Merge tag 'regmap-fix-v4.8-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE           0x2FC
43 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE                0
58 #define PRCM_AVS_VOLTAGE_MASK           0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP          6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE           7
62 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS        0xFFF
65 #define PRCM_ROMCODE_A2P        0xFFE
66 #define PRCM_ROMCODE_P2A        0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS          0
98 #define MB0H_CONFIG_WAKEUPS_EXE         1
99 #define MB0H_READ_WAKEUP_ACK            3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF    0x1
135 #define PLL_SOC0_ON     0x2
136 #define PLL_SOC1_OFF    0x4
137 #define PLL_SOC1_ON     0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS        0x0
147 #define MB2H_AUTO_PWR   0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC        0x0
167 #define MB3H_SIDETONE   0x1
168 #define MB3H_SYSCLK     0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT   0x0
181 #define MB4H_MEM_ST     0x1
182 #define MB4H_HOTDOG     0x12
183 #define MB4H_HOTMON     0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW                       BIT(0)
201 #define HOTMON_CONFIG_HIGH                      BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS                     0
208 #define A9WDOG_ID_MASK                          0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN               BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230  * Wakeups/IRQs
231  */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264         bool valid;
265         struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307         IRQ_ENTRY(RTC),
308         IRQ_ENTRY(RTT0),
309         IRQ_ENTRY(RTT1),
310         IRQ_ENTRY(HSI0),
311         IRQ_ENTRY(HSI1),
312         IRQ_ENTRY(CA_WAKE),
313         IRQ_ENTRY(USB),
314         IRQ_ENTRY(ABB),
315         IRQ_ENTRY(ABB_FIFO),
316         IRQ_ENTRY(CA_SLEEP),
317         IRQ_ENTRY(ARM),
318         IRQ_ENTRY(HOTMON_LOW),
319         IRQ_ENTRY(HOTMON_HIGH),
320         IRQ_ENTRY(MODEM_SW_RESET_REQ),
321         IRQ_ENTRY(GPIO0),
322         IRQ_ENTRY(GPIO1),
323         IRQ_ENTRY(GPIO2),
324         IRQ_ENTRY(GPIO3),
325         IRQ_ENTRY(GPIO4),
326         IRQ_ENTRY(GPIO5),
327         IRQ_ENTRY(GPIO6),
328         IRQ_ENTRY(GPIO7),
329         IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335         WAKEUP_ENTRY(RTC),
336         WAKEUP_ENTRY(RTT0),
337         WAKEUP_ENTRY(RTT1),
338         WAKEUP_ENTRY(HSI0),
339         WAKEUP_ENTRY(HSI1),
340         WAKEUP_ENTRY(USB),
341         WAKEUP_ENTRY(ABB),
342         WAKEUP_ENTRY(ABB_FIFO),
343         WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:               The transaction lock.
349  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
350  *                      the request data.
351  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
352  * @req:                Request data that need to persist between requests.
353  */
354 static struct {
355         spinlock_t lock;
356         spinlock_t dbb_irqs_lock;
357         struct work_struct mask_work;
358         struct mutex ac_wake_lock;
359         struct completion ac_wake_work;
360         struct {
361                 u32 dbb_irqs;
362                 u32 dbb_wakeups;
363                 u32 abb_events;
364         } req;
365 } mb0_transfer;
366
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:       The transaction lock.
370  * @work:       The transaction completion structure.
371  * @ape_opp:    The current APE OPP.
372  * @ack:        Reply ("acknowledge") data.
373  */
374 static struct {
375         struct mutex lock;
376         struct completion work;
377         u8 ape_opp;
378         struct {
379                 u8 header;
380                 u8 arm_opp;
381                 u8 ape_opp;
382                 u8 ape_voltage_status;
383         } ack;
384 } mb1_transfer;
385
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396         struct mutex lock;
397         struct completion work;
398         spinlock_t auto_pm_lock;
399         bool auto_pm_enabled;
400         struct {
401                 u8 status;
402         } ack;
403 } mb2_transfer;
404
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:               The request lock.
408  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:        Work structure used for sysclk requests.
410  */
411 static struct {
412         spinlock_t lock;
413         struct mutex sysclk_lock;
414         struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:       The transaction lock.
420  * @work:       The transaction completion structure.
421  */
422 static struct {
423         struct mutex lock;
424         struct completion work;
425 } mb4_transfer;
426
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:       The transaction lock.
430  * @work:       The transaction completion structure.
431  * @ack:        Reply ("acknowledge") data.
432  */
433 static struct {
434         struct mutex lock;
435         struct completion work;
436         struct {
437                 u8 status;
438                 u8 value;
439         } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453         u32 offset;
454         u32 pllsw;
455         int branch;
456         bool clk38div;
457 };
458
459 enum {
460         PLL_RAW,
461         PLL_FIX,
462         PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502         u32 divsel_mask;
503         u32 divsel_shift;
504         u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508         {
509                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512         },
513         {
514                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517         }
518 };
519
520 struct dsiescclk {
521         u32 en;
522         u32 div_mask;
523         u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527         {
528                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531         },
532         {
533                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536         },
537         {
538                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541         }
542 };
543
544
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL              0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
550
551 #define PRCMU_CLK_PLL_DIV_SHIFT         0
552 #define PRCMU_CLK_PLL_SW_SHIFT          5
553 #define PRCMU_CLK_38                    (1 << 9)
554 #define PRCMU_CLK_38_SRC                (1 << 10)
555 #define PRCMU_CLK_38_DIV                (1 << 11)
556
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
559
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
564
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
567
568 #define PRCMU_ENABLE_PLLDSI             0x00000001
569 #define PRCMU_DISABLE_PLLDSI            0x00000000
570 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
575 #define PRCMU_DSI_RESET_SW              0x00000007
576
577 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
578
579 int db8500_prcmu_enable_dsipll(void)
580 {
581         int i;
582
583         /* Clear DSIPLL_RESETN */
584         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585         /* Unclamp DSIPLL in/out */
586         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588         /* Set DSI PLL FREQ */
589         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591         /* Enable Escape clocks */
592         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594         /* Start DSI PLL */
595         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596         /* Reset DSI PLL */
597         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598         for (i = 0; i < 10; i++) {
599                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
601                         break;
602                 udelay(100);
603         }
604         /* Set DSIPLL_RESETN */
605         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606         return 0;
607 }
608
609 int db8500_prcmu_disable_dsipll(void)
610 {
611         /* Disable dsi pll */
612         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613         /* Disable  escapeclock */
614         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615         return 0;
616 }
617
618 int db8500_prcmu_set_display_clocks(void)
619 {
620         unsigned long flags;
621
622         spin_lock_irqsave(&clk_mgt_lock, flags);
623
624         /* Grab the HW semaphore. */
625         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626                 cpu_relax();
627
628         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632         /* Release the HW semaphore. */
633         writel(0, PRCM_SEM);
634
635         spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637         return 0;
638 }
639
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642         return readl(prcmu_base + reg);
643 }
644
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647         unsigned long flags;
648
649         spin_lock_irqsave(&prcmu_lock, flags);
650         writel(value, (prcmu_base + reg));
651         spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656         u32 val;
657         unsigned long flags;
658
659         spin_lock_irqsave(&prcmu_lock, flags);
660         val = readl(prcmu_base + reg);
661         val = ((val & ~mask) | (value & mask));
662         writel(val, (prcmu_base + reg));
663         spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668         return fw_info.valid ? &fw_info.version : NULL;
669 }
670
671 bool prcmu_has_arm_maxopp(void)
672 {
673         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676
677 /**
678  * prcmu_set_rc_a2p - This function is used to run few power state sequences
679  * @val: Value to be set, i.e. transition requested
680  * Returns: 0 on success, -EINVAL on invalid argument
681  *
682  * This function is used to run the following power state sequences -
683  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684  */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688                 return -EINVAL;
689         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690         return 0;
691 }
692
693 /**
694  * prcmu_get_rc_p2a - This function is used to get power state sequences
695  * Returns: the power transition that has last happened
696  *
697  * This function can return the following transitions-
698  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699  */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702         return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704
705 /**
706  * prcmu_get_current_mode - Return the current XP70 power mode
707  * Returns: Returns the current AP(ARM) power mode: init,
708  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709  */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714
715 /**
716  * prcmu_config_clkout - Configure one of the programmable clock outputs.
717  * @clkout:     The CLKOUT number (0 or 1).
718  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
719  * @div:        The divider to be applied.
720  *
721  * Configures one of the programmable clock outputs (CLKOUTs).
722  * @div should be in the range [1,63] to request a configuration, or 0 to
723  * inform that the configuration is no longer requested.
