Merge branch 'parisc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[cascardo/linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE           0x2FC
43 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE                0
58 #define PRCM_AVS_VOLTAGE_MASK           0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP          6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE           7
62 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS        0xFFF
65 #define PRCM_ROMCODE_A2P        0xFFE
66 #define PRCM_ROMCODE_P2A        0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS          0
98 #define MB0H_CONFIG_WAKEUPS_EXE         1
99 #define MB0H_READ_WAKEUP_ACK            3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF    0x1
135 #define PLL_SOC0_ON     0x2
136 #define PLL_SOC1_OFF    0x4
137 #define PLL_SOC1_ON     0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS        0x0
147 #define MB2H_AUTO_PWR   0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC        0x0
167 #define MB3H_SIDETONE   0x1
168 #define MB3H_SYSCLK     0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT   0x0
181 #define MB4H_MEM_ST     0x1
182 #define MB4H_HOTDOG     0x12
183 #define MB4H_HOTMON     0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW                       BIT(0)
201 #define HOTMON_CONFIG_HIGH                      BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS                     0
208 #define A9WDOG_ID_MASK                          0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN               BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230  * Wakeups/IRQs
231  */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264         bool valid;
265         struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307         IRQ_ENTRY(RTC),
308         IRQ_ENTRY(RTT0),
309         IRQ_ENTRY(RTT1),
310         IRQ_ENTRY(HSI0),
311         IRQ_ENTRY(HSI1),
312         IRQ_ENTRY(CA_WAKE),
313         IRQ_ENTRY(USB),
314         IRQ_ENTRY(ABB),
315         IRQ_ENTRY(ABB_FIFO),
316         IRQ_ENTRY(CA_SLEEP),
317         IRQ_ENTRY(ARM),
318         IRQ_ENTRY(HOTMON_LOW),
319         IRQ_ENTRY(HOTMON_HIGH),
320         IRQ_ENTRY(MODEM_SW_RESET_REQ),
321         IRQ_ENTRY(GPIO0),
322         IRQ_ENTRY(GPIO1),
323         IRQ_ENTRY(GPIO2),
324         IRQ_ENTRY(GPIO3),
325         IRQ_ENTRY(GPIO4),
326         IRQ_ENTRY(GPIO5),
327         IRQ_ENTRY(GPIO6),
328         IRQ_ENTRY(GPIO7),
329         IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335         WAKEUP_ENTRY(RTC),
336         WAKEUP_ENTRY(RTT0),
337         WAKEUP_ENTRY(RTT1),
338         WAKEUP_ENTRY(HSI0),
339         WAKEUP_ENTRY(HSI1),
340         WAKEUP_ENTRY(USB),
341         WAKEUP_ENTRY(ABB),
342         WAKEUP_ENTRY(ABB_FIFO),
343         WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:               The transaction lock.
349  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
350  *                      the request data.
351  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
352  * @req:                Request data that need to persist between requests.
353  */
354 static struct {
355         spinlock_t lock;
356         spinlock_t dbb_irqs_lock;
357         struct work_struct mask_work;
358         struct mutex ac_wake_lock;
359         struct completion ac_wake_work;
360         struct {
361                 u32 dbb_irqs;
362                 u32 dbb_wakeups;
363                 u32 abb_events;
364         } req;
365 } mb0_transfer;
366
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:       The transaction lock.
370  * @work:       The transaction completion structure.
371  * @ape_opp:    The current APE OPP.
372  * @ack:        Reply ("acknowledge") data.
373  */
374 static struct {
375         struct mutex lock;
376         struct completion work;
377         u8 ape_opp;
378         struct {
379                 u8 header;
380                 u8 arm_opp;
381                 u8 ape_opp;
382                 u8 ape_voltage_status;
383         } ack;
384 } mb1_transfer;
385
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396         struct mutex lock;
397         struct completion work;
398         spinlock_t auto_pm_lock;
399         bool auto_pm_enabled;
400         struct {
401                 u8 status;
402         } ack;
403 } mb2_transfer;
404
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:               The request lock.
408  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:        Work structure used for sysclk requests.
410  */
411 static struct {
412         spinlock_t lock;
413         struct mutex sysclk_lock;
414         struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:       The transaction lock.
420  * @work:       The transaction completion structure.
421  */
422 static struct {
423         struct mutex lock;
424         struct completion work;
425 } mb4_transfer;
426
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:       The transaction lock.
430  * @work:       The transaction completion structure.
431  * @ack:        Reply ("acknowledge") data.
432  */
433 static struct {
434         struct mutex lock;
435         struct completion work;
436         struct {
437                 u8 status;
438                 u8 value;
439         } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453         u32 offset;
454         u32 pllsw;
455         int branch;
456         bool clk38div;
457 };
458
459 enum {
460         PLL_RAW,
461         PLL_FIX,
462         PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502         u32 divsel_mask;
503         u32 divsel_shift;
504         u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508         {
509                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512         },
513         {
514                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517         }
518 };
519
520 struct dsiescclk {
521         u32 en;
522         u32 div_mask;
523         u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527         {
528                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531         },
532         {
533                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536         },
537         {
538                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541         }
542 };
543
544
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL              0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
550
551 #define PRCMU_CLK_PLL_DIV_SHIFT         0
552 #define PRCMU_CLK_PLL_SW_SHIFT          5
553 #define PRCMU_CLK_38                    (1 << 9)
554 #define PRCMU_CLK_38_SRC                (1 << 10)
555 #define PRCMU_CLK_38_DIV                (1 << 11)
556
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
559
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
564
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
567
568 #define PRCMU_ENABLE_PLLDSI             0x00000001
569 #define PRCMU_DISABLE_PLLDSI            0x00000000
570 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
575 #define PRCMU_DSI_RESET_SW              0x00000007
576
577 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
578
579 int db8500_prcmu_enable_dsipll(void)
580 {
581         int i;
582
583         /* Clear DSIPLL_RESETN */
584         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585         /* Unclamp DSIPLL in/out */
586         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588         /* Set DSI PLL FREQ */
589         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591         /* Enable Escape clocks */
592         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594         /* Start DSI PLL */
595         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596         /* Reset DSI PLL */
597         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598         for (i = 0; i < 10; i++) {
599                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
601                         break;
602                 udelay(100);
603         }
604         /* Set DSIPLL_RESETN */
605         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606         return 0;
607 }
608
609 int db8500_prcmu_disable_dsipll(void)
610 {
611         /* Disable dsi pll */
612         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613         /* Disable  escapeclock */
614         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615         return 0;
616 }
617
618 int db8500_prcmu_set_display_clocks(void)
619 {
620         unsigned long flags;
621
622         spin_lock_irqsave(&clk_mgt_lock, flags);
623
624         /* Grab the HW semaphore. */
625         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626                 cpu_relax();
627
628         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632         /* Release the HW semaphore. */
633         writel(0, PRCM_SEM);
634
635         spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637         return 0;
638 }
639
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642         return readl(prcmu_base + reg);
643 }
644
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647         unsigned long flags;
648
649         spin_lock_irqsave(&prcmu_lock, flags);
650         writel(value, (prcmu_base + reg));
651         spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656         u32 val;
657         unsigned long flags;
658
659         spin_lock_irqsave(&prcmu_lock, flags);
660         val = readl(prcmu_base + reg);
661         val = ((val & ~mask) | (value & mask));
662         writel(val, (prcmu_base + reg));
663         spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668         return fw_info.valid ? &fw_info.version : NULL;
669 }
670
671 bool prcmu_has_arm_maxopp(void)
672 {
673         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676
677 /**
678  * prcmu_set_rc_a2p - This function is used to run few power state sequences
679  * @val: Value to be set, i.e. transition requested
680  * Returns: 0 on success, -EINVAL on invalid argument
681  *
682  * This function is used to run the following power state sequences -
683  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684  */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688                 return -EINVAL;
689         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690         return 0;
691 }
692
693 /**
694  * prcmu_get_rc_p2a - This function is used to get power state sequences
695  * Returns: the power transition that has last happened
696  *
697  * This function can return the following transitions-
698  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699  */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702         return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704
705 /**
706  * prcmu_get_current_mode - Return the current XP70 power mode
707  * Returns: Returns the current AP(ARM) power mode: init,
708  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709  */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714
715 /**
716  * prcmu_config_clkout - Configure one of the programmable clock outputs.
717  * @clkout:     The CLKOUT number (0 or 1).
718  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
719  * @div:        The divider to be applied.
720  *
721  * Configures one of the programmable clock outputs (CLKOUTs).
722  * @div should be in the range [1,63] to request a configuration, or 0 to
723  * inform that the configuration is no longer requested.
