Merge tag 'iwlwifi-for-john-2014-10-23' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 /*
2  * drivers/media/i2c/smiapp/smiapp-core.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2010--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8  *
9  * Based on smiapp driver by Vimarsh Zutshi
10  * Based on jt8ev1.c by Vimarsh Zutshi
11  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2 as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25  * 02110-1301 USA
26  *
27  */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/slab.h>
36 #include <linux/smiapp.h>
37 #include <linux/v4l2-mediabus.h>
38 #include <media/v4l2-device.h>
39
40 #include "smiapp.h"
41
42 #define SMIAPP_ALIGN_DIM(dim, flags)    \
43         ((flags) & V4L2_SEL_FLAG_GE     \
44          ? ALIGN((dim), 2)              \
45          : (dim) & ~1)
46
47 /*
48  * smiapp_module_idents - supported camera modules
49  */
50 static const struct smiapp_module_ident smiapp_module_idents[] = {
51         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
52         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
53         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
54         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
55         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
56         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
57         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
58         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
59         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
60         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
61         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
62 };
63
64 /*
65  *
66  * Dynamic Capability Identification
67  *
68  */
69
70 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
71 {
72         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
73         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
74         unsigned int i;
75         int rval;
76         int line_count = 0;
77         int embedded_start = -1, embedded_end = -1;
78         int image_start = 0;
79
80         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
81                            &fmt_model_type);
82         if (rval)
83                 return rval;
84
85         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
86                            &fmt_model_subtype);
87         if (rval)
88                 return rval;
89
90         ncol_desc = (fmt_model_subtype
91                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
92                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
93         nrow_desc = fmt_model_subtype
94                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
95
96         dev_dbg(&client->dev, "format_model_type %s\n",
97                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
98                 ? "2 byte" :
99                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
100                 ? "4 byte" : "is simply bad");
101
102         for (i = 0; i < ncol_desc + nrow_desc; i++) {
103                 u32 desc;
104                 u32 pixelcode;
105                 u32 pixels;
106                 char *which;
107                 char *what;
108
109                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
110                         rval = smiapp_read(
111                                 sensor,
112                                 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
113                                 &desc);
114                         if (rval)
115                                 return rval;
116
117                         pixelcode =
118                                 (desc
119                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
120                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
121                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
122                 } else if (fmt_model_type
123                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
124                         rval = smiapp_read(
125                                 sensor,
126                                 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
127                                 &desc);
128                         if (rval)
129                                 return rval;
130
131                         pixelcode =
132                                 (desc
133                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
134                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
135                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
136                 } else {
137                         dev_dbg(&client->dev,
138                                 "invalid frame format model type %d\n",
139                                 fmt_model_type);
140                         return -EINVAL;
141                 }
142
143                 if (i < ncol_desc)
144                         which = "columns";
145                 else
146                         which = "rows";
147
148                 switch (pixelcode) {
149                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
150                         what = "embedded";
151                         break;
152                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
153                         what = "dummy";
154                         break;
155                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
156                         what = "black";
157                         break;
158                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
159                         what = "dark";
160                         break;
161                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
162                         what = "visible";
163                         break;
164                 default:
165                         what = "invalid";
166                         dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
167                         break;
168                 }
169
170                 dev_dbg(&client->dev, "%s pixels: %d %s\n",
171                         what, pixels, which);
172
173                 if (i < ncol_desc)
174                         continue;
175
176                 /* Handle row descriptors */
177                 if (pixelcode
178                     == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
179                         embedded_start = line_count;
180                 } else {
181                         if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
182                             || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
183                                 image_start = line_count;
184                         if (embedded_start != -1 && embedded_end == -1)
185                                 embedded_end = line_count;
186                 }
187                 line_count += pixels;
188         }
189
190         if (embedded_start == -1 || embedded_end == -1) {
191                 embedded_start = 0;
192                 embedded_end = 0;
193         }
194
195         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
196                 embedded_start, embedded_end);
197         dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
198
199         return 0;
200 }
201
202 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
203 {
204         struct smiapp_pll *pll = &sensor->pll;
205         int rval;
206
207         rval = smiapp_write(
208                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
209         if (rval < 0)
210                 return rval;
211
212         rval = smiapp_write(
213                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
214         if (rval < 0)
215                 return rval;
216
217         rval = smiapp_write(
218                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
219         if (rval < 0)
220                 return rval;
221
222         rval = smiapp_write(
223                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
224         if (rval < 0)
225                 return rval;
226
227         /* Lane op clock ratio does not apply here. */
228         rval = smiapp_write(
229                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
230                 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
231         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
232                 return rval;
233
234         rval = smiapp_write(
235                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
236         if (rval < 0)
237                 return rval;
238
239         return smiapp_write(
240                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
241 }
242
243 static int smiapp_pll_update(struct smiapp_sensor *sensor)
244 {
245         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
246         struct smiapp_pll_limits lim = {
247                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
248                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
249                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
250                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
251                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
252                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
253                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
254                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
255
256                 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
257                 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
258                 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
259                 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
260                 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
261                 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
262                 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
263                 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
264
265                 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
266                 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
267                 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
268                 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
269                 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
270                 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
271                 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
272                 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
273
274                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
275                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
276         };
277         struct smiapp_pll *pll = &sensor->pll;
278         int rval;
279
280         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
281                 /*
282                  * Fill in operational clock divisors limits from the
283                  * video timing ones. On profile 0 sensors the
284                  * requirements regarding them are essentially the
285                  * same as on VT ones.
286                  */
287                 lim.op = lim.vt;
288         }
289
290         pll->binning_horizontal = sensor->binning_horizontal;
291         pll->binning_vertical = sensor->binning_vertical;
292         pll->link_freq =
293                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
294         pll->scale_m = sensor->scale_m;
295         pll->bits_per_pixel = sensor->csi_format->compressed;
296
297         rval = smiapp_pll_calculate(&client->dev, &lim, pll);
298         if (rval < 0)
299                 return rval;
300
301         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
302                                  pll->vt_pix_clk_freq_hz);
303         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
304
305         return 0;
306 }
307
308
309 /*
310  *
311  * V4L2 Controls handling
312  *
313  */
314
315 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
316 {
317         struct v4l2_ctrl *ctrl = sensor->exposure;
318         int max;
319
320         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
321                 + sensor->vblank->val
322                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
323
324         __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
325 }
326
327 /*
328  * Order matters.
329  *
330  * 1. Bits-per-pixel, descending.
331  * 2. Bits-per-pixel compressed, descending.
332  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
333  *    orders must be defined.
334  */
335 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
336         { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
337         { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
338         { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
339         { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
340         { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
341         { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
342         { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
343         { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
344         { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
345         { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
346         { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
347         { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
348         { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349         { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350         { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351         { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352 };
353
354 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
355
356 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
357                                  - (unsigned long)smiapp_csi_data_formats) \
358                                 / sizeof(*smiapp_csi_data_formats))
359
360 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
361 {
362         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
363         int flip = 0;
364
365         if (sensor->hflip) {
366                 if (sensor->hflip->val)
367                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
368
369                 if (sensor->vflip->val)
370                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
371         }
372
373         flip ^= sensor->hvflip_inv_mask;
374
375         dev_dbg(&client->dev, "flip %d\n", flip);
376         return sensor->default_pixel_order ^ flip;
377 }
378
379 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
380 {
381         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
382         unsigned int csi_format_idx =
383                 to_csi_format_idx(sensor->csi_format) & ~3;
384         unsigned int internal_csi_format_idx =
385                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
386         unsigned int pixel_order = smiapp_pixel_order(sensor);
387
388         sensor->mbus_frame_fmts =
389                 sensor->default_mbus_frame_fmts << pixel_order;