724  */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727         static int requests[2];
728         int r = 0;
729         unsigned long flags;
730         u32 val;
731         u32 bits;
732         u32 mask;
733         u32 div_mask;
734
735         BUG_ON(clkout > 1);
736         BUG_ON(div > 63);
737         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739         if (!div && !requests[clkout])
740                 return -EINVAL;
741
742         if (clkout == 0) {
743                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747         } else {
748                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750                         PRCM_CLKOCR_CLK1TYPE);
751                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753         }
754         bits &= mask;
755
756         spin_lock_irqsave(&clkout_lock, flags);
757
758         val = readl(PRCM_CLKOCR);
759         if (val & div_mask) {
760                 if (div) {
761                         if ((val & mask) != bits) {
762                                 r = -EBUSY;
763                                 goto unlock_and_return;
764                         }
765                 } else {
766                         if ((val & mask & ~div_mask) != bits) {
767                                 r = -EINVAL;
768                                 goto unlock_and_return;
769                         }
770                 }
771         }
772         writel((bits | (val & ~mask)), PRCM_CLKOCR);
773         requests[clkout] += (div ? 1 : -1);
774
775 unlock_and_return:
776         spin_unlock_irqrestore(&clkout_lock, flags);
777
778         return r;
779 }
780
781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 {
783         unsigned long flags;
784
785         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786
787         spin_lock_irqsave(&mb0_transfer.lock, flags);
788
789         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790                 cpu_relax();
791
792         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795         writeb((keep_ulp_clk ? 1 : 0),
796                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799
800         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801
802         return 0;
803 }
804
805 u8 db8500_prcmu_get_power_state_result(void)
806 {
807         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808 }
809
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
812 {
813         const u8 header[2] = {
814                 MB0H_CONFIG_WAKEUPS_EXE,
815                 MB0H_CONFIG_WAKEUPS_SLEEP
816         };
817         static u32 last_dbb_events;
818         static u32 last_abb_events;
819         u32 dbb_events;
820         u32 abb_events;
821         unsigned int i;
822
823         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825
826         abb_events = mb0_transfer.req.abb_events;
827
828         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829                 return;
830
831         for (i = 0; i < 2; i++) {
832                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833                         cpu_relax();
834                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838         }
839         last_dbb_events = dbb_events;
840         last_abb_events = abb_events;
841 }
842
843 void db8500_prcmu_enable_wakeups(u32 wakeups)
844 {
845         unsigned long flags;
846         u32 bits;
847         int i;
848
849         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850
851         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852                 if (wakeups & BIT(i))
853                         bits |= prcmu_wakeup_bit[i];
854         }
855
856         spin_lock_irqsave(&mb0_transfer.lock, flags);
857
858         mb0_transfer.req.dbb_wakeups = bits;
859         config_wakeups();
860
861         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862 }
863
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 {
866         unsigned long flags;
867
868         spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870         mb0_transfer.req.abb_events = abb_events;
871         config_wakeups();
872
873         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875
876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 {
878         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880         else
881                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882 }
883
884 /**
885  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886  * @opp: The new ARM operating point to which transition is to be made
887  * Returns: 0 on success, non-zero on failure
888  *
889  * This function sets the the operating point of the ARM.
890  */
891 int db8500_prcmu_set_arm_opp(u8 opp)
892 {
893         int r;
894
895         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896                 return -EINVAL;
897
898         r = 0;
899
900         mutex_lock(&mb1_transfer.lock);
901
902         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903                 cpu_relax();
904
905         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908
909         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910         wait_for_completion(&mb1_transfer.work);
911
912         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913                 (mb1_transfer.ack.arm_opp != opp))
914                 r = -EIO;
915
916         mutex_unlock(&mb1_transfer.lock);
917
918         return r;
919 }
920
921 /**
922  * db8500_prcmu_get_arm_opp - get the current ARM OPP
923  *
924  * Returns: the current ARM OPP
925  */
926 int db8500_prcmu_get_arm_opp(void)
927 {
928         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929 }
930
931 /**
932  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933  *
934  * Returns: the current DDR OPP
935  */
936 int db8500_prcmu_get_ddr_opp(void)
937 {
938         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 }
940
941 /**
942  * db8500_set_ddr_opp - set the appropriate DDR OPP
943  * @opp: The new DDR operating point to which transition is to be made
944  * Returns: 0 on success, non-zero on failure
945  *
946  * This function sets the operating point of the DDR.
947  */
948 static bool enable_set_ddr_opp;
949 int db8500_prcmu_set_ddr_opp(u8 opp)
950 {
951         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
952                 return -EINVAL;
953         /* Changing the DDR OPP can hang the hardware pre-v21 */
954         if (enable_set_ddr_opp)
955                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
956
957         return 0;
958 }
959
960 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
961 static void request_even_slower_clocks(bool enable)
962 {
963         u32 clock_reg[] = {
964                 PRCM_ACLK_MGT,
965                 PRCM_DMACLK_MGT
966         };
967         unsigned long flags;
968         unsigned int i;
969
970         spin_lock_irqsave(&clk_mgt_lock, flags);
971
972         /* Grab the HW semaphore. */
973         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
974                 cpu_relax();
975
976         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
977                 u32 val;
978                 u32 div;
979
980                 val = readl(prcmu_base + clock_reg[i]);
981                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
982                 if (enable) {
983                         if ((div <= 1) || (div > 15)) {
984                                 pr_err("prcmu: Bad clock divider %d in %s\n",
985                                         div, __func__);
986                                 goto unlock_and_return;
987                         }
988                         div <<= 1;
989                 } else {
990                         if (div <= 2)
991                                 goto unlock_and_return;
992                         div >>= 1;
993                 }
994                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
995                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
996                 writel(val, prcmu_base + clock_reg[i]);
997         }
998
999 unlock_and_return:
1000         /* Release the HW semaphore. */
1001         writel(0, PRCM_SEM);
1002
1003         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1004 }
1005
1006 /**
1007  * db8500_set_ape_opp - set the appropriate APE OPP
1008  * @opp: The new APE operating point to which transition is to be made
1009  * Returns: 0 on success, non-zero on failure
1010  *
1011  * This function sets the operating point of the APE.
1012  */
1013 int db8500_prcmu_set_ape_opp(u8 opp)
1014 {
1015         int r = 0;
1016
1017         if (opp == mb1_transfer.ape_opp)
1018                 return 0;
1019
1020         mutex_lock(&mb1_transfer.lock);
1021
1022         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1023                 request_even_slower_clocks(false);
1024
1025         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1026                 goto skip_message;
1027
1028         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1029                 cpu_relax();
1030
1031         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1032         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1033         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1034                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1035
1036         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1037         wait_for_completion(&mb1_transfer.work);
1038
1039         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1040                 (mb1_transfer.ack.ape_opp != opp))
1041                 r = -EIO;
1042
1043 skip_message:
1044         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1045                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1046                 request_even_slower_clocks(true);
1047         if (!r)
1048                 mb1_transfer.ape_opp = opp;
1049
1050         mutex_unlock(&mb1_transfer.lock);
1051
1052         return r;
1053 }
1054
1055 /**
1056  * db8500_prcmu_get_ape_opp - get the current APE OPP
1057  *
1058  * Returns: the current APE OPP
1059  */
1060 int db8500_prcmu_get_ape_opp(void)
1061 {
1062         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1063 }
1064
1065 /**
1066  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1067  * @enable: true to request the higher voltage, false to drop a request.
1068  *
1069  * Calls to this function to enable and disable requests must be balanced.
1070  */
1071 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1072 {
1073         int r = 0;
1074         u8 header;
1075         static unsigned int requests;
1076
1077         mutex_lock(&mb1_transfer.lock);
1078
1079         if (enable) {
1080                 if (0 != requests++)
1081                         goto unlock_and_return;
1082                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1083         } else {
1084                 if (requests == 0) {
1085                         r = -EIO;
1086                         goto unlock_and_return;
1087                 } else if (1 != requests--) {
1088                         goto unlock_and_return;
1089                 }
1090                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1091         }
1092
1093         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1094                 cpu_relax();
1095
1096         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1097
1098         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1099         wait_for_completion(&mb1_transfer.work);
1100
1101         if ((mb1_transfer.ack.header != header) ||
1102                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1103                 r = -EIO;
1104
1105 unlock_and_return:
1106         mutex_unlock(&mb1_transfer.lock);
1107
1108         return r;
1109 }
1110
1111 /**
1112  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1113  *
1114  * This function releases the power state requirements of a USB wakeup.
1115  */
1116 int prcmu_release_usb_wakeup_state(void)
1117 {
1118         int r = 0;
1119
1120         mutex_lock(&mb1_transfer.lock);
1121
1122         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1123                 cpu_relax();
1124
1125         writeb(MB1H_RELEASE_USB_WAKEUP,
1126                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1127
1128         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1129         wait_for_completion(&mb1_transfer.work);
1130
1131         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1132                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1133                 r = -EIO;
1134
1135         mutex_unlock(&mb1_transfer.lock);
1136
1137         return r;
1138 }
1139
1140 static int request_pll(u8 clock, bool enable)
1141 {
1142         int r = 0;
1143
1144         if (clock == PRCMU_PLLSOC0)
1145                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1146         else if (clock == PRCMU_PLLSOC1)
1147                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1148         else
1149                 return -EINVAL;
1150
1151         mutex_lock(&mb1_transfer.lock);
1152
1153         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1154                 cpu_relax();
1155
1156         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1157         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1158
1159         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1160         wait_for_completion(&mb1_transfer.work);
1161
1162         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1163                 r = -EIO;
1164
1165         mutex_unlock(&mb1_transfer.lock);
1166
1167         return r;
1168 }
1169
1170 /**
1171  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1172  * @epod_id: The EPOD to set
1173  * @epod_state: The new EPOD state
1174  *
1175  * This function sets the state of a EPOD (power domain). It may not be called
1176  * from interrupt context.