724  */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727         static int requests[2];
728         int r = 0;
729         unsigned long flags;
730         u32 val;
731         u32 bits;
732         u32 mask;
733         u32 div_mask;
734
735         BUG_ON(clkout > 1);
736         BUG_ON(div > 63);
737         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739         if (!div && !requests[clkout])
740                 return -EINVAL;
741
742         if (clkout == 0) {
743                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747         } else {
748                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750                         PRCM_CLKOCR_CLK1TYPE);
751                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753         }
754         bits &= mask;
755
756         spin_lock_irqsave(&clkout_lock, flags);
757
758         val = readl(PRCM_CLKOCR);
759         if (val & div_mask) {
760                 if (div) {
761                         if ((val & mask) != bits) {
762                                 r = -EBUSY;
763                                 goto unlock_and_return;
764                         }
765                 } else {
766                         if ((val & mask & ~div_mask) != bits) {
767                                 r = -EINVAL;
768                                 goto unlock_and_return;
769                         }
770                 }
771         }
772         writel((bits | (val & ~mask)), PRCM_CLKOCR);
773         requests[clkout] += (div ? 1 : -1);
774
775 unlock_and_return:
776         spin_unlock_irqrestore(&clkout_lock, flags);
777
778         return r;
779 }
780
781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 {
783         unsigned long flags;
784
785         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786
787         spin_lock_irqsave(&mb0_transfer.lock, flags);
788
789         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790                 cpu_relax();
791
792         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795         writeb((keep_ulp_clk ? 1 : 0),
796                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799
800         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801
802         return 0;
803 }
804
805 u8 db8500_prcmu_get_power_state_result(void)
806 {
807         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808 }
809
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
812 {
813         const u8 header[2] = {
814                 MB0H_CONFIG_WAKEUPS_EXE,
815                 MB0H_CONFIG_WAKEUPS_SLEEP
816         };
817         static u32 last_dbb_events;
818         static u32 last_abb_events;
819         u32 dbb_events;
820         u32 abb_events;
821         unsigned int i;
822
823         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825
826         abb_events = mb0_transfer.req.abb_events;
827
828         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829                 return;
830
831         for (i = 0; i < 2; i++) {
832                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833                         cpu_relax();
834                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838         }
839         last_dbb_events = dbb_events;
840         last_abb_events = abb_events;
841 }
842
843 void db8500_prcmu_enable_wakeups(u32 wakeups)
844 {
845         unsigned long flags;
846         u32 bits;
847         int i;
848
849         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850
851         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852                 if (wakeups & BIT(i))
853                         bits |= prcmu_wakeup_bit[i];
854         }
855
856         spin_lock_irqsave(&mb0_transfer.lock, flags);
857
858         mb0_transfer.req.dbb_wakeups = bits;
859         config_wakeups();
860
861         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862 }
863
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 {
866         unsigned long flags;
867
868         spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870         mb0_transfer.req.abb_events = abb_events;
871         config_wakeups();
872
873         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875
876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 {
878         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880         else
881                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882 }
883
884 /**
885  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886  * @opp: The new ARM operating point to which transition is to be made
887  * Returns: 0 on success, non-zero on failure
888  *
889  * This function sets the the operating point of the ARM.
890  */
891 int db8500_prcmu_set_arm_opp(u8 opp)
892 {
893         int r;
894
895         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896                 return -EINVAL;
897
898         r = 0;
899
900         mutex_lock(&mb1_transfer.lock);
901
902         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903                 cpu_relax();
904
905         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908
909         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910         wait_for_completion(&mb1_transfer.work);
911
912         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913                 (mb1_transfer.ack.arm_opp != opp))
914                 r = -EIO;
915
916         mutex_unlock(&mb1_transfer.lock);
917
918         return r;
919 }
920
921 /**
922  * db8500_prcmu_get_arm_opp - get the current ARM OPP
923  *
924  * Returns: the current ARM OPP
925  */
926 int db8500_prcmu_get_arm_opp(void)
927 {
928         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929 }
930
931 /**
932  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933  *
934  * Returns: the current DDR OPP
935  */
936 int db8500_prcmu_get_ddr_opp(void)
937 {
938         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 }
940
941 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942 static void request_even_slower_clocks(bool enable)
943 {
944         u32 clock_reg[] = {
945                 PRCM_ACLK_MGT,
946                 PRCM_DMACLK_MGT
947         };
948         unsigned long flags;
949         unsigned int i;
950
951         spin_lock_irqsave(&clk_mgt_lock, flags);
952
953         /* Grab the HW semaphore. */
954         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
955                 cpu_relax();
956
957         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
958                 u32 val;
959                 u32 div;
960
961                 val = readl(prcmu_base + clock_reg[i]);
962                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
963                 if (enable) {
964                         if ((div <= 1) || (div > 15)) {
965                                 pr_err("prcmu: Bad clock divider %d in %s\n",
966                                         div, __func__);
967                                 goto unlock_and_return;
968                         }
969                         div <<= 1;
970                 } else {
971                         if (div <= 2)
972                                 goto unlock_and_return;
973                         div >>= 1;
974                 }
975                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
976                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
977                 writel(val, prcmu_base + clock_reg[i]);
978         }
979
980 unlock_and_return:
981         /* Release the HW semaphore. */
982         writel(0, PRCM_SEM);
983
984         spin_unlock_irqrestore(&clk_mgt_lock, flags);
985 }
986
987 /**
988  * db8500_set_ape_opp - set the appropriate APE OPP
989  * @opp: The new APE operating point to which transition is to be made
990  * Returns: 0 on success, non-zero on failure
991  *
992  * This function sets the operating point of the APE.
993  */
994 int db8500_prcmu_set_ape_opp(u8 opp)
995 {
996         int r = 0;
997
998         if (opp == mb1_transfer.ape_opp)
999                 return 0;
1000
1001         mutex_lock(&mb1_transfer.lock);
1002
1003         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004                 request_even_slower_clocks(false);
1005
1006         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007                 goto skip_message;
1008
1009         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010                 cpu_relax();
1011
1012         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018         wait_for_completion(&mb1_transfer.work);
1019
1020         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021                 (mb1_transfer.ack.ape_opp != opp))
1022                 r = -EIO;
1023
1024 skip_message:
1025         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027                 request_even_slower_clocks(true);
1028         if (!r)
1029                 mb1_transfer.ape_opp = opp;
1030
1031         mutex_unlock(&mb1_transfer.lock);
1032
1033         return r;
1034 }
1035
1036 /**
1037  * db8500_prcmu_get_ape_opp - get the current APE OPP
1038  *
1039  * Returns: the current APE OPP
1040  */
1041 int db8500_prcmu_get_ape_opp(void)
1042 {
1043         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044 }
1045
1046 /**
1047  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048  * @enable: true to request the higher voltage, false to drop a request.
1049  *
1050  * Calls to this function to enable and disable requests must be balanced.
1051  */
1052 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053 {
1054         int r = 0;
1055         u8 header;
1056         static unsigned int requests;
1057
1058         mutex_lock(&mb1_transfer.lock);
1059
1060         if (enable) {
1061                 if (0 != requests++)
1062                         goto unlock_and_return;
1063                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064         } else {
1065                 if (requests == 0) {
1066                         r = -EIO;
1067                         goto unlock_and_return;
1068                 } else if (1 != requests--) {
1069                         goto unlock_and_return;
1070                 }
1071                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072         }
1073
1074         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075                 cpu_relax();
1076
1077         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080         wait_for_completion(&mb1_transfer.work);
1081
1082         if ((mb1_transfer.ack.header != header) ||
1083                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084                 r = -EIO;
1085
1086 unlock_and_return:
1087         mutex_unlock(&mb1_transfer.lock);
1088
1089         return r;
1090 }
1091
1092 /**
1093  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094  *
1095  * This function releases the power state requirements of a USB wakeup.
1096  */
1097 int prcmu_release_usb_wakeup_state(void)
1098 {
1099         int r = 0;
1100
1101         mutex_lock(&mb1_transfer.lock);
1102
1103         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104                 cpu_relax();
1105
1106         writeb(MB1H_RELEASE_USB_WAKEUP,
1107                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110         wait_for_completion(&mb1_transfer.work);
1111
1112         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114                 r = -EIO;
1115
1116         mutex_unlock(&mb1_transfer.lock);
1117
1118         return r;
1119 }
1120
1121 static int request_pll(u8 clock, bool enable)
1122 {
1123         int r = 0;
1124
1125         if (clock == PRCMU_PLLSOC0)
1126                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127         else if (clock == PRCMU_PLLSOC1)
1128                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129         else
1130                 return -EINVAL;
1131
1132         mutex_lock(&mb1_transfer.lock);
1133
1134         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135                 cpu_relax();
1136
1137         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141         wait_for_completion(&mb1_transfer.work);
1142
1143         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144                 r = -EIO;
1145
1146         mutex_unlock(&mb1_transfer.lock);
1147
1148         return r;
1149 }
1150
1151 /**
1152  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153  * @epod_id: The EPOD to set
1154  * @epod_state: The new EPOD state
1155  *
1156  * This function sets the state of a EPOD (power domain). It may not be called
1157  * from interrupt context.
