 smp_wmb();
7414                 conf->reshape_progress = MaxSector;
7415                 spin_unlock_irq(&conf->device_lock);
7416                 wake_up(&conf->wait_for_overlap);
7417
7418                 /* read-ahead size must cover two whole stripes, which is
7419                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7420                  */
7421                 if (conf->mddev->queue) {
7422                         int data_disks = conf->raid_disks - conf->max_degraded;
7423                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7424                                                    / PAGE_SIZE);
7425                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7426                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7427                 }
7428         }
7429 }
7430
7431 /* This is called from the raid5d thread with mddev_lock held.
7432  * It makes config changes to the device.
7433  */
7434 static void raid5_finish_reshape(struct mddev *mddev)
7435 {
7436         struct r5conf *conf = mddev->private;
7437
7438         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7439
7440                 if (mddev->delta_disks > 0) {
7441                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7442                         set_capacity(mddev->gendisk, mddev->array_sectors);
7443                         revalidate_disk(mddev->gendisk);
7444                 } else {
7445                         int d;
7446                         spin_lock_irq(&conf->device_lock);
7447                         mddev->degraded = calc_degraded(conf);
7448                         spin_unlock_irq(&conf->device_lock);
7449                         for (d = conf->raid_disks ;
7450                              d < conf->raid_disks - mddev->delta_disks;
7451                              d++) {
7452                                 struct md_rdev *rdev = conf->disks[d].rdev;
7453                                 if (rdev)
7454                                         clear_bit(In_sync, &rdev->flags);
7455                                 rdev = conf->disks[d].replacement;
7456                                 if (rdev)
7457                                         clear_bit(In_sync, &rdev->flags);
7458                         }
7459                 }
7460                 mddev->layout = conf->algorithm;
7461                 mddev->chunk_sectors = conf->chunk_sectors;
7462                 mddev->reshape_position = MaxSector;
7463                 mddev->delta_disks = 0;
7464                 mddev->reshape_backwards = 0;
7465         }
7466 }
7467
7468 static void raid5_quiesce(struct mddev *mddev, int state)
7469 {
7470         struct r5conf *conf = mddev->private;
7471
7472         switch(state) {
7473         case 2: /* resume for a suspend */
7474                 wake_up(&conf->wait_for_overlap);
7475                 break;
7476
7477         case 1: /* stop all writes */
7478                 lock_all_device_hash_locks_irq(conf);
7479                 /* '2' tells resync/reshape to pause so that all
7480                  * active stripes can drain
7481                  */
7482                 conf->quiesce = 2;
7483                 wait_event_cmd(conf->wait_for_quiescent,
7484                                     atomic_read(&conf->active_stripes) == 0 &&
7485                                     atomic_read(&conf->active_aligned_reads) == 0,
7486                                     unlock_all_device_hash_locks_irq(conf),
7487                                     lock_all_device_hash_locks_irq(conf));
7488                 conf->quiesce = 1;
7489                 unlock_all_device_hash_locks_irq(conf);
7490                 /* allow reshape to continue */
7491                 wake_up(&conf->wait_for_overlap);
7492                 break;
7493
7494         case 0: /* re-enable writes */
7495                 lock_all_device_hash_locks_irq(conf);
7496                 conf->quiesce = 0;
7497                 wake_up(&conf->wait_for_quiescent);
7498                 wake_up(&conf->wait_for_overlap);
7499                 unlock_all_device_hash_locks_irq(conf);
7500                 break;
7501         }
7502 }
7503
7504 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7505 {
7506         struct r0conf *raid0_conf = mddev->private;
7507         sector_t sectors;
7508
7509         /* for raid0 takeover only one zone is supported */
7510         if (raid0_conf->nr_strip_zones > 1) {
7511                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7512                        mdname(mddev));
7513                 return ERR_PTR(-EINVAL);
7514         }
7515
7516         sectors = raid0_conf->strip_zone[0].zone_end;
7517         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7518         mddev->dev_sectors = sectors;
7519         mddev->new_level = level;
7520         mddev->new_layout = ALGORITHM_PARITY_N;
7521         mddev->new_chunk_sectors = mddev->chunk_sectors;
7522         mddev->raid_disks += 1;
7523         mddev->delta_disks = 1;
7524         /* make sure it will be not marked as dirty */