1177  */
1178 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1179 {
1180         int r = 0;
1181         bool ram_retention = false;
1182         int i;
1183
1184         /* check argument */
1185         BUG_ON(epod_id >= NUM_EPOD_ID);
1186
1187         /* set flag if retention is possible */
1188         switch (epod_id) {
1189         case EPOD_ID_SVAMMDSP:
1190         case EPOD_ID_SIAMMDSP:
1191         case EPOD_ID_ESRAM12:
1192         case EPOD_ID_ESRAM34:
1193                 ram_retention = true;
1194                 break;
1195         }
1196
1197         /* check argument */
1198         BUG_ON(epod_state > EPOD_STATE_ON);
1199         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1200
1201         /* get lock */
1202         mutex_lock(&mb2_transfer.lock);
1203
1204         /* wait for mailbox */
1205         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1206                 cpu_relax();
1207
1208         /* fill in mailbox */
1209         for (i = 0; i < NUM_EPOD_ID; i++)
1210                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1211         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1212
1213         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1214
1215         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1216
1217         /*
1218          * The current firmware version does not handle errors correctly,
1219          * and we cannot recover if there is an error.
1220          * This is expected to change when the firmware is updated.
1221          */
1222         if (!wait_for_completion_timeout(&mb2_transfer.work,
1223                         msecs_to_jiffies(20000))) {
1224                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1225                         __func__);
1226                 r = -EIO;
1227                 goto unlock_and_return;
1228         }
1229
1230         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1231                 r = -EIO;
1232
1233 unlock_and_return:
1234         mutex_unlock(&mb2_transfer.lock);
1235         return r;
1236 }
1237
1238 /**
1239  * prcmu_configure_auto_pm - Configure autonomous power management.
1240  * @sleep: Configuration for ApSleep.
1241  * @idle:  Configuration for ApIdle.
1242  */
1243 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1244         struct prcmu_auto_pm_config *idle)
1245 {
1246         u32 sleep_cfg;
1247         u32 idle_cfg;
1248         unsigned long flags;
1249
1250         BUG_ON((sleep == NULL) || (idle == NULL));
1251
1252         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1253         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1254         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1255         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1256         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1257         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1258
1259         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1260         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1261         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1262         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1263         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1264         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1265
1266         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1267
1268         /*
1269          * The autonomous power management configuration is done through
1270          * fields in mailbox 2, but these fields are only used as shared
1271          * variables - i.e. there is no need to send a message.
1272          */
1273         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1274         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1275
1276         mb2_transfer.auto_pm_enabled =
1277                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1278                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1279                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1280                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1281
1282         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1283 }
1284 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1285
1286 bool prcmu_is_auto_pm_enabled(void)
1287 {
1288         return mb2_transfer.auto_pm_enabled;
1289 }
1290
1291 static int request_sysclk(bool enable)
1292 {
1293         int r;
1294         unsigned long flags;
1295
1296         r = 0;
1297
1298         mutex_lock(&mb3_transfer.sysclk_lock);
1299
1300         spin_lock_irqsave(&mb3_transfer.lock, flags);
1301
1302         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1303                 cpu_relax();
1304
1305         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1306
1307         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1308         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1309
1310         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1311
1312         /*
1313          * The firmware only sends an ACK if we want to enable the
1314          * SysClk, and it succeeds.
1315          */
1316         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1317                         msecs_to_jiffies(20000))) {
1318                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1319                         __func__);
1320                 r = -EIO;
1321         }
1322
1323         mutex_unlock(&mb3_transfer.sysclk_lock);
1324
1325         return r;
1326 }
1327
1328 static int request_timclk(bool enable)
1329 {
1330         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1331
1332         if (!enable)
1333                 val |= PRCM_TCR_STOP_TIMERS;
1334         writel(val, PRCM_TCR);
1335
1336         return 0;
1337 }
1338
1339 static int request_clock(u8 clock, bool enable)
1340 {
1341         u32 val;
1342         unsigned long flags;
1343
1344         spin_lock_irqsave(&clk_mgt_lock, flags);
1345
1346         /* Grab the HW semaphore. */
1347         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1348                 cpu_relax();
1349
1350         val = readl(prcmu_base + clk_mgt[clock].offset);
1351         if (enable) {
1352                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1353         } else {
1354                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1355                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1356         }
1357         writel(val, prcmu_base + clk_mgt[clock].offset);
1358
1359         /* Release the HW semaphore. */
1360         writel(0, PRCM_SEM);
1361
1362         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1363
1364         return 0;
1365 }
1366
1367 static int request_sga_clock(u8 clock, bool enable)
1368 {
1369         u32 val;
1370         int ret;
1371
1372         if (enable) {
1373                 val = readl(PRCM_CGATING_BYPASS);
1374                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1375         }
1376
1377         ret = request_clock(clock, enable);
1378
1379         if (!ret && !enable) {
1380                 val = readl(PRCM_CGATING_BYPASS);
1381                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1382         }
1383
1384         return ret;
1385 }
1386
1387 static inline bool plldsi_locked(void)
1388 {
1389         return (readl(PRCM_PLLDSI_LOCKP) &
1390                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1391                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1392                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1393                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1394 }
1395
1396 static int request_plldsi(bool enable)
1397 {
1398         int r = 0;
1399         u32 val;
1400
1401         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1402                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1403                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1404
1405         val = readl(PRCM_PLLDSI_ENABLE);
1406         if (enable)
1407                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1408         else
1409                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1410         writel(val, PRCM_PLLDSI_ENABLE);
1411
1412         if (enable) {
1413                 unsigned int i;
1414                 bool locked = plldsi_locked();
1415
1416                 for (i = 10; !locked && (i > 0); --i) {
1417                         udelay(100);
1418                         locked = plldsi_locked();
1419                 }
1420                 if (locked) {
1421                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1422                                 PRCM_APE_RESETN_SET);
1423                 } else {
1424                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1425                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1426                                 PRCM_MMIP_LS_CLAMP_SET);
1427                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1428                         writel(val, PRCM_PLLDSI_ENABLE);
1429                         r = -EAGAIN;
1430                 }
1431         } else {
1432                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1433         }
1434         return r;
1435 }
1436
1437 static int request_dsiclk(u8 n, bool enable)
1438 {
1439         u32 val;
1440
1441         val = readl(PRCM_DSI_PLLOUT_SEL);
1442         val &= ~dsiclk[n].divsel_mask;
1443         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1444                 dsiclk[n].divsel_shift);
1445         writel(val, PRCM_DSI_PLLOUT_SEL);
1446         return 0;
1447 }
1448
1449 static int request_dsiescclk(u8 n, bool enable)
1450 {
1451         u32 val;
1452
1453         val = readl(PRCM_DSITVCLK_DIV);
1454         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1455         writel(val, PRCM_DSITVCLK_DIV);
1456         return 0;
1457 }
1458
1459 /**
1460  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1461  * @clock:      The clock for which the request is made.
1462  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1463  *
1464  * This function should only be used by the clock implementation.
1465  * Do not use it from any other place!