1158  */
1159 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160 {
1161         int r = 0;
1162         bool ram_retention = false;
1163         int i;
1164
1165         /* check argument */
1166         BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168         /* set flag if retention is possible */
1169         switch (epod_id) {
1170         case EPOD_ID_SVAMMDSP:
1171         case EPOD_ID_SIAMMDSP:
1172         case EPOD_ID_ESRAM12:
1173         case EPOD_ID_ESRAM34:
1174                 ram_retention = true;
1175                 break;
1176         }
1177
1178         /* check argument */
1179         BUG_ON(epod_state > EPOD_STATE_ON);
1180         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182         /* get lock */
1183         mutex_lock(&mb2_transfer.lock);
1184
1185         /* wait for mailbox */
1186         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187                 cpu_relax();
1188
1189         /* fill in mailbox */
1190         for (i = 0; i < NUM_EPOD_ID; i++)
1191                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198         /*
1199          * The current firmware version does not handle errors correctly,
1200          * and we cannot recover if there is an error.
1201          * This is expected to change when the firmware is updated.
1202          */
1203         if (!wait_for_completion_timeout(&mb2_transfer.work,
1204                         msecs_to_jiffies(20000))) {
1205                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206                         __func__);
1207                 r = -EIO;
1208                 goto unlock_and_return;
1209         }
1210
1211         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212                 r = -EIO;
1213
1214 unlock_and_return:
1215         mutex_unlock(&mb2_transfer.lock);
1216         return r;
1217 }
1218
1219 /**
1220  * prcmu_configure_auto_pm - Configure autonomous power management.
1221  * @sleep: Configuration for ApSleep.
1222  * @idle:  Configuration for ApIdle.
1223  */
1224 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225         struct prcmu_auto_pm_config *idle)
1226 {
1227         u32 sleep_cfg;
1228         u32 idle_cfg;
1229         unsigned long flags;
1230
1231         BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249         /*
1250          * The autonomous power management configuration is done through
1251          * fields in mailbox 2, but these fields are only used as shared
1252          * variables - i.e. there is no need to send a message.
1253          */
1254         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257         mb2_transfer.auto_pm_enabled =
1258                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264 }
1265 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267 bool prcmu_is_auto_pm_enabled(void)
1268 {
1269         return mb2_transfer.auto_pm_enabled;
1270 }
1271
1272 static int request_sysclk(bool enable)
1273 {
1274         int r;
1275         unsigned long flags;
1276
1277         r = 0;
1278
1279         mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281         spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284                 cpu_relax();
1285
1286         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293         /*
1294          * The firmware only sends an ACK if we want to enable the
1295          * SysClk, and it succeeds.
1296          */
1297         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298                         msecs_to_jiffies(20000))) {
1299                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300                         __func__);
1301                 r = -EIO;
1302         }
1303
1304         mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306         return r;
1307 }
1308
1309 static int request_timclk(bool enable)
1310 {
1311         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312
1313         if (!enable)
1314                 val |= PRCM_TCR_STOP_TIMERS;
1315         writel(val, PRCM_TCR);
1316
1317         return 0;
1318 }
1319
1320 static int request_clock(u8 clock, bool enable)
1321 {
1322         u32 val;
1323         unsigned long flags;
1324
1325         spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327         /* Grab the HW semaphore. */
1328         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329                 cpu_relax();
1330
1331         val = readl(prcmu_base + clk_mgt[clock].offset);
1332         if (enable) {
1333                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334         } else {
1335                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337         }
1338         writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340         /* Release the HW semaphore. */
1341         writel(0, PRCM_SEM);
1342
1343         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345         return 0;
1346 }
1347
1348 static int request_sga_clock(u8 clock, bool enable)
1349 {
1350         u32 val;
1351         int ret;
1352
1353         if (enable) {
1354                 val = readl(PRCM_CGATING_BYPASS);
1355                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356         }
1357
1358         ret = request_clock(clock, enable);
1359
1360         if (!ret && !enable) {
1361                 val = readl(PRCM_CGATING_BYPASS);
1362                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363         }
1364
1365         return ret;
1366 }
1367
1368 static inline bool plldsi_locked(void)
1369 {
1370         return (readl(PRCM_PLLDSI_LOCKP) &
1371                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375 }
1376
1377 static int request_plldsi(bool enable)
1378 {
1379         int r = 0;
1380         u32 val;
1381
1382         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386         val = readl(PRCM_PLLDSI_ENABLE);
1387         if (enable)
1388                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389         else
1390                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391         writel(val, PRCM_PLLDSI_ENABLE);
1392
1393         if (enable) {
1394                 unsigned int i;
1395                 bool locked = plldsi_locked();
1396
1397                 for (i = 10; !locked && (i > 0); --i) {
1398                         udelay(100);
1399                         locked = plldsi_locked();
1400                 }
1401                 if (locked) {
1402                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403                                 PRCM_APE_RESETN_SET);
1404                 } else {
1405                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407                                 PRCM_MMIP_LS_CLAMP_SET);
1408                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409                         writel(val, PRCM_PLLDSI_ENABLE);
1410                         r = -EAGAIN;
1411                 }
1412         } else {
1413                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414         }
1415         return r;
1416 }
1417
1418 static int request_dsiclk(u8 n, bool enable)
1419 {
1420         u32 val;
1421
1422         val = readl(PRCM_DSI_PLLOUT_SEL);
1423         val &= ~dsiclk[n].divsel_mask;
1424         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425                 dsiclk[n].divsel_shift);
1426         writel(val, PRCM_DSI_PLLOUT_SEL);
1427         return 0;
1428 }
1429
1430 static int request_dsiescclk(u8 n, bool enable)
1431 {
1432         u32 val;
1433
1434         val = readl(PRCM_DSITVCLK_DIV);
1435         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436         writel(val, PRCM_DSITVCLK_DIV);
1437         return 0;
1438 }
1439
1440 /**
1441  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442  * @clock:      The clock for which the request is made.
1443  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1444  *
1445  * This function should only be used by the clock implementation.
1446  * Do not use it from any other place!
