Merge tag 'dm-4.9-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[cascardo/linux.git] / drivers / media / v4l2-core / videobuf2-core.c
1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *         Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *      (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/freezer.h>
25 #include <linux/kthread.h>
26
27 #include <media/videobuf2-core.h>
28 #include <media/v4l2-mc.h>
29
30 #include <trace/events/vb2.h>
31
32 static int debug;
33 module_param(debug, int, 0644);
34
35 #define dprintk(level, fmt, arg...)                                           \
36         do {                                                                  \
37                 if (debug >= level)                                           \
38                         pr_info("vb2-core: %s: " fmt, __func__, ## arg); \
39         } while (0)
40
41 #ifdef CONFIG_VIDEO_ADV_DEBUG
42
43 /*
44  * If advanced debugging is on, then count how often each op is called
45  * successfully, which can either be per-buffer or per-queue.
46  *
47  * This makes it easy to check that the 'init' and 'cleanup'
48  * (and variations thereof) stay balanced.
49  */
50
51 #define log_memop(vb, op)                                               \
52         dprintk(2, "call_memop(%p, %d, %s)%s\n",                        \
53                 (vb)->vb2_queue, (vb)->index, #op,                      \
54                 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
55
56 #define call_memop(vb, op, args...)                                     \
57 ({                                                                      \
58         struct vb2_queue *_q = (vb)->vb2_queue;                         \
59         int err;                                                        \
60                                                                         \
61         log_memop(vb, op);                                              \
62         err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;              \
63         if (!err)                                                       \
64                 (vb)->cnt_mem_ ## op++;                                 \
65         err;                                                            \
66 })
67
68 #define call_ptr_memop(vb, op, args...)                                 \
69 ({                                                                      \
70         struct vb2_queue *_q = (vb)->vb2_queue;                         \
71         void *ptr;                                                      \
72                                                                         \
73         log_memop(vb, op);                                              \
74         ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL;           \
75         if (!IS_ERR_OR_NULL(ptr))                                       \
76                 (vb)->cnt_mem_ ## op++;                                 \
77         ptr;                                                            \
78 })
79
80 #define call_void_memop(vb, op, args...)                                \
81 ({                                                                      \
82         struct vb2_queue *_q = (vb)->vb2_queue;                         \
83                                                                         \
84         log_memop(vb, op);                                              \
85         if (_q->mem_ops->op)                                            \
86                 _q->mem_ops->op(args);                                  \
87         (vb)->cnt_mem_ ## op++;                                         \
88 })
89
90 #define log_qop(q, op)                                                  \
91         dprintk(2, "call_qop(%p, %s)%s\n", q, #op,                      \
92                 (q)->ops->op ? "" : " (nop)")
93
94 #define call_qop(q, op, args...)                                        \
95 ({                                                                      \
96         int err;                                                        \
97                                                                         \
98         log_qop(q, op);                                                 \
99         err = (q)->ops->op ? (q)->ops->op(args) : 0;                    \
100         if (!err)                                                       \
101                 (q)->cnt_ ## op++;                                      \
102         err;                                                            \
103 })
104
105 #define call_void_qop(q, op, args...)                                   \
106 ({                                                                      \
107         log_qop(q, op);                                                 \
108         if ((q)->ops->op)                                               \
109                 (q)->ops->op(args);                                     \
110         (q)->cnt_ ## op++;                                              \
111 })
112
113 #define log_vb_qop(vb, op, args...)                                     \
114         dprintk(2, "call_vb_qop(%p, %d, %s)%s\n",                       \
115                 (vb)->vb2_queue, (vb)->index, #op,                      \
116                 (vb)->vb2_queue->ops->op ? "" : " (nop)")
117
118 #define call_vb_qop(vb, op, args...)                                    \
119 ({                                                                      \
120         int err;                                                        \
121                                                                         \
122         log_vb_qop(vb, op);                                             \
123         err = (vb)->vb2_queue->ops->op ?                                \
124                 (vb)->vb2_queue->ops->op(args) : 0;                     \
125         if (!err)                                                       \
126                 (vb)->cnt_ ## op++;                                     \
127         err;                                                            \
128 })
129
130 #define call_void_vb_qop(vb, op, args...)                               \
131 ({                                                                      \
132         log_vb_qop(vb, op);                                             \
133         if ((vb)->vb2_queue->ops->op)                                   \
134                 (vb)->vb2_queue->ops->op(args);                         \
135         (vb)->cnt_ ## op++;                                             \
136 })
137
138 #else
139
140 #define call_memop(vb, op, args...)                                     \
141         ((vb)->vb2_queue->mem_ops->op ?                                 \
142                 (vb)->vb2_queue->mem_ops->op(args) : 0)
143
144 #define call_ptr_memop(vb, op, args...)                                 \
145         ((vb)->vb2_queue->mem_ops->op ?                                 \
146                 (vb)->vb2_queue->mem_ops->op(args) : NULL)
147
148 #define call_void_memop(vb, op, args...)                                \
149         do {                                                            \
150                 if ((vb)->vb2_queue->mem_ops->op)                       \
151                         (vb)->vb2_queue->mem_ops->op(args);             \
152         } while (0)
153
154 #define call_qop(q, op, args...)                                        \
155         ((q)->ops->op ? (q)->ops->op(args) : 0)
156
157 #define call_void_qop(q, op, args...)                                   \
158         do {                                                            \
159                 if ((q)->ops->op)                                       \
160                         (q)->ops->op(args);                             \
161         } while (0)
162
163 #define call_vb_qop(vb, op, args...)                                    \
164         ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
165
166 #define call_void_vb_qop(vb, op, args...)                               \
167         do {                                                            \
168                 if ((vb)->vb2_queue->ops->op)                           \
169                         (vb)->vb2_queue->ops->op(args);                 \
170         } while (0)
171
172 #endif
173
174 #define call_bufop(q, op, args...)                                      \
175 ({                                                                      \
176         int ret = 0;                                                    \
177         if (q && q->buf_ops && q->buf_ops->op)                          \
178                 ret = q->buf_ops->op(args);                             \
179         ret;                                                            \
180 })
181
182 #define call_void_bufop(q, op, args...)                                 \
183 ({                                                                      \
184         if (q && q->buf_ops && q->buf_ops->op)                          \
185                 q->buf_ops->op(args);                                   \
186 })
187
188 static void __vb2_queue_cancel(struct vb2_queue *q);
189 static void __enqueue_in_driver(struct vb2_buffer *vb);
190
191 /**
192  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
193  */
194 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
195 {
196         struct vb2_queue *q = vb->vb2_queue;
197         enum dma_data_direction dma_dir =
198                 q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
199         void *mem_priv;
200         int plane;
201         int ret = -ENOMEM;
202
203         /*
204          * Allocate memory for all planes in this buffer
205          * NOTE: mmapped areas should be page aligned
206          */
207         for (plane = 0; plane < vb->num_planes; ++plane) {
208                 unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
209
210                 mem_priv = call_ptr_memop(vb, alloc,
211                                 q->alloc_devs[plane] ? : q->dev,
212                                 q->dma_attrs, size, dma_dir, q->gfp_flags);
213                 if (IS_ERR(mem_priv)) {
214                         if (mem_priv)
215                                 ret = PTR_ERR(mem_priv);
216                         goto free;
217                 }
218
219                 /* Associate allocator private data with this plane */
220                 vb->planes[plane].mem_priv = mem_priv;
221         }
222
223         return 0;
224 free:
225         /* Free already allocated memory if one of the allocations failed */
226         for (; plane > 0; --plane) {
227                 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
228                 vb->planes[plane - 1].mem_priv = NULL;
229         }
230
231         return ret;
232 }
233
234 /**
235  * __vb2_buf_mem_free() - free memory of the given buffer
236  */
237 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
238 {
239         unsigned int plane;
240
241         for (plane = 0; plane < vb->num_planes; ++plane) {
242                 call_void_memop(vb, put, vb->planes[plane].mem_priv);
243                 vb->planes[plane].mem_priv = NULL;
244                 dprintk(3, "freed plane %d of buffer %d\n", plane, vb->index);
245         }
246 }
247
248 /**
249  * __vb2_buf_userptr_put() - release userspace memory associated with
250  * a USERPTR buffer
251  */
252 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
253 {
254         unsigned int plane;
255
256         for (plane = 0; plane < vb->num_planes; ++plane) {
257                 if (vb->planes[plane].mem_priv)
258                         call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
259                 vb->planes[plane].mem_priv = NULL;
260         }
261 }
262
263 /**
264  * __vb2_plane_dmabuf_put() - release memory associated with
265  * a DMABUF shared plane
266  */
267 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
268 {
269         if (!p->mem_priv)
270                 return;
271
272         if (p->dbuf_mapped)
273                 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
274
275         call_void_memop(vb, detach_dmabuf, p->mem_priv);
276         dma_buf_put(p->dbuf);
277         p->mem_priv = NULL;
278         p->dbuf = NULL;
279         p->dbuf_mapped = 0;
280 }
281
282 /**
283  * __vb2_buf_dmabuf_put() - release memory associated with
284  * a DMABUF shared buffer
285  */
286 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
287 {
288         unsigned int plane;
289
290         for (plane = 0; plane < vb->num_planes; ++plane)
291                 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
292 }
293
294 /**
295  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
296  * the buffer.
297  */
298 static void __setup_offsets(struct vb2_buffer *vb)
299 {
300         struct vb2_queue *q = vb->vb2_queue;
301         unsigned int plane;
302         unsigned long off = 0;
303
304         if (vb->index) {
305                 struct vb2_buffer *prev = q->bufs[vb->index - 1];
306                 struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
307
308                 off = PAGE_ALIGN(p->m.offset + p->length);
309         }
310
311         for (plane = 0; plane < vb->num_planes; ++plane) {
312                 vb->planes[plane].m.offset = off;
313
314                 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n",
315                                 vb->index, plane, off);
316
317                 off += vb->planes[plane].length;
318                 off = PAGE_ALIGN(off);
319         }
320 }
321
322 /**
323  * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
324  * video buffer memory for all buffers/planes on the queue and initializes the
325  * queue
326  *
327  * Returns the number of buffers successfully allocated.