1466  */
1467 int db8500_prcmu_request_clock(u8 clock, bool enable)
1468 {
1469         if (clock == PRCMU_SGACLK)
1470                 return request_sga_clock(clock, enable);
1471         else if (clock < PRCMU_NUM_REG_CLOCKS)
1472                 return request_clock(clock, enable);
1473         else if (clock == PRCMU_TIMCLK)
1474                 return request_timclk(enable);
1475         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1476                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1477         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1478                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1479         else if (clock == PRCMU_PLLDSI)
1480                 return request_plldsi(enable);
1481         else if (clock == PRCMU_SYSCLK)
1482                 return request_sysclk(enable);
1483         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1484                 return request_pll(clock, enable);
1485         else
1486                 return -EINVAL;
1487 }
1488
1489 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1490         int branch)
1491 {
1492         u64 rate;
1493         u32 val;
1494         u32 d;
1495         u32 div = 1;
1496
1497         val = readl(reg);
1498
1499         rate = src_rate;
1500         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1501
1502         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1503         if (d > 1)
1504                 div *= d;
1505
1506         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1507         if (d > 1)
1508                 div *= d;
1509
1510         if (val & PRCM_PLL_FREQ_SELDIV2)
1511                 div *= 2;
1512
1513         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1514                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1515                 ((reg == PRCM_PLLSOC0_FREQ) ||
1516                  (reg == PRCM_PLLARM_FREQ) ||
1517                  (reg == PRCM_PLLDDR_FREQ))))
1518                 div *= 2;
1519
1520         (void)do_div(rate, div);
1521
1522         return (unsigned long)rate;
1523 }
1524
1525 #define ROOT_CLOCK_RATE 38400000
1526
1527 static unsigned long clock_rate(u8 clock)
1528 {
1529         u32 val;
1530         u32 pllsw;
1531         unsigned long rate = ROOT_CLOCK_RATE;
1532
1533         val = readl(prcmu_base + clk_mgt[clock].offset);
1534
1535         if (val & PRCM_CLK_MGT_CLK38) {
1536                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1537                         rate /= 2;
1538                 return rate;
1539         }
1540
1541         val |= clk_mgt[clock].pllsw;
1542         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1543
1544         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1545                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1546         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1547                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1548         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1549                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1550         else
1551                 return 0;
1552
1553         if ((clock == PRCMU_SGACLK) &&
1554                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1555                 u64 r = (rate * 10);
1556
1557                 (void)do_div(r, 25);
1558                 return (unsigned long)r;
1559         }
1560         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1561         if (val)
1562                 return rate / val;
1563         else
1564                 return 0;
1565 }
1566
1567 static unsigned long armss_rate(void)
1568 {
1569         u32 r;
1570         unsigned long rate;
1571
1572         r = readl(PRCM_ARM_CHGCLKREQ);
1573
1574         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1575                 /* External ARMCLKFIX clock */
1576
1577                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1578
1579                 /* Check PRCM_ARM_CHGCLKREQ divider */
1580                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1581                         rate /= 2;
1582
1583                 /* Check PRCM_ARMCLKFIX_MGT divider */
1584                 r = readl(PRCM_ARMCLKFIX_MGT);
1585                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1586                 rate /= r;
1587
1588         } else {/* ARM PLL */
1589                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1590         }
1591
1592         return rate;
1593 }
1594
1595 static unsigned long dsiclk_rate(u8 n)
1596 {
1597         u32 divsel;
1598         u32 div = 1;
1599
1600         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1601         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1602
1603         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1604                 divsel = dsiclk[n].divsel;
1605         else
1606                 dsiclk[n].divsel = divsel;
1607
1608         switch (divsel) {
1609         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1610                 div *= 2;
1611         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1612                 div *= 2;
1613         case PRCM_DSI_PLLOUT_SEL_PHI:
1614                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1615                         PLL_RAW) / div;
1616         default:
1617                 return 0;
1618         }
1619 }
1620
1621 static unsigned long dsiescclk_rate(u8 n)
1622 {
1623         u32 div;
1624
1625         div = readl(PRCM_DSITVCLK_DIV);
1626         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1627         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1628 }
1629
1630 unsigned long prcmu_clock_rate(u8 clock)
1631 {
1632         if (clock < PRCMU_NUM_REG_CLOCKS)
1633                 return clock_rate(clock);
1634         else if (clock == PRCMU_TIMCLK)
1635                 return ROOT_CLOCK_RATE / 16;
1636         else if (clock == PRCMU_SYSCLK)
1637                 return ROOT_CLOCK_RATE;
1638         else if (clock == PRCMU_PLLSOC0)
1639                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1640         else if (clock == PRCMU_PLLSOC1)
1641                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1642         else if (clock == PRCMU_ARMSS)
1643                 return armss_rate();
1644         else if (clock == PRCMU_PLLDDR)
1645                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1646         else if (clock == PRCMU_PLLDSI)
1647                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1648                         PLL_RAW);
1649         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1650                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1651         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1652                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1653         else
1654                 return 0;
1655 }
1656
1657 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1658 {
1659         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1660                 return ROOT_CLOCK_RATE;
1661         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1662         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1663                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1664         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1665                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1666         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1667                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1668         else
1669                 return 0;
1670 }
1671
1672 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1673 {
1674         u32 div;
1675
1676         div = (src_rate / rate);
1677         if (div == 0)
1678                 return 1;
1679         if (rate < (src_rate / div))
1680                 div++;
1681         return div;
1682 }
1683
1684 static long round_clock_rate(u8 clock, unsigned long rate)
1685 {
1686         u32 val;
1687         u32 div;
1688         unsigned long src_rate;
1689         long rounded_rate;
1690
1691         val = readl(prcmu_base + clk_mgt[clock].offset);
1692         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1693                 clk_mgt[clock].branch);
1694         div = clock_divider(src_rate, rate);
1695         if (val & PRCM_CLK_MGT_CLK38) {
1696                 if (clk_mgt[clock].clk38div) {
1697                         if (div > 2)
1698                                 div = 2;
1699                 } else {
1700                         div = 1;
1701                 }
1702         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1703                 u64 r = (src_rate * 10);
1704
1705                 (void)do_div(r, 25);
1706                 if (r <= rate)
1707                         return (unsigned long)r;
1708         }
1709         rounded_rate = (src_rate / min(div, (u32)31));
1710
1711         return rounded_rate;
1712 }
1713
1714 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1715 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1716         { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1717         { .frequency = 400000, .driver_data = ARM_50_OPP,},
1718         { .frequency = 800000, .driver_data = ARM_100_OPP,},
1719         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1720         { .frequency = CPUFREQ_TABLE_END,},
1721 };
1722
1723 static long round_armss_rate(unsigned long rate)
1724 {
1725         struct cpufreq_frequency_table *pos;
1726         long freq = 0;
1727
1728         /* cpufreq table frequencies is in KHz. */
1729         rate = rate / 1000;
1730
1731         /* Find the corresponding arm opp from the cpufreq table. */
1732         cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1733                 freq = pos->frequency;
1734                 if (freq == rate)
1735                         break;
1736         }
1737
1738         /* Return the last valid value, even if a match was not found. */
1739         return freq * 1000;
1740 }
1741
1742 #define MIN_PLL_VCO_RATE 600000000ULL
1743 #define MAX_PLL_VCO_RATE 1680640000ULL
1744
1745 static long round_plldsi_rate(unsigned long rate)
1746 {
1747         long rounded_rate = 0;
1748         unsigned long src_rate;
1749         unsigned long rem;
1750         u32 r;
1751
1752         src_rate = clock_rate(PRCMU_HDMICLK);
1753         rem = rate;
1754
1755         for (r = 7; (rem > 0) && (r > 0); r--) {
1756                 u64 d;
1757
1758                 d = (r * rate);
1759                 (void)do_div(d, src_rate);
1760                 if (d < 6)
1761                         d = 6;
1762                 else if (d > 255)
1763                         d = 255;
1764                 d *= src_rate;
1765                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1766                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1767                         continue;
1768                 (void)do_div(d, r);
1769                 if (rate < d) {
1770                         if (rounded_rate == 0)
1771                                 rounded_rate = (long)d;
1772                         break;
1773                 }
1774                 if ((rate - d) < rem) {
1775                         rem = (rate - d);
1776                         rounded_rate = (long)d;
1777                 }
1778         }
1779         return rounded_rate;
1780 }
1781
1782 static long round_dsiclk_rate(unsigned long rate)
1783 {
1784         u32 div;
1785         unsigned long src_rate;
1786         long rounded_rate;
1787
1788         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1789                 PLL_RAW);
1790         div = clock_divider(src_rate, rate);
1791         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1792
1793         return rounded_rate;
1794 }
1795
1796 static long round_dsiescclk_rate(unsigned long rate)
1797 {
1798         u32 div;
1799         unsigned long src_rate;
1800         long rounded_rate;
1801
1802         src_rate = clock_rate(PRCMU_TVCLK);
1803         div = clock_divider(src_rate, rate);
1804         rounded_rate = (src_rate / min(div, (u32)255));
1805
1806         return rounded_rate;
1807 }
1808
1809 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1810 {
1811         if (clock < PRCMU_NUM_REG_CLOCKS)
1812                 return round_clock_rate(clock, rate);
1813         else if (clock == PRCMU_ARMSS)
1814                 return round_armss_rate(rate);
1815         else if (clock == PRCMU_PLLDSI)
1816                 return round_plldsi_rate(rate);
1817         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1818                 return round_dsiclk_rate(rate);
1819         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1820                 return round_dsiescclk_rate(rate);
1821         else
1822                 return (long)prcmu_clock_rate(clock);
1823 }
1824
1825 static void set_clock_rate(u8 clock, unsigned long rate)
1826 {
1827         u32 val;
1828         u32 div;
1829         unsigned long src_rate;
1830         unsigned long flags;
1831
1832         spin_lock_irqsave(&clk_mgt_lock, flags);
1833
1834         /* Grab the HW semaphore. */
1835         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1836                 cpu_relax();
1837
1838         val = readl(prcmu_base + clk_mgt[clock].offset);
1839         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1840                 clk_mgt[clock].branch);
1841         div = clock_divider(src_rate, rate);
1842         if (val & PRCM_CLK_MGT_CLK38) {
1843                 if (clk_mgt[clock].clk38div) {
1844                         if (div > 1)
1845                                 val |= PRCM_CLK_MGT_CLK38DIV;
1846                         else
1847                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1848                 }
1849         } else if (clock == PRCMU_SGACLK) {
1850                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1851                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1852                 if (div == 3) {