1447  */
1448 int db8500_prcmu_request_clock(u8 clock, bool enable)
1449 {
1450         if (clock == PRCMU_SGACLK)
1451                 return request_sga_clock(clock, enable);
1452         else if (clock < PRCMU_NUM_REG_CLOCKS)
1453                 return request_clock(clock, enable);
1454         else if (clock == PRCMU_TIMCLK)
1455                 return request_timclk(enable);
1456         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460         else if (clock == PRCMU_PLLDSI)
1461                 return request_plldsi(enable);
1462         else if (clock == PRCMU_SYSCLK)
1463                 return request_sysclk(enable);
1464         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465                 return request_pll(clock, enable);
1466         else
1467                 return -EINVAL;
1468 }
1469
1470 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471         int branch)
1472 {
1473         u64 rate;
1474         u32 val;
1475         u32 d;
1476         u32 div = 1;
1477
1478         val = readl(reg);
1479
1480         rate = src_rate;
1481         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484         if (d > 1)
1485                 div *= d;
1486
1487         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488         if (d > 1)
1489                 div *= d;
1490
1491         if (val & PRCM_PLL_FREQ_SELDIV2)
1492                 div *= 2;
1493
1494         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1496                 ((reg == PRCM_PLLSOC0_FREQ) ||
1497                  (reg == PRCM_PLLARM_FREQ) ||
1498                  (reg == PRCM_PLLDDR_FREQ))))
1499                 div *= 2;
1500
1501         (void)do_div(rate, div);
1502
1503         return (unsigned long)rate;
1504 }
1505
1506 #define ROOT_CLOCK_RATE 38400000
1507
1508 static unsigned long clock_rate(u8 clock)
1509 {
1510         u32 val;
1511         u32 pllsw;
1512         unsigned long rate = ROOT_CLOCK_RATE;
1513
1514         val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516         if (val & PRCM_CLK_MGT_CLK38) {
1517                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518                         rate /= 2;
1519                 return rate;
1520         }
1521
1522         val |= clk_mgt[clock].pllsw;
1523         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531         else
1532                 return 0;
1533
1534         if ((clock == PRCMU_SGACLK) &&
1535                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536                 u64 r = (rate * 10);
1537
1538                 (void)do_div(r, 25);
1539                 return (unsigned long)r;
1540         }
1541         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542         if (val)
1543                 return rate / val;
1544         else
1545                 return 0;
1546 }
1547
1548 static unsigned long armss_rate(void)
1549 {
1550         u32 r;
1551         unsigned long rate;
1552
1553         r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556                 /* External ARMCLKFIX clock */
1557
1558                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560                 /* Check PRCM_ARM_CHGCLKREQ divider */
1561                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562                         rate /= 2;
1563
1564                 /* Check PRCM_ARMCLKFIX_MGT divider */
1565                 r = readl(PRCM_ARMCLKFIX_MGT);
1566                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567                 rate /= r;
1568
1569         } else {/* ARM PLL */
1570                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571         }
1572
1573         return rate;
1574 }
1575
1576 static unsigned long dsiclk_rate(u8 n)
1577 {
1578         u32 divsel;
1579         u32 div = 1;
1580
1581         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585                 divsel = dsiclk[n].divsel;
1586         else
1587                 dsiclk[n].divsel = divsel;
1588
1589         switch (divsel) {
1590         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591                 div *= 2;
1592         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1593                 div *= 2;
1594         case PRCM_DSI_PLLOUT_SEL_PHI:
1595                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1596                         PLL_RAW) / div;
1597         default:
1598                 return 0;
1599         }
1600 }
1601
1602 static unsigned long dsiescclk_rate(u8 n)
1603 {
1604         u32 div;
1605
1606         div = readl(PRCM_DSITVCLK_DIV);
1607         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1608         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1609 }
1610
1611 unsigned long prcmu_clock_rate(u8 clock)
1612 {
1613         if (clock < PRCMU_NUM_REG_CLOCKS)
1614                 return clock_rate(clock);
1615         else if (clock == PRCMU_TIMCLK)
1616                 return ROOT_CLOCK_RATE / 16;
1617         else if (clock == PRCMU_SYSCLK)
1618                 return ROOT_CLOCK_RATE;
1619         else if (clock == PRCMU_PLLSOC0)
1620                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1621         else if (clock == PRCMU_PLLSOC1)
1622                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623         else if (clock == PRCMU_ARMSS)
1624                 return armss_rate();
1625         else if (clock == PRCMU_PLLDDR)
1626                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1627         else if (clock == PRCMU_PLLDSI)
1628                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1629                         PLL_RAW);
1630         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1631                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1632         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1633                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1634         else
1635                 return 0;
1636 }
1637
1638 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1639 {
1640         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1641                 return ROOT_CLOCK_RATE;
1642         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1643         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1645         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1647         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1649         else
1650                 return 0;
1651 }
1652
1653 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1654 {
1655         u32 div;
1656
1657         div = (src_rate / rate);
1658         if (div == 0)
1659                 return 1;
1660         if (rate < (src_rate / div))
1661                 div++;
1662         return div;
1663 }
1664
1665 static long round_clock_rate(u8 clock, unsigned long rate)
1666 {
1667         u32 val;
1668         u32 div;
1669         unsigned long src_rate;
1670         long rounded_rate;
1671
1672         val = readl(prcmu_base + clk_mgt[clock].offset);
1673         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1674                 clk_mgt[clock].branch);
1675         div = clock_divider(src_rate, rate);
1676         if (val & PRCM_CLK_MGT_CLK38) {
1677                 if (clk_mgt[clock].clk38div) {
1678                         if (div > 2)
1679                                 div = 2;
1680                 } else {
1681                         div = 1;
1682                 }
1683         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1684                 u64 r = (src_rate * 10);
1685
1686                 (void)do_div(r, 25);
1687                 if (r <= rate)
1688                         return (unsigned long)r;
1689         }
1690         rounded_rate = (src_rate / min(div, (u32)31));
1691
1692         return rounded_rate;
1693 }
1694
1695 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1696 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1697         { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1698         { .frequency = 400000, .driver_data = ARM_50_OPP,},
1699         { .frequency = 800000, .driver_data = ARM_100_OPP,},
1700         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1701         { .frequency = CPUFREQ_TABLE_END,},
1702 };
1703
1704 static long round_armss_rate(unsigned long rate)
1705 {
1706         struct cpufreq_frequency_table *pos;
1707         long freq = 0;
1708
1709         /* cpufreq table frequencies is in KHz. */
1710         rate = rate / 1000;
1711
1712         /* Find the corresponding arm opp from the cpufreq table. */
1713         cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1714                 freq = pos->frequency;
1715                 if (freq == rate)
1716                         break;
1717         }
1718
1719         /* Return the last valid value, even if a match was not found. */
1720         return freq * 1000;
1721 }
1722
1723 #define MIN_PLL_VCO_RATE 600000000ULL
1724 #define MAX_PLL_VCO_RATE 1680640000ULL
1725
1726 static long round_plldsi_rate(unsigned long rate)
1727 {
1728         long rounded_rate = 0;
1729         unsigned long src_rate;
1730         unsigned long rem;
1731         u32 r;
1732
1733         src_rate = clock_rate(PRCMU_HDMICLK);
1734         rem = rate;
1735
1736         for (r = 7; (rem > 0) && (r > 0); r--) {
1737                 u64 d;
1738
1739                 d = (r * rate);
1740                 (void)do_div(d, src_rate);
1741                 if (d < 6)
1742                         d = 6;
1743                 else if (d > 255)
1744                         d = 255;
1745                 d *= src_rate;
1746                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1747                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1748                         continue;
1749                 (void)do_div(d, r);
1750                 if (rate < d) {
1751                         if (rounded_rate == 0)
1752                                 rounded_rate = (long)d;
1753                         break;
1754                 }
1755                 if ((rate - d) < rem) {
1756                         rem = (rate - d);
1757                         rounded_rate = (long)d;
1758                 }
1759         }
1760         return rounded_rate;
1761 }
1762
1763 static long round_dsiclk_rate(unsigned long rate)
1764 {
1765         u32 div;
1766         unsigned long src_rate;
1767         long rounded_rate;
1768
1769         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1770                 PLL_RAW);
1771         div = clock_divider(src_rate, rate);
1772         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1773
1774         return rounded_rate;
1775 }
1776
1777 static long round_dsiescclk_rate(unsigned long rate)
1778 {
1779         u32 div;
1780         unsigned long src_rate;
1781         long rounded_rate;
1782
1783         src_rate = clock_rate(PRCMU_TVCLK);
1784         div = clock_divider(src_rate, rate);
1785         rounded_rate = (src_rate / min(div, (u32)255));
1786
1787         return rounded_rate;
1788 }
1789
1790 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1791 {
1792         if (clock < PRCMU_NUM_REG_CLOCKS)
1793                 return round_clock_rate(clock, rate);
1794         else if (clock == PRCMU_ARMSS)
1795                 return round_armss_rate(rate);
1796         else if (clock == PRCMU_PLLDSI)
1797                 return round_plldsi_rate(rate);
1798         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1799                 return round_dsiclk_rate(rate);
1800         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1801                 return round_dsiescclk_rate(rate);
1802         else
1803                 return (long)prcmu_clock_rate(clock);
1804 }
1805
1806 static void set_clock_rate(u8 clock, unsigned long rate)
1807 {
1808         u32 val;
1809         u32 div;
1810         unsigned long src_rate;
1811         unsigned long flags;
1812
1813         spin_lock_irqsave(&clk_mgt_lock, flags);
1814
1815         /* Grab the HW semaphore. */
1816         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1817                 cpu_relax();
1818
1819         val = readl(prcmu_base + clk_mgt[clock].offset);
1820         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1821                 clk_mgt[clock].branch);
1822         div = clock_divider(src_rate, rate);
1823         if (val & PRCM_CLK_MGT_CLK38) {
1824                 if (clk_mgt[clock].clk38div) {
1825                         if (div > 1)
1826                                 val |= PRCM_CLK_MGT_CLK38DIV;
1827                         else
1828                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1829                 }
1830         } else if (clock == PRCMU_SGACLK) {
1831                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1832                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1833                 if (div == 3) {
1834                         u64 r = (src_rate * 10);
1835
1836                         (void)do_div(r, 25);
1837                         if (r <= rate) {