390         sensor->csi_format =
391                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
392         sensor->internal_csi_format =
393                 &smiapp_csi_data_formats[internal_csi_format_idx
394                                          + pixel_order];
395
396         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
397                >= ARRAY_SIZE(smiapp_csi_data_formats));
398
399         dev_dbg(&client->dev, "new pixel order %s\n",
400                 pixel_order_str[pixel_order]);
401 }
402
403 static const char * const smiapp_test_patterns[] = {
404         "Disabled",
405         "Solid Colour",
406         "Eight Vertical Colour Bars",
407         "Colour Bars With Fade to Grey",
408         "Pseudorandom Sequence (PN9)",
409 };
410
411 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
412 {
413         struct smiapp_sensor *sensor =
414                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
415                         ->sensor;
416         u32 orient = 0;
417         int exposure;
418         int rval;
419
420         switch (ctrl->id) {
421         case V4L2_CID_ANALOGUE_GAIN:
422                 return smiapp_write(
423                         sensor,
424                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
425
426         case V4L2_CID_EXPOSURE:
427                 return smiapp_write(
428                         sensor,
429                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
430
431         case V4L2_CID_HFLIP:
432         case V4L2_CID_VFLIP:
433                 if (sensor->streaming)
434                         return -EBUSY;
435
436                 if (sensor->hflip->val)
437                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
438
439                 if (sensor->vflip->val)
440                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
441
442                 orient ^= sensor->hvflip_inv_mask;
443                 rval = smiapp_write(sensor,
444                                     SMIAPP_REG_U8_IMAGE_ORIENTATION,
445                                     orient);
446                 if (rval < 0)
447                         return rval;
448
449                 smiapp_update_mbus_formats(sensor);
450
451                 return 0;
452
453         case V4L2_CID_VBLANK:
454                 exposure = sensor->exposure->val;
455
456                 __smiapp_update_exposure_limits(sensor);
457
458                 if (exposure > sensor->exposure->maximum) {
459                         sensor->exposure->val =
460                                 sensor->exposure->maximum;
461                         rval = smiapp_set_ctrl(
462                                 sensor->exposure);
463                         if (rval < 0)
464                                 return rval;
465                 }
466
467                 return smiapp_write(
468                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
469                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
470                         + ctrl->val);
471
472         case V4L2_CID_HBLANK:
473                 return smiapp_write(
474                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
475                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
476                         + ctrl->val);
477
478         case V4L2_CID_LINK_FREQ:
479                 if (sensor->streaming)
480                         return -EBUSY;
481
482                 return smiapp_pll_update(sensor);
483
484         case V4L2_CID_TEST_PATTERN: {
485                 unsigned int i;
486
487                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
488                         v4l2_ctrl_activate(
489                                 sensor->test_data[i],
490                                 ctrl->val ==
491                                 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
492
493                 return smiapp_write(
494                         sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
495         }
496
497         case V4L2_CID_TEST_PATTERN_RED:
498                 return smiapp_write(
499                         sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
500
501         case V4L2_CID_TEST_PATTERN_GREENR:
502                 return smiapp_write(
503                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
504
505         case V4L2_CID_TEST_PATTERN_BLUE:
506                 return smiapp_write(
507                         sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
508
509         case V4L2_CID_TEST_PATTERN_GREENB:
510                 return smiapp_write(
511                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
512
513         case V4L2_CID_PIXEL_RATE:
514                 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
515                 return 0;
516
517         default:
518                 return -EINVAL;
519         }
520 }
521
522 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
523         .s_ctrl = smiapp_set_ctrl,
524 };
525
526 static int smiapp_init_controls(struct smiapp_sensor *sensor)
527 {
528         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
529         unsigned int max, i;
530         int rval;
531
532         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
533         if (rval)
534                 return rval;
535         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
536
537         sensor->analog_gain = v4l2_ctrl_new_std(
538                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
539                 V4L2_CID_ANALOGUE_GAIN,
540                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
541                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
542                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
543                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
544
545         /* Exposure limits will be updated soon, use just something here. */
546         sensor->exposure = v4l2_ctrl_new_std(
547                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
548                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
549
550         sensor->hflip = v4l2_ctrl_new_std(
551                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552                 V4L2_CID_HFLIP, 0, 1, 1, 0);
553         sensor->vflip = v4l2_ctrl_new_std(
554                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
555                 V4L2_CID_VFLIP, 0, 1, 1, 0);
556
557         sensor->vblank = v4l2_ctrl_new_std(
558                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
559                 V4L2_CID_VBLANK, 0, 1, 1, 0);
560
561         if (sensor->vblank)
562                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
563
564         sensor->hblank = v4l2_ctrl_new_std(
565                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
566                 V4L2_CID_HBLANK, 0, 1, 1, 0);
567
568         if (sensor->hblank)
569                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
570
571         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
572                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
573                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
574
575         v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
576                                      &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
577                                      ARRAY_SIZE(smiapp_test_patterns) - 1,
578                                      0, 0, smiapp_test_patterns);
579
580         for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
581                 int max_value = (1 << sensor->csi_format->width) - 1;
582                 sensor->test_data[i] =
583                         v4l2_ctrl_new_std(
584                                 &sensor->pixel_array->ctrl_handler,
585                                 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
586                                 0, max_value, 1, max_value);
587         }
588
589         if (sensor->pixel_array->ctrl_handler.error) {
590                 dev_err(&client->dev,
591                         "pixel array controls initialization failed (%d)\n",
592                         sensor->pixel_array->ctrl_handler.error);
593                 rval = sensor->pixel_array->ctrl_handler.error;
594                 goto error;
595         }
596
597         sensor->pixel_array->sd.ctrl_handler =
598                 &sensor->pixel_array->ctrl_handler;
599
600         v4l2_ctrl_cluster(2, &sensor->hflip);
601
602         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
603         if (rval)
604                 goto error;
605         sensor->src->ctrl_handler.lock = &sensor->mutex;
606
607         for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
608
609         sensor->link_freq = v4l2_ctrl_new_int_menu(
610                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
611                 V4L2_CID_LINK_FREQ, max, 0,
612                 sensor->platform_data->op_sys_clock);
613
614         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
615                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
616                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
617
618         if (sensor->src->ctrl_handler.error) {
619                 dev_err(&client->dev,
620                         "src controls initialization failed (%d)\n",
621                         sensor->src->ctrl_handler.error);
622                 rval = sensor->src->ctrl_handler.error;
623                 goto error;
624         }
625
626         sensor->src->sd.ctrl_handler =
627                 &sensor->src->ctrl_handler;
628
629         return 0;
630
631 error:
632         v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
633         v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
634
635         return rval;
636 }
637
638 static void smiapp_free_controls(struct smiapp_sensor *sensor)
639 {
640         unsigned int i;
641
642         for (i = 0; i < sensor->ssds_used; i++)
643                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
644 }
645
646 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
647                              unsigned int n)
648 {
649         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
650         unsigned int i;
651         u32 val;
652         int rval;
653
654         for (i = 0; i < n; i++) {
655                 rval = smiapp_read(
656                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
657                 if (rval)
658                         return rval;
659                 sensor->limits[limit[i]] = val;
660                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
661                         smiapp_reg_limits[limit[i]].addr,
662                         smiapp_reg_limits[limit[i]].what, val, val);
663         }
664
665         return 0;
666 }
667
668 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
669 {
670         unsigned int i;
671         int rval;
672
673         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
674                 rval = smiapp_get_limits(sensor, &i, 1);
675                 if (rval < 0)
676                         return rval;
677         }
678
679         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
680                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
681
682         return 0;
683 }
684
685 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
686 {
687         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
688         static u32 const limits[] = {
689                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
690                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
691                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
692                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
693                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
694                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
695                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
696         };
697         static u32 const limits_replace[] = {
698                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
699                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
700                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
701                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
702                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
703                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
704                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
705         };
706         unsigned int i;
707         int rval;
708
709         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
710             SMIAPP_BINNING_CAPABILITY_NO) {
711                 for (i = 0; i < ARRAY_SIZE(limits); i++)
712                         sensor->limits[limits[i]] =
713                                 sensor->limits[limits_replace[i]];
714
715                 return 0;
716         }
717
718         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
719         if (rval < 0)
720                 return rval;
721
722         /*
723          * Sanity check whether the binning limits are valid. If not,
724          * use the non-binning ones.
725          */
726         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
727             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
728             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
729                 return 0;
730
731         for (i = 0; i < ARRAY_SIZE(limits); i++) {
732                 dev_dbg(&client->dev,
733                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
734                         smiapp_reg_limits[limits[i]].addr,
735                         smiapp_reg_limits[limits[i]].what,
736                         sensor->limits[limits_replace[i]],
737                         sensor->limits[limits_replace[i]]);
738                 sensor->limits[limits[i]] =
739                         sensor->limits[limits_replace[i]];
740         }
741
742         return 0;
743 }
744
745 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
746 {
747         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
748         unsigned int type, n;
749         unsigned int i, pixel_order;
750         int rval;
751
752         rval = smiapp_read(
753                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
754         if (rval)
755                 return rval;
756
757         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
758
759         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
760                            &pixel_order);
761         if (rval)
762                 return rval;
763
764         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
765                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
766                 return -EINVAL;
767         }
768
769         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
770                 pixel_order_str[pixel_order]);
771
772         switch (type) {
773         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
774                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
775                 break;