1853                         u64 r = (src_rate * 10);
1854
1855                         (void)do_div(r, 25);
1856                         if (r <= rate) {
1857                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1858                                 div = 0;
1859                         }
1860                 }
1861                 val |= min(div, (u32)31);
1862         } else {
1863                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1864                 val |= min(div, (u32)31);
1865         }
1866         writel(val, prcmu_base + clk_mgt[clock].offset);
1867
1868         /* Release the HW semaphore. */
1869         writel(0, PRCM_SEM);
1870
1871         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1872 }
1873
1874 static int set_armss_rate(unsigned long rate)
1875 {
1876         struct cpufreq_frequency_table *pos;
1877
1878         /* cpufreq table frequencies is in KHz. */
1879         rate = rate / 1000;
1880
1881         /* Find the corresponding arm opp from the cpufreq table. */
1882         cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1883                 if (pos->frequency == rate)
1884                         break;
1885
1886         if (pos->frequency != rate)
1887                 return -EINVAL;
1888
1889         /* Set the new arm opp. */
1890         return db8500_prcmu_set_arm_opp(pos->driver_data);
1891 }
1892
1893 static int set_plldsi_rate(unsigned long rate)
1894 {
1895         unsigned long src_rate;
1896         unsigned long rem;
1897         u32 pll_freq = 0;
1898         u32 r;
1899
1900         src_rate = clock_rate(PRCMU_HDMICLK);
1901         rem = rate;
1902
1903         for (r = 7; (rem > 0) && (r > 0); r--) {
1904                 u64 d;
1905                 u64 hwrate;
1906
1907                 d = (r * rate);
1908                 (void)do_div(d, src_rate);
1909                 if (d < 6)
1910                         d = 6;
1911                 else if (d > 255)
1912                         d = 255;
1913                 hwrate = (d * src_rate);
1914                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1915                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1916                         continue;
1917                 (void)do_div(hwrate, r);
1918                 if (rate < hwrate) {
1919                         if (pll_freq == 0)
1920                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1921                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1922                         break;
1923                 }
1924                 if ((rate - hwrate) < rem) {
1925                         rem = (rate - hwrate);
1926                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1927                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1928                 }
1929         }
1930         if (pll_freq == 0)
1931                 return -EINVAL;
1932
1933         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1934         writel(pll_freq, PRCM_PLLDSI_FREQ);
1935
1936         return 0;
1937 }
1938
1939 static void set_dsiclk_rate(u8 n, unsigned long rate)
1940 {
1941         u32 val;
1942         u32 div;
1943
1944         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1945                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1946
1947         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1948                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1949                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1950
1951         val = readl(PRCM_DSI_PLLOUT_SEL);
1952         val &= ~dsiclk[n].divsel_mask;
1953         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1954         writel(val, PRCM_DSI_PLLOUT_SEL);
1955 }
1956
1957 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1958 {
1959         u32 val;
1960         u32 div;
1961
1962         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1963         val = readl(PRCM_DSITVCLK_DIV);
1964         val &= ~dsiescclk[n].div_mask;
1965         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1966         writel(val, PRCM_DSITVCLK_DIV);
1967 }
1968
1969 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1970 {
1971         if (clock < PRCMU_NUM_REG_CLOCKS)
1972                 set_clock_rate(clock, rate);
1973         else if (clock == PRCMU_ARMSS)
1974                 return set_armss_rate(rate);
1975         else if (clock == PRCMU_PLLDSI)
1976                 return set_plldsi_rate(rate);
1977         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1978                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1979         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1980                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1981         return 0;
1982 }
1983
1984 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1985 {
1986         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1987             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1988                 return -EINVAL;
1989
1990         mutex_lock(&mb4_transfer.lock);
1991
1992         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1993                 cpu_relax();
1994
1995         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1997                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1998         writeb(DDR_PWR_STATE_ON,
1999                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2000         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2001
2002         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2003         wait_for_completion(&mb4_transfer.work);
2004
2005         mutex_unlock(&mb4_transfer.lock);
2006
2007         return 0;
2008 }
2009
2010 int db8500_prcmu_config_hotdog(u8 threshold)
2011 {
2012         mutex_lock(&mb4_transfer.lock);
2013
2014         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2015                 cpu_relax();
2016
2017         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2018         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2019
2020         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2021         wait_for_completion(&mb4_transfer.work);
2022
2023         mutex_unlock(&mb4_transfer.lock);
2024
2025         return 0;
2026 }
2027
2028 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2029 {
2030         mutex_lock(&mb4_transfer.lock);
2031
2032         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2033                 cpu_relax();
2034
2035         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2036         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2037         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2038                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2039         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
2041         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042         wait_for_completion(&mb4_transfer.work);
2043
2044         mutex_unlock(&mb4_transfer.lock);
2045
2046         return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2049
2050 static int config_hot_period(u16 val)
2051 {
2052         mutex_lock(&mb4_transfer.lock);
2053
2054         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2055                 cpu_relax();
2056
2057         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2058         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2059
2060         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2061         wait_for_completion(&mb4_transfer.work);
2062
2063         mutex_unlock(&mb4_transfer.lock);
2064
2065         return 0;
2066 }
2067
2068 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2069 {
2070         if (cycles32k == 0xFFFF)
2071                 return -EINVAL;
2072
2073         return config_hot_period(cycles32k);
2074 }
2075 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2076
2077 int db8500_prcmu_stop_temp_sense(void)
2078 {
2079         return config_hot_period(0xFFFF);
2080 }
2081 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2082
2083 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2084 {
2085
2086         mutex_lock(&mb4_transfer.lock);
2087
2088         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089                 cpu_relax();
2090
2091         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2092         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2093         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2094         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2095
2096         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2097
2098         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2099         wait_for_completion(&mb4_transfer.work);
2100
2101         mutex_unlock(&mb4_transfer.lock);
2102
2103         return 0;
2104
2105 }
2106
2107 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2108 {
2109         BUG_ON(num == 0 || num > 0xf);
2110         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2111                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2112                             A9WDOG_AUTO_OFF_DIS);
2113 }
2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2115
2116 int db8500_prcmu_enable_a9wdog(u8 id)
2117 {
2118         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2119 }
2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2121
2122 int db8500_prcmu_disable_a9wdog(u8 id)
2123 {
2124         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2125 }
2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2127
2128 int db8500_prcmu_kick_a9wdog(u8 id)
2129 {
2130         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2131 }
2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2133
2134 /*
2135  * timeout is 28 bit, in ms.
2136  */
2137 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2138 {
2139         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2140                             (id & A9WDOG_ID_MASK) |
2141                             /*
2142                              * Put the lowest 28 bits of timeout at
2143                              * offset 4. Four first bits are used for id.
2144                              */
2145                             (u8)((timeout << 4) & 0xf0),
2146                             (u8)((timeout >> 4) & 0xff),
2147                             (u8)((timeout >> 12) & 0xff),
2148                             (u8)((timeout >> 20) & 0xff));
2149 }
2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2151
2152 /**
2153  * prcmu_abb_read() - Read register value(s) from the ABB.
2154  * @slave:      The I2C slave address.
2155  * @reg:        The (start) register address.
2156  * @value:      The read out value(s).
2157  * @size:       The number of registers to read.
2158  *
2159  * Reads register value(s) from the ABB.
2160  * @size has to be 1 for the current firmware version.
2161  */
2162 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2163 {
2164         int r;
2165
2166         if (size != 1)
2167                 return -EINVAL;
2168
2169         mutex_lock(&mb5_transfer.lock);
2170
2171         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2172                 cpu_relax();
2173
2174         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2176         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2177         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2178         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2179
2180         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2181
2182         if (!wait_for_completion_timeout(&mb5_transfer.work,
2183                                 msecs_to_jiffies(20000))) {
2184                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2185                         __func__);
2186                 r = -EIO;
2187         } else {
2188                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2189         }
2190
2191         if (!r)
2192                 *value = mb5_transfer.ack.value;
2193
2194         mutex_unlock(&mb5_transfer.lock);
2195
2196         return r;
2197 }
2198
2199 /**
2200  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201  * @slave:      The I2C slave address.
2202  * @reg:        The (start) register address.
2203  * @value:      The value(s) to write.
2204  * @mask:       The mask(s) to use.
2205  * @size:       The number of registers to write.
2206  *
2207  * Writes masked register value(s) to the ABB.
2208  * For each @value, only the bits set to 1 in the corresponding @mask
2209  * will be written. The other bits are not changed.
2210  * @size has to be 1 for the current firmware version.
2211  */
2212 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2213 {
2214         int r;
2215
2216         if (size != 1)
2217                 return -EINVAL;
2218
2219         mutex_lock(&mb5_transfer.lock);
2220
2221         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222                 cpu_relax();
2223
2224         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229
2230         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231
2232         if (!wait_for_completion_timeout(&mb5_transfer.work,
2233                                 msecs_to_jiffies(20000))) {
2234                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235                         __func__);
2236                 r = -EIO;
2237         } else {
2238                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2239         }
2240
2241         mutex_unlock(&mb5_transfer.lock);
2242
2243         return r;
2244 }
2245
2246 /**
2247  * prcmu_abb_write() - Write register value(s) to the ABB.
2248  * @slave:      The I2C slave address.
2249  * @reg:        The (start) register address.
2250  * @value:      The value(s) to write.
2251  * @size:       The number of registers to write.
2252  *
2253  * Writes register value(s) to the ABB.
2254  * @size has to be 1 for the current firmware version.