1838                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1839                                 div = 0;
1840                         }
1841                 }
1842                 val |= min(div, (u32)31);
1843         } else {
1844                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1845                 val |= min(div, (u32)31);
1846         }
1847         writel(val, prcmu_base + clk_mgt[clock].offset);
1848
1849         /* Release the HW semaphore. */
1850         writel(0, PRCM_SEM);
1851
1852         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1853 }
1854
1855 static int set_armss_rate(unsigned long rate)
1856 {
1857         struct cpufreq_frequency_table *pos;
1858
1859         /* cpufreq table frequencies is in KHz. */
1860         rate = rate / 1000;
1861
1862         /* Find the corresponding arm opp from the cpufreq table. */
1863         cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1864                 if (pos->frequency == rate)
1865                         break;
1866
1867         if (pos->frequency != rate)
1868                 return -EINVAL;
1869
1870         /* Set the new arm opp. */
1871         return db8500_prcmu_set_arm_opp(pos->driver_data);
1872 }
1873
1874 static int set_plldsi_rate(unsigned long rate)
1875 {
1876         unsigned long src_rate;
1877         unsigned long rem;
1878         u32 pll_freq = 0;
1879         u32 r;
1880
1881         src_rate = clock_rate(PRCMU_HDMICLK);
1882         rem = rate;
1883
1884         for (r = 7; (rem > 0) && (r > 0); r--) {
1885                 u64 d;
1886                 u64 hwrate;
1887
1888                 d = (r * rate);
1889                 (void)do_div(d, src_rate);
1890                 if (d < 6)
1891                         d = 6;
1892                 else if (d > 255)
1893                         d = 255;
1894                 hwrate = (d * src_rate);
1895                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897                         continue;
1898                 (void)do_div(hwrate, r);
1899                 if (rate < hwrate) {
1900                         if (pll_freq == 0)
1901                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1903                         break;
1904                 }
1905                 if ((rate - hwrate) < rem) {
1906                         rem = (rate - hwrate);
1907                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1909                 }
1910         }
1911         if (pll_freq == 0)
1912                 return -EINVAL;
1913
1914         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915         writel(pll_freq, PRCM_PLLDSI_FREQ);
1916
1917         return 0;
1918 }
1919
1920 static void set_dsiclk_rate(u8 n, unsigned long rate)
1921 {
1922         u32 val;
1923         u32 div;
1924
1925         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927
1928         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1931
1932         val = readl(PRCM_DSI_PLLOUT_SEL);
1933         val &= ~dsiclk[n].divsel_mask;
1934         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935         writel(val, PRCM_DSI_PLLOUT_SEL);
1936 }
1937
1938 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939 {
1940         u32 val;
1941         u32 div;
1942
1943         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944         val = readl(PRCM_DSITVCLK_DIV);
1945         val &= ~dsiescclk[n].div_mask;
1946         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947         writel(val, PRCM_DSITVCLK_DIV);
1948 }
1949
1950 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951 {
1952         if (clock < PRCMU_NUM_REG_CLOCKS)
1953                 set_clock_rate(clock, rate);
1954         else if (clock == PRCMU_ARMSS)
1955                 return set_armss_rate(rate);
1956         else if (clock == PRCMU_PLLDSI)
1957                 return set_plldsi_rate(rate);
1958         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962         return 0;
1963 }
1964
1965 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1966 {
1967         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969                 return -EINVAL;
1970
1971         mutex_lock(&mb4_transfer.lock);
1972
1973         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1974                 cpu_relax();
1975
1976         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979         writeb(DDR_PWR_STATE_ON,
1980                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982
1983         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1984         wait_for_completion(&mb4_transfer.work);
1985
1986         mutex_unlock(&mb4_transfer.lock);
1987
1988         return 0;
1989 }
1990
1991 int db8500_prcmu_config_hotdog(u8 threshold)
1992 {
1993         mutex_lock(&mb4_transfer.lock);
1994
1995         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996                 cpu_relax();
1997
1998         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000
2001         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2002         wait_for_completion(&mb4_transfer.work);
2003
2004         mutex_unlock(&mb4_transfer.lock);
2005
2006         return 0;
2007 }
2008
2009 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2010 {
2011         mutex_lock(&mb4_transfer.lock);
2012
2013         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2014                 cpu_relax();
2015
2016         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021
2022         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2023         wait_for_completion(&mb4_transfer.work);
2024
2025         mutex_unlock(&mb4_transfer.lock);
2026
2027         return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2030
2031 static int config_hot_period(u16 val)
2032 {
2033         mutex_lock(&mb4_transfer.lock);
2034
2035         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036                 cpu_relax();
2037
2038         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
2041         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042         wait_for_completion(&mb4_transfer.work);
2043
2044         mutex_unlock(&mb4_transfer.lock);
2045
2046         return 0;
2047 }
2048
2049 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2050 {
2051         if (cycles32k == 0xFFFF)
2052                 return -EINVAL;
2053
2054         return config_hot_period(cycles32k);
2055 }
2056 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2057
2058 int db8500_prcmu_stop_temp_sense(void)
2059 {
2060         return config_hot_period(0xFFFF);
2061 }
2062 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2063
2064 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065 {
2066
2067         mutex_lock(&mb4_transfer.lock);
2068
2069         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070                 cpu_relax();
2071
2072         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076
2077         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
2079         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080         wait_for_completion(&mb4_transfer.work);
2081
2082         mutex_unlock(&mb4_transfer.lock);
2083
2084         return 0;
2085
2086 }
2087
2088 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2089 {
2090         BUG_ON(num == 0 || num > 0xf);
2091         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093                             A9WDOG_AUTO_OFF_DIS);
2094 }
2095 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2096
2097 int db8500_prcmu_enable_a9wdog(u8 id)
2098 {
2099         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100 }
2101 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2102
2103 int db8500_prcmu_disable_a9wdog(u8 id)
2104 {
2105         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106 }
2107 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2108
2109 int db8500_prcmu_kick_a9wdog(u8 id)
2110 {
2111         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112 }
2113 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2114
2115 /*
2116  * timeout is 28 bit, in ms.
2117  */
2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119 {
2120         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121                             (id & A9WDOG_ID_MASK) |
2122                             /*
2123                              * Put the lowest 28 bits of timeout at
2124                              * offset 4. Four first bits are used for id.
2125                              */
2126                             (u8)((timeout << 4) & 0xf0),
2127                             (u8)((timeout >> 4) & 0xff),
2128                             (u8)((timeout >> 12) & 0xff),
2129                             (u8)((timeout >> 20) & 0xff));
2130 }
2131 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2132
2133 /**
2134  * prcmu_abb_read() - Read register value(s) from the ABB.
2135  * @slave:      The I2C slave address.
2136  * @reg:        The (start) register address.
2137  * @value:      The read out value(s).
2138  * @size:       The number of registers to read.
2139  *
2140  * Reads register value(s) from the ABB.
2141  * @size has to be 1 for the current firmware version.
2142  */
2143 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144 {
2145         int r;
2146
2147         if (size != 1)
2148                 return -EINVAL;
2149
2150         mutex_lock(&mb5_transfer.lock);
2151
2152         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2153                 cpu_relax();
2154
2155         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2156         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160
2161         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2162
2163         if (!wait_for_completion_timeout(&mb5_transfer.work,
2164                                 msecs_to_jiffies(20000))) {
2165                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166                         __func__);
2167                 r = -EIO;
2168         } else {
2169                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2170         }
2171
2172         if (!r)
2173                 *value = mb5_transfer.ack.value;
2174
2175         mutex_unlock(&mb5_transfer.lock);
2176
2177         return r;
2178 }
2179
2180 /**
2181  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2182  * @slave:      The I2C slave address.
2183  * @reg:        The (start) register address.
2184  * @value:      The value(s) to write.
2185  * @mask:       The mask(s) to use.
2186  * @size:       The number of registers to write.
2187  *
2188  * Writes masked register value(s) to the ABB.
2189  * For each @value, only the bits set to 1 in the corresponding @mask
2190  * will be written. The other bits are not changed.
2191  * @size has to be 1 for the current firmware version.
2192  */
2193 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2194 {
2195         int r;
2196
2197         if (size != 1)
2198                 return -EINVAL;
2199
2200         mutex_lock(&mb5_transfer.lock);
2201
2202         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2203                 cpu_relax();
2204
2205         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2206         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210
2211         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2212
2213         if (!wait_for_completion_timeout(&mb5_transfer.work,
2214                                 msecs_to_jiffies(20000))) {
2215                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216                         __func__);
2217                 r = -EIO;
2218         } else {
2219                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2220         }
2221
2222         mutex_unlock(&mb5_transfer.lock);
2223
2224         return r;
2225 }
2226
2227 /**
2228  * prcmu_abb_write() - Write register value(s) to the ABB.
2229  * @slave:      The I2C slave address.
2230  * @reg:        The (start) register address.
2231  * @value:      The value(s) to write.
2232  * @size:       The number of registers to write.
2233  *
2234  * Writes register value(s) to the ABB.
2235  * @size has to be 1 for the current firmware version.
2236  */
2237 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238 {
2239         u8 mask = ~0;
2240
2241         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242 }
2243
2244 /**
2245  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246  */
2247 int prcmu_ac_wake_req(void)
2248 {
2249         u32 val;
2250         int ret = 0;
2251
2252         mutex_lock(&mb0_transfer.ac_wake_lock);
2253
2254         val = readl(PRCM_HOSTACCESS_REQ);
2255         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256                 goto unlock_and_return;
2257
2258         atomic_set(&ac_wake_req_state, 1);
2259
2260         /*
2261          * Force Modem Wake-up before hostaccess_req ping-pong.
2262          * It prevents Modem to enter in Sleep while acking the hostaccess
2263          * request. The 31us delay has been calculated by HWI.