328  */
329 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
330                              unsigned int num_buffers, unsigned int num_planes,
331                              const unsigned plane_sizes[VB2_MAX_PLANES])
332 {
333         unsigned int buffer, plane;
334         struct vb2_buffer *vb;
335         int ret;
336
337         for (buffer = 0; buffer < num_buffers; ++buffer) {
338                 /* Allocate videobuf buffer structures */
339                 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
340                 if (!vb) {
341                         dprintk(1, "memory alloc for buffer struct failed\n");
342                         break;
343                 }
344
345                 vb->state = VB2_BUF_STATE_DEQUEUED;
346                 vb->vb2_queue = q;
347                 vb->num_planes = num_planes;
348                 vb->index = q->num_buffers + buffer;
349                 vb->type = q->type;
350                 vb->memory = memory;
351                 for (plane = 0; plane < num_planes; ++plane) {
352                         vb->planes[plane].length = plane_sizes[plane];
353                         vb->planes[plane].min_length = plane_sizes[plane];
354                 }
355                 q->bufs[vb->index] = vb;
356
357                 /* Allocate video buffer memory for the MMAP type */
358                 if (memory == VB2_MEMORY_MMAP) {
359                         ret = __vb2_buf_mem_alloc(vb);
360                         if (ret) {
361                                 dprintk(1, "failed allocating memory for "
362                                                 "buffer %d\n", buffer);
363                                 q->bufs[vb->index] = NULL;
364                                 kfree(vb);
365                                 break;
366                         }
367                         __setup_offsets(vb);
368                         /*
369                          * Call the driver-provided buffer initialization
370                          * callback, if given. An error in initialization
371                          * results in queue setup failure.
372                          */
373                         ret = call_vb_qop(vb, buf_init, vb);
374                         if (ret) {
375                                 dprintk(1, "buffer %d %p initialization"
376                                         " failed\n", buffer, vb);
377                                 __vb2_buf_mem_free(vb);
378                                 q->bufs[vb->index] = NULL;
379                                 kfree(vb);
380                                 break;
381                         }
382                 }
383         }
384
385         dprintk(1, "allocated %d buffers, %d plane(s) each\n",
386                         buffer, num_planes);
387
388         return buffer;
389 }
390
391 /**
392  * __vb2_free_mem() - release all video buffer memory for a given queue
393  */
394 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
395 {
396         unsigned int buffer;
397         struct vb2_buffer *vb;
398
399         for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
400              ++buffer) {
401                 vb = q->bufs[buffer];
402                 if (!vb)
403                         continue;
404
405                 /* Free MMAP buffers or release USERPTR buffers */
406                 if (q->memory == VB2_MEMORY_MMAP)
407                         __vb2_buf_mem_free(vb);
408                 else if (q->memory == VB2_MEMORY_DMABUF)
409                         __vb2_buf_dmabuf_put(vb);
410                 else
411                         __vb2_buf_userptr_put(vb);
412         }
413 }
414
415 /**
416  * __vb2_queue_free() - free buffers at the end of the queue - video memory and
417  * related information, if no buffers are left return the queue to an
418  * uninitialized state. Might be called even if the queue has already been freed.
419  */
420 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
421 {
422         unsigned int buffer;
423
424         /*
425          * Sanity check: when preparing a buffer the queue lock is released for
426          * a short while (see __buf_prepare for the details), which would allow
427          * a race with a reqbufs which can call this function. Removing the
428          * buffers from underneath __buf_prepare is obviously a bad idea, so we
429          * check if any of the buffers is in the state PREPARING, and if so we
430          * just return -EAGAIN.
431          */
432         for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
433              ++buffer) {
434                 if (q->bufs[buffer] == NULL)
435                         continue;
436                 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
437                         dprintk(1, "preparing buffers, cannot free\n");
438                         return -EAGAIN;
439                 }
440         }
441
442         /* Call driver-provided cleanup function for each buffer, if provided */
443         for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
444              ++buffer) {
445                 struct vb2_buffer *vb = q->bufs[buffer];
446
447                 if (vb && vb->planes[0].mem_priv)
448                         call_void_vb_qop(vb, buf_cleanup, vb);
449         }
450
451         /* Release video buffer memory */
452         __vb2_free_mem(q, buffers);
453
454 #ifdef CONFIG_VIDEO_ADV_DEBUG
455         /*
456          * Check that all the calls were balances during the life-time of this
457          * queue. If not (or if the debug level is 1 or up), then dump the
458          * counters to the kernel log.
459          */
460         if (q->num_buffers) {
461                 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
462                                   q->cnt_wait_prepare != q->cnt_wait_finish;
463
464                 if (unbalanced || debug) {
465                         pr_info("vb2: counters for queue %p:%s\n", q,
466                                 unbalanced ? " UNBALANCED!" : "");
467                         pr_info("vb2:     setup: %u start_streaming: %u stop_streaming: %u\n",
468                                 q->cnt_queue_setup, q->cnt_start_streaming,
469                                 q->cnt_stop_streaming);
470                         pr_info("vb2:     wait_prepare: %u wait_finish: %u\n",
471                                 q->cnt_wait_prepare, q->cnt_wait_finish);
472                 }
473                 q->cnt_queue_setup = 0;
474                 q->cnt_wait_prepare = 0;
475                 q->cnt_wait_finish = 0;
476                 q->cnt_start_streaming = 0;
477                 q->cnt_stop_streaming = 0;
478         }
479         for (buffer = 0; buffer < q->num_buffers; ++buffer) {
480                 struct vb2_buffer *vb = q->bufs[buffer];
481                 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
482                                   vb->cnt_mem_prepare != vb->cnt_mem_finish ||
483                                   vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
484                                   vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
485                                   vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
486                                   vb->cnt_buf_queue != vb->cnt_buf_done ||
487                                   vb->cnt_buf_prepare != vb->cnt_buf_finish ||
488                                   vb->cnt_buf_init != vb->cnt_buf_cleanup;
489
490                 if (unbalanced || debug) {
491                         pr_info("vb2:   counters for queue %p, buffer %d:%s\n",
492                                 q, buffer, unbalanced ? " UNBALANCED!" : "");
493                         pr_info("vb2:     buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
494                                 vb->cnt_buf_init, vb->cnt_buf_cleanup,
495                                 vb->cnt_buf_prepare, vb->cnt_buf_finish);
496                         pr_info("vb2:     buf_queue: %u buf_done: %u\n",
497                                 vb->cnt_buf_queue, vb->cnt_buf_done);
498                         pr_info("vb2:     alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
499                                 vb->cnt_mem_alloc, vb->cnt_mem_put,
500                                 vb->cnt_mem_prepare, vb->cnt_mem_finish,
501                                 vb->cnt_mem_mmap);
502                         pr_info("vb2:     get_userptr: %u put_userptr: %u\n",
503                                 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
504                         pr_info("vb2:     attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
505                                 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
506                                 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
507                         pr_info("vb2:     get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
508                                 vb->cnt_mem_get_dmabuf,
509                                 vb->cnt_mem_num_users,
510                                 vb->cnt_mem_vaddr,
511                                 vb->cnt_mem_cookie);
512                 }
513         }
514 #endif
515
516         /* Free videobuf buffers */
517         for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
518              ++buffer) {
519                 kfree(q->bufs[buffer]);
520                 q->bufs[buffer] = NULL;
521         }
522
523         q->num_buffers -= buffers;
524         if (!q->num_buffers) {
525                 q->memory = 0;
526                 INIT_LIST_HEAD(&q->queued_list);
527         }
528         return 0;
529 }
530
531 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
532 {
533         unsigned int plane;
534         for (plane = 0; plane < vb->num_planes; ++plane) {
535                 void *mem_priv = vb->planes[plane].mem_priv;
536                 /*
537                  * If num_users() has not been provided, call_memop
538                  * will return 0, apparently nobody cares about this
539                  * case anyway. If num_users() returns more than 1,
540                  * we are not the only user of the plane's memory.
541                  */
542                 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
543                         return true;
544         }
545         return false;
546 }
547 EXPORT_SYMBOL(vb2_buffer_in_use);
548
549 /**
550  * __buffers_in_use() - return true if any buffers on the queue are in use and
551  * the queue cannot be freed (by the means of REQBUFS(0)) call
552  */
553 static bool __buffers_in_use(struct vb2_queue *q)
554 {
555         unsigned int buffer;
556         for (buffer = 0; buffer < q->num_buffers; ++buffer) {
557                 if (vb2_buffer_in_use(q, q->bufs[buffer]))
558                         return true;
559         }
560         return false;
561 }
562
563 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
564 {
565         call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
566 }
567 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
568
569 /**
570  * __verify_userptr_ops() - verify that all memory operations required for
571  * USERPTR queue type have been provided
572  */
573 static int __verify_userptr_ops(struct vb2_queue *q)
574 {
575         if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
576             !q->mem_ops->put_userptr)
577                 return -EINVAL;
578
579         return 0;
580 }
581
582 /**
583  * __verify_mmap_ops() - verify that all memory operations required for
584  * MMAP queue type have been provided
585  */
586 static int __verify_mmap_ops(struct vb2_queue *q)
587 {
588         if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
589             !q->mem_ops->put || !q->mem_ops->mmap)
590                 return -EINVAL;
591
592         return 0;
593 }
594
595 /**
596  * __verify_dmabuf_ops() - verify that all memory operations required for
597  * DMABUF queue type have been provided
598  */
599 static int __verify_dmabuf_ops(struct vb2_queue *q)
600 {
601         if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
602             !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
603             !q->mem_ops->unmap_dmabuf)
604                 return -EINVAL;
605
606         return 0;
607 }
608
609 int vb2_verify_memory_type(struct vb2_queue *q,
610                 enum vb2_memory memory, unsigned int type)
611 {
612         if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
613             memory != VB2_MEMORY_DMABUF) {
614                 dprintk(1, "unsupported memory type\n");
615                 return -EINVAL;
616         }
617
618         if (type != q->type) {
619                 dprintk(1, "requested type is incorrect\n");
620                 return -EINVAL;
621         }
622
623         /*
624          * Make sure all the required memory ops for given memory type
625          * are available.
626          */
627         if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
628                 dprintk(1, "MMAP for current setup unsupported\n");
629                 return -EINVAL;
630         }
631
632         if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
633                 dprintk(1, "USERPTR for current setup unsupported\n");
634                 return -EINVAL;
635         }
636
637         if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
638                 dprintk(1, "DMABUF for current setup unsupported\n");
639                 return -EINVAL;
640         }
641
642         /*
643          * Place the busy tests at the end: -EBUSY can be ignored when
644          * create_bufs is called with count == 0, but count == 0 should still
645          * do the memory and type validation.
646          */
647         if (vb2_fileio_is_active(q)) {
648                 dprintk(1, "file io in progress\n");
649                 return -EBUSY;
650         }
651         return 0;
652 }
653 EXPORT_SYMBOL(vb2_verify_memory_type);
654
655 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
656                 unsigned int *count)
657 {
658         unsigned int num_buffers, allocated_buffers, num_planes = 0;
659         unsigned plane_sizes[VB2_MAX_PLANES] = { };
660         int ret;
661
662         if (q->streaming) {
663                 dprintk(1, "streaming active\n");
664                 return -EBUSY;
665         }
666
667         if (*count == 0 || q->num_buffers != 0 || q->memory != memory) {
668                 /*
669                  * We already have buffers allocated, so first check if they
670                  * are not in use and can be freed.