7525         mddev->recovery_cp = MaxSector;
7526
7527         return setup_conf(mddev);
7528 }
7529
7530 static void *raid5_takeover_raid1(struct mddev *mddev)
7531 {
7532         int chunksect;
7533
7534         if (mddev->raid_disks != 2 ||
7535             mddev->degraded > 1)
7536                 return ERR_PTR(-EINVAL);
7537
7538         /* Should check if there are write-behind devices? */
7539
7540         chunksect = 64*2; /* 64K by default */
7541
7542         /* The array must be an exact multiple of chunksize */
7543         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7544                 chunksect >>= 1;
7545
7546         if ((chunksect<<9) < STRIPE_SIZE)
7547                 /* array size does not allow a suitable chunk size */
7548                 return ERR_PTR(-EINVAL);
7549
7550         mddev->new_level = 5;
7551         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7552         mddev->new_chunk_sectors = chunksect;
7553
7554         return setup_conf(mddev);
7555 }
7556
7557 static void *raid5_takeover_raid6(struct mddev *mddev)
7558 {
7559         int new_layout;
7560
7561         switch (mddev->layout) {
7562         case ALGORITHM_LEFT_ASYMMETRIC_6:
7563                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7564                 break;
7565         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7566                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7567                 break;
7568         case ALGORITHM_LEFT_SYMMETRIC_6:
7569                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7570                 break;
7571         case ALGORITHM_RIGHT_SYMMETRIC_6:
7572                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7573                 break;
7574         case ALGORITHM_PARITY_0_6:
7575                 new_layout = ALGORITHM_PARITY_0;
7576                 break;
7577         case ALGORITHM_PARITY_N:
7578                 new_layout = ALGORITHM_PARITY_N;
7579                 break;
7580         default:
7581                 return ERR_PTR(-EINVAL);
7582         }
7583         mddev->new_level = 5;
7584         mddev->new_layout = new_layout;
7585         mddev->delta_disks = -1;
7586         mddev->raid_disks -= 1;
7587         return setup_conf(mddev);
7588 }
7589
7590 static int raid5_check_reshape(struct mddev *mddev)
7591 {
7592         /* For a 2-drive array, the layout and chunk size can be changed
7593          * immediately as not restriping is needed.
7594          * For larger arrays we record the new value - after validation
7595          * to be used by a reshape pass.
7596          */
7597         struct r5conf *conf = mddev->private;
7598         int new_chunk = mddev->new_chunk_sectors;
7599
7600         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7601                 return -EINVAL;
7602         if (new_chunk > 0) {
7603                 if (!is_power_of_2(new_chunk))
7604                         return -EINVAL;
7605                 if (new_chunk < (PAGE_SIZE>>9))
7606                         return -EINVAL;
7607                 if (mddev->array_sectors & (new_chunk-1))
7608                         /* not factor of array size */
7609                         return -EINVAL;
7610         }
7611
7612         /* They look valid */
7613
7614         if (mddev->raid_disks == 2) {
7615                 /* can make the change immediately */
7616                 if (mddev->new_layout >= 0) {
7617                         conf->algorithm = mddev->new_layout;
7618                         mddev->layout = mddev->new_layout;
7619                 }
7620                 if (new_chunk > 0) {
7621                         conf->chunk_sectors = new_chunk ;
7622                         mddev->chunk_sectors = new_chunk;
7623                 }
7624                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7625                 md_wakeup_thread(mddev->thread);
7626         }
7627         return check_reshape(mddev);
7628 }
7629
7630 static int raid6_check_reshape(struct mddev *mddev)
7631 {
7632         int new_chunk = mddev->new_chunk_sectors;
7633
7634         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7635                 return -EINVAL;
7636         if (new_chunk > 0) {
7637                 if (!is_power_of_2(new_chunk))
7638                         return -EINVAL;
7639                 if (new_chunk < (PAGE_SIZE >> 9))
7640                         return -EINVAL;
7641                 if (mddev->array_sectors & (new_chunk-1))
7642                         /* not factor of array size */
7643                         return -EINVAL;
7644         }
7645
7646         /* They look valid */
7647         return check_reshape(mddev);
7648 }
7649
7650 static void *raid5_takeover(struct mddev *mddev)
7651 {
7652         /* raid5 can take over:
7653          *  raid0 - if there is only one strip zone - make it a raid4 layout
7654          *  raid1 - if there are two drives.  We need to know the chunk size
7655          *  raid4 - trivial - just use a raid4 layout.