2264          */
2265         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266         writel(val, PRCM_HOSTACCESS_REQ);
2267
2268         udelay(31);
2269
2270         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271         writel(val, PRCM_HOSTACCESS_REQ);
2272
2273         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2274                         msecs_to_jiffies(5000))) {
2275                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2276                         __func__);
2277                 ret = -EFAULT;
2278         }
2279
2280 unlock_and_return:
2281         mutex_unlock(&mb0_transfer.ac_wake_lock);
2282         return ret;
2283 }
2284
2285 /**
2286  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2287  */
2288 void prcmu_ac_sleep_req(void)
2289 {
2290         u32 val;
2291
2292         mutex_lock(&mb0_transfer.ac_wake_lock);
2293
2294         val = readl(PRCM_HOSTACCESS_REQ);
2295         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296                 goto unlock_and_return;
2297
2298         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2299                 PRCM_HOSTACCESS_REQ);
2300
2301         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302                         msecs_to_jiffies(5000))) {
2303                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2304                         __func__);
2305         }
2306
2307         atomic_set(&ac_wake_req_state, 0);
2308
2309 unlock_and_return:
2310         mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 }
2312
2313 bool db8500_prcmu_is_ac_wake_requested(void)
2314 {
2315         return (atomic_read(&ac_wake_req_state) != 0);
2316 }
2317
2318 /**
2319  * db8500_prcmu_system_reset - System reset
2320  *
2321  * Saves the reset reason code and then sets the APE_SOFTRST register which
2322  * fires interrupt to fw
2323  */
2324 void db8500_prcmu_system_reset(u16 reset_code)
2325 {
2326         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2327         writel(1, PRCM_APE_SOFTRST);
2328 }
2329
2330 /**
2331  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332  *
2333  * Retrieves the reset reason code stored by prcmu_system_reset() before
2334  * last restart.
2335  */
2336 u16 db8500_prcmu_get_reset_code(void)
2337 {
2338         return readw(tcdm_base + PRCM_SW_RST_REASON);
2339 }
2340
2341 /**
2342  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2343  */
2344 void db8500_prcmu_modem_reset(void)
2345 {
2346         mutex_lock(&mb1_transfer.lock);
2347
2348         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2349                 cpu_relax();
2350
2351         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2352         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2353         wait_for_completion(&mb1_transfer.work);
2354
2355         /*
2356          * No need to check return from PRCMU as modem should go in reset state
2357          * This state is already managed by upper layer
2358          */
2359
2360         mutex_unlock(&mb1_transfer.lock);
2361 }
2362
2363 static void ack_dbb_wakeup(void)
2364 {
2365         unsigned long flags;
2366
2367         spin_lock_irqsave(&mb0_transfer.lock, flags);
2368
2369         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2370                 cpu_relax();
2371
2372         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2373         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2374
2375         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2376 }
2377
2378 static inline void print_unknown_header_warning(u8 n, u8 header)
2379 {
2380         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2381                 header, n);
2382 }
2383
2384 static bool read_mailbox_0(void)
2385 {
2386         bool r;
2387         u32 ev;
2388         unsigned int n;
2389         u8 header;
2390
2391         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392         switch (header) {
2393         case MB0H_WAKEUP_EXE:
2394         case MB0H_WAKEUP_SLEEP:
2395                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397                 else
2398                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399
2400                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401                         complete(&mb0_transfer.ac_wake_work);
2402                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2403                         complete(&mb3_transfer.sysclk_work);
2404
2405                 ev &= mb0_transfer.req.dbb_irqs;
2406
2407                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408                         if (ev & prcmu_irq_bit[n])
2409                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2410                 }
2411                 r = true;
2412                 break;
2413         default:
2414                 print_unknown_header_warning(0, header);
2415                 r = false;
2416                 break;
2417         }
2418         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2419         return r;
2420 }
2421
2422 static bool read_mailbox_1(void)
2423 {
2424         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2429         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2431         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2432         complete(&mb1_transfer.work);
2433         return false;
2434 }
2435
2436 static bool read_mailbox_2(void)
2437 {
2438         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2439         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2440         complete(&mb2_transfer.work);
2441         return false;
2442 }
2443
2444 static bool read_mailbox_3(void)
2445 {
2446         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2447         return false;
2448 }
2449
2450 static bool read_mailbox_4(void)
2451 {
2452         u8 header;
2453         bool do_complete = true;
2454
2455         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456         switch (header) {
2457         case MB4H_MEM_ST:
2458         case MB4H_HOTDOG:
2459         case MB4H_HOTMON:
2460         case MB4H_HOT_PERIOD:
2461         case MB4H_A9WDOG_CONF:
2462         case MB4H_A9WDOG_EN:
2463         case MB4H_A9WDOG_DIS:
2464         case MB4H_A9WDOG_LOAD:
2465         case MB4H_A9WDOG_KICK:
2466                 break;
2467         default:
2468                 print_unknown_header_warning(4, header);
2469                 do_complete = false;
2470                 break;
2471         }
2472
2473         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2474
2475         if (do_complete)
2476                 complete(&mb4_transfer.work);
2477
2478         return false;
2479 }
2480
2481 static bool read_mailbox_5(void)
2482 {
2483         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2485         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2486         complete(&mb5_transfer.work);
2487         return false;
2488 }
2489
2490 static bool read_mailbox_6(void)
2491 {
2492         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2493         return false;
2494 }
2495
2496 static bool read_mailbox_7(void)
2497 {
2498         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2499         return false;
2500 }
2501
2502 static bool (* const read_mailbox[NUM_MB])(void) = {
2503         read_mailbox_0,
2504         read_mailbox_1,
2505         read_mailbox_2,
2506         read_mailbox_3,
2507         read_mailbox_4,
2508         read_mailbox_5,
2509         read_mailbox_6,
2510         read_mailbox_7
2511 };
2512
2513 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514 {
2515         u32 bits;
2516         u8 n;
2517         irqreturn_t r;
2518
2519         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2520         if (unlikely(!bits))
2521                 return IRQ_NONE;
2522
2523         r = IRQ_HANDLED;
2524         for (n = 0; bits; n++) {
2525                 if (bits & MBOX_BIT(n)) {
2526                         bits -= MBOX_BIT(n);
2527                         if (read_mailbox[n]())
2528                                 r = IRQ_WAKE_THREAD;
2529                 }
2530         }
2531         return r;
2532 }
2533
2534 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535 {
2536         ack_dbb_wakeup();
2537         return IRQ_HANDLED;
2538 }
2539
2540 static void prcmu_mask_work(struct work_struct *work)
2541 {
2542         unsigned long flags;
2543
2544         spin_lock_irqsave(&mb0_transfer.lock, flags);
2545
2546         config_wakeups();
2547
2548         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549 }
2550
2551 static void prcmu_irq_mask(struct irq_data *d)
2552 {
2553         unsigned long flags;
2554
2555         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2558
2559         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560
2561         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562                 schedule_work(&mb0_transfer.mask_work);
2563 }
2564
2565 static void prcmu_irq_unmask(struct irq_data *d)
2566 {
2567         unsigned long flags;
2568
2569         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2572
2573         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574
2575         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576                 schedule_work(&mb0_transfer.mask_work);
2577 }
2578
2579 static void noop(struct irq_data *d)
2580 {
2581 }
2582
2583 static struct irq_chip prcmu_irq_chip = {
2584         .name           = "prcmu",
2585         .irq_disable    = prcmu_irq_mask,
2586         .irq_ack        = noop,
2587         .irq_mask       = prcmu_irq_mask,
2588         .irq_unmask     = prcmu_irq_unmask,
2589 };
2590
2591 static __init char *fw_project_name(u32 project)
2592 {
2593         switch (project) {
2594         case PRCMU_FW_PROJECT_U8500:
2595                 return "U8500";
2596         case PRCMU_FW_PROJECT_U8400:
2597                 return "U8400";
2598         case PRCMU_FW_PROJECT_U9500:
2599                 return "U9500";
2600         case PRCMU_FW_PROJECT_U8500_MBB:
2601                 return "U8500 MBB";
2602         case PRCMU_FW_PROJECT_U8500_C1:
2603                 return "U8500 C1";
2604         case PRCMU_FW_PROJECT_U8500_C2:
2605                 return "U8500 C2";
2606         case PRCMU_FW_PROJECT_U8500_C3:
2607                 return "U8500 C3";
2608         case PRCMU_FW_PROJECT_U8500_C4:
2609                 return "U8500 C4";
2610         case PRCMU_FW_PROJECT_U9500_MBL:
2611                 return "U9500 MBL";
2612         case PRCMU_FW_PROJECT_U8500_MBL:
2613                 return "U8500 MBL";
2614         case PRCMU_FW_PROJECT_U8500_MBL2:
2615                 return "U8500 MBL2";
2616         case PRCMU_FW_PROJECT_U8520:
2617                 return "U8520 MBL";
2618         case PRCMU_FW_PROJECT_U8420:
2619                 return "U8420";
2620         case PRCMU_FW_PROJECT_U9540:
2621                 return "U9540";
2622         case PRCMU_FW_PROJECT_A9420:
2623                 return "A9420";
2624         case PRCMU_FW_PROJECT_L8540:
2625                 return "L8540";
2626         case PRCMU_FW_PROJECT_L8580:
2627                 return "L8580";
2628         default:
2629                 return "Unknown";
2630         }
2631 }
2632
2633 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634                                 irq_hw_number_t hwirq)
2635 {
2636         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637                                 handle_simple_irq);