671                  */
672                 mutex_lock(&q->mmap_lock);
673                 if (q->memory == VB2_MEMORY_MMAP && __buffers_in_use(q)) {
674                         mutex_unlock(&q->mmap_lock);
675                         dprintk(1, "memory in use, cannot free\n");
676                         return -EBUSY;
677                 }
678
679                 /*
680                  * Call queue_cancel to clean up any buffers in the PREPARED or
681                  * QUEUED state which is possible if buffers were prepared or
682                  * queued without ever calling STREAMON.
683                  */
684                 __vb2_queue_cancel(q);
685                 ret = __vb2_queue_free(q, q->num_buffers);
686                 mutex_unlock(&q->mmap_lock);
687                 if (ret)
688                         return ret;
689
690                 /*
691                  * In case of REQBUFS(0) return immediately without calling
692                  * driver's queue_setup() callback and allocating resources.
693                  */
694                 if (*count == 0)
695                         return 0;
696         }
697
698         /*
699          * Make sure the requested values and current defaults are sane.
700          */
701         num_buffers = min_t(unsigned int, *count, VB2_MAX_FRAME);
702         num_buffers = max_t(unsigned int, num_buffers, q->min_buffers_needed);
703         memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
704         q->memory = memory;
705
706         /*
707          * Ask the driver how many buffers and planes per buffer it requires.
708          * Driver also sets the size and allocator context for each plane.
709          */
710         ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
711                        plane_sizes, q->alloc_devs);
712         if (ret)
713                 return ret;
714
715         /* Finally, allocate buffers and video memory */
716         allocated_buffers =
717                 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
718         if (allocated_buffers == 0) {
719                 dprintk(1, "memory allocation failed\n");
720                 return -ENOMEM;
721         }
722
723         /*
724          * There is no point in continuing if we can't allocate the minimum
725          * number of buffers needed by this vb2_queue.
726          */
727         if (allocated_buffers < q->min_buffers_needed)
728                 ret = -ENOMEM;
729
730         /*
731          * Check if driver can handle the allocated number of buffers.
732          */
733         if (!ret && allocated_buffers < num_buffers) {
734                 num_buffers = allocated_buffers;
735                 /*
736                  * num_planes is set by the previous queue_setup(), but since it
737                  * signals to queue_setup() whether it is called from create_bufs()
738                  * vs reqbufs() we zero it here to signal that queue_setup() is
739                  * called for the reqbufs() case.
740                  */
741                 num_planes = 0;
742
743                 ret = call_qop(q, queue_setup, q, &num_buffers,
744                                &num_planes, plane_sizes, q->alloc_devs);
745
746                 if (!ret && allocated_buffers < num_buffers)
747                         ret = -ENOMEM;
748
749                 /*
750                  * Either the driver has accepted a smaller number of buffers,
751                  * or .queue_setup() returned an error
752                  */
753         }
754
755         mutex_lock(&q->mmap_lock);
756         q->num_buffers = allocated_buffers;
757
758         if (ret < 0) {
759                 /*
760                  * Note: __vb2_queue_free() will subtract 'allocated_buffers'
761                  * from q->num_buffers.
762                  */
763                 __vb2_queue_free(q, allocated_buffers);
764                 mutex_unlock(&q->mmap_lock);
765                 return ret;
766         }
767         mutex_unlock(&q->mmap_lock);
768
769         /*
770          * Return the number of successfully allocated buffers
771          * to the userspace.
772          */
773         *count = allocated_buffers;
774         q->waiting_for_buffers = !q->is_output;
775
776         return 0;
777 }
778 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
779
780 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
781                 unsigned int *count, unsigned requested_planes,
782                 const unsigned requested_sizes[])
783 {
784         unsigned int num_planes = 0, num_buffers, allocated_buffers;
785         unsigned plane_sizes[VB2_MAX_PLANES] = { };
786         int ret;
787
788         if (q->num_buffers == VB2_MAX_FRAME) {
789                 dprintk(1, "maximum number of buffers already allocated\n");
790                 return -ENOBUFS;
791         }
792
793         if (!q->num_buffers) {
794                 memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
795                 q->memory = memory;
796                 q->waiting_for_buffers = !q->is_output;
797         }
798
799         num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
800
801         if (requested_planes && requested_sizes) {
802                 num_planes = requested_planes;
803                 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
804         }
805
806         /*
807          * Ask the driver, whether the requested number of buffers, planes per
808          * buffer and their sizes are acceptable
809          */
810         ret = call_qop(q, queue_setup, q, &num_buffers,
811                        &num_planes, plane_sizes, q->alloc_devs);
812         if (ret)
813                 return ret;
814
815         /* Finally, allocate buffers and video memory */
816         allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
817                                 num_planes, plane_sizes);
818         if (allocated_buffers == 0) {
819                 dprintk(1, "memory allocation failed\n");
820                 return -ENOMEM;
821         }
822
823         /*
824          * Check if driver can handle the so far allocated number of buffers.
825          */
826         if (allocated_buffers < num_buffers) {
827                 num_buffers = allocated_buffers;
828
829                 /*
830                  * q->num_buffers contains the total number of buffers, that the
831                  * queue driver has set up
832                  */
833                 ret = call_qop(q, queue_setup, q, &num_buffers,
834                                &num_planes, plane_sizes, q->alloc_devs);
835
836                 if (!ret && allocated_buffers < num_buffers)
837                         ret = -ENOMEM;
838
839                 /*
840                  * Either the driver has accepted a smaller number of buffers,
841                  * or .queue_setup() returned an error
842                  */
843         }
844
845         mutex_lock(&q->mmap_lock);
846         q->num_buffers += allocated_buffers;
847
848         if (ret < 0) {
849                 /*
850                  * Note: __vb2_queue_free() will subtract 'allocated_buffers'
851                  * from q->num_buffers.
852                  */
853                 __vb2_queue_free(q, allocated_buffers);
854                 mutex_unlock(&q->mmap_lock);
855                 return -ENOMEM;
856         }
857         mutex_unlock(&q->mmap_lock);
858
859         /*
860          * Return the number of successfully allocated buffers
861          * to the userspace.
862          */
863         *count = allocated_buffers;
864
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
868
869 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
870 {
871         if (plane_no > vb->num_planes || !vb->planes[plane_no].mem_priv)
872                 return NULL;
873
874         return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
875
876 }
877 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
878
879 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
880 {
881         if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
882                 return NULL;
883
884         return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
885 }
886 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
887
888 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
889 {
890         struct vb2_queue *q = vb->vb2_queue;
891         unsigned long flags;
892         unsigned int plane;
893
894         if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
895                 return;
896
897         if (WARN_ON(state != VB2_BUF_STATE_DONE &&
898                     state != VB2_BUF_STATE_ERROR &&
899                     state != VB2_BUF_STATE_QUEUED &&
900                     state != VB2_BUF_STATE_REQUEUEING))
901                 state = VB2_BUF_STATE_ERROR;
902
903 #ifdef CONFIG_VIDEO_ADV_DEBUG
904         /*
905          * Although this is not a callback, it still does have to balance
906          * with the buf_queue op. So update this counter manually.
907          */
908         vb->cnt_buf_done++;
909 #endif
910         dprintk(4, "done processing on buffer %d, state: %d\n",
911                         vb->index, state);
912
913         /* sync buffers */
914         for (plane = 0; plane < vb->num_planes; ++plane)
915                 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
916
917         spin_lock_irqsave(&q->done_lock, flags);
918         if (state == VB2_BUF_STATE_QUEUED ||
919             state == VB2_BUF_STATE_REQUEUEING) {
920                 vb->state = VB2_BUF_STATE_QUEUED;
921         } else {
922                 /* Add the buffer to the done buffers list */
923                 list_add_tail(&vb->done_entry, &q->done_list);
924                 vb->state = state;
925         }
926         atomic_dec(&q->owned_by_drv_count);
927         spin_unlock_irqrestore(&q->done_lock, flags);
928
929         trace_vb2_buf_done(q, vb);
930
931         switch (state) {
932         case VB2_BUF_STATE_QUEUED:
933                 return;
934         case VB2_BUF_STATE_REQUEUEING:
935                 if (q->start_streaming_called)
936                         __enqueue_in_driver(vb);
937                 return;
938         default:
939                 /* Inform any processes that may be waiting for buffers */
940                 wake_up(&q->done_wq);
941                 break;
942         }
943 }
944 EXPORT_SYMBOL_GPL(vb2_buffer_done);
945
946 void vb2_discard_done(struct vb2_queue *q)
947 {
948         struct vb2_buffer *vb;
949         unsigned long flags;
950
951         spin_lock_irqsave(&q->done_lock, flags);
952         list_for_each_entry(vb, &q->done_list, done_entry)
953                 vb->state = VB2_BUF_STATE_ERROR;
954         spin_unlock_irqrestore(&q->done_lock, flags);
955 }
956 EXPORT_SYMBOL_GPL(vb2_discard_done);
957
958 /**
959  * __qbuf_mmap() - handle qbuf of an MMAP buffer
960  */
961 static int __qbuf_mmap(struct vb2_buffer *vb, const void *pb)
962 {
963         int ret = 0;
964
965         if (pb)
966                 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
967                                  vb, pb, vb->planes);
968         return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
969 }
970
971 /**
972  * __qbuf_userptr() - handle qbuf of a USERPTR buffer
973  */
974 static int __qbuf_userptr(struct vb2_buffer *vb, const void *pb)
975 {
976         struct vb2_plane planes[VB2_MAX_PLANES];
977         struct vb2_queue *q = vb->vb2_queue;
978         void *mem_priv;
979         unsigned int plane;
980         int ret = 0;
981         enum dma_data_direction dma_dir =
982                 q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
983         bool reacquired = vb->planes[0].mem_priv == NULL;
984
985         memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
986         /* Copy relevant information provided by the userspace */
987         if (pb)
988                 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
989                                  vb, pb, planes);
990         if (ret)
991                 return ret;
992
993         for (plane = 0; plane < vb->num_planes; ++plane) {
994                 /* Skip the plane if already verified */
995                 if (vb->planes[plane].m.userptr &&
996                         vb->planes[plane].m.userptr == planes[plane].m.userptr
997                         && vb->planes[plane].length == planes[plane].length)
998                         continue;
999
1000                 dprintk(3, "userspace address for plane %d changed, "
1001                                 "reacquiring memory\n", plane);
1002
1003                 /* Check if the provided plane buffer is large enough */
1004                 if (planes[plane].length < vb->planes[plane].min_length) {
1005                         dprintk(1, "provided buffer size %u is less than "
1006                                                 "setup size %u for plane %d\n",
1007                                                 planes[plane].length,
1008                                                 vb->planes[plane].min_length,
1009                                                 plane);
1010                         ret = -EINVAL;
1011                         goto err;
1012                 }
1013
1014                 /* Release previously acquired memory if present */
1015                 if (vb->planes[plane].mem_priv) {
1016                         if (!reacquired) {
1017                                 reacquired = true;
1018                                 call_void_vb_qop(vb, buf_cleanup, vb);
1019                         }
1020                         call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1021                 }
1022
1023                 vb->planes[plane].mem_priv = NULL;
1024                 vb->planes[plane].bytesused = 0;
1025                 vb->planes[plane].length = 0;
1026                 vb->planes[plane].m.userptr = 0;
1027                 vb->planes[plane].data_offset = 0;
1028
1029                 /* Acquire each plane's memory */
1030                 mem_priv = call_ptr_memop(vb, get_userptr,
1031                                 q->alloc_devs[plane] ? : q->dev,
1032                                 planes[plane].m.userptr,
1033                                 planes[plane].length, dma_dir);
1034                 if (IS_ERR(mem_priv)) {
1035                         dprintk(1, "failed acquiring userspace "
1036                                                 "memory for plane %d\n", plane);
1037                         ret = PTR_ERR(mem_priv);
1038                         goto err;
1039                 }
1040                 vb->planes[plane].mem_priv = mem_priv;
1041         }
1042
1043         /*
1044          * Now that everything is in order, copy relevant information
1045          * provided by userspace.