776         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
777                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
778                 break;
779         default:
780                 return -EINVAL;
781         }
782
783         sensor->default_pixel_order = pixel_order;
784         sensor->mbus_frame_fmts = 0;
785
786         for (i = 0; i < n; i++) {
787                 unsigned int fmt, j;
788
789                 rval = smiapp_read(
790                         sensor,
791                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
792                 if (rval)
793                         return rval;
794
795                 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
796                         i, fmt >> 8, (u8)fmt);
797
798                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
799                         const struct smiapp_csi_data_format *f =
800                                 &smiapp_csi_data_formats[j];
801
802                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
803                                 continue;
804
805                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
806                                 continue;
807
808                         dev_dbg(&client->dev, "jolly good! %d\n", j);
809
810                         sensor->default_mbus_frame_fmts |= 1 << j;
811                         if (!sensor->csi_format
812                             || f->width > sensor->csi_format->width
813                             || (f->width == sensor->csi_format->width
814                                 && f->compressed
815                                 > sensor->csi_format->compressed)) {
816                                 sensor->csi_format = f;
817                                 sensor->internal_csi_format = f;
818                         }
819                 }
820         }
821
822         if (!sensor->csi_format) {
823                 dev_err(&client->dev, "no supported mbus code found\n");
824                 return -EINVAL;
825         }
826
827         smiapp_update_mbus_formats(sensor);
828
829         return 0;
830 }
831
832 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
833 {
834         struct v4l2_ctrl *vblank = sensor->vblank;
835         struct v4l2_ctrl *hblank = sensor->hblank;
836         int min, max;
837
838         min = max_t(int,
839                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
840                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
841                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
842         max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
843                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
844
845         __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
846
847         min = max_t(int,
848                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
849                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
850                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
851         max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
852                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
853
854         __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
855
856         __smiapp_update_exposure_limits(sensor);
857 }
858
859 static int smiapp_update_mode(struct smiapp_sensor *sensor)
860 {
861         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
862         unsigned int binning_mode;
863         int rval;
864
865         dev_dbg(&client->dev, "frame size: %dx%d\n",
866                 sensor->src->crop[SMIAPP_PAD_SRC].width,
867                 sensor->src->crop[SMIAPP_PAD_SRC].height);
868         dev_dbg(&client->dev, "csi format width: %d\n",
869                 sensor->csi_format->width);
870
871         /* Binning has to be set up here; it affects limits */
872         if (sensor->binning_horizontal == 1 &&
873             sensor->binning_vertical == 1) {
874                 binning_mode = 0;
875         } else {
876                 u8 binning_type =
877                         (sensor->binning_horizontal << 4)
878                         | sensor->binning_vertical;
879
880                 rval = smiapp_write(
881                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
882                 if (rval < 0)
883                         return rval;
884
885                 binning_mode = 1;
886         }
887         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
888         if (rval < 0)
889                 return rval;
890
891         /* Get updated limits due to binning */
892         rval = smiapp_get_limits_binning(sensor);
893         if (rval < 0)
894                 return rval;
895
896         rval = smiapp_pll_update(sensor);
897         if (rval < 0)
898                 return rval;
899
900         /* Output from pixel array, including blanking */
901         smiapp_update_blanking(sensor);
902
903         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
904         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
905
906         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
907                 sensor->pll.vt_pix_clk_freq_hz /
908                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
909                   + sensor->hblank->val) *
910                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
911                   + sensor->vblank->val) / 100));
912
913         return 0;
914 }
915
916 /*
917  *
918  * SMIA++ NVM handling
919  *
920  */
921 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
922                            unsigned char *nvm)
923 {
924         u32 i, s, p, np, v;
925         int rval = 0, rval2;
926
927         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
928         for (p = 0; p < np; p++) {
929                 rval = smiapp_write(
930                         sensor,
931                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
932                 if (rval)
933                         goto out;
934
935                 rval = smiapp_write(sensor,
936                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
937                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
938                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
939                 if (rval)
940                         goto out;
941
942                 for (i = 0; i < 1000; i++) {
943                         rval = smiapp_read(
944                                 sensor,
945                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
946
947                         if (rval)
948                                 goto out;
949
950                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
951                                 break;
952
953                         if (--i == 0) {
954                                 rval = -ETIMEDOUT;
955                                 goto out;
956                         }
957
958                 }
959
960                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
961                         rval = smiapp_read(
962                                 sensor,
963                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
964                                 &v);
965                         if (rval)
966                                 goto out;
967
968                         *nvm++ = v;
969                 }
970         }
971
972 out:
973         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
974         if (rval < 0)
975                 return rval;
976         else
977                 return rval2;
978 }
979
980 /*
981  *
982  * SMIA++ CCI address control
983  *
984  */
985 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
986 {
987         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
988         int rval;
989         u32 val;
990
991         client->addr = sensor->platform_data->i2c_addr_dfl;
992
993         rval = smiapp_write(sensor,
994                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
995                             sensor->platform_data->i2c_addr_alt << 1);
996         if (rval)
997                 return rval;
998
999         client->addr = sensor->platform_data->i2c_addr_alt;
1000
1001         /* verify addr change went ok */
1002         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1003         if (rval)
1004                 return rval;
1005
1006         if (val != sensor->platform_data->i2c_addr_alt << 1)
1007                 return -ENODEV;
1008
1009         return 0;
1010 }
1011
1012 /*
1013  *
1014  * SMIA++ Mode Control
1015  *
1016  */
1017 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1018 {
1019         struct smiapp_flash_strobe_parms *strobe_setup;
1020         unsigned int ext_freq = sensor->platform_data->ext_clk;
1021         u32 tmp;
1022         u32 strobe_adjustment;
1023         u32 strobe_width_high_rs;
1024         int rval;
1025
1026         strobe_setup = sensor->platform_data->strobe_setup;
1027
1028         /*
1029          * How to calculate registers related to strobe length. Please
1030          * do not change, or if you do at least know what you're
1031          * doing. :-)
1032          *
1033          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1034          *
1035          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1036          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1037          *
1038          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1039          * flash_strobe_adjustment E N, [1 - 0xff]
1040          *
1041          * The formula above is written as below to keep it on one
1042          * line:
1043          *
1044          * l / 10^6 = w / e * a
1045          *
1046          * Let's mark w * a by x:
1047          *
1048          * x = w * a
1049          *
1050          * Thus, we get:
1051          *
1052          * x = l * e / 10^6
1053          *
1054          * The strobe width must be at least as long as requested,
1055          * thus rounding upwards is needed.
1056          *
1057          * x = (l * e + 10^6 - 1) / 10^6
1058          * -----------------------------
1059          *
1060          * Maximum possible accuracy is wanted at all times. Thus keep
1061          * a as small as possible.
1062          *
1063          * Calculate a, assuming maximum w, with rounding upwards:
1064          *
1065          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1066          * -------------------------------------
1067          *
1068          * Thus, we also get w, with that a, with rounding upwards:
1069          *
1070          * w = (x + a - 1) / a
1071          * -------------------
1072          *
1073          * To get limits:
1074          *
1075          * x E [1, (2^16 - 1) * (2^8 - 1)]
1076          *
1077          * Substituting maximum x to the original formula (with rounding),
1078          * the maximum l is thus
1079          *
1080          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1081          *
1082          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1083          * --------------------------------------------------
1084          *
1085          * flash_strobe_length must be clamped between 1 and
1086          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1087          *
1088          * Then,
1089          *
1090          * flash_strobe_adjustment = ((flash_strobe_length *
1091          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1092          *
1093          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1094          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1095          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1096          */
1097         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1098                       1000000 + 1, ext_freq);
1099         strobe_setup->strobe_width_high_us =
1100                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1101
1102         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1103                         1000000 - 1), 1000000ULL);
1104         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1105         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1106                                 strobe_adjustment;
1107
1108         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1109                             strobe_setup->mode);
1110         if (rval < 0)
1111                 goto out;
1112
1113         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1114                             strobe_adjustment);
1115         if (rval < 0)
1116                 goto out;
1117
1118         rval = smiapp_write(
1119                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1120                 strobe_width_high_rs);
1121         if (rval < 0)
1122                 goto out;
1123
1124         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1125                             strobe_setup->strobe_delay);
1126         if (rval < 0)
1127                 goto out;
1128
1129         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1130                             strobe_setup->stobe_start_point);
1131         if (rval < 0)
1132                 goto out;
1133
1134         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1135                             strobe_setup->trigger);
1136
1137 out:
1138         sensor->platform_data->strobe_setup->trigger = 0;
1139
1140         return rval;
1141 }
1142
1143 /* -----------------------------------------------------------------------------
1144  * Power management
1145  */
1146
1147 static int smiapp_power_on(struct smiapp_sensor *sensor)
1148 {
1149         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1150         unsigned int sleep;
1151         int rval;
1152
1153         rval = regulator_enable(sensor->vana);
1154         if (rval) {
1155                 dev_err(&client->dev, "failed to enable vana regulator\n");
1156                 return rval;
1157         }
1158         usleep_range(1000, 1000);
1159
1160         if (sensor->platform_data->set_xclk)
1161                 rval = sensor->platform_data->set_xclk(
1162                         &sensor->src->sd, sensor->platform_data->ext_clk);
1163         else
1164                 rval = clk_prepare_enable(sensor->ext_clk);
1165         if (rval < 0) {
1166                 dev_dbg(&client->dev, "failed to enable xclk\n");
1167                 goto out_xclk_fail;
1168         }
1169         usleep_range(1000, 1000);
1170
1171         if (gpio_is_valid(sensor->platform_data->xshutdown))
1172                 gpio_set_value(sensor->platform_data->xshutdown, 1);
1173
1174         sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1175         usleep_range(sleep, sleep);
1176
1177         /*
1178          * Failures to respond to the address change command have been noticed.
1179          * Those failures seem to be caused by the sensor requiring a longer
1180          * boot time than advertised. An additional 10ms delay seems to work
1181          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1182          * unnecessary. The failures need to be investigated to find a proper
1183          * fix, and a delay will likely need to be added here if the I2C write
1184          * retry hack is reverted before the root cause of the boot time issue
1185          * is found.