2638
2639         return 0;
2640 }
2641
2642 static const struct irq_domain_ops db8500_irq_ops = {
2643         .map    = db8500_irq_map,
2644         .xlate  = irq_domain_xlate_twocell,
2645 };
2646
2647 static int db8500_irq_init(struct device_node *np)
2648 {
2649         int i;
2650
2651         db8500_irq_domain = irq_domain_add_simple(
2652                 np, NUM_PRCMU_WAKEUPS, 0,
2653                 &db8500_irq_ops, NULL);
2654
2655         if (!db8500_irq_domain) {
2656                 pr_err("Failed to create irqdomain\n");
2657                 return -ENOSYS;
2658         }
2659
2660         /* All wakeups will be used, so create mappings for all */
2661         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662                 irq_create_mapping(db8500_irq_domain, i);
2663
2664         return 0;
2665 }
2666
2667 static void dbx500_fw_version_init(struct platform_device *pdev,
2668                             u32 version_offset)
2669 {
2670         struct resource *res;
2671         void __iomem *tcpm_base;
2672         u32 version;
2673
2674         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675                                            "prcmu-tcpm");
2676         if (!res) {
2677                 dev_err(&pdev->dev,
2678                         "Error: no prcmu tcpm memory region provided\n");
2679                 return;
2680         }
2681         tcpm_base = ioremap(res->start, resource_size(res));
2682         if (!tcpm_base) {
2683                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684                 return;
2685         }
2686
2687         version = readl(tcpm_base + version_offset);
2688         fw_info.version.project = (version & 0xFF);
2689         fw_info.version.api_version = (version >> 8) & 0xFF;
2690         fw_info.version.func_version = (version >> 16) & 0xFF;
2691         fw_info.version.errata = (version >> 24) & 0xFF;
2692         strncpy(fw_info.version.project_name,
2693                 fw_project_name(fw_info.version.project),
2694                 PRCMU_FW_PROJECT_NAME_LEN);
2695         fw_info.valid = true;
2696         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697                 fw_info.version.project_name,
2698                 fw_info.version.project,
2699                 fw_info.version.api_version,
2700                 fw_info.version.func_version,
2701                 fw_info.version.errata);
2702         iounmap(tcpm_base);
2703 }
2704
2705 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2706 {
2707         /*
2708          * This is a temporary remap to bring up the clocks. It is
2709          * subsequently replaces with a real remap. After the merge of
2710          * the mailbox subsystem all of this early code goes away, and the
2711          * clock driver can probe independently. An early initcall will
2712          * still be needed, but it can be diverted into drivers/clk/ux500.
2713          */
2714         prcmu_base = ioremap(phy_base, size);
2715         if (!prcmu_base)
2716                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2717
2718         spin_lock_init(&mb0_transfer.lock);
2719         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720         mutex_init(&mb0_transfer.ac_wake_lock);
2721         init_completion(&mb0_transfer.ac_wake_work);
2722         mutex_init(&mb1_transfer.lock);
2723         init_completion(&mb1_transfer.work);
2724         mb1_transfer.ape_opp = APE_NO_CHANGE;
2725         mutex_init(&mb2_transfer.lock);
2726         init_completion(&mb2_transfer.work);
2727         spin_lock_init(&mb2_transfer.auto_pm_lock);
2728         spin_lock_init(&mb3_transfer.lock);
2729         mutex_init(&mb3_transfer.sysclk_lock);
2730         init_completion(&mb3_transfer.sysclk_work);
2731         mutex_init(&mb4_transfer.lock);
2732         init_completion(&mb4_transfer.work);
2733         mutex_init(&mb5_transfer.lock);
2734         init_completion(&mb5_transfer.work);
2735
2736         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2737 }
2738
2739 static void __init init_prcm_registers(void)
2740 {
2741         u32 val;
2742
2743         val = readl(PRCM_A9PL_FORCE_CLKEN);
2744         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747 }
2748
2749 /*
2750  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751  */
2752 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753         REGULATOR_SUPPLY("v-ape", NULL),
2754         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2758         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2759         /* "v-mmc" changed to "vcore" in the mainline kernel */
2760         REGULATOR_SUPPLY("vcore", "sdi0"),
2761         REGULATOR_SUPPLY("vcore", "sdi1"),
2762         REGULATOR_SUPPLY("vcore", "sdi2"),
2763         REGULATOR_SUPPLY("vcore", "sdi3"),
2764         REGULATOR_SUPPLY("vcore", "sdi4"),
2765         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767         /* "v-uart" changed to "vcore" in the mainline kernel */
2768         REGULATOR_SUPPLY("vcore", "uart0"),
2769         REGULATOR_SUPPLY("vcore", "uart1"),
2770         REGULATOR_SUPPLY("vcore", "uart2"),
2771         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2772         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2773         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2774 };
2775
2776 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2777         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778         /* AV8100 regulator */
2779         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780 };
2781
2782 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2783         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2784         REGULATOR_SUPPLY("vsupply", "mcde"),
2785 };
2786
2787 /* SVA MMDSP regulator switch */
2788 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790 };
2791
2792 /* SVA pipe regulator switch */
2793 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795 };
2796
2797 /* SIA MMDSP regulator switch */
2798 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800 };
2801
2802 /* SIA pipe regulator switch */
2803 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805 };
2806
2807 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808         REGULATOR_SUPPLY("v-mali", NULL),
2809 };
2810
2811 /* ESRAM1 and 2 regulator switch */
2812 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813         REGULATOR_SUPPLY("esram12", "cm_control"),
2814 };
2815
2816 /* ESRAM3 and 4 regulator switch */
2817 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818         REGULATOR_SUPPLY("v-esram34", "mcde"),
2819         REGULATOR_SUPPLY("esram34", "cm_control"),
2820         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2821 };
2822
2823 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824         [DB8500_REGULATOR_VAPE] = {
2825                 .constraints = {
2826                         .name = "db8500-vape",
2827                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828                         .always_on = true,
2829                 },
2830                 .consumer_supplies = db8500_vape_consumers,
2831                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832         },
2833         [DB8500_REGULATOR_VARM] = {
2834                 .constraints = {
2835                         .name = "db8500-varm",
2836                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837                 },
2838         },
2839         [DB8500_REGULATOR_VMODEM] = {
2840                 .constraints = {
2841                         .name = "db8500-vmodem",
2842                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843                 },
2844         },
2845         [DB8500_REGULATOR_VPLL] = {
2846                 .constraints = {
2847                         .name = "db8500-vpll",
2848                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849                 },
2850         },
2851         [DB8500_REGULATOR_VSMPS1] = {
2852                 .constraints = {
2853                         .name = "db8500-vsmps1",
2854                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855                 },
2856         },
2857         [DB8500_REGULATOR_VSMPS2] = {
2858                 .constraints = {
2859                         .name = "db8500-vsmps2",
2860                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861                 },
2862                 .consumer_supplies = db8500_vsmps2_consumers,
2863                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864         },
2865         [DB8500_REGULATOR_VSMPS3] = {
2866                 .constraints = {
2867                         .name = "db8500-vsmps3",
2868                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869                 },
2870         },
2871         [DB8500_REGULATOR_VRF1] = {
2872                 .constraints = {
2873                         .name = "db8500-vrf1",
2874                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875                 },
2876         },
2877         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2878                 /* dependency to u8500-vape is handled outside regulator framework */
2879                 .constraints = {
2880                         .name = "db8500-sva-mmdsp",
2881                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882                 },
2883                 .consumer_supplies = db8500_svammdsp_consumers,
2884                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2885         },
2886         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887                 .constraints = {
2888                         /* "ret" means "retention" */
2889                         .name = "db8500-sva-mmdsp-ret",
2890                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891                 },
2892         },
2893         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2894                 /* dependency to u8500-vape is handled outside regulator framework */
2895                 .constraints = {
2896                         .name = "db8500-sva-pipe",
2897                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898                 },
2899                 .consumer_supplies = db8500_svapipe_consumers,
2900                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2901         },
2902         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2903                 /* dependency to u8500-vape is handled outside regulator framework */
2904                 .constraints = {
2905                         .name = "db8500-sia-mmdsp",
2906                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907                 },
2908                 .consumer_supplies = db8500_siammdsp_consumers,
2909                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2910         },
2911         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912                 .constraints = {
2913                         .name = "db8500-sia-mmdsp-ret",
2914                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915                 },
2916         },
2917         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2918                 /* dependency to u8500-vape is handled outside regulator framework */
2919                 .constraints = {
2920                         .name = "db8500-sia-pipe",