7656          *  raid6 - Providing it is a *_6 layout
7657          */
7658         if (mddev->level == 0)
7659                 return raid45_takeover_raid0(mddev, 5);
7660         if (mddev->level == 1)
7661                 return raid5_takeover_raid1(mddev);
7662         if (mddev->level == 4) {
7663                 mddev->new_layout = ALGORITHM_PARITY_N;
7664                 mddev->new_level = 5;
7665                 return setup_conf(mddev);
7666         }
7667         if (mddev->level == 6)
7668                 return raid5_takeover_raid6(mddev);
7669
7670         return ERR_PTR(-EINVAL);
7671 }
7672
7673 static void *raid4_takeover(struct mddev *mddev)
7674 {
7675         /* raid4 can take over:
7676          *  raid0 - if there is only one strip zone
7677          *  raid5 - if layout is right
7678          */
7679         if (mddev->level == 0)
7680                 return raid45_takeover_raid0(mddev, 4);
7681         if (mddev->level == 5 &&
7682             mddev->layout == ALGORITHM_PARITY_N) {
7683                 mddev->new_layout = 0;
7684                 mddev->new_level = 4;
7685                 return setup_conf(mddev);
7686         }
7687         return ERR_PTR(-EINVAL);
7688 }
7689
7690 static struct md_personality raid5_personality;
7691
7692 static void *raid6_takeover(struct mddev *mddev)
7693 {
7694         /* Currently can only take over a raid5.  We map the
7695          * personality to an equivalent raid6 personality
7696          * with the Q block at the end.
7697          */
7698         int new_layout;
7699
7700         if (mddev->pers != &raid5_personality)
7701                 return ERR_PTR(-EINVAL);
7702         if (mddev->degraded > 1)
7703                 return ERR_PTR(-EINVAL);
7704         if (mddev->raid_disks > 253)
7705                 return ERR_PTR(-EINVAL);
7706         if (mddev->raid_disks < 3)
7707                 return ERR_PTR(-EINVAL);
7708
7709         switch (mddev->layout) {
7710         case ALGORITHM_LEFT_ASYMMETRIC:
7711                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7712                 break;
7713         case ALGORITHM_RIGHT_ASYMMETRIC:
7714                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7715                 break;
7716         case ALGORITHM_LEFT_SYMMETRIC:
7717                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7718                 break;
7719         case ALGORITHM_RIGHT_SYMMETRIC:
7720                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7721                 break;
7722         case ALGORITHM_PARITY_0:
7723                 new_layout = ALGORITHM_PARITY_0_6;
7724                 break;
7725         case ALGORITHM_PARITY_N:
7726                 new_layout = ALGORITHM_PARITY_N;
7727                 break;
7728         default:
7729                 return ERR_PTR(-EINVAL);
7730         }
7731         mddev->new_level = 6;
7732         mddev->new_layout = new_layout;
7733         mddev->delta_disks = 1;
7734         mddev->raid_disks += 1;
7735         return setup_conf(mddev);
7736 }
7737
7738 static struct md_personality raid6_personality =
7739 {
7740         .name           = "raid6",
7741         .level          = 6,
7742         .owner          = THIS_MODULE,
7743         .make_request   = make_request,
7744         .run            = run,
7745         .free           = raid5_free,
7746         .status         = status,
7747         .error_handler  = error,
7748         .hot_add_disk   = raid5_add_disk,
7749         .hot_remove_disk= raid5_remove_disk,
7750         .spare_active   = raid5_spare_active,
7751         .sync_request   = sync_request,
7752         .resize         = raid5_resize,
7753         .size           = raid5_size,