1186          */
1187
1188         if (sensor->platform_data->i2c_addr_alt) {
1189                 rval = smiapp_change_cci_addr(sensor);
1190                 if (rval) {
1191                         dev_err(&client->dev, "cci address change error\n");
1192                         goto out_cci_addr_fail;
1193                 }
1194         }
1195
1196         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1197                             SMIAPP_SOFTWARE_RESET);
1198         if (rval < 0) {
1199                 dev_err(&client->dev, "software reset failed\n");
1200                 goto out_cci_addr_fail;
1201         }
1202
1203         if (sensor->platform_data->i2c_addr_alt) {
1204                 rval = smiapp_change_cci_addr(sensor);
1205                 if (rval) {
1206                         dev_err(&client->dev, "cci address change error\n");
1207                         goto out_cci_addr_fail;
1208                 }
1209         }
1210
1211         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1212                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1213         if (rval) {
1214                 dev_err(&client->dev, "compression mode set failed\n");
1215                 goto out_cci_addr_fail;
1216         }
1217
1218         rval = smiapp_write(
1219                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1220                 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1221         if (rval) {
1222                 dev_err(&client->dev, "extclk frequency set failed\n");
1223                 goto out_cci_addr_fail;
1224         }
1225
1226         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1227                             sensor->platform_data->lanes - 1);
1228         if (rval) {
1229                 dev_err(&client->dev, "csi lane mode set failed\n");
1230                 goto out_cci_addr_fail;
1231         }
1232
1233         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1234                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1235         if (rval) {
1236                 dev_err(&client->dev, "fast standby set failed\n");
1237                 goto out_cci_addr_fail;
1238         }
1239
1240         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1241                             sensor->platform_data->csi_signalling_mode);
1242         if (rval) {
1243                 dev_err(&client->dev, "csi signalling mode set failed\n");
1244                 goto out_cci_addr_fail;
1245         }
1246
1247         /* DPHY control done by sensor based on requested link rate */
1248         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1249                             SMIAPP_DPHY_CTRL_UI);
1250         if (rval < 0)
1251                 return rval;
1252
1253         rval = smiapp_call_quirk(sensor, post_poweron);
1254         if (rval) {
1255                 dev_err(&client->dev, "post_poweron quirks failed\n");
1256                 goto out_cci_addr_fail;
1257         }
1258
1259         /* Are we still initialising...? If yes, return here. */
1260         if (!sensor->pixel_array)
1261                 return 0;
1262
1263         rval = v4l2_ctrl_handler_setup(
1264                 &sensor->pixel_array->ctrl_handler);
1265         if (rval)
1266                 goto out_cci_addr_fail;
1267
1268         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1269         if (rval)
1270                 goto out_cci_addr_fail;
1271
1272         mutex_lock(&sensor->mutex);
1273         rval = smiapp_update_mode(sensor);
1274         mutex_unlock(&sensor->mutex);
1275         if (rval < 0)
1276                 goto out_cci_addr_fail;
1277
1278         return 0;
1279
1280 out_cci_addr_fail:
1281         if (gpio_is_valid(sensor->platform_data->xshutdown))
1282                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1283         if (sensor->platform_data->set_xclk)
1284                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1285         else
1286                 clk_disable_unprepare(sensor->ext_clk);
1287
1288 out_xclk_fail:
1289         regulator_disable(sensor->vana);
1290         return rval;
1291 }
1292
1293 static void smiapp_power_off(struct smiapp_sensor *sensor)
1294 {
1295         /*
1296          * Currently power/clock to lens are enable/disabled separately
1297          * but they are essentially the same signals. So if the sensor is
1298          * powered off while the lens is powered on the sensor does not
1299          * really see a power off and next time the cci address change
1300          * will fail. So do a soft reset explicitly here.
1301          */
1302         if (sensor->platform_data->i2c_addr_alt)
1303                 smiapp_write(sensor,
1304                              SMIAPP_REG_U8_SOFTWARE_RESET,
1305                              SMIAPP_SOFTWARE_RESET);
1306
1307         if (gpio_is_valid(sensor->platform_data->xshutdown))
1308                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1309         if (sensor->platform_data->set_xclk)
1310                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1311         else
1312                 clk_disable_unprepare(sensor->ext_clk);
1313         usleep_range(5000, 5000);
1314         regulator_disable(sensor->vana);
1315         sensor->streaming = false;
1316 }
1317
1318 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1319 {
1320         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1321         int ret = 0;
1322
1323         mutex_lock(&sensor->power_mutex);
1324
1325         if (on && !sensor->power_count) {
1326                 /* Power on and perform initialisation. */
1327                 ret = smiapp_power_on(sensor);
1328                 if (ret < 0)
1329                         goto out;
1330         } else if (!on && sensor->power_count == 1) {
1331                 smiapp_power_off(sensor);
1332         }
1333
1334         /* Update the power count. */
1335         sensor->power_count += on ? 1 : -1;
1336         WARN_ON(sensor->power_count < 0);
1337
1338 out:
1339         mutex_unlock(&sensor->power_mutex);
1340         return ret;
1341 }
1342
1343 /* -----------------------------------------------------------------------------
1344  * Video stream management
1345  */
1346
1347 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1348 {
1349         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350         int rval;
1351
1352         mutex_lock(&sensor->mutex);
1353
1354         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1355                             (sensor->csi_format->width << 8) |
1356                             sensor->csi_format->compressed);
1357         if (rval)
1358                 goto out;
1359
1360         rval = smiapp_pll_configure(sensor);
1361         if (rval)
1362                 goto out;
1363
1364         /* Analog crop start coordinates */
1365         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1366                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1367         if (rval < 0)
1368                 goto out;
1369
1370         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1371                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1372         if (rval < 0)
1373                 goto out;
1374
1375         /* Analog crop end coordinates */
1376         rval = smiapp_write(
1377                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1378                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1379                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1380         if (rval < 0)
1381                 goto out;
1382
1383         rval = smiapp_write(
1384                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1385                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1386                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1387         if (rval < 0)
1388                 goto out;
1389
1390         /*
1391          * Output from pixel array, including blanking, is set using
1392          * controls below. No need to set here.
1393          */
1394
1395         /* Digital crop */
1396         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1397             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1398                 rval = smiapp_write(
1399                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1400                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1401                 if (rval < 0)
1402                         goto out;
1403
1404                 rval = smiapp_write(
1405                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1406                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1407                 if (rval < 0)
1408                         goto out;
1409
1410                 rval = smiapp_write(
1411                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1412                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1413                 if (rval < 0)
1414                         goto out;
1415
1416                 rval = smiapp_write(
1417                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1418                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1419                 if (rval < 0)
1420                         goto out;
1421         }
1422
1423         /* Scaling */
1424         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1425             != SMIAPP_SCALING_CAPABILITY_NONE) {
1426                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1427                                     sensor->scaling_mode);
1428                 if (rval < 0)
1429                         goto out;
1430
1431                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1432                                     sensor->scale_m);
1433                 if (rval < 0)
1434                         goto out;
1435         }
1436
1437         /* Output size from sensor */
1438         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1439                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1440         if (rval < 0)
1441                 goto out;
1442         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1443                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1444         if (rval < 0)
1445                 goto out;
1446
1447         if ((sensor->flash_capability &
1448              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1449               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1450             sensor->platform_data->strobe_setup != NULL &&
1451             sensor->platform_data->strobe_setup->trigger != 0) {
1452                 rval = smiapp_setup_flash_strobe(sensor);
1453                 if (rval)
1454                         goto out;
1455         }
1456
1457         rval = smiapp_call_quirk(sensor, pre_streamon);
1458         if (rval) {
1459                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1460                 goto out;
1461         }
1462
1463         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1464                             SMIAPP_MODE_SELECT_STREAMING);
1465
1466 out:
1467         mutex_unlock(&sensor->mutex);
1468
1469         return rval;
1470 }
1471
1472 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1473 {
1474         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1475         int rval;
1476
1477         mutex_lock(&sensor->mutex);
1478         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1479                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1480         if (rval)
1481                 goto out;
1482
1483         rval = smiapp_call_quirk(sensor, post_streamoff);
1484         if (rval)
1485                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1486
1487 out:
1488         mutex_unlock(&sensor->mutex);
1489         return rval;
1490 }
1491
1492 /* -----------------------------------------------------------------------------
1493  * V4L2 subdev video operations
1494  */
1495
1496 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1497 {
1498         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1499         int rval;
1500
1501         if (sensor->streaming == enable)
1502                 return 0;
1503
1504         if (enable) {
1505                 sensor->streaming = true;
1506                 rval = smiapp_start_streaming(sensor);
1507                 if (rval < 0)
1508                         sensor->streaming = false;
1509         } else {
1510                 rval = smiapp_stop_streaming(sensor);
1511                 sensor->streaming = false;
1512         }
1513
1514         return rval;
1515 }
1516
1517 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1518                                  struct v4l2_subdev_fh *fh,
1519                                  struct v4l2_subdev_mbus_code_enum *code)
1520 {
1521         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1522         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1523         unsigned int i;
1524         int idx = -1;
1525         int rval = -EINVAL;
1526
1527         mutex_lock(&sensor->mutex);
1528
1529         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1530                 subdev->name, code->pad, code->index);
1531
1532         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1533                 if (code->index)
1534                         goto out;
1535
1536                 code->code = sensor->internal_csi_format->code;
1537                 rval = 0;
1538                 goto out;
1539         }
1540
1541         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1542                 if (sensor->mbus_frame_fmts & (1 << i))
1543                         idx++;
1544
1545                 if (idx == code->index) {
1546                         code->code = smiapp_csi_data_formats[i].code;
1547                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1548                                 code->index, i, code->code);
1549                         rval = 0;
1550                         break;
1551                 }
1552         }
1553
1554 out:
1555         mutex_unlock(&sensor->mutex);
1556
1557         return rval;
1558 }
1559
1560 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1561                                   unsigned int pad)
1562 {
1563         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1564
1565         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1566                 return sensor->csi_format->code;
1567         else
1568                 return sensor->internal_csi_format->code;
1569 }
1570
1571 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1572                                struct v4l2_subdev_fh *fh,
1573                                struct v4l2_subdev_format *fmt)
1574 {
1575         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1576
1577         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1578                 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1579         } else {
1580                 struct v4l2_rect *r;
1581
1582                 if (fmt->pad == ssd->source_pad)
1583                         r = &ssd->crop[ssd->source_pad];
1584                 else
1585                         r = &ssd->sink_fmt;
1586
1587                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1588                 fmt->format.width = r->width;
1589                 fmt->format.height = r->height;
1590                 fmt->format.field = V4L2_FIELD_NONE;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int smiapp_get_format(struct v4l2_subdev *subdev,
1597                              struct v4l2_subdev_fh *fh,
1598                              struct v4l2_subdev_format *fmt)
1599 {
1600         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1601         int rval;
1602
1603         mutex_lock(&sensor->mutex);
1604         rval = __smiapp_get_format(subdev, fh, fmt);
1605         mutex_unlock(&sensor->mutex);
1606
1607         return rval;
1608 }
1609
1610 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1611                                     struct v4l2_subdev_fh *fh,
1612                                     struct v4l2_rect **crops,
1613                                     struct v4l2_rect **comps, int which)
1614 {
1615         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1616         unsigned int i;
1617
1618         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1619                 if (crops)
1620                         for (i = 0; i < subdev->entity.num_pads; i++)
1621                                 crops[i] = &ssd->crop[i];
1622                 if (comps)
1623                         *comps = &ssd->compose;
1624         } else {
1625                 if (crops) {
1626                         for (i = 0; i < subdev->entity.num_pads; i++) {
1627                                 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1628                                 BUG_ON(!crops[i]);
1629                         }
1630                 }
1631                 if (comps) {
1632                         *comps = v4l2_subdev_get_try_compose(fh,
1633                                                              SMIAPP_PAD_SINK);
1634                         BUG_ON(!*comps);
1635                 }
1636         }
1637 }
1638
1639 /* Changes require propagation only on sink pad. */
1640 static void smiapp_propagate(struct v4l2_subdev *subdev,
1641                              struct v4l2_subdev_fh *fh, int which,
1642                              int target)
1643 {
1644         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1645         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1646         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1647
1648         smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1649
1650         switch (target) {
1651         case V4L2_SEL_TGT_CROP:
1652                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1653                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1654                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1655                         if (ssd == sensor->scaler) {
1656                                 sensor->scale_m =
1657                                         sensor->limits[
1658                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1659                                 sensor->scaling_mode =
1660                                         SMIAPP_SCALING_MODE_NONE;
1661                         } else if (ssd == sensor->binner) {
1662                                 sensor->binning_horizontal = 1;
1663                                 sensor->binning_vertical = 1;
1664                         }
1665                 }
1666                 /* Fall through */
1667         case V4L2_SEL_TGT_COMPOSE:
1668                 *crops[SMIAPP_PAD_SRC] = *comp;
1669                 break;
1670         default:
1671                 BUG();
1672         }
1673 }
1674
1675 static const struct smiapp_csi_data_format
1676 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1677 {
1678         const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1679         unsigned int i;
1680
1681         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1682                 if (sensor->mbus_frame_fmts & (1 << i)
1683                     && smiapp_csi_data_formats[i].code == code)
1684                         return &smiapp_csi_data_formats[i];
1685         }
1686
1687         return csi_format;
1688 }
1689
1690 static int smiapp_set_format(struct v4l2_subdev *subdev,
1691                              struct v4l2_subdev_fh *fh,
1692                              struct v4l2_subdev_format *fmt)
1693 {
1694         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1695         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1696         struct v4l2_rect *crops[SMIAPP_PADS];
1697
1698         mutex_lock(&sensor->mutex);
1699
1700         /*
1701          * Media bus code is changeable on src subdev's source pad. On
1702          * other source pads we just get format here.