1046          */
1047         for (plane = 0; plane < vb->num_planes; ++plane) {
1048                 vb->planes[plane].bytesused = planes[plane].bytesused;
1049                 vb->planes[plane].length = planes[plane].length;
1050                 vb->planes[plane].m.userptr = planes[plane].m.userptr;
1051                 vb->planes[plane].data_offset = planes[plane].data_offset;
1052         }
1053
1054         if (reacquired) {
1055                 /*
1056                  * One or more planes changed, so we must call buf_init to do
1057                  * the driver-specific initialization on the newly acquired
1058                  * buffer, if provided.
1059                  */
1060                 ret = call_vb_qop(vb, buf_init, vb);
1061                 if (ret) {
1062                         dprintk(1, "buffer initialization failed\n");
1063                         goto err;
1064                 }
1065         }
1066
1067         ret = call_vb_qop(vb, buf_prepare, vb);
1068         if (ret) {
1069                 dprintk(1, "buffer preparation failed\n");
1070                 call_void_vb_qop(vb, buf_cleanup, vb);
1071                 goto err;
1072         }
1073
1074         return 0;
1075 err:
1076         /* In case of errors, release planes that were already acquired */
1077         for (plane = 0; plane < vb->num_planes; ++plane) {
1078                 if (vb->planes[plane].mem_priv)
1079                         call_void_memop(vb, put_userptr,
1080                                 vb->planes[plane].mem_priv);
1081                 vb->planes[plane].mem_priv = NULL;
1082                 vb->planes[plane].m.userptr = 0;
1083                 vb->planes[plane].length = 0;
1084         }
1085
1086         return ret;
1087 }
1088
1089 /**
1090  * __qbuf_dmabuf() - handle qbuf of a DMABUF buffer
1091  */
1092 static int __qbuf_dmabuf(struct vb2_buffer *vb, const void *pb)
1093 {
1094         struct vb2_plane planes[VB2_MAX_PLANES];
1095         struct vb2_queue *q = vb->vb2_queue;
1096         void *mem_priv;
1097         unsigned int plane;
1098         int ret = 0;
1099         enum dma_data_direction dma_dir =
1100                 q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1101         bool reacquired = vb->planes[0].mem_priv == NULL;
1102
1103         memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1104         /* Copy relevant information provided by the userspace */
1105         if (pb)
1106                 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1107                                  vb, pb, planes);
1108         if (ret)
1109                 return ret;
1110
1111         for (plane = 0; plane < vb->num_planes; ++plane) {
1112                 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1113
1114                 if (IS_ERR_OR_NULL(dbuf)) {
1115                         dprintk(1, "invalid dmabuf fd for plane %d\n",
1116                                 plane);
1117                         ret = -EINVAL;
1118                         goto err;
1119                 }
1120
1121                 /* use DMABUF size if length is not provided */
1122                 if (planes[plane].length == 0)
1123                         planes[plane].length = dbuf->size;
1124
1125                 if (planes[plane].length < vb->planes[plane].min_length) {
1126                         dprintk(1, "invalid dmabuf length %u for plane %d, "
1127                                 "minimum length %u\n",
1128                                 planes[plane].length, plane,
1129                                 vb->planes[plane].min_length);
1130                         dma_buf_put(dbuf);
1131                         ret = -EINVAL;
1132                         goto err;
1133                 }
1134
1135                 /* Skip the plane if already verified */
1136                 if (dbuf == vb->planes[plane].dbuf &&
1137                         vb->planes[plane].length == planes[plane].length) {
1138                         dma_buf_put(dbuf);
1139                         continue;
1140                 }
1141
1142                 dprintk(1, "buffer for plane %d changed\n", plane);
1143
1144                 if (!reacquired) {
1145                         reacquired = true;
1146                         call_void_vb_qop(vb, buf_cleanup, vb);
1147                 }
1148
1149                 /* Release previously acquired memory if present */
1150                 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1151                 vb->planes[plane].bytesused = 0;
1152                 vb->planes[plane].length = 0;
1153                 vb->planes[plane].m.fd = 0;
1154                 vb->planes[plane].data_offset = 0;
1155
1156                 /* Acquire each plane's memory */
1157                 mem_priv = call_ptr_memop(vb, attach_dmabuf,
1158                                 q->alloc_devs[plane] ? : q->dev,
1159                                 dbuf, planes[plane].length, dma_dir);
1160                 if (IS_ERR(mem_priv)) {
1161                         dprintk(1, "failed to attach dmabuf\n");
1162                         ret = PTR_ERR(mem_priv);
1163                         dma_buf_put(dbuf);
1164                         goto err;
1165                 }
1166
1167                 vb->planes[plane].dbuf = dbuf;
1168                 vb->planes[plane].mem_priv = mem_priv;
1169         }
1170
1171         /*
1172          * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1173          * here instead just before the DMA, while queueing the buffer(s) so
1174          * userspace knows sooner rather than later if the dma-buf map fails.
1175          */
1176         for (plane = 0; plane < vb->num_planes; ++plane) {
1177                 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1178                 if (ret) {
1179                         dprintk(1, "failed to map dmabuf for plane %d\n",
1180                                 plane);
1181                         goto err;
1182                 }
1183                 vb->planes[plane].dbuf_mapped = 1;
1184         }
1185
1186         /*
1187          * Now that everything is in order, copy relevant information
1188          * provided by userspace.
1189          */
1190         for (plane = 0; plane < vb->num_planes; ++plane) {
1191                 vb->planes[plane].bytesused = planes[plane].bytesused;
1192                 vb->planes[plane].length = planes[plane].length;
1193                 vb->planes[plane].m.fd = planes[plane].m.fd;
1194                 vb->planes[plane].data_offset = planes[plane].data_offset;
1195         }
1196
1197         if (reacquired) {
1198                 /*
1199                  * Call driver-specific initialization on the newly acquired buffer,
1200                  * if provided.
1201                  */
1202                 ret = call_vb_qop(vb, buf_init, vb);
1203                 if (ret) {
1204                         dprintk(1, "buffer initialization failed\n");
1205                         goto err;
1206                 }
1207         }
1208
1209         ret = call_vb_qop(vb, buf_prepare, vb);
1210         if (ret) {
1211                 dprintk(1, "buffer preparation failed\n");
1212                 call_void_vb_qop(vb, buf_cleanup, vb);
1213                 goto err;
1214         }
1215
1216         return 0;
1217 err:
1218         /* In case of errors, release planes that were already acquired */
1219         __vb2_buf_dmabuf_put(vb);
1220
1221         return ret;
1222 }
1223
1224 /**
1225  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1226  */
1227 static void __enqueue_in_driver(struct vb2_buffer *vb)
1228 {
1229         struct vb2_queue *q = vb->vb2_queue;
1230         unsigned int plane;
1231
1232         vb->state = VB2_BUF_STATE_ACTIVE;
1233         atomic_inc(&q->owned_by_drv_count);
1234
1235         trace_vb2_buf_queue(q, vb);
1236
1237         /* sync buffers */
1238         for (plane = 0; plane < vb->num_planes; ++plane)
1239                 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
1240
1241         call_void_vb_qop(vb, buf_queue, vb);
1242 }
1243
1244 static int __buf_prepare(struct vb2_buffer *vb, const void *pb)
1245 {
1246         struct vb2_queue *q = vb->vb2_queue;
1247         int ret;
1248
1249         if (q->error) {
1250                 dprintk(1, "fatal error occurred on queue\n");
1251                 return -EIO;
1252         }
1253
1254         vb->state = VB2_BUF_STATE_PREPARING;
1255
1256         switch (q->memory) {
1257         case VB2_MEMORY_MMAP:
1258                 ret = __qbuf_mmap(vb, pb);
1259                 break;
1260         case VB2_MEMORY_USERPTR:
1261                 ret = __qbuf_userptr(vb, pb);
1262                 break;
1263         case VB2_MEMORY_DMABUF:
1264                 ret = __qbuf_dmabuf(vb, pb);
1265                 break;
1266         default:
1267                 WARN(1, "Invalid queue type\n");
1268                 ret = -EINVAL;
1269         }
1270
1271         if (ret)
1272                 dprintk(1, "buffer preparation failed: %d\n", ret);
1273         vb->state = ret ? VB2_BUF_STATE_DEQUEUED : VB2_BUF_STATE_PREPARED;
1274
1275         return ret;
1276 }
1277
1278 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1279 {
1280         struct vb2_buffer *vb;
1281         int ret;
1282
1283         vb = q->bufs[index];
1284         if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1285                 dprintk(1, "invalid buffer state %d\n",
1286                         vb->state);
1287                 return -EINVAL;
1288         }
1289
1290         ret = __buf_prepare(vb, pb);
1291         if (ret)
1292                 return ret;
1293
1294         /* Fill buffer information for the userspace */
1295         call_void_bufop(q, fill_user_buffer, vb, pb);
1296
1297         dprintk(1, "prepare of buffer %d succeeded\n", vb->index);
1298
1299         return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1302
1303 /**
1304  * vb2_start_streaming() - Attempt to start streaming.