2255  */
2256 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2257 {
2258         u8 mask = ~0;
2259
2260         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2261 }
2262
2263 /**
2264  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2265  */
2266 int prcmu_ac_wake_req(void)
2267 {
2268         u32 val;
2269         int ret = 0;
2270
2271         mutex_lock(&mb0_transfer.ac_wake_lock);
2272
2273         val = readl(PRCM_HOSTACCESS_REQ);
2274         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2275                 goto unlock_and_return;
2276
2277         atomic_set(&ac_wake_req_state, 1);
2278
2279         /*
2280          * Force Modem Wake-up before hostaccess_req ping-pong.
2281          * It prevents Modem to enter in Sleep while acking the hostaccess
2282          * request. The 31us delay has been calculated by HWI.
2283          */
2284         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2285         writel(val, PRCM_HOSTACCESS_REQ);
2286
2287         udelay(31);
2288
2289         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2290         writel(val, PRCM_HOSTACCESS_REQ);
2291
2292         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293                         msecs_to_jiffies(5000))) {
2294                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295                         __func__);
2296                 ret = -EFAULT;
2297         }
2298
2299 unlock_and_return:
2300         mutex_unlock(&mb0_transfer.ac_wake_lock);
2301         return ret;
2302 }
2303
2304 /**
2305  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2306  */
2307 void prcmu_ac_sleep_req(void)
2308 {
2309         u32 val;
2310
2311         mutex_lock(&mb0_transfer.ac_wake_lock);
2312
2313         val = readl(PRCM_HOSTACCESS_REQ);
2314         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2315                 goto unlock_and_return;
2316
2317         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318                 PRCM_HOSTACCESS_REQ);
2319
2320         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321                         msecs_to_jiffies(5000))) {
2322                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323                         __func__);
2324         }
2325
2326         atomic_set(&ac_wake_req_state, 0);
2327
2328 unlock_and_return:
2329         mutex_unlock(&mb0_transfer.ac_wake_lock);
2330 }
2331
2332 bool db8500_prcmu_is_ac_wake_requested(void)
2333 {
2334         return (atomic_read(&ac_wake_req_state) != 0);
2335 }
2336
2337 /**
2338  * db8500_prcmu_system_reset - System reset
2339  *
2340  * Saves the reset reason code and then sets the APE_SOFTRST register which
2341  * fires interrupt to fw
2342  */
2343 void db8500_prcmu_system_reset(u16 reset_code)
2344 {
2345         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346         writel(1, PRCM_APE_SOFTRST);
2347 }
2348
2349 /**
2350  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2351  *
2352  * Retrieves the reset reason code stored by prcmu_system_reset() before
2353  * last restart.
2354  */
2355 u16 db8500_prcmu_get_reset_code(void)
2356 {
2357         return readw(tcdm_base + PRCM_SW_RST_REASON);
2358 }
2359
2360 /**
2361  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2362  */
2363 void db8500_prcmu_modem_reset(void)
2364 {
2365         mutex_lock(&mb1_transfer.lock);
2366
2367         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368                 cpu_relax();
2369
2370         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372         wait_for_completion(&mb1_transfer.work);
2373
2374         /*
2375          * No need to check return from PRCMU as modem should go in reset state
2376          * This state is already managed by upper layer
2377          */
2378
2379         mutex_unlock(&mb1_transfer.lock);
2380 }
2381
2382 static void ack_dbb_wakeup(void)
2383 {
2384         unsigned long flags;
2385
2386         spin_lock_irqsave(&mb0_transfer.lock, flags);
2387
2388         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389                 cpu_relax();
2390
2391         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2393
2394         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2395 }
2396
2397 static inline void print_unknown_header_warning(u8 n, u8 header)
2398 {
2399         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2400                 header, n);
2401 }
2402
2403 static bool read_mailbox_0(void)
2404 {
2405         bool r;
2406         u32 ev;
2407         unsigned int n;
2408         u8 header;
2409
2410         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2411         switch (header) {
2412         case MB0H_WAKEUP_EXE:
2413         case MB0H_WAKEUP_SLEEP:
2414                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2415                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2416                 else
2417                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2418
2419                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2420                         complete(&mb0_transfer.ac_wake_work);
2421                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2422                         complete(&mb3_transfer.sysclk_work);
2423
2424                 ev &= mb0_transfer.req.dbb_irqs;
2425
2426                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2427                         if (ev & prcmu_irq_bit[n])
2428                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2429                 }
2430                 r = true;
2431                 break;
2432         default:
2433                 print_unknown_header_warning(0, header);
2434                 r = false;
2435                 break;
2436         }
2437         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438         return r;
2439 }
2440
2441 static bool read_mailbox_1(void)
2442 {
2443         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2444         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2445                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2446         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2447                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2448         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2449                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451         complete(&mb1_transfer.work);
2452         return false;
2453 }
2454
2455 static bool read_mailbox_2(void)
2456 {
2457         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459         complete(&mb2_transfer.work);
2460         return false;
2461 }
2462
2463 static bool read_mailbox_3(void)
2464 {
2465         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466         return false;
2467 }
2468
2469 static bool read_mailbox_4(void)
2470 {
2471         u8 header;
2472         bool do_complete = true;
2473
2474         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2475         switch (header) {
2476         case MB4H_MEM_ST:
2477         case MB4H_HOTDOG:
2478         case MB4H_HOTMON:
2479         case MB4H_HOT_PERIOD:
2480         case MB4H_A9WDOG_CONF:
2481         case MB4H_A9WDOG_EN:
2482         case MB4H_A9WDOG_DIS:
2483         case MB4H_A9WDOG_LOAD:
2484         case MB4H_A9WDOG_KICK:
2485                 break;
2486         default:
2487                 print_unknown_header_warning(4, header);
2488                 do_complete = false;
2489                 break;
2490         }
2491
2492         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2493
2494         if (do_complete)
2495                 complete(&mb4_transfer.work);
2496
2497         return false;
2498 }
2499
2500 static bool read_mailbox_5(void)
2501 {
2502         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2503         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2505         complete(&mb5_transfer.work);
2506         return false;
2507 }
2508
2509 static bool read_mailbox_6(void)
2510 {
2511         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512         return false;
2513 }
2514
2515 static bool read_mailbox_7(void)
2516 {
2517         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518         return false;
2519 }
2520
2521 static bool (* const read_mailbox[NUM_MB])(void) = {
2522         read_mailbox_0,
2523         read_mailbox_1,
2524         read_mailbox_2,
2525         read_mailbox_3,
2526         read_mailbox_4,
2527         read_mailbox_5,
2528         read_mailbox_6,
2529         read_mailbox_7
2530 };
2531
2532 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2533 {
2534         u32 bits;
2535         u8 n;
2536         irqreturn_t r;
2537
2538         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2539         if (unlikely(!bits))
2540                 return IRQ_NONE;
2541
2542         r = IRQ_HANDLED;
2543         for (n = 0; bits; n++) {
2544                 if (bits & MBOX_BIT(n)) {
2545                         bits -= MBOX_BIT(n);
2546                         if (read_mailbox[n]())
2547                                 r = IRQ_WAKE_THREAD;
2548                 }
2549         }
2550         return r;
2551 }
2552
2553 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2554 {
2555         ack_dbb_wakeup();
2556         return IRQ_HANDLED;
2557 }
2558
2559 static void prcmu_mask_work(struct work_struct *work)
2560 {
2561         unsigned long flags;
2562
2563         spin_lock_irqsave(&mb0_transfer.lock, flags);
2564
2565         config_wakeups();
2566
2567         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2568 }
2569
2570 static void prcmu_irq_mask(struct irq_data *d)
2571 {
2572         unsigned long flags;
2573
2574         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2575
2576         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2577
2578         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2579
2580         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2581                 schedule_work(&mb0_transfer.mask_work);
2582 }
2583
2584 static void prcmu_irq_unmask(struct irq_data *d)
2585 {
2586         unsigned long flags;
2587
2588         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2591
2592         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593
2594         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595                 schedule_work(&mb0_transfer.mask_work);
2596 }
2597
2598 static void noop(struct irq_data *d)
2599 {
2600 }
2601
2602 static struct irq_chip prcmu_irq_chip = {
2603         .name           = "prcmu",
2604         .irq_disable    = prcmu_irq_mask,
2605         .irq_ack        = noop,
2606         .irq_mask       = prcmu_irq_mask,
2607         .irq_unmask     = prcmu_irq_unmask,
2608 };
2609
2610 static __init char *fw_project_name(u32 project)
2611 {
2612         switch (project) {
2613         case PRCMU_FW_PROJECT_U8500:
2614                 return "U8500";
2615         case PRCMU_FW_PROJECT_U8400:
2616                 return "U8400";
2617         case PRCMU_FW_PROJECT_U9500:
2618                 return "U9500";
2619         case PRCMU_FW_PROJECT_U8500_MBB:
2620                 return "U8500 MBB";
2621         case PRCMU_FW_PROJECT_U8500_C1:
2622                 return "U8500 C1";
2623         case PRCMU_FW_PROJECT_U8500_C2:
2624                 return "U8500 C2";
2625         case PRCMU_FW_PROJECT_U8500_C3:
2626                 return "U8500 C3";
2627         case PRCMU_FW_PROJECT_U8500_C4:
2628                 return "U8500 C4";
2629         case PRCMU_FW_PROJECT_U9500_MBL:
2630                 return "U9500 MBL";
2631         case PRCMU_FW_PROJECT_U8500_MBL:
2632                 return "U8500 MBL";
2633         case PRCMU_FW_PROJECT_U8500_MBL2:
2634                 return "U8500 MBL2";
2635         case PRCMU_FW_PROJECT_U8520:
2636                 return "U8520 MBL";
2637         case PRCMU_FW_PROJECT_U8420:
2638                 return "U8420";
2639         case PRCMU_FW_PROJECT_U9540:
2640                 return "U9540";
2641         case PRCMU_FW_PROJECT_A9420:
2642                 return "A9420";
2643         case PRCMU_FW_PROJECT_L8540:
2644                 return "L8540";
2645         case PRCMU_FW_PROJECT_L8580:
2646                 return "L8580";
2647         default:
2648                 return "Unknown";
2649         }
2650 }
2651
2652 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2653                                 irq_hw_number_t hwirq)
2654 {
2655         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2656                                 handle_simple_irq);
2657
2658         return 0;
2659 }
2660
2661 static const struct irq_domain_ops db8500_irq_ops = {
2662         .map    = db8500_irq_map,
2663         .xlate  = irq_domain_xlate_twocell,
2664 };
2665
2666 static int db8500_irq_init(struct device_node *np)
2667 {
2668         int i;
2669
2670         db8500_irq_domain = irq_domain_add_simple(
2671                 np, NUM_PRCMU_WAKEUPS, 0,
2672                 &db8500_irq_ops, NULL);
2673
2674         if (!db8500_irq_domain) {
2675                 pr_err("Failed to create irqdomain\n");
2676                 return -ENOSYS;
2677         }
2678
2679         /* All wakeups will be used, so create mappings for all */
2680         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2681                 irq_create_mapping(db8500_irq_domain, i);
2682
2683         return 0;
2684 }
2685
2686 static void dbx500_fw_version_init(struct platform_device *pdev,
2687                             u32 version_offset)
2688 {
2689         struct resource *res;
2690         void __iomem *tcpm_base;
2691         u32 version;
2692
2693         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2694                                            "prcmu-tcpm");
2695         if (!res) {
2696                 dev_err(&pdev->dev,
2697                         "Error: no prcmu tcpm memory region provided\n");
2698                 return;
2699         }
2700         tcpm_base = ioremap(res->start, resource_size(res));
2701         if (!tcpm_base) {
2702                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2703                 return;
2704         }
2705
2706         version = readl(tcpm_base + version_offset);
2707         fw_info.version.project = (version & 0xFF);
2708         fw_info.version.api_version = (version >> 8) & 0xFF;
2709         fw_info.version.func_version = (version >> 16) & 0xFF;
2710         fw_info.version.errata = (version >> 24) & 0xFF;
2711         strncpy(fw_info.version.project_name,
2712                 fw_project_name(fw_info.version.project),
2713                 PRCMU_FW_PROJECT_NAME_LEN);
2714         fw_info.valid = true;
2715         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2716                 fw_info.version.project_name,
2717                 fw_info.version.project,
2718                 fw_info.version.api_version,
2719                 fw_info.version.func_version,
2720                 fw_info.version.errata);
2721         iounmap(tcpm_base);
2722 }
2723
2724 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2725 {
2726         /*
2727          * This is a temporary remap to bring up the clocks. It is
2728          * subsequently replaces with a real remap. After the merge of
2729          * the mailbox subsystem all of this early code goes away, and the
2730          * clock driver can probe independently. An early initcall will
2731          * still be needed, but it can be diverted into drivers/clk/ux500.
2732          */
2733         prcmu_base = ioremap(phy_base, size);
2734         if (!prcmu_base)
2735                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2736
2737         spin_lock_init(&mb0_transfer.lock);
2738         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2739         mutex_init(&mb0_transfer.ac_wake_lock);
2740         init_completion(&mb0_transfer.ac_wake_work);
2741         mutex_init(&mb1_transfer.lock);
2742         init_completion(&mb1_transfer.work);
2743         mb1_transfer.ape_opp = APE_NO_CHANGE;
2744         mutex_init(&mb2_transfer.lock);
2745         init_completion(&mb2_transfer.work);
2746         spin_lock_init(&mb2_transfer.auto_pm_lock);
2747         spin_lock_init(&mb3_transfer.lock);
2748         mutex_init(&mb3_transfer.sysclk_lock);
2749         init_completion(&mb3_transfer.sysclk_work);
2750         mutex_init(&mb4_transfer.lock);
2751         init_completion(&mb4_transfer.work);
2752         mutex_init(&mb5_transfer.lock);
2753         init_completion(&mb5_transfer.work);
2754
2755         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2756 }
2757
2758 static void __init init_prcm_registers(void)
2759 {
2760         u32 val;
2761
2762         val = readl(PRCM_A9PL_FORCE_CLKEN);
2763         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2764                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2765         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2766 }
2767
2768 /*
2769  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2770  */
2771 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2772         REGULATOR_SUPPLY("v-ape", NULL),
2773         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2774         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2775         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2776         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2777         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2778         /* "v-mmc" changed to "vcore" in the mainline kernel */
2779         REGULATOR_SUPPLY("vcore", "sdi0"),
2780         REGULATOR_SUPPLY("vcore", "sdi1"),
2781         REGULATOR_SUPPLY("vcore", "sdi2"),
2782         REGULATOR_SUPPLY("vcore", "sdi3"),
2783         REGULATOR_SUPPLY("vcore", "sdi4"),
2784         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2785         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2786         /* "v-uart" changed to "vcore" in the mainline kernel */
2787         REGULATOR_SUPPLY("vcore", "uart0"),
2788         REGULATOR_SUPPLY("vcore", "uart1"),
2789         REGULATOR_SUPPLY("vcore", "uart2"),
2790         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2791         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2792         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2793 };
2794
2795 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2796         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2797         /* AV8100 regulator */
2798         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2799 };
2800
2801 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2802         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2803         REGULATOR_SUPPLY("vsupply", "mcde"),
2804 };
2805
2806 /* SVA MMDSP regulator switch */
2807 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2808         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2809 };
2810
2811 /* SVA pipe regulator switch */
2812 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2813         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2814 };
2815
2816 /* SIA MMDSP regulator switch */
2817 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2818         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2819 };
2820
2821 /* SIA pipe regulator switch */
2822 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2823         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2824 };
2825
2826 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2827         REGULATOR_SUPPLY("v-mali", NULL),
2828 };
2829
2830 /* ESRAM1 and 2 regulator switch */
2831 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2832         REGULATOR_SUPPLY("esram12", "cm_control"),
2833 };
2834
2835 /* ESRAM3 and 4 regulator switch */
2836 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2837         REGULATOR_SUPPLY("v-esram34", "mcde"),
2838         REGULATOR_SUPPLY("esram34", "cm_control"),
2839         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2840 };
2841
2842 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2843         [DB8500_REGULATOR_VAPE] = {
2844                 .constraints = {
2845                         .name = "db8500-vape",
2846                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847                         .always_on = true,
2848                 },
2849                 .consumer_supplies = db8500_vape_consumers,
2850                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2851         },
2852         [DB8500_REGULATOR_VARM] = {
2853                 .constraints = {
2854                         .name = "db8500-varm",
2855                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856                 },
2857         },
2858         [DB8500_REGULATOR_VMODEM] = {
2859                 .constraints = {
2860                         .name = "db8500-vmodem",
2861                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2862                 },
2863         },
2864         [DB8500_REGULATOR_VPLL] = {
2865                 .constraints = {
2866                         .name = "db8500-vpll",
2867                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2868                 },
2869         },
2870         [DB8500_REGULATOR_VSMPS1] = {
2871                 .constraints = {
2872                         .name = "db8500-vsmps1",
2873                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874                 },
2875         },
2876         [DB8500_REGULATOR_VSMPS2] = {
2877                 .constraints = {
2878                         .name = "db8500-vsmps2",
2879                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880                 },
2881                 .consumer_supplies = db8500_vsmps2_consumers,
2882                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2883         },
2884         [DB8500_REGULATOR_VSMPS3] = {
2885                 .constraints = {
2886                         .name = "db8500-vsmps3",
2887                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888                 },
2889         },
2890         [DB8500_REGULATOR_VRF1] = {
2891                 .constraints = {
2892                         .name = "db8500-vrf1",
2893                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894                 },
2895         },
2896         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2897                 /* dependency to u8500-vape is handled outside regulator framework */
2898                 .constraints = {
2899                         .name = "db8500-sva-mmdsp",
2900                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2901                 },
2902                 .consumer_supplies = db8500_svammdsp_consumers,
2903                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2904         },
2905         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2906                 .constraints = {
2907                         /* "ret" means "retention" */
2908                         .name = "db8500-sva-mmdsp-ret",
2909                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2910                 },
2911         },
2912         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2913                 /* dependency to u8500-vape is handled outside regulator framework */
2914                 .constraints = {
2915                         .name = "db8500-sva-pipe",
2916                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2917                 },
2918                 .consumer_supplies = db8500_svapipe_consumers,
2919                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2920         },
2921         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2922                 /* dependency to u8500-vape is handled outside regulator framework */
2923                 .constraints = {
2924                         .name = "db8500-sia-mmdsp",
2925                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2926                 },
2927                 .consumer_supplies = db8500_siammdsp_consumers,
2928                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2929         },