1703          */
1704         if (fmt->pad == ssd->source_pad) {
1705                 u32 code = fmt->format.code;
1706                 int rval = __smiapp_get_format(subdev, fh, fmt);
1707                 bool range_changed = false;
1708                 unsigned int i;
1709
1710                 if (!rval && subdev == &sensor->src->sd) {
1711                         const struct smiapp_csi_data_format *csi_format =
1712                                 smiapp_validate_csi_data_format(sensor, code);
1713
1714                         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1715                                 if (csi_format->width !=
1716                                     sensor->csi_format->width)
1717                                         range_changed = true;
1718
1719                                 sensor->csi_format = csi_format;
1720                         }
1721
1722                         fmt->format.code = csi_format->code;
1723                 }
1724
1725                 mutex_unlock(&sensor->mutex);
1726                 if (rval || !range_changed)
1727                         return rval;
1728
1729                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1730                         v4l2_ctrl_modify_range(
1731                                 sensor->test_data[i],
1732                                 0, (1 << sensor->csi_format->width) - 1, 1, 0);
1733
1734                 return 0;
1735         }
1736
1737         /* Sink pad. Width and height are changeable here. */
1738         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1739         fmt->format.width &= ~1;
1740         fmt->format.height &= ~1;
1741         fmt->format.field = V4L2_FIELD_NONE;
1742
1743         fmt->format.width =
1744                 clamp(fmt->format.width,
1745                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1746                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1747         fmt->format.height =
1748                 clamp(fmt->format.height,
1749                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1750                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1751
1752         smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1753
1754         crops[ssd->sink_pad]->left = 0;
1755         crops[ssd->sink_pad]->top = 0;
1756         crops[ssd->sink_pad]->width = fmt->format.width;
1757         crops[ssd->sink_pad]->height = fmt->format.height;
1758         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1759                 ssd->sink_fmt = *crops[ssd->sink_pad];
1760         smiapp_propagate(subdev, fh, fmt->which,
1761                          V4L2_SEL_TGT_CROP);
1762
1763         mutex_unlock(&sensor->mutex);
1764
1765         return 0;
1766 }
1767
1768 /*
1769  * Calculate goodness of scaled image size compared to expected image
1770  * size and flags provided.
1771  */
1772 #define SCALING_GOODNESS                100000
1773 #define SCALING_GOODNESS_EXTREME        100000000
1774 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1775                             int h, int ask_h, u32 flags)
1776 {
1777         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1778         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1779         int val = 0;
1780
1781         w &= ~1;
1782         ask_w &= ~1;
1783         h &= ~1;
1784         ask_h &= ~1;
1785
1786         if (flags & V4L2_SEL_FLAG_GE) {
1787                 if (w < ask_w)
1788                         val -= SCALING_GOODNESS;
1789                 if (h < ask_h)
1790                         val -= SCALING_GOODNESS;
1791         }
1792
1793         if (flags & V4L2_SEL_FLAG_LE) {
1794                 if (w > ask_w)
1795                         val -= SCALING_GOODNESS;
1796                 if (h > ask_h)
1797                         val -= SCALING_GOODNESS;
1798         }
1799
1800         val -= abs(w - ask_w);
1801         val -= abs(h - ask_h);
1802
1803         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1804                 val -= SCALING_GOODNESS_EXTREME;
1805
1806         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1807                 w, ask_h, h, ask_h, val);
1808
1809         return val;
1810 }
1811
1812 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1813                                       struct v4l2_subdev_fh *fh,
1814                                       struct v4l2_subdev_selection *sel,
1815                                       struct v4l2_rect **crops,
1816                                       struct v4l2_rect *comp)
1817 {
1818         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1819         unsigned int i;
1820         unsigned int binh = 1, binv = 1;
1821         int best = scaling_goodness(
1822                 subdev,
1823                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1824                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1825
1826         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1827                 int this = scaling_goodness(
1828                         subdev,
1829                         crops[SMIAPP_PAD_SINK]->width
1830                         / sensor->binning_subtypes[i].horizontal,
1831                         sel->r.width,
1832                         crops[SMIAPP_PAD_SINK]->height
1833                         / sensor->binning_subtypes[i].vertical,
1834                         sel->r.height, sel->flags);
1835
1836                 if (this > best) {
1837                         binh = sensor->binning_subtypes[i].horizontal;
1838                         binv = sensor->binning_subtypes[i].vertical;
1839                         best = this;
1840                 }
1841         }
1842         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1843                 sensor->binning_vertical = binv;
1844                 sensor->binning_horizontal = binh;
1845         }
1846
1847         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1848         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1849 }
1850
1851 /*
1852  * Calculate best scaling ratio and mode for given output resolution.
1853  *
1854  * Try all of these: horizontal ratio, vertical ratio and smallest
1855  * size possible (horizontally).
1856  *
1857  * Also try whether horizontal scaler or full scaler gives a better
1858  * result.