1305  * @q:          videobuf2 queue
1306  *
1307  * Attempt to start streaming. When this function is called there must be
1308  * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1309  * number of buffers required for the DMA engine to function). If the
1310  * @start_streaming op fails it is supposed to return all the driver-owned
1311  * buffers back to vb2 in state QUEUED. Check if that happened and if
1312  * not warn and reclaim them forcefully.
1313  */
1314 static int vb2_start_streaming(struct vb2_queue *q)
1315 {
1316         struct vb2_buffer *vb;
1317         int ret;
1318
1319         /*
1320          * If any buffers were queued before streamon,
1321          * we can now pass them to driver for processing.
1322          */
1323         list_for_each_entry(vb, &q->queued_list, queued_entry)
1324                 __enqueue_in_driver(vb);
1325
1326         /* Tell the driver to start streaming */
1327         q->start_streaming_called = 1;
1328         ret = call_qop(q, start_streaming, q,
1329                        atomic_read(&q->owned_by_drv_count));
1330         if (!ret)
1331                 return 0;
1332
1333         q->start_streaming_called = 0;
1334
1335         dprintk(1, "driver refused to start streaming\n");
1336         /*
1337          * If you see this warning, then the driver isn't cleaning up properly
1338          * after a failed start_streaming(). See the start_streaming()
1339          * documentation in videobuf2-core.h for more information how buffers
1340          * should be returned to vb2 in start_streaming().
1341          */
1342         if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1343                 unsigned i;
1344
1345                 /*
1346                  * Forcefully reclaim buffers if the driver did not
1347                  * correctly return them to vb2.
1348                  */
1349                 for (i = 0; i < q->num_buffers; ++i) {
1350                         vb = q->bufs[i];
1351                         if (vb->state == VB2_BUF_STATE_ACTIVE)
1352                                 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1353                 }
1354                 /* Must be zero now */
1355                 WARN_ON(atomic_read(&q->owned_by_drv_count));
1356         }
1357         /*
1358          * If done_list is not empty, then start_streaming() didn't call
1359          * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1360          * STATE_DONE.
1361          */
1362         WARN_ON(!list_empty(&q->done_list));
1363         return ret;
1364 }
1365
1366 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb)
1367 {
1368         struct vb2_buffer *vb;
1369         int ret;
1370
1371         vb = q->bufs[index];
1372
1373         switch (vb->state) {
1374         case VB2_BUF_STATE_DEQUEUED:
1375                 ret = __buf_prepare(vb, pb);
1376                 if (ret)
1377                         return ret;
1378                 break;
1379         case VB2_BUF_STATE_PREPARED:
1380                 break;
1381         case VB2_BUF_STATE_PREPARING:
1382                 dprintk(1, "buffer still being prepared\n");
1383                 return -EINVAL;
1384         default:
1385                 dprintk(1, "invalid buffer state %d\n", vb->state);
1386                 return -EINVAL;
1387         }
1388
1389         /*
1390          * Add to the queued buffers list, a buffer will stay on it until
1391          * dequeued in dqbuf.
1392          */
1393         list_add_tail(&vb->queued_entry, &q->queued_list);
1394         q->queued_count++;
1395         q->waiting_for_buffers = false;
1396         vb->state = VB2_BUF_STATE_QUEUED;
1397
1398         if (pb)
1399                 call_void_bufop(q, copy_timestamp, vb, pb);
1400
1401         trace_vb2_qbuf(q, vb);
1402
1403         /*
1404          * If already streaming, give the buffer to driver for processing.
1405          * If not, the buffer will be given to driver on next streamon.
1406          */
1407         if (q->start_streaming_called)
1408                 __enqueue_in_driver(vb);
1409
1410         /* Fill buffer information for the userspace */
1411         if (pb)
1412                 call_void_bufop(q, fill_user_buffer, vb, pb);
1413
1414         /*
1415          * If streamon has been called, and we haven't yet called
1416          * start_streaming() since not enough buffers were queued, and
1417          * we now have reached the minimum number of queued buffers,
1418          * then we can finally call start_streaming().
1419          */
1420         if (q->streaming && !q->start_streaming_called &&
1421             q->queued_count >= q->min_buffers_needed) {
1422                 ret = vb2_start_streaming(q);
1423                 if (ret)
1424                         return ret;
1425         }
1426
1427         dprintk(1, "qbuf of buffer %d succeeded\n", vb->index);
1428         return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1431
1432 /**
1433  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1434  * for dequeuing
1435  *
1436  * Will sleep if required for nonblocking == false.
1437  */
1438 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1439 {
1440         /*
1441          * All operations on vb_done_list are performed under done_lock
1442          * spinlock protection. However, buffers may be removed from
1443          * it and returned to userspace only while holding both driver's
1444          * lock and the done_lock spinlock. Thus we can be sure that as
1445          * long as we hold the driver's lock, the list will remain not
1446          * empty if list_empty() check succeeds.
1447          */
1448
1449         for (;;) {
1450                 int ret;
1451
1452                 if (!q->streaming) {
1453                         dprintk(1, "streaming off, will not wait for buffers\n");
1454                         return -EINVAL;
1455                 }
1456
1457                 if (q->error) {
1458                         dprintk(1, "Queue in error state, will not wait for buffers\n");
1459                         return -EIO;
1460                 }
1461
1462                 if (q->last_buffer_dequeued) {
1463                         dprintk(3, "last buffer dequeued already, will not wait for buffers\n");
1464                         return -EPIPE;
1465                 }
1466
1467                 if (!list_empty(&q->done_list)) {
1468                         /*
1469                          * Found a buffer that we were waiting for.
1470                          */
1471                         break;
1472                 }
1473
1474                 if (nonblocking) {
1475                         dprintk(1, "nonblocking and no buffers to dequeue, "
1476                                                                 "will not wait\n");
1477                         return -EAGAIN;
1478                 }
1479
1480                 /*
1481                  * We are streaming and blocking, wait for another buffer to
1482                  * become ready or for streamoff. Driver's lock is released to
1483                  * allow streamoff or qbuf to be called while waiting.
1484                  */
1485                 call_void_qop(q, wait_prepare, q);
1486
1487                 /*
1488                  * All locks have been released, it is safe to sleep now.
1489                  */
1490                 dprintk(3, "will sleep waiting for buffers\n");
1491                 ret = wait_event_interruptible(q->done_wq,
1492                                 !list_empty(&q->done_list) || !q->streaming ||
1493                                 q->error);
1494
1495                 /*
1496                  * We need to reevaluate both conditions again after reacquiring
1497                  * the locks or return an error if one occurred.
1498                  */
1499                 call_void_qop(q, wait_finish, q);
1500                 if (ret) {
1501                         dprintk(1, "sleep was interrupted\n");
1502                         return ret;
1503                 }
1504         }
1505         return 0;
1506 }
1507
1508 /**
1509  * __vb2_get_done_vb() - get a buffer ready for dequeuing
1510  *
1511  * Will sleep if required for nonblocking == false.
1512  */
1513 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1514                              void *pb, int nonblocking)
1515 {
1516         unsigned long flags;
1517         int ret = 0;
1518
1519         /*
1520          * Wait for at least one buffer to become available on the done_list.
1521          */
1522         ret = __vb2_wait_for_done_vb(q, nonblocking);
1523         if (ret)
1524                 return ret;
1525
1526         /*
1527          * Driver's lock has been held since we last verified that done_list
1528          * is not empty, so no need for another list_empty(done_list) check.
1529          */
1530         spin_lock_irqsave(&q->done_lock, flags);
1531         *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1532         /*
1533          * Only remove the buffer from done_list if all planes can be
1534          * handled. Some cases such as V4L2 file I/O and DVB have pb
1535          * == NULL; skip the check then as there's nothing to verify.
1536          */
1537         if (pb)
1538                 ret = call_bufop(q, verify_planes_array, *vb, pb);
1539         if (!ret)
1540                 list_del(&(*vb)->done_entry);
1541         spin_unlock_irqrestore(&q->done_lock, flags);
1542
1543         return ret;
1544 }
1545
1546 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1547 {
1548         if (!q->streaming) {
1549                 dprintk(1, "streaming off, will not wait for buffers\n");
1550                 return -EINVAL;
1551         }
1552
1553         if (q->start_streaming_called)
1554                 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1555         return 0;
1556 }
1557 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1558
1559 /**
1560  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1561  */
1562 static void __vb2_dqbuf(struct vb2_buffer *vb)
1563 {
1564         struct vb2_queue *q = vb->vb2_queue;
1565         unsigned int i;
1566
1567         /* nothing to do if the buffer is already dequeued */
1568         if (vb->state == VB2_BUF_STATE_DEQUEUED)
1569                 return;
1570
1571         vb->state = VB2_BUF_STATE_DEQUEUED;
1572
1573         /* unmap DMABUF buffer */
1574         if (q->memory == VB2_MEMORY_DMABUF)
1575                 for (i = 0; i < vb->num_planes; ++i) {
1576                         if (!vb->planes[i].dbuf_mapped)
1577                                 continue;
1578                         call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv);
1579                         vb->planes[i].dbuf_mapped = 0;
1580                 }
1581 }
1582
1583 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1584                    bool nonblocking)
1585 {
1586         struct vb2_buffer *vb = NULL;
1587         int ret;
1588
1589         ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1590         if (ret < 0)
1591                 return ret;
1592
1593         switch (vb->state) {
1594         case VB2_BUF_STATE_DONE:
1595                 dprintk(3, "returning done buffer\n");
1596                 break;
1597         case VB2_BUF_STATE_ERROR:
1598                 dprintk(3, "returning done buffer with errors\n");
1599                 break;
1600         default:
1601                 dprintk(1, "invalid buffer state\n");
1602                 return -EINVAL;
1603         }
1604
1605         call_void_vb_qop(vb, buf_finish, vb);
1606
1607         if (pindex)
1608                 *pindex = vb->index;
1609
1610         /* Fill buffer information for the userspace */
1611         if (pb)
1612                 call_void_bufop(q, fill_user_buffer, vb, pb);
1613
1614         /* Remove from videobuf queue */
1615         list_del(&vb->queued_entry);
1616         q->queued_count--;
1617
1618         trace_vb2_dqbuf(q, vb);
1619
1620         /* go back to dequeued state */
1621         __vb2_dqbuf(vb);
1622
1623         dprintk(1, "dqbuf of buffer %d, with state %d\n",
1624                         vb->index, vb->state);
1625
1626         return 0;
1627
1628 }
1629 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
1630
1631 /**
1632  * __vb2_queue_cancel() - cancel and stop (pause) streaming
1633  *
1634  * Removes all queued buffers from driver's queue and all buffers queued by
1635  * userspace from videobuf's queue. Returns to state after reqbufs.