2930         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2931                 .constraints = {
2932                         .name = "db8500-sia-mmdsp-ret",
2933                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934                 },
2935         },
2936         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2937                 /* dependency to u8500-vape is handled outside regulator framework */
2938                 .constraints = {
2939                         .name = "db8500-sia-pipe",
2940                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941                 },
2942                 .consumer_supplies = db8500_siapipe_consumers,
2943                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2944         },
2945         [DB8500_REGULATOR_SWITCH_SGA] = {
2946                 .supply_regulator = "db8500-vape",
2947                 .constraints = {
2948                         .name = "db8500-sga",
2949                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2950                 },
2951                 .consumer_supplies = db8500_sga_consumers,
2952                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2953
2954         },
2955         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2956                 .supply_regulator = "db8500-vape",
2957                 .constraints = {
2958                         .name = "db8500-b2r2-mcde",
2959                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960                 },
2961                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2962                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2963         },
2964         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2965                 /*
2966                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2967                  * no need to hold Vape
2968                  */
2969                 .constraints = {
2970                         .name = "db8500-esram12",
2971                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972                 },
2973                 .consumer_supplies = db8500_esram12_consumers,
2974                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2975         },
2976         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2977                 .constraints = {
2978                         .name = "db8500-esram12-ret",
2979                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980                 },
2981         },
2982         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2983                 /*
2984                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2985                  * no need to hold Vape
2986                  */
2987                 .constraints = {
2988                         .name = "db8500-esram34",
2989                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2990                 },
2991                 .consumer_supplies = db8500_esram34_consumers,
2992                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2993         },
2994         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2995                 .constraints = {
2996                         .name = "db8500-esram34-ret",
2997                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998                 },
2999         },
3000 };
3001
3002 static struct ux500_wdt_data db8500_wdt_pdata = {
3003         .timeout = 600, /* 10 minutes */
3004         .has_28_bits_resolution = true,
3005 };
3006 /*
3007  * Thermal Sensor
3008  */
3009
3010 static struct resource db8500_thsens_resources[] = {
3011         {
3012                 .name = "IRQ_HOTMON_LOW",
3013                 .start  = IRQ_PRCMU_HOTMON_LOW,
3014                 .end    = IRQ_PRCMU_HOTMON_LOW,
3015                 .flags  = IORESOURCE_IRQ,
3016         },
3017         {
3018                 .name = "IRQ_HOTMON_HIGH",
3019                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3020                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3021                 .flags  = IORESOURCE_IRQ,
3022         },
3023 };
3024
3025 static struct db8500_thsens_platform_data db8500_thsens_data = {
3026         .trip_points[0] = {
3027                 .temp = 70000,
3028                 .type = THERMAL_TRIP_ACTIVE,
3029                 .cdev_name = {
3030                         [0] = "thermal-cpufreq-0",
3031                 },
3032         },
3033         .trip_points[1] = {
3034                 .temp = 75000,
3035                 .type = THERMAL_TRIP_ACTIVE,
3036                 .cdev_name = {
3037                         [0] = "thermal-cpufreq-0",
3038                 },
3039         },
3040         .trip_points[2] = {
3041                 .temp = 80000,
3042                 .type = THERMAL_TRIP_ACTIVE,
3043                 .cdev_name = {
3044                         [0] = "thermal-cpufreq-0",
3045                 },
3046         },
3047         .trip_points[3] = {
3048                 .temp = 85000,
3049                 .type = THERMAL_TRIP_CRITICAL,
3050         },
3051         .num_trips = 4,
3052 };
3053
3054 static const struct mfd_cell common_prcmu_devs[] = {
3055         {
3056                 .name = "ux500_wdt",
3057                 .platform_data = &db8500_wdt_pdata,
3058                 .pdata_size = sizeof(db8500_wdt_pdata),
3059                 .id = -1,
3060         },
3061 };
3062
3063 static const struct mfd_cell db8500_prcmu_devs[] = {
3064         {
3065                 .name = "db8500-prcmu-regulators",
3066                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3067                 .platform_data = &db8500_regulators,
3068                 .pdata_size = sizeof(db8500_regulators),
3069         },
3070         {
3071                 .name = "cpufreq-ux500",
3072                 .of_compatible = "stericsson,cpufreq-ux500",
3073                 .platform_data = &db8500_cpufreq_table,
3074                 .pdata_size = sizeof(db8500_cpufreq_table),
3075         },
3076         {
3077                 .name = "cpuidle-dbx500",
3078                 .of_compatible = "stericsson,cpuidle-dbx500",
3079         },
3080         {
3081                 .name = "db8500-thermal",
3082                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3083                 .resources = db8500_thsens_resources,
3084                 .platform_data = &db8500_thsens_data,
3085                 .pdata_size = sizeof(db8500_thsens_data),
3086         },
3087 };
3088
3089 static void db8500_prcmu_update_cpufreq(void)
3090 {
3091         if (prcmu_has_arm_maxopp()) {
3092                 db8500_cpufreq_table[3].frequency = 1000000;
3093                 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3094         }
3095 }
3096
3097 static int db8500_prcmu_register_ab8500(struct device *parent)
3098 {
3099         struct device_node *np;
3100         struct resource ab8500_resource;
3101         const struct mfd_cell ab8500_cell = {
3102                 .name = "ab8500-core",
3103                 .of_compatible = "stericsson,ab8500",
3104                 .id = AB8500_VERSION_AB8500,
3105                 .resources = &ab8500_resource,
3106                 .num_resources = 1,
3107         };
3108
3109         if (!parent->of_node)
3110                 return -ENODEV;
3111
3112         /* Look up the device node, sneak the IRQ out of it */
3113         for_each_child_of_node(parent->of_node, np) {
3114                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3115                         break;
3116         }
3117         if (!np) {
3118                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3119                 return -ENODEV;
3120         }
3121         of_irq_to_resource_table(np, &ab8500_resource, 1);
3122
3123         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3124 }
3125
3126 /**
3127  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3128  *
3129  */
3130 static int db8500_prcmu_probe(struct platform_device *pdev)
3131 {
3132         struct device_node *np = pdev->dev.of_node;
3133         int irq = 0, err = 0;
3134         struct resource *res;
3135
3136         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3137         if (!res) {
3138                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3139                 return -EINVAL;
3140         }
3141         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3142         if (!prcmu_base) {
3143                 dev_err(&pdev->dev,
3144                         "failed to ioremap prcmu register memory\n");
3145                 return -ENOMEM;
3146         }
3147         init_prcm_registers();
3148         dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3149         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3150         if (!res) {
3151                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3152                 return -EINVAL;
3153         }
3154         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3155                         resource_size(res));
3156         if (!tcdm_base) {
3157                 dev_err(&pdev->dev,
3158                         "failed to ioremap prcmu-tcdm register memory\n");
3159                 return -ENOMEM;
3160         }
3161
3162         /* Clean up the mailbox interrupts after pre-kernel code. */
3163         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3164
3165         irq = platform_get_irq(pdev, 0);
3166         if (irq <= 0) {
3167                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3168                 return irq;
3169         }
3170
3171         err = request_threaded_irq(irq, prcmu_irq_handler,
3172                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3173         if (err < 0) {
3174                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3175                 return err;
3176         }
3177
3178         db8500_irq_init(np);
3179
3180         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3181
3182         db8500_prcmu_update_cpufreq();
3183
3184         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3185                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3186         if (err) {
3187                 pr_err("prcmu: Failed to add subdevices\n");
3188                 return err;
3189         }
3190
3191         /* TODO: Remove restriction when clk definitions are available. */
3192         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3193                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3194                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3195                                       db8500_irq_domain);
3196                 if (err) {
3197                         mfd_remove_devices(&pdev->dev);
3198                         pr_err("prcmu: Failed to add subdevices\n");
3199                         return err;
3200                 }
3201         }
3202
3203         err = db8500_prcmu_register_ab8500(&pdev->dev);
3204         if (err) {
3205                 mfd_remove_devices(&pdev->dev);
3206                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3207                 return err;
3208         }
3209
3210         pr_info("DB8500 PRCMU initialized\n");
3211         return err;
3212 }
3213 static const struct of_device_id db8500_prcmu_match[] = {
3214         { .compatible = "stericsson,db8500-prcmu"},
3215         { },
3216 };
3217
3218 static struct platform_driver db8500_prcmu_driver = {
3219         .driver = {
3220                 .name = "db8500-prcmu",
3221                 .of_match_table = db8500_prcmu_match,
3222         },
3223         .probe = db8500_prcmu_probe,
3224 };
3225
3226 static int __init db8500_prcmu_init(void)
3227 {
3228         return platform_driver_register(&db8500_prcmu_driver);
3229 }
3230
3231 core_initcall(db8500_prcmu_init);
3232
3233 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3234 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3235 MODULE_LICENSE("GPL v2");