1859  */
1860 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1861                                       struct v4l2_subdev_fh *fh,
1862                                       struct v4l2_subdev_selection *sel,
1863                                       struct v4l2_rect **crops,
1864                                       struct v4l2_rect *comp)
1865 {
1866         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1867         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1868         u32 min, max, a, b, max_m;
1869         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1870         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1871         u32 try[4];
1872         u32 ntry = 0;
1873         unsigned int i;
1874         int best = INT_MIN;
1875
1876         sel->r.width = min_t(unsigned int, sel->r.width,
1877                              crops[SMIAPP_PAD_SINK]->width);
1878         sel->r.height = min_t(unsigned int, sel->r.height,
1879                               crops[SMIAPP_PAD_SINK]->height);
1880
1881         a = crops[SMIAPP_PAD_SINK]->width
1882                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1883         b = crops[SMIAPP_PAD_SINK]->height
1884                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1885         max_m = crops[SMIAPP_PAD_SINK]->width
1886                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1887                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1888
1889         a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1890                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1891         b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1892                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1893         max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1894                       sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1895
1896         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1897
1898         min = min(max_m, min(a, b));
1899         max = min(max_m, max(a, b));
1900
1901         try[ntry] = min;
1902         ntry++;
1903         if (min != max) {
1904                 try[ntry] = max;
1905                 ntry++;
1906         }
1907         if (max != max_m) {
1908                 try[ntry] = min + 1;
1909                 ntry++;
1910                 if (min != max) {
1911                         try[ntry] = max + 1;
1912                         ntry++;
1913                 }
1914         }
1915
1916         for (i = 0; i < ntry; i++) {
1917                 int this = scaling_goodness(
1918                         subdev,
1919                         crops[SMIAPP_PAD_SINK]->width
1920                         / try[i]
1921                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1922                         sel->r.width,
1923                         crops[SMIAPP_PAD_SINK]->height,
1924                         sel->r.height,
1925                         sel->flags);
1926
1927                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1928
1929                 if (this > best) {
1930                         scale_m = try[i];
1931                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1932                         best = this;
1933                 }
1934
1935                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1936                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1937                         continue;
1938
1939                 this = scaling_goodness(
1940                         subdev, crops[SMIAPP_PAD_SINK]->width
1941                         / try[i]
1942                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1943                         sel->r.width,
1944                         crops[SMIAPP_PAD_SINK]->height
1945                         / try[i]
1946                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1947                         sel->r.height,
1948                         sel->flags);
1949
1950                 if (this > best) {
1951                         scale_m = try[i];
1952                         mode = SMIAPP_SCALING_MODE_BOTH;
1953                         best = this;
1954                 }
1955         }
1956
1957         sel->r.width =
1958                 (crops[SMIAPP_PAD_SINK]->width
1959                  / scale_m
1960                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1961         if (mode == SMIAPP_SCALING_MODE_BOTH)
1962                 sel->r.height =
1963                         (crops[SMIAPP_PAD_SINK]->height
1964                          / scale_m
1965                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1966                         & ~1;
1967         else
1968                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1969
1970         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1971                 sensor->scale_m = scale_m;
1972                 sensor->scaling_mode = mode;
1973         }
1974 }
1975 /* We're only called on source pads. This function sets scaling. */
1976 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1977                               struct v4l2_subdev_fh *fh,
1978                               struct v4l2_subdev_selection *sel)
1979 {
1980         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1981         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1982         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1983
1984         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1985
1986         sel->r.top = 0;
1987         sel->r.left = 0;
1988
1989         if (ssd == sensor->binner)
1990                 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1991         else
1992                 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1993
1994         *comp = sel->r;
1995         smiapp_propagate(subdev, fh, sel->which,
1996                          V4L2_SEL_TGT_COMPOSE);
1997
1998         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1999                 return smiapp_update_mode(sensor);
2000
2001         return 0;
2002 }
2003
2004 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2005                                   struct v4l2_subdev_selection *sel)
2006 {
2007         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2008         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2009
2010         /* We only implement crop in three places. */
2011         switch (sel->target) {
2012         case V4L2_SEL_TGT_CROP:
2013         case V4L2_SEL_TGT_CROP_BOUNDS:
2014                 if (ssd == sensor->pixel_array
2015                     && sel->pad == SMIAPP_PA_PAD_SRC)
2016                         return 0;
2017                 if (ssd == sensor->src
2018                     && sel->pad == SMIAPP_PAD_SRC)
2019                         return 0;
2020                 if (ssd == sensor->scaler
2021                     && sel->pad == SMIAPP_PAD_SINK
2022                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2023                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2024                         return 0;
2025                 return -EINVAL;
2026         case V4L2_SEL_TGT_COMPOSE:
2027         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2028                 if (sel->pad == ssd->source_pad)
2029                         return -EINVAL;
2030                 if (ssd == sensor->binner)
2031                         return 0;
2032                 if (ssd == sensor->scaler
2033                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2034                     != SMIAPP_SCALING_CAPABILITY_NONE)
2035                         return 0;
2036                 /* Fall through */
2037         default:
2038                 return -EINVAL;
2039         }
2040 }
2041
2042 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2043                            struct v4l2_subdev_fh *fh,
2044                            struct v4l2_subdev_selection *sel)
2045 {
2046         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2047         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2048         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2049         struct v4l2_rect _r;
2050
2051         smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2052
2053         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2054                 if (sel->pad == ssd->sink_pad)
2055                         src_size = &ssd->sink_fmt;
2056                 else
2057                         src_size = &ssd->compose;
2058         } else {
2059                 if (sel->pad == ssd->sink_pad) {
2060                         _r.left = 0;
2061                         _r.top = 0;
2062                         _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2063                                 ->width;
2064                         _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2065                                 ->height;
2066                         src_size = &_r;
2067                 } else {
2068                         src_size =
2069                                 v4l2_subdev_get_try_compose(
2070                                         fh, ssd->sink_pad);
2071                 }
2072         }
2073
2074         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2075                 sel->r.left = 0;
2076                 sel->r.top = 0;
2077         }
2078
2079         sel->r.width = min(sel->r.width, src_size->width);
2080         sel->r.height = min(sel->r.height, src_size->height);
2081
2082         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2083         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2084
2085         *crops[sel->pad] = sel->r;
2086
2087         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2088                 smiapp_propagate(subdev, fh, sel->which,
2089                                  V4L2_SEL_TGT_CROP);
2090
2091         return 0;
2092 }
2093
2094 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2095                                   struct v4l2_subdev_fh *fh,
2096                                   struct v4l2_subdev_selection *sel)
2097 {
2098         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2099         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2100         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2101         struct v4l2_rect sink_fmt;
2102         int ret;
2103
2104         ret = __smiapp_sel_supported(subdev, sel);
2105         if (ret)
2106                 return ret;
2107
2108         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2109
2110         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2111                 sink_fmt = ssd->sink_fmt;
2112         } else {
2113                 struct v4l2_mbus_framefmt *fmt =
2114                         v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2115
2116                 sink_fmt.left = 0;
2117                 sink_fmt.top = 0;
2118                 sink_fmt.width = fmt->width;
2119                 sink_fmt.height = fmt->height;
2120         }
2121
2122         switch (sel->target) {
2123         case V4L2_SEL_TGT_CROP_BOUNDS:
2124                 if (ssd == sensor->pixel_array) {
2125                         sel->r.width =
2126                                 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2127                         sel->r.height =
2128                                 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2129                 } else if (sel->pad == ssd->sink_pad) {
2130                         sel->r = sink_fmt;
2131                 } else {
2132                         sel->r = *comp;
2133                 }
2134                 break;
2135         case V4L2_SEL_TGT_CROP:
2136         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2137                 sel->r = *crops[sel->pad];
2138                 break;
2139         case V4L2_SEL_TGT_COMPOSE:
2140                 sel->r = *comp;
2141                 break;
2142         }
2143
2144         return 0;
2145 }
2146
2147 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2148                                 struct v4l2_subdev_fh *fh,
2149                                 struct v4l2_subdev_selection *sel)
2150 {
2151         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2152         int rval;
2153
2154         mutex_lock(&sensor->mutex);
2155         rval = __smiapp_get_selection(subdev, fh, sel);
2156         mutex_unlock(&sensor->mutex);
2157
2158         return rval;
2159 }
2160 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2161                                 struct v4l2_subdev_fh *fh,
2162                                 struct v4l2_subdev_selection *sel)
2163 {
2164         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2165         int ret;
2166
2167         ret = __smiapp_sel_supported(subdev, sel);
2168         if (ret)
2169                 return ret;
2170
2171         mutex_lock(&sensor->mutex);
2172
2173         sel->r.left = max(0, sel->r.left & ~1);
2174         sel->r.top = max(0, sel->r.top & ~1);
2175         sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2176         sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2177
2178         sel->r.width = max_t(unsigned int,
2179                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2180                              sel->r.width);
2181         sel->r.height = max_t(unsigned int,
2182                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2183                               sel->r.height);
2184
2185         switch (sel->target) {
2186         case V4L2_SEL_TGT_CROP:
2187                 ret = smiapp_set_crop(subdev, fh, sel);
2188                 break;
2189         case V4L2_SEL_TGT_COMPOSE:
2190                 ret = smiapp_set_compose(subdev, fh, sel);
2191                 break;
2192         default:
2193                 BUG();
2194         }
2195
2196         mutex_unlock(&sensor->mutex);
2197         return ret;
2198 }
2199
2200 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2201 {
2202         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2203
2204         *frames = sensor->frame_skip;
2205         return 0;
2206 }
2207
2208 /* -----------------------------------------------------------------------------
2209  * sysfs attributes
2210  */
2211
2212 static ssize_t
2213 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2214                       char *buf)
2215 {
2216         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2217         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2218         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2219         unsigned int nbytes;
2220
2221         if (!sensor->dev_init_done)
2222                 return -EBUSY;
2223
2224         if (!sensor->nvm_size) {
2225                 /* NVM not read yet - read it now */
2226                 sensor->nvm_size = sensor->platform_data->nvm_size;
2227                 if (smiapp_set_power(subdev, 1) < 0)
2228                         return -ENODEV;
2229                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2230                         dev_err(&client->dev, "nvm read failed\n");
2231                         return -ENODEV;
2232                 }
2233                 smiapp_set_power(subdev, 0);
2234         }
2235         /*
2236          * NVM is still way below a PAGE_SIZE, so we can safely
2237          * assume this for now.