1636  */
1637 static void __vb2_queue_cancel(struct vb2_queue *q)
1638 {
1639         unsigned int i;
1640
1641         /*
1642          * Tell driver to stop all transactions and release all queued
1643          * buffers.
1644          */
1645         if (q->start_streaming_called)
1646                 call_void_qop(q, stop_streaming, q);
1647
1648         /*
1649          * If you see this warning, then the driver isn't cleaning up properly
1650          * in stop_streaming(). See the stop_streaming() documentation in
1651          * videobuf2-core.h for more information how buffers should be returned
1652          * to vb2 in stop_streaming().
1653          */
1654         if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1655                 for (i = 0; i < q->num_buffers; ++i)
1656                         if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE)
1657                                 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
1658                 /* Must be zero now */
1659                 WARN_ON(atomic_read(&q->owned_by_drv_count));
1660         }
1661
1662         q->streaming = 0;
1663         q->start_streaming_called = 0;
1664         q->queued_count = 0;
1665         q->error = 0;
1666
1667         /*
1668          * Remove all buffers from videobuf's list...
1669          */
1670         INIT_LIST_HEAD(&q->queued_list);
1671         /*
1672          * ...and done list; userspace will not receive any buffers it
1673          * has not already dequeued before initiating cancel.
1674          */
1675         INIT_LIST_HEAD(&q->done_list);
1676         atomic_set(&q->owned_by_drv_count, 0);
1677         wake_up_all(&q->done_wq);
1678
1679         /*
1680          * Reinitialize all buffers for next use.
1681          * Make sure to call buf_finish for any queued buffers. Normally
1682          * that's done in dqbuf, but that's not going to happen when we
1683          * cancel the whole queue. Note: this code belongs here, not in
1684          * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
1685          * call to __fill_user_buffer() after buf_finish(). That order can't
1686          * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
1687          */
1688         for (i = 0; i < q->num_buffers; ++i) {
1689                 struct vb2_buffer *vb = q->bufs[i];
1690
1691                 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1692                         vb->state = VB2_BUF_STATE_PREPARED;
1693                         call_void_vb_qop(vb, buf_finish, vb);
1694                 }
1695                 __vb2_dqbuf(vb);
1696         }
1697 }
1698
1699 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
1700 {
1701         int ret;
1702
1703         if (type != q->type) {
1704                 dprintk(1, "invalid stream type\n");
1705                 return -EINVAL;
1706         }
1707
1708         if (q->streaming) {
1709                 dprintk(3, "already streaming\n");
1710                 return 0;
1711         }
1712
1713         if (!q->num_buffers) {
1714                 dprintk(1, "no buffers have been allocated\n");
1715                 return -EINVAL;
1716         }
1717
1718         if (q->num_buffers < q->min_buffers_needed) {
1719                 dprintk(1, "need at least %u allocated buffers\n",
1720                                 q->min_buffers_needed);
1721                 return -EINVAL;
1722         }
1723
1724         /*
1725          * Tell driver to start streaming provided sufficient buffers
1726          * are available.
1727          */
1728         if (q->queued_count >= q->min_buffers_needed) {
1729                 ret = v4l_vb2q_enable_media_source(q);
1730                 if (ret)
1731                         return ret;
1732                 ret = vb2_start_streaming(q);
1733                 if (ret) {
1734                         __vb2_queue_cancel(q);
1735                         return ret;
1736                 }
1737         }
1738
1739         q->streaming = 1;
1740
1741         dprintk(3, "successful\n");
1742         return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(vb2_core_streamon);
1745
1746 void vb2_queue_error(struct vb2_queue *q)
1747 {
1748         q->error = 1;
1749
1750         wake_up_all(&q->done_wq);
1751 }
1752 EXPORT_SYMBOL_GPL(vb2_queue_error);
1753
1754 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
1755 {
1756         if (type != q->type) {
1757                 dprintk(1, "invalid stream type\n");
1758                 return -EINVAL;
1759         }
1760
1761         /*
1762          * Cancel will pause streaming and remove all buffers from the driver
1763          * and videobuf, effectively returning control over them to userspace.
1764          *
1765          * Note that we do this even if q->streaming == 0: if you prepare or
1766          * queue buffers, and then call streamoff without ever having called
1767          * streamon, you would still expect those buffers to be returned to
1768          * their normal dequeued state.
1769          */
1770         __vb2_queue_cancel(q);
1771         q->waiting_for_buffers = !q->is_output;
1772         q->last_buffer_dequeued = false;
1773
1774         dprintk(3, "successful\n");
1775         return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
1778
1779 /**
1780  * __find_plane_by_offset() - find plane associated with the given offset off
1781  */
1782 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
1783                         unsigned int *_buffer, unsigned int *_plane)
1784 {
1785         struct vb2_buffer *vb;
1786         unsigned int buffer, plane;
1787
1788         /*
1789          * Go over all buffers and their planes, comparing the given offset
1790          * with an offset assigned to each plane. If a match is found,
1791          * return its buffer and plane numbers.
1792          */
1793         for (buffer = 0; buffer < q->num_buffers; ++buffer) {
1794                 vb = q->bufs[buffer];
1795
1796                 for (plane = 0; plane < vb->num_planes; ++plane) {
1797                         if (vb->planes[plane].m.offset == off) {
1798                                 *_buffer = buffer;
1799                                 *_plane = plane;
1800                                 return 0;
1801                         }
1802                 }
1803         }
1804
1805         return -EINVAL;
1806 }
1807
1808 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
1809                 unsigned int index, unsigned int plane, unsigned int flags)
1810 {
1811         struct vb2_buffer *vb = NULL;
1812         struct vb2_plane *vb_plane;
1813         int ret;
1814         struct dma_buf *dbuf;
1815
1816         if (q->memory != VB2_MEMORY_MMAP) {
1817                 dprintk(1, "queue is not currently set up for mmap\n");
1818                 return -EINVAL;
1819         }
1820
1821         if (!q->mem_ops->get_dmabuf) {
1822                 dprintk(1, "queue does not support DMA buffer exporting\n");
1823                 return -EINVAL;
1824         }
1825
1826         if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
1827                 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n");
1828                 return -EINVAL;
1829         }
1830
1831         if (type != q->type) {
1832                 dprintk(1, "invalid buffer type\n");
1833                 return -EINVAL;
1834         }
1835
1836         if (index >= q->num_buffers) {
1837                 dprintk(1, "buffer index out of range\n");
1838                 return -EINVAL;
1839         }
1840
1841         vb = q->bufs[index];
1842
1843         if (plane >= vb->num_planes) {
1844                 dprintk(1, "buffer plane out of range\n");
1845                 return -EINVAL;
1846         }
1847
1848         if (vb2_fileio_is_active(q)) {
1849                 dprintk(1, "expbuf: file io in progress\n");
1850                 return -EBUSY;
1851         }
1852
1853         vb_plane = &vb->planes[plane];
1854
1855         dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv,
1856                                 flags & O_ACCMODE);
1857         if (IS_ERR_OR_NULL(dbuf)) {
1858                 dprintk(1, "failed to export buffer %d, plane %d\n",
1859                         index, plane);
1860                 return -EINVAL;
1861         }
1862
1863         ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
1864         if (ret < 0) {
1865                 dprintk(3, "buffer %d, plane %d failed to export (%d)\n",
1866                         index, plane, ret);
1867                 dma_buf_put(dbuf);
1868                 return ret;
1869         }
1870
1871         dprintk(3, "buffer %d, plane %d exported as %d descriptor\n",
1872                 index, plane, ret);
1873         *fd = ret;
1874
1875         return 0;
1876 }
1877 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
1878
1879 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
1880 {
1881         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1882         struct vb2_buffer *vb;
1883         unsigned int buffer = 0, plane = 0;
1884         int ret;
1885         unsigned long length;
1886
1887         if (q->memory != VB2_MEMORY_MMAP) {
1888                 dprintk(1, "queue is not currently set up for mmap\n");
1889                 return -EINVAL;
1890         }
1891
1892         /*
1893          * Check memory area access mode.
1894          */
1895         if (!(vma->vm_flags & VM_SHARED)) {
1896                 dprintk(1, "invalid vma flags, VM_SHARED needed\n");
1897                 return -EINVAL;
1898         }
1899         if (q->is_output) {
1900                 if (!(vma->vm_flags & VM_WRITE)) {
1901                         dprintk(1, "invalid vma flags, VM_WRITE needed\n");
1902                         return -EINVAL;
1903                 }
1904         } else {
1905                 if (!(vma->vm_flags & VM_READ)) {
1906                         dprintk(1, "invalid vma flags, VM_READ needed\n");
1907                         return -EINVAL;
1908                 }
1909         }
1910         if (vb2_fileio_is_active(q)) {
1911                 dprintk(1, "mmap: file io in progress\n");
1912                 return -EBUSY;
1913         }
1914
1915         /*
1916          * Find the plane corresponding to the offset passed by userspace.
1917          */
1918         ret = __find_plane_by_offset(q, off, &buffer, &plane);
1919         if (ret)
1920                 return ret;
1921
1922         vb = q->bufs[buffer];
1923
1924         /*
1925          * MMAP requires page_aligned buffers.
1926          * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
1927          * so, we need to do the same here.
1928          */
1929         length = PAGE_ALIGN(vb->planes[plane].length);
1930         if (length < (vma->vm_end - vma->vm_start)) {
1931                 dprintk(1,
1932                         "MMAP invalid, as it would overflow buffer length\n");
1933                 return -EINVAL;
1934         }
1935
1936         mutex_lock(&q->mmap_lock);
1937         ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
1938         mutex_unlock(&q->mmap_lock);
1939         if (ret)
1940                 return ret;
1941
1942         dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
1943         return 0;
1944 }
1945 EXPORT_SYMBOL_GPL(vb2_mmap);
1946
1947 #ifndef CONFIG_MMU
1948 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
1949                                     unsigned long addr,
1950                                     unsigned long len,
1951                                     unsigned long pgoff,
1952                                     unsigned long flags)
1953 {
1954         unsigned long off = pgoff << PAGE_SHIFT;
1955         struct vb2_buffer *vb;
1956         unsigned int buffer, plane;
1957         void *vaddr;
1958         int ret;
1959
1960         if (q->memory != VB2_MEMORY_MMAP) {
1961                 dprintk(1, "queue is not currently set up for mmap\n");
1962                 return -EINVAL;
1963         }
1964
1965         /*
1966          * Find the plane corresponding to the offset passed by userspace.