7754         .check_reshape  = raid6_check_reshape,
7755         .start_reshape  = raid5_start_reshape,
7756         .finish_reshape = raid5_finish_reshape,
7757         .quiesce        = raid5_quiesce,
7758         .takeover       = raid6_takeover,
7759         .congested      = raid5_congested,
7760         .mergeable_bvec = raid5_mergeable_bvec,
7761 };
7762 static struct md_personality raid5_personality =
7763 {
7764         .name           = "raid5",
7765         .level          = 5,
7766         .owner          = THIS_MODULE,
7767         .make_request   = make_request,
7768         .run            = run,
7769         .free           = raid5_free,
7770         .status         = status,
7771         .error_handler  = error,
7772         .hot_add_disk   = raid5_add_disk,
7773         .hot_remove_disk= raid5_remove_disk,
7774         .spare_active   = raid5_spare_active,
7775         .sync_request   = sync_request,
7776         .resize         = raid5_resize,
7777         .size           = raid5_size,
7778         .check_reshape  = raid5_check_reshape,
7779         .start_reshape  = raid5_start_reshape,
7780         .finish_reshape = raid5_finish_reshape,
7781         .quiesce        = raid5_quiesce,
7782         .takeover       = raid5_takeover,
7783         .congested      = raid5_congested,
7784         .mergeable_bvec = raid5_mergeable_bvec,
7785 };
7786
7787 static struct md_personality raid4_personality =
7788 {
7789         .name           = "raid4",
7790         .level          = 4,
7791         .owner          = THIS_MODULE,
7792         .make_request   = make_request,
7793         .run            = run,
7794         .free           = raid5_free,
7795         .status         = status,
7796         .error_handler  = error,
7797         .hot_add_disk   = raid5_add_disk,
7798         .hot_remove_disk= raid5_remove_disk,
7799         .spare_active   = raid5_spare_active,
7800         .sync_request   = sync_request,
7801         .resize         = raid5_resize,
7802         .size           = raid5_size,
7803         .check_reshape  = raid5_check_reshape,
7804         .start_reshape  = raid5_start_reshape,
7805         .finish_reshape = raid5_finish_reshape,
7806         .quiesce        = raid5_quiesce,
7807         .takeover       = raid4_takeover,
7808         .congested      = raid5_congested,
7809         .mergeable_bvec = raid5_mergeable_bvec,
7810 };
7811
7812 static int __init raid5_init(void)
7813 {
7814         raid5_wq = alloc_workqueue("raid5wq",
7815                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7816         if (!raid5_wq)
7817                 return -ENOMEM;
7818         register_md_personality(&raid6_personality);
7819         register_md_personality(&raid5_personality);
7820         register_md_personality(&raid4_personality);
7821         return 0;
7822 }
7823
7824 static void raid5_exit(void)
7825 {
7826         unregister_md_personality(&raid6_personality);
7827         unregister_md_personality(&raid5_personality);
7828         unregister_md_personality(&raid4_personality);
7829         destroy_workqueue(raid5_wq);
7830 }
7831
7832 module_init(raid5_init);
7833 module_exit(raid5_exit);
7834 MODULE_LICENSE("GPL");
7835 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7836 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7837 MODULE_ALIAS("md-raid5");
7838 MODULE_ALIAS("md-raid4");
7839 MODULE_ALIAS("md-level-5");
7840 MODULE_ALIAS("md-level-4");
7841 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7842 MODULE_ALIAS("md-raid6");
7843 MODULE_ALIAS("md-level-6");
7844
7845 /* This used to be two separate modules, they were: */
7846 MODULE_ALIAS("raid5");
7847 MODULE_ALIAS("raid6");