2238          */
2239         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2240         memcpy(buf, sensor->nvm, nbytes);
2241
2242         return nbytes;
2243 }
2244 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2245
2246 static ssize_t
2247 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2248                         char *buf)
2249 {
2250         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2251         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2252         struct smiapp_module_info *minfo = &sensor->minfo;
2253
2254         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2255                         minfo->manufacturer_id, minfo->model_id,
2256                         minfo->revision_number_major) + 1;
2257 }
2258
2259 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2260
2261 /* -----------------------------------------------------------------------------
2262  * V4L2 subdev core operations
2263  */
2264
2265 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2266 {
2267         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2268         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2269         struct smiapp_module_info *minfo = &sensor->minfo;
2270         unsigned int i;
2271         int rval = 0;
2272
2273         minfo->name = SMIAPP_NAME;
2274
2275         /* Module info */
2276         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2277                                  &minfo->manufacturer_id);
2278         if (!rval)
2279                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2280                                          &minfo->model_id);
2281         if (!rval)
2282                 rval = smiapp_read_8only(sensor,
2283                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2284                                          &minfo->revision_number_major);
2285         if (!rval)
2286                 rval = smiapp_read_8only(sensor,
2287                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2288                                          &minfo->revision_number_minor);
2289         if (!rval)
2290                 rval = smiapp_read_8only(sensor,
2291                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2292                                          &minfo->module_year);
2293         if (!rval)
2294                 rval = smiapp_read_8only(sensor,
2295                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2296                                          &minfo->module_month);
2297         if (!rval)
2298                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2299                                          &minfo->module_day);
2300
2301         /* Sensor info */
2302         if (!rval)
2303                 rval = smiapp_read_8only(sensor,
2304                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2305                                          &minfo->sensor_manufacturer_id);
2306         if (!rval)
2307                 rval = smiapp_read_8only(sensor,
2308                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2309                                          &minfo->sensor_model_id);
2310         if (!rval)
2311                 rval = smiapp_read_8only(sensor,
2312                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2313                                          &minfo->sensor_revision_number);
2314         if (!rval)
2315                 rval = smiapp_read_8only(sensor,
2316                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2317                                          &minfo->sensor_firmware_version);
2318
2319         /* SMIA */
2320         if (!rval)
2321                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2322                                          &minfo->smia_version);
2323         if (!rval)
2324                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2325                                          &minfo->smiapp_version);
2326
2327         if (rval) {
2328                 dev_err(&client->dev, "sensor detection failed\n");
2329                 return -ENODEV;
2330         }
2331
2332         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2333                 minfo->manufacturer_id, minfo->model_id);
2334
2335         dev_dbg(&client->dev,
2336                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2337                 minfo->revision_number_major, minfo->revision_number_minor,
2338                 minfo->module_year, minfo->module_month, minfo->module_day);
2339
2340         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2341                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2342
2343         dev_dbg(&client->dev,
2344                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2345                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2346
2347         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2348                 minfo->smia_version, minfo->smiapp_version);
2349
2350         /*
2351          * Some modules have bad data in the lvalues below. Hope the
2352          * rvalues have better stuff. The lvalues are module
2353          * parameters whereas the rvalues are sensor parameters.
2354          */
2355         if (!minfo->manufacturer_id && !minfo->model_id) {
2356                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2357                 minfo->model_id = minfo->sensor_model_id;
2358                 minfo->revision_number_major = minfo->sensor_revision_number;
2359         }
2360
2361         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2362                 if (smiapp_module_idents[i].manufacturer_id
2363                     != minfo->manufacturer_id)
2364                         continue;
2365                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2366                         continue;
2367                 if (smiapp_module_idents[i].flags
2368                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2369                         if (smiapp_module_idents[i].revision_number_major
2370                             < minfo->revision_number_major)
2371                                 continue;
2372                 } else {
2373                         if (smiapp_module_idents[i].revision_number_major
2374                             != minfo->revision_number_major)
2375                                 continue;
2376                 }
2377
2378                 minfo->name = smiapp_module_idents[i].name;
2379                 minfo->quirk = smiapp_module_idents[i].quirk;
2380                 break;
2381         }
2382
2383         if (i >= ARRAY_SIZE(smiapp_module_idents))
2384                 dev_warn(&client->dev,
2385                          "no quirks for this module; let's hope it's fully compliant\n");
2386
2387         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2388                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2389                 minfo->revision_number_major);
2390
2391         strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2392
2393         return 0;
2394 }
2395
2396 static const struct v4l2_subdev_ops smiapp_ops;
2397 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2398 static const struct media_entity_operations smiapp_entity_ops;
2399
2400 static int smiapp_registered(struct v4l2_subdev *subdev)
2401 {
2402         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2403         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2404         struct smiapp_pll *pll = &sensor->pll;
2405         struct smiapp_subdev *last = NULL;
2406         u32 tmp;
2407         unsigned int i;
2408         int rval;
2409
2410         sensor->vana = devm_regulator_get(&client->dev, "vana");
2411         if (IS_ERR(sensor->vana)) {
2412                 dev_err(&client->dev, "could not get regulator for vana\n");
2413                 return PTR_ERR(sensor->vana);
2414         }
2415
2416         if (!sensor->platform_data->set_xclk) {
2417                 sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
2418                 if (IS_ERR(sensor->ext_clk)) {
2419                         dev_err(&client->dev, "could not get clock\n");
2420                         return PTR_ERR(sensor->ext_clk);
2421                 }
2422
2423                 rval = clk_set_rate(sensor->ext_clk,
2424                                     sensor->platform_data->ext_clk);
2425                 if (rval < 0) {
2426                         dev_err(&client->dev,
2427                                 "unable to set clock freq to %u\n",
2428                                 sensor->platform_data->ext_clk);
2429                         return rval;
2430                 }
2431         }
2432
2433         if (gpio_is_valid(sensor->platform_data->xshutdown)) {
2434                 rval = devm_gpio_request_one(
2435                         &client->dev, sensor->platform_data->xshutdown, 0,
2436                         "SMIA++ xshutdown");
2437                 if (rval < 0) {
2438                         dev_err(&client->dev,
2439                                 "unable to acquire reset gpio %d\n",
2440                                 sensor->platform_data->xshutdown);
2441                         return rval;
2442                 }
2443         }
2444
2445         rval = smiapp_power_on(sensor);
2446         if (rval)
2447                 return -ENODEV;
2448
2449         rval = smiapp_identify_module(subdev);
2450         if (rval) {
2451                 rval = -ENODEV;
2452                 goto out_power_off;
2453         }
2454
2455         rval = smiapp_get_all_limits(sensor);
2456         if (rval) {
2457                 rval = -ENODEV;
2458                 goto out_power_off;
2459         }
2460
2461         /*
2462          * Handle Sensor Module orientation on the board.
2463          *
2464          * The application of H-FLIP and V-FLIP on the sensor is modified by
2465          * the sensor orientation on the board.
2466          *
2467          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2468          * both H-FLIP and V-FLIP for normal operation which also implies
2469          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2470          * controls will need to be internally inverted.
2471          *
2472          * Rotation also changes the bayer pattern.
2473          */
2474         if (sensor->platform_data->module_board_orient ==
2475             SMIAPP_MODULE_BOARD_ORIENT_180)
2476                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2477                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2478
2479         rval = smiapp_call_quirk(sensor, limits);
2480         if (rval) {
2481                 dev_err(&client->dev, "limits quirks failed\n");
2482                 goto out_power_off;
2483         }
2484
2485         rval = smiapp_get_mbus_formats(sensor);
2486         if (rval) {
2487                 rval = -ENODEV;
2488                 goto out_power_off;
2489         }
2490
2491         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2492                 u32 val;
2493
2494                 rval = smiapp_read(sensor,
2495                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2496                 if (rval < 0) {
2497                         rval = -ENODEV;
2498                         goto out_power_off;
2499                 }
2500                 sensor->nbinning_subtypes = min_t(u8, val,
2501                                                   SMIAPP_BINNING_SUBTYPES);
2502
2503                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2504                         rval = smiapp_read(
2505                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2506                         if (rval < 0) {
2507                                 rval = -ENODEV;
2508                                 goto out_power_off;
2509                         }
2510                         sensor->binning_subtypes[i] =
2511                                 *(struct smiapp_binning_subtype *)&val;
2512
2513                         dev_dbg(&client->dev, "binning %xx%x\n",
2514                                 sensor->binning_subtypes[i].horizontal,
2515                                 sensor->binning_subtypes[i].vertical);
2516                 }
2517         }
2518         sensor->binning_horizontal = 1;
2519         sensor->binning_vertical = 1;
2520
2521         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2522                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2523                 rval = -ENOENT;
2524                 goto out_power_off;
2525         }
2526         /* SMIA++ NVM initialization - it will be read from the sensor
2527          * when it is first requested by userspace.