1967          */
1968         ret = __find_plane_by_offset(q, off, &buffer, &plane);
1969         if (ret)
1970                 return ret;
1971
1972         vb = q->bufs[buffer];
1973
1974         vaddr = vb2_plane_vaddr(vb, plane);
1975         return vaddr ? (unsigned long)vaddr : -EINVAL;
1976 }
1977 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
1978 #endif
1979
1980 int vb2_core_queue_init(struct vb2_queue *q)
1981 {
1982         /*
1983          * Sanity check
1984          */
1985         if (WARN_ON(!q)                   ||
1986             WARN_ON(!q->ops)              ||
1987             WARN_ON(!q->mem_ops)          ||
1988             WARN_ON(!q->type)             ||
1989             WARN_ON(!q->io_modes)         ||
1990             WARN_ON(!q->ops->queue_setup) ||
1991             WARN_ON(!q->ops->buf_queue))
1992                 return -EINVAL;
1993
1994         INIT_LIST_HEAD(&q->queued_list);
1995         INIT_LIST_HEAD(&q->done_list);
1996         spin_lock_init(&q->done_lock);
1997         mutex_init(&q->mmap_lock);
1998         init_waitqueue_head(&q->done_wq);
1999
2000         if (q->buf_struct_size == 0)
2001                 q->buf_struct_size = sizeof(struct vb2_buffer);
2002
2003         return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2006
2007 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2008 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2009 void vb2_core_queue_release(struct vb2_queue *q)
2010 {
2011         __vb2_cleanup_fileio(q);
2012         __vb2_queue_cancel(q);
2013         mutex_lock(&q->mmap_lock);
2014         __vb2_queue_free(q, q->num_buffers);
2015         mutex_unlock(&q->mmap_lock);
2016 }
2017 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2018
2019 unsigned int vb2_core_poll(struct vb2_queue *q, struct file *file,
2020                 poll_table *wait)
2021 {
2022         unsigned long req_events = poll_requested_events(wait);
2023         struct vb2_buffer *vb = NULL;
2024         unsigned long flags;
2025
2026         if (!q->is_output && !(req_events & (POLLIN | POLLRDNORM)))
2027                 return 0;
2028         if (q->is_output && !(req_events & (POLLOUT | POLLWRNORM)))
2029                 return 0;
2030
2031         /*
2032          * Start file I/O emulator only if streaming API has not been used yet.
2033          */
2034         if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2035                 if (!q->is_output && (q->io_modes & VB2_READ) &&
2036                                 (req_events & (POLLIN | POLLRDNORM))) {
2037                         if (__vb2_init_fileio(q, 1))
2038                                 return POLLERR;
2039                 }
2040                 if (q->is_output && (q->io_modes & VB2_WRITE) &&
2041                                 (req_events & (POLLOUT | POLLWRNORM))) {
2042                         if (__vb2_init_fileio(q, 0))
2043                                 return POLLERR;
2044                         /*
2045                          * Write to OUTPUT queue can be done immediately.
2046                          */
2047                         return POLLOUT | POLLWRNORM;
2048                 }
2049         }
2050
2051         /*
2052          * There is nothing to wait for if the queue isn't streaming, or if the
2053          * error flag is set.
2054          */
2055         if (!vb2_is_streaming(q) || q->error)
2056                 return POLLERR;
2057
2058         /*
2059          * If this quirk is set and QBUF hasn't been called yet then
2060          * return POLLERR as well. This only affects capture queues, output
2061          * queues will always initialize waiting_for_buffers to false.
2062          * This quirk is set by V4L2 for backwards compatibility reasons.
2063          */
2064         if (q->quirk_poll_must_check_waiting_for_buffers &&
2065             q->waiting_for_buffers && (req_events & (POLLIN | POLLRDNORM)))
2066                 return POLLERR;
2067
2068         /*
2069          * For output streams you can call write() as long as there are fewer
2070          * buffers queued than there are buffers available.
2071          */
2072         if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2073                 return POLLOUT | POLLWRNORM;
2074
2075         if (list_empty(&q->done_list)) {
2076                 /*
2077                  * If the last buffer was dequeued from a capture queue,
2078                  * return immediately. DQBUF will return -EPIPE.
2079                  */
2080                 if (q->last_buffer_dequeued)
2081                         return POLLIN | POLLRDNORM;
2082
2083                 poll_wait(file, &q->done_wq, wait);
2084         }
2085
2086         /*
2087          * Take first buffer available for dequeuing.
2088          */
2089         spin_lock_irqsave(&q->done_lock, flags);
2090         if (!list_empty(&q->done_list))
2091                 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2092                                         done_entry);
2093         spin_unlock_irqrestore(&q->done_lock, flags);
2094
2095         if (vb && (vb->state == VB2_BUF_STATE_DONE
2096                         || vb->state == VB2_BUF_STATE_ERROR)) {
2097                 return (q->is_output) ?
2098                                 POLLOUT | POLLWRNORM :
2099                                 POLLIN | POLLRDNORM;
2100         }
2101         return 0;
2102 }
2103 EXPORT_SYMBOL_GPL(vb2_core_poll);
2104
2105 /**
2106  * struct vb2_fileio_buf - buffer context used by file io emulator
2107  *
2108  * vb2 provides a compatibility layer and emulator of file io (read and
2109  * write) calls on top of streaming API. This structure is used for
2110  * tracking context related to the buffers.
2111  */
2112 struct vb2_fileio_buf {
2113         void *vaddr;
2114         unsigned int size;
2115         unsigned int pos;
2116         unsigned int queued:1;
2117 };
2118
2119 /**
2120  * struct vb2_fileio_data - queue context used by file io emulator
2121  *
2122  * @cur_index:  the index of the buffer currently being read from or
2123  *              written to. If equal to q->num_buffers then a new buffer
2124  *              must be dequeued.
2125  * @initial_index: in the read() case all buffers are queued up immediately
2126  *              in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2127  *              buffers. However, in the write() case no buffers are initially
2128  *              queued, instead whenever a buffer is full it is queued up by
2129  *              __vb2_perform_fileio(). Only once all available buffers have
2130  *              been queued up will __vb2_perform_fileio() start to dequeue
2131  *              buffers. This means that initially __vb2_perform_fileio()
2132  *              needs to know what buffer index to use when it is queuing up
2133  *              the buffers for the first time. That initial index is stored
2134  *              in this field. Once it is equal to q->num_buffers all
2135  *              available buffers have been queued and __vb2_perform_fileio()
2136  *              should start the normal dequeue/queue cycle.
2137  *
2138  * vb2 provides a compatibility layer and emulator of file io (read and
2139  * write) calls on top of streaming API. For proper operation it required
2140  * this structure to save the driver state between each call of the read
2141  * or write function.
2142  */
2143 struct vb2_fileio_data {
2144         unsigned int count;
2145         unsigned int type;
2146         unsigned int memory;
2147         struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2148         unsigned int cur_index;
2149         unsigned int initial_index;
2150         unsigned int q_count;
2151         unsigned int dq_count;
2152         unsigned read_once:1;
2153         unsigned write_immediately:1;
2154 };
2155
2156 /**
2157  * __vb2_init_fileio() - initialize file io emulator
2158  * @q:          videobuf2 queue
2159  * @read:       mode selector (1 means read, 0 means write)
2160  */
2161 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2162 {
2163         struct vb2_fileio_data *fileio;
2164         int i, ret;
2165         unsigned int count = 0;
2166
2167         /*
2168          * Sanity check
2169          */
2170         if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2171                     (!read && !(q->io_modes & VB2_WRITE))))
2172                 return -EINVAL;
2173
2174         /*
2175          * Check if device supports mapping buffers to kernel virtual space.
2176          */
2177         if (!q->mem_ops->vaddr)
2178                 return -EBUSY;
2179
2180         /*
2181          * Check if streaming api has not been already activated.
2182          */
2183         if (q->streaming || q->num_buffers > 0)
2184                 return -EBUSY;
2185
2186         /*
2187          * Start with count 1, driver can increase it in queue_setup()
2188          */
2189         count = 1;
2190
2191         dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2192                 (read) ? "read" : "write", count, q->fileio_read_once,
2193                 q->fileio_write_immediately);
2194
2195         fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2196         if (fileio == NULL)
2197                 return -ENOMEM;
2198
2199         fileio->read_once = q->fileio_read_once;
2200         fileio->write_immediately = q->fileio_write_immediately;
2201
2202         /*
2203          * Request buffers and use MMAP type to force driver
2204          * to allocate buffers by itself.
2205          */
2206         fileio->count = count;
2207         fileio->memory = VB2_MEMORY_MMAP;
2208         fileio->type = q->type;
2209         q->fileio = fileio;
2210         ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2211         if (ret)
2212                 goto err_kfree;
2213
2214         /*
2215          * Check if plane_count is correct
2216          * (multiplane buffers are not supported).
2217          */
2218         if (q->bufs[0]->num_planes != 1) {
2219                 ret = -EBUSY;
2220                 goto err_reqbufs;
2221         }
2222
2223         /*
2224          * Get kernel address of each buffer.
2225          */
2226         for (i = 0; i < q->num_buffers; i++) {
2227                 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2228                 if (fileio->bufs[i].vaddr == NULL) {
2229                         ret = -EINVAL;
2230                         goto err_reqbufs;
2231                 }
2232                 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2233         }
2234
2235         /*
2236          * Read mode requires pre queuing of all buffers.
2237          */
2238         if (read) {
2239                 /*
2240                  * Queue all buffers.
2241                  */
2242                 for (i = 0; i < q->num_buffers; i++) {
2243                         ret = vb2_core_qbuf(q, i, NULL);
2244                         if (ret)
2245                                 goto err_reqbufs;
2246                         fileio->bufs[i].queued = 1;
2247                 }
2248                 /*
2249                  * All buffers have been queued, so mark that by setting
2250                  * initial_index to q->num_buffers
2251                  */
2252                 fileio->initial_index = q->num_buffers;
2253                 fileio->cur_index = q->num_buffers;
2254         }
2255
2256         /*
2257          * Start streaming.