2921                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922                 },
2923                 .consumer_supplies = db8500_siapipe_consumers,
2924                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2925         },
2926         [DB8500_REGULATOR_SWITCH_SGA] = {
2927                 .supply_regulator = "db8500-vape",
2928                 .constraints = {
2929                         .name = "db8500-sga",
2930                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931                 },
2932                 .consumer_supplies = db8500_sga_consumers,
2933                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
2935         },
2936         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937                 .supply_regulator = "db8500-vape",
2938                 .constraints = {
2939                         .name = "db8500-b2r2-mcde",
2940                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941                 },
2942                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2943                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944         },
2945         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2946                 /*
2947                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948                  * no need to hold Vape
2949                  */
2950                 .constraints = {
2951                         .name = "db8500-esram12",
2952                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953                 },
2954                 .consumer_supplies = db8500_esram12_consumers,
2955                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2956         },
2957         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958                 .constraints = {
2959                         .name = "db8500-esram12-ret",
2960                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961                 },
2962         },
2963         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2964                 /*
2965                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966                  * no need to hold Vape
2967                  */
2968                 .constraints = {
2969                         .name = "db8500-esram34",
2970                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971                 },
2972                 .consumer_supplies = db8500_esram34_consumers,
2973                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2974         },
2975         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976                 .constraints = {
2977                         .name = "db8500-esram34-ret",
2978                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979                 },
2980         },
2981 };
2982
2983 static struct ux500_wdt_data db8500_wdt_pdata = {
2984         .timeout = 600, /* 10 minutes */
2985         .has_28_bits_resolution = true,
2986 };
2987 /*
2988  * Thermal Sensor
2989  */
2990
2991 static struct resource db8500_thsens_resources[] = {
2992         {
2993                 .name = "IRQ_HOTMON_LOW",
2994                 .start  = IRQ_PRCMU_HOTMON_LOW,
2995                 .end    = IRQ_PRCMU_HOTMON_LOW,
2996                 .flags  = IORESOURCE_IRQ,
2997         },
2998         {
2999                 .name = "IRQ_HOTMON_HIGH",
3000                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3001                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3002                 .flags  = IORESOURCE_IRQ,
3003         },
3004 };
3005
3006 static struct db8500_thsens_platform_data db8500_thsens_data = {
3007         .trip_points[0] = {
3008                 .temp = 70000,
3009                 .type = THERMAL_TRIP_ACTIVE,
3010                 .cdev_name = {
3011                         [0] = "thermal-cpufreq-0",
3012                 },
3013         },
3014         .trip_points[1] = {
3015                 .temp = 75000,
3016                 .type = THERMAL_TRIP_ACTIVE,
3017                 .cdev_name = {
3018                         [0] = "thermal-cpufreq-0",
3019                 },
3020         },
3021         .trip_points[2] = {
3022                 .temp = 80000,
3023                 .type = THERMAL_TRIP_ACTIVE,
3024                 .cdev_name = {
3025                         [0] = "thermal-cpufreq-0",
3026                 },
3027         },
3028         .trip_points[3] = {
3029                 .temp = 85000,
3030                 .type = THERMAL_TRIP_CRITICAL,
3031         },
3032         .num_trips = 4,
3033 };
3034
3035 static const struct mfd_cell common_prcmu_devs[] = {
3036         {
3037                 .name = "ux500_wdt",
3038                 .platform_data = &db8500_wdt_pdata,
3039                 .pdata_size = sizeof(db8500_wdt_pdata),
3040                 .id = -1,
3041         },
3042 };
3043
3044 static const struct mfd_cell db8500_prcmu_devs[] = {
3045         {
3046                 .name = "db8500-prcmu-regulators",
3047                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3048                 .platform_data = &db8500_regulators,
3049                 .pdata_size = sizeof(db8500_regulators),
3050         },
3051         {
3052                 .name = "cpufreq-ux500",
3053                 .of_compatible = "stericsson,cpufreq-ux500",
3054                 .platform_data = &db8500_cpufreq_table,
3055                 .pdata_size = sizeof(db8500_cpufreq_table),
3056         },
3057         {
3058                 .name = "cpuidle-dbx500",
3059                 .of_compatible = "stericsson,cpuidle-dbx500",
3060         },
3061         {
3062                 .name = "db8500-thermal",
3063                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3064                 .resources = db8500_thsens_resources,
3065                 .platform_data = &db8500_thsens_data,
3066                 .pdata_size = sizeof(db8500_thsens_data),
3067         },
3068 };
3069
3070 static void db8500_prcmu_update_cpufreq(void)
3071 {
3072         if (prcmu_has_arm_maxopp()) {
3073                 db8500_cpufreq_table[3].frequency = 1000000;
3074                 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3075         }
3076 }
3077
3078 static int db8500_prcmu_register_ab8500(struct device *parent)
3079 {
3080         struct device_node *np;
3081         struct resource ab8500_resource;
3082         const struct mfd_cell ab8500_cell = {
3083                 .name = "ab8500-core",
3084                 .of_compatible = "stericsson,ab8500",
3085                 .id = AB8500_VERSION_AB8500,
3086                 .resources = &ab8500_resource,
3087                 .num_resources = 1,
3088         };
3089
3090         if (!parent->of_node)
3091                 return -ENODEV;
3092
3093         /* Look up the device node, sneak the IRQ out of it */
3094         for_each_child_of_node(parent->of_node, np) {
3095                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3096                         break;
3097         }
3098         if (!np) {
3099                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3100                 return -ENODEV;
3101         }
3102         of_irq_to_resource_table(np, &ab8500_resource, 1);
3103
3104         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3105 }
3106
3107 /**
3108  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3109  *
3110  */
3111 static int db8500_prcmu_probe(struct platform_device *pdev)
3112 {
3113         struct device_node *np = pdev->dev.of_node;
3114         int irq = 0, err = 0;
3115         struct resource *res;
3116
3117         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3118         if (!res) {
3119                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3120                 return -EINVAL;
3121         }
3122         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3123         if (!prcmu_base) {
3124                 dev_err(&pdev->dev,
3125                         "failed to ioremap prcmu register memory\n");
3126                 return -ENOMEM;
3127         }
3128         init_prcm_registers();
3129         dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3130         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3131         if (!res) {
3132                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3133                 return -EINVAL;
3134         }
3135         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3136                         resource_size(res));
3137         if (!tcdm_base) {
3138                 dev_err(&pdev->dev,
3139                         "failed to ioremap prcmu-tcdm register memory\n");
3140                 return -ENOMEM;
3141         }
3142
3143         /* Clean up the mailbox interrupts after pre-kernel code. */
3144         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3145
3146         irq = platform_get_irq(pdev, 0);
3147         if (irq <= 0) {
3148                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3149                 return irq;
3150         }
3151
3152         err = request_threaded_irq(irq, prcmu_irq_handler,
3153                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3154         if (err < 0) {
3155                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3156                 return err;
3157         }
3158
3159         db8500_irq_init(np);
3160
3161         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3162
3163         db8500_prcmu_update_cpufreq();
3164
3165         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3166                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3167         if (err) {
3168                 pr_err("prcmu: Failed to add subdevices\n");
3169                 return err;
3170         }
3171
3172         /* TODO: Remove restriction when clk definitions are available. */
3173         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3174                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3175                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3176                                       db8500_irq_domain);
3177                 if (err) {
3178                         mfd_remove_devices(&pdev->dev);
3179                         pr_err("prcmu: Failed to add subdevices\n");
3180                         return err;
3181                 }
3182         }
3183
3184         err = db8500_prcmu_register_ab8500(&pdev->dev);
3185         if (err) {
3186                 mfd_remove_devices(&pdev->dev);
3187                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188                 return err;
3189         }
3190
3191         pr_info("DB8500 PRCMU initialized\n");
3192         return err;
3193 }
3194 static const struct of_device_id db8500_prcmu_match[] = {
3195         { .compatible = "stericsson,db8500-prcmu"},
3196         { },
3197 };
3198
3199 static struct platform_driver db8500_prcmu_driver = {
3200         .driver = {
3201                 .name = "db8500-prcmu",
3202                 .of_match_table = db8500_prcmu_match,
3203         },
3204         .probe = db8500_prcmu_probe,
3205 };
3206
3207 static int __init db8500_prcmu_init(void)
3208 {
3209         return platform_driver_register(&db8500_prcmu_driver);
3210 }
3211
3212 core_initcall(db8500_prcmu_init);
3213
3214 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3215 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3216 MODULE_LICENSE("GPL v2");