2528          */
2529         if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2530                 sensor->nvm = devm_kzalloc(&client->dev,
2531                                 sensor->platform_data->nvm_size, GFP_KERNEL);
2532                 if (sensor->nvm == NULL) {
2533                         dev_err(&client->dev, "nvm buf allocation failed\n");
2534                         rval = -ENOMEM;
2535                         goto out_ident_release;
2536                 }
2537
2538                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2539                         dev_err(&client->dev, "sysfs nvm entry failed\n");
2540                         rval = -EBUSY;
2541                         goto out_ident_release;
2542                 }
2543         }
2544
2545         /* We consider this as profile 0 sensor if any of these are zero. */
2546         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2547             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2548             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2549             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2550                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2551         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2552                    != SMIAPP_SCALING_CAPABILITY_NONE) {
2553                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2554                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2555                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2556                 else
2557                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2558                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2559                 sensor->ssds_used++;
2560         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2561                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2562                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2563                 sensor->ssds_used++;
2564         }
2565         sensor->binner = &sensor->ssds[sensor->ssds_used];
2566         sensor->ssds_used++;
2567         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2568         sensor->ssds_used++;
2569
2570         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2571
2572         for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2573                 struct {
2574                         struct smiapp_subdev *ssd;
2575                         char *name;
2576                 } const __this[] = {
2577                         { sensor->scaler, "scaler", },
2578                         { sensor->binner, "binner", },
2579                         { sensor->pixel_array, "pixel array", },
2580                 }, *_this = &__this[i];
2581                 struct smiapp_subdev *this = _this->ssd;
2582
2583                 if (!this)
2584                         continue;
2585
2586                 if (this != sensor->src)
2587                         v4l2_subdev_init(&this->sd, &smiapp_ops);
2588
2589                 this->sensor = sensor;
2590
2591                 if (this == sensor->pixel_array) {
2592                         this->npads = 1;
2593                 } else {
2594                         this->npads = 2;
2595                         this->source_pad = 1;
2596                 }
2597
2598                 snprintf(this->sd.name,
2599                          sizeof(this->sd.name), "%s %s %d-%4.4x",
2600                          sensor->minfo.name, _this->name,
2601                          i2c_adapter_id(client->adapter), client->addr);
2602
2603                 this->sink_fmt.width =
2604                         sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2605                 this->sink_fmt.height =
2606                         sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2607                 this->compose.width = this->sink_fmt.width;
2608                 this->compose.height = this->sink_fmt.height;
2609                 this->crop[this->source_pad] = this->compose;
2610                 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2611                 if (this != sensor->pixel_array) {
2612                         this->crop[this->sink_pad] = this->compose;
2613                         this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2614                 }
2615
2616                 this->sd.entity.ops = &smiapp_entity_ops;
2617
2618                 if (last == NULL) {
2619                         last = this;
2620                         continue;
2621                 }
2622
2623                 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2624                 this->sd.internal_ops = &smiapp_internal_ops;
2625                 this->sd.owner = THIS_MODULE;
2626                 v4l2_set_subdevdata(&this->sd, client);
2627
2628                 rval = media_entity_init(&this->sd.entity,
2629                                          this->npads, this->pads, 0);
2630                 if (rval) {
2631                         dev_err(&client->dev,
2632                                 "media_entity_init failed\n");
2633                         goto out_nvm_release;
2634                 }
2635
2636                 rval = media_entity_create_link(&this->sd.entity,
2637                                                 this->source_pad,
2638                                                 &last->sd.entity,
2639                                                 last->sink_pad,
2640                                                 MEDIA_LNK_FL_ENABLED |
2641                                                 MEDIA_LNK_FL_IMMUTABLE);
2642                 if (rval) {
2643                         dev_err(&client->dev,
2644                                 "media_entity_create_link failed\n");
2645                         goto out_nvm_release;
2646                 }
2647
2648                 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2649                                                    &this->sd);
2650                 if (rval) {
2651                         dev_err(&client->dev,
2652                                 "v4l2_device_register_subdev failed\n");
2653                         goto out_nvm_release;
2654                 }
2655
2656                 last = this;
2657         }
2658
2659         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2660
2661         sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2662
2663         /* final steps */
2664         smiapp_read_frame_fmt(sensor);
2665         rval = smiapp_init_controls(sensor);
2666         if (rval < 0)
2667                 goto out_nvm_release;
2668
2669         /* prepare PLL configuration input values */
2670         pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2671         pll->csi2.lanes = sensor->platform_data->lanes;
2672         pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2673         pll->flags = smiapp_call_quirk(sensor, pll_flags);
2674
2675         /* Profile 0 sensors have no separate OP clock branch. */
2676         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2677                 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2678         pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2679
2680         rval = smiapp_update_mode(sensor);
2681         if (rval) {
2682                 dev_err(&client->dev, "update mode failed\n");
2683                 goto out_nvm_release;
2684         }
2685
2686         sensor->streaming = false;
2687         sensor->dev_init_done = true;
2688
2689         /* check flash capability */
2690         rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2691         sensor->flash_capability = tmp;
2692         if (rval)
2693                 goto out_nvm_release;
2694
2695         smiapp_power_off(sensor);
2696
2697         return 0;
2698
2699 out_nvm_release:
2700         device_remove_file(&client->dev, &dev_attr_nvm);
2701
2702 out_ident_release:
2703         device_remove_file(&client->dev, &dev_attr_ident);
2704
2705 out_power_off:
2706         smiapp_power_off(sensor);
2707         return rval;
2708 }
2709
2710 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2711 {
2712         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2713         struct smiapp_sensor *sensor = ssd->sensor;
2714         u32 mbus_code =
2715                 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2716         unsigned int i;
2717
2718         mutex_lock(&sensor->mutex);
2719
2720         for (i = 0; i < ssd->npads; i++) {
2721                 struct v4l2_mbus_framefmt *try_fmt =
2722                         v4l2_subdev_get_try_format(fh, i);
2723                 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2724                 struct v4l2_rect *try_comp;
2725
2726                 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2727                 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2728                 try_fmt->code = mbus_code;
2729                 try_fmt->field = V4L2_FIELD_NONE;
2730
2731                 try_crop->top = 0;
2732                 try_crop->left = 0;
2733                 try_crop->width = try_fmt->width;
2734                 try_crop->height = try_fmt->height;
2735
2736                 if (ssd != sensor->pixel_array)
2737                         continue;
2738
2739                 try_comp = v4l2_subdev_get_try_compose(fh, i);
2740                 *try_comp = *try_crop;
2741         }
2742
2743         mutex_unlock(&sensor->mutex);
2744
2745         return smiapp_set_power(sd, 1);
2746 }
2747
2748 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2749 {
2750         return smiapp_set_power(sd, 0);
2751 }
2752
2753 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2754         .s_stream = smiapp_set_stream,
2755 };
2756
2757 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2758         .s_power = smiapp_set_power,
2759 };
2760
2761 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2762         .enum_mbus_code = smiapp_enum_mbus_code,
2763         .get_fmt = smiapp_get_format,
2764         .set_fmt = smiapp_set_format,
2765         .get_selection = smiapp_get_selection,
2766         .set_selection = smiapp_set_selection,
2767 };
2768
2769 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2770         .g_skip_frames = smiapp_get_skip_frames,
2771 };
2772
2773 static const struct v4l2_subdev_ops smiapp_ops = {
2774         .core = &smiapp_core_ops,
2775         .video = &smiapp_video_ops,
2776         .pad = &smiapp_pad_ops,
2777         .sensor = &smiapp_sensor_ops,
2778 };
2779
2780 static const struct media_entity_operations smiapp_entity_ops = {
2781         .link_validate = v4l2_subdev_link_validate,
2782 };
2783
2784 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2785         .registered = smiapp_registered,
2786         .open = smiapp_open,
2787         .close = smiapp_close,
2788 };
2789
2790 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2791         .open = smiapp_open,
2792         .close = smiapp_close,
2793 };
2794
2795 /* -----------------------------------------------------------------------------
2796  * I2C Driver
2797  */
2798
2799 #ifdef CONFIG_PM
2800
2801 static int smiapp_suspend(struct device *dev)
2802 {
2803         struct i2c_client *client = to_i2c_client(dev);
2804         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2805         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2806         bool streaming;
2807
2808         BUG_ON(mutex_is_locked(&sensor->mutex));
2809
2810         if (sensor->power_count == 0)
2811                 return 0;
2812
2813         if (sensor->streaming)
2814                 smiapp_stop_streaming(sensor);
2815
2816         streaming = sensor->streaming;
2817
2818         smiapp_power_off(sensor);
2819
2820         /* save state for resume */
2821         sensor->streaming = streaming;
2822
2823         return 0;
2824 }
2825
2826 static int smiapp_resume(struct device *dev)
2827 {
2828         struct i2c_client *client = to_i2c_client(dev);
2829         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2830         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2831         int rval;
2832
2833         if (sensor->power_count == 0)
2834                 return 0;
2835
2836         rval = smiapp_power_on(sensor);
2837         if (rval)
2838                 return rval;
2839
2840         if (sensor->streaming)
2841                 rval = smiapp_start_streaming(sensor);
2842
2843         return rval;
2844 }
2845
2846 #else
2847
2848 #define smiapp_suspend  NULL
2849 #define smiapp_resume   NULL
2850
2851 #endif /* CONFIG_PM */
2852
2853 static int smiapp_probe(struct i2c_client *client,
2854                         const struct i2c_device_id *devid)
2855 {
2856         struct smiapp_sensor *sensor;
2857
2858         if (client->dev.platform_data == NULL)
2859                 return -ENODEV;
2860
2861         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2862         if (sensor == NULL)
2863                 return -ENOMEM;
2864
2865         sensor->platform_data = client->dev.platform_data;
2866         mutex_init(&sensor->mutex);
2867         mutex_init(&sensor->power_mutex);
2868         sensor->src = &sensor->ssds[sensor->ssds_used];
2869
2870         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2871         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2872         sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2873         sensor->src->sensor = sensor;
2874
2875         sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2876         return media_entity_init(&sensor->src->sd.entity, 2,
2877                                  sensor->src->pads, 0);
2878 }
2879
2880 static int smiapp_remove(struct i2c_client *client)
2881 {
2882         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2883         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2884         unsigned int i;
2885
2886         if (sensor->power_count) {
2887                 if (gpio_is_valid(sensor->platform_data->xshutdown))
2888                         gpio_set_value(sensor->platform_data->xshutdown, 0);
2889                 if (sensor->platform_data->set_xclk)
2890                         sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2891                 else
2892                         clk_disable_unprepare(sensor->ext_clk);
2893                 sensor->power_count = 0;
2894         }
2895
2896         device_remove_file(&client->dev, &dev_attr_ident);
2897         if (sensor->nvm)
2898                 device_remove_file(&client->dev, &dev_attr_nvm);
2899
2900         for (i = 0; i < sensor->ssds_used; i++) {
2901                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2902                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2903         }
2904         smiapp_free_controls(sensor);
2905
2906         return 0;
2907 }
2908
2909 static const struct i2c_device_id smiapp_id_table[] = {
2910         { SMIAPP_NAME, 0 },
2911         { },
2912 };
2913 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2914
2915 static const struct dev_pm_ops smiapp_pm_ops = {
2916         .suspend        = smiapp_suspend,
2917         .resume         = smiapp_resume,
2918 };
2919
2920 static struct i2c_driver smiapp_i2c_driver = {
2921         .driver = {
2922                 .name = SMIAPP_NAME,
2923                 .pm = &smiapp_pm_ops,
2924         },
2925         .probe  = smiapp_probe,
2926         .remove = smiapp_remove,
2927         .id_table = smiapp_id_table,
2928 };
2929
2930 module_i2c_driver(smiapp_i2c_driver);
2931
2932 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2933 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2934 MODULE_LICENSE("GPL");