2258          */
2259         ret = vb2_core_streamon(q, q->type);
2260         if (ret)
2261                 goto err_reqbufs;
2262
2263         return ret;
2264
2265 err_reqbufs:
2266         fileio->count = 0;
2267         vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2268
2269 err_kfree:
2270         q->fileio = NULL;
2271         kfree(fileio);
2272         return ret;
2273 }
2274
2275 /**
2276  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2277  * @q:          videobuf2 queue
2278  */
2279 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2280 {
2281         struct vb2_fileio_data *fileio = q->fileio;
2282
2283         if (fileio) {
2284                 vb2_core_streamoff(q, q->type);
2285                 q->fileio = NULL;
2286                 fileio->count = 0;
2287                 vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2288                 kfree(fileio);
2289                 dprintk(3, "file io emulator closed\n");
2290         }
2291         return 0;
2292 }
2293
2294 /**
2295  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2296  * @q:          videobuf2 queue
2297  * @data:       pointed to target userspace buffer
2298  * @count:      number of bytes to read or write
2299  * @ppos:       file handle position tracking pointer
2300  * @nonblock:   mode selector (1 means blocking calls, 0 means nonblocking)
2301  * @read:       access mode selector (1 means read, 0 means write)
2302  */
2303 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2304                 loff_t *ppos, int nonblock, int read)
2305 {
2306         struct vb2_fileio_data *fileio;
2307         struct vb2_fileio_buf *buf;
2308         bool is_multiplanar = q->is_multiplanar;
2309         /*
2310          * When using write() to write data to an output video node the vb2 core
2311          * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2312          * else is able to provide this information with the write() operation.
2313          */
2314         bool copy_timestamp = !read && q->copy_timestamp;
2315         unsigned index;
2316         int ret;
2317
2318         dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n",
2319                 read ? "read" : "write", (long)*ppos, count,
2320                 nonblock ? "non" : "");
2321
2322         if (!data)
2323                 return -EINVAL;
2324
2325         /*
2326          * Initialize emulator on first call.
2327          */
2328         if (!vb2_fileio_is_active(q)) {
2329                 ret = __vb2_init_fileio(q, read);
2330                 dprintk(3, "vb2_init_fileio result: %d\n", ret);
2331                 if (ret)
2332                         return ret;
2333         }
2334         fileio = q->fileio;
2335
2336         /*
2337          * Check if we need to dequeue the buffer.
2338          */
2339         index = fileio->cur_index;
2340         if (index >= q->num_buffers) {
2341                 struct vb2_buffer *b;
2342
2343                 /*
2344                  * Call vb2_dqbuf to get buffer back.
2345                  */
2346                 ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2347                 dprintk(5, "vb2_dqbuf result: %d\n", ret);
2348                 if (ret)
2349                         return ret;
2350                 fileio->dq_count += 1;
2351
2352                 fileio->cur_index = index;
2353                 buf = &fileio->bufs[index];
2354                 b = q->bufs[index];
2355
2356                 /*
2357                  * Get number of bytes filled by the driver
2358                  */
2359                 buf->pos = 0;
2360                 buf->queued = 0;
2361                 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2362                                  : vb2_plane_size(q->bufs[index], 0);
2363                 /* Compensate for data_offset on read in the multiplanar case. */
2364                 if (is_multiplanar && read &&
2365                                 b->planes[0].data_offset < buf->size) {
2366                         buf->pos = b->planes[0].data_offset;
2367                         buf->size -= buf->pos;
2368                 }
2369         } else {
2370                 buf = &fileio->bufs[index];
2371         }
2372
2373         /*
2374          * Limit count on last few bytes of the buffer.
2375          */
2376         if (buf->pos + count > buf->size) {
2377                 count = buf->size - buf->pos;
2378                 dprintk(5, "reducing read count: %zd\n", count);
2379         }
2380
2381         /*
2382          * Transfer data to userspace.
2383          */
2384         dprintk(3, "copying %zd bytes - buffer %d, offset %u\n",
2385                 count, index, buf->pos);
2386         if (read)
2387                 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2388         else
2389                 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2390         if (ret) {
2391                 dprintk(3, "error copying data\n");
2392                 return -EFAULT;
2393         }
2394
2395         /*
2396          * Update counters.
2397          */
2398         buf->pos += count;
2399         *ppos += count;
2400
2401         /*
2402          * Queue next buffer if required.
2403          */
2404         if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2405                 struct vb2_buffer *b = q->bufs[index];
2406
2407                 /*
2408                  * Check if this is the last buffer to read.
2409                  */
2410                 if (read && fileio->read_once && fileio->dq_count == 1) {
2411                         dprintk(3, "read limit reached\n");
2412                         return __vb2_cleanup_fileio(q);
2413                 }
2414
2415                 /*
2416                  * Call vb2_qbuf and give buffer to the driver.
2417                  */
2418                 b->planes[0].bytesused = buf->pos;
2419
2420                 if (copy_timestamp)
2421                         b->timestamp = ktime_get_ns();
2422                 ret = vb2_core_qbuf(q, index, NULL);
2423                 dprintk(5, "vb2_dbuf result: %d\n", ret);
2424                 if (ret)
2425                         return ret;
2426
2427                 /*
2428                  * Buffer has been queued, update the status
2429                  */
2430                 buf->pos = 0;
2431                 buf->queued = 1;
2432                 buf->size = vb2_plane_size(q->bufs[index], 0);
2433                 fileio->q_count += 1;
2434                 /*
2435                  * If we are queuing up buffers for the first time, then
2436                  * increase initial_index by one.
2437                  */
2438                 if (fileio->initial_index < q->num_buffers)
2439                         fileio->initial_index++;
2440                 /*
2441                  * The next buffer to use is either a buffer that's going to be
2442                  * queued for the first time (initial_index < q->num_buffers)
2443                  * or it is equal to q->num_buffers, meaning that the next
2444                  * time we need to dequeue a buffer since we've now queued up
2445                  * all the 'first time' buffers.
2446                  */
2447                 fileio->cur_index = fileio->initial_index;
2448         }
2449
2450         /*
2451          * Return proper number of bytes processed.
2452          */
2453         if (ret == 0)
2454                 ret = count;
2455         return ret;
2456 }
2457
2458 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2459                 loff_t *ppos, int nonblocking)
2460 {
2461         return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2462 }
2463 EXPORT_SYMBOL_GPL(vb2_read);
2464
2465 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2466                 loff_t *ppos, int nonblocking)
2467 {
2468         return __vb2_perform_fileio(q, (char __user *) data, count,
2469                                                         ppos, nonblocking, 0);
2470 }
2471 EXPORT_SYMBOL_GPL(vb2_write);
2472
2473 struct vb2_threadio_data {
2474         struct task_struct *thread;
2475         vb2_thread_fnc fnc;
2476         void *priv;
2477         bool stop;
2478 };
2479
2480 static int vb2_thread(void *data)
2481 {
2482         struct vb2_queue *q = data;
2483         struct vb2_threadio_data *threadio = q->threadio;
2484         bool copy_timestamp = false;
2485         unsigned prequeue = 0;
2486         unsigned index = 0;
2487         int ret = 0;
2488
2489         if (q->is_output) {
2490                 prequeue = q->num_buffers;
2491                 copy_timestamp = q->copy_timestamp;
2492         }
2493
2494         set_freezable();
2495
2496         for (;;) {
2497                 struct vb2_buffer *vb;
2498
2499                 /*
2500                  * Call vb2_dqbuf to get buffer back.
2501                  */
2502                 if (prequeue) {
2503                         vb = q->bufs[index++];
2504                         prequeue--;
2505                 } else {
2506                         call_void_qop(q, wait_finish, q);
2507                         if (!threadio->stop)
2508                                 ret = vb2_core_dqbuf(q, &index, NULL, 0);
2509                         call_void_qop(q, wait_prepare, q);
2510                         dprintk(5, "file io: vb2_dqbuf result: %d\n", ret);
2511                         if (!ret)
2512                                 vb = q->bufs[index];
2513                 }
2514                 if (ret || threadio->stop)
2515                         break;
2516                 try_to_freeze();
2517
2518                 if (vb->state != VB2_BUF_STATE_ERROR)
2519                         if (threadio->fnc(vb, threadio->priv))
2520                                 break;
2521                 call_void_qop(q, wait_finish, q);
2522                 if (copy_timestamp)
2523                         vb->timestamp = ktime_get_ns();;
2524                 if (!threadio->stop)
2525                         ret = vb2_core_qbuf(q, vb->index, NULL);
2526                 call_void_qop(q, wait_prepare, q);
2527                 if (ret || threadio->stop)
2528                         break;
2529         }
2530
2531         /* Hmm, linux becomes *very* unhappy without this ... */
2532         while (!kthread_should_stop()) {
2533                 set_current_state(TASK_INTERRUPTIBLE);
2534                 schedule();
2535         }
2536         return 0;
2537 }
2538
2539 /*
2540  * This function should not be used for anything else but the videobuf2-dvb
2541  * support. If you think you have another good use-case for this, then please
2542  * contact the linux-media mailinglist first.
2543  */
2544 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
2545                      const char *thread_name)
2546 {
2547         struct vb2_threadio_data *threadio;
2548         int ret = 0;
2549
2550         if (q->threadio)
2551                 return -EBUSY;
2552         if (vb2_is_busy(q))
2553                 return -EBUSY;
2554         if (WARN_ON(q->fileio))
2555                 return -EBUSY;
2556
2557         threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
2558         if (threadio == NULL)
2559                 return -ENOMEM;
2560         threadio->fnc = fnc;
2561         threadio->priv = priv;
2562
2563         ret = __vb2_init_fileio(q, !q->is_output);
2564         dprintk(3, "file io: vb2_init_fileio result: %d\n", ret);
2565         if (ret)
2566                 goto nomem;
2567         q->threadio = threadio;
2568         threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
2569         if (IS_ERR(threadio->thread)) {
2570                 ret = PTR_ERR(threadio->thread);
2571                 threadio->thread = NULL;
2572                 goto nothread;
2573         }
2574         return 0;
2575
2576 nothread:
2577         __vb2_cleanup_fileio(q);
2578 nomem:
2579         kfree(threadio);
2580         return ret;
2581 }
2582 EXPORT_SYMBOL_GPL(vb2_thread_start);
2583
2584 int vb2_thread_stop(struct vb2_queue *q)
2585 {
2586         struct vb2_threadio_data *threadio = q->threadio;
2587         int err;
2588
2589         if (threadio == NULL)
2590                 return 0;
2591         threadio->stop = true;
2592         /* Wake up all pending sleeps in the thread */
2593         vb2_queue_error(q);
2594         err = kthread_stop(threadio->thread);
2595         __vb2_cleanup_fileio(q);
2596         threadio->thread = NULL;
2597         kfree(threadio);
2598         q->threadio = NULL;
2599         return err;
2600 }
2601 EXPORT_SYMBOL_GPL(vb2_thread_stop);
2602
2603 MODULE_DESCRIPTION("Media buffer core framework");
2604 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
2605 MODULE_LICENSE("